1 /* varobj support for Ada.
3 Copyright (C) 2012-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 /* Implementation principle used in this unit:
28 For our purposes, the meat of the varobj object is made of two
29 elements: The varobj's (struct) value, and the varobj's (struct)
30 type. In most situations, the varobj has a non-NULL value, and
31 the type becomes redundant, as it can be directly derived from
32 the value. In the initial implementation of this unit, most
33 routines would only take a value, and return a value.
35 But there are many situations where it is possible for a varobj
36 to have a NULL value. For instance, if the varobj becomes out of
37 scope. Or better yet, when the varobj is the child of another
38 NULL pointer varobj. In that situation, we must rely on the type
39 instead of the value to create the child varobj.
41 That's why most functions below work with a (value, type) pair.
42 The value may or may not be NULL. But the type is always expected
43 to be set. When the value is NULL, then we work with the type
44 alone, and keep the value NULL. But when the value is not NULL,
45 then we work using the value, because it provides more information.
46 But we still always set the type as well, even if that type could
47 easily be derived from the value. The reason behind this is that
48 it allows the code to use the type without having to worry about
49 it being set or not. It makes the code clearer. */
51 static int ada_varobj_get_number_of_children (struct value *parent_value,
52 struct type *parent_type);
54 /* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
55 If there is a value (*VALUE_PTR not NULL), then perform the decoding
56 using it, and compute the associated type from the resulting value.
57 Otherwise, compute a static approximation of *TYPE_PTR, leaving
60 The results are written in place. */
63 ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
67 *value_ptr = ada_get_decoded_value (*value_ptr);
68 *type_ptr = ada_check_typedef (value_type (*value_ptr));
71 *type_ptr = ada_get_decoded_type (*type_ptr);
74 /* Return a string containing an image of the given scalar value.
75 VAL is the numeric value, while TYPE is the value's type.
76 This is useful for plain integers, of course, but even more
77 so for enumerated types. */
80 ada_varobj_scalar_image (struct type *type, LONGEST val)
84 ada_print_scalar (type, val, &buf);
85 return std::move (buf.string ());
88 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
89 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
90 corresponding to the field number FIELDNO. */
93 ada_varobj_struct_elt (struct value *parent_value,
94 struct type *parent_type,
96 struct value **child_value,
97 struct type **child_type)
99 struct value *value = NULL;
100 struct type *type = NULL;
104 value = value_field (parent_value, fieldno);
105 type = value_type (value);
108 type = TYPE_FIELD_TYPE (parent_type, fieldno);
111 *child_value = value;
116 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
117 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
118 to the dereferenced value. */
121 ada_varobj_ind (struct value *parent_value,
122 struct type *parent_type,
123 struct value **child_value,
124 struct type **child_type)
126 struct value *value = NULL;
127 struct type *type = NULL;
129 if (ada_is_array_descriptor_type (parent_type))
131 /* This can only happen when PARENT_VALUE is NULL. Otherwise,
132 ada_get_decoded_value would have transformed our parent_type
133 into a simple array pointer type. */
134 gdb_assert (parent_value == NULL);
135 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
137 /* Decode parent_type by the equivalent pointer to (decoded)
139 while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
140 parent_type = TYPE_TARGET_TYPE (parent_type);
141 parent_type = ada_coerce_to_simple_array_type (parent_type);
142 parent_type = lookup_pointer_type (parent_type);
145 /* If parent_value is a null pointer, then only perform static
146 dereferencing. We cannot dereference null pointers. */
147 if (parent_value && value_as_address (parent_value) == 0)
152 value = ada_value_ind (parent_value);
153 type = value_type (value);
156 type = TYPE_TARGET_TYPE (parent_type);
159 *child_value = value;
164 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
165 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
166 pair corresponding to the element at ELT_INDEX. */
169 ada_varobj_simple_array_elt (struct value *parent_value,
170 struct type *parent_type,
172 struct value **child_value,
173 struct type **child_type)
175 struct value *value = NULL;
176 struct type *type = NULL;
180 struct value *index_value =
181 value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
183 value = ada_value_subscript (parent_value, 1, &index_value);
184 type = value_type (value);
187 type = TYPE_TARGET_TYPE (parent_type);
190 *child_value = value;
195 /* Given the decoded value and decoded type of a variable object,
196 adjust the value and type to those necessary for getting children
197 of the variable object.
199 The replacement is performed in place. */
202 ada_varobj_adjust_for_child_access (struct value **value,
205 /* Pointers to struct/union types are special: Instead of having
206 one child (the struct), their children are the components of
207 the struct/union type. We handle this situation by dereferencing
208 the (value, type) couple. */
209 if (TYPE_CODE (*type) == TYPE_CODE_PTR
210 && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
211 || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
212 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
213 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
214 ada_varobj_ind (*value, *type, value, type);
216 /* If this is a tagged type, we need to transform it a bit in order
217 to be able to fetch its full view. As always with tagged types,
218 we can only do that if we have a value. */
219 if (*value != NULL && ada_is_tagged_type (*type, 1))
221 *value = ada_tag_value_at_base_address (*value);
222 *type = value_type (*value);
226 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
227 (any type of array, "simple" or not), return the number of children
228 that this array contains. */
231 ada_varobj_get_array_number_of_children (struct value *parent_value,
232 struct type *parent_type)
236 if (parent_value == NULL
237 && is_dynamic_type (TYPE_INDEX_TYPE (parent_type)))
239 /* This happens when listing the children of an object
240 which does not exist in memory (Eg: when requesting
241 the children of a null pointer, which is allowed by
242 varobj). The array index type being dynamic, we cannot
243 determine how many elements this array has. Just assume
248 if (!get_array_bounds (parent_type, &lo, &hi))
250 /* Could not get the array bounds. Pretend this is an empty array. */
251 warning (_("unable to get bounds of array, assuming null array"));
255 /* Ada allows the upper bound to be less than the lower bound,
256 in order to specify empty arrays... */
263 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
264 union, return the number of children this struct contains. */
267 ada_varobj_get_struct_number_of_children (struct value *parent_value,
268 struct type *parent_type)
273 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
274 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
276 for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
278 if (ada_is_ignored_field (parent_type, i))
281 if (ada_is_wrapper_field (parent_type, i))
283 struct value *elt_value;
284 struct type *elt_type;
286 ada_varobj_struct_elt (parent_value, parent_type, i,
287 &elt_value, &elt_type);
288 if (ada_is_tagged_type (elt_type, 0))
290 /* We must not use ada_varobj_get_number_of_children
291 to determine is element's number of children, because
292 this function first calls ada_varobj_decode_var,
293 which "fixes" the element. For tagged types, this
294 includes reading the object's tag to determine its
295 real type, which happens to be the parent_type, and
296 leads to an infinite loop (because the element gets
297 fixed back into the parent). */
298 n_children += ada_varobj_get_struct_number_of_children
299 (elt_value, elt_type);
302 n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
304 else if (ada_is_variant_part (parent_type, i))
306 /* In normal situations, the variant part of the record should
307 have been "fixed". Or, in other words, it should have been
308 replaced by the branch of the variant part that is relevant
309 for our value. But there are still situations where this
310 can happen, however (Eg. when our parent is a NULL pointer).
311 We do not support showing this part of the record for now,
312 so just pretend this field does not exist. */
321 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
322 a pointer, return the number of children this pointer has. */
325 ada_varobj_get_ptr_number_of_children (struct value *parent_value,
326 struct type *parent_type)
328 struct type *child_type = TYPE_TARGET_TYPE (parent_type);
330 /* Pointer to functions and to void do not have a child, since
331 you cannot print what they point to. */
332 if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
333 || TYPE_CODE (child_type) == TYPE_CODE_VOID)
336 /* All other types have 1 child. */
340 /* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
344 ada_varobj_get_number_of_children (struct value *parent_value,
345 struct type *parent_type)
347 ada_varobj_decode_var (&parent_value, &parent_type);
348 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
350 /* A typedef to an array descriptor in fact represents a pointer
351 to an unconstrained array. These types always have one child
352 (the unconstrained array). */
353 if (ada_is_array_descriptor_type (parent_type)
354 && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
357 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
358 return ada_varobj_get_array_number_of_children (parent_value,
361 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
362 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
363 return ada_varobj_get_struct_number_of_children (parent_value,
366 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
367 return ada_varobj_get_ptr_number_of_children (parent_value,
370 /* All other types have no child. */
374 /* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
375 whose index is CHILD_INDEX:
377 - If CHILD_NAME is not NULL, then a copy of the child's name
378 is saved in *CHILD_NAME. This copy must be deallocated
379 with xfree after use.
381 - If CHILD_VALUE is not NULL, then save the child's value
382 in *CHILD_VALUE. Same thing for the child's type with
383 CHILD_TYPE if not NULL.
385 - If CHILD_PATH_EXPR is not NULL, then compute the child's
386 path expression. The resulting string must be deallocated
387 after use with xfree.
389 Computing the child's path expression requires the PARENT_PATH_EXPR
390 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
391 CHILD_PATH_EXPR is NULL.
393 PARENT_NAME is the name of the parent, and should never be NULL. */
395 static void ada_varobj_describe_child (struct value *parent_value,
396 struct type *parent_type,
397 const char *parent_name,
398 const char *parent_path_expr,
400 std::string *child_name,
401 struct value **child_value,
402 struct type **child_type,
403 std::string *child_path_expr);
405 /* Same as ada_varobj_describe_child, but limited to struct/union
409 ada_varobj_describe_struct_child (struct value *parent_value,
410 struct type *parent_type,
411 const char *parent_name,
412 const char *parent_path_expr,
414 std::string *child_name,
415 struct value **child_value,
416 struct type **child_type,
417 std::string *child_path_expr)
422 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
423 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
425 for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
427 if (ada_is_ignored_field (parent_type, fieldno))
430 if (ada_is_wrapper_field (parent_type, fieldno))
432 struct value *elt_value;
433 struct type *elt_type;
436 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
437 &elt_value, &elt_type);
438 if (ada_is_tagged_type (elt_type, 0))
440 /* Same as in ada_varobj_get_struct_number_of_children:
441 For tagged types, we must be careful to not call
442 ada_varobj_get_number_of_children, to prevent our
443 element from being fixed back into the parent. */
444 elt_n_children = ada_varobj_get_struct_number_of_children
445 (elt_value, elt_type);
449 ada_varobj_get_number_of_children (elt_value, elt_type);
451 /* Is the child we're looking for one of the children
452 of this wrapper field? */
453 if (child_index - childno < elt_n_children)
455 if (ada_is_tagged_type (elt_type, 0))
457 /* Same as in ada_varobj_get_struct_number_of_children:
458 For tagged types, we must be careful to not call
459 ada_varobj_describe_child, to prevent our element
460 from being fixed back into the parent. */
461 ada_varobj_describe_struct_child
462 (elt_value, elt_type, parent_name, parent_path_expr,
463 child_index - childno, child_name, child_value,
464 child_type, child_path_expr);
467 ada_varobj_describe_child (elt_value, elt_type,
468 parent_name, parent_path_expr,
469 child_index - childno,
470 child_name, child_value,
471 child_type, child_path_expr);
475 /* The child we're looking for is beyond this wrapper
476 field, so skip all its children. */
477 childno += elt_n_children;
480 else if (ada_is_variant_part (parent_type, fieldno))
482 /* In normal situations, the variant part of the record should
483 have been "fixed". Or, in other words, it should have been
484 replaced by the branch of the variant part that is relevant
485 for our value. But there are still situations where this
486 can happen, however (Eg. when our parent is a NULL pointer).
487 We do not support showing this part of the record for now,
488 so just pretend this field does not exist. */
492 if (childno == child_index)
496 /* The name of the child is none other than the field's
497 name, except that we need to strip suffixes from it.
498 For instance, fields with alignment constraints will
499 have an __XVA suffix added to them. */
500 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
501 int child_name_len = ada_name_prefix_len (field_name);
503 *child_name = string_printf ("%.*s", child_name_len, field_name);
506 if (child_value && parent_value)
507 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
511 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
516 /* The name of the child is none other than the field's
517 name, except that we need to strip suffixes from it.
518 For instance, fields with alignment constraints will
519 have an __XVA suffix added to them. */
520 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
521 int child_name_len = ada_name_prefix_len (field_name);
524 string_printf ("(%s).%.*s", parent_path_expr,
525 child_name_len, field_name);
534 /* Something went wrong. Either we miscounted the number of
535 children, or CHILD_INDEX was too high. But we should never
536 reach here. We don't have enough information to recover
537 nicely, so just raise an assertion failure. */
538 gdb_assert_not_reached ("unexpected code path");
541 /* Same as ada_varobj_describe_child, but limited to pointer objects.
543 Note that CHILD_INDEX is unused in this situation, but still provided
544 for consistency of interface with other routines describing an object's
548 ada_varobj_describe_ptr_child (struct value *parent_value,
549 struct type *parent_type,
550 const char *parent_name,
551 const char *parent_path_expr,
553 std::string *child_name,
554 struct value **child_value,
555 struct type **child_type,
556 std::string *child_path_expr)
559 *child_name = string_printf ("%s.all", parent_name);
561 if (child_value && parent_value)
562 ada_varobj_ind (parent_value, parent_type, child_value, NULL);
565 ada_varobj_ind (parent_value, parent_type, NULL, child_type);
568 *child_path_expr = string_printf ("(%s).all", parent_path_expr);
571 /* Same as ada_varobj_describe_child, limited to simple array objects
572 (TYPE_CODE_ARRAY only).
574 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
575 This is done by ada_varobj_describe_child before calling us. */
578 ada_varobj_describe_simple_array_child (struct value *parent_value,
579 struct type *parent_type,
580 const char *parent_name,
581 const char *parent_path_expr,
583 std::string *child_name,
584 struct value **child_value,
585 struct type **child_type,
586 std::string *child_path_expr)
588 struct type *index_type;
591 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
593 index_type = TYPE_INDEX_TYPE (parent_type);
594 real_index = child_index + ada_discrete_type_low_bound (index_type);
597 *child_name = ada_varobj_scalar_image (index_type, real_index);
599 if (child_value && parent_value)
600 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
604 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
609 std::string index_img = ada_varobj_scalar_image (index_type, real_index);
611 /* Enumeration litterals by themselves are potentially ambiguous.
612 For instance, consider the following package spec:
615 type Color is (Red, Green, Blue, White);
616 type Blood_Cells is (White, Red);
619 In this case, the litteral "red" for instance, or even
620 the fully-qualified litteral "pck.red" cannot be resolved
621 by itself. Type qualification is needed to determine which
622 enumeration litterals should be used.
624 The following variable will be used to contain the name
625 of the array index type when such type qualification is
627 const char *index_type_name = NULL;
629 /* If the index type is a range type, find the base type. */
630 while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
631 index_type = TYPE_TARGET_TYPE (index_type);
633 if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
634 || TYPE_CODE (index_type) == TYPE_CODE_BOOL)
636 index_type_name = ada_type_name (index_type);
638 index_type_name = ada_decode (index_type_name);
641 if (index_type_name != NULL)
643 string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
644 ada_name_prefix_len (index_type_name),
645 index_type_name, index_img.c_str ());
648 string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
652 /* See description at declaration above. */
655 ada_varobj_describe_child (struct value *parent_value,
656 struct type *parent_type,
657 const char *parent_name,
658 const char *parent_path_expr,
660 std::string *child_name,
661 struct value **child_value,
662 struct type **child_type,
663 std::string *child_path_expr)
665 /* We cannot compute the child's path expression without
666 the parent's path expression. This is a pre-condition
667 for calling this function. */
669 gdb_assert (parent_path_expr != NULL);
671 ada_varobj_decode_var (&parent_value, &parent_type);
672 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
675 *child_name = std::string ();
681 *child_path_expr = std::string ();
683 if (ada_is_array_descriptor_type (parent_type)
684 && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
686 ada_varobj_describe_ptr_child (parent_value, parent_type,
687 parent_name, parent_path_expr,
688 child_index, child_name,
689 child_value, child_type,
694 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
696 ada_varobj_describe_simple_array_child
697 (parent_value, parent_type, parent_name, parent_path_expr,
698 child_index, child_name, child_value, child_type,
703 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
704 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
706 ada_varobj_describe_struct_child (parent_value, parent_type,
707 parent_name, parent_path_expr,
708 child_index, child_name,
709 child_value, child_type,
714 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
716 ada_varobj_describe_ptr_child (parent_value, parent_type,
717 parent_name, parent_path_expr,
718 child_index, child_name,
719 child_value, child_type,
724 /* It should never happen. But rather than crash, report dummy names
725 and return a NULL child_value. */
730 /* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
731 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
734 ada_varobj_get_name_of_child (struct value *parent_value,
735 struct type *parent_type,
736 const char *parent_name, int child_index)
738 std::string child_name;
740 ada_varobj_describe_child (parent_value, parent_type, parent_name,
741 NULL, child_index, &child_name, NULL,
746 /* Return the path expression of the child number CHILD_INDEX of
747 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
748 of the parent, and PARENT_PATH_EXPR is the parent's path expression.
749 Both must be non-NULL. */
752 ada_varobj_get_path_expr_of_child (struct value *parent_value,
753 struct type *parent_type,
754 const char *parent_name,
755 const char *parent_path_expr,
758 std::string child_path_expr;
760 ada_varobj_describe_child (parent_value, parent_type, parent_name,
761 parent_path_expr, child_index, NULL,
762 NULL, NULL, &child_path_expr);
764 return child_path_expr;
767 /* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
768 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
770 static struct value *
771 ada_varobj_get_value_of_child (struct value *parent_value,
772 struct type *parent_type,
773 const char *parent_name, int child_index)
775 struct value *child_value;
777 ada_varobj_describe_child (parent_value, parent_type, parent_name,
778 NULL, child_index, NULL, &child_value,
784 /* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
785 PARENT_TYPE) pair. */
788 ada_varobj_get_type_of_child (struct value *parent_value,
789 struct type *parent_type,
792 struct type *child_type;
794 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
795 child_index, NULL, NULL, &child_type, NULL);
800 /* Return a string that contains the image of the given VALUE, using
801 the print options OPTS as the options for formatting the result.
803 The resulting string must be deallocated after use with xfree. */
806 ada_varobj_get_value_image (struct value *value,
807 struct value_print_options *opts)
811 common_val_print (value, &buffer, 0, opts, current_language);
812 return std::move (buffer.string ());
815 /* Assuming that the (VALUE, TYPE) pair designates an array varobj,
816 return a string that is suitable for use in the "value" field of
817 the varobj output. Most of the time, this is the number of elements
818 in the array inside square brackets, but there are situations where
819 it's useful to add more info.
821 OPTS are the print options used when formatting the result.
823 The result should be deallocated after use using xfree. */
826 ada_varobj_get_value_of_array_variable (struct value *value,
828 struct value_print_options *opts)
830 const int numchild = ada_varobj_get_array_number_of_children (value, type);
832 /* If we have a string, provide its contents in the "value" field.
833 Otherwise, the only other way to inspect the contents of the string
834 is by looking at the value of each element, as in any other array,
835 which is not very convenient... */
837 && ada_is_string_type (type)
838 && (opts->format == 0 || opts->format == 's'))
840 std::string str = ada_varobj_get_value_image (value, opts);
841 return string_printf ("[%d] %s", numchild, str.c_str ());
844 return string_printf ("[%d]", numchild);
847 /* Return a string representation of the (VALUE, TYPE) pair, using
848 the given print options OPTS as our formatting options. */
851 ada_varobj_get_value_of_variable (struct value *value,
853 struct value_print_options *opts)
855 ada_varobj_decode_var (&value, &type);
857 switch (TYPE_CODE (type))
859 case TYPE_CODE_STRUCT:
860 case TYPE_CODE_UNION:
862 case TYPE_CODE_ARRAY:
863 return ada_varobj_get_value_of_array_variable (value, type, opts);
868 return ada_varobj_get_value_image (value, opts);
872 /* Ada specific callbacks for VAROBJs. */
875 ada_number_of_children (const struct varobj *var)
877 return ada_varobj_get_number_of_children (var->value.get (), var->type);
881 ada_name_of_variable (const struct varobj *parent)
883 return c_varobj_ops.name_of_variable (parent);
887 ada_name_of_child (const struct varobj *parent, int index)
889 return ada_varobj_get_name_of_child (parent->value.get (), parent->type,
890 parent->name.c_str (), index);
894 ada_path_expr_of_child (const struct varobj *child)
896 const struct varobj *parent = child->parent;
897 const char *parent_path_expr = varobj_get_path_expr (parent);
899 return ada_varobj_get_path_expr_of_child (parent->value.get (),
901 parent->name.c_str (),
906 static struct value *
907 ada_value_of_child (const struct varobj *parent, int index)
909 return ada_varobj_get_value_of_child (parent->value.get (), parent->type,
910 parent->name.c_str (), index);
914 ada_type_of_child (const struct varobj *parent, int index)
916 return ada_varobj_get_type_of_child (parent->value.get (), parent->type,
921 ada_value_of_variable (const struct varobj *var,
922 enum varobj_display_formats format)
924 struct value_print_options opts;
926 varobj_formatted_print_options (&opts, format);
928 return ada_varobj_get_value_of_variable (var->value.get (), var->type,
932 /* Implement the "value_is_changeable_p" routine for Ada. */
935 ada_value_is_changeable_p (const struct varobj *var)
937 struct type *type = (var->value != nullptr
938 ? value_type (var->value.get ()) : var->type);
940 if (ada_is_array_descriptor_type (type)
941 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
943 /* This is in reality a pointer to an unconstrained array.
944 its value is changeable. */
948 if (ada_is_string_type (type))
950 /* We display the contents of the string in the array's
951 "value" field. The contents can change, so consider
952 that the array is changeable. */
956 return varobj_default_value_is_changeable_p (var);
959 /* Implement the "value_has_mutated" routine for Ada. */
962 ada_value_has_mutated (const struct varobj *var, struct value *new_val,
963 struct type *new_type)
968 /* If the number of fields have changed, then for sure the type
970 if (ada_varobj_get_number_of_children (new_val, new_type)
971 != var->num_children)
974 /* If the number of fields have remained the same, then we need
975 to check the name of each field. If they remain the same,
976 then chances are the type hasn't mutated. This is technically
977 an incomplete test, as the child's type might have changed
978 despite the fact that the name remains the same. But we'll
979 handle this situation by saying that the child has mutated,
982 If only part (or none!) of the children have been fetched,
983 then only check the ones we fetched. It does not matter
984 to the frontend whether a child that it has not fetched yet
985 has mutated or not. So just assume it hasn't. */
987 varobj_restrict_range (var->children, &from, &to);
988 for (int i = from; i < to; i++)
989 if (ada_varobj_get_name_of_child (new_val, new_type,
990 var->name.c_str (), i)
991 != var->children[i]->name)
997 /* varobj operations for ada. */
999 const struct lang_varobj_ops ada_varobj_ops =
1001 ada_number_of_children,
1002 ada_name_of_variable,
1004 ada_path_expr_of_child,
1007 ada_value_of_variable,
1008 ada_value_is_changeable_p,
1009 ada_value_has_mutated,
1010 varobj_default_is_path_expr_parent