1 /* varobj support for Ada.
3 Copyright (C) 2012-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 /* Implementation principle used in this unit:
28 For our purposes, the meat of the varobj object is made of two
29 elements: The varobj's (struct) value, and the varobj's (struct)
30 type. In most situations, the varobj has a non-NULL value, and
31 the type becomes redundant, as it can be directly derived from
32 the value. In the initial implementation of this unit, most
33 routines would only take a value, and return a value.
35 But there are many situations where it is possible for a varobj
36 to have a NULL value. For instance, if the varobj becomes out of
37 scope. Or better yet, when the varobj is the child of another
38 NULL pointer varobj. In that situation, we must rely on the type
39 instead of the value to create the child varobj.
41 That's why most functions below work with a (value, type) pair.
42 The value may or may not be NULL. But the type is always expected
43 to be set. When the value is NULL, then we work with the type
44 alone, and keep the value NULL. But when the value is not NULL,
45 then we work using the value, because it provides more information.
46 But we still always set the type as well, even if that type could
47 easily be derived from the value. The reason behind this is that
48 it allows the code to use the type without having to worry about
49 it being set or not. It makes the code clearer. */
51 static int ada_varobj_get_number_of_children (struct value *parent_value,
52 struct type *parent_type);
54 /* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
55 If there is a value (*VALUE_PTR not NULL), then perform the decoding
56 using it, and compute the associated type from the resulting value.
57 Otherwise, compute a static approximation of *TYPE_PTR, leaving
60 The results are written in place. */
63 ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
67 *value_ptr = ada_get_decoded_value (*value_ptr);
68 *type_ptr = ada_check_typedef (value_type (*value_ptr));
71 *type_ptr = ada_get_decoded_type (*type_ptr);
74 /* Return a string containing an image of the given scalar value.
75 VAL is the numeric value, while TYPE is the value's type.
76 This is useful for plain integers, of course, but even more
77 so for enumerated types. */
80 ada_varobj_scalar_image (struct type *type, LONGEST val)
84 ada_print_scalar (type, val, &buf);
85 return std::move (buf.string ());
88 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
89 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
90 corresponding to the field number FIELDNO. */
93 ada_varobj_struct_elt (struct value *parent_value,
94 struct type *parent_type,
96 struct value **child_value,
97 struct type **child_type)
99 struct value *value = NULL;
100 struct type *type = NULL;
104 value = value_field (parent_value, fieldno);
105 type = value_type (value);
108 type = TYPE_FIELD_TYPE (parent_type, fieldno);
111 *child_value = value;
116 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
117 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
118 to the dereferenced value. */
121 ada_varobj_ind (struct value *parent_value,
122 struct type *parent_type,
123 struct value **child_value,
124 struct type **child_type)
126 struct value *value = NULL;
127 struct type *type = NULL;
129 if (ada_is_array_descriptor_type (parent_type))
131 /* This can only happen when PARENT_VALUE is NULL. Otherwise,
132 ada_get_decoded_value would have transformed our parent_type
133 into a simple array pointer type. */
134 gdb_assert (parent_value == NULL);
135 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
137 /* Decode parent_type by the equivalent pointer to (decoded)
139 while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
140 parent_type = TYPE_TARGET_TYPE (parent_type);
141 parent_type = ada_coerce_to_simple_array_type (parent_type);
142 parent_type = lookup_pointer_type (parent_type);
145 /* If parent_value is a null pointer, then only perform static
146 dereferencing. We cannot dereference null pointers. */
147 if (parent_value && value_as_address (parent_value) == 0)
152 value = ada_value_ind (parent_value);
153 type = value_type (value);
156 type = TYPE_TARGET_TYPE (parent_type);
159 *child_value = value;
164 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
165 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
166 pair corresponding to the element at ELT_INDEX. */
169 ada_varobj_simple_array_elt (struct value *parent_value,
170 struct type *parent_type,
172 struct value **child_value,
173 struct type **child_type)
175 struct value *value = NULL;
176 struct type *type = NULL;
180 struct value *index_value =
181 value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
183 value = ada_value_subscript (parent_value, 1, &index_value);
184 type = value_type (value);
187 type = TYPE_TARGET_TYPE (parent_type);
190 *child_value = value;
195 /* Given the decoded value and decoded type of a variable object,
196 adjust the value and type to those necessary for getting children
197 of the variable object.
199 The replacement is performed in place. */
202 ada_varobj_adjust_for_child_access (struct value **value,
205 /* Pointers to struct/union types are special: Instead of having
206 one child (the struct), their children are the components of
207 the struct/union type. We handle this situation by dereferencing
208 the (value, type) couple. */
209 if (TYPE_CODE (*type) == TYPE_CODE_PTR
210 && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
211 || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
212 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
213 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
214 ada_varobj_ind (*value, *type, value, type);
216 /* If this is a tagged type, we need to transform it a bit in order
217 to be able to fetch its full view. As always with tagged types,
218 we can only do that if we have a value. */
219 if (*value != NULL && ada_is_tagged_type (*type, 1))
221 *value = ada_tag_value_at_base_address (*value);
222 *type = value_type (*value);
226 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
227 (any type of array, "simple" or not), return the number of children
228 that this array contains. */
231 ada_varobj_get_array_number_of_children (struct value *parent_value,
232 struct type *parent_type)
236 if (parent_value == NULL
237 && is_dynamic_type (TYPE_INDEX_TYPE (parent_type)))
239 /* This happens when listing the children of an object
240 which does not exist in memory (Eg: when requesting
241 the children of a null pointer, which is allowed by
242 varobj). The array index type being dynamic, we cannot
243 determine how many elements this array has. Just assume
248 if (!get_array_bounds (parent_type, &lo, &hi))
250 /* Could not get the array bounds. Pretend this is an empty array. */
251 warning (_("unable to get bounds of array, assuming null array"));
255 /* Ada allows the upper bound to be less than the lower bound,
256 in order to specify empty arrays... */
263 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
264 union, return the number of children this struct contains. */
267 ada_varobj_get_struct_number_of_children (struct value *parent_value,
268 struct type *parent_type)
273 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
274 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
276 for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
278 if (ada_is_ignored_field (parent_type, i))
281 if (ada_is_wrapper_field (parent_type, i))
283 struct value *elt_value;
284 struct type *elt_type;
286 ada_varobj_struct_elt (parent_value, parent_type, i,
287 &elt_value, &elt_type);
288 if (ada_is_tagged_type (elt_type, 0))
290 /* We must not use ada_varobj_get_number_of_children
291 to determine is element's number of children, because
292 this function first calls ada_varobj_decode_var,
293 which "fixes" the element. For tagged types, this
294 includes reading the object's tag to determine its
295 real type, which happens to be the parent_type, and
296 leads to an infinite loop (because the element gets
297 fixed back into the parent). */
298 n_children += ada_varobj_get_struct_number_of_children
299 (elt_value, elt_type);
302 n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
304 else if (ada_is_variant_part (parent_type, i))
306 /* In normal situations, the variant part of the record should
307 have been "fixed". Or, in other words, it should have been
308 replaced by the branch of the variant part that is relevant
309 for our value. But there are still situations where this
310 can happen, however (Eg. when our parent is a NULL pointer).
311 We do not support showing this part of the record for now,
312 so just pretend this field does not exist. */
321 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
322 a pointer, return the number of children this pointer has. */
325 ada_varobj_get_ptr_number_of_children (struct value *parent_value,
326 struct type *parent_type)
328 struct type *child_type = TYPE_TARGET_TYPE (parent_type);
330 /* Pointer to functions and to void do not have a child, since
331 you cannot print what they point to. */
332 if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
333 || TYPE_CODE (child_type) == TYPE_CODE_VOID)
336 /* All other types have 1 child. */
340 /* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
344 ada_varobj_get_number_of_children (struct value *parent_value,
345 struct type *parent_type)
347 ada_varobj_decode_var (&parent_value, &parent_type);
348 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
350 /* A typedef to an array descriptor in fact represents a pointer
351 to an unconstrained array. These types always have one child
352 (the unconstrained array). */
353 if (ada_is_access_to_unconstrained_array (parent_type))
356 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
357 return ada_varobj_get_array_number_of_children (parent_value,
360 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
361 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
362 return ada_varobj_get_struct_number_of_children (parent_value,
365 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
366 return ada_varobj_get_ptr_number_of_children (parent_value,
369 /* All other types have no child. */
373 /* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
374 whose index is CHILD_INDEX:
376 - If CHILD_NAME is not NULL, then a copy of the child's name
377 is saved in *CHILD_NAME. This copy must be deallocated
378 with xfree after use.
380 - If CHILD_VALUE is not NULL, then save the child's value
381 in *CHILD_VALUE. Same thing for the child's type with
382 CHILD_TYPE if not NULL.
384 - If CHILD_PATH_EXPR is not NULL, then compute the child's
385 path expression. The resulting string must be deallocated
386 after use with xfree.
388 Computing the child's path expression requires the PARENT_PATH_EXPR
389 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
390 CHILD_PATH_EXPR is NULL.
392 PARENT_NAME is the name of the parent, and should never be NULL. */
394 static void ada_varobj_describe_child (struct value *parent_value,
395 struct type *parent_type,
396 const char *parent_name,
397 const char *parent_path_expr,
399 std::string *child_name,
400 struct value **child_value,
401 struct type **child_type,
402 std::string *child_path_expr);
404 /* Same as ada_varobj_describe_child, but limited to struct/union
408 ada_varobj_describe_struct_child (struct value *parent_value,
409 struct type *parent_type,
410 const char *parent_name,
411 const char *parent_path_expr,
413 std::string *child_name,
414 struct value **child_value,
415 struct type **child_type,
416 std::string *child_path_expr)
421 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
422 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
424 for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
426 if (ada_is_ignored_field (parent_type, fieldno))
429 if (ada_is_wrapper_field (parent_type, fieldno))
431 struct value *elt_value;
432 struct type *elt_type;
435 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
436 &elt_value, &elt_type);
437 if (ada_is_tagged_type (elt_type, 0))
439 /* Same as in ada_varobj_get_struct_number_of_children:
440 For tagged types, we must be careful to not call
441 ada_varobj_get_number_of_children, to prevent our
442 element from being fixed back into the parent. */
443 elt_n_children = ada_varobj_get_struct_number_of_children
444 (elt_value, elt_type);
448 ada_varobj_get_number_of_children (elt_value, elt_type);
450 /* Is the child we're looking for one of the children
451 of this wrapper field? */
452 if (child_index - childno < elt_n_children)
454 if (ada_is_tagged_type (elt_type, 0))
456 /* Same as in ada_varobj_get_struct_number_of_children:
457 For tagged types, we must be careful to not call
458 ada_varobj_describe_child, to prevent our element
459 from being fixed back into the parent. */
460 ada_varobj_describe_struct_child
461 (elt_value, elt_type, parent_name, parent_path_expr,
462 child_index - childno, child_name, child_value,
463 child_type, child_path_expr);
466 ada_varobj_describe_child (elt_value, elt_type,
467 parent_name, parent_path_expr,
468 child_index - childno,
469 child_name, child_value,
470 child_type, child_path_expr);
474 /* The child we're looking for is beyond this wrapper
475 field, so skip all its children. */
476 childno += elt_n_children;
479 else if (ada_is_variant_part (parent_type, fieldno))
481 /* In normal situations, the variant part of the record should
482 have been "fixed". Or, in other words, it should have been
483 replaced by the branch of the variant part that is relevant
484 for our value. But there are still situations where this
485 can happen, however (Eg. when our parent is a NULL pointer).
486 We do not support showing this part of the record for now,
487 so just pretend this field does not exist. */
491 if (childno == child_index)
495 /* The name of the child is none other than the field's
496 name, except that we need to strip suffixes from it.
497 For instance, fields with alignment constraints will
498 have an __XVA suffix added to them. */
499 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
500 int child_name_len = ada_name_prefix_len (field_name);
502 *child_name = string_printf ("%.*s", child_name_len, field_name);
505 if (child_value && parent_value)
506 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
510 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
515 /* The name of the child is none other than the field's
516 name, except that we need to strip suffixes from it.
517 For instance, fields with alignment constraints will
518 have an __XVA suffix added to them. */
519 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
520 int child_name_len = ada_name_prefix_len (field_name);
523 string_printf ("(%s).%.*s", parent_path_expr,
524 child_name_len, field_name);
533 /* Something went wrong. Either we miscounted the number of
534 children, or CHILD_INDEX was too high. But we should never
535 reach here. We don't have enough information to recover
536 nicely, so just raise an assertion failure. */
537 gdb_assert_not_reached ("unexpected code path");
540 /* Same as ada_varobj_describe_child, but limited to pointer objects.
542 Note that CHILD_INDEX is unused in this situation, but still provided
543 for consistency of interface with other routines describing an object's
547 ada_varobj_describe_ptr_child (struct value *parent_value,
548 struct type *parent_type,
549 const char *parent_name,
550 const char *parent_path_expr,
552 std::string *child_name,
553 struct value **child_value,
554 struct type **child_type,
555 std::string *child_path_expr)
558 *child_name = string_printf ("%s.all", parent_name);
560 if (child_value && parent_value)
561 ada_varobj_ind (parent_value, parent_type, child_value, NULL);
564 ada_varobj_ind (parent_value, parent_type, NULL, child_type);
567 *child_path_expr = string_printf ("(%s).all", parent_path_expr);
570 /* Same as ada_varobj_describe_child, limited to simple array objects
571 (TYPE_CODE_ARRAY only).
573 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
574 This is done by ada_varobj_describe_child before calling us. */
577 ada_varobj_describe_simple_array_child (struct value *parent_value,
578 struct type *parent_type,
579 const char *parent_name,
580 const char *parent_path_expr,
582 std::string *child_name,
583 struct value **child_value,
584 struct type **child_type,
585 std::string *child_path_expr)
587 struct type *index_type;
590 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
592 index_type = TYPE_INDEX_TYPE (parent_type);
593 real_index = child_index + ada_discrete_type_low_bound (index_type);
596 *child_name = ada_varobj_scalar_image (index_type, real_index);
598 if (child_value && parent_value)
599 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
603 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
608 std::string index_img = ada_varobj_scalar_image (index_type, real_index);
610 /* Enumeration litterals by themselves are potentially ambiguous.
611 For instance, consider the following package spec:
614 type Color is (Red, Green, Blue, White);
615 type Blood_Cells is (White, Red);
618 In this case, the litteral "red" for instance, or even
619 the fully-qualified litteral "pck.red" cannot be resolved
620 by itself. Type qualification is needed to determine which
621 enumeration litterals should be used.
623 The following variable will be used to contain the name
624 of the array index type when such type qualification is
626 const char *index_type_name = NULL;
628 /* If the index type is a range type, find the base type. */
629 while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
630 index_type = TYPE_TARGET_TYPE (index_type);
632 if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
633 || TYPE_CODE (index_type) == TYPE_CODE_BOOL)
635 index_type_name = ada_type_name (index_type);
637 index_type_name = ada_decode (index_type_name);
640 if (index_type_name != NULL)
642 string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
643 ada_name_prefix_len (index_type_name),
644 index_type_name, index_img.c_str ());
647 string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
651 /* See description at declaration above. */
654 ada_varobj_describe_child (struct value *parent_value,
655 struct type *parent_type,
656 const char *parent_name,
657 const char *parent_path_expr,
659 std::string *child_name,
660 struct value **child_value,
661 struct type **child_type,
662 std::string *child_path_expr)
664 /* We cannot compute the child's path expression without
665 the parent's path expression. This is a pre-condition
666 for calling this function. */
668 gdb_assert (parent_path_expr != NULL);
670 ada_varobj_decode_var (&parent_value, &parent_type);
671 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
674 *child_name = std::string ();
680 *child_path_expr = std::string ();
682 if (ada_is_access_to_unconstrained_array (parent_type))
684 ada_varobj_describe_ptr_child (parent_value, parent_type,
685 parent_name, parent_path_expr,
686 child_index, child_name,
687 child_value, child_type,
692 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
694 ada_varobj_describe_simple_array_child
695 (parent_value, parent_type, parent_name, parent_path_expr,
696 child_index, child_name, child_value, child_type,
701 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
702 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
704 ada_varobj_describe_struct_child (parent_value, parent_type,
705 parent_name, parent_path_expr,
706 child_index, child_name,
707 child_value, child_type,
712 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
714 ada_varobj_describe_ptr_child (parent_value, parent_type,
715 parent_name, parent_path_expr,
716 child_index, child_name,
717 child_value, child_type,
722 /* It should never happen. But rather than crash, report dummy names
723 and return a NULL child_value. */
728 /* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
729 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
732 ada_varobj_get_name_of_child (struct value *parent_value,
733 struct type *parent_type,
734 const char *parent_name, int child_index)
736 std::string child_name;
738 ada_varobj_describe_child (parent_value, parent_type, parent_name,
739 NULL, child_index, &child_name, NULL,
744 /* Return the path expression of the child number CHILD_INDEX of
745 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
746 of the parent, and PARENT_PATH_EXPR is the parent's path expression.
747 Both must be non-NULL. */
750 ada_varobj_get_path_expr_of_child (struct value *parent_value,
751 struct type *parent_type,
752 const char *parent_name,
753 const char *parent_path_expr,
756 std::string child_path_expr;
758 ada_varobj_describe_child (parent_value, parent_type, parent_name,
759 parent_path_expr, child_index, NULL,
760 NULL, NULL, &child_path_expr);
762 return child_path_expr;
765 /* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
766 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
768 static struct value *
769 ada_varobj_get_value_of_child (struct value *parent_value,
770 struct type *parent_type,
771 const char *parent_name, int child_index)
773 struct value *child_value;
775 ada_varobj_describe_child (parent_value, parent_type, parent_name,
776 NULL, child_index, NULL, &child_value,
782 /* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
783 PARENT_TYPE) pair. */
786 ada_varobj_get_type_of_child (struct value *parent_value,
787 struct type *parent_type,
790 struct type *child_type;
792 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
793 child_index, NULL, NULL, &child_type, NULL);
798 /* Return a string that contains the image of the given VALUE, using
799 the print options OPTS as the options for formatting the result.
801 The resulting string must be deallocated after use with xfree. */
804 ada_varobj_get_value_image (struct value *value,
805 struct value_print_options *opts)
809 common_val_print (value, &buffer, 0, opts, current_language);
810 return std::move (buffer.string ());
813 /* Assuming that the (VALUE, TYPE) pair designates an array varobj,
814 return a string that is suitable for use in the "value" field of
815 the varobj output. Most of the time, this is the number of elements
816 in the array inside square brackets, but there are situations where
817 it's useful to add more info.
819 OPTS are the print options used when formatting the result.
821 The result should be deallocated after use using xfree. */
824 ada_varobj_get_value_of_array_variable (struct value *value,
826 struct value_print_options *opts)
828 const int numchild = ada_varobj_get_array_number_of_children (value, type);
830 /* If we have a string, provide its contents in the "value" field.
831 Otherwise, the only other way to inspect the contents of the string
832 is by looking at the value of each element, as in any other array,
833 which is not very convenient... */
835 && ada_is_string_type (type)
836 && (opts->format == 0 || opts->format == 's'))
838 std::string str = ada_varobj_get_value_image (value, opts);
839 return string_printf ("[%d] %s", numchild, str.c_str ());
842 return string_printf ("[%d]", numchild);
845 /* Return a string representation of the (VALUE, TYPE) pair, using
846 the given print options OPTS as our formatting options. */
849 ada_varobj_get_value_of_variable (struct value *value,
851 struct value_print_options *opts)
853 ada_varobj_decode_var (&value, &type);
855 switch (TYPE_CODE (type))
857 case TYPE_CODE_STRUCT:
858 case TYPE_CODE_UNION:
860 case TYPE_CODE_ARRAY:
861 return ada_varobj_get_value_of_array_variable (value, type, opts);
866 return ada_varobj_get_value_image (value, opts);
870 /* Ada specific callbacks for VAROBJs. */
873 ada_number_of_children (const struct varobj *var)
875 return ada_varobj_get_number_of_children (var->value.get (), var->type);
879 ada_name_of_variable (const struct varobj *parent)
881 return c_varobj_ops.name_of_variable (parent);
885 ada_name_of_child (const struct varobj *parent, int index)
887 return ada_varobj_get_name_of_child (parent->value.get (), parent->type,
888 parent->name.c_str (), index);
892 ada_path_expr_of_child (const struct varobj *child)
894 const struct varobj *parent = child->parent;
895 const char *parent_path_expr = varobj_get_path_expr (parent);
897 return ada_varobj_get_path_expr_of_child (parent->value.get (),
899 parent->name.c_str (),
904 static struct value *
905 ada_value_of_child (const struct varobj *parent, int index)
907 return ada_varobj_get_value_of_child (parent->value.get (), parent->type,
908 parent->name.c_str (), index);
912 ada_type_of_child (const struct varobj *parent, int index)
914 return ada_varobj_get_type_of_child (parent->value.get (), parent->type,
919 ada_value_of_variable (const struct varobj *var,
920 enum varobj_display_formats format)
922 struct value_print_options opts;
924 varobj_formatted_print_options (&opts, format);
926 return ada_varobj_get_value_of_variable (var->value.get (), var->type,
930 /* Implement the "value_is_changeable_p" routine for Ada. */
933 ada_value_is_changeable_p (const struct varobj *var)
935 struct type *type = (var->value != nullptr
936 ? value_type (var->value.get ()) : var->type);
938 if (TYPE_CODE (type) == TYPE_CODE_REF)
939 type = TYPE_TARGET_TYPE (type);
941 if (ada_is_access_to_unconstrained_array (type))
943 /* This is in reality a pointer to an unconstrained array.
944 its value is changeable. */
948 if (ada_is_string_type (type))
950 /* We display the contents of the string in the array's
951 "value" field. The contents can change, so consider
952 that the array is changeable. */
956 return varobj_default_value_is_changeable_p (var);
959 /* Implement the "value_has_mutated" routine for Ada. */
962 ada_value_has_mutated (const struct varobj *var, struct value *new_val,
963 struct type *new_type)
968 /* If the number of fields have changed, then for sure the type
970 if (ada_varobj_get_number_of_children (new_val, new_type)
971 != var->num_children)
974 /* If the number of fields have remained the same, then we need
975 to check the name of each field. If they remain the same,
976 then chances are the type hasn't mutated. This is technically
977 an incomplete test, as the child's type might have changed
978 despite the fact that the name remains the same. But we'll
979 handle this situation by saying that the child has mutated,
982 If only part (or none!) of the children have been fetched,
983 then only check the ones we fetched. It does not matter
984 to the frontend whether a child that it has not fetched yet
985 has mutated or not. So just assume it hasn't. */
987 varobj_restrict_range (var->children, &from, &to);
988 for (int i = from; i < to; i++)
989 if (ada_varobj_get_name_of_child (new_val, new_type,
990 var->name.c_str (), i)
991 != var->children[i]->name)
997 /* varobj operations for ada. */
999 const struct lang_varobj_ops ada_varobj_ops =
1001 ada_number_of_children,
1002 ada_name_of_variable,
1004 ada_path_expr_of_child,
1007 ada_value_of_variable,
1008 ada_value_is_changeable_p,
1009 ada_value_has_mutated,
1010 varobj_default_is_path_expr_parent