1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
36 #include "gdb_string.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
44 #include "trad-frame.h"
48 #include "alpha-tdep.h"
50 /* Instruction decoding. The notations for registers, immediates and
51 opcodes are the same as the one used in Compaq's Alpha architecture
54 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
56 /* Memory instruction format */
57 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
58 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
59 #define MEM_DISP(insn) \
60 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
62 static const int lda_opcode = 0x08;
63 static const int stq_opcode = 0x2d;
65 /* Branch instruction format */
66 #define BR_RA(insn) MEM_RA(insn)
68 static const int br_opcode = 0x30;
69 static const int bne_opcode = 0x3d;
71 /* Operate instruction format */
72 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
73 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
74 #define OPR_RA(insn) MEM_RA(insn)
75 #define OPR_RC(insn) ((insn & 0x1f))
76 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
78 static const int subq_opcode = 0x10;
79 static const int subq_function = 0x29;
82 /* Return the name of the REGNO register.
84 An empty name corresponds to a register number that used to
85 be used for a virtual register. That virtual register has
86 been removed, but the index is still reserved to maintain
87 compatibility with existing remote alpha targets. */
90 alpha_register_name (struct gdbarch *gdbarch, int regno)
92 static const char * const register_names[] =
94 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
95 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
96 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
97 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
98 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
99 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
100 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
101 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
107 if (regno >= ARRAY_SIZE(register_names))
109 return register_names[regno];
113 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
115 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
119 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
121 return (regno == ALPHA_ZERO_REGNUM
122 || strlen (alpha_register_name (gdbarch, regno)) == 0);
126 alpha_register_type (struct gdbarch *gdbarch, int regno)
128 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
129 return builtin_type (gdbarch)->builtin_data_ptr;
130 if (regno == ALPHA_PC_REGNUM)
131 return builtin_type (gdbarch)->builtin_func_ptr;
133 /* Don't need to worry about little vs big endian until
134 some jerk tries to port to alpha-unicosmk. */
135 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
136 return builtin_type (gdbarch)->builtin_double;
138 return builtin_type (gdbarch)->builtin_int64;
141 /* Is REGNUM a member of REGGROUP? */
144 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
145 struct reggroup *group)
147 /* Filter out any registers eliminated, but whose regnum is
148 reserved for backward compatibility, e.g. the vfp. */
149 if (gdbarch_register_name (gdbarch, regnum) == NULL
150 || *gdbarch_register_name (gdbarch, regnum) == '\0')
153 if (group == all_reggroup)
156 /* Zero should not be saved or restored. Technically it is a general
157 register (just as $f31 would be a float if we represented it), but
158 there's no point displaying it during "info regs", so leave it out
159 of all groups except for "all". */
160 if (regnum == ALPHA_ZERO_REGNUM)
163 /* All other registers are saved and restored. */
164 if (group == save_reggroup || group == restore_reggroup)
167 /* All other groups are non-overlapping. */
169 /* Since this is really a PALcode memory slot... */
170 if (regnum == ALPHA_UNIQUE_REGNUM)
171 return group == system_reggroup;
173 /* Force the FPCR to be considered part of the floating point state. */
174 if (regnum == ALPHA_FPCR_REGNUM)
175 return group == float_reggroup;
177 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
178 return group == float_reggroup;
180 return group == general_reggroup;
183 /* The following represents exactly the conversion performed by
184 the LDS instruction. This applies to both single-precision
185 floating point and 32-bit integers. */
188 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
198 exp = (exp_msb << 10) | exp_low;
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
211 store_unsigned_integer (out, 8, byte_order, reg);
214 /* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
218 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
223 reg = extract_unsigned_integer (in, 8, byte_order);
224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
225 store_unsigned_integer (out, 4, byte_order, mem);
228 /* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
231 bytes or less, as the representation of integers in floating point
232 registers is different. */
235 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
239 && TYPE_LENGTH (type) != 8);
243 alpha_register_to_value (struct frame_info *frame, int regnum,
244 struct type *valtype, gdb_byte *out,
245 int *optimizedp, int *unavailablep)
247 struct gdbarch *gdbarch = get_frame_arch (frame);
248 gdb_byte in[MAX_REGISTER_SIZE];
250 /* Convert to TYPE. */
251 if (!get_frame_register_bytes (frame, regnum, 0,
252 register_size (gdbarch, regnum),
253 in, optimizedp, unavailablep))
256 if (TYPE_LENGTH (valtype) == 4)
258 alpha_sts (gdbarch, out, in);
259 *optimizedp = *unavailablep = 0;
263 error (_("Cannot retrieve value from floating point register"));
267 alpha_value_to_register (struct frame_info *frame, int regnum,
268 struct type *valtype, const gdb_byte *in)
270 gdb_byte out[MAX_REGISTER_SIZE];
272 switch (TYPE_LENGTH (valtype))
275 alpha_lds (get_frame_arch (frame), out, in);
278 error (_("Cannot store value in floating point register"));
280 put_frame_register (frame, regnum, out);
284 /* The alpha passes the first six arguments in the registers, the rest on
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
297 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
304 int accumulate_size = struct_return ? 8 : 0;
307 const gdb_byte *contents;
311 struct alpha_arg *alpha_args
312 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
313 struct alpha_arg *m_arg;
314 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
315 int required_arg_regs;
316 CORE_ADDR func_addr = find_function_addr (function, NULL);
318 /* The ABI places the address of the called function in T12. */
319 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
321 /* Set the return address register to point to the entry point
322 of the program, where a breakpoint lies in wait. */
323 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
325 /* Lay out the arguments in memory. */
326 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
328 struct value *arg = args[i];
329 struct type *arg_type = check_typedef (value_type (arg));
331 /* Cast argument to long if necessary as the compiler does it too. */
332 switch (TYPE_CODE (arg_type))
337 case TYPE_CODE_RANGE:
339 if (TYPE_LENGTH (arg_type) == 4)
341 /* 32-bit values must be sign-extended to 64 bits
342 even if the base data type is unsigned. */
343 arg_type = builtin_type (gdbarch)->builtin_int32;
344 arg = value_cast (arg_type, arg);
346 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
348 arg_type = builtin_type (gdbarch)->builtin_int64;
349 arg = value_cast (arg_type, arg);
354 /* "float" arguments loaded in registers must be passed in
355 register format, aka "double". */
356 if (accumulate_size < sizeof (arg_reg_buffer)
357 && TYPE_LENGTH (arg_type) == 4)
359 arg_type = builtin_type (gdbarch)->builtin_double;
360 arg = value_cast (arg_type, arg);
362 /* Tru64 5.1 has a 128-bit long double, and passes this by
363 invisible reference. No one else uses this data type. */
364 else if (TYPE_LENGTH (arg_type) == 16)
366 /* Allocate aligned storage. */
367 sp = (sp & -16) - 16;
369 /* Write the real data into the stack. */
370 write_memory (sp, value_contents (arg), 16);
372 /* Construct the indirection. */
373 arg_type = lookup_pointer_type (arg_type);
374 arg = value_from_pointer (arg_type, sp);
378 case TYPE_CODE_COMPLEX:
379 /* ??? The ABI says that complex values are passed as two
380 separate scalar values. This distinction only matters
381 for complex float. However, GCC does not implement this. */
383 /* Tru64 5.1 has a 128-bit long double, and passes this by
384 invisible reference. */
385 if (TYPE_LENGTH (arg_type) == 32)
387 /* Allocate aligned storage. */
388 sp = (sp & -16) - 16;
390 /* Write the real data into the stack. */
391 write_memory (sp, value_contents (arg), 32);
393 /* Construct the indirection. */
394 arg_type = lookup_pointer_type (arg_type);
395 arg = value_from_pointer (arg_type, sp);
402 m_arg->len = TYPE_LENGTH (arg_type);
403 m_arg->offset = accumulate_size;
404 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
405 m_arg->contents = value_contents (arg);
408 /* Determine required argument register loads, loading an argument register
409 is expensive as it uses three ptrace calls. */
410 required_arg_regs = accumulate_size / 8;
411 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
412 required_arg_regs = ALPHA_NUM_ARG_REGS;
414 /* Make room for the arguments on the stack. */
415 if (accumulate_size < sizeof(arg_reg_buffer))
418 accumulate_size -= sizeof(arg_reg_buffer);
419 sp -= accumulate_size;
421 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
424 /* `Push' arguments on the stack. */
425 for (i = nargs; m_arg--, --i >= 0;)
427 const gdb_byte *contents = m_arg->contents;
428 int offset = m_arg->offset;
429 int len = m_arg->len;
431 /* Copy the bytes destined for registers into arg_reg_buffer. */
432 if (offset < sizeof(arg_reg_buffer))
434 if (offset + len <= sizeof(arg_reg_buffer))
436 memcpy (arg_reg_buffer + offset, contents, len);
441 int tlen = sizeof(arg_reg_buffer) - offset;
442 memcpy (arg_reg_buffer + offset, contents, tlen);
449 /* Everything else goes to the stack. */
450 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
453 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
454 byte_order, struct_addr);
456 /* Load the argument registers. */
457 for (i = 0; i < required_arg_regs; i++)
459 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
462 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
465 /* Finally, update the stack pointer. */
466 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
471 /* Extract from REGCACHE the value about to be returned from a function
472 and copy it into VALBUF. */
475 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
478 struct gdbarch *gdbarch = get_regcache_arch (regcache);
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 int length = TYPE_LENGTH (valtype);
481 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
484 switch (TYPE_CODE (valtype))
490 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
491 alpha_sts (gdbarch, valbuf, raw_buffer);
495 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
499 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
500 read_memory (l, valbuf, 16);
504 internal_error (__FILE__, __LINE__,
505 _("unknown floating point width"));
509 case TYPE_CODE_COMPLEX:
513 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
518 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
519 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
523 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
524 read_memory (l, valbuf, 32);
528 internal_error (__FILE__, __LINE__,
529 _("unknown floating point width"));
534 /* Assume everything else degenerates to an integer. */
535 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
536 store_unsigned_integer (valbuf, length, byte_order, l);
541 /* Insert the given value into REGCACHE as if it was being
542 returned by a function. */
545 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
546 const gdb_byte *valbuf)
548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
549 int length = TYPE_LENGTH (valtype);
550 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
553 switch (TYPE_CODE (valtype))
559 alpha_lds (gdbarch, raw_buffer, valbuf);
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
564 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
568 /* FIXME: 128-bit long doubles are returned like structures:
569 by writing into indirect storage provided by the caller
570 as the first argument. */
571 error (_("Cannot set a 128-bit long double return value."));
574 internal_error (__FILE__, __LINE__,
575 _("unknown floating point width"));
579 case TYPE_CODE_COMPLEX:
583 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
588 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
589 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
593 /* FIXME: 128-bit long doubles are returned like structures:
594 by writing into indirect storage provided by the caller
595 as the first argument. */
596 error (_("Cannot set a 128-bit long double return value."));
599 internal_error (__FILE__, __LINE__,
600 _("unknown floating point width"));
605 /* Assume everything else degenerates to an integer. */
606 /* 32-bit values must be sign-extended to 64 bits
607 even if the base data type is unsigned. */
609 valtype = builtin_type (gdbarch)->builtin_int32;
610 l = unpack_long (valtype, valbuf);
611 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
616 static enum return_value_convention
617 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
618 struct type *type, struct regcache *regcache,
619 gdb_byte *readbuf, const gdb_byte *writebuf)
621 enum type_code code = TYPE_CODE (type);
623 if ((code == TYPE_CODE_STRUCT
624 || code == TYPE_CODE_UNION
625 || code == TYPE_CODE_ARRAY)
626 && gdbarch_tdep (gdbarch)->return_in_memory (type))
631 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
639 alpha_extract_return_value (type, regcache, readbuf);
641 alpha_store_return_value (type, regcache, writebuf);
643 return RETURN_VALUE_REGISTER_CONVENTION;
647 alpha_return_in_memory_always (struct type *type)
652 static const gdb_byte *
653 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
655 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
657 *len = sizeof(break_insn);
662 /* This returns the PC of the first insn after the prologue.
663 If we can't find the prologue, then return 0. */
666 alpha_after_prologue (CORE_ADDR pc)
668 struct symtab_and_line sal;
669 CORE_ADDR func_addr, func_end;
671 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
674 sal = find_pc_line (func_addr, 0);
675 if (sal.end < func_end)
678 /* The line after the prologue is after the end of the function. In this
679 case, tell the caller to find the prologue the hard way. */
683 /* Read an instruction from memory at PC, looking through breakpoints. */
686 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
689 gdb_byte buf[ALPHA_INSN_SIZE];
692 status = target_read_memory (pc, buf, sizeof (buf));
694 memory_error (status, pc);
695 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
698 /* To skip prologues, I use this predicate. Returns either PC itself
699 if the code at PC does not look like a function prologue; otherwise
700 returns an address that (if we're lucky) follows the prologue. If
701 LENIENT, then we must skip everything which is involved in setting
702 up the frame (it's OK to skip more, just so long as we don't skip
703 anything which might clobber the registers which are being saved. */
706 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
710 CORE_ADDR post_prologue_pc;
711 gdb_byte buf[ALPHA_INSN_SIZE];
713 /* Silently return the unaltered pc upon memory errors.
714 This could happen on OSF/1 if decode_line_1 tries to skip the
715 prologue for quickstarted shared library functions when the
716 shared library is not yet mapped in.
717 Reading target memory is slow over serial lines, so we perform
718 this check only if the target has shared libraries (which all
719 Alpha targets do). */
720 if (target_read_memory (pc, buf, sizeof (buf)))
723 /* See if we can determine the end of the prologue via the symbol table.
724 If so, then return either PC, or the PC after the prologue, whichever
727 post_prologue_pc = alpha_after_prologue (pc);
728 if (post_prologue_pc != 0)
729 return max (pc, post_prologue_pc);
731 /* Can't determine prologue from the symbol table, need to examine
734 /* Skip the typical prologue instructions. These are the stack adjustment
735 instruction and the instructions that save registers on the stack
736 or in the gcc frame. */
737 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
739 inst = alpha_read_insn (gdbarch, pc + offset);
741 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
743 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
745 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
747 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
750 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
751 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
752 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
755 if (inst == 0x47de040f) /* bis sp,sp,fp */
757 if (inst == 0x47fe040f) /* bis zero,sp,fp */
766 static const int ldl_l_opcode = 0x2a;
767 static const int ldq_l_opcode = 0x2b;
768 static const int stl_c_opcode = 0x2e;
769 static const int stq_c_opcode = 0x2f;
771 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
772 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
773 is found, attempt to step through it. A breakpoint is placed at the end of
777 alpha_deal_with_atomic_sequence (struct frame_info *frame)
779 struct gdbarch *gdbarch = get_frame_arch (frame);
780 struct address_space *aspace = get_frame_address_space (frame);
781 CORE_ADDR pc = get_frame_pc (frame);
782 CORE_ADDR breaks[2] = {-1, -1};
784 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
785 unsigned int insn = alpha_read_insn (gdbarch, loc);
788 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
789 const int atomic_sequence_length = 16; /* Instruction sequence length. */
790 int bc_insn_count = 0; /* Conditional branch instruction count. */
792 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
793 if (INSN_OPCODE (insn) != ldl_l_opcode
794 && INSN_OPCODE (insn) != ldq_l_opcode)
797 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
799 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
801 loc += ALPHA_INSN_SIZE;
802 insn = alpha_read_insn (gdbarch, loc);
804 /* Assume that there is at most one branch in the atomic
805 sequence. If a branch is found, put a breakpoint in
806 its destination address. */
807 if (INSN_OPCODE (insn) >= br_opcode)
809 int immediate = (insn & 0x001fffff) << 2;
811 immediate = (immediate ^ 0x400000) - 0x400000;
813 if (bc_insn_count >= 1)
814 return 0; /* More than one branch found, fallback
815 to the standard single-step code. */
817 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
823 if (INSN_OPCODE (insn) == stl_c_opcode
824 || INSN_OPCODE (insn) == stq_c_opcode)
828 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
829 if (INSN_OPCODE (insn) != stl_c_opcode
830 && INSN_OPCODE (insn) != stq_c_opcode)
834 loc += ALPHA_INSN_SIZE;
836 /* Insert a breakpoint right after the end of the atomic sequence. */
839 /* Check for duplicated breakpoints. Check also for a breakpoint
840 placed (branch instruction's destination) anywhere in sequence. */
842 && (breaks[1] == breaks[0]
843 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
846 /* Effectively inserts the breakpoints. */
847 for (index = 0; index <= last_breakpoint; index++)
848 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
854 /* Figure out where the longjmp will land.
855 We expect the first arg to be a pointer to the jmp_buf structure from
856 which we extract the PC (JB_PC) that we will land at. The PC is copied
857 into the "pc". This routine returns true on success. */
860 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
862 struct gdbarch *gdbarch = get_frame_arch (frame);
863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
866 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
868 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
870 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
871 raw_buffer, tdep->jb_elt_size))
874 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
879 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
880 describe the location and shape of the sigcontext structure. After
881 that, all registers are in memory, so it's easy. */
882 /* ??? Shouldn't we be able to do this generically, rather than with
883 OSABI data specific to Alpha? */
885 struct alpha_sigtramp_unwind_cache
887 CORE_ADDR sigcontext_addr;
890 static struct alpha_sigtramp_unwind_cache *
891 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
892 void **this_prologue_cache)
894 struct alpha_sigtramp_unwind_cache *info;
895 struct gdbarch_tdep *tdep;
897 if (*this_prologue_cache)
898 return *this_prologue_cache;
900 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
901 *this_prologue_cache = info;
903 tdep = gdbarch_tdep (get_frame_arch (this_frame));
904 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
909 /* Return the address of REGNUM in a sigtramp frame. Since this is
910 all arithmetic, it doesn't seem worthwhile to cache it. */
913 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
914 CORE_ADDR sigcontext_addr, int regnum)
916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
918 if (regnum >= 0 && regnum < 32)
919 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
920 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
921 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
922 else if (regnum == ALPHA_PC_REGNUM)
923 return sigcontext_addr + tdep->sc_pc_offset;
928 /* Given a GDB frame, determine the address of the calling function's
929 frame. This will be used to create a new GDB frame struct. */
932 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
933 void **this_prologue_cache,
934 struct frame_id *this_id)
936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
938 struct alpha_sigtramp_unwind_cache *info
939 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
940 CORE_ADDR stack_addr, code_addr;
942 /* If the OSABI couldn't locate the sigcontext, give up. */
943 if (info->sigcontext_addr == 0)
946 /* If we have dynamic signal trampolines, find their start.
947 If we do not, then we must assume there is a symbol record
948 that can provide the start address. */
949 if (tdep->dynamic_sigtramp_offset)
952 code_addr = get_frame_pc (this_frame);
953 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
960 code_addr = get_frame_func (this_frame);
962 /* The stack address is trivially read from the sigcontext. */
963 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
965 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
966 ALPHA_REGISTER_SIZE);
968 *this_id = frame_id_build (stack_addr, code_addr);
971 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
973 static struct value *
974 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
975 void **this_prologue_cache, int regnum)
977 struct alpha_sigtramp_unwind_cache *info
978 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
981 if (info->sigcontext_addr != 0)
983 /* All integer and fp registers are stored in memory. */
984 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
985 info->sigcontext_addr, regnum);
987 return frame_unwind_got_memory (this_frame, regnum, addr);
990 /* This extra register may actually be in the sigcontext, but our
991 current description of it in alpha_sigtramp_frame_unwind_cache
992 doesn't include it. Too bad. Fall back on whatever's in the
994 return frame_unwind_got_register (this_frame, regnum, regnum);
998 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
999 struct frame_info *this_frame,
1000 void **this_prologue_cache)
1002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1003 CORE_ADDR pc = get_frame_pc (this_frame);
1006 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1007 look at tramp-frame.h and other simplier per-architecture
1008 sigtramp unwinders. */
1010 /* We shouldn't even bother to try if the OSABI didn't register a
1011 sigcontext_addr handler or pc_in_sigtramp hander. */
1012 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1014 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1017 /* Otherwise we should be in a signal frame. */
1018 find_pc_partial_function (pc, &name, NULL, NULL);
1019 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1025 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1027 default_frame_unwind_stop_reason,
1028 alpha_sigtramp_frame_this_id,
1029 alpha_sigtramp_frame_prev_register,
1031 alpha_sigtramp_frame_sniffer
1036 /* Heuristic_proc_start may hunt through the text section for a long
1037 time across a 2400 baud serial line. Allows the user to limit this
1039 static unsigned int heuristic_fence_post = 0;
1041 /* Attempt to locate the start of the function containing PC. We assume that
1042 the previous function ends with an about_to_return insn. Not foolproof by
1043 any means, since gcc is happy to put the epilogue in the middle of a
1044 function. But we're guessing anyway... */
1047 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050 CORE_ADDR last_non_nop = pc;
1051 CORE_ADDR fence = pc - heuristic_fence_post;
1052 CORE_ADDR orig_pc = pc;
1054 struct inferior *inf;
1059 /* First see if we can find the start of the function from minimal
1060 symbol information. This can succeed with a binary that doesn't
1061 have debug info, but hasn't been stripped. */
1062 func = get_pc_function_start (pc);
1066 if (heuristic_fence_post == UINT_MAX
1067 || fence < tdep->vm_min_address)
1068 fence = tdep->vm_min_address;
1070 /* Search back for previous return; also stop at a 0, which might be
1071 seen for instance before the start of a code section. Don't include
1072 nops, since this usually indicates padding between functions. */
1073 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1075 unsigned int insn = alpha_read_insn (gdbarch, pc);
1078 case 0: /* invalid insn */
1079 case 0x6bfa8001: /* ret $31,($26),1 */
1080 return last_non_nop;
1082 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1083 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1092 inf = current_inferior ();
1094 /* It's not clear to me why we reach this point when stopping quietly,
1095 but with this test, at least we don't print out warnings for every
1096 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1097 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1099 static int blurb_printed = 0;
1101 if (fence == tdep->vm_min_address)
1102 warning (_("Hit beginning of text section without finding \
1103 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1105 warning (_("Hit heuristic-fence-post without finding \
1106 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1110 printf_filtered (_("\
1111 This warning occurs if you are debugging a function without any symbols\n\
1112 (for example, in a stripped executable). In that case, you may wish to\n\
1113 increase the size of the search with the `set heuristic-fence-post' command.\n\
1115 Otherwise, you told GDB there was a function where there isn't one, or\n\
1116 (more likely) you have encountered a bug in GDB.\n"));
1124 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1125 something about the traditional layout of alpha stack frames. */
1127 struct alpha_heuristic_unwind_cache
1131 struct trad_frame_saved_reg *saved_regs;
1135 /* If a probing loop sequence starts at PC, simulate it and compute
1136 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1137 FRAME_SIZE unchanged. */
1140 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1143 CORE_ADDR cur_pc = *pc;
1144 int cur_frame_size = *frame_size;
1145 int nb_of_iterations, reg_index, reg_probe;
1148 /* The following pattern is recognized as a probing loop:
1150 lda REG_INDEX,NB_OF_ITERATIONS
1151 lda REG_PROBE,<immediate>(sp)
1154 stq zero,<immediate>(REG_PROBE)
1155 subq REG_INDEX,0x1,REG_INDEX
1156 lda REG_PROBE,<immediate>(REG_PROBE)
1157 bne REG_INDEX, LOOP_START
1159 lda sp,<immediate>(REG_PROBE)
1161 If anything different is found, the function returns without
1162 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1163 after this sequence, and FRAME_SIZE will be updated. */
1165 /* lda REG_INDEX,NB_OF_ITERATIONS */
1167 insn = alpha_read_insn (gdbarch, cur_pc);
1168 if (INSN_OPCODE (insn) != lda_opcode)
1170 reg_index = MEM_RA (insn);
1171 nb_of_iterations = MEM_DISP (insn);
1173 /* lda REG_PROBE,<immediate>(sp) */
1175 cur_pc += ALPHA_INSN_SIZE;
1176 insn = alpha_read_insn (gdbarch, cur_pc);
1177 if (INSN_OPCODE (insn) != lda_opcode
1178 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1180 reg_probe = MEM_RA (insn);
1181 cur_frame_size -= MEM_DISP (insn);
1183 /* stq zero,<immediate>(REG_PROBE) */
1185 cur_pc += ALPHA_INSN_SIZE;
1186 insn = alpha_read_insn (gdbarch, cur_pc);
1187 if (INSN_OPCODE (insn) != stq_opcode
1188 || MEM_RA (insn) != 0x1f
1189 || MEM_RB (insn) != reg_probe)
1192 /* subq REG_INDEX,0x1,REG_INDEX */
1194 cur_pc += ALPHA_INSN_SIZE;
1195 insn = alpha_read_insn (gdbarch, cur_pc);
1196 if (INSN_OPCODE (insn) != subq_opcode
1197 || !OPR_HAS_IMMEDIATE (insn)
1198 || OPR_FUNCTION (insn) != subq_function
1199 || OPR_LIT(insn) != 1
1200 || OPR_RA (insn) != reg_index
1201 || OPR_RC (insn) != reg_index)
1204 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1206 cur_pc += ALPHA_INSN_SIZE;
1207 insn = alpha_read_insn (gdbarch, cur_pc);
1208 if (INSN_OPCODE (insn) != lda_opcode
1209 || MEM_RA (insn) != reg_probe
1210 || MEM_RB (insn) != reg_probe)
1212 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1214 /* bne REG_INDEX, LOOP_START */
1216 cur_pc += ALPHA_INSN_SIZE;
1217 insn = alpha_read_insn (gdbarch, cur_pc);
1218 if (INSN_OPCODE (insn) != bne_opcode
1219 || MEM_RA (insn) != reg_index)
1222 /* lda sp,<immediate>(REG_PROBE) */
1224 cur_pc += ALPHA_INSN_SIZE;
1225 insn = alpha_read_insn (gdbarch, cur_pc);
1226 if (INSN_OPCODE (insn) != lda_opcode
1227 || MEM_RA (insn) != ALPHA_SP_REGNUM
1228 || MEM_RB (insn) != reg_probe)
1230 cur_frame_size -= MEM_DISP (insn);
1233 *frame_size = cur_frame_size;
1236 static struct alpha_heuristic_unwind_cache *
1237 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1238 void **this_prologue_cache,
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 struct alpha_heuristic_unwind_cache *info;
1244 CORE_ADDR limit_pc, cur_pc;
1245 int frame_reg, frame_size, return_reg, reg;
1247 if (*this_prologue_cache)
1248 return *this_prologue_cache;
1250 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1251 *this_prologue_cache = info;
1252 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1254 limit_pc = get_frame_pc (this_frame);
1256 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1257 info->start_pc = start_pc;
1259 frame_reg = ALPHA_SP_REGNUM;
1263 /* If we've identified a likely place to start, do code scanning. */
1266 /* Limit the forward search to 50 instructions. */
1267 if (start_pc + 200 < limit_pc)
1268 limit_pc = start_pc + 200;
1270 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1272 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1274 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1278 /* Consider only the first stack allocation instruction
1279 to contain the static size of the frame. */
1280 if (frame_size == 0)
1281 frame_size = (-word) & 0xffff;
1285 /* Exit loop if a positive stack adjustment is found, which
1286 usually means that the stack cleanup code in the function
1287 epilogue is reached. */
1291 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1293 reg = (word & 0x03e00000) >> 21;
1295 /* Ignore this instruction if we have already encountered
1296 an instruction saving the same register earlier in the
1297 function code. The current instruction does not tell
1298 us where the original value upon function entry is saved.
1299 All it says is that the function we are scanning reused
1300 that register for some computation of its own, and is now
1301 saving its result. */
1302 if (trad_frame_addr_p(info->saved_regs, reg))
1308 /* Do not compute the address where the register was saved yet,
1309 because we don't know yet if the offset will need to be
1310 relative to $sp or $fp (we can not compute the address
1311 relative to $sp if $sp is updated during the execution of
1312 the current subroutine, for instance when doing some alloca).
1313 So just store the offset for the moment, and compute the
1314 address later when we know whether this frame has a frame
1316 /* Hack: temporarily add one, so that the offset is non-zero
1317 and we can tell which registers have save offsets below. */
1318 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1320 /* Starting with OSF/1-3.2C, the system libraries are shipped
1321 without local symbols, but they still contain procedure
1322 descriptors without a symbol reference. GDB is currently
1323 unable to find these procedure descriptors and uses
1324 heuristic_proc_desc instead.
1325 As some low level compiler support routines (__div*, __add*)
1326 use a non-standard return address register, we have to
1327 add some heuristics to determine the return address register,
1328 or stepping over these routines will fail.
1329 Usually the return address register is the first register
1330 saved on the stack, but assembler optimization might
1331 rearrange the register saves.
1332 So we recognize only a few registers (t7, t9, ra) within
1333 the procedure prologue as valid return address registers.
1334 If we encounter a return instruction, we extract the
1335 return address register from it.
1337 FIXME: Rewriting GDB to access the procedure descriptors,
1338 e.g. via the minimal symbol table, might obviate this
1340 if (return_reg == -1
1341 && cur_pc < (start_pc + 80)
1342 && (reg == ALPHA_T7_REGNUM
1343 || reg == ALPHA_T9_REGNUM
1344 || reg == ALPHA_RA_REGNUM))
1347 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1348 return_reg = (word >> 16) & 0x1f;
1349 else if (word == 0x47de040f) /* bis sp,sp,fp */
1350 frame_reg = ALPHA_GCC_FP_REGNUM;
1351 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1352 frame_reg = ALPHA_GCC_FP_REGNUM;
1354 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1357 /* If we haven't found a valid return address register yet, keep
1358 searching in the procedure prologue. */
1359 if (return_reg == -1)
1361 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1363 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1365 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1367 reg = (word & 0x03e00000) >> 21;
1368 if (reg == ALPHA_T7_REGNUM
1369 || reg == ALPHA_T9_REGNUM
1370 || reg == ALPHA_RA_REGNUM)
1376 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1378 return_reg = (word >> 16) & 0x1f;
1382 cur_pc += ALPHA_INSN_SIZE;
1387 /* Failing that, do default to the customary RA. */
1388 if (return_reg == -1)
1389 return_reg = ALPHA_RA_REGNUM;
1390 info->return_reg = return_reg;
1392 val = get_frame_register_unsigned (this_frame, frame_reg);
1393 info->vfp = val + frame_size;
1395 /* Convert offsets to absolute addresses. See above about adding
1396 one to the offsets to make all detected offsets non-zero. */
1397 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1398 if (trad_frame_addr_p(info->saved_regs, reg))
1399 info->saved_regs[reg].addr += val - 1;
1401 /* The stack pointer of the previous frame is computed by popping
1402 the current stack frame. */
1403 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1404 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1409 /* Given a GDB frame, determine the address of the calling function's
1410 frame. This will be used to create a new GDB frame struct. */
1413 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1414 void **this_prologue_cache,
1415 struct frame_id *this_id)
1417 struct alpha_heuristic_unwind_cache *info
1418 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1420 *this_id = frame_id_build (info->vfp, info->start_pc);
1423 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1425 static struct value *
1426 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1427 void **this_prologue_cache, int regnum)
1429 struct alpha_heuristic_unwind_cache *info
1430 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1432 /* The PC of the previous frame is stored in the link register of
1433 the current frame. Frob regnum so that we pull the value from
1434 the correct place. */
1435 if (regnum == ALPHA_PC_REGNUM)
1436 regnum = info->return_reg;
1438 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1441 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1443 default_frame_unwind_stop_reason,
1444 alpha_heuristic_frame_this_id,
1445 alpha_heuristic_frame_prev_register,
1447 default_frame_sniffer
1451 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1452 void **this_prologue_cache)
1454 struct alpha_heuristic_unwind_cache *info
1455 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1460 static const struct frame_base alpha_heuristic_frame_base = {
1461 &alpha_heuristic_frame_unwind,
1462 alpha_heuristic_frame_base_address,
1463 alpha_heuristic_frame_base_address,
1464 alpha_heuristic_frame_base_address
1467 /* Just like reinit_frame_cache, but with the right arguments to be
1468 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1471 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1473 reinit_frame_cache ();
1477 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1478 dummy frame. The frame ID's base needs to match the TOS value
1479 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1482 static struct frame_id
1483 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1486 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1487 return frame_id_build (base, get_frame_pc (this_frame));
1491 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1494 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1499 /* Helper routines for alpha*-nat.c files to move register sets to and
1500 from core files. The UNIQUE pointer is allowed to be NULL, as most
1501 targets don't supply this value in their core files. */
1504 alpha_supply_int_regs (struct regcache *regcache, int regno,
1505 const void *r0_r30, const void *pc, const void *unique)
1507 const gdb_byte *regs = r0_r30;
1510 for (i = 0; i < 31; ++i)
1511 if (regno == i || regno == -1)
1512 regcache_raw_supply (regcache, i, regs + i * 8);
1514 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1516 const gdb_byte zero[8] = { 0 };
1518 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1521 if (regno == ALPHA_PC_REGNUM || regno == -1)
1522 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1524 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1525 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1529 alpha_fill_int_regs (const struct regcache *regcache,
1530 int regno, void *r0_r30, void *pc, void *unique)
1532 gdb_byte *regs = r0_r30;
1535 for (i = 0; i < 31; ++i)
1536 if (regno == i || regno == -1)
1537 regcache_raw_collect (regcache, i, regs + i * 8);
1539 if (regno == ALPHA_PC_REGNUM || regno == -1)
1540 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1542 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1543 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1547 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1548 const void *f0_f30, const void *fpcr)
1550 const gdb_byte *regs = f0_f30;
1553 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1554 if (regno == i || regno == -1)
1555 regcache_raw_supply (regcache, i,
1556 regs + (i - ALPHA_FP0_REGNUM) * 8);
1558 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1559 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1563 alpha_fill_fp_regs (const struct regcache *regcache,
1564 int regno, void *f0_f30, void *fpcr)
1566 gdb_byte *regs = f0_f30;
1569 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1570 if (regno == i || regno == -1)
1571 regcache_raw_collect (regcache, i,
1572 regs + (i - ALPHA_FP0_REGNUM) * 8);
1574 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1575 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1580 /* Return nonzero if the G_floating register value in REG is equal to
1581 zero for FP control instructions. */
1584 fp_register_zero_p (LONGEST reg)
1586 /* Check that all bits except the sign bit are zero. */
1587 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1589 return ((reg & zero_mask) == 0);
1592 /* Return the value of the sign bit for the G_floating register
1593 value held in REG. */
1596 fp_register_sign_bit (LONGEST reg)
1598 const LONGEST sign_mask = (LONGEST) 1 << 63;
1600 return ((reg & sign_mask) != 0);
1603 /* alpha_software_single_step() is called just before we want to resume
1604 the inferior, if we want to single-step it but there is no hardware
1605 or kernel single-step support (NetBSD on Alpha, for example). We find
1606 the target of the coming instruction and breakpoint it. */
1609 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1611 struct gdbarch *gdbarch = get_frame_arch (frame);
1618 insn = alpha_read_insn (gdbarch, pc);
1620 /* Opcode is top 6 bits. */
1621 op = (insn >> 26) & 0x3f;
1625 /* Jump format: target PC is:
1627 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1630 if ((op & 0x30) == 0x30)
1632 /* Branch format: target PC is:
1633 (new PC) + (4 * sext(displacement)) */
1634 if (op == 0x30 /* BR */
1635 || op == 0x34) /* BSR */
1638 offset = (insn & 0x001fffff);
1639 if (offset & 0x00100000)
1640 offset |= 0xffe00000;
1641 offset *= ALPHA_INSN_SIZE;
1642 return (pc + ALPHA_INSN_SIZE + offset);
1645 /* Need to determine if branch is taken; read RA. */
1646 regno = (insn >> 21) & 0x1f;
1649 case 0x31: /* FBEQ */
1650 case 0x36: /* FBGE */
1651 case 0x37: /* FBGT */
1652 case 0x33: /* FBLE */
1653 case 0x32: /* FBLT */
1654 case 0x35: /* FBNE */
1655 regno += gdbarch_fp0_regnum (gdbarch);
1658 rav = get_frame_register_signed (frame, regno);
1662 case 0x38: /* BLBC */
1666 case 0x3c: /* BLBS */
1670 case 0x39: /* BEQ */
1674 case 0x3d: /* BNE */
1678 case 0x3a: /* BLT */
1682 case 0x3b: /* BLE */
1686 case 0x3f: /* BGT */
1690 case 0x3e: /* BGE */
1695 /* Floating point branches. */
1697 case 0x31: /* FBEQ */
1698 if (fp_register_zero_p (rav))
1701 case 0x36: /* FBGE */
1702 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1705 case 0x37: /* FBGT */
1706 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1709 case 0x33: /* FBLE */
1710 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1713 case 0x32: /* FBLT */
1714 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1717 case 0x35: /* FBNE */
1718 if (! fp_register_zero_p (rav))
1724 /* Not a branch or branch not taken; target PC is:
1726 return (pc + ALPHA_INSN_SIZE);
1730 alpha_software_single_step (struct frame_info *frame)
1732 struct gdbarch *gdbarch = get_frame_arch (frame);
1733 struct address_space *aspace = get_frame_address_space (frame);
1734 CORE_ADDR pc, next_pc;
1736 pc = get_frame_pc (frame);
1737 next_pc = alpha_next_pc (frame, pc);
1739 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1744 /* Initialize the current architecture based on INFO. If possible, re-use an
1745 architecture from ARCHES, which is a list of architectures already created
1746 during this debugging session.
1748 Called e.g. at program startup, when reading a core file, and when reading
1751 static struct gdbarch *
1752 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1754 struct gdbarch_tdep *tdep;
1755 struct gdbarch *gdbarch;
1757 /* Try to determine the ABI of the object we are loading. */
1758 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1760 /* If it's an ECOFF file, assume it's OSF/1. */
1761 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1762 info.osabi = GDB_OSABI_OSF1;
1765 /* Find a candidate among extant architectures. */
1766 arches = gdbarch_list_lookup_by_info (arches, &info);
1768 return arches->gdbarch;
1770 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1771 gdbarch = gdbarch_alloc (&info, tdep);
1773 /* Lowest text address. This is used by heuristic_proc_start()
1774 to decide when to stop looking. */
1775 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1777 tdep->dynamic_sigtramp_offset = NULL;
1778 tdep->sigcontext_addr = NULL;
1779 tdep->sc_pc_offset = 2 * 8;
1780 tdep->sc_regs_offset = 4 * 8;
1781 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1783 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1785 tdep->return_in_memory = alpha_return_in_memory_always;
1788 set_gdbarch_short_bit (gdbarch, 16);
1789 set_gdbarch_int_bit (gdbarch, 32);
1790 set_gdbarch_long_bit (gdbarch, 64);
1791 set_gdbarch_long_long_bit (gdbarch, 64);
1792 set_gdbarch_float_bit (gdbarch, 32);
1793 set_gdbarch_double_bit (gdbarch, 64);
1794 set_gdbarch_long_double_bit (gdbarch, 64);
1795 set_gdbarch_ptr_bit (gdbarch, 64);
1798 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1799 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1800 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1801 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1803 set_gdbarch_register_name (gdbarch, alpha_register_name);
1804 set_gdbarch_register_type (gdbarch, alpha_register_type);
1806 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1807 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1809 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1810 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1811 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1813 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1815 /* Prologue heuristics. */
1816 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1819 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1823 set_gdbarch_return_value (gdbarch, alpha_return_value);
1825 /* Settings for calling functions in the inferior. */
1826 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1828 /* Methods for saving / extracting a dummy frame's ID. */
1829 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1831 /* Return the unwound PC value. */
1832 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1834 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1835 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1837 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1838 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1839 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1841 /* Handles single stepping of atomic sequences. */
1842 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1844 /* Hook in ABI-specific overrides, if they have been registered. */
1845 gdbarch_init_osabi (info, gdbarch);
1847 /* Now that we have tuned the configuration, set a few final things
1848 based on what the OS ABI has told us. */
1850 if (tdep->jb_pc >= 0)
1851 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1853 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1854 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1856 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1862 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1864 dwarf2_append_unwinders (gdbarch);
1865 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1868 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1871 _initialize_alpha_tdep (void)
1873 struct cmd_list_element *c;
1875 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1877 /* Let the user set the fence post for heuristic_proc_start. */
1879 /* We really would like to have both "0" and "unlimited" work, but
1880 command.c doesn't deal with that. So make it a var_zinteger
1881 because the user can always use "999999" or some such for unlimited. */
1882 /* We need to throw away the frame cache when we set this, since it
1883 might change our ability to get backtraces. */
1884 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1885 &heuristic_fence_post, _("\
1886 Set the distance searched for the start of a function."), _("\
1887 Show the distance searched for the start of a function."), _("\
1888 If you are debugging a stripped executable, GDB needs to search through the\n\
1889 program for the start of a function. This command sets the distance of the\n\
1890 search. The only need to set it is when debugging a stripped executable."),
1891 reinit_frame_cache_sfunc,
1892 NULL, /* FIXME: i18n: The distance searched for
1893 the start of a function is \"%d\". */
1894 &setlist, &showlist);