1 /* Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
2 Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "gdbthread.h"
27 #include "progspace.h"
30 /* The name of the array in the GNAT runtime where the Ada Task Control
31 Block of each task is stored. */
32 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
34 /* The maximum number of tasks known to the Ada runtime. */
35 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
37 /* The name of the variable in the GNAT runtime where the head of a task
38 chain is saved. This is an alternate mechanism to find the list of known
40 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
52 Master_Completion_Sleep,
54 Interrupt_Server_Idle_Sleep,
55 Interrupt_Server_Blocked_Interrupt_Sleep,
59 Interrupt_Server_Blocked_On_Event_Flag,
64 /* A short description corresponding to each possible task state. */
65 static const char *task_states[] = {
69 N_("Child Activation Wait"),
70 N_("Accept or Select Term"),
71 N_("Waiting on entry call"),
72 N_("Async Select Wait"),
74 N_("Child Termination Wait"),
75 N_("Wait Child in Term Alt"),
80 N_("Asynchronous Hold"),
86 /* A longer description corresponding to each possible task state. */
87 static const char *long_task_states[] = {
91 N_("Waiting for child activation"),
92 N_("Blocked in accept or select with terminate"),
93 N_("Waiting on entry call"),
94 N_("Asynchronous Selective Wait"),
96 N_("Waiting for children termination"),
97 N_("Waiting for children in terminate alternative"),
102 N_("Asynchronous Hold"),
105 N_("Blocked in selective wait statement")
108 /* The index of certain important fields in the Ada Task Control Block
109 record and sub-records. */
113 /* Fields in record Ada_Task_Control_Block. */
116 int atc_nesting_level;
118 /* Fields in record Common_ATCB. */
123 int image_len; /* This field may be missing. */
128 /* Fields in Task_Primitives.Private_Data. */
130 int ll_lwp; /* This field may be missing. */
132 /* Fields in Common_ATCB.Call.all. */
136 /* This module's per-program-space data. */
138 struct ada_tasks_pspace_data
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
145 /* The ATCB record type. */
146 struct type *atcb_type;
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
164 typedef struct ada_task_info ada_task_info_s;
165 DEF_VEC_O(ada_task_info_s);
167 /* The kind of data structure used by the runtime to store the list
170 enum ada_known_tasks_kind
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
197 /* This module's per-inferior data. */
199 struct ada_tasks_inferior_data
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
216 CORE_ADDR known_tasks_addr;
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element;
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length;
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 int task_list_valid_p;
229 /* The list of Ada tasks.
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 VEC(ada_task_info_s) *task_list;
239 /* Key to our per-inferior data. */
240 static const struct inferior_data *ada_tasks_inferior_data_handle;
242 /* Return the ada-tasks module's data for the given program space (PSPACE).
243 If none is found, add a zero'ed one now.
245 This function always returns a valid object. */
247 static struct ada_tasks_pspace_data *
248 get_ada_tasks_pspace_data (struct program_space *pspace)
250 struct ada_tasks_pspace_data *data;
252 data = program_space_data (pspace, ada_tasks_pspace_data_handle);
255 data = XZALLOC (struct ada_tasks_pspace_data);
256 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
262 /* Return the ada-tasks module's data for the given inferior (INF).
263 If none is found, add a zero'ed one now.
265 This function always returns a valid object.
267 Note that we could use an observer of the inferior-created event
268 to make sure that the ada-tasks per-inferior data always exists.
269 But we prefered this approach, as it avoids this entirely as long
270 as the user does not use any of the tasking features. This is
271 quite possible, particularly in the case where the inferior does
274 static struct ada_tasks_inferior_data *
275 get_ada_tasks_inferior_data (struct inferior *inf)
277 struct ada_tasks_inferior_data *data;
279 data = inferior_data (inf, ada_tasks_inferior_data_handle);
282 data = XZALLOC (struct ada_tasks_inferior_data);
283 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
289 /* Return the task number of the task whose ptid is PTID, or zero
290 if the task could not be found. */
293 ada_get_task_number (ptid_t ptid)
296 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
297 struct ada_tasks_inferior_data *data;
299 gdb_assert (inf != NULL);
300 data = get_ada_tasks_inferior_data (inf);
302 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
303 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
307 return 0; /* No matching task found. */
310 /* Return the task number of the task running in inferior INF which
311 matches TASK_ID , or zero if the task could not be found. */
314 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
316 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
319 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
321 struct ada_task_info *task_info =
322 VEC_index (ada_task_info_s, data->task_list, i);
324 if (task_info->task_id == task_id)
328 /* Task not found. Return 0. */
332 /* Return non-zero if TASK_NUM is a valid task number. */
335 valid_task_id (int task_num)
337 struct ada_tasks_inferior_data *data;
339 ada_build_task_list ();
340 data = get_ada_tasks_inferior_data (current_inferior ());
342 && task_num <= VEC_length (ada_task_info_s, data->task_list));
345 /* Return non-zero iff the task STATE corresponds to a non-terminated
349 ada_task_is_alive (struct ada_task_info *task_info)
351 return (task_info->state != Terminated);
354 /* Call the ITERATOR function once for each Ada task that hasn't been
358 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
361 struct ada_task_info *task;
362 struct ada_tasks_inferior_data *data;
364 ada_build_task_list ();
365 data = get_ada_tasks_inferior_data (current_inferior ());
366 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
368 for (i = 0; i < nb_tasks; i++)
370 task = VEC_index (ada_task_info_s, data->task_list, i);
371 if (!ada_task_is_alive (task))
377 /* Extract the contents of the value as a string whose length is LENGTH,
378 and store the result in DEST. */
381 value_as_string (char *dest, struct value *val, int length)
383 memcpy (dest, value_contents (val), length);
387 /* Extract the string image from the fat string corresponding to VAL,
388 and store it in DEST. If the string length is greater than MAX_LEN,
389 then truncate the result to the first MAX_LEN characters of the fat
393 read_fat_string_value (char *dest, struct value *val, int max_len)
395 struct value *array_val;
396 struct value *bounds_val;
399 /* The following variables are made static to avoid recomputing them
400 each time this function is called. */
401 static int initialize_fieldnos = 1;
402 static int array_fieldno;
403 static int bounds_fieldno;
404 static int upper_bound_fieldno;
406 /* Get the index of the fields that we will need to read in order
407 to extract the string from the fat string. */
408 if (initialize_fieldnos)
410 struct type *type = value_type (val);
411 struct type *bounds_type;
413 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
414 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
416 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
417 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
418 bounds_type = TYPE_TARGET_TYPE (bounds_type);
419 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
420 error (_("Unknown task name format. Aborting"));
421 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
423 initialize_fieldnos = 0;
426 /* Get the size of the task image by checking the value of the bounds.
427 The lower bound is always 1, so we only need to read the upper bound. */
428 bounds_val = value_ind (value_field (val, bounds_fieldno));
429 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
431 /* Make sure that we do not read more than max_len characters... */
435 /* Extract LEN characters from the fat string. */
436 array_val = value_ind (value_field (val, array_fieldno));
437 read_memory (value_address (array_val), dest, len);
439 /* Add the NUL character to close the string. */
443 /* Get from the debugging information the type description of all types
444 related to the Ada Task Control Block that will be needed in order to
445 read the list of known tasks in the Ada runtime. Also return the
446 associated ATCB_FIELDNOS.
448 Error handling: Any data missing from the debugging info will cause
449 an error to be raised, and none of the return values to be set.
450 Users of this function can depend on the fact that all or none of the
451 return values will be set. */
454 get_tcb_types_info (void)
457 struct type *common_type;
458 struct type *ll_type;
459 struct type *call_type;
460 struct atcb_fieldnos fieldnos;
461 struct ada_tasks_pspace_data *pspace_data;
463 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
464 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
465 const char *common_atcb_name = "system__tasking__common_atcb";
466 const char *private_data_name = "system__task_primitives__private_data";
467 const char *entry_call_record_name = "system__tasking__entry_call_record";
469 /* ATCB symbols may be found in several compilation units. As we
470 are only interested in one instance, use standard (literal,
471 C-like) lookups to get the first match. */
473 struct symbol *atcb_sym =
474 lookup_symbol_in_language (atcb_name, NULL, VAR_DOMAIN,
476 const struct symbol *common_atcb_sym =
477 lookup_symbol_in_language (common_atcb_name, NULL, VAR_DOMAIN,
479 const struct symbol *private_data_sym =
480 lookup_symbol_in_language (private_data_name, NULL, VAR_DOMAIN,
482 const struct symbol *entry_call_record_sym =
483 lookup_symbol_in_language (entry_call_record_name, NULL, VAR_DOMAIN,
486 if (atcb_sym == NULL || atcb_sym->type == NULL)
488 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
489 size, so the symbol name differs. */
490 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, VAR_DOMAIN,
493 if (atcb_sym == NULL || atcb_sym->type == NULL)
494 error (_("Cannot find Ada_Task_Control_Block type. Aborting"));
496 type = atcb_sym->type;
500 /* Get a static representation of the type record
501 Ada_Task_Control_Block. */
502 type = atcb_sym->type;
503 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
506 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
507 error (_("Cannot find Common_ATCB type. Aborting"));
508 if (private_data_sym == NULL || private_data_sym->type == NULL)
509 error (_("Cannot find Private_Data type. Aborting"));
510 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
511 error (_("Cannot find Entry_Call_Record type. Aborting"));
513 /* Get the type for Ada_Task_Control_Block.Common. */
514 common_type = common_atcb_sym->type;
516 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
517 ll_type = private_data_sym->type;
519 /* Get the type for Common_ATCB.Call.all. */
520 call_type = entry_call_record_sym->type;
522 /* Get the field indices. */
523 fieldnos.common = ada_get_field_index (type, "common", 0);
524 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
525 fieldnos.atc_nesting_level =
526 ada_get_field_index (type, "atc_nesting_level", 1);
527 fieldnos.state = ada_get_field_index (common_type, "state", 0);
528 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
529 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
530 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
531 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
532 fieldnos.activation_link = ada_get_field_index (common_type,
533 "activation_link", 1);
534 fieldnos.call = ada_get_field_index (common_type, "call", 1);
535 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
536 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
537 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
538 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
540 /* On certain platforms such as x86-windows, the "lwp" field has been
541 named "thread_id". This field will likely be renamed in the future,
542 but we need to support both possibilities to avoid an unnecessary
543 dependency on a recent compiler. We therefore try locating the
544 "thread_id" field in place of the "lwp" field if we did not find
546 if (fieldnos.ll_lwp < 0)
547 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
549 /* Set all the out parameters all at once, now that we are certain
550 that there are no potential error() anymore. */
551 pspace_data = get_ada_tasks_pspace_data (current_program_space);
552 pspace_data->initialized_p = 1;
553 pspace_data->atcb_type = type;
554 pspace_data->atcb_common_type = common_type;
555 pspace_data->atcb_ll_type = ll_type;
556 pspace_data->atcb_call_type = call_type;
557 pspace_data->atcb_fieldno = fieldnos;
560 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
561 component of its ATCB record. This PTID needs to match the PTID used
562 by the thread layer. */
565 ptid_from_atcb_common (struct value *common_value)
569 struct value *ll_value;
571 const struct ada_tasks_pspace_data *pspace_data
572 = get_ada_tasks_pspace_data (current_program_space);
574 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
576 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
577 lwp = value_as_address (value_field (ll_value,
578 pspace_data->atcb_fieldno.ll_lwp));
579 thread = value_as_long (value_field (ll_value,
580 pspace_data->atcb_fieldno.ll_thread));
582 ptid = target_get_ada_task_ptid (lwp, thread);
587 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
588 the address of its assocated ATCB record), and store the result inside
592 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
594 struct value *tcb_value;
595 struct value *common_value;
596 struct value *atc_nesting_level_value;
597 struct value *entry_calls_value;
598 struct value *entry_calls_value_element;
599 int called_task_fieldno = -1;
600 static const char ravenscar_task_name[] = "Ravenscar task";
601 const struct ada_tasks_pspace_data *pspace_data
602 = get_ada_tasks_pspace_data (current_program_space);
604 if (!pspace_data->initialized_p)
605 get_tcb_types_info ();
607 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
609 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
611 /* Fill in the task_id. */
613 task_info->task_id = task_id;
615 /* Compute the name of the task.
617 Depending on the GNAT version used, the task image is either a fat
618 string, or a thin array of characters. Older versions of GNAT used
619 to use fat strings, and therefore did not need an extra field in
620 the ATCB to store the string length. For efficiency reasons, newer
621 versions of GNAT replaced the fat string by a static buffer, but this
622 also required the addition of a new field named "Image_Len" containing
623 the length of the task name. The method used to extract the task name
624 is selected depending on the existence of this field.
626 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
627 we may want to get it from the first user frame of the stack. For now,
628 we just give a dummy name. */
630 if (pspace_data->atcb_fieldno.image_len == -1)
632 if (pspace_data->atcb_fieldno.image >= 0)
633 read_fat_string_value (task_info->name,
634 value_field (common_value,
635 pspace_data->atcb_fieldno.image),
636 sizeof (task_info->name) - 1);
639 struct minimal_symbol *msym;
641 msym = lookup_minimal_symbol_by_pc (task_id);
644 const char *full_name = SYMBOL_LINKAGE_NAME (msym);
645 const char *task_name = full_name;
648 /* Strip the prefix. */
649 for (p = full_name; *p; p++)
650 if (p[0] == '_' && p[1] == '_')
653 /* Copy the task name. */
654 strncpy (task_info->name, task_name, sizeof (task_info->name));
655 task_info->name[sizeof (task_info->name) - 1] = 0;
659 /* No symbol found. Use a default name. */
660 strcpy (task_info->name, ravenscar_task_name);
666 int len = value_as_long
667 (value_field (common_value,
668 pspace_data->atcb_fieldno.image_len));
670 value_as_string (task_info->name,
671 value_field (common_value,
672 pspace_data->atcb_fieldno.image),
676 /* Compute the task state and priority. */
679 value_as_long (value_field (common_value,
680 pspace_data->atcb_fieldno.state));
681 task_info->priority =
682 value_as_long (value_field (common_value,
683 pspace_data->atcb_fieldno.priority));
685 /* If the ATCB contains some information about the parent task,
686 then compute it as well. Otherwise, zero. */
688 if (pspace_data->atcb_fieldno.parent >= 0)
690 value_as_address (value_field (common_value,
691 pspace_data->atcb_fieldno.parent));
693 task_info->parent = 0;
696 /* If the ATCB contains some information about entry calls, then
697 compute the "called_task" as well. Otherwise, zero. */
699 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
700 && pspace_data->atcb_fieldno.entry_calls > 0)
702 /* Let My_ATCB be the Ada task control block of a task calling the
703 entry of another task; then the Task_Id of the called task is
704 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
705 atc_nesting_level_value =
706 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
708 ada_coerce_to_simple_array_ptr
709 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
710 entry_calls_value_element =
711 value_subscript (entry_calls_value,
712 value_as_long (atc_nesting_level_value));
713 called_task_fieldno =
714 ada_get_field_index (value_type (entry_calls_value_element),
716 task_info->called_task =
717 value_as_address (value_field (entry_calls_value_element,
718 called_task_fieldno));
722 task_info->called_task = 0;
725 /* If the ATCB cotnains some information about RV callers,
726 then compute the "caller_task". Otherwise, zero. */
728 task_info->caller_task = 0;
729 if (pspace_data->atcb_fieldno.call >= 0)
731 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
732 If Common_ATCB.Call is null, then there is no caller. */
733 const CORE_ADDR call =
734 value_as_address (value_field (common_value,
735 pspace_data->atcb_fieldno.call));
736 struct value *call_val;
741 value_from_contents_and_address (pspace_data->atcb_call_type,
743 task_info->caller_task =
745 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
749 /* And finally, compute the task ptid. Note that there are situations
750 where this cannot be determined:
751 - The task is no longer alive - the ptid is irrelevant;
752 - We are debugging a core file - the thread is not always
753 completely preserved for us to link back a task to its
754 underlying thread. Since we do not support task switching
755 when debugging core files anyway, we don't need to compute
757 In either case, we don't need that ptid, and it is just good enough
758 to set it to null_ptid. */
760 if (target_has_execution && ada_task_is_alive (task_info))
761 task_info->ptid = ptid_from_atcb_common (common_value);
763 task_info->ptid = null_ptid;
766 /* Read the ATCB info of the given task (identified by TASK_ID), and
767 add the result to the given inferior's TASK_LIST. */
770 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
772 struct ada_task_info task_info;
773 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
775 read_atcb (task_id, &task_info);
776 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
779 /* Read the Known_Tasks array from the inferior memory, and store
780 it in the current inferior's TASK_LIST. Return non-zero upon success. */
783 read_known_tasks_array (struct ada_tasks_inferior_data *data)
785 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
786 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
787 gdb_byte *known_tasks = alloca (known_tasks_size);
790 /* Build a new list by reading the ATCBs from the Known_Tasks array
791 in the Ada runtime. */
792 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
793 for (i = 0; i < data->known_tasks_length; i++)
796 extract_typed_address (known_tasks + i * target_ptr_byte,
797 data->known_tasks_element);
800 add_ada_task (task_id, current_inferior ());
806 /* Read the known tasks from the inferior memory, and store it in
807 the current inferior's TASK_LIST. Return non-zero upon success. */
810 read_known_tasks_list (struct ada_tasks_inferior_data *data)
812 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
813 gdb_byte *known_tasks = alloca (target_ptr_byte);
815 const struct ada_tasks_pspace_data *pspace_data
816 = get_ada_tasks_pspace_data (current_program_space);
819 if (pspace_data->atcb_fieldno.activation_link < 0)
822 /* Build a new list by reading the ATCBs. Read head of the list. */
823 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
824 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
827 struct value *tcb_value;
828 struct value *common_value;
830 add_ada_task (task_id, current_inferior ());
832 /* Read the chain. */
833 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
835 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
836 task_id = value_as_address
837 (value_field (common_value,
838 pspace_data->atcb_fieldno.activation_link));
844 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
845 Do nothing if those fields are already set and still up to date. */
848 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
850 struct minimal_symbol *msym;
853 /* Return now if already set. */
854 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
859 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
862 data->known_tasks_kind = ADA_TASKS_ARRAY;
863 data->known_tasks_addr = SYMBOL_VALUE_ADDRESS (msym);
865 /* Try to get pointer type and array length from the symtab. */
866 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
871 struct type *type = check_typedef (SYMBOL_TYPE (sym));
872 struct type *eltype = NULL;
873 struct type *idxtype = NULL;
875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
876 eltype = check_typedef (TYPE_TARGET_TYPE (type));
878 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
879 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
881 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
882 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
884 data->known_tasks_element = eltype;
885 data->known_tasks_length =
886 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
891 /* Fallback to default values. The runtime may have been stripped (as
892 in some distributions), but it is likely that the executable still
893 contains debug information on the task type (due to implicit with of
895 data->known_tasks_element =
896 builtin_type (target_gdbarch)->builtin_data_ptr;
897 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
904 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
907 data->known_tasks_kind = ADA_TASKS_LIST;
908 data->known_tasks_addr = SYMBOL_VALUE_ADDRESS (msym);
909 data->known_tasks_length = 1;
911 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
913 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
916 struct type *type = check_typedef (SYMBOL_TYPE (sym));
918 if (TYPE_CODE (type) == TYPE_CODE_PTR)
920 data->known_tasks_element = type;
925 /* Fallback to default values. */
926 data->known_tasks_element =
927 builtin_type (target_gdbarch)->builtin_data_ptr;
928 data->known_tasks_length = 1;
932 /* Can't find tasks. */
934 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
935 data->known_tasks_addr = 0;
938 /* Read the known tasks from the current inferior's memory, and store it
939 in the current inferior's data TASK_LIST.
940 Return non-zero upon success. */
943 read_known_tasks (void)
945 struct ada_tasks_inferior_data *data =
946 get_ada_tasks_inferior_data (current_inferior ());
948 /* Step 1: Clear the current list, if necessary. */
949 VEC_truncate (ada_task_info_s, data->task_list, 0);
951 /* Step 2: do the real work.
952 If the application does not use task, then no more needs to be done.
953 It is important to have the task list cleared (see above) before we
954 return, as we don't want a stale task list to be used... This can
955 happen for instance when debugging a non-multitasking program after
956 having debugged a multitasking one. */
957 ada_tasks_inferior_data_sniffer (data);
958 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
960 switch (data->known_tasks_kind)
962 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
964 case ADA_TASKS_ARRAY:
965 return read_known_tasks_array (data);
967 return read_known_tasks_list (data);
970 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
971 array unless needed. Then report a success. */
972 data->task_list_valid_p = 1;
977 /* Build the task_list by reading the Known_Tasks array from
978 the inferior, and return the number of tasks in that list
979 (zero means that the program is not using tasking at all). */
982 ada_build_task_list (void)
984 struct ada_tasks_inferior_data *data;
986 if (!target_has_stack)
987 error (_("Cannot inspect Ada tasks when program is not running"));
989 data = get_ada_tasks_inferior_data (current_inferior ());
990 if (!data->task_list_valid_p)
993 return VEC_length (ada_task_info_s, data->task_list);
996 /* Print a table providing a short description of all Ada tasks
997 running inside inferior INF. If ARG_STR is set, it will be
998 interpreted as a task number, and the table will be limited to
1002 print_ada_task_info (struct ui_out *uiout,
1004 struct inferior *inf)
1006 struct ada_tasks_inferior_data *data;
1007 int taskno, nb_tasks;
1009 struct cleanup *old_chain;
1012 if (ada_build_task_list () == 0)
1014 ui_out_message (uiout, 0,
1015 _("Your application does not use any Ada tasks.\n"));
1019 if (arg_str != NULL && arg_str[0] != '\0')
1020 taskno_arg = value_as_long (parse_and_eval (arg_str));
1022 if (ui_out_is_mi_like_p (uiout))
1023 /* In GDB/MI mode, we want to provide the thread ID corresponding
1024 to each task. This allows clients to quickly find the thread
1025 associated to any task, which is helpful for commands that
1026 take a --thread argument. However, in order to be able to
1027 provide that thread ID, the thread list must be up to date
1029 target_find_new_threads ();
1031 data = get_ada_tasks_inferior_data (inf);
1033 /* Compute the number of tasks that are going to be displayed
1034 in the output. If an argument was given, there will be
1035 at most 1 entry. Otherwise, there will be as many entries
1036 as we have tasks. */
1040 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1046 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1048 nb_columns = ui_out_is_mi_like_p (uiout) ? 8 : 7;
1049 old_chain = make_cleanup_ui_out_table_begin_end (uiout, nb_columns,
1051 ui_out_table_header (uiout, 1, ui_left, "current", "");
1052 ui_out_table_header (uiout, 3, ui_right, "id", "ID");
1053 ui_out_table_header (uiout, 9, ui_right, "task-id", "TID");
1054 /* The following column is provided in GDB/MI mode only because
1055 it is only really useful in that mode, and also because it
1056 allows us to keep the CLI output shorter and more compact. */
1057 if (ui_out_is_mi_like_p (uiout))
1058 ui_out_table_header (uiout, 4, ui_right, "thread-id", "");
1059 ui_out_table_header (uiout, 4, ui_right, "parent-id", "P-ID");
1060 ui_out_table_header (uiout, 3, ui_right, "priority", "Pri");
1061 ui_out_table_header (uiout, 22, ui_left, "state", "State");
1062 /* Use ui_noalign for the last column, to prevent the CLI uiout
1063 from printing an extra space at the end of each row. This
1064 is a bit of a hack, but does get the job done. */
1065 ui_out_table_header (uiout, 1, ui_noalign, "name", "Name");
1066 ui_out_table_body (uiout);
1069 taskno <= VEC_length (ada_task_info_s, data->task_list);
1072 const struct ada_task_info *const task_info =
1073 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1075 struct cleanup *chain2;
1077 gdb_assert (task_info != NULL);
1079 /* If the user asked for the output to be restricted
1080 to one task only, and this is not the task, skip
1082 if (taskno_arg && taskno != taskno_arg)
1085 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1087 /* Print a star if this task is the current task (or the task
1088 currently selected). */
1089 if (ptid_equal (task_info->ptid, inferior_ptid))
1090 ui_out_field_string (uiout, "current", "*");
1092 ui_out_field_skip (uiout, "current");
1094 /* Print the task number. */
1095 ui_out_field_int (uiout, "id", taskno);
1097 /* Print the Task ID. */
1098 ui_out_field_fmt (uiout, "task-id", "%9lx", (long) task_info->task_id);
1100 /* Print the associated Thread ID. */
1101 if (ui_out_is_mi_like_p (uiout))
1103 const int thread_id = pid_to_thread_id (task_info->ptid);
1106 ui_out_field_int (uiout, "thread-id", thread_id);
1108 /* This should never happen unless there is a bug somewhere,
1109 but be resilient when that happens. */
1110 ui_out_field_skip (uiout, "thread-id");
1113 /* Print the ID of the parent task. */
1114 parent_id = get_task_number_from_id (task_info->parent, inf);
1116 ui_out_field_int (uiout, "parent-id", parent_id);
1118 ui_out_field_skip (uiout, "parent-id");
1120 /* Print the base priority of the task. */
1121 ui_out_field_int (uiout, "priority", task_info->priority);
1123 /* Print the task current state. */
1124 if (task_info->caller_task)
1125 ui_out_field_fmt (uiout, "state",
1126 _("Accepting RV with %-4d"),
1127 get_task_number_from_id (task_info->caller_task,
1129 else if (task_info->state == Entry_Caller_Sleep
1130 && task_info->called_task)
1131 ui_out_field_fmt (uiout, "state",
1132 _("Waiting on RV with %-3d"),
1133 get_task_number_from_id (task_info->called_task,
1136 ui_out_field_string (uiout, "state", task_states[task_info->state]);
1138 /* Finally, print the task name. */
1139 ui_out_field_fmt (uiout, "name",
1141 task_info->name[0] != '\0' ? task_info->name
1144 ui_out_text (uiout, "\n");
1145 do_cleanups (chain2);
1148 do_cleanups (old_chain);
1151 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1152 for the given inferior (INF). */
1155 info_task (struct ui_out *uiout, char *taskno_str, struct inferior *inf)
1157 const int taskno = value_as_long (parse_and_eval (taskno_str));
1158 struct ada_task_info *task_info;
1159 int parent_taskno = 0;
1160 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1162 if (ada_build_task_list () == 0)
1164 ui_out_message (uiout, 0,
1165 _("Your application does not use any Ada tasks.\n"));
1169 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1170 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1171 "see the IDs of currently known tasks"), taskno);
1172 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1174 /* Print the Ada task ID. */
1175 printf_filtered (_("Ada Task: %s\n"),
1176 paddress (target_gdbarch, task_info->task_id));
1178 /* Print the name of the task. */
1179 if (task_info->name[0] != '\0')
1180 printf_filtered (_("Name: %s\n"), task_info->name);
1182 printf_filtered (_("<no name>\n"));
1184 /* Print the TID and LWP. */
1185 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1186 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1188 /* Print who is the parent (if any). */
1189 if (task_info->parent != 0)
1190 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1193 struct ada_task_info *parent =
1194 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1196 printf_filtered (_("Parent: %d"), parent_taskno);
1197 if (parent->name[0] != '\0')
1198 printf_filtered (" (%s)", parent->name);
1199 printf_filtered ("\n");
1202 printf_filtered (_("No parent\n"));
1204 /* Print the base priority. */
1205 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1207 /* print the task current state. */
1209 int target_taskno = 0;
1211 if (task_info->caller_task)
1213 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1214 printf_filtered (_("State: Accepting rendezvous with %d"),
1217 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1219 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1220 printf_filtered (_("State: Waiting on task %d's entry"),
1224 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1228 struct ada_task_info *target_task_info =
1229 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1231 if (target_task_info->name[0] != '\0')
1232 printf_filtered (" (%s)", target_task_info->name);
1235 printf_filtered ("\n");
1239 /* If ARG is empty or null, then print a list of all Ada tasks.
1240 Otherwise, print detailed information about the task whose ID
1243 Does nothing if the program doesn't use Ada tasking. */
1246 info_tasks_command (char *arg, int from_tty)
1248 struct ui_out *uiout = current_uiout;
1250 if (arg == NULL || *arg == '\0')
1251 print_ada_task_info (uiout, NULL, current_inferior ());
1253 info_task (uiout, arg, current_inferior ());
1256 /* Print a message telling the user id of the current task.
1257 This function assumes that tasking is in use in the inferior. */
1260 display_current_task_id (void)
1262 const int current_task = ada_get_task_number (inferior_ptid);
1264 if (current_task == 0)
1265 printf_filtered (_("[Current task is unknown]\n"));
1267 printf_filtered (_("[Current task is %d]\n"), current_task);
1270 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1271 that task. Print an error message if the task switch failed. */
1274 task_command_1 (char *taskno_str, int from_tty, struct inferior *inf)
1276 const int taskno = value_as_long (parse_and_eval (taskno_str));
1277 struct ada_task_info *task_info;
1278 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1280 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1281 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1282 "see the IDs of currently known tasks"), taskno);
1283 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1285 if (!ada_task_is_alive (task_info))
1286 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1288 /* On some platforms, the thread list is not updated until the user
1289 performs a thread-related operation (by using the "info threads"
1290 command, for instance). So this thread list may not be up to date
1291 when the user attempts this task switch. Since we cannot switch
1292 to the thread associated to our task if GDB does not know about
1293 that thread, we need to make sure that any new threads gets added
1294 to the thread list. */
1295 target_find_new_threads ();
1297 /* Verify that the ptid of the task we want to switch to is valid
1298 (in other words, a ptid that GDB knows about). Otherwise, we will
1299 cause an assertion failure later on, when we try to determine
1300 the ptid associated thread_info data. We should normally never
1301 encounter such an error, but the wrong ptid can actually easily be
1302 computed if target_get_ada_task_ptid has not been implemented for
1303 our target (yet). Rather than cause an assertion error in that case,
1304 it's nicer for the user to just refuse to perform the task switch. */
1305 if (!find_thread_ptid (task_info->ptid))
1306 error (_("Unable to compute thread ID for task %d.\n"
1307 "Cannot switch to this task."),
1310 switch_to_thread (task_info->ptid);
1311 ada_find_printable_frame (get_selected_frame (NULL));
1312 printf_filtered (_("[Switching to task %d]\n"), taskno);
1313 print_stack_frame (get_selected_frame (NULL),
1314 frame_relative_level (get_selected_frame (NULL)), 1);
1318 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1319 Otherwise, switch to the task indicated by TASKNO_STR. */
1322 task_command (char *taskno_str, int from_tty)
1324 struct ui_out *uiout = current_uiout;
1326 if (ada_build_task_list () == 0)
1328 ui_out_message (uiout, 0,
1329 _("Your application does not use any Ada tasks.\n"));
1333 if (taskno_str == NULL || taskno_str[0] == '\0')
1334 display_current_task_id ();
1337 /* Task switching in core files doesn't work, either because:
1338 1. Thread support is not implemented with core files
1339 2. Thread support is implemented, but the thread IDs created
1340 after having read the core file are not the same as the ones
1341 that were used during the program life, before the crash.
1342 As a consequence, there is no longer a way for the debugger
1343 to find the associated thead ID of any given Ada task.
1344 So, instead of attempting a task switch without giving the user
1345 any clue as to what might have happened, just error-out with
1346 a message explaining that this feature is not supported. */
1347 if (!target_has_execution)
1349 Task switching not supported when debugging from core files\n\
1350 (use thread support instead)"));
1351 task_command_1 (taskno_str, from_tty, current_inferior ());
1355 /* Indicate that the given inferior's task list may have changed,
1356 so invalidate the cache. */
1359 ada_task_list_changed (struct inferior *inf)
1361 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1363 data->task_list_valid_p = 0;
1366 /* Invalidate the per-program-space data. */
1369 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1371 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1374 /* Invalidate the per-inferior data. */
1377 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1379 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1381 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1382 data->task_list_valid_p = 0;
1385 /* The 'normal_stop' observer notification callback. */
1388 ada_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1390 /* The inferior has been resumed, and just stopped. This means that
1391 our task_list needs to be recomputed before it can be used again. */
1392 ada_task_list_changed (current_inferior ());
1395 /* A routine to be called when the objfiles have changed. */
1398 ada_new_objfile_observer (struct objfile *objfile)
1400 struct inferior *inf;
1402 /* Invalidate the relevant data in our program-space data. */
1404 if (objfile == NULL)
1406 /* All objfiles are being cleared, so we should clear all
1407 our caches for all program spaces. */
1408 struct program_space *pspace;
1410 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1411 ada_tasks_invalidate_pspace_data (pspace);
1415 /* The associated program-space data might have changed after
1416 this objfile was added. Invalidate all cached data. */
1417 ada_tasks_invalidate_pspace_data (objfile->pspace);
1420 /* Invalidate the per-inferior cache for all inferiors using
1421 this objfile (or, in other words, for all inferiors who have
1422 the same program-space as the objfile's program space).
1423 If all objfiles are being cleared (OBJFILE is NULL), then
1424 clear the caches for all inferiors. */
1426 for (inf = inferior_list; inf != NULL; inf = inf->next)
1427 if (objfile == NULL || inf->pspace == objfile->pspace)
1428 ada_tasks_invalidate_inferior_data (inf);
1431 /* Provide a prototype to silence -Wmissing-prototypes. */
1432 extern initialize_file_ftype _initialize_tasks;
1435 _initialize_tasks (void)
1437 ada_tasks_pspace_data_handle = register_program_space_data ();
1438 ada_tasks_inferior_data_handle = register_inferior_data ();
1440 /* Attach various observers. */
1441 observer_attach_normal_stop (ada_normal_stop_observer);
1442 observer_attach_new_objfile (ada_new_objfile_observer);
1444 /* Some new commands provided by this module. */
1445 add_info ("tasks", info_tasks_command,
1446 _("Provide information about all known Ada tasks"));
1447 add_cmd ("task", class_run, task_command,
1448 _("Use this command to switch between Ada tasks.\n\
1449 Without argument, this command simply prints the current task ID"),