1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
66 /* Define whether or not the C operator '/' truncates towards zero for
67 differently signed operands (truncation direction is undefined in C).
68 Copied from valarith.c. */
70 #ifndef TRUNCATION_TOWARDS_ZERO
71 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 static struct type *desc_base_type (struct type *);
76 static struct type *desc_bounds_type (struct type *);
78 static struct value *desc_bounds (struct value *);
80 static int fat_pntr_bounds_bitpos (struct type *);
82 static int fat_pntr_bounds_bitsize (struct type *);
84 static struct type *desc_data_target_type (struct type *);
86 static struct value *desc_data (struct value *);
88 static int fat_pntr_data_bitpos (struct type *);
90 static int fat_pntr_data_bitsize (struct type *);
92 static struct value *desc_one_bound (struct value *, int, int);
94 static int desc_bound_bitpos (struct type *, int, int);
96 static int desc_bound_bitsize (struct type *, int, int);
98 static struct type *desc_index_type (struct type *, int);
100 static int desc_arity (struct type *);
102 static int ada_type_match (struct type *, struct type *, int);
104 static int ada_args_match (struct symbol *, struct value **, int);
106 static int full_match (const char *, const char *);
108 static struct value *make_array_descriptor (struct type *, struct value *);
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *, const char *,
112 domain_enum, struct objfile *, int);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const char *, domain_enum, int, int *);
117 static int is_nonfunction (struct block_symbol *, int);
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 const struct block *);
122 static int num_defns_collected (struct obstack *);
124 static struct block_symbol *defns_collected (struct obstack *, int);
126 static struct value *resolve_subexp (struct expression **, int *, int,
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 static const char *ada_op_name (enum exp_opcode);
136 static const char *ada_decoded_op_name (enum exp_opcode);
138 static int numeric_type_p (struct type *);
140 static int integer_type_p (struct type *);
142 static int scalar_type_p (struct type *);
144 static int discrete_type_p (struct type *);
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
154 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
157 static struct value *evaluate_subexp_type (struct expression *, int *);
159 static struct type *ada_find_parallel_type_with_name (struct type *,
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (struct type *, struct value *);
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
175 static struct value *unwrap_value (struct value *);
177 static struct type *constrained_packed_array_type (struct type *, long *);
179 static struct type *decode_constrained_packed_array_type (struct type *);
181 static long decode_packed_array_bitsize (struct type *);
183 static struct value *decode_constrained_packed_array (struct value *);
185 static int ada_is_packed_array_type (struct type *);
187 static int ada_is_unconstrained_packed_array_type (struct type *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
199 static int equiv_types (struct type *, struct type *);
201 static int is_name_suffix (const char *);
203 static int advance_wild_match (const char **, const char *, int);
205 static int wild_match (const char *, const char *);
207 static struct value *ada_coerce_ref (struct value *);
209 static LONGEST pos_atr (struct value *);
211 static struct value *value_pos_atr (struct type *, struct value *);
213 static struct value *value_val_atr (struct type *, struct value *);
215 static struct symbol *standard_lookup (const char *, const struct block *,
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
221 static struct value *ada_value_primitive_field (struct value *, int, int,
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
234 static int ada_is_direct_array_type (struct type *);
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
239 static struct value *ada_index_struct_field (int, struct value *, int,
242 static struct value *assign_aggregate (struct value *, struct value *,
246 static void aggregate_assign_from_choices (struct value *, struct value *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
251 static void aggregate_assign_positional (struct value *, struct value *,
253 int *, LONGEST *, int *, int,
257 static void aggregate_assign_others (struct value *, struct value *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 static void ada_forward_operator_length (struct expression *, int, int *,
271 static struct type *ada_find_any_type (const char *name);
274 /* The result of a symbol lookup to be stored in our symbol cache. */
278 /* The name used to perform the lookup. */
280 /* The namespace used during the lookup. */
282 /* The symbol returned by the lookup, or NULL if no matching symbol
285 /* The block where the symbol was found, or NULL if no matching
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
301 #define HASH_SIZE 1009
303 struct ada_symbol_cache
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
317 static const char ada_completer_word_break_characters[] =
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 /* Space for allocating results of ada_lookup_symbol_list. */
344 static struct obstack symbol_list_obstack;
346 /* Maintenance-related settings for this module. */
348 static struct cmd_list_element *maint_set_ada_cmdlist;
349 static struct cmd_list_element *maint_show_ada_cmdlist;
351 /* Implement the "maintenance set ada" (prefix) command. */
354 maint_set_ada_cmd (char *args, int from_tty)
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
360 /* Implement the "maintenance show ada" (prefix) command. */
363 maint_show_ada_cmd (char *args, int from_tty)
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 /* The "maintenance ada set/show ignore-descriptive-type" value. */
370 static int ada_ignore_descriptive_types_p = 0;
372 /* Inferior-specific data. */
374 /* Per-inferior data for this module. */
376 struct ada_inferior_data
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
387 const struct exception_support_info *exception_info;
390 /* Our key to this module's inferior data. */
391 static const struct inferior_data *ada_inferior_data;
393 /* A cleanup routine for our inferior data. */
395 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397 struct ada_inferior_data *data;
399 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
404 /* Return our inferior data for the given inferior (INF).
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
412 static struct ada_inferior_data *
413 get_ada_inferior_data (struct inferior *inf)
415 struct ada_inferior_data *data;
417 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 data = XCNEW (struct ada_inferior_data);
421 set_inferior_data (inf, ada_inferior_data, data);
427 /* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
431 ada_inferior_exit (struct inferior *inf)
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
438 /* program-space-specific data. */
440 /* This module's per-program-space data. */
441 struct ada_pspace_data
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
447 /* Key to our per-program-space data. */
448 static const struct program_space_data *ada_pspace_data_handle;
450 /* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
453 This function always returns a valid object. */
455 static struct ada_pspace_data *
456 get_ada_pspace_data (struct program_space *pspace)
458 struct ada_pspace_data *data;
460 data = ((struct ada_pspace_data *)
461 program_space_data (pspace, ada_pspace_data_handle));
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 /* The cleanup callback for this module's per-program-space data. */
474 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
485 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
486 all typedef layers have been peeled. Otherwise, return TYPE.
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
513 ada_typedef_target_type (struct type *type)
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
520 /* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
525 ada_unqualified_name (const char *decoded_name)
529 /* If the decoded name starts with '<', it means that the encoded
530 name does not follow standard naming conventions, and thus that
531 it is not your typical Ada symbol name. Trying to unqualify it
532 is therefore pointless and possibly erroneous. */
533 if (decoded_name[0] == '<')
536 result = strrchr (decoded_name, '.');
538 result++; /* Skip the dot... */
540 result = decoded_name;
545 /* Return a string starting with '<', followed by STR, and '>'.
546 The result is good until the next call. */
549 add_angle_brackets (const char *str)
551 static char *result = NULL;
554 result = xstrprintf ("<%s>", str);
559 ada_get_gdb_completer_word_break_characters (void)
561 return ada_completer_word_break_characters;
564 /* Print an array element index using the Ada syntax. */
567 ada_print_array_index (struct value *index_value, struct ui_file *stream,
568 const struct value_print_options *options)
570 LA_VALUE_PRINT (index_value, stream, options);
571 fprintf_filtered (stream, " => ");
574 /* Assuming VECT points to an array of *SIZE objects of size
575 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
576 updating *SIZE as necessary and returning the (new) array. */
579 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
581 if (*size < min_size)
584 if (*size < min_size)
586 vect = xrealloc (vect, *size * element_size);
591 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
592 suffix of FIELD_NAME beginning "___". */
595 field_name_match (const char *field_name, const char *target)
597 int len = strlen (target);
600 (strncmp (field_name, target, len) == 0
601 && (field_name[len] == '\0'
602 || (startswith (field_name + len, "___")
603 && strcmp (field_name + strlen (field_name) - 6,
608 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
609 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
610 and return its index. This function also handles fields whose name
611 have ___ suffixes because the compiler sometimes alters their name
612 by adding such a suffix to represent fields with certain constraints.
613 If the field could not be found, return a negative number if
614 MAYBE_MISSING is set. Otherwise raise an error. */
617 ada_get_field_index (const struct type *type, const char *field_name,
621 struct type *struct_type = check_typedef ((struct type *) type);
623 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
624 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 error (_("Unable to find field %s in struct %s. Aborting"),
629 field_name, TYPE_NAME (struct_type));
634 /* The length of the prefix of NAME prior to any "___" suffix. */
637 ada_name_prefix_len (const char *name)
643 const char *p = strstr (name, "___");
646 return strlen (name);
652 /* Return non-zero if SUFFIX is a suffix of STR.
653 Return zero if STR is null. */
656 is_suffix (const char *str, const char *suffix)
663 len2 = strlen (suffix);
664 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 /* The contents of value VAL, treated as a value of type TYPE. The
668 result is an lval in memory if VAL is. */
670 static struct value *
671 coerce_unspec_val_to_type (struct value *val, struct type *type)
673 type = ada_check_typedef (type);
674 if (value_type (val) == type)
678 struct value *result;
680 /* Make sure that the object size is not unreasonable before
681 trying to allocate some memory for it. */
682 ada_ensure_varsize_limit (type);
685 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
686 result = allocate_value_lazy (type);
689 result = allocate_value (type);
690 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
692 set_value_component_location (result, val);
693 set_value_bitsize (result, value_bitsize (val));
694 set_value_bitpos (result, value_bitpos (val));
695 set_value_address (result, value_address (val));
700 static const gdb_byte *
701 cond_offset_host (const gdb_byte *valaddr, long offset)
706 return valaddr + offset;
710 cond_offset_target (CORE_ADDR address, long offset)
715 return address + offset;
718 /* Issue a warning (as for the definition of warning in utils.c, but
719 with exactly one argument rather than ...), unless the limit on the
720 number of warnings has passed during the evaluation of the current
723 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
724 provided by "complaint". */
725 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728 lim_warning (const char *format, ...)
732 va_start (args, format);
733 warnings_issued += 1;
734 if (warnings_issued <= warning_limit)
735 vwarning (format, args);
740 /* Issue an error if the size of an object of type T is unreasonable,
741 i.e. if it would be a bad idea to allocate a value of this type in
745 ada_ensure_varsize_limit (const struct type *type)
747 if (TYPE_LENGTH (type) > varsize_limit)
748 error (_("object size is larger than varsize-limit"));
751 /* Maximum value of a SIZE-byte signed integer type. */
753 max_of_size (int size)
755 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
757 return top_bit | (top_bit - 1);
760 /* Minimum value of a SIZE-byte signed integer type. */
762 min_of_size (int size)
764 return -max_of_size (size) - 1;
767 /* Maximum value of a SIZE-byte unsigned integer type. */
769 umax_of_size (int size)
771 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
773 return top_bit | (top_bit - 1);
776 /* Maximum value of integral type T, as a signed quantity. */
778 max_of_type (struct type *t)
780 if (TYPE_UNSIGNED (t))
781 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 return max_of_size (TYPE_LENGTH (t));
786 /* Minimum value of integral type T, as a signed quantity. */
788 min_of_type (struct type *t)
790 if (TYPE_UNSIGNED (t))
793 return min_of_size (TYPE_LENGTH (t));
796 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
798 ada_discrete_type_high_bound (struct type *type)
800 type = resolve_dynamic_type (type, NULL, 0);
801 switch (TYPE_CODE (type))
803 case TYPE_CODE_RANGE:
804 return TYPE_HIGH_BOUND (type);
806 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
811 return max_of_type (type);
813 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
819 ada_discrete_type_low_bound (struct type *type)
821 type = resolve_dynamic_type (type, NULL, 0);
822 switch (TYPE_CODE (type))
824 case TYPE_CODE_RANGE:
825 return TYPE_LOW_BOUND (type);
827 return TYPE_FIELD_ENUMVAL (type, 0);
832 return min_of_type (type);
834 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 /* The identity on non-range types. For range types, the underlying
839 non-range scalar type. */
842 get_base_type (struct type *type)
844 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 type = TYPE_TARGET_TYPE (type);
853 /* Return a decoded version of the given VALUE. This means returning
854 a value whose type is obtained by applying all the GNAT-specific
855 encondings, making the resulting type a static but standard description
856 of the initial type. */
859 ada_get_decoded_value (struct value *value)
861 struct type *type = ada_check_typedef (value_type (value));
863 if (ada_is_array_descriptor_type (type)
864 || (ada_is_constrained_packed_array_type (type)
865 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
868 value = ada_coerce_to_simple_array_ptr (value);
870 value = ada_coerce_to_simple_array (value);
873 value = ada_to_fixed_value (value);
878 /* Same as ada_get_decoded_value, but with the given TYPE.
879 Because there is no associated actual value for this type,
880 the resulting type might be a best-effort approximation in
881 the case of dynamic types. */
884 ada_get_decoded_type (struct type *type)
886 type = to_static_fixed_type (type);
887 if (ada_is_constrained_packed_array_type (type))
888 type = ada_coerce_to_simple_array_type (type);
894 /* Language Selection */
896 /* If the main program is in Ada, return language_ada, otherwise return LANG
897 (the main program is in Ada iif the adainit symbol is found). */
900 ada_update_initial_language (enum language lang)
902 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
903 (struct objfile *) NULL).minsym != NULL)
909 /* If the main procedure is written in Ada, then return its name.
910 The result is good until the next call. Return NULL if the main
911 procedure doesn't appear to be in Ada. */
916 struct bound_minimal_symbol msym;
917 static char *main_program_name = NULL;
919 /* For Ada, the name of the main procedure is stored in a specific
920 string constant, generated by the binder. Look for that symbol,
921 extract its address, and then read that string. If we didn't find
922 that string, then most probably the main procedure is not written
924 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926 if (msym.minsym != NULL)
928 CORE_ADDR main_program_name_addr;
931 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
932 if (main_program_name_addr == 0)
933 error (_("Invalid address for Ada main program name."));
935 xfree (main_program_name);
936 target_read_string (main_program_name_addr, &main_program_name,
941 return main_program_name;
944 /* The main procedure doesn't seem to be in Ada. */
950 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 const struct ada_opname_map ada_opname_table[] = {
954 {"Oadd", "\"+\"", BINOP_ADD},
955 {"Osubtract", "\"-\"", BINOP_SUB},
956 {"Omultiply", "\"*\"", BINOP_MUL},
957 {"Odivide", "\"/\"", BINOP_DIV},
958 {"Omod", "\"mod\"", BINOP_MOD},
959 {"Orem", "\"rem\"", BINOP_REM},
960 {"Oexpon", "\"**\"", BINOP_EXP},
961 {"Olt", "\"<\"", BINOP_LESS},
962 {"Ole", "\"<=\"", BINOP_LEQ},
963 {"Ogt", "\">\"", BINOP_GTR},
964 {"Oge", "\">=\"", BINOP_GEQ},
965 {"Oeq", "\"=\"", BINOP_EQUAL},
966 {"One", "\"/=\"", BINOP_NOTEQUAL},
967 {"Oand", "\"and\"", BINOP_BITWISE_AND},
968 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
969 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
970 {"Oconcat", "\"&\"", BINOP_CONCAT},
971 {"Oabs", "\"abs\"", UNOP_ABS},
972 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
973 {"Oadd", "\"+\"", UNOP_PLUS},
974 {"Osubtract", "\"-\"", UNOP_NEG},
978 /* The "encoded" form of DECODED, according to GNAT conventions.
979 The result is valid until the next call to ada_encode. */
982 ada_encode (const char *decoded)
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
996 for (p = decoded; *p != '\0'; p += 1)
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 const struct ada_opname_map *mapping;
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1011 if (mapping->encoded == NULL)
1012 error (_("invalid Ada operator name: %s"), p);
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1019 encoding_buffer[k] = *p;
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1028 /* Return NAME folded to lower case, or, if surrounded by single
1029 quotes, unfolded, but with the quotes stripped away. Result good
1033 ada_fold_name (const char *name)
1035 static char *fold_buffer = NULL;
1036 static size_t fold_buffer_size = 0;
1038 int len = strlen (name);
1039 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1041 if (name[0] == '\'')
1043 strncpy (fold_buffer, name + 1, len - 2);
1044 fold_buffer[len - 2] = '\000';
1050 for (i = 0; i <= len; i += 1)
1051 fold_buffer[i] = tolower (name[i]);
1057 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060 is_lower_alphanum (const char c)
1062 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1066 This function saves in LEN the length of that same symbol name but
1067 without either of these suffixes:
1073 These are suffixes introduced by the compiler for entities such as
1074 nested subprogram for instance, in order to avoid name clashes.
1075 They do not serve any purpose for the debugger. */
1078 ada_remove_trailing_digits (const char *encoded, int *len)
1080 if (*len > 1 && isdigit (encoded[*len - 1]))
1084 while (i > 0 && isdigit (encoded[i]))
1086 if (i >= 0 && encoded[i] == '.')
1088 else if (i >= 0 && encoded[i] == '$')
1090 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1092 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1097 /* Remove the suffix introduced by the compiler for protected object
1101 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103 /* Remove trailing N. */
1105 /* Protected entry subprograms are broken into two
1106 separate subprograms: The first one is unprotected, and has
1107 a 'N' suffix; the second is the protected version, and has
1108 the 'P' suffix. The second calls the first one after handling
1109 the protection. Since the P subprograms are internally generated,
1110 we leave these names undecoded, giving the user a clue that this
1111 entity is internal. */
1114 && encoded[*len - 1] == 'N'
1115 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1119 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122 ada_remove_Xbn_suffix (const char *encoded, int *len)
1126 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 if (encoded[i] != 'X')
1135 if (isalnum (encoded[i-1]))
1139 /* If ENCODED follows the GNAT entity encoding conventions, then return
1140 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1141 replaced by ENCODED.
1143 The resulting string is valid until the next call of ada_decode.
1144 If the string is unchanged by decoding, the original string pointer
1148 ada_decode (const char *encoded)
1155 static char *decoding_buffer = NULL;
1156 static size_t decoding_buffer_size = 0;
1158 /* The name of the Ada main procedure starts with "_ada_".
1159 This prefix is not part of the decoded name, so skip this part
1160 if we see this prefix. */
1161 if (startswith (encoded, "_ada_"))
1164 /* If the name starts with '_', then it is not a properly encoded
1165 name, so do not attempt to decode it. Similarly, if the name
1166 starts with '<', the name should not be decoded. */
1167 if (encoded[0] == '_' || encoded[0] == '<')
1170 len0 = strlen (encoded);
1172 ada_remove_trailing_digits (encoded, &len0);
1173 ada_remove_po_subprogram_suffix (encoded, &len0);
1175 /* Remove the ___X.* suffix if present. Do not forget to verify that
1176 the suffix is located before the current "end" of ENCODED. We want
1177 to avoid re-matching parts of ENCODED that have previously been
1178 marked as discarded (by decrementing LEN0). */
1179 p = strstr (encoded, "___");
1180 if (p != NULL && p - encoded < len0 - 3)
1188 /* Remove any trailing TKB suffix. It tells us that this symbol
1189 is for the body of a task, but that information does not actually
1190 appear in the decoded name. */
1192 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 /* Remove any trailing TB suffix. The TB suffix is slightly different
1196 from the TKB suffix because it is used for non-anonymous task
1199 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 /* Remove trailing "B" suffixes. */
1203 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 /* Make decoded big enough for possible expansion by operator name. */
1210 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1211 decoded = decoding_buffer;
1213 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 while ((i >= 0 && isdigit (encoded[i]))
1219 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 else if (encoded[i] == '$')
1227 /* The first few characters that are not alphabetic are not part
1228 of any encoding we use, so we can copy them over verbatim. */
1230 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1231 decoded[j] = encoded[i];
1236 /* Is this a symbol function? */
1237 if (at_start_name && encoded[i] == 'O')
1241 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 int op_len = strlen (ada_opname_table[k].encoded);
1244 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 && !isalnum (encoded[i + op_len]))
1248 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 j += strlen (ada_opname_table[k].decoded);
1255 if (ada_opname_table[k].encoded != NULL)
1260 /* Replace "TK__" with "__", which will eventually be translated
1261 into "." (just below). */
1263 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1267 be translated into "." (just below). These are internal names
1268 generated for anonymous blocks inside which our symbol is nested. */
1270 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1271 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1272 && isdigit (encoded [i+4]))
1276 while (k < len0 && isdigit (encoded[k]))
1277 k++; /* Skip any extra digit. */
1279 /* Double-check that the "__B_{DIGITS}+" sequence we found
1280 is indeed followed by "__". */
1281 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1285 /* Remove _E{DIGITS}+[sb] */
1287 /* Just as for protected object subprograms, there are 2 categories
1288 of subprograms created by the compiler for each entry. The first
1289 one implements the actual entry code, and has a suffix following
1290 the convention above; the second one implements the barrier and
1291 uses the same convention as above, except that the 'E' is replaced
1294 Just as above, we do not decode the name of barrier functions
1295 to give the user a clue that the code he is debugging has been
1296 internally generated. */
1298 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1299 && isdigit (encoded[i+2]))
1303 while (k < len0 && isdigit (encoded[k]))
1307 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 /* Just as an extra precaution, make sure that if this
1311 suffix is followed by anything else, it is a '_'.
1312 Otherwise, we matched this sequence by accident. */
1314 || (k < len0 && encoded[k] == '_'))
1319 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1320 the GNAT front-end in protected object subprograms. */
1323 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 /* Backtrack a bit up until we reach either the begining of
1326 the encoded name, or "__". Make sure that we only find
1327 digits or lowercase characters. */
1328 const char *ptr = encoded + i - 1;
1330 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1337 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 /* This is a X[bn]* sequence not separated from the previous
1340 part of the name with a non-alpha-numeric character (in other
1341 words, immediately following an alpha-numeric character), then
1342 verify that it is placed at the end of the encoded name. If
1343 not, then the encoding is not valid and we should abort the
1344 decoding. Otherwise, just skip it, it is used in body-nested
1348 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1352 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1354 /* Replace '__' by '.'. */
1362 /* It's a character part of the decoded name, so just copy it
1364 decoded[j] = encoded[i];
1369 decoded[j] = '\000';
1371 /* Decoded names should never contain any uppercase character.
1372 Double-check this, and abort the decoding if we find one. */
1374 for (i = 0; decoded[i] != '\0'; i += 1)
1375 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 if (strcmp (decoded, encoded) == 0)
1384 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1385 decoded = decoding_buffer;
1386 if (encoded[0] == '<')
1387 strcpy (decoded, encoded);
1389 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1394 /* Table for keeping permanent unique copies of decoded names. Once
1395 allocated, names in this table are never released. While this is a
1396 storage leak, it should not be significant unless there are massive
1397 changes in the set of decoded names in successive versions of a
1398 symbol table loaded during a single session. */
1399 static struct htab *decoded_names_store;
1401 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1402 in the language-specific part of GSYMBOL, if it has not been
1403 previously computed. Tries to save the decoded name in the same
1404 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1405 in any case, the decoded symbol has a lifetime at least that of
1407 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1408 const, but nevertheless modified to a semantically equivalent form
1409 when a decoded name is cached in it. */
1412 ada_decode_symbol (const struct general_symbol_info *arg)
1414 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1415 const char **resultp =
1416 &gsymbol->language_specific.demangled_name;
1418 if (!gsymbol->ada_mangled)
1420 const char *decoded = ada_decode (gsymbol->name);
1421 struct obstack *obstack = gsymbol->language_specific.obstack;
1423 gsymbol->ada_mangled = 1;
1425 if (obstack != NULL)
1427 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1439 *slot = xstrdup (decoded);
1448 ada_la_decode (const char *encoded, int options)
1450 return xstrdup (ada_decode (encoded));
1453 /* Implement la_sniff_from_mangled_name for Ada. */
1456 ada_sniff_from_mangled_name (const char *mangled, char **out)
1458 const char *demangled = ada_decode (mangled);
1462 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1464 /* Set the gsymbol language to Ada, but still return 0.
1465 Two reasons for that:
1467 1. For Ada, we prefer computing the symbol's decoded name
1468 on the fly rather than pre-compute it, in order to save
1469 memory (Ada projects are typically very large).
1471 2. There are some areas in the definition of the GNAT
1472 encoding where, with a bit of bad luck, we might be able
1473 to decode a non-Ada symbol, generating an incorrect
1474 demangled name (Eg: names ending with "TB" for instance
1475 are identified as task bodies and so stripped from
1476 the decoded name returned).
1478 Returning 1, here, but not setting *DEMANGLED, helps us get a
1479 little bit of the best of both worlds. Because we're last,
1480 we should not affect any of the other languages that were
1481 able to demangle the symbol before us; we get to correctly
1482 tag Ada symbols as such; and even if we incorrectly tagged a
1483 non-Ada symbol, which should be rare, any routing through the
1484 Ada language should be transparent (Ada tries to behave much
1485 like C/C++ with non-Ada symbols). */
1492 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1493 suffixes that encode debugging information or leading _ada_ on
1494 SYM_NAME (see is_name_suffix commentary for the debugging
1495 information that is ignored). If WILD, then NAME need only match a
1496 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1497 either argument is NULL. */
1500 match_name (const char *sym_name, const char *name, int wild)
1502 if (sym_name == NULL || name == NULL)
1505 return wild_match (sym_name, name) == 0;
1508 int len_name = strlen (name);
1510 return (strncmp (sym_name, name, len_name) == 0
1511 && is_name_suffix (sym_name + len_name))
1512 || (startswith (sym_name, "_ada_")
1513 && strncmp (sym_name + 5, name, len_name) == 0
1514 && is_name_suffix (sym_name + len_name + 5));
1521 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1522 generated by the GNAT compiler to describe the index type used
1523 for each dimension of an array, check whether it follows the latest
1524 known encoding. If not, fix it up to conform to the latest encoding.
1525 Otherwise, do nothing. This function also does nothing if
1526 INDEX_DESC_TYPE is NULL.
1528 The GNAT encoding used to describle the array index type evolved a bit.
1529 Initially, the information would be provided through the name of each
1530 field of the structure type only, while the type of these fields was
1531 described as unspecified and irrelevant. The debugger was then expected
1532 to perform a global type lookup using the name of that field in order
1533 to get access to the full index type description. Because these global
1534 lookups can be very expensive, the encoding was later enhanced to make
1535 the global lookup unnecessary by defining the field type as being
1536 the full index type description.
1538 The purpose of this routine is to allow us to support older versions
1539 of the compiler by detecting the use of the older encoding, and by
1540 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1541 we essentially replace each field's meaningless type by the associated
1545 ada_fixup_array_indexes_type (struct type *index_desc_type)
1549 if (index_desc_type == NULL)
1551 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1553 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1554 to check one field only, no need to check them all). If not, return
1557 If our INDEX_DESC_TYPE was generated using the older encoding,
1558 the field type should be a meaningless integer type whose name
1559 is not equal to the field name. */
1560 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1561 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1562 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 /* Fixup each field of INDEX_DESC_TYPE. */
1566 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1568 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1569 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1576 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1578 static const char *bound_name[] = {
1579 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1580 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 /* Maximum number of array dimensions we are prepared to handle. */
1585 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588 /* The desc_* routines return primitive portions of array descriptors
1591 /* The descriptor or array type, if any, indicated by TYPE; removes
1592 level of indirection, if needed. */
1594 static struct type *
1595 desc_base_type (struct type *type)
1599 type = ada_check_typedef (type);
1600 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1601 type = ada_typedef_target_type (type);
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1611 /* True iff TYPE indicates a "thin" array pointer type. */
1614 is_thin_pntr (struct type *type)
1617 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1618 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 /* The descriptor type for thin pointer type TYPE. */
1623 static struct type *
1624 thin_descriptor_type (struct type *type)
1626 struct type *base_type = desc_base_type (type);
1628 if (base_type == NULL)
1630 if (is_suffix (ada_type_name (base_type), "___XVE"))
1634 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1636 if (alt_type == NULL)
1643 /* A pointer to the array data for thin-pointer value VAL. */
1645 static struct value *
1646 thin_data_pntr (struct value *val)
1648 struct type *type = ada_check_typedef (value_type (val));
1649 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1651 data_type = lookup_pointer_type (data_type);
1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1654 return value_cast (data_type, value_copy (val));
1656 return value_from_longest (data_type, value_address (val));
1659 /* True iff TYPE indicates a "thick" array pointer type. */
1662 is_thick_pntr (struct type *type)
1664 type = desc_base_type (type);
1665 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1666 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1670 pointer to one, the type of its bounds data; otherwise, NULL. */
1672 static struct type *
1673 desc_bounds_type (struct type *type)
1677 type = desc_base_type (type);
1681 else if (is_thin_pntr (type))
1683 type = thin_descriptor_type (type);
1686 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1688 return ada_check_typedef (r);
1690 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1692 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1694 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1699 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1700 one, a pointer to its bounds data. Otherwise NULL. */
1702 static struct value *
1703 desc_bounds (struct value *arr)
1705 struct type *type = ada_check_typedef (value_type (arr));
1707 if (is_thin_pntr (type))
1709 struct type *bounds_type =
1710 desc_bounds_type (thin_descriptor_type (type));
1713 if (bounds_type == NULL)
1714 error (_("Bad GNAT array descriptor"));
1716 /* NOTE: The following calculation is not really kosher, but
1717 since desc_type is an XVE-encoded type (and shouldn't be),
1718 the correct calculation is a real pain. FIXME (and fix GCC). */
1719 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1720 addr = value_as_long (arr);
1722 addr = value_address (arr);
1725 value_from_longest (lookup_pointer_type (bounds_type),
1726 addr - TYPE_LENGTH (bounds_type));
1729 else if (is_thick_pntr (type))
1731 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1732 _("Bad GNAT array descriptor"));
1733 struct type *p_bounds_type = value_type (p_bounds);
1736 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1738 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1740 if (TYPE_STUB (target_type))
1741 p_bounds = value_cast (lookup_pointer_type
1742 (ada_check_typedef (target_type)),
1746 error (_("Bad GNAT array descriptor"));
1754 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the bounds data. */
1758 fat_pntr_bounds_bitpos (struct type *type)
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1764 size of the field containing the address of the bounds data. */
1767 fat_pntr_bounds_bitsize (struct type *type)
1769 type = desc_base_type (type);
1771 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 1);
1774 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its array data (a array-with-no-bounds type);
1779 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 static struct type *
1783 desc_data_target_type (struct type *type)
1785 type = desc_base_type (type);
1787 /* NOTE: The following is bogus; see comment in desc_bounds. */
1788 if (is_thin_pntr (type))
1789 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1790 else if (is_thick_pntr (type))
1792 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1796 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1802 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 static struct value *
1806 desc_data (struct value *arr)
1808 struct type *type = value_type (arr);
1810 if (is_thin_pntr (type))
1811 return thin_data_pntr (arr);
1812 else if (is_thick_pntr (type))
1813 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1814 _("Bad GNAT array descriptor"));
1820 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1821 position of the field containing the address of the data. */
1824 fat_pntr_data_bitpos (struct type *type)
1826 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1830 size of the field containing the address of the data. */
1833 fat_pntr_data_bitsize (struct type *type)
1835 type = desc_base_type (type);
1837 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1838 return TYPE_FIELD_BITSIZE (type, 0);
1840 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1844 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1847 static struct value *
1848 desc_one_bound (struct value *bounds, int i, int which)
1850 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1851 _("Bad GNAT array descriptor bounds"));
1854 /* If BOUNDS is an array-bounds structure type, return the bit position
1855 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1856 bound, if WHICH is 1. The first bound is I=1. */
1859 desc_bound_bitpos (struct type *type, int i, int which)
1861 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 /* If BOUNDS is an array-bounds structure type, return the bit field size
1865 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1866 bound, if WHICH is 1. The first bound is I=1. */
1869 desc_bound_bitsize (struct type *type, int i, int which)
1871 type = desc_base_type (type);
1873 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1874 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1876 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 /* If TYPE is the type of an array-bounds structure, the type of its
1880 Ith bound (numbering from 1). Otherwise, NULL. */
1882 static struct type *
1883 desc_index_type (struct type *type, int i)
1885 type = desc_base_type (type);
1887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1888 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1893 /* The number of index positions in the array-bounds type TYPE.
1894 Return 0 if TYPE is NULL. */
1897 desc_arity (struct type *type)
1899 type = desc_base_type (type);
1902 return TYPE_NFIELDS (type) / 2;
1906 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1907 an array descriptor type (representing an unconstrained array
1911 ada_is_direct_array_type (struct type *type)
1915 type = ada_check_typedef (type);
1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1917 || ada_is_array_descriptor_type (type));
1920 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1924 ada_is_array_type (struct type *type)
1927 && (TYPE_CODE (type) == TYPE_CODE_PTR
1928 || TYPE_CODE (type) == TYPE_CODE_REF))
1929 type = TYPE_TARGET_TYPE (type);
1930 return ada_is_direct_array_type (type);
1933 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936 ada_is_simple_array_type (struct type *type)
1940 type = ada_check_typedef (type);
1941 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1942 || (TYPE_CODE (type) == TYPE_CODE_PTR
1943 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1944 == TYPE_CODE_ARRAY));
1947 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950 ada_is_array_descriptor_type (struct type *type)
1952 struct type *data_type = desc_data_target_type (type);
1956 type = ada_check_typedef (type);
1957 return (data_type != NULL
1958 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1959 && desc_arity (desc_bounds_type (type)) > 0);
1962 /* Non-zero iff type is a partially mal-formed GNAT array
1963 descriptor. FIXME: This is to compensate for some problems with
1964 debugging output from GNAT. Re-examine periodically to see if it
1968 ada_is_bogus_array_descriptor (struct type *type)
1972 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1973 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1974 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1975 && !ada_is_array_descriptor_type (type);
1979 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1980 (fat pointer) returns the type of the array data described---specifically,
1981 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1982 in from the descriptor; otherwise, they are left unspecified. If
1983 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1984 returns NULL. The result is simply the type of ARR if ARR is not
1987 ada_type_of_array (struct value *arr, int bounds)
1989 if (ada_is_constrained_packed_array_type (value_type (arr)))
1990 return decode_constrained_packed_array_type (value_type (arr));
1992 if (!ada_is_array_descriptor_type (value_type (arr)))
1993 return value_type (arr);
1997 struct type *array_type =
1998 ada_check_typedef (desc_data_target_type (value_type (arr)));
2000 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2001 TYPE_FIELD_BITSIZE (array_type, 0) =
2002 decode_packed_array_bitsize (value_type (arr));
2008 struct type *elt_type;
2010 struct value *descriptor;
2012 elt_type = ada_array_element_type (value_type (arr), -1);
2013 arity = ada_array_arity (value_type (arr));
2015 if (elt_type == NULL || arity == 0)
2016 return ada_check_typedef (value_type (arr));
2018 descriptor = desc_bounds (arr);
2019 if (value_as_long (descriptor) == 0)
2023 struct type *range_type = alloc_type_copy (value_type (arr));
2024 struct type *array_type = alloc_type_copy (value_type (arr));
2025 struct value *low = desc_one_bound (descriptor, arity, 0);
2026 struct value *high = desc_one_bound (descriptor, arity, 1);
2029 create_static_range_type (range_type, value_type (low),
2030 longest_to_int (value_as_long (low)),
2031 longest_to_int (value_as_long (high)));
2032 elt_type = create_array_type (array_type, elt_type, range_type);
2034 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2036 /* We need to store the element packed bitsize, as well as
2037 recompute the array size, because it was previously
2038 computed based on the unpacked element size. */
2039 LONGEST lo = value_as_long (low);
2040 LONGEST hi = value_as_long (high);
2042 TYPE_FIELD_BITSIZE (elt_type, 0) =
2043 decode_packed_array_bitsize (value_type (arr));
2044 /* If the array has no element, then the size is already
2045 zero, and does not need to be recomputed. */
2049 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2051 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2056 return lookup_pointer_type (elt_type);
2060 /* If ARR does not represent an array, returns ARR unchanged.
2061 Otherwise, returns either a standard GDB array with bounds set
2062 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2063 GDB array. Returns NULL if ARR is a null fat pointer. */
2066 ada_coerce_to_simple_array_ptr (struct value *arr)
2068 if (ada_is_array_descriptor_type (value_type (arr)))
2070 struct type *arrType = ada_type_of_array (arr, 1);
2072 if (arrType == NULL)
2074 return value_cast (arrType, value_copy (desc_data (arr)));
2076 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2077 return decode_constrained_packed_array (arr);
2082 /* If ARR does not represent an array, returns ARR unchanged.
2083 Otherwise, returns a standard GDB array describing ARR (which may
2084 be ARR itself if it already is in the proper form). */
2087 ada_coerce_to_simple_array (struct value *arr)
2089 if (ada_is_array_descriptor_type (value_type (arr)))
2091 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094 error (_("Bounds unavailable for null array pointer."));
2095 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2096 return value_ind (arrVal);
2098 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2099 return decode_constrained_packed_array (arr);
2104 /* If TYPE represents a GNAT array type, return it translated to an
2105 ordinary GDB array type (possibly with BITSIZE fields indicating
2106 packing). For other types, is the identity. */
2109 ada_coerce_to_simple_array_type (struct type *type)
2111 if (ada_is_constrained_packed_array_type (type))
2112 return decode_constrained_packed_array_type (type);
2114 if (ada_is_array_descriptor_type (type))
2115 return ada_check_typedef (desc_data_target_type (type));
2120 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123 ada_is_packed_array_type (struct type *type)
2127 type = desc_base_type (type);
2128 type = ada_check_typedef (type);
2130 ada_type_name (type) != NULL
2131 && strstr (ada_type_name (type), "___XP") != NULL;
2134 /* Non-zero iff TYPE represents a standard GNAT constrained
2135 packed-array type. */
2138 ada_is_constrained_packed_array_type (struct type *type)
2140 return ada_is_packed_array_type (type)
2141 && !ada_is_array_descriptor_type (type);
2144 /* Non-zero iff TYPE represents an array descriptor for a
2145 unconstrained packed-array type. */
2148 ada_is_unconstrained_packed_array_type (struct type *type)
2150 return ada_is_packed_array_type (type)
2151 && ada_is_array_descriptor_type (type);
2154 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2155 return the size of its elements in bits. */
2158 decode_packed_array_bitsize (struct type *type)
2160 const char *raw_name;
2164 /* Access to arrays implemented as fat pointers are encoded as a typedef
2165 of the fat pointer type. We need the name of the fat pointer type
2166 to do the decoding, so strip the typedef layer. */
2167 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2168 type = ada_typedef_target_type (type);
2170 raw_name = ada_type_name (ada_check_typedef (type));
2172 raw_name = ada_type_name (desc_base_type (type));
2177 tail = strstr (raw_name, "___XP");
2178 gdb_assert (tail != NULL);
2180 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 (_("could not understand bit size information on packed array"));
2190 /* Given that TYPE is a standard GDB array type with all bounds filled
2191 in, and that the element size of its ultimate scalar constituents
2192 (that is, either its elements, or, if it is an array of arrays, its
2193 elements' elements, etc.) is *ELT_BITS, return an identical type,
2194 but with the bit sizes of its elements (and those of any
2195 constituent arrays) recorded in the BITSIZE components of its
2196 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 Note that, for arrays whose index type has an XA encoding where
2200 a bound references a record discriminant, getting that discriminant,
2201 and therefore the actual value of that bound, is not possible
2202 because none of the given parameters gives us access to the record.
2203 This function assumes that it is OK in the context where it is being
2204 used to return an array whose bounds are still dynamic and where
2205 the length is arbitrary. */
2207 static struct type *
2208 constrained_packed_array_type (struct type *type, long *elt_bits)
2210 struct type *new_elt_type;
2211 struct type *new_type;
2212 struct type *index_type_desc;
2213 struct type *index_type;
2214 LONGEST low_bound, high_bound;
2216 type = ada_check_typedef (type);
2217 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 index_type_desc = ada_find_parallel_type (type, "___XA");
2221 if (index_type_desc)
2222 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 index_type = TYPE_INDEX_TYPE (type);
2227 new_type = alloc_type_copy (type);
2229 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2231 create_array_type (new_type, new_elt_type, index_type);
2232 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2233 TYPE_NAME (new_type) = ada_type_name (type);
2235 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2236 && is_dynamic_type (check_typedef (index_type)))
2237 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2238 low_bound = high_bound = 0;
2239 if (high_bound < low_bound)
2240 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 *elt_bits *= (high_bound - low_bound + 1);
2244 TYPE_LENGTH (new_type) =
2245 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 TYPE_FIXED_INSTANCE (new_type) = 1;
2252 /* The array type encoded by TYPE, where
2253 ada_is_constrained_packed_array_type (TYPE). */
2255 static struct type *
2256 decode_constrained_packed_array_type (struct type *type)
2258 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 struct type *shadow_type;
2265 raw_name = ada_type_name (desc_base_type (type));
2270 name = (char *) alloca (strlen (raw_name) + 1);
2271 tail = strstr (raw_name, "___XP");
2272 type = desc_base_type (type);
2274 memcpy (name, raw_name, tail - raw_name);
2275 name[tail - raw_name] = '\000';
2277 shadow_type = ada_find_parallel_type_with_name (type, name);
2279 if (shadow_type == NULL)
2281 lim_warning (_("could not find bounds information on packed array"));
2284 shadow_type = check_typedef (shadow_type);
2286 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2288 lim_warning (_("could not understand bounds "
2289 "information on packed array"));
2293 bits = decode_packed_array_bitsize (type);
2294 return constrained_packed_array_type (shadow_type, &bits);
2297 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2298 array, returns a simple array that denotes that array. Its type is a
2299 standard GDB array type except that the BITSIZEs of the array
2300 target types are set to the number of bits in each element, and the
2301 type length is set appropriately. */
2303 static struct value *
2304 decode_constrained_packed_array (struct value *arr)
2308 /* If our value is a pointer, then dereference it. Likewise if
2309 the value is a reference. Make sure that this operation does not
2310 cause the target type to be fixed, as this would indirectly cause
2311 this array to be decoded. The rest of the routine assumes that
2312 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2313 and "value_ind" routines to perform the dereferencing, as opposed
2314 to using "ada_coerce_ref" or "ada_value_ind". */
2315 arr = coerce_ref (arr);
2316 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2317 arr = value_ind (arr);
2319 type = decode_constrained_packed_array_type (value_type (arr));
2322 error (_("can't unpack array"));
2326 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2327 && ada_is_modular_type (value_type (arr)))
2329 /* This is a (right-justified) modular type representing a packed
2330 array with no wrapper. In order to interpret the value through
2331 the (left-justified) packed array type we just built, we must
2332 first left-justify it. */
2333 int bit_size, bit_pos;
2336 mod = ada_modulus (value_type (arr)) - 1;
2343 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2344 arr = ada_value_primitive_packed_val (arr, NULL,
2345 bit_pos / HOST_CHAR_BIT,
2346 bit_pos % HOST_CHAR_BIT,
2351 return coerce_unspec_val_to_type (arr, type);
2355 /* The value of the element of packed array ARR at the ARITY indices
2356 given in IND. ARR must be a simple array. */
2358 static struct value *
2359 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 int bits, elt_off, bit_off;
2363 long elt_total_bit_offset;
2364 struct type *elt_type;
2368 elt_total_bit_offset = 0;
2369 elt_type = ada_check_typedef (value_type (arr));
2370 for (i = 0; i < arity; i += 1)
2372 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2373 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2375 (_("attempt to do packed indexing of "
2376 "something other than a packed array"));
2379 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2380 LONGEST lowerbound, upperbound;
2383 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2385 lim_warning (_("don't know bounds of array"));
2386 lowerbound = upperbound = 0;
2389 idx = pos_atr (ind[i]);
2390 if (idx < lowerbound || idx > upperbound)
2391 lim_warning (_("packed array index %ld out of bounds"),
2393 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2394 elt_total_bit_offset += (idx - lowerbound) * bits;
2395 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2399 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2401 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2406 /* Non-zero iff TYPE includes negative integer values. */
2409 has_negatives (struct type *type)
2411 switch (TYPE_CODE (type))
2416 return !TYPE_UNSIGNED (type);
2417 case TYPE_CODE_RANGE:
2418 return TYPE_LOW_BOUND (type) < 0;
2422 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2423 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2424 the unpacked buffer.
2426 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2427 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2429 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2434 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2438 gdb_byte *unpacked, int unpacked_len,
2439 int is_big_endian, int is_signed_type,
2442 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 int src_idx; /* Index into the source area */
2444 int src_bytes_left; /* Number of source bytes left to process. */
2445 int srcBitsLeft; /* Number of source bits left to move */
2446 int unusedLS; /* Number of bits in next significant
2447 byte of source that are unused */
2449 int unpacked_idx; /* Index into the unpacked buffer */
2450 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2452 unsigned long accum; /* Staging area for bits being transferred */
2453 int accumSize; /* Number of meaningful bits in accum */
2456 /* Transmit bytes from least to most significant; delta is the direction
2457 the indices move. */
2458 int delta = is_big_endian ? -1 : 1;
2460 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2462 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2463 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2464 bit_size, unpacked_len);
2466 srcBitsLeft = bit_size;
2467 src_bytes_left = src_len;
2468 unpacked_bytes_left = unpacked_len;
2473 src_idx = src_len - 1;
2475 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2479 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2485 unpacked_idx = unpacked_len - 1;
2489 /* Non-scalar values must be aligned at a byte boundary... */
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2494 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 unpacked_bytes_left = unpacked_idx + 1;
2500 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2502 src_idx = unpacked_idx = 0;
2503 unusedLS = bit_offset;
2506 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2511 while (src_bytes_left > 0)
2513 /* Mask for removing bits of the next source byte that are not
2514 part of the value. */
2515 unsigned int unusedMSMask =
2516 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2518 /* Sign-extend bits for this byte. */
2519 unsigned int signMask = sign & ~unusedMSMask;
2522 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2523 accumSize += HOST_CHAR_BIT - unusedLS;
2524 if (accumSize >= HOST_CHAR_BIT)
2526 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2527 accumSize -= HOST_CHAR_BIT;
2528 accum >>= HOST_CHAR_BIT;
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
2532 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2534 src_bytes_left -= 1;
2537 while (unpacked_bytes_left > 0)
2539 accum |= sign << accumSize;
2540 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2541 accumSize -= HOST_CHAR_BIT;
2544 accum >>= HOST_CHAR_BIT;
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
2550 /* Create a new value of type TYPE from the contents of OBJ starting
2551 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2552 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2553 assigning through the result will set the field fetched from.
2554 VALADDR is ignored unless OBJ is NULL, in which case,
2555 VALADDR+OFFSET must address the start of storage containing the
2556 packed value. The value returned in this case is never an lval.
2557 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2561 long offset, int bit_offset, int bit_size,
2565 const gdb_byte *src; /* First byte containing data to unpack */
2567 const int is_scalar = is_scalar_type (type);
2568 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2569 gdb::byte_vector staging;
2571 type = ada_check_typedef (type);
2574 src = valaddr + offset;
2576 src = value_contents (obj) + offset;
2578 if (is_dynamic_type (type))
2580 /* The length of TYPE might by dynamic, so we need to resolve
2581 TYPE in order to know its actual size, which we then use
2582 to create the contents buffer of the value we return.
2583 The difficulty is that the data containing our object is
2584 packed, and therefore maybe not at a byte boundary. So, what
2585 we do, is unpack the data into a byte-aligned buffer, and then
2586 use that buffer as our object's value for resolving the type. */
2587 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2588 staging.resize (staging_len);
2590 ada_unpack_from_contents (src, bit_offset, bit_size,
2591 staging.data (), staging.size (),
2592 is_big_endian, has_negatives (type),
2594 type = resolve_dynamic_type (type, staging.data (), 0);
2595 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2597 /* This happens when the length of the object is dynamic,
2598 and is actually smaller than the space reserved for it.
2599 For instance, in an array of variant records, the bit_size
2600 we're given is the array stride, which is constant and
2601 normally equal to the maximum size of its element.
2602 But, in reality, each element only actually spans a portion
2604 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 v = allocate_value (type);
2611 src = valaddr + offset;
2613 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2615 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2618 v = value_at (type, value_address (obj) + offset);
2619 buf = (gdb_byte *) alloca (src_len);
2620 read_memory (value_address (v), buf, src_len);
2625 v = allocate_value (type);
2626 src = value_contents (obj) + offset;
2631 long new_offset = offset;
2633 set_value_component_location (v, obj);
2634 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2635 set_value_bitsize (v, bit_size);
2636 if (value_bitpos (v) >= HOST_CHAR_BIT)
2639 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2641 set_value_offset (v, new_offset);
2643 /* Also set the parent value. This is needed when trying to
2644 assign a new value (in inferior memory). */
2645 set_value_parent (v, obj);
2648 set_value_bitsize (v, bit_size);
2649 unpacked = value_contents_writeable (v);
2653 memset (unpacked, 0, TYPE_LENGTH (type));
2657 if (staging.size () == TYPE_LENGTH (type))
2659 /* Small short-cut: If we've unpacked the data into a buffer
2660 of the same size as TYPE's length, then we can reuse that,
2661 instead of doing the unpacking again. */
2662 memcpy (unpacked, staging.data (), staging.size ());
2665 ada_unpack_from_contents (src, bit_offset, bit_size,
2666 unpacked, TYPE_LENGTH (type),
2667 is_big_endian, has_negatives (type), is_scalar);
2672 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2673 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2676 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2677 int src_offset, int n, int bits_big_endian_p)
2679 unsigned int accum, mask;
2680 int accum_bits, chunk_size;
2682 target += targ_offset / HOST_CHAR_BIT;
2683 targ_offset %= HOST_CHAR_BIT;
2684 source += src_offset / HOST_CHAR_BIT;
2685 src_offset %= HOST_CHAR_BIT;
2686 if (bits_big_endian_p)
2688 accum = (unsigned char) *source;
2690 accum_bits = HOST_CHAR_BIT - src_offset;
2696 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2697 accum_bits += HOST_CHAR_BIT;
2699 chunk_size = HOST_CHAR_BIT - targ_offset;
2702 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2703 mask = ((1 << chunk_size) - 1) << unused_right;
2706 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2708 accum_bits -= chunk_size;
2715 accum = (unsigned char) *source >> src_offset;
2717 accum_bits = HOST_CHAR_BIT - src_offset;
2721 accum = accum + ((unsigned char) *source << accum_bits);
2722 accum_bits += HOST_CHAR_BIT;
2724 chunk_size = HOST_CHAR_BIT - targ_offset;
2727 mask = ((1 << chunk_size) - 1) << targ_offset;
2728 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2730 accum_bits -= chunk_size;
2731 accum >>= chunk_size;
2738 /* Store the contents of FROMVAL into the location of TOVAL.
2739 Return a new value with the location of TOVAL and contents of
2740 FROMVAL. Handles assignment into packed fields that have
2741 floating-point or non-scalar types. */
2743 static struct value *
2744 ada_value_assign (struct value *toval, struct value *fromval)
2746 struct type *type = value_type (toval);
2747 int bits = value_bitsize (toval);
2749 toval = ada_coerce_ref (toval);
2750 fromval = ada_coerce_ref (fromval);
2752 if (ada_is_direct_array_type (value_type (toval)))
2753 toval = ada_coerce_to_simple_array (toval);
2754 if (ada_is_direct_array_type (value_type (fromval)))
2755 fromval = ada_coerce_to_simple_array (fromval);
2757 if (!deprecated_value_modifiable (toval))
2758 error (_("Left operand of assignment is not a modifiable lvalue."));
2760 if (VALUE_LVAL (toval) == lval_memory
2762 && (TYPE_CODE (type) == TYPE_CODE_FLT
2763 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2765 int len = (value_bitpos (toval)
2766 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2768 gdb_byte *buffer = (gdb_byte *) alloca (len);
2770 CORE_ADDR to_addr = value_address (toval);
2772 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2773 fromval = value_cast (type, fromval);
2775 read_memory (to_addr, buffer, len);
2776 from_size = value_bitsize (fromval);
2778 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2779 if (gdbarch_bits_big_endian (get_type_arch (type)))
2780 move_bits (buffer, value_bitpos (toval),
2781 value_contents (fromval), from_size - bits, bits, 1);
2783 move_bits (buffer, value_bitpos (toval),
2784 value_contents (fromval), 0, bits, 0);
2785 write_memory_with_notification (to_addr, buffer, len);
2787 val = value_copy (toval);
2788 memcpy (value_contents_raw (val), value_contents (fromval),
2789 TYPE_LENGTH (type));
2790 deprecated_set_value_type (val, type);
2795 return value_assign (toval, fromval);
2799 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2800 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2801 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2802 COMPONENT, and not the inferior's memory. The current contents
2803 of COMPONENT are ignored.
2805 Although not part of the initial design, this function also works
2806 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2807 had a null address, and COMPONENT had an address which is equal to
2808 its offset inside CONTAINER. */
2811 value_assign_to_component (struct value *container, struct value *component,
2814 LONGEST offset_in_container =
2815 (LONGEST) (value_address (component) - value_address (container));
2816 int bit_offset_in_container =
2817 value_bitpos (component) - value_bitpos (container);
2820 val = value_cast (value_type (component), val);
2822 if (value_bitsize (component) == 0)
2823 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2825 bits = value_bitsize (component);
2827 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2828 move_bits (value_contents_writeable (container) + offset_in_container,
2829 value_bitpos (container) + bit_offset_in_container,
2830 value_contents (val),
2831 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2834 move_bits (value_contents_writeable (container) + offset_in_container,
2835 value_bitpos (container) + bit_offset_in_container,
2836 value_contents (val), 0, bits, 0);
2839 /* The value of the element of array ARR at the ARITY indices given in IND.
2840 ARR may be either a simple array, GNAT array descriptor, or pointer
2844 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2848 struct type *elt_type;
2850 elt = ada_coerce_to_simple_array (arr);
2852 elt_type = ada_check_typedef (value_type (elt));
2853 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2854 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2855 return value_subscript_packed (elt, arity, ind);
2857 for (k = 0; k < arity; k += 1)
2859 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2860 error (_("too many subscripts (%d expected)"), k);
2861 elt = value_subscript (elt, pos_atr (ind[k]));
2866 /* Assuming ARR is a pointer to a GDB array, the value of the element
2867 of *ARR at the ARITY indices given in IND.
2868 Does not read the entire array into memory.
2870 Note: Unlike what one would expect, this function is used instead of
2871 ada_value_subscript for basically all non-packed array types. The reason
2872 for this is that a side effect of doing our own pointer arithmetics instead
2873 of relying on value_subscript is that there is no implicit typedef peeling.
2874 This is important for arrays of array accesses, where it allows us to
2875 preserve the fact that the array's element is an array access, where the
2876 access part os encoded in a typedef layer. */
2878 static struct value *
2879 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2882 struct value *array_ind = ada_value_ind (arr);
2884 = check_typedef (value_enclosing_type (array_ind));
2886 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2887 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2888 return value_subscript_packed (array_ind, arity, ind);
2890 for (k = 0; k < arity; k += 1)
2893 struct value *lwb_value;
2895 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2896 error (_("too many subscripts (%d expected)"), k);
2897 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2899 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2900 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2901 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2902 type = TYPE_TARGET_TYPE (type);
2905 return value_ind (arr);
2908 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2909 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2910 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2911 this array is LOW, as per Ada rules. */
2912 static struct value *
2913 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2916 struct type *type0 = ada_check_typedef (type);
2917 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2918 struct type *index_type
2919 = create_static_range_type (NULL, base_index_type, low, high);
2920 struct type *slice_type =
2921 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2922 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2923 LONGEST base_low_pos, low_pos;
2926 if (!discrete_position (base_index_type, low, &low_pos)
2927 || !discrete_position (base_index_type, base_low, &base_low_pos))
2929 warning (_("unable to get positions in slice, use bounds instead"));
2931 base_low_pos = base_low;
2934 base = value_as_address (array_ptr)
2935 + ((low_pos - base_low_pos)
2936 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2937 return value_at_lazy (slice_type, base);
2941 static struct value *
2942 ada_value_slice (struct value *array, int low, int high)
2944 struct type *type = ada_check_typedef (value_type (array));
2945 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2946 struct type *index_type
2947 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2948 struct type *slice_type =
2949 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2950 LONGEST low_pos, high_pos;
2952 if (!discrete_position (base_index_type, low, &low_pos)
2953 || !discrete_position (base_index_type, high, &high_pos))
2955 warning (_("unable to get positions in slice, use bounds instead"));
2960 return value_cast (slice_type,
2961 value_slice (array, low, high_pos - low_pos + 1));
2964 /* If type is a record type in the form of a standard GNAT array
2965 descriptor, returns the number of dimensions for type. If arr is a
2966 simple array, returns the number of "array of"s that prefix its
2967 type designation. Otherwise, returns 0. */
2970 ada_array_arity (struct type *type)
2977 type = desc_base_type (type);
2980 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2981 return desc_arity (desc_bounds_type (type));
2983 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2992 /* If TYPE is a record type in the form of a standard GNAT array
2993 descriptor or a simple array type, returns the element type for
2994 TYPE after indexing by NINDICES indices, or by all indices if
2995 NINDICES is -1. Otherwise, returns NULL. */
2998 ada_array_element_type (struct type *type, int nindices)
3000 type = desc_base_type (type);
3002 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3005 struct type *p_array_type;
3007 p_array_type = desc_data_target_type (type);
3009 k = ada_array_arity (type);
3013 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3014 if (nindices >= 0 && k > nindices)
3016 while (k > 0 && p_array_type != NULL)
3018 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3021 return p_array_type;
3023 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3025 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 type = TYPE_TARGET_TYPE (type);
3036 /* The type of nth index in arrays of given type (n numbering from 1).
3037 Does not examine memory. Throws an error if N is invalid or TYPE
3038 is not an array type. NAME is the name of the Ada attribute being
3039 evaluated ('range, 'first, 'last, or 'length); it is used in building
3040 the error message. */
3042 static struct type *
3043 ada_index_type (struct type *type, int n, const char *name)
3045 struct type *result_type;
3047 type = desc_base_type (type);
3049 if (n < 0 || n > ada_array_arity (type))
3050 error (_("invalid dimension number to '%s"), name);
3052 if (ada_is_simple_array_type (type))
3056 for (i = 1; i < n; i += 1)
3057 type = TYPE_TARGET_TYPE (type);
3058 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3059 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3060 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3061 perhaps stabsread.c would make more sense. */
3062 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3067 result_type = desc_index_type (desc_bounds_type (type), n);
3068 if (result_type == NULL)
3069 error (_("attempt to take bound of something that is not an array"));
3075 /* Given that arr is an array type, returns the lower bound of the
3076 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3077 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3078 array-descriptor type. It works for other arrays with bounds supplied
3079 by run-time quantities other than discriminants. */
3082 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3084 struct type *type, *index_type_desc, *index_type;
3087 gdb_assert (which == 0 || which == 1);
3089 if (ada_is_constrained_packed_array_type (arr_type))
3090 arr_type = decode_constrained_packed_array_type (arr_type);
3092 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3093 return (LONGEST) - which;
3095 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3096 type = TYPE_TARGET_TYPE (arr_type);
3100 if (TYPE_FIXED_INSTANCE (type))
3102 /* The array has already been fixed, so we do not need to
3103 check the parallel ___XA type again. That encoding has
3104 already been applied, so ignore it now. */
3105 index_type_desc = NULL;
3109 index_type_desc = ada_find_parallel_type (type, "___XA");
3110 ada_fixup_array_indexes_type (index_type_desc);
3113 if (index_type_desc != NULL)
3114 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3118 struct type *elt_type = check_typedef (type);
3120 for (i = 1; i < n; i++)
3121 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3123 index_type = TYPE_INDEX_TYPE (elt_type);
3127 (LONGEST) (which == 0
3128 ? ada_discrete_type_low_bound (index_type)
3129 : ada_discrete_type_high_bound (index_type));
3132 /* Given that arr is an array value, returns the lower bound of the
3133 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3134 WHICH is 1. This routine will also work for arrays with bounds
3135 supplied by run-time quantities other than discriminants. */
3138 ada_array_bound (struct value *arr, int n, int which)
3140 struct type *arr_type;
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3148 else if (ada_is_simple_array_type (arr_type))
3149 return ada_array_bound_from_type (arr_type, n, which);
3151 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3154 /* Given that arr is an array value, returns the length of the
3155 nth index. This routine will also work for arrays with bounds
3156 supplied by run-time quantities other than discriminants.
3157 Does not work for arrays indexed by enumeration types with representation
3158 clauses at the moment. */
3161 ada_array_length (struct value *arr, int n)
3163 struct type *arr_type, *index_type;
3166 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3167 arr = value_ind (arr);
3168 arr_type = value_enclosing_type (arr);
3170 if (ada_is_constrained_packed_array_type (arr_type))
3171 return ada_array_length (decode_constrained_packed_array (arr), n);
3173 if (ada_is_simple_array_type (arr_type))
3175 low = ada_array_bound_from_type (arr_type, n, 0);
3176 high = ada_array_bound_from_type (arr_type, n, 1);
3180 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3181 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3184 arr_type = check_typedef (arr_type);
3185 index_type = TYPE_INDEX_TYPE (arr_type);
3186 if (index_type != NULL)
3188 struct type *base_type;
3189 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3190 base_type = TYPE_TARGET_TYPE (index_type);
3192 base_type = index_type;
3194 low = pos_atr (value_from_longest (base_type, low));
3195 high = pos_atr (value_from_longest (base_type, high));
3197 return high - low + 1;
3200 /* An empty array whose type is that of ARR_TYPE (an array type),
3201 with bounds LOW to LOW-1. */
3203 static struct value *
3204 empty_array (struct type *arr_type, int low)
3206 struct type *arr_type0 = ada_check_typedef (arr_type);
3207 struct type *index_type
3208 = create_static_range_type
3209 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3210 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3212 return allocate_value (create_array_type (NULL, elt_type, index_type));
3216 /* Name resolution */
3218 /* The "decoded" name for the user-definable Ada operator corresponding
3222 ada_decoded_op_name (enum exp_opcode op)
3226 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3228 if (ada_opname_table[i].op == op)
3229 return ada_opname_table[i].decoded;
3231 error (_("Could not find operator name for opcode"));
3235 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3236 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3237 undefined namespace) and converts operators that are
3238 user-defined into appropriate function calls. If CONTEXT_TYPE is
3239 non-null, it provides a preferred result type [at the moment, only
3240 type void has any effect---causing procedures to be preferred over
3241 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3242 return type is preferred. May change (expand) *EXP. */
3245 resolve (struct expression **expp, int void_context_p)
3247 struct type *context_type = NULL;
3251 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3253 resolve_subexp (expp, &pc, 1, context_type);
3256 /* Resolve the operator of the subexpression beginning at
3257 position *POS of *EXPP. "Resolving" consists of replacing
3258 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3259 with their resolutions, replacing built-in operators with
3260 function calls to user-defined operators, where appropriate, and,
3261 when DEPROCEDURE_P is non-zero, converting function-valued variables
3262 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3263 are as in ada_resolve, above. */
3265 static struct value *
3266 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3267 struct type *context_type)
3271 struct expression *exp; /* Convenience: == *expp. */
3272 enum exp_opcode op = (*expp)->elts[pc].opcode;
3273 struct value **argvec; /* Vector of operand types (alloca'ed). */
3274 int nargs; /* Number of operands. */
3281 /* Pass one: resolve operands, saving their types and updating *pos,
3286 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3287 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3292 resolve_subexp (expp, pos, 0, NULL);
3294 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3299 resolve_subexp (expp, pos, 0, NULL);
3304 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3307 case OP_ATR_MODULUS:
3317 case TERNOP_IN_RANGE:
3318 case BINOP_IN_BOUNDS:
3324 case OP_DISCRETE_RANGE:
3326 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3335 arg1 = resolve_subexp (expp, pos, 0, NULL);
3337 resolve_subexp (expp, pos, 1, NULL);
3339 resolve_subexp (expp, pos, 1, value_type (arg1));
3356 case BINOP_LOGICAL_AND:
3357 case BINOP_LOGICAL_OR:
3358 case BINOP_BITWISE_AND:
3359 case BINOP_BITWISE_IOR:
3360 case BINOP_BITWISE_XOR:
3363 case BINOP_NOTEQUAL:
3370 case BINOP_SUBSCRIPT:
3378 case UNOP_LOGICAL_NOT:
3388 case OP_VAR_MSYM_VALUE:
3395 case OP_INTERNALVAR:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 case STRUCTOP_STRUCT:
3409 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3422 error (_("Unexpected operator during name resolution"));
3425 argvec = XALLOCAVEC (struct value *, nargs + 1);
3426 for (i = 0; i < nargs; i += 1)
3427 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3431 /* Pass two: perform any resolution on principal operator. */
3438 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3440 struct block_symbol *candidates;
3444 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3445 (exp->elts[pc + 2].symbol),
3446 exp->elts[pc + 1].block, VAR_DOMAIN,
3449 if (n_candidates > 1)
3451 /* Types tend to get re-introduced locally, so if there
3452 are any local symbols that are not types, first filter
3455 for (j = 0; j < n_candidates; j += 1)
3456 switch (SYMBOL_CLASS (candidates[j].symbol))
3461 case LOC_REGPARM_ADDR:
3469 if (j < n_candidates)
3472 while (j < n_candidates)
3474 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3476 candidates[j] = candidates[n_candidates - 1];
3485 if (n_candidates == 0)
3486 error (_("No definition found for %s"),
3487 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3488 else if (n_candidates == 1)
3490 else if (deprocedure_p
3491 && !is_nonfunction (candidates, n_candidates))
3493 i = ada_resolve_function
3494 (candidates, n_candidates, NULL, 0,
3495 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3498 error (_("Could not find a match for %s"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3503 printf_filtered (_("Multiple matches for %s\n"),
3504 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3505 user_select_syms (candidates, n_candidates, 1);
3509 exp->elts[pc + 1].block = candidates[i].block;
3510 exp->elts[pc + 2].symbol = candidates[i].symbol;
3511 if (innermost_block == NULL
3512 || contained_in (candidates[i].block, innermost_block))
3513 innermost_block = candidates[i].block;
3517 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3520 replace_operator_with_call (expp, pc, 0, 0,
3521 exp->elts[pc + 2].symbol,
3522 exp->elts[pc + 1].block);
3529 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3530 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3532 struct block_symbol *candidates;
3536 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3537 (exp->elts[pc + 5].symbol),
3538 exp->elts[pc + 4].block, VAR_DOMAIN,
3540 if (n_candidates == 1)
3544 i = ada_resolve_function
3545 (candidates, n_candidates,
3547 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3550 error (_("Could not find a match for %s"),
3551 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3554 exp->elts[pc + 4].block = candidates[i].block;
3555 exp->elts[pc + 5].symbol = candidates[i].symbol;
3556 if (innermost_block == NULL
3557 || contained_in (candidates[i].block, innermost_block))
3558 innermost_block = candidates[i].block;
3569 case BINOP_BITWISE_AND:
3570 case BINOP_BITWISE_IOR:
3571 case BINOP_BITWISE_XOR:
3573 case BINOP_NOTEQUAL:
3581 case UNOP_LOGICAL_NOT:
3583 if (possible_user_operator_p (op, argvec))
3585 struct block_symbol *candidates;
3589 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3590 (struct block *) NULL, VAR_DOMAIN,
3592 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3593 ada_decoded_op_name (op), NULL);
3597 replace_operator_with_call (expp, pc, nargs, 1,
3598 candidates[i].symbol,
3599 candidates[i].block);
3610 return evaluate_subexp_type (exp, pos);
3613 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3614 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616 /* The term "match" here is rather loose. The match is heuristic and
3620 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 ftype = ada_check_typedef (ftype);
3623 atype = ada_check_typedef (atype);
3625 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3626 ftype = TYPE_TARGET_TYPE (ftype);
3627 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3628 atype = TYPE_TARGET_TYPE (atype);
3630 switch (TYPE_CODE (ftype))
3633 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3636 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3637 TYPE_TARGET_TYPE (atype), 0);
3640 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642 case TYPE_CODE_ENUM:
3643 case TYPE_CODE_RANGE:
3644 switch (TYPE_CODE (atype))
3647 case TYPE_CODE_ENUM:
3648 case TYPE_CODE_RANGE:
3654 case TYPE_CODE_ARRAY:
3655 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3656 || ada_is_array_descriptor_type (atype));
3658 case TYPE_CODE_STRUCT:
3659 if (ada_is_array_descriptor_type (ftype))
3660 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3661 || ada_is_array_descriptor_type (atype));
3663 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3664 && !ada_is_array_descriptor_type (atype));
3666 case TYPE_CODE_UNION:
3668 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3672 /* Return non-zero if the formals of FUNC "sufficiently match" the
3673 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3674 may also be an enumeral, in which case it is treated as a 0-
3675 argument function. */
3678 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 struct type *func_type = SYMBOL_TYPE (func);
3683 if (SYMBOL_CLASS (func) == LOC_CONST
3684 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3685 return (n_actuals == 0);
3686 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 for (i = 0; i < n_actuals; i += 1)
3694 if (actuals[i] == NULL)
3698 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702 if (!ada_type_match (ftype, atype, 1))
3709 /* False iff function type FUNC_TYPE definitely does not produce a value
3710 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3711 FUNC_TYPE is not a valid function type with a non-null return type
3712 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715 return_match (struct type *func_type, struct type *context_type)
3717 struct type *return_type;
3719 if (func_type == NULL)
3722 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3723 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725 return_type = get_base_type (func_type);
3726 if (return_type == NULL)
3729 context_type = get_base_type (context_type);
3731 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3732 return context_type == NULL || return_type == context_type;
3733 else if (context_type == NULL)
3734 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3740 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3741 function (if any) that matches the types of the NARGS arguments in
3742 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3743 that returns that type, then eliminate matches that don't. If
3744 CONTEXT_TYPE is void and there is at least one match that does not
3745 return void, eliminate all matches that do.
3747 Asks the user if there is more than one match remaining. Returns -1
3748 if there is no such symbol or none is selected. NAME is used
3749 solely for messages. May re-arrange and modify SYMS in
3750 the process; the index returned is for the modified vector. */
3753 ada_resolve_function (struct block_symbol syms[],
3754 int nsyms, struct value **args, int nargs,
3755 const char *name, struct type *context_type)
3759 int m; /* Number of hits */
3762 /* In the first pass of the loop, we only accept functions matching
3763 context_type. If none are found, we add a second pass of the loop
3764 where every function is accepted. */
3765 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767 for (k = 0; k < nsyms; k += 1)
3769 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771 if (ada_args_match (syms[k].symbol, args, nargs)
3772 && (fallback || return_match (type, context_type)))
3780 /* If we got multiple matches, ask the user which one to use. Don't do this
3781 interactive thing during completion, though, as the purpose of the
3782 completion is providing a list of all possible matches. Prompting the
3783 user to filter it down would be completely unexpected in this case. */
3786 else if (m > 1 && !parse_completion)
3788 printf_filtered (_("Multiple matches for %s\n"), name);
3789 user_select_syms (syms, m, 1);
3795 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3796 in a listing of choices during disambiguation (see sort_choices, below).
3797 The idea is that overloadings of a subprogram name from the
3798 same package should sort in their source order. We settle for ordering
3799 such symbols by their trailing number (__N or $N). */
3802 encoded_ordered_before (const char *N0, const char *N1)
3806 else if (N0 == NULL)
3812 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3817 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3822 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3828 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 return (strcmp (N0, N1) < 0);
3834 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3838 sort_choices (struct block_symbol syms[], int nsyms)
3842 for (i = 1; i < nsyms; i += 1)
3844 struct block_symbol sym = syms[i];
3847 for (j = i - 1; j >= 0; j -= 1)
3849 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3850 SYMBOL_LINKAGE_NAME (sym.symbol)))
3852 syms[j + 1] = syms[j];
3858 /* Whether GDB should display formals and return types for functions in the
3859 overloads selection menu. */
3860 static int print_signatures = 1;
3862 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3863 all but functions, the signature is just the name of the symbol. For
3864 functions, this is the name of the function, the list of types for formals
3865 and the return type (if any). */
3868 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3869 const struct type_print_options *flags)
3871 struct type *type = SYMBOL_TYPE (sym);
3873 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3874 if (!print_signatures
3876 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 if (TYPE_NFIELDS (type) > 0)
3883 fprintf_filtered (stream, " (");
3884 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 fprintf_filtered (stream, "; ");
3888 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 fprintf_filtered (stream, ")");
3893 if (TYPE_TARGET_TYPE (type) != NULL
3894 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 fprintf_filtered (stream, " return ");
3897 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3901 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3902 by asking the user (if necessary), returning the number selected,
3903 and setting the first elements of SYMS items. Error if no symbols
3906 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3907 to be re-integrated one of these days. */
3910 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 int *chosen = XALLOCAVEC (int , nsyms);
3915 int first_choice = (max_results == 1) ? 1 : 2;
3916 const char *select_mode = multiple_symbols_select_mode ();
3918 if (max_results < 1)
3919 error (_("Request to select 0 symbols!"));
3923 if (select_mode == multiple_symbols_cancel)
3925 canceled because the command is ambiguous\n\
3926 See set/show multiple-symbol."));
3928 /* If select_mode is "all", then return all possible symbols.
3929 Only do that if more than one symbol can be selected, of course.
3930 Otherwise, display the menu as usual. */
3931 if (select_mode == multiple_symbols_all && max_results > 1)
3934 printf_unfiltered (_("[0] cancel\n"));
3935 if (max_results > 1)
3936 printf_unfiltered (_("[1] all\n"));
3938 sort_choices (syms, nsyms);
3940 for (i = 0; i < nsyms; i += 1)
3942 if (syms[i].symbol == NULL)
3945 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947 struct symtab_and_line sal =
3948 find_function_start_sal (syms[i].symbol, 1);
3950 printf_unfiltered ("[%d] ", i + first_choice);
3951 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3952 &type_print_raw_options);
3953 if (sal.symtab == NULL)
3954 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (sal.symtab),
3965 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3966 && SYMBOL_TYPE (syms[i].symbol) != NULL
3967 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3968 struct symtab *symtab = NULL;
3970 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3971 symtab = symbol_symtab (syms[i].symbol);
3973 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975 printf_unfiltered ("[%d] ", i + first_choice);
3976 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3977 &type_print_raw_options);
3978 printf_unfiltered (_(" at %s:%d\n"),
3979 symtab_to_filename_for_display (symtab),
3980 SYMBOL_LINE (syms[i].symbol));
3982 else if (is_enumeral
3983 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985 printf_unfiltered (("[%d] "), i + first_choice);
3986 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3987 gdb_stdout, -1, 0, &type_print_raw_options);
3988 printf_unfiltered (_("'(%s) (enumeral)\n"),
3989 SYMBOL_PRINT_NAME (syms[i].symbol));
3993 printf_unfiltered ("[%d] ", i + first_choice);
3994 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3995 &type_print_raw_options);
3998 printf_unfiltered (is_enumeral
3999 ? _(" in %s (enumeral)\n")
4001 symtab_to_filename_for_display (symtab));
4003 printf_unfiltered (is_enumeral
4004 ? _(" (enumeral)\n")
4010 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 for (i = 0; i < n_chosen; i += 1)
4014 syms[i] = syms[chosen[i]];
4019 /* Read and validate a set of numeric choices from the user in the
4020 range 0 .. N_CHOICES-1. Place the results in increasing
4021 order in CHOICES[0 .. N-1], and return N.
4023 The user types choices as a sequence of numbers on one line
4024 separated by blanks, encoding them as follows:
4026 + A choice of 0 means to cancel the selection, throwing an error.
4027 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4028 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030 The user is not allowed to choose more than MAX_RESULTS values.
4032 ANNOTATION_SUFFIX, if present, is used to annotate the input
4033 prompts (for use with the -f switch). */
4036 get_selections (int *choices, int n_choices, int max_results,
4037 int is_all_choice, const char *annotation_suffix)
4042 int first_choice = is_all_choice ? 2 : 1;
4044 prompt = getenv ("PS2");
4048 args = command_line_input (prompt, 0, annotation_suffix);
4051 error_no_arg (_("one or more choice numbers"));
4055 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4056 order, as given in args. Choices are validated. */
4062 args = skip_spaces (args);
4063 if (*args == '\0' && n_chosen == 0)
4064 error_no_arg (_("one or more choice numbers"));
4065 else if (*args == '\0')
4068 choice = strtol (args, &args2, 10);
4069 if (args == args2 || choice < 0
4070 || choice > n_choices + first_choice - 1)
4071 error (_("Argument must be choice number"));
4075 error (_("cancelled"));
4077 if (choice < first_choice)
4079 n_chosen = n_choices;
4080 for (j = 0; j < n_choices; j += 1)
4084 choice -= first_choice;
4086 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4090 if (j < 0 || choice != choices[j])
4094 for (k = n_chosen - 1; k > j; k -= 1)
4095 choices[k + 1] = choices[k];
4096 choices[j + 1] = choice;
4101 if (n_chosen > max_results)
4102 error (_("Select no more than %d of the above"), max_results);
4107 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4108 on the function identified by SYM and BLOCK, and taking NARGS
4109 arguments. Update *EXPP as needed to hold more space. */
4112 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4113 int oplen, struct symbol *sym,
4114 const struct block *block)
4116 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4117 symbol, -oplen for operator being replaced). */
4118 struct expression *newexp = (struct expression *)
4119 xzalloc (sizeof (struct expression)
4120 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4121 struct expression *exp = *expp;
4123 newexp->nelts = exp->nelts + 7 - oplen;
4124 newexp->language_defn = exp->language_defn;
4125 newexp->gdbarch = exp->gdbarch;
4126 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4127 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4128 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4131 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4134 newexp->elts[pc + 4].block = block;
4135 newexp->elts[pc + 5].symbol = sym;
4141 /* Type-class predicates */
4143 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4147 numeric_type_p (struct type *type)
4153 switch (TYPE_CODE (type))
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4170 integer_type_p (struct type *type)
4176 switch (TYPE_CODE (type))
4180 case TYPE_CODE_RANGE:
4181 return (type == TYPE_TARGET_TYPE (type)
4182 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4192 scalar_type_p (struct type *type)
4198 switch (TYPE_CODE (type))
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
4211 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4214 discrete_type_p (struct type *type)
4220 switch (TYPE_CODE (type))
4223 case TYPE_CODE_RANGE:
4224 case TYPE_CODE_ENUM:
4225 case TYPE_CODE_BOOL:
4233 /* Returns non-zero if OP with operands in the vector ARGS could be
4234 a user-defined function. Errs on the side of pre-defined operators
4235 (i.e., result 0). */
4238 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 struct type *type0 =
4241 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4242 struct type *type1 =
4243 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4257 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4261 case BINOP_BITWISE_AND:
4262 case BINOP_BITWISE_IOR:
4263 case BINOP_BITWISE_XOR:
4264 return (!(integer_type_p (type0) && integer_type_p (type1)));
4267 case BINOP_NOTEQUAL:
4272 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4275 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4278 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4282 case UNOP_LOGICAL_NOT:
4284 return (!numeric_type_p (type0));
4293 1. In the following, we assume that a renaming type's name may
4294 have an ___XD suffix. It would be nice if this went away at some
4296 2. We handle both the (old) purely type-based representation of
4297 renamings and the (new) variable-based encoding. At some point,
4298 it is devoutly to be hoped that the former goes away
4299 (FIXME: hilfinger-2007-07-09).
4300 3. Subprogram renamings are not implemented, although the XRS
4301 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303 /* If SYM encodes a renaming,
4305 <renaming> renames <renamed entity>,
4307 sets *LEN to the length of the renamed entity's name,
4308 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4309 the string describing the subcomponent selected from the renamed
4310 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4311 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4312 are undefined). Otherwise, returns a value indicating the category
4313 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4314 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4315 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4316 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4317 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4318 may be NULL, in which case they are not assigned.
4320 [Currently, however, GCC does not generate subprogram renamings.] */
4322 enum ada_renaming_category
4323 ada_parse_renaming (struct symbol *sym,
4324 const char **renamed_entity, int *len,
4325 const char **renaming_expr)
4327 enum ada_renaming_category kind;
4332 return ADA_NOT_RENAMING;
4333 switch (SYMBOL_CLASS (sym))
4336 return ADA_NOT_RENAMING;
4338 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4339 renamed_entity, len, renaming_expr);
4343 case LOC_OPTIMIZED_OUT:
4344 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 return ADA_NOT_RENAMING;
4350 kind = ADA_OBJECT_RENAMING;
4354 kind = ADA_EXCEPTION_RENAMING;
4358 kind = ADA_PACKAGE_RENAMING;
4362 kind = ADA_SUBPROGRAM_RENAMING;
4366 return ADA_NOT_RENAMING;
4370 if (renamed_entity != NULL)
4371 *renamed_entity = info;
4372 suffix = strstr (info, "___XE");
4373 if (suffix == NULL || suffix == info)
4374 return ADA_NOT_RENAMING;
4376 *len = strlen (info) - strlen (suffix);
4378 if (renaming_expr != NULL)
4379 *renaming_expr = suffix;
4383 /* Assuming TYPE encodes a renaming according to the old encoding in
4384 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4385 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4386 ADA_NOT_RENAMING otherwise. */
4387 static enum ada_renaming_category
4388 parse_old_style_renaming (struct type *type,
4389 const char **renamed_entity, int *len,
4390 const char **renaming_expr)
4392 enum ada_renaming_category kind;
4397 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4398 || TYPE_NFIELDS (type) != 1)
4399 return ADA_NOT_RENAMING;
4401 name = type_name_no_tag (type);
4403 return ADA_NOT_RENAMING;
4405 name = strstr (name, "___XR");
4407 return ADA_NOT_RENAMING;
4412 kind = ADA_OBJECT_RENAMING;
4415 kind = ADA_EXCEPTION_RENAMING;
4418 kind = ADA_PACKAGE_RENAMING;
4421 kind = ADA_SUBPROGRAM_RENAMING;
4424 return ADA_NOT_RENAMING;
4427 info = TYPE_FIELD_NAME (type, 0);
4429 return ADA_NOT_RENAMING;
4430 if (renamed_entity != NULL)
4431 *renamed_entity = info;
4432 suffix = strstr (info, "___XE");
4433 if (renaming_expr != NULL)
4434 *renaming_expr = suffix + 5;
4435 if (suffix == NULL || suffix == info)
4436 return ADA_NOT_RENAMING;
4438 *len = suffix - info;
4442 /* Compute the value of the given RENAMING_SYM, which is expected to
4443 be a symbol encoding a renaming expression. BLOCK is the block
4444 used to evaluate the renaming. */
4446 static struct value *
4447 ada_read_renaming_var_value (struct symbol *renaming_sym,
4448 const struct block *block)
4450 const char *sym_name;
4452 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4453 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4454 return evaluate_expression (expr.get ());
4458 /* Evaluation: Function Calls */
4460 /* Return an lvalue containing the value VAL. This is the identity on
4461 lvalues, and otherwise has the side-effect of allocating memory
4462 in the inferior where a copy of the value contents is copied. */
4464 static struct value *
4465 ensure_lval (struct value *val)
4467 if (VALUE_LVAL (val) == not_lval
4468 || VALUE_LVAL (val) == lval_internalvar)
4470 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4471 const CORE_ADDR addr =
4472 value_as_long (value_allocate_space_in_inferior (len));
4474 VALUE_LVAL (val) = lval_memory;
4475 set_value_address (val, addr);
4476 write_memory (addr, value_contents (val), len);
4482 /* Return the value ACTUAL, converted to be an appropriate value for a
4483 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4484 allocating any necessary descriptors (fat pointers), or copies of
4485 values not residing in memory, updating it as needed. */
4488 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 struct type *actual_type = ada_check_typedef (value_type (actual));
4491 struct type *formal_type = ada_check_typedef (formal_type0);
4492 struct type *formal_target =
4493 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4494 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4495 struct type *actual_target =
4496 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4497 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499 if (ada_is_array_descriptor_type (formal_target)
4500 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4501 return make_array_descriptor (formal_type, actual);
4502 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4503 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 struct value *result;
4507 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4508 && ada_is_array_descriptor_type (actual_target))
4509 result = desc_data (actual);
4510 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512 if (VALUE_LVAL (actual) != lval_memory)
4516 actual_type = ada_check_typedef (value_type (actual));
4517 val = allocate_value (actual_type);
4518 memcpy ((char *) value_contents_raw (val),
4519 (char *) value_contents (actual),
4520 TYPE_LENGTH (actual_type));
4521 actual = ensure_lval (val);
4523 result = value_addr (actual);
4527 return value_cast_pointers (formal_type, result, 0);
4529 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4530 return ada_value_ind (actual);
4531 else if (ada_is_aligner_type (formal_type))
4533 /* We need to turn this parameter into an aligner type
4535 struct value *aligner = allocate_value (formal_type);
4536 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538 value_assign_to_component (aligner, component, actual);
4545 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4546 type TYPE. This is usually an inefficient no-op except on some targets
4547 (such as AVR) where the representation of a pointer and an address
4551 value_pointer (struct value *value, struct type *type)
4553 struct gdbarch *gdbarch = get_type_arch (type);
4554 unsigned len = TYPE_LENGTH (type);
4555 gdb_byte *buf = (gdb_byte *) alloca (len);
4558 addr = value_address (value);
4559 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4560 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4565 /* Push a descriptor of type TYPE for array value ARR on the stack at
4566 *SP, updating *SP to reflect the new descriptor. Return either
4567 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4568 to-descriptor type rather than a descriptor type), a struct value *
4569 representing a pointer to this descriptor. */
4571 static struct value *
4572 make_array_descriptor (struct type *type, struct value *arr)
4574 struct type *bounds_type = desc_bounds_type (type);
4575 struct type *desc_type = desc_base_type (type);
4576 struct value *descriptor = allocate_value (desc_type);
4577 struct value *bounds = allocate_value (bounds_type);
4580 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 0),
4585 desc_bound_bitpos (bounds_type, i, 0),
4586 desc_bound_bitsize (bounds_type, i, 0));
4587 modify_field (value_type (bounds), value_contents_writeable (bounds),
4588 ada_array_bound (arr, i, 1),
4589 desc_bound_bitpos (bounds_type, i, 1),
4590 desc_bound_bitsize (bounds_type, i, 1));
4593 bounds = ensure_lval (bounds);
4595 modify_field (value_type (descriptor),
4596 value_contents_writeable (descriptor),
4597 value_pointer (ensure_lval (arr),
4598 TYPE_FIELD_TYPE (desc_type, 0)),
4599 fat_pntr_data_bitpos (desc_type),
4600 fat_pntr_data_bitsize (desc_type));
4602 modify_field (value_type (descriptor),
4603 value_contents_writeable (descriptor),
4604 value_pointer (bounds,
4605 TYPE_FIELD_TYPE (desc_type, 1)),
4606 fat_pntr_bounds_bitpos (desc_type),
4607 fat_pntr_bounds_bitsize (desc_type));
4609 descriptor = ensure_lval (descriptor);
4611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4612 return value_addr (descriptor);
4617 /* Symbol Cache Module */
4619 /* Performance measurements made as of 2010-01-15 indicate that
4620 this cache does bring some noticeable improvements. Depending
4621 on the type of entity being printed, the cache can make it as much
4622 as an order of magnitude faster than without it.
4624 The descriptive type DWARF extension has significantly reduced
4625 the need for this cache, at least when DWARF is being used. However,
4626 even in this case, some expensive name-based symbol searches are still
4627 sometimes necessary - to find an XVZ variable, mostly. */
4629 /* Initialize the contents of SYM_CACHE. */
4632 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 obstack_init (&sym_cache->cache_space);
4635 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638 /* Free the memory used by SYM_CACHE. */
4641 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 obstack_free (&sym_cache->cache_space, NULL);
4647 /* Return the symbol cache associated to the given program space PSPACE.
4648 If not allocated for this PSPACE yet, allocate and initialize one. */
4650 static struct ada_symbol_cache *
4651 ada_get_symbol_cache (struct program_space *pspace)
4653 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655 if (pspace_data->sym_cache == NULL)
4657 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4658 ada_init_symbol_cache (pspace_data->sym_cache);
4661 return pspace_data->sym_cache;
4664 /* Clear all entries from the symbol cache. */
4667 ada_clear_symbol_cache (void)
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
4672 obstack_free (&sym_cache->cache_space, NULL);
4673 ada_init_symbol_cache (sym_cache);
4676 /* Search our cache for an entry matching NAME and DOMAIN.
4677 Return it if found, or NULL otherwise. */
4679 static struct cache_entry **
4680 find_entry (const char *name, domain_enum domain)
4682 struct ada_symbol_cache *sym_cache
4683 = ada_get_symbol_cache (current_program_space);
4684 int h = msymbol_hash (name) % HASH_SIZE;
4685 struct cache_entry **e;
4687 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4695 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4696 Return 1 if found, 0 otherwise.
4698 If an entry was found and SYM is not NULL, set *SYM to the entry's
4699 SYM. Same principle for BLOCK if not NULL. */
4702 lookup_cached_symbol (const char *name, domain_enum domain,
4703 struct symbol **sym, const struct block **block)
4705 struct cache_entry **e = find_entry (name, domain);
4712 *block = (*e)->block;
4716 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4717 in domain DOMAIN, save this result in our symbol cache. */
4720 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4721 const struct block *block)
4723 struct ada_symbol_cache *sym_cache
4724 = ada_get_symbol_cache (current_program_space);
4727 struct cache_entry *e;
4729 /* Symbols for builtin types don't have a block.
4730 For now don't cache such symbols. */
4731 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 /* If the symbol is a local symbol, then do not cache it, as a search
4735 for that symbol depends on the context. To determine whether
4736 the symbol is local or not, we check the block where we found it
4737 against the global and static blocks of its associated symtab. */
4739 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4740 GLOBAL_BLOCK) != block
4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4742 STATIC_BLOCK) != block)
4745 h = msymbol_hash (name) % HASH_SIZE;
4746 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4752 strcpy (copy, name);
4760 /* Return nonzero if wild matching should be used when searching for
4761 all symbols matching LOOKUP_NAME.
4763 LOOKUP_NAME is expected to be a symbol name after transformation
4764 for Ada lookups (see ada_name_for_lookup). */
4767 should_use_wild_match (const char *lookup_name)
4769 return (strstr (lookup_name, "__") == NULL);
4772 /* Return the result of a standard (literal, C-like) lookup of NAME in
4773 given DOMAIN, visible from lexical block BLOCK. */
4775 static struct symbol *
4776 standard_lookup (const char *name, const struct block *block,
4779 /* Initialize it just to avoid a GCC false warning. */
4780 struct block_symbol sym = {NULL, NULL};
4782 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4785 cache_symbol (name, domain, sym.symbol, sym.block);
4790 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4791 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4792 since they contend in overloading in the same way. */
4794 is_nonfunction (struct block_symbol syms[], int n)
4798 for (i = 0; i < n; i += 1)
4799 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4800 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4801 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4807 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4808 struct types. Otherwise, they may not. */
4811 equiv_types (struct type *type0, struct type *type1)
4815 if (type0 == NULL || type1 == NULL
4816 || TYPE_CODE (type0) != TYPE_CODE (type1))
4818 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4819 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4820 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4821 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4827 /* True iff SYM0 represents the same entity as SYM1, or one that is
4828 no more defined than that of SYM1. */
4831 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4836 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 switch (SYMBOL_CLASS (sym0))
4845 struct type *type0 = SYMBOL_TYPE (sym0);
4846 struct type *type1 = SYMBOL_TYPE (sym1);
4847 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4848 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4849 int len0 = strlen (name0);
4852 TYPE_CODE (type0) == TYPE_CODE (type1)
4853 && (equiv_types (type0, type1)
4854 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4855 && startswith (name1 + len0, "___XV")));
4858 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4859 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4865 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4866 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4869 add_defn_to_vec (struct obstack *obstackp,
4871 const struct block *block)
4874 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4876 /* Do not try to complete stub types, as the debugger is probably
4877 already scanning all symbols matching a certain name at the
4878 time when this function is called. Trying to replace the stub
4879 type by its associated full type will cause us to restart a scan
4880 which may lead to an infinite recursion. Instead, the client
4881 collecting the matching symbols will end up collecting several
4882 matches, with at least one of them complete. It can then filter
4883 out the stub ones if needed. */
4885 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4889 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4891 prevDefns[i].symbol = sym;
4892 prevDefns[i].block = block;
4898 struct block_symbol info;
4902 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 /* Number of block_symbol structures currently collected in current vector in
4910 num_defns_collected (struct obstack *obstackp)
4912 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4915 /* Vector of block_symbol structures currently collected in current vector in
4916 OBSTACKP. If FINISH, close off the vector and return its final address. */
4918 static struct block_symbol *
4919 defns_collected (struct obstack *obstackp, int finish)
4922 return (struct block_symbol *) obstack_finish (obstackp);
4924 return (struct block_symbol *) obstack_base (obstackp);
4927 /* Return a bound minimal symbol matching NAME according to Ada
4928 decoding rules. Returns an invalid symbol if there is no such
4929 minimal symbol. Names prefixed with "standard__" are handled
4930 specially: "standard__" is first stripped off, and only static and
4931 global symbols are searched. */
4933 struct bound_minimal_symbol
4934 ada_lookup_simple_minsym (const char *name)
4936 struct bound_minimal_symbol result;
4937 struct objfile *objfile;
4938 struct minimal_symbol *msymbol;
4939 const int wild_match_p = should_use_wild_match (name);
4941 memset (&result, 0, sizeof (result));
4943 /* Special case: If the user specifies a symbol name inside package
4944 Standard, do a non-wild matching of the symbol name without
4945 the "standard__" prefix. This was primarily introduced in order
4946 to allow the user to specifically access the standard exceptions
4947 using, for instance, Standard.Constraint_Error when Constraint_Error
4948 is ambiguous (due to the user defining its own Constraint_Error
4949 entity inside its program). */
4950 if (startswith (name, "standard__"))
4951 name += sizeof ("standard__") - 1;
4953 ALL_MSYMBOLS (objfile, msymbol)
4955 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4956 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4958 result.minsym = msymbol;
4959 result.objfile = objfile;
4967 /* For all subprograms that statically enclose the subprogram of the
4968 selected frame, add symbols matching identifier NAME in DOMAIN
4969 and their blocks to the list of data in OBSTACKP, as for
4970 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4971 with a wildcard prefix. */
4974 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4975 const char *name, domain_enum domain,
4980 /* True if TYPE is definitely an artificial type supplied to a symbol
4981 for which no debugging information was given in the symbol file. */
4984 is_nondebugging_type (struct type *type)
4986 const char *name = ada_type_name (type);
4988 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4992 that are deemed "identical" for practical purposes.
4994 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4995 types and that their number of enumerals is identical (in other
4996 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003 /* The heuristic we use here is fairly conservative. We consider
5004 that 2 enumerate types are identical if they have the same
5005 number of enumerals and that all enumerals have the same
5006 underlying value and name. */
5008 /* All enums in the type should have an identical underlying value. */
5009 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5010 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5013 /* All enumerals should also have the same name (modulo any numerical
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5018 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5019 int len_1 = strlen (name_1);
5020 int len_2 = strlen (name_2);
5022 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025 || strncmp (TYPE_FIELD_NAME (type1, i),
5026 TYPE_FIELD_NAME (type2, i),
5034 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5035 that are deemed "identical" for practical purposes. Sometimes,
5036 enumerals are not strictly identical, but their types are so similar
5037 that they can be considered identical.
5039 For instance, consider the following code:
5041 type Color is (Black, Red, Green, Blue, White);
5042 type RGB_Color is new Color range Red .. Blue;
5044 Type RGB_Color is a subrange of an implicit type which is a copy
5045 of type Color. If we call that implicit type RGB_ColorB ("B" is
5046 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5047 As a result, when an expression references any of the enumeral
5048 by name (Eg. "print green"), the expression is technically
5049 ambiguous and the user should be asked to disambiguate. But
5050 doing so would only hinder the user, since it wouldn't matter
5051 what choice he makes, the outcome would always be the same.
5052 So, for practical purposes, we consider them as the same. */
5055 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5059 /* Before performing a thorough comparison check of each type,
5060 we perform a series of inexpensive checks. We expect that these
5061 checks will quickly fail in the vast majority of cases, and thus
5062 help prevent the unnecessary use of a more expensive comparison.
5063 Said comparison also expects us to make some of these checks
5064 (see ada_identical_enum_types_p). */
5066 /* Quick check: All symbols should have an enum type. */
5067 for (i = 0; i < nsyms; i++)
5068 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5071 /* Quick check: They should all have the same value. */
5072 for (i = 1; i < nsyms; i++)
5073 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5076 /* Quick check: They should all have the same number of enumerals. */
5077 for (i = 1; i < nsyms; i++)
5078 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5079 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5082 /* All the sanity checks passed, so we might have a set of
5083 identical enumeration types. Perform a more complete
5084 comparison of the type of each symbol. */
5085 for (i = 1; i < nsyms; i++)
5086 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5087 SYMBOL_TYPE (syms[0].symbol)))
5093 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5094 duplicate other symbols in the list (The only case I know of where
5095 this happens is when object files containing stabs-in-ecoff are
5096 linked with files containing ordinary ecoff debugging symbols (or no
5097 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5098 Returns the number of items in the modified list. */
5101 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5105 /* We should never be called with less than 2 symbols, as there
5106 cannot be any extra symbol in that case. But it's easy to
5107 handle, since we have nothing to do in that case. */
5116 /* If two symbols have the same name and one of them is a stub type,
5117 the get rid of the stub. */
5119 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5120 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5122 for (j = 0; j < nsyms; j++)
5125 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5127 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5128 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5133 /* Two symbols with the same name, same class and same address
5134 should be identical. */
5136 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5137 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5138 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5140 for (j = 0; j < nsyms; j += 1)
5143 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5144 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5145 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5146 && SYMBOL_CLASS (syms[i].symbol)
5147 == SYMBOL_CLASS (syms[j].symbol)
5148 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5149 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5156 for (j = i + 1; j < nsyms; j += 1)
5157 syms[j - 1] = syms[j];
5164 /* If all the remaining symbols are identical enumerals, then
5165 just keep the first one and discard the rest.
5167 Unlike what we did previously, we do not discard any entry
5168 unless they are ALL identical. This is because the symbol
5169 comparison is not a strict comparison, but rather a practical
5170 comparison. If all symbols are considered identical, then
5171 we can just go ahead and use the first one and discard the rest.
5172 But if we cannot reduce the list to a single element, we have
5173 to ask the user to disambiguate anyways. And if we have to
5174 present a multiple-choice menu, it's less confusing if the list
5175 isn't missing some choices that were identical and yet distinct. */
5176 if (symbols_are_identical_enums (syms, nsyms))
5182 /* Given a type that corresponds to a renaming entity, use the type name
5183 to extract the scope (package name or function name, fully qualified,
5184 and following the GNAT encoding convention) where this renaming has been
5185 defined. The string returned needs to be deallocated after use. */
5188 xget_renaming_scope (struct type *renaming_type)
5190 /* The renaming types adhere to the following convention:
5191 <scope>__<rename>___<XR extension>.
5192 So, to extract the scope, we search for the "___XR" extension,
5193 and then backtrack until we find the first "__". */
5195 const char *name = type_name_no_tag (renaming_type);
5196 const char *suffix = strstr (name, "___XR");
5201 /* Now, backtrack a bit until we find the first "__". Start looking
5202 at suffix - 3, as the <rename> part is at least one character long. */
5204 for (last = suffix - 3; last > name; last--)
5205 if (last[0] == '_' && last[1] == '_')
5208 /* Make a copy of scope and return it. */
5210 scope_len = last - name;
5211 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5213 strncpy (scope, name, scope_len);
5214 scope[scope_len] = '\0';
5219 /* Return nonzero if NAME corresponds to a package name. */
5222 is_package_name (const char *name)
5224 /* Here, We take advantage of the fact that no symbols are generated
5225 for packages, while symbols are generated for each function.
5226 So the condition for NAME represent a package becomes equivalent
5227 to NAME not existing in our list of symbols. There is only one
5228 small complication with library-level functions (see below). */
5232 /* If it is a function that has not been defined at library level,
5233 then we should be able to look it up in the symbols. */
5234 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 /* Library-level function names start with "_ada_". See if function
5238 "_ada_" followed by NAME can be found. */
5240 /* Do a quick check that NAME does not contain "__", since library-level
5241 functions names cannot contain "__" in them. */
5242 if (strstr (name, "__") != NULL)
5245 fun_name = xstrprintf ("_ada_%s", name);
5247 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250 /* Return nonzero if SYM corresponds to a renaming entity that is
5251 not visible from FUNCTION_NAME. */
5254 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5257 struct cleanup *old_chain;
5259 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5263 old_chain = make_cleanup (xfree, scope);
5265 /* If the rename has been defined in a package, then it is visible. */
5266 if (is_package_name (scope))
5268 do_cleanups (old_chain);
5272 /* Check that the rename is in the current function scope by checking
5273 that its name starts with SCOPE. */
5275 /* If the function name starts with "_ada_", it means that it is
5276 a library-level function. Strip this prefix before doing the
5277 comparison, as the encoding for the renaming does not contain
5279 if (startswith (function_name, "_ada_"))
5283 int is_invisible = !startswith (function_name, scope);
5285 do_cleanups (old_chain);
5286 return is_invisible;
5290 /* Remove entries from SYMS that corresponds to a renaming entity that
5291 is not visible from the function associated with CURRENT_BLOCK or
5292 that is superfluous due to the presence of more specific renaming
5293 information. Places surviving symbols in the initial entries of
5294 SYMS and returns the number of surviving symbols.
5297 First, in cases where an object renaming is implemented as a
5298 reference variable, GNAT may produce both the actual reference
5299 variable and the renaming encoding. In this case, we discard the
5302 Second, GNAT emits a type following a specified encoding for each renaming
5303 entity. Unfortunately, STABS currently does not support the definition
5304 of types that are local to a given lexical block, so all renamings types
5305 are emitted at library level. As a consequence, if an application
5306 contains two renaming entities using the same name, and a user tries to
5307 print the value of one of these entities, the result of the ada symbol
5308 lookup will also contain the wrong renaming type.
5310 This function partially covers for this limitation by attempting to
5311 remove from the SYMS list renaming symbols that should be visible
5312 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5313 method with the current information available. The implementation
5314 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5316 - When the user tries to print a rename in a function while there
5317 is another rename entity defined in a package: Normally, the
5318 rename in the function has precedence over the rename in the
5319 package, so the latter should be removed from the list. This is
5320 currently not the case.
5322 - This function will incorrectly remove valid renames if
5323 the CURRENT_BLOCK corresponds to a function which symbol name
5324 has been changed by an "Export" pragma. As a consequence,
5325 the user will be unable to print such rename entities. */
5328 remove_irrelevant_renamings (struct block_symbol *syms,
5329 int nsyms, const struct block *current_block)
5331 struct symbol *current_function;
5332 const char *current_function_name;
5334 int is_new_style_renaming;
5336 /* If there is both a renaming foo___XR... encoded as a variable and
5337 a simple variable foo in the same block, discard the latter.
5338 First, zero out such symbols, then compress. */
5339 is_new_style_renaming = 0;
5340 for (i = 0; i < nsyms; i += 1)
5342 struct symbol *sym = syms[i].symbol;
5343 const struct block *block = syms[i].block;
5347 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349 name = SYMBOL_LINKAGE_NAME (sym);
5350 suffix = strstr (name, "___XR");
5354 int name_len = suffix - name;
5357 is_new_style_renaming = 1;
5358 for (j = 0; j < nsyms; j += 1)
5359 if (i != j && syms[j].symbol != NULL
5360 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5362 && block == syms[j].block)
5363 syms[j].symbol = NULL;
5366 if (is_new_style_renaming)
5370 for (j = k = 0; j < nsyms; j += 1)
5371 if (syms[j].symbol != NULL)
5379 /* Extract the function name associated to CURRENT_BLOCK.
5380 Abort if unable to do so. */
5382 if (current_block == NULL)
5385 current_function = block_linkage_function (current_block);
5386 if (current_function == NULL)
5389 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5390 if (current_function_name == NULL)
5393 /* Check each of the symbols, and remove it from the list if it is
5394 a type corresponding to a renaming that is out of the scope of
5395 the current block. */
5400 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5401 == ADA_OBJECT_RENAMING
5402 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5406 for (j = i + 1; j < nsyms; j += 1)
5407 syms[j - 1] = syms[j];
5417 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5418 whose name and domain match NAME and DOMAIN respectively.
5419 If no match was found, then extend the search to "enclosing"
5420 routines (in other words, if we're inside a nested function,
5421 search the symbols defined inside the enclosing functions).
5422 If WILD_MATCH_P is nonzero, perform the naming matching in
5423 "wild" mode (see function "wild_match" for more info).
5425 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5429 const struct block *block, domain_enum domain,
5432 int block_depth = 0;
5434 while (block != NULL)
5437 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5440 /* If we found a non-function match, assume that's the one. */
5441 if (is_nonfunction (defns_collected (obstackp, 0),
5442 num_defns_collected (obstackp)))
5445 block = BLOCK_SUPERBLOCK (block);
5448 /* If no luck so far, try to find NAME as a local symbol in some lexically
5449 enclosing subprogram. */
5450 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5451 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5454 /* An object of this type is used as the user_data argument when
5455 calling the map_matching_symbols method. */
5459 struct objfile *objfile;
5460 struct obstack *obstackp;
5461 struct symbol *arg_sym;
5465 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5466 to a list of symbols. DATA0 is a pointer to a struct match_data *
5467 containing the obstack that collects the symbol list, the file that SYM
5468 must come from, a flag indicating whether a non-argument symbol has
5469 been found in the current block, and the last argument symbol
5470 passed in SYM within the current block (if any). When SYM is null,
5471 marking the end of a block, the argument symbol is added if no
5472 other has been found. */
5475 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477 struct match_data *data = (struct match_data *) data0;
5481 if (!data->found_sym && data->arg_sym != NULL)
5482 add_defn_to_vec (data->obstackp,
5483 fixup_symbol_section (data->arg_sym, data->objfile),
5485 data->found_sym = 0;
5486 data->arg_sym = NULL;
5490 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 else if (SYMBOL_IS_ARGUMENT (sym))
5493 data->arg_sym = sym;
5496 data->found_sym = 1;
5497 add_defn_to_vec (data->obstackp,
5498 fixup_symbol_section (sym, data->objfile),
5505 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5506 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5507 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5508 function "wild_match" for more information). Return whether we found such
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5518 struct using_direct *renaming;
5519 int defns_mark = num_defns_collected (obstackp);
5521 for (renaming = block_using (block);
5523 renaming = renaming->next)
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5539 renaming->searched = 1;
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5550 : renaming->declaration);
5552 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5553 if (name_match == 0)
5554 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556 renaming->searched = 0;
5558 return num_defns_collected (obstackp) != defns_mark;
5561 /* Implements compare_names, but only applying the comparision using
5562 the given CASING. */
5565 compare_names_with_case (const char *string1, const char *string2,
5566 enum case_sensitivity casing)
5568 while (*string1 != '\0' && *string2 != '\0')
5572 if (isspace (*string1) || isspace (*string2))
5573 return strcmp_iw_ordered (string1, string2);
5575 if (casing == case_sensitive_off)
5577 c1 = tolower (*string1);
5578 c2 = tolower (*string2);
5595 return strcmp_iw_ordered (string1, string2);
5597 if (*string2 == '\0')
5599 if (is_name_suffix (string1))
5606 if (*string2 == '(')
5607 return strcmp_iw_ordered (string1, string2);
5610 if (casing == case_sensitive_off)
5611 return tolower (*string1) - tolower (*string2);
5613 return *string1 - *string2;
5618 /* Compare STRING1 to STRING2, with results as for strcmp.
5619 Compatible with strcmp_iw_ordered in that...
5621 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625 compare_names (STRING1, STRING2) <= 0
5627 (they may differ as to what symbols compare equal). */
5630 compare_names (const char *string1, const char *string2)
5634 /* Similar to what strcmp_iw_ordered does, we need to perform
5635 a case-insensitive comparison first, and only resort to
5636 a second, case-sensitive, comparison if the first one was
5637 not sufficient to differentiate the two strings. */
5639 result = compare_names_with_case (string1, string2, case_sensitive_off);
5641 result = compare_names_with_case (string1, string2, case_sensitive_on);
5646 /* Add to OBSTACKP all non-local symbols whose name and domain match
5647 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5648 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5651 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5652 domain_enum domain, int global,
5655 struct objfile *objfile;
5656 struct compunit_symtab *cu;
5657 struct match_data data;
5659 memset (&data, 0, sizeof data);
5660 data.obstackp = obstackp;
5662 ALL_OBJFILES (objfile)
5664 data.objfile = objfile;
5667 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5668 aux_add_nonlocal_symbols, &data,
5671 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5672 aux_add_nonlocal_symbols, &data,
5673 full_match, compare_names);
5675 ALL_OBJFILE_COMPUNITS (objfile, cu)
5677 const struct block *global_block
5678 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5686 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 ALL_OBJFILES (objfile)
5690 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5691 strcpy (name1, "_ada_");
5692 strcpy (name1 + sizeof ("_ada_") - 1, name);
5693 data.objfile = objfile;
5694 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696 aux_add_nonlocal_symbols,
5698 full_match, compare_names);
5703 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5704 non-zero, enclosing scope and in global scopes, returning the number of
5705 matches. Add these to OBSTACKP.
5707 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5708 symbol match within the nest of blocks whose innermost member is BLOCK,
5709 is the one match returned (no other matches in that or
5710 enclosing blocks is returned). If there are any matches in or
5711 surrounding BLOCK, then these alone are returned.
5713 Names prefixed with "standard__" are handled specially: "standard__"
5714 is first stripped off, and only static and global symbols are searched.
5716 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5717 to lookup global symbols. */
5720 ada_add_all_symbols (struct obstack *obstackp,
5721 const struct block *block,
5725 int *made_global_lookup_p)
5728 const int wild_match_p = should_use_wild_match (name);
5730 if (made_global_lookup_p)
5731 *made_global_lookup_p = 0;
5733 /* Special case: If the user specifies a symbol name inside package
5734 Standard, do a non-wild matching of the symbol name without
5735 the "standard__" prefix. This was primarily introduced in order
5736 to allow the user to specifically access the standard exceptions
5737 using, for instance, Standard.Constraint_Error when Constraint_Error
5738 is ambiguous (due to the user defining its own Constraint_Error
5739 entity inside its program). */
5740 if (startswith (name, "standard__"))
5743 name = name + sizeof ("standard__") - 1;
5746 /* Check the non-global symbols. If we have ANY match, then we're done. */
5751 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5754 /* In the !full_search case we're are being called by
5755 ada_iterate_over_symbols, and we don't want to search
5757 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5760 if (num_defns_collected (obstackp) > 0 || !full_search)
5764 /* No non-global symbols found. Check our cache to see if we have
5765 already performed this search before. If we have, then return
5768 if (lookup_cached_symbol (name, domain, &sym, &block))
5771 add_defn_to_vec (obstackp, sym, block);
5775 if (made_global_lookup_p)
5776 *made_global_lookup_p = 1;
5778 /* Search symbols from all global blocks. */
5780 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5782 /* Now add symbols from all per-file blocks if we've gotten no hits
5783 (not strictly correct, but perhaps better than an error). */
5785 if (num_defns_collected (obstackp) == 0)
5786 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5789 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5790 non-zero, enclosing scope and in global scopes, returning the number of
5792 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5793 indicating the symbols found and the blocks and symbol tables (if
5794 any) in which they were found. This vector is transient---good only to
5795 the next call of ada_lookup_symbol_list.
5797 When full_search is non-zero, any non-function/non-enumeral
5798 symbol match within the nest of blocks whose innermost member is BLOCK,
5799 is the one match returned (no other matches in that or
5800 enclosing blocks is returned). If there are any matches in or
5801 surrounding BLOCK, then these alone are returned.
5803 Names prefixed with "standard__" are handled specially: "standard__"
5804 is first stripped off, and only static and global symbols are searched. */
5807 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809 struct block_symbol **results,
5812 const int wild_match_p = should_use_wild_match (name);
5813 int syms_from_global_search;
5816 obstack_free (&symbol_list_obstack, NULL);
5817 obstack_init (&symbol_list_obstack);
5818 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5819 full_search, &syms_from_global_search);
5821 ndefns = num_defns_collected (&symbol_list_obstack);
5822 *results = defns_collected (&symbol_list_obstack, 1);
5824 ndefns = remove_extra_symbols (*results, ndefns);
5826 if (ndefns == 0 && full_search && syms_from_global_search)
5827 cache_symbol (name, domain, NULL, NULL);
5829 if (ndefns == 1 && full_search && syms_from_global_search)
5830 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5832 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5836 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5837 in global scopes, returning the number of matches, and setting *RESULTS
5838 to a vector of (SYM,BLOCK) tuples.
5839 See ada_lookup_symbol_list_worker for further details. */
5842 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5843 domain_enum domain, struct block_symbol **results)
5845 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5848 /* Implementation of the la_iterate_over_symbols method. */
5851 ada_iterate_over_symbols
5852 (const struct block *block, const char *name, domain_enum domain,
5853 gdb::function_view<symbol_found_callback_ftype> callback)
5856 struct block_symbol *results;
5858 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5859 for (i = 0; i < ndefs; ++i)
5861 if (!callback (results[i].symbol))
5866 /* If NAME is the name of an entity, return a string that should
5867 be used to look that entity up in Ada units.
5869 NAME can have any form that the "break" or "print" commands might
5870 recognize. In other words, it does not have to be the "natural"
5871 name, or the "encoded" name. */
5874 ada_name_for_lookup (const char *name)
5876 int nlen = strlen (name);
5878 if (name[0] == '<' && name[nlen - 1] == '>')
5879 return std::string (name + 1, nlen - 2);
5881 return ada_encode (ada_fold_name (name));
5884 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5885 to 1, but choosing the first symbol found if there are multiple
5888 The result is stored in *INFO, which must be non-NULL.
5889 If no match is found, INFO->SYM is set to NULL. */
5892 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5894 struct block_symbol *info)
5896 struct block_symbol *candidates;
5899 gdb_assert (info != NULL);
5900 memset (info, 0, sizeof (struct block_symbol));
5902 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5903 if (n_candidates == 0)
5906 *info = candidates[0];
5907 info->symbol = fixup_symbol_section (info->symbol, NULL);
5910 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5911 scope and in global scopes, or NULL if none. NAME is folded and
5912 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5913 choosing the first symbol if there are multiple choices.
5914 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5917 ada_lookup_symbol (const char *name, const struct block *block0,
5918 domain_enum domain, int *is_a_field_of_this)
5920 struct block_symbol info;
5922 if (is_a_field_of_this != NULL)
5923 *is_a_field_of_this = 0;
5925 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5926 block0, domain, &info);
5930 static struct block_symbol
5931 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const struct block *block,
5934 const domain_enum domain)
5936 struct block_symbol sym;
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5939 if (sym.symbol != NULL)
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5954 if (domain == VAR_DOMAIN)
5956 struct gdbarch *gdbarch;
5959 gdbarch = target_gdbarch ();
5961 gdbarch = block_gdbarch (block);
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
5967 return (struct block_symbol) {NULL, NULL};
5971 /* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5974 are given by any of the regular expressions:
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5978 TKB [subprogram suffix for task bodies]
5979 _E[0-9]+[bs]$ [protected object entry suffixes]
5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
5987 is_name_suffix (const char *str)
5990 const char *matching;
5991 const int len = strlen (str);
5993 /* Skip optional leading __[0-9]+. */
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5998 while (isdigit (str[0]))
6004 if (str[0] == '.' || str[0] == '$')
6007 while (isdigit (matching[0]))
6009 if (matching[0] == '\0')
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6018 while (isdigit (matching[0]))
6020 if (matching[0] == '\0')
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026 if (strcmp (str, "TKB") == 0)
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
6033 all entity names that end with an "N" as a name suffix causes
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
6037 Having a single character like this as a suffix carrying some
6038 information is a bit risky. Perhaps we should change the encoding
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6050 while (isdigit (matching[0]))
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
6065 while (str[0] != '_' && str[0] != '\0')
6067 if (str[0] != 'n' && str[0] != 'b')
6073 if (str[0] == '\000')
6078 if (str[1] != '_' || str[2] == '\000')
6082 if (strcmp (str + 3, "JM") == 0)
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
6089 if (strcmp (str + 3, "LJM") == 0)
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
6096 if (str[4] == 'R' && str[5] != 'T')
6100 if (!isdigit (str[2]))
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6107 if (str[0] == '$' && isdigit (str[1]))
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6117 /* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
6121 is_valid_name_for_wild_match (const char *name0)
6123 const char *decoded_name = ada_decode (name0);
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
6144 advance_wild_match (const char **namep, const char *name0, int target0)
6146 const char *name = *namep;
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6159 if (name == name0 + 5 && startswith (name0, "_ada"))
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6183 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6184 informational suffixes of NAME (i.e., for which is_name_suffix is
6185 true). Assumes that PATN is a lower-cased Ada simple name. */
6188 wild_match (const char *name, const char *patn)
6191 const char *name0 = name;
6195 const char *match = name;
6199 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6202 if (*p == '\0' && is_name_suffix (name))
6203 return match != name0 && !is_valid_name_for_wild_match (name0);
6205 if (name[-1] == '_')
6208 if (!advance_wild_match (&name, name0, *patn))
6213 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6214 informational suffix. */
6217 full_match (const char *sym_name, const char *search_name)
6219 return !match_name (sym_name, search_name, 0);
6223 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6224 vector *defn_symbols, updating the list of symbols in OBSTACKP
6225 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6226 OBJFILE is the section containing BLOCK. */
6229 ada_add_block_symbols (struct obstack *obstackp,
6230 const struct block *block, const char *name,
6231 domain_enum domain, struct objfile *objfile,
6234 struct block_iterator iter;
6235 int name_len = strlen (name);
6236 /* A matching argument symbol, if any. */
6237 struct symbol *arg_sym;
6238 /* Set true when we find a matching non-argument symbol. */
6246 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6247 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6249 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6250 SYMBOL_DOMAIN (sym), domain)
6251 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6253 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255 else if (SYMBOL_IS_ARGUMENT (sym))
6260 add_defn_to_vec (obstackp,
6261 fixup_symbol_section (sym, objfile),
6269 for (sym = block_iter_match_first (block, name, full_match, &iter);
6270 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6272 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6273 SYMBOL_DOMAIN (sym), domain))
6275 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 if (SYMBOL_IS_ARGUMENT (sym))
6282 add_defn_to_vec (obstackp,
6283 fixup_symbol_section (sym, objfile),
6291 /* Handle renamings. */
6293 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6296 if (!found_sym && arg_sym != NULL)
6298 add_defn_to_vec (obstackp,
6299 fixup_symbol_section (arg_sym, objfile),
6308 ALL_BLOCK_SYMBOLS (block, iter, sym)
6310 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6311 SYMBOL_DOMAIN (sym), domain))
6315 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6318 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6320 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6325 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329 if (SYMBOL_IS_ARGUMENT (sym))
6334 add_defn_to_vec (obstackp,
6335 fixup_symbol_section (sym, objfile),
6343 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6344 They aren't parameters, right? */
6345 if (!found_sym && arg_sym != NULL)
6347 add_defn_to_vec (obstackp,
6348 fixup_symbol_section (arg_sym, objfile),
6355 /* Symbol Completion */
6357 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6358 name in a form that's appropriate for the completion. The result
6359 does not need to be deallocated, but is only good until the next call.
6361 TEXT_LEN is equal to the length of TEXT.
6362 Perform a wild match if WILD_MATCH_P is set.
6363 ENCODED_P should be set if TEXT represents the start of a symbol name
6364 in its encoded form. */
6367 symbol_completion_match (const char *sym_name,
6368 const char *text, int text_len,
6369 int wild_match_p, int encoded_p)
6371 const int verbatim_match = (text[0] == '<');
6376 /* Strip the leading angle bracket. */
6381 /* First, test against the fully qualified name of the symbol. */
6383 if (strncmp (sym_name, text, text_len) == 0)
6386 if (match && !encoded_p)
6388 /* One needed check before declaring a positive match is to verify
6389 that iff we are doing a verbatim match, the decoded version
6390 of the symbol name starts with '<'. Otherwise, this symbol name
6391 is not a suitable completion. */
6392 const char *sym_name_copy = sym_name;
6393 int has_angle_bracket;
6395 sym_name = ada_decode (sym_name);
6396 has_angle_bracket = (sym_name[0] == '<');
6397 match = (has_angle_bracket == verbatim_match);
6398 sym_name = sym_name_copy;
6401 if (match && !verbatim_match)
6403 /* When doing non-verbatim match, another check that needs to
6404 be done is to verify that the potentially matching symbol name
6405 does not include capital letters, because the ada-mode would
6406 not be able to understand these symbol names without the
6407 angle bracket notation. */
6410 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6415 /* Second: Try wild matching... */
6417 if (!match && wild_match_p)
6419 /* Since we are doing wild matching, this means that TEXT
6420 may represent an unqualified symbol name. We therefore must
6421 also compare TEXT against the unqualified name of the symbol. */
6422 sym_name = ada_unqualified_name (ada_decode (sym_name));
6424 if (strncmp (sym_name, text, text_len) == 0)
6428 /* Finally: If we found a mach, prepare the result to return. */
6434 sym_name = add_angle_brackets (sym_name);
6437 sym_name = ada_decode (sym_name);
6442 /* A companion function to ada_collect_symbol_completion_matches().
6443 Check if SYM_NAME represents a symbol which name would be suitable
6444 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6445 is added as a completion match to TRACKER.
6447 ORIG_TEXT is the string original string from the user command
6448 that needs to be completed. WORD is the entire command on which
6449 completion should be performed. These two parameters are used to
6450 determine which part of the symbol name should be added to the
6452 if WILD_MATCH_P is set, then wild matching is performed.
6453 ENCODED_P should be set if TEXT represents a symbol name in its
6454 encoded formed (in which case the completion should also be
6458 symbol_completion_add (completion_tracker &tracker,
6459 const char *sym_name,
6460 const char *text, int text_len,
6461 const char *orig_text, const char *word,
6462 int wild_match_p, int encoded_p)
6464 const char *match = symbol_completion_match (sym_name, text, text_len,
6465 wild_match_p, encoded_p);
6471 /* We found a match, so add the appropriate completion to the given
6474 if (word == orig_text)
6476 completion = (char *) xmalloc (strlen (match) + 5);
6477 strcpy (completion, match);
6479 else if (word > orig_text)
6481 /* Return some portion of sym_name. */
6482 completion = (char *) xmalloc (strlen (match) + 5);
6483 strcpy (completion, match + (word - orig_text));
6487 /* Return some of ORIG_TEXT plus sym_name. */
6488 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6489 strncpy (completion, word, orig_text - word);
6490 completion[orig_text - word] = '\0';
6491 strcat (completion, match);
6494 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
6497 /* Add the list of possible symbol names completing TEXT0 to TRACKER.
6498 WORD is the entire command on which completion is made. */
6501 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6502 complete_symbol_mode mode,
6503 const char *text0, const char *word,
6504 enum type_code code)
6511 struct compunit_symtab *s;
6512 struct minimal_symbol *msymbol;
6513 struct objfile *objfile;
6514 const struct block *b, *surrounding_static_block = 0;
6516 struct block_iterator iter;
6517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6519 gdb_assert (code == TYPE_CODE_UNDEF);
6521 if (text0[0] == '<')
6523 text = xstrdup (text0);
6524 make_cleanup (xfree, text);
6525 text_len = strlen (text);
6531 text = xstrdup (ada_encode (text0));
6532 make_cleanup (xfree, text);
6533 text_len = strlen (text);
6534 for (i = 0; i < text_len; i++)
6535 text[i] = tolower (text[i]);
6537 encoded_p = (strstr (text0, "__") != NULL);
6538 /* If the name contains a ".", then the user is entering a fully
6539 qualified entity name, and the match must not be done in wild
6540 mode. Similarly, if the user wants to complete what looks like
6541 an encoded name, the match must not be done in wild mode. */
6542 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6545 /* First, look at the partial symtab symbols. */
6546 expand_symtabs_matching (NULL,
6547 [&] (const char *symname)
6549 return symbol_completion_match (symname,
6557 /* At this point scan through the misc symbol vectors and add each
6558 symbol you find to the list. Eventually we want to ignore
6559 anything that isn't a text symbol (everything else will be
6560 handled by the psymtab code above). */
6562 ALL_MSYMBOLS (objfile, msymbol)
6565 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
6566 text, text_len, text0, word, wild_match_p,
6570 /* Search upwards from currently selected frame (so that we can
6571 complete on local vars. */
6573 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6575 if (!BLOCK_SUPERBLOCK (b))
6576 surrounding_static_block = b; /* For elmin of dups */
6578 ALL_BLOCK_SYMBOLS (b, iter, sym)
6580 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6581 text, text_len, text0, word,
6582 wild_match_p, encoded_p);
6586 /* Go through the symtabs and check the externs and statics for
6587 symbols which match. */
6589 ALL_COMPUNITS (objfile, s)
6592 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6593 ALL_BLOCK_SYMBOLS (b, iter, sym)
6595 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6596 text, text_len, text0, word,
6597 wild_match_p, encoded_p);
6601 ALL_COMPUNITS (objfile, s)
6604 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6605 /* Don't do this block twice. */
6606 if (b == surrounding_static_block)
6608 ALL_BLOCK_SYMBOLS (b, iter, sym)
6610 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6611 text, text_len, text0, word,
6612 wild_match_p, encoded_p);
6616 do_cleanups (old_chain);
6621 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6622 for tagged types. */
6625 ada_is_dispatch_table_ptr_type (struct type *type)
6629 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6632 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6636 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6639 /* Return non-zero if TYPE is an interface tag. */
6642 ada_is_interface_tag (struct type *type)
6644 const char *name = TYPE_NAME (type);
6649 return (strcmp (name, "ada__tags__interface_tag") == 0);
6652 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6653 to be invisible to users. */
6656 ada_is_ignored_field (struct type *type, int field_num)
6658 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6661 /* Check the name of that field. */
6663 const char *name = TYPE_FIELD_NAME (type, field_num);
6665 /* Anonymous field names should not be printed.
6666 brobecker/2007-02-20: I don't think this can actually happen
6667 but we don't want to print the value of annonymous fields anyway. */
6671 /* Normally, fields whose name start with an underscore ("_")
6672 are fields that have been internally generated by the compiler,
6673 and thus should not be printed. The "_parent" field is special,
6674 however: This is a field internally generated by the compiler
6675 for tagged types, and it contains the components inherited from
6676 the parent type. This field should not be printed as is, but
6677 should not be ignored either. */
6678 if (name[0] == '_' && !startswith (name, "_parent"))
6682 /* If this is the dispatch table of a tagged type or an interface tag,
6684 if (ada_is_tagged_type (type, 1)
6685 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6686 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6689 /* Not a special field, so it should not be ignored. */
6693 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6694 pointer or reference type whose ultimate target has a tag field. */
6697 ada_is_tagged_type (struct type *type, int refok)
6699 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6702 /* True iff TYPE represents the type of X'Tag */
6705 ada_is_tag_type (struct type *type)
6707 type = ada_check_typedef (type);
6709 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6713 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6715 return (name != NULL
6716 && strcmp (name, "ada__tags__dispatch_table") == 0);
6720 /* The type of the tag on VAL. */
6723 ada_tag_type (struct value *val)
6725 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6728 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6729 retired at Ada 05). */
6732 is_ada95_tag (struct value *tag)
6734 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6737 /* The value of the tag on VAL. */
6740 ada_value_tag (struct value *val)
6742 return ada_value_struct_elt (val, "_tag", 0);
6745 /* The value of the tag on the object of type TYPE whose contents are
6746 saved at VALADDR, if it is non-null, or is at memory address
6749 static struct value *
6750 value_tag_from_contents_and_address (struct type *type,
6751 const gdb_byte *valaddr,
6754 int tag_byte_offset;
6755 struct type *tag_type;
6757 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6760 const gdb_byte *valaddr1 = ((valaddr == NULL)
6762 : valaddr + tag_byte_offset);
6763 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6765 return value_from_contents_and_address (tag_type, valaddr1, address1);
6770 static struct type *
6771 type_from_tag (struct value *tag)
6773 const char *type_name = ada_tag_name (tag);
6775 if (type_name != NULL)
6776 return ada_find_any_type (ada_encode (type_name));
6780 /* Given a value OBJ of a tagged type, return a value of this
6781 type at the base address of the object. The base address, as
6782 defined in Ada.Tags, it is the address of the primary tag of
6783 the object, and therefore where the field values of its full
6784 view can be fetched. */
6787 ada_tag_value_at_base_address (struct value *obj)
6790 LONGEST offset_to_top = 0;
6791 struct type *ptr_type, *obj_type;
6793 CORE_ADDR base_address;
6795 obj_type = value_type (obj);
6797 /* It is the responsability of the caller to deref pointers. */
6799 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6800 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6803 tag = ada_value_tag (obj);
6807 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6809 if (is_ada95_tag (tag))
6812 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6813 ptr_type = lookup_pointer_type (ptr_type);
6814 val = value_cast (ptr_type, tag);
6818 /* It is perfectly possible that an exception be raised while
6819 trying to determine the base address, just like for the tag;
6820 see ada_tag_name for more details. We do not print the error
6821 message for the same reason. */
6825 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6828 CATCH (e, RETURN_MASK_ERROR)
6834 /* If offset is null, nothing to do. */
6836 if (offset_to_top == 0)
6839 /* -1 is a special case in Ada.Tags; however, what should be done
6840 is not quite clear from the documentation. So do nothing for
6843 if (offset_to_top == -1)
6846 base_address = value_address (obj) - offset_to_top;
6847 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6849 /* Make sure that we have a proper tag at the new address.
6850 Otherwise, offset_to_top is bogus (which can happen when
6851 the object is not initialized yet). */
6856 obj_type = type_from_tag (tag);
6861 return value_from_contents_and_address (obj_type, NULL, base_address);
6864 /* Return the "ada__tags__type_specific_data" type. */
6866 static struct type *
6867 ada_get_tsd_type (struct inferior *inf)
6869 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6871 if (data->tsd_type == 0)
6872 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6873 return data->tsd_type;
6876 /* Return the TSD (type-specific data) associated to the given TAG.
6877 TAG is assumed to be the tag of a tagged-type entity.
6879 May return NULL if we are unable to get the TSD. */
6881 static struct value *
6882 ada_get_tsd_from_tag (struct value *tag)
6887 /* First option: The TSD is simply stored as a field of our TAG.
6888 Only older versions of GNAT would use this format, but we have
6889 to test it first, because there are no visible markers for
6890 the current approach except the absence of that field. */
6892 val = ada_value_struct_elt (tag, "tsd", 1);
6896 /* Try the second representation for the dispatch table (in which
6897 there is no explicit 'tsd' field in the referent of the tag pointer,
6898 and instead the tsd pointer is stored just before the dispatch
6901 type = ada_get_tsd_type (current_inferior());
6904 type = lookup_pointer_type (lookup_pointer_type (type));
6905 val = value_cast (type, tag);
6908 return value_ind (value_ptradd (val, -1));
6911 /* Given the TSD of a tag (type-specific data), return a string
6912 containing the name of the associated type.
6914 The returned value is good until the next call. May return NULL
6915 if we are unable to determine the tag name. */
6918 ada_tag_name_from_tsd (struct value *tsd)
6920 static char name[1024];
6924 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6927 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6928 for (p = name; *p != '\0'; p += 1)
6934 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6937 Return NULL if the TAG is not an Ada tag, or if we were unable to
6938 determine the name of that tag. The result is good until the next
6942 ada_tag_name (struct value *tag)
6946 if (!ada_is_tag_type (value_type (tag)))
6949 /* It is perfectly possible that an exception be raised while trying
6950 to determine the TAG's name, even under normal circumstances:
6951 The associated variable may be uninitialized or corrupted, for
6952 instance. We do not let any exception propagate past this point.
6953 instead we return NULL.
6955 We also do not print the error message either (which often is very
6956 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6957 the caller print a more meaningful message if necessary. */
6960 struct value *tsd = ada_get_tsd_from_tag (tag);
6963 name = ada_tag_name_from_tsd (tsd);
6965 CATCH (e, RETURN_MASK_ERROR)
6973 /* The parent type of TYPE, or NULL if none. */
6976 ada_parent_type (struct type *type)
6980 type = ada_check_typedef (type);
6982 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6985 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6986 if (ada_is_parent_field (type, i))
6988 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6990 /* If the _parent field is a pointer, then dereference it. */
6991 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6992 parent_type = TYPE_TARGET_TYPE (parent_type);
6993 /* If there is a parallel XVS type, get the actual base type. */
6994 parent_type = ada_get_base_type (parent_type);
6996 return ada_check_typedef (parent_type);
7002 /* True iff field number FIELD_NUM of structure type TYPE contains the
7003 parent-type (inherited) fields of a derived type. Assumes TYPE is
7004 a structure type with at least FIELD_NUM+1 fields. */
7007 ada_is_parent_field (struct type *type, int field_num)
7009 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7011 return (name != NULL
7012 && (startswith (name, "PARENT")
7013 || startswith (name, "_parent")));
7016 /* True iff field number FIELD_NUM of structure type TYPE is a
7017 transparent wrapper field (which should be silently traversed when doing
7018 field selection and flattened when printing). Assumes TYPE is a
7019 structure type with at least FIELD_NUM+1 fields. Such fields are always
7023 ada_is_wrapper_field (struct type *type, int field_num)
7025 const char *name = TYPE_FIELD_NAME (type, field_num);
7027 if (name != NULL && strcmp (name, "RETVAL") == 0)
7029 /* This happens in functions with "out" or "in out" parameters
7030 which are passed by copy. For such functions, GNAT describes
7031 the function's return type as being a struct where the return
7032 value is in a field called RETVAL, and where the other "out"
7033 or "in out" parameters are fields of that struct. This is not
7038 return (name != NULL
7039 && (startswith (name, "PARENT")
7040 || strcmp (name, "REP") == 0
7041 || startswith (name, "_parent")
7042 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7045 /* True iff field number FIELD_NUM of structure or union type TYPE
7046 is a variant wrapper. Assumes TYPE is a structure type with at least
7047 FIELD_NUM+1 fields. */
7050 ada_is_variant_part (struct type *type, int field_num)
7052 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7054 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7055 || (is_dynamic_field (type, field_num)
7056 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7057 == TYPE_CODE_UNION)));
7060 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7061 whose discriminants are contained in the record type OUTER_TYPE,
7062 returns the type of the controlling discriminant for the variant.
7063 May return NULL if the type could not be found. */
7066 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7068 const char *name = ada_variant_discrim_name (var_type);
7070 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7073 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7074 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7075 represents a 'when others' clause; otherwise 0. */
7078 ada_is_others_clause (struct type *type, int field_num)
7080 const char *name = TYPE_FIELD_NAME (type, field_num);
7082 return (name != NULL && name[0] == 'O');
7085 /* Assuming that TYPE0 is the type of the variant part of a record,
7086 returns the name of the discriminant controlling the variant.
7087 The value is valid until the next call to ada_variant_discrim_name. */
7090 ada_variant_discrim_name (struct type *type0)
7092 static char *result = NULL;
7093 static size_t result_len = 0;
7096 const char *discrim_end;
7097 const char *discrim_start;
7099 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7100 type = TYPE_TARGET_TYPE (type0);
7104 name = ada_type_name (type);
7106 if (name == NULL || name[0] == '\000')
7109 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7112 if (startswith (discrim_end, "___XVN"))
7115 if (discrim_end == name)
7118 for (discrim_start = discrim_end; discrim_start != name + 3;
7121 if (discrim_start == name + 1)
7123 if ((discrim_start > name + 3
7124 && startswith (discrim_start - 3, "___"))
7125 || discrim_start[-1] == '.')
7129 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7130 strncpy (result, discrim_start, discrim_end - discrim_start);
7131 result[discrim_end - discrim_start] = '\0';
7135 /* Scan STR for a subtype-encoded number, beginning at position K.
7136 Put the position of the character just past the number scanned in
7137 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7138 Return 1 if there was a valid number at the given position, and 0
7139 otherwise. A "subtype-encoded" number consists of the absolute value
7140 in decimal, followed by the letter 'm' to indicate a negative number.
7141 Assumes 0m does not occur. */
7144 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7148 if (!isdigit (str[k]))
7151 /* Do it the hard way so as not to make any assumption about
7152 the relationship of unsigned long (%lu scan format code) and
7155 while (isdigit (str[k]))
7157 RU = RU * 10 + (str[k] - '0');
7164 *R = (-(LONGEST) (RU - 1)) - 1;
7170 /* NOTE on the above: Technically, C does not say what the results of
7171 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7172 number representable as a LONGEST (although either would probably work
7173 in most implementations). When RU>0, the locution in the then branch
7174 above is always equivalent to the negative of RU. */
7181 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7182 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7183 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7186 ada_in_variant (LONGEST val, struct type *type, int field_num)
7188 const char *name = TYPE_FIELD_NAME (type, field_num);
7202 if (!ada_scan_number (name, p + 1, &W, &p))
7212 if (!ada_scan_number (name, p + 1, &L, &p)
7213 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7215 if (val >= L && val <= U)
7227 /* FIXME: Lots of redundancy below. Try to consolidate. */
7229 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7230 ARG_TYPE, extract and return the value of one of its (non-static)
7231 fields. FIELDNO says which field. Differs from value_primitive_field
7232 only in that it can handle packed values of arbitrary type. */
7234 static struct value *
7235 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7236 struct type *arg_type)
7240 arg_type = ada_check_typedef (arg_type);
7241 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7243 /* Handle packed fields. */
7245 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7247 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7248 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7250 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7251 offset + bit_pos / 8,
7252 bit_pos % 8, bit_size, type);
7255 return value_primitive_field (arg1, offset, fieldno, arg_type);
7258 /* Find field with name NAME in object of type TYPE. If found,
7259 set the following for each argument that is non-null:
7260 - *FIELD_TYPE_P to the field's type;
7261 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7262 an object of that type;
7263 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7264 - *BIT_SIZE_P to its size in bits if the field is packed, and
7266 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7267 fields up to but not including the desired field, or by the total
7268 number of fields if not found. A NULL value of NAME never
7269 matches; the function just counts visible fields in this case.
7271 Returns 1 if found, 0 otherwise. */
7274 find_struct_field (const char *name, struct type *type, int offset,
7275 struct type **field_type_p,
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7281 type = ada_check_typedef (type);
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
7287 if (bit_offset_p != NULL)
7289 if (bit_size_p != NULL)
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298 if (t_field_name == NULL)
7301 else if (name != NULL && field_name_match (t_field_name, name))
7303 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7305 if (field_type_p != NULL)
7306 *field_type_p = TYPE_FIELD_TYPE (type, i);
7307 if (byte_offset_p != NULL)
7308 *byte_offset_p = fld_offset;
7309 if (bit_offset_p != NULL)
7310 *bit_offset_p = bit_pos % 8;
7311 if (bit_size_p != NULL)
7312 *bit_size_p = bit_size;
7315 else if (ada_is_wrapper_field (type, i))
7317 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7318 field_type_p, byte_offset_p, bit_offset_p,
7319 bit_size_p, index_p))
7322 else if (ada_is_variant_part (type, i))
7324 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7327 struct type *field_type
7328 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7330 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7334 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 field_type_p, byte_offset_p,
7336 bit_offset_p, bit_size_p, index_p))
7340 else if (index_p != NULL)
7346 /* Number of user-visible fields in record type TYPE. */
7349 num_visible_fields (struct type *type)
7354 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7358 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7359 and search in it assuming it has (class) type TYPE.
7360 If found, return value, else return NULL.
7362 Searches recursively through wrapper fields (e.g., '_parent'). */
7364 static struct value *
7365 ada_search_struct_field (const char *name, struct value *arg, int offset,
7370 type = ada_check_typedef (type);
7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7375 if (t_field_name == NULL)
7378 else if (field_name_match (t_field_name, name))
7379 return ada_value_primitive_field (arg, offset, i, type);
7381 else if (ada_is_wrapper_field (type, i))
7383 struct value *v = /* Do not let indent join lines here. */
7384 ada_search_struct_field (name, arg,
7385 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7386 TYPE_FIELD_TYPE (type, i));
7392 else if (ada_is_variant_part (type, i))
7394 /* PNH: Do we ever get here? See find_struct_field. */
7396 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7398 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7400 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7402 struct value *v = ada_search_struct_field /* Force line
7405 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7406 TYPE_FIELD_TYPE (field_type, j));
7416 static struct value *ada_index_struct_field_1 (int *, struct value *,
7417 int, struct type *);
7420 /* Return field #INDEX in ARG, where the index is that returned by
7421 * find_struct_field through its INDEX_P argument. Adjust the address
7422 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7423 * If found, return value, else return NULL. */
7425 static struct value *
7426 ada_index_struct_field (int index, struct value *arg, int offset,
7429 return ada_index_struct_field_1 (&index, arg, offset, type);
7433 /* Auxiliary function for ada_index_struct_field. Like
7434 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7437 static struct value *
7438 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7442 type = ada_check_typedef (type);
7444 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7446 if (TYPE_FIELD_NAME (type, i) == NULL)
7448 else if (ada_is_wrapper_field (type, i))
7450 struct value *v = /* Do not let indent join lines here. */
7451 ada_index_struct_field_1 (index_p, arg,
7452 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7453 TYPE_FIELD_TYPE (type, i));
7459 else if (ada_is_variant_part (type, i))
7461 /* PNH: Do we ever get here? See ada_search_struct_field,
7462 find_struct_field. */
7463 error (_("Cannot assign this kind of variant record"));
7465 else if (*index_p == 0)
7466 return ada_value_primitive_field (arg, offset, i, type);
7473 /* Given ARG, a value of type (pointer or reference to a)*
7474 structure/union, extract the component named NAME from the ultimate
7475 target structure/union and return it as a value with its
7478 The routine searches for NAME among all members of the structure itself
7479 and (recursively) among all members of any wrapper members
7482 If NO_ERR, then simply return NULL in case of error, rather than
7486 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7488 struct type *t, *t1;
7492 t1 = t = ada_check_typedef (value_type (arg));
7493 if (TYPE_CODE (t) == TYPE_CODE_REF)
7495 t1 = TYPE_TARGET_TYPE (t);
7498 t1 = ada_check_typedef (t1);
7499 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7501 arg = coerce_ref (arg);
7506 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7508 t1 = TYPE_TARGET_TYPE (t);
7511 t1 = ada_check_typedef (t1);
7512 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7514 arg = value_ind (arg);
7521 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7525 v = ada_search_struct_field (name, arg, 0, t);
7528 int bit_offset, bit_size, byte_offset;
7529 struct type *field_type;
7532 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7533 address = value_address (ada_value_ind (arg));
7535 address = value_address (ada_coerce_ref (arg));
7537 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7538 if (find_struct_field (name, t1, 0,
7539 &field_type, &byte_offset, &bit_offset,
7544 if (TYPE_CODE (t) == TYPE_CODE_REF)
7545 arg = ada_coerce_ref (arg);
7547 arg = ada_value_ind (arg);
7548 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7549 bit_offset, bit_size,
7553 v = value_at_lazy (field_type, address + byte_offset);
7557 if (v != NULL || no_err)
7560 error (_("There is no member named %s."), name);
7566 error (_("Attempt to extract a component of "
7567 "a value that is not a record."));
7570 /* Return a string representation of type TYPE. */
7573 type_as_string (struct type *type)
7575 string_file tmp_stream;
7577 type_print (type, "", &tmp_stream, -1);
7579 return std::move (tmp_stream.string ());
7582 /* Given a type TYPE, look up the type of the component of type named NAME.
7583 If DISPP is non-null, add its byte displacement from the beginning of a
7584 structure (pointed to by a value) of type TYPE to *DISPP (does not
7585 work for packed fields).
7587 Matches any field whose name has NAME as a prefix, possibly
7590 TYPE can be either a struct or union. If REFOK, TYPE may also
7591 be a (pointer or reference)+ to a struct or union, and the
7592 ultimate target type will be searched.
7594 Looks recursively into variant clauses and parent types.
7596 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7597 TYPE is not a type of the right kind. */
7599 static struct type *
7600 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7608 if (refok && type != NULL)
7611 type = ada_check_typedef (type);
7612 if (TYPE_CODE (type) != TYPE_CODE_PTR
7613 && TYPE_CODE (type) != TYPE_CODE_REF)
7615 type = TYPE_TARGET_TYPE (type);
7619 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7620 && TYPE_CODE (type) != TYPE_CODE_UNION))
7625 error (_("Type %s is not a structure or union type"),
7626 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7629 type = to_static_fixed_type (type);
7631 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7633 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7636 if (t_field_name == NULL)
7639 else if (field_name_match (t_field_name, name))
7640 return TYPE_FIELD_TYPE (type, i);
7642 else if (ada_is_wrapper_field (type, i))
7644 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7650 else if (ada_is_variant_part (type, i))
7653 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7656 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7658 /* FIXME pnh 2008/01/26: We check for a field that is
7659 NOT wrapped in a struct, since the compiler sometimes
7660 generates these for unchecked variant types. Revisit
7661 if the compiler changes this practice. */
7662 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7664 if (v_field_name != NULL
7665 && field_name_match (v_field_name, name))
7666 t = TYPE_FIELD_TYPE (field_type, j);
7668 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7682 const char *name_str = name != NULL ? name : _("<null>");
7684 error (_("Type %s has no component named %s"),
7685 type_as_string (type).c_str (), name_str);
7691 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7692 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7693 represents an unchecked union (that is, the variant part of a
7694 record that is named in an Unchecked_Union pragma). */
7697 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7699 const char *discrim_name = ada_variant_discrim_name (var_type);
7701 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7705 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7706 within a value of type OUTER_TYPE that is stored in GDB at
7707 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7708 numbering from 0) is applicable. Returns -1 if none are. */
7711 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7712 const gdb_byte *outer_valaddr)
7716 const char *discrim_name = ada_variant_discrim_name (var_type);
7717 struct value *outer;
7718 struct value *discrim;
7719 LONGEST discrim_val;
7721 /* Using plain value_from_contents_and_address here causes problems
7722 because we will end up trying to resolve a type that is currently
7723 being constructed. */
7724 outer = value_from_contents_and_address_unresolved (outer_type,
7726 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7727 if (discrim == NULL)
7729 discrim_val = value_as_long (discrim);
7732 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7734 if (ada_is_others_clause (var_type, i))
7736 else if (ada_in_variant (discrim_val, var_type, i))
7740 return others_clause;
7745 /* Dynamic-Sized Records */
7747 /* Strategy: The type ostensibly attached to a value with dynamic size
7748 (i.e., a size that is not statically recorded in the debugging
7749 data) does not accurately reflect the size or layout of the value.
7750 Our strategy is to convert these values to values with accurate,
7751 conventional types that are constructed on the fly. */
7753 /* There is a subtle and tricky problem here. In general, we cannot
7754 determine the size of dynamic records without its data. However,
7755 the 'struct value' data structure, which GDB uses to represent
7756 quantities in the inferior process (the target), requires the size
7757 of the type at the time of its allocation in order to reserve space
7758 for GDB's internal copy of the data. That's why the
7759 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7760 rather than struct value*s.
7762 However, GDB's internal history variables ($1, $2, etc.) are
7763 struct value*s containing internal copies of the data that are not, in
7764 general, the same as the data at their corresponding addresses in
7765 the target. Fortunately, the types we give to these values are all
7766 conventional, fixed-size types (as per the strategy described
7767 above), so that we don't usually have to perform the
7768 'to_fixed_xxx_type' conversions to look at their values.
7769 Unfortunately, there is one exception: if one of the internal
7770 history variables is an array whose elements are unconstrained
7771 records, then we will need to create distinct fixed types for each
7772 element selected. */
7774 /* The upshot of all of this is that many routines take a (type, host
7775 address, target address) triple as arguments to represent a value.
7776 The host address, if non-null, is supposed to contain an internal
7777 copy of the relevant data; otherwise, the program is to consult the
7778 target at the target address. */
7780 /* Assuming that VAL0 represents a pointer value, the result of
7781 dereferencing it. Differs from value_ind in its treatment of
7782 dynamic-sized types. */
7785 ada_value_ind (struct value *val0)
7787 struct value *val = value_ind (val0);
7789 if (ada_is_tagged_type (value_type (val), 0))
7790 val = ada_tag_value_at_base_address (val);
7792 return ada_to_fixed_value (val);
7795 /* The value resulting from dereferencing any "reference to"
7796 qualifiers on VAL0. */
7798 static struct value *
7799 ada_coerce_ref (struct value *val0)
7801 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7803 struct value *val = val0;
7805 val = coerce_ref (val);
7807 if (ada_is_tagged_type (value_type (val), 0))
7808 val = ada_tag_value_at_base_address (val);
7810 return ada_to_fixed_value (val);
7816 /* Return OFF rounded upward if necessary to a multiple of
7817 ALIGNMENT (a power of 2). */
7820 align_value (unsigned int off, unsigned int alignment)
7822 return (off + alignment - 1) & ~(alignment - 1);
7825 /* Return the bit alignment required for field #F of template type TYPE. */
7828 field_alignment (struct type *type, int f)
7830 const char *name = TYPE_FIELD_NAME (type, f);
7834 /* The field name should never be null, unless the debugging information
7835 is somehow malformed. In this case, we assume the field does not
7836 require any alignment. */
7840 len = strlen (name);
7842 if (!isdigit (name[len - 1]))
7845 if (isdigit (name[len - 2]))
7846 align_offset = len - 2;
7848 align_offset = len - 1;
7850 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7851 return TARGET_CHAR_BIT;
7853 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7856 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7858 static struct symbol *
7859 ada_find_any_type_symbol (const char *name)
7863 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7864 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7867 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7871 /* Find a type named NAME. Ignores ambiguity. This routine will look
7872 solely for types defined by debug info, it will not search the GDB
7875 static struct type *
7876 ada_find_any_type (const char *name)
7878 struct symbol *sym = ada_find_any_type_symbol (name);
7881 return SYMBOL_TYPE (sym);
7886 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7887 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7888 symbol, in which case it is returned. Otherwise, this looks for
7889 symbols whose name is that of NAME_SYM suffixed with "___XR".
7890 Return symbol if found, and NULL otherwise. */
7893 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7895 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7898 if (strstr (name, "___XR") != NULL)
7901 sym = find_old_style_renaming_symbol (name, block);
7906 /* Not right yet. FIXME pnh 7/20/2007. */
7907 sym = ada_find_any_type_symbol (name);
7908 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7914 static struct symbol *
7915 find_old_style_renaming_symbol (const char *name, const struct block *block)
7917 const struct symbol *function_sym = block_linkage_function (block);
7920 if (function_sym != NULL)
7922 /* If the symbol is defined inside a function, NAME is not fully
7923 qualified. This means we need to prepend the function name
7924 as well as adding the ``___XR'' suffix to build the name of
7925 the associated renaming symbol. */
7926 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7927 /* Function names sometimes contain suffixes used
7928 for instance to qualify nested subprograms. When building
7929 the XR type name, we need to make sure that this suffix is
7930 not included. So do not include any suffix in the function
7931 name length below. */
7932 int function_name_len = ada_name_prefix_len (function_name);
7933 const int rename_len = function_name_len + 2 /* "__" */
7934 + strlen (name) + 6 /* "___XR\0" */ ;
7936 /* Strip the suffix if necessary. */
7937 ada_remove_trailing_digits (function_name, &function_name_len);
7938 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7939 ada_remove_Xbn_suffix (function_name, &function_name_len);
7941 /* Library-level functions are a special case, as GNAT adds
7942 a ``_ada_'' prefix to the function name to avoid namespace
7943 pollution. However, the renaming symbols themselves do not
7944 have this prefix, so we need to skip this prefix if present. */
7945 if (function_name_len > 5 /* "_ada_" */
7946 && strstr (function_name, "_ada_") == function_name)
7949 function_name_len -= 5;
7952 rename = (char *) alloca (rename_len * sizeof (char));
7953 strncpy (rename, function_name, function_name_len);
7954 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7959 const int rename_len = strlen (name) + 6;
7961 rename = (char *) alloca (rename_len * sizeof (char));
7962 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7965 return ada_find_any_type_symbol (rename);
7968 /* Because of GNAT encoding conventions, several GDB symbols may match a
7969 given type name. If the type denoted by TYPE0 is to be preferred to
7970 that of TYPE1 for purposes of type printing, return non-zero;
7971 otherwise return 0. */
7974 ada_prefer_type (struct type *type0, struct type *type1)
7978 else if (type0 == NULL)
7980 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7982 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7984 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7986 else if (ada_is_constrained_packed_array_type (type0))
7988 else if (ada_is_array_descriptor_type (type0)
7989 && !ada_is_array_descriptor_type (type1))
7993 const char *type0_name = type_name_no_tag (type0);
7994 const char *type1_name = type_name_no_tag (type1);
7996 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7997 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8003 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8004 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8007 ada_type_name (struct type *type)
8011 else if (TYPE_NAME (type) != NULL)
8012 return TYPE_NAME (type);
8014 return TYPE_TAG_NAME (type);
8017 /* Search the list of "descriptive" types associated to TYPE for a type
8018 whose name is NAME. */
8020 static struct type *
8021 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8023 struct type *result, *tmp;
8025 if (ada_ignore_descriptive_types_p)
8028 /* If there no descriptive-type info, then there is no parallel type
8030 if (!HAVE_GNAT_AUX_INFO (type))
8033 result = TYPE_DESCRIPTIVE_TYPE (type);
8034 while (result != NULL)
8036 const char *result_name = ada_type_name (result);
8038 if (result_name == NULL)
8040 warning (_("unexpected null name on descriptive type"));
8044 /* If the names match, stop. */
8045 if (strcmp (result_name, name) == 0)
8048 /* Otherwise, look at the next item on the list, if any. */
8049 if (HAVE_GNAT_AUX_INFO (result))
8050 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8054 /* If not found either, try after having resolved the typedef. */
8059 result = check_typedef (result);
8060 if (HAVE_GNAT_AUX_INFO (result))
8061 result = TYPE_DESCRIPTIVE_TYPE (result);
8067 /* If we didn't find a match, see whether this is a packed array. With
8068 older compilers, the descriptive type information is either absent or
8069 irrelevant when it comes to packed arrays so the above lookup fails.
8070 Fall back to using a parallel lookup by name in this case. */
8071 if (result == NULL && ada_is_constrained_packed_array_type (type))
8072 return ada_find_any_type (name);
8077 /* Find a parallel type to TYPE with the specified NAME, using the
8078 descriptive type taken from the debugging information, if available,
8079 and otherwise using the (slower) name-based method. */
8081 static struct type *
8082 ada_find_parallel_type_with_name (struct type *type, const char *name)
8084 struct type *result = NULL;
8086 if (HAVE_GNAT_AUX_INFO (type))
8087 result = find_parallel_type_by_descriptive_type (type, name);
8089 result = ada_find_any_type (name);
8094 /* Same as above, but specify the name of the parallel type by appending
8095 SUFFIX to the name of TYPE. */
8098 ada_find_parallel_type (struct type *type, const char *suffix)
8101 const char *type_name = ada_type_name (type);
8104 if (type_name == NULL)
8107 len = strlen (type_name);
8109 name = (char *) alloca (len + strlen (suffix) + 1);
8111 strcpy (name, type_name);
8112 strcpy (name + len, suffix);
8114 return ada_find_parallel_type_with_name (type, name);
8117 /* If TYPE is a variable-size record type, return the corresponding template
8118 type describing its fields. Otherwise, return NULL. */
8120 static struct type *
8121 dynamic_template_type (struct type *type)
8123 type = ada_check_typedef (type);
8125 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8126 || ada_type_name (type) == NULL)
8130 int len = strlen (ada_type_name (type));
8132 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8135 return ada_find_parallel_type (type, "___XVE");
8139 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8140 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8143 is_dynamic_field (struct type *templ_type, int field_num)
8145 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8148 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8149 && strstr (name, "___XVL") != NULL;
8152 /* The index of the variant field of TYPE, or -1 if TYPE does not
8153 represent a variant record type. */
8156 variant_field_index (struct type *type)
8160 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8163 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8165 if (ada_is_variant_part (type, f))
8171 /* A record type with no fields. */
8173 static struct type *
8174 empty_record (struct type *templ)
8176 struct type *type = alloc_type_copy (templ);
8178 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8179 TYPE_NFIELDS (type) = 0;
8180 TYPE_FIELDS (type) = NULL;
8181 INIT_CPLUS_SPECIFIC (type);
8182 TYPE_NAME (type) = "<empty>";
8183 TYPE_TAG_NAME (type) = NULL;
8184 TYPE_LENGTH (type) = 0;
8188 /* An ordinary record type (with fixed-length fields) that describes
8189 the value of type TYPE at VALADDR or ADDRESS (see comments at
8190 the beginning of this section) VAL according to GNAT conventions.
8191 DVAL0 should describe the (portion of a) record that contains any
8192 necessary discriminants. It should be NULL if value_type (VAL) is
8193 an outer-level type (i.e., as opposed to a branch of a variant.) A
8194 variant field (unless unchecked) is replaced by a particular branch
8197 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8198 length are not statically known are discarded. As a consequence,
8199 VALADDR, ADDRESS and DVAL0 are ignored.
8201 NOTE: Limitations: For now, we assume that dynamic fields and
8202 variants occupy whole numbers of bytes. However, they need not be
8206 ada_template_to_fixed_record_type_1 (struct type *type,
8207 const gdb_byte *valaddr,
8208 CORE_ADDR address, struct value *dval0,
8209 int keep_dynamic_fields)
8211 struct value *mark = value_mark ();
8214 int nfields, bit_len;
8220 /* Compute the number of fields in this record type that are going
8221 to be processed: unless keep_dynamic_fields, this includes only
8222 fields whose position and length are static will be processed. */
8223 if (keep_dynamic_fields)
8224 nfields = TYPE_NFIELDS (type);
8228 while (nfields < TYPE_NFIELDS (type)
8229 && !ada_is_variant_part (type, nfields)
8230 && !is_dynamic_field (type, nfields))
8234 rtype = alloc_type_copy (type);
8235 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8236 INIT_CPLUS_SPECIFIC (rtype);
8237 TYPE_NFIELDS (rtype) = nfields;
8238 TYPE_FIELDS (rtype) = (struct field *)
8239 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8240 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8241 TYPE_NAME (rtype) = ada_type_name (type);
8242 TYPE_TAG_NAME (rtype) = NULL;
8243 TYPE_FIXED_INSTANCE (rtype) = 1;
8249 for (f = 0; f < nfields; f += 1)
8251 off = align_value (off, field_alignment (type, f))
8252 + TYPE_FIELD_BITPOS (type, f);
8253 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8254 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8256 if (ada_is_variant_part (type, f))
8261 else if (is_dynamic_field (type, f))
8263 const gdb_byte *field_valaddr = valaddr;
8264 CORE_ADDR field_address = address;
8265 struct type *field_type =
8266 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8270 /* rtype's length is computed based on the run-time
8271 value of discriminants. If the discriminants are not
8272 initialized, the type size may be completely bogus and
8273 GDB may fail to allocate a value for it. So check the
8274 size first before creating the value. */
8275 ada_ensure_varsize_limit (rtype);
8276 /* Using plain value_from_contents_and_address here
8277 causes problems because we will end up trying to
8278 resolve a type that is currently being
8280 dval = value_from_contents_and_address_unresolved (rtype,
8283 rtype = value_type (dval);
8288 /* If the type referenced by this field is an aligner type, we need
8289 to unwrap that aligner type, because its size might not be set.
8290 Keeping the aligner type would cause us to compute the wrong
8291 size for this field, impacting the offset of the all the fields
8292 that follow this one. */
8293 if (ada_is_aligner_type (field_type))
8295 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8297 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8298 field_address = cond_offset_target (field_address, field_offset);
8299 field_type = ada_aligned_type (field_type);
8302 field_valaddr = cond_offset_host (field_valaddr,
8303 off / TARGET_CHAR_BIT);
8304 field_address = cond_offset_target (field_address,
8305 off / TARGET_CHAR_BIT);
8307 /* Get the fixed type of the field. Note that, in this case,
8308 we do not want to get the real type out of the tag: if
8309 the current field is the parent part of a tagged record,
8310 we will get the tag of the object. Clearly wrong: the real
8311 type of the parent is not the real type of the child. We
8312 would end up in an infinite loop. */
8313 field_type = ada_get_base_type (field_type);
8314 field_type = ada_to_fixed_type (field_type, field_valaddr,
8315 field_address, dval, 0);
8316 /* If the field size is already larger than the maximum
8317 object size, then the record itself will necessarily
8318 be larger than the maximum object size. We need to make
8319 this check now, because the size might be so ridiculously
8320 large (due to an uninitialized variable in the inferior)
8321 that it would cause an overflow when adding it to the
8323 ada_ensure_varsize_limit (field_type);
8325 TYPE_FIELD_TYPE (rtype, f) = field_type;
8326 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8327 /* The multiplication can potentially overflow. But because
8328 the field length has been size-checked just above, and
8329 assuming that the maximum size is a reasonable value,
8330 an overflow should not happen in practice. So rather than
8331 adding overflow recovery code to this already complex code,
8332 we just assume that it's not going to happen. */
8334 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8338 /* Note: If this field's type is a typedef, it is important
8339 to preserve the typedef layer.
8341 Otherwise, we might be transforming a typedef to a fat
8342 pointer (encoding a pointer to an unconstrained array),
8343 into a basic fat pointer (encoding an unconstrained
8344 array). As both types are implemented using the same
8345 structure, the typedef is the only clue which allows us
8346 to distinguish between the two options. Stripping it
8347 would prevent us from printing this field appropriately. */
8348 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8349 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8350 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8352 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8355 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8357 /* We need to be careful of typedefs when computing
8358 the length of our field. If this is a typedef,
8359 get the length of the target type, not the length
8361 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8362 field_type = ada_typedef_target_type (field_type);
8365 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8368 if (off + fld_bit_len > bit_len)
8369 bit_len = off + fld_bit_len;
8371 TYPE_LENGTH (rtype) =
8372 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8375 /* We handle the variant part, if any, at the end because of certain
8376 odd cases in which it is re-ordered so as NOT to be the last field of
8377 the record. This can happen in the presence of representation
8379 if (variant_field >= 0)
8381 struct type *branch_type;
8383 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8387 /* Using plain value_from_contents_and_address here causes
8388 problems because we will end up trying to resolve a type
8389 that is currently being constructed. */
8390 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8392 rtype = value_type (dval);
8398 to_fixed_variant_branch_type
8399 (TYPE_FIELD_TYPE (type, variant_field),
8400 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8401 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8402 if (branch_type == NULL)
8404 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8405 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8406 TYPE_NFIELDS (rtype) -= 1;
8410 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8411 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8413 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8415 if (off + fld_bit_len > bit_len)
8416 bit_len = off + fld_bit_len;
8417 TYPE_LENGTH (rtype) =
8418 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8422 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8423 should contain the alignment of that record, which should be a strictly
8424 positive value. If null or negative, then something is wrong, most
8425 probably in the debug info. In that case, we don't round up the size
8426 of the resulting type. If this record is not part of another structure,
8427 the current RTYPE length might be good enough for our purposes. */
8428 if (TYPE_LENGTH (type) <= 0)
8430 if (TYPE_NAME (rtype))
8431 warning (_("Invalid type size for `%s' detected: %d."),
8432 TYPE_NAME (rtype), TYPE_LENGTH (type));
8434 warning (_("Invalid type size for <unnamed> detected: %d."),
8435 TYPE_LENGTH (type));
8439 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8440 TYPE_LENGTH (type));
8443 value_free_to_mark (mark);
8444 if (TYPE_LENGTH (rtype) > varsize_limit)
8445 error (_("record type with dynamic size is larger than varsize-limit"));
8449 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8452 static struct type *
8453 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8454 CORE_ADDR address, struct value *dval0)
8456 return ada_template_to_fixed_record_type_1 (type, valaddr,
8460 /* An ordinary record type in which ___XVL-convention fields and
8461 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8462 static approximations, containing all possible fields. Uses
8463 no runtime values. Useless for use in values, but that's OK,
8464 since the results are used only for type determinations. Works on both
8465 structs and unions. Representation note: to save space, we memorize
8466 the result of this function in the TYPE_TARGET_TYPE of the
8469 static struct type *
8470 template_to_static_fixed_type (struct type *type0)
8476 /* No need no do anything if the input type is already fixed. */
8477 if (TYPE_FIXED_INSTANCE (type0))
8480 /* Likewise if we already have computed the static approximation. */
8481 if (TYPE_TARGET_TYPE (type0) != NULL)
8482 return TYPE_TARGET_TYPE (type0);
8484 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8486 nfields = TYPE_NFIELDS (type0);
8488 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8489 recompute all over next time. */
8490 TYPE_TARGET_TYPE (type0) = type;
8492 for (f = 0; f < nfields; f += 1)
8494 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8495 struct type *new_type;
8497 if (is_dynamic_field (type0, f))
8499 field_type = ada_check_typedef (field_type);
8500 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8503 new_type = static_unwrap_type (field_type);
8505 if (new_type != field_type)
8507 /* Clone TYPE0 only the first time we get a new field type. */
8510 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8511 TYPE_CODE (type) = TYPE_CODE (type0);
8512 INIT_CPLUS_SPECIFIC (type);
8513 TYPE_NFIELDS (type) = nfields;
8514 TYPE_FIELDS (type) = (struct field *)
8515 TYPE_ALLOC (type, nfields * sizeof (struct field));
8516 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8517 sizeof (struct field) * nfields);
8518 TYPE_NAME (type) = ada_type_name (type0);
8519 TYPE_TAG_NAME (type) = NULL;
8520 TYPE_FIXED_INSTANCE (type) = 1;
8521 TYPE_LENGTH (type) = 0;
8523 TYPE_FIELD_TYPE (type, f) = new_type;
8524 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8531 /* Given an object of type TYPE whose contents are at VALADDR and
8532 whose address in memory is ADDRESS, returns a revision of TYPE,
8533 which should be a non-dynamic-sized record, in which the variant
8534 part, if any, is replaced with the appropriate branch. Looks
8535 for discriminant values in DVAL0, which can be NULL if the record
8536 contains the necessary discriminant values. */
8538 static struct type *
8539 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval0)
8542 struct value *mark = value_mark ();
8545 struct type *branch_type;
8546 int nfields = TYPE_NFIELDS (type);
8547 int variant_field = variant_field_index (type);
8549 if (variant_field == -1)
8554 dval = value_from_contents_and_address (type, valaddr, address);
8555 type = value_type (dval);
8560 rtype = alloc_type_copy (type);
8561 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8562 INIT_CPLUS_SPECIFIC (rtype);
8563 TYPE_NFIELDS (rtype) = nfields;
8564 TYPE_FIELDS (rtype) =
8565 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8566 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8567 sizeof (struct field) * nfields);
8568 TYPE_NAME (rtype) = ada_type_name (type);
8569 TYPE_TAG_NAME (rtype) = NULL;
8570 TYPE_FIXED_INSTANCE (rtype) = 1;
8571 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8573 branch_type = to_fixed_variant_branch_type
8574 (TYPE_FIELD_TYPE (type, variant_field),
8575 cond_offset_host (valaddr,
8576 TYPE_FIELD_BITPOS (type, variant_field)
8578 cond_offset_target (address,
8579 TYPE_FIELD_BITPOS (type, variant_field)
8580 / TARGET_CHAR_BIT), dval);
8581 if (branch_type == NULL)
8585 for (f = variant_field + 1; f < nfields; f += 1)
8586 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8587 TYPE_NFIELDS (rtype) -= 1;
8591 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8592 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8593 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8594 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8596 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8598 value_free_to_mark (mark);
8602 /* An ordinary record type (with fixed-length fields) that describes
8603 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8604 beginning of this section]. Any necessary discriminants' values
8605 should be in DVAL, a record value; it may be NULL if the object
8606 at ADDR itself contains any necessary discriminant values.
8607 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8608 values from the record are needed. Except in the case that DVAL,
8609 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8610 unchecked) is replaced by a particular branch of the variant.
8612 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8613 is questionable and may be removed. It can arise during the
8614 processing of an unconstrained-array-of-record type where all the
8615 variant branches have exactly the same size. This is because in
8616 such cases, the compiler does not bother to use the XVS convention
8617 when encoding the record. I am currently dubious of this
8618 shortcut and suspect the compiler should be altered. FIXME. */
8620 static struct type *
8621 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8622 CORE_ADDR address, struct value *dval)
8624 struct type *templ_type;
8626 if (TYPE_FIXED_INSTANCE (type0))
8629 templ_type = dynamic_template_type (type0);
8631 if (templ_type != NULL)
8632 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8633 else if (variant_field_index (type0) >= 0)
8635 if (dval == NULL && valaddr == NULL && address == 0)
8637 return to_record_with_fixed_variant_part (type0, valaddr, address,
8642 TYPE_FIXED_INSTANCE (type0) = 1;
8648 /* An ordinary record type (with fixed-length fields) that describes
8649 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8650 union type. Any necessary discriminants' values should be in DVAL,
8651 a record value. That is, this routine selects the appropriate
8652 branch of the union at ADDR according to the discriminant value
8653 indicated in the union's type name. Returns VAR_TYPE0 itself if
8654 it represents a variant subject to a pragma Unchecked_Union. */
8656 static struct type *
8657 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8658 CORE_ADDR address, struct value *dval)
8661 struct type *templ_type;
8662 struct type *var_type;
8664 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8665 var_type = TYPE_TARGET_TYPE (var_type0);
8667 var_type = var_type0;
8669 templ_type = ada_find_parallel_type (var_type, "___XVU");
8671 if (templ_type != NULL)
8672 var_type = templ_type;
8674 if (is_unchecked_variant (var_type, value_type (dval)))
8677 ada_which_variant_applies (var_type,
8678 value_type (dval), value_contents (dval));
8681 return empty_record (var_type);
8682 else if (is_dynamic_field (var_type, which))
8683 return to_fixed_record_type
8684 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8685 valaddr, address, dval);
8686 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8688 to_fixed_record_type
8689 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8691 return TYPE_FIELD_TYPE (var_type, which);
8694 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8695 ENCODING_TYPE, a type following the GNAT conventions for discrete
8696 type encodings, only carries redundant information. */
8699 ada_is_redundant_range_encoding (struct type *range_type,
8700 struct type *encoding_type)
8702 struct type *fixed_range_type;
8703 const char *bounds_str;
8707 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8709 if (TYPE_CODE (get_base_type (range_type))
8710 != TYPE_CODE (get_base_type (encoding_type)))
8712 /* The compiler probably used a simple base type to describe
8713 the range type instead of the range's actual base type,
8714 expecting us to get the real base type from the encoding
8715 anyway. In this situation, the encoding cannot be ignored
8720 if (is_dynamic_type (range_type))
8723 if (TYPE_NAME (encoding_type) == NULL)
8726 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8727 if (bounds_str == NULL)
8730 n = 8; /* Skip "___XDLU_". */
8731 if (!ada_scan_number (bounds_str, n, &lo, &n))
8733 if (TYPE_LOW_BOUND (range_type) != lo)
8736 n += 2; /* Skip the "__" separator between the two bounds. */
8737 if (!ada_scan_number (bounds_str, n, &hi, &n))
8739 if (TYPE_HIGH_BOUND (range_type) != hi)
8745 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8746 a type following the GNAT encoding for describing array type
8747 indices, only carries redundant information. */
8750 ada_is_redundant_index_type_desc (struct type *array_type,
8751 struct type *desc_type)
8753 struct type *this_layer = check_typedef (array_type);
8756 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8758 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8759 TYPE_FIELD_TYPE (desc_type, i)))
8761 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8767 /* Assuming that TYPE0 is an array type describing the type of a value
8768 at ADDR, and that DVAL describes a record containing any
8769 discriminants used in TYPE0, returns a type for the value that
8770 contains no dynamic components (that is, no components whose sizes
8771 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8772 true, gives an error message if the resulting type's size is over
8775 static struct type *
8776 to_fixed_array_type (struct type *type0, struct value *dval,
8779 struct type *index_type_desc;
8780 struct type *result;
8781 int constrained_packed_array_p;
8782 static const char *xa_suffix = "___XA";
8784 type0 = ada_check_typedef (type0);
8785 if (TYPE_FIXED_INSTANCE (type0))
8788 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8789 if (constrained_packed_array_p)
8790 type0 = decode_constrained_packed_array_type (type0);
8792 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8794 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8795 encoding suffixed with 'P' may still be generated. If so,
8796 it should be used to find the XA type. */
8798 if (index_type_desc == NULL)
8800 const char *type_name = ada_type_name (type0);
8802 if (type_name != NULL)
8804 const int len = strlen (type_name);
8805 char *name = (char *) alloca (len + strlen (xa_suffix));
8807 if (type_name[len - 1] == 'P')
8809 strcpy (name, type_name);
8810 strcpy (name + len - 1, xa_suffix);
8811 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8816 ada_fixup_array_indexes_type (index_type_desc);
8817 if (index_type_desc != NULL
8818 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8820 /* Ignore this ___XA parallel type, as it does not bring any
8821 useful information. This allows us to avoid creating fixed
8822 versions of the array's index types, which would be identical
8823 to the original ones. This, in turn, can also help avoid
8824 the creation of fixed versions of the array itself. */
8825 index_type_desc = NULL;
8828 if (index_type_desc == NULL)
8830 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8832 /* NOTE: elt_type---the fixed version of elt_type0---should never
8833 depend on the contents of the array in properly constructed
8835 /* Create a fixed version of the array element type.
8836 We're not providing the address of an element here,
8837 and thus the actual object value cannot be inspected to do
8838 the conversion. This should not be a problem, since arrays of
8839 unconstrained objects are not allowed. In particular, all
8840 the elements of an array of a tagged type should all be of
8841 the same type specified in the debugging info. No need to
8842 consult the object tag. */
8843 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8845 /* Make sure we always create a new array type when dealing with
8846 packed array types, since we're going to fix-up the array
8847 type length and element bitsize a little further down. */
8848 if (elt_type0 == elt_type && !constrained_packed_array_p)
8851 result = create_array_type (alloc_type_copy (type0),
8852 elt_type, TYPE_INDEX_TYPE (type0));
8857 struct type *elt_type0;
8860 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8861 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8863 /* NOTE: result---the fixed version of elt_type0---should never
8864 depend on the contents of the array in properly constructed
8866 /* Create a fixed version of the array element type.
8867 We're not providing the address of an element here,
8868 and thus the actual object value cannot be inspected to do
8869 the conversion. This should not be a problem, since arrays of
8870 unconstrained objects are not allowed. In particular, all
8871 the elements of an array of a tagged type should all be of
8872 the same type specified in the debugging info. No need to
8873 consult the object tag. */
8875 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8878 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8880 struct type *range_type =
8881 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8883 result = create_array_type (alloc_type_copy (elt_type0),
8884 result, range_type);
8885 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8887 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8888 error (_("array type with dynamic size is larger than varsize-limit"));
8891 /* We want to preserve the type name. This can be useful when
8892 trying to get the type name of a value that has already been
8893 printed (for instance, if the user did "print VAR; whatis $". */
8894 TYPE_NAME (result) = TYPE_NAME (type0);
8896 if (constrained_packed_array_p)
8898 /* So far, the resulting type has been created as if the original
8899 type was a regular (non-packed) array type. As a result, the
8900 bitsize of the array elements needs to be set again, and the array
8901 length needs to be recomputed based on that bitsize. */
8902 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8903 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8905 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8906 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8907 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8908 TYPE_LENGTH (result)++;
8911 TYPE_FIXED_INSTANCE (result) = 1;
8916 /* A standard type (containing no dynamically sized components)
8917 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8918 DVAL describes a record containing any discriminants used in TYPE0,
8919 and may be NULL if there are none, or if the object of type TYPE at
8920 ADDRESS or in VALADDR contains these discriminants.
8922 If CHECK_TAG is not null, in the case of tagged types, this function
8923 attempts to locate the object's tag and use it to compute the actual
8924 type. However, when ADDRESS is null, we cannot use it to determine the
8925 location of the tag, and therefore compute the tagged type's actual type.
8926 So we return the tagged type without consulting the tag. */
8928 static struct type *
8929 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8930 CORE_ADDR address, struct value *dval, int check_tag)
8932 type = ada_check_typedef (type);
8933 switch (TYPE_CODE (type))
8937 case TYPE_CODE_STRUCT:
8939 struct type *static_type = to_static_fixed_type (type);
8940 struct type *fixed_record_type =
8941 to_fixed_record_type (type, valaddr, address, NULL);
8943 /* If STATIC_TYPE is a tagged type and we know the object's address,
8944 then we can determine its tag, and compute the object's actual
8945 type from there. Note that we have to use the fixed record
8946 type (the parent part of the record may have dynamic fields
8947 and the way the location of _tag is expressed may depend on
8950 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8953 value_tag_from_contents_and_address
8957 struct type *real_type = type_from_tag (tag);
8959 value_from_contents_and_address (fixed_record_type,
8962 fixed_record_type = value_type (obj);
8963 if (real_type != NULL)
8964 return to_fixed_record_type
8966 value_address (ada_tag_value_at_base_address (obj)), NULL);
8969 /* Check to see if there is a parallel ___XVZ variable.
8970 If there is, then it provides the actual size of our type. */
8971 else if (ada_type_name (fixed_record_type) != NULL)
8973 const char *name = ada_type_name (fixed_record_type);
8975 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8978 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8979 if (get_int_var_value (xvz_name, size)
8980 && TYPE_LENGTH (fixed_record_type) != size)
8982 fixed_record_type = copy_type (fixed_record_type);
8983 TYPE_LENGTH (fixed_record_type) = size;
8985 /* The FIXED_RECORD_TYPE may have be a stub. We have
8986 observed this when the debugging info is STABS, and
8987 apparently it is something that is hard to fix.
8989 In practice, we don't need the actual type definition
8990 at all, because the presence of the XVZ variable allows us
8991 to assume that there must be a XVS type as well, which we
8992 should be able to use later, when we need the actual type
8995 In the meantime, pretend that the "fixed" type we are
8996 returning is NOT a stub, because this can cause trouble
8997 when using this type to create new types targeting it.
8998 Indeed, the associated creation routines often check
8999 whether the target type is a stub and will try to replace
9000 it, thus using a type with the wrong size. This, in turn,
9001 might cause the new type to have the wrong size too.
9002 Consider the case of an array, for instance, where the size
9003 of the array is computed from the number of elements in
9004 our array multiplied by the size of its element. */
9005 TYPE_STUB (fixed_record_type) = 0;
9008 return fixed_record_type;
9010 case TYPE_CODE_ARRAY:
9011 return to_fixed_array_type (type, dval, 1);
9012 case TYPE_CODE_UNION:
9016 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9020 /* The same as ada_to_fixed_type_1, except that it preserves the type
9021 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9023 The typedef layer needs be preserved in order to differentiate between
9024 arrays and array pointers when both types are implemented using the same
9025 fat pointer. In the array pointer case, the pointer is encoded as
9026 a typedef of the pointer type. For instance, considering:
9028 type String_Access is access String;
9029 S1 : String_Access := null;
9031 To the debugger, S1 is defined as a typedef of type String. But
9032 to the user, it is a pointer. So if the user tries to print S1,
9033 we should not dereference the array, but print the array address
9036 If we didn't preserve the typedef layer, we would lose the fact that
9037 the type is to be presented as a pointer (needs de-reference before
9038 being printed). And we would also use the source-level type name. */
9041 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9042 CORE_ADDR address, struct value *dval, int check_tag)
9045 struct type *fixed_type =
9046 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9048 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9049 then preserve the typedef layer.
9051 Implementation note: We can only check the main-type portion of
9052 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9053 from TYPE now returns a type that has the same instance flags
9054 as TYPE. For instance, if TYPE is a "typedef const", and its
9055 target type is a "struct", then the typedef elimination will return
9056 a "const" version of the target type. See check_typedef for more
9057 details about how the typedef layer elimination is done.
9059 brobecker/2010-11-19: It seems to me that the only case where it is
9060 useful to preserve the typedef layer is when dealing with fat pointers.
9061 Perhaps, we could add a check for that and preserve the typedef layer
9062 only in that situation. But this seems unecessary so far, probably
9063 because we call check_typedef/ada_check_typedef pretty much everywhere.
9065 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9066 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9067 == TYPE_MAIN_TYPE (fixed_type)))
9073 /* A standard (static-sized) type corresponding as well as possible to
9074 TYPE0, but based on no runtime data. */
9076 static struct type *
9077 to_static_fixed_type (struct type *type0)
9084 if (TYPE_FIXED_INSTANCE (type0))
9087 type0 = ada_check_typedef (type0);
9089 switch (TYPE_CODE (type0))
9093 case TYPE_CODE_STRUCT:
9094 type = dynamic_template_type (type0);
9096 return template_to_static_fixed_type (type);
9098 return template_to_static_fixed_type (type0);
9099 case TYPE_CODE_UNION:
9100 type = ada_find_parallel_type (type0, "___XVU");
9102 return template_to_static_fixed_type (type);
9104 return template_to_static_fixed_type (type0);
9108 /* A static approximation of TYPE with all type wrappers removed. */
9110 static struct type *
9111 static_unwrap_type (struct type *type)
9113 if (ada_is_aligner_type (type))
9115 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9116 if (ada_type_name (type1) == NULL)
9117 TYPE_NAME (type1) = ada_type_name (type);
9119 return static_unwrap_type (type1);
9123 struct type *raw_real_type = ada_get_base_type (type);
9125 if (raw_real_type == type)
9128 return to_static_fixed_type (raw_real_type);
9132 /* In some cases, incomplete and private types require
9133 cross-references that are not resolved as records (for example,
9135 type FooP is access Foo;
9137 type Foo is array ...;
9138 ). In these cases, since there is no mechanism for producing
9139 cross-references to such types, we instead substitute for FooP a
9140 stub enumeration type that is nowhere resolved, and whose tag is
9141 the name of the actual type. Call these types "non-record stubs". */
9143 /* A type equivalent to TYPE that is not a non-record stub, if one
9144 exists, otherwise TYPE. */
9147 ada_check_typedef (struct type *type)
9152 /* If our type is a typedef type of a fat pointer, then we're done.
9153 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9154 what allows us to distinguish between fat pointers that represent
9155 array types, and fat pointers that represent array access types
9156 (in both cases, the compiler implements them as fat pointers). */
9157 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9158 && is_thick_pntr (ada_typedef_target_type (type)))
9161 type = check_typedef (type);
9162 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9163 || !TYPE_STUB (type)
9164 || TYPE_TAG_NAME (type) == NULL)
9168 const char *name = TYPE_TAG_NAME (type);
9169 struct type *type1 = ada_find_any_type (name);
9174 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9175 stubs pointing to arrays, as we don't create symbols for array
9176 types, only for the typedef-to-array types). If that's the case,
9177 strip the typedef layer. */
9178 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9179 type1 = ada_check_typedef (type1);
9185 /* A value representing the data at VALADDR/ADDRESS as described by
9186 type TYPE0, but with a standard (static-sized) type that correctly
9187 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9188 type, then return VAL0 [this feature is simply to avoid redundant
9189 creation of struct values]. */
9191 static struct value *
9192 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9195 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9197 if (type == type0 && val0 != NULL)
9200 return value_from_contents_and_address (type, 0, address);
9203 /* A value representing VAL, but with a standard (static-sized) type
9204 that correctly describes it. Does not necessarily create a new
9208 ada_to_fixed_value (struct value *val)
9210 val = unwrap_value (val);
9211 val = ada_to_fixed_value_create (value_type (val),
9212 value_address (val),
9220 /* Table mapping attribute numbers to names.
9221 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9223 static const char *attribute_names[] = {
9241 ada_attribute_name (enum exp_opcode n)
9243 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9244 return attribute_names[n - OP_ATR_FIRST + 1];
9246 return attribute_names[0];
9249 /* Evaluate the 'POS attribute applied to ARG. */
9252 pos_atr (struct value *arg)
9254 struct value *val = coerce_ref (arg);
9255 struct type *type = value_type (val);
9258 if (!discrete_type_p (type))
9259 error (_("'POS only defined on discrete types"));
9261 if (!discrete_position (type, value_as_long (val), &result))
9262 error (_("enumeration value is invalid: can't find 'POS"));
9267 static struct value *
9268 value_pos_atr (struct type *type, struct value *arg)
9270 return value_from_longest (type, pos_atr (arg));
9273 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9275 static struct value *
9276 value_val_atr (struct type *type, struct value *arg)
9278 if (!discrete_type_p (type))
9279 error (_("'VAL only defined on discrete types"));
9280 if (!integer_type_p (value_type (arg)))
9281 error (_("'VAL requires integral argument"));
9283 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9285 long pos = value_as_long (arg);
9287 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9288 error (_("argument to 'VAL out of range"));
9289 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9292 return value_from_longest (type, value_as_long (arg));
9298 /* True if TYPE appears to be an Ada character type.
9299 [At the moment, this is true only for Character and Wide_Character;
9300 It is a heuristic test that could stand improvement]. */
9303 ada_is_character_type (struct type *type)
9307 /* If the type code says it's a character, then assume it really is,
9308 and don't check any further. */
9309 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9312 /* Otherwise, assume it's a character type iff it is a discrete type
9313 with a known character type name. */
9314 name = ada_type_name (type);
9315 return (name != NULL
9316 && (TYPE_CODE (type) == TYPE_CODE_INT
9317 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9318 && (strcmp (name, "character") == 0
9319 || strcmp (name, "wide_character") == 0
9320 || strcmp (name, "wide_wide_character") == 0
9321 || strcmp (name, "unsigned char") == 0));
9324 /* True if TYPE appears to be an Ada string type. */
9327 ada_is_string_type (struct type *type)
9329 type = ada_check_typedef (type);
9331 && TYPE_CODE (type) != TYPE_CODE_PTR
9332 && (ada_is_simple_array_type (type)
9333 || ada_is_array_descriptor_type (type))
9334 && ada_array_arity (type) == 1)
9336 struct type *elttype = ada_array_element_type (type, 1);
9338 return ada_is_character_type (elttype);
9344 /* The compiler sometimes provides a parallel XVS type for a given
9345 PAD type. Normally, it is safe to follow the PAD type directly,
9346 but older versions of the compiler have a bug that causes the offset
9347 of its "F" field to be wrong. Following that field in that case
9348 would lead to incorrect results, but this can be worked around
9349 by ignoring the PAD type and using the associated XVS type instead.
9351 Set to True if the debugger should trust the contents of PAD types.
9352 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9353 static int trust_pad_over_xvs = 1;
9355 /* True if TYPE is a struct type introduced by the compiler to force the
9356 alignment of a value. Such types have a single field with a
9357 distinctive name. */
9360 ada_is_aligner_type (struct type *type)
9362 type = ada_check_typedef (type);
9364 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9367 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9368 && TYPE_NFIELDS (type) == 1
9369 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9372 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9373 the parallel type. */
9376 ada_get_base_type (struct type *raw_type)
9378 struct type *real_type_namer;
9379 struct type *raw_real_type;
9381 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9384 if (ada_is_aligner_type (raw_type))
9385 /* The encoding specifies that we should always use the aligner type.
9386 So, even if this aligner type has an associated XVS type, we should
9389 According to the compiler gurus, an XVS type parallel to an aligner
9390 type may exist because of a stabs limitation. In stabs, aligner
9391 types are empty because the field has a variable-sized type, and
9392 thus cannot actually be used as an aligner type. As a result,
9393 we need the associated parallel XVS type to decode the type.
9394 Since the policy in the compiler is to not change the internal
9395 representation based on the debugging info format, we sometimes
9396 end up having a redundant XVS type parallel to the aligner type. */
9399 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9400 if (real_type_namer == NULL
9401 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9402 || TYPE_NFIELDS (real_type_namer) != 1)
9405 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9407 /* This is an older encoding form where the base type needs to be
9408 looked up by name. We prefer the newer enconding because it is
9410 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9411 if (raw_real_type == NULL)
9414 return raw_real_type;
9417 /* The field in our XVS type is a reference to the base type. */
9418 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9421 /* The type of value designated by TYPE, with all aligners removed. */
9424 ada_aligned_type (struct type *type)
9426 if (ada_is_aligner_type (type))
9427 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9429 return ada_get_base_type (type);
9433 /* The address of the aligned value in an object at address VALADDR
9434 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9437 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9439 if (ada_is_aligner_type (type))
9440 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9442 TYPE_FIELD_BITPOS (type,
9443 0) / TARGET_CHAR_BIT);
9450 /* The printed representation of an enumeration literal with encoded
9451 name NAME. The value is good to the next call of ada_enum_name. */
9453 ada_enum_name (const char *name)
9455 static char *result;
9456 static size_t result_len = 0;
9459 /* First, unqualify the enumeration name:
9460 1. Search for the last '.' character. If we find one, then skip
9461 all the preceding characters, the unqualified name starts
9462 right after that dot.
9463 2. Otherwise, we may be debugging on a target where the compiler
9464 translates dots into "__". Search forward for double underscores,
9465 but stop searching when we hit an overloading suffix, which is
9466 of the form "__" followed by digits. */
9468 tmp = strrchr (name, '.');
9473 while ((tmp = strstr (name, "__")) != NULL)
9475 if (isdigit (tmp[2]))
9486 if (name[1] == 'U' || name[1] == 'W')
9488 if (sscanf (name + 2, "%x", &v) != 1)
9494 GROW_VECT (result, result_len, 16);
9495 if (isascii (v) && isprint (v))
9496 xsnprintf (result, result_len, "'%c'", v);
9497 else if (name[1] == 'U')
9498 xsnprintf (result, result_len, "[\"%02x\"]", v);
9500 xsnprintf (result, result_len, "[\"%04x\"]", v);
9506 tmp = strstr (name, "__");
9508 tmp = strstr (name, "$");
9511 GROW_VECT (result, result_len, tmp - name + 1);
9512 strncpy (result, name, tmp - name);
9513 result[tmp - name] = '\0';
9521 /* Evaluate the subexpression of EXP starting at *POS as for
9522 evaluate_type, updating *POS to point just past the evaluated
9525 static struct value *
9526 evaluate_subexp_type (struct expression *exp, int *pos)
9528 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9531 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9534 static struct value *
9535 unwrap_value (struct value *val)
9537 struct type *type = ada_check_typedef (value_type (val));
9539 if (ada_is_aligner_type (type))
9541 struct value *v = ada_value_struct_elt (val, "F", 0);
9542 struct type *val_type = ada_check_typedef (value_type (v));
9544 if (ada_type_name (val_type) == NULL)
9545 TYPE_NAME (val_type) = ada_type_name (type);
9547 return unwrap_value (v);
9551 struct type *raw_real_type =
9552 ada_check_typedef (ada_get_base_type (type));
9554 /* If there is no parallel XVS or XVE type, then the value is
9555 already unwrapped. Return it without further modification. */
9556 if ((type == raw_real_type)
9557 && ada_find_parallel_type (type, "___XVE") == NULL)
9561 coerce_unspec_val_to_type
9562 (val, ada_to_fixed_type (raw_real_type, 0,
9563 value_address (val),
9568 static struct value *
9569 cast_to_fixed (struct type *type, struct value *arg)
9573 if (type == value_type (arg))
9575 else if (ada_is_fixed_point_type (value_type (arg)))
9576 val = ada_float_to_fixed (type,
9577 ada_fixed_to_float (value_type (arg),
9578 value_as_long (arg)));
9581 DOUBLEST argd = value_as_double (arg);
9583 val = ada_float_to_fixed (type, argd);
9586 return value_from_longest (type, val);
9589 static struct value *
9590 cast_from_fixed (struct type *type, struct value *arg)
9592 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9593 value_as_long (arg));
9595 return value_from_double (type, val);
9598 /* Given two array types T1 and T2, return nonzero iff both arrays
9599 contain the same number of elements. */
9602 ada_same_array_size_p (struct type *t1, struct type *t2)
9604 LONGEST lo1, hi1, lo2, hi2;
9606 /* Get the array bounds in order to verify that the size of
9607 the two arrays match. */
9608 if (!get_array_bounds (t1, &lo1, &hi1)
9609 || !get_array_bounds (t2, &lo2, &hi2))
9610 error (_("unable to determine array bounds"));
9612 /* To make things easier for size comparison, normalize a bit
9613 the case of empty arrays by making sure that the difference
9614 between upper bound and lower bound is always -1. */
9620 return (hi1 - lo1 == hi2 - lo2);
9623 /* Assuming that VAL is an array of integrals, and TYPE represents
9624 an array with the same number of elements, but with wider integral
9625 elements, return an array "casted" to TYPE. In practice, this
9626 means that the returned array is built by casting each element
9627 of the original array into TYPE's (wider) element type. */
9629 static struct value *
9630 ada_promote_array_of_integrals (struct type *type, struct value *val)
9632 struct type *elt_type = TYPE_TARGET_TYPE (type);
9637 /* Verify that both val and type are arrays of scalars, and
9638 that the size of val's elements is smaller than the size
9639 of type's element. */
9640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9641 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9642 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9643 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9644 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9645 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9647 if (!get_array_bounds (type, &lo, &hi))
9648 error (_("unable to determine array bounds"));
9650 res = allocate_value (type);
9652 /* Promote each array element. */
9653 for (i = 0; i < hi - lo + 1; i++)
9655 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9657 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9658 value_contents_all (elt), TYPE_LENGTH (elt_type));
9664 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9665 return the converted value. */
9667 static struct value *
9668 coerce_for_assign (struct type *type, struct value *val)
9670 struct type *type2 = value_type (val);
9675 type2 = ada_check_typedef (type2);
9676 type = ada_check_typedef (type);
9678 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9679 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9681 val = ada_value_ind (val);
9682 type2 = value_type (val);
9685 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9686 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9688 if (!ada_same_array_size_p (type, type2))
9689 error (_("cannot assign arrays of different length"));
9691 if (is_integral_type (TYPE_TARGET_TYPE (type))
9692 && is_integral_type (TYPE_TARGET_TYPE (type2))
9693 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9694 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9696 /* Allow implicit promotion of the array elements to
9698 return ada_promote_array_of_integrals (type, val);
9701 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9702 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9703 error (_("Incompatible types in assignment"));
9704 deprecated_set_value_type (val, type);
9709 static struct value *
9710 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9713 struct type *type1, *type2;
9716 arg1 = coerce_ref (arg1);
9717 arg2 = coerce_ref (arg2);
9718 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9719 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9721 if (TYPE_CODE (type1) != TYPE_CODE_INT
9722 || TYPE_CODE (type2) != TYPE_CODE_INT)
9723 return value_binop (arg1, arg2, op);
9732 return value_binop (arg1, arg2, op);
9735 v2 = value_as_long (arg2);
9737 error (_("second operand of %s must not be zero."), op_string (op));
9739 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9740 return value_binop (arg1, arg2, op);
9742 v1 = value_as_long (arg1);
9747 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9748 v += v > 0 ? -1 : 1;
9756 /* Should not reach this point. */
9760 val = allocate_value (type1);
9761 store_unsigned_integer (value_contents_raw (val),
9762 TYPE_LENGTH (value_type (val)),
9763 gdbarch_byte_order (get_type_arch (type1)), v);
9768 ada_value_equal (struct value *arg1, struct value *arg2)
9770 if (ada_is_direct_array_type (value_type (arg1))
9771 || ada_is_direct_array_type (value_type (arg2)))
9773 /* Automatically dereference any array reference before
9774 we attempt to perform the comparison. */
9775 arg1 = ada_coerce_ref (arg1);
9776 arg2 = ada_coerce_ref (arg2);
9778 arg1 = ada_coerce_to_simple_array (arg1);
9779 arg2 = ada_coerce_to_simple_array (arg2);
9780 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9781 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9782 error (_("Attempt to compare array with non-array"));
9783 /* FIXME: The following works only for types whose
9784 representations use all bits (no padding or undefined bits)
9785 and do not have user-defined equality. */
9787 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9788 && memcmp (value_contents (arg1), value_contents (arg2),
9789 TYPE_LENGTH (value_type (arg1))) == 0;
9791 return value_equal (arg1, arg2);
9794 /* Total number of component associations in the aggregate starting at
9795 index PC in EXP. Assumes that index PC is the start of an
9799 num_component_specs (struct expression *exp, int pc)
9803 m = exp->elts[pc + 1].longconst;
9806 for (i = 0; i < m; i += 1)
9808 switch (exp->elts[pc].opcode)
9814 n += exp->elts[pc + 1].longconst;
9817 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9822 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9823 component of LHS (a simple array or a record), updating *POS past
9824 the expression, assuming that LHS is contained in CONTAINER. Does
9825 not modify the inferior's memory, nor does it modify LHS (unless
9826 LHS == CONTAINER). */
9829 assign_component (struct value *container, struct value *lhs, LONGEST index,
9830 struct expression *exp, int *pos)
9832 struct value *mark = value_mark ();
9835 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9837 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9838 struct value *index_val = value_from_longest (index_type, index);
9840 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9844 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9845 elt = ada_to_fixed_value (elt);
9848 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9849 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9851 value_assign_to_component (container, elt,
9852 ada_evaluate_subexp (NULL, exp, pos,
9855 value_free_to_mark (mark);
9858 /* Assuming that LHS represents an lvalue having a record or array
9859 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9860 of that aggregate's value to LHS, advancing *POS past the
9861 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9862 lvalue containing LHS (possibly LHS itself). Does not modify
9863 the inferior's memory, nor does it modify the contents of
9864 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9866 static struct value *
9867 assign_aggregate (struct value *container,
9868 struct value *lhs, struct expression *exp,
9869 int *pos, enum noside noside)
9871 struct type *lhs_type;
9872 int n = exp->elts[*pos+1].longconst;
9873 LONGEST low_index, high_index;
9876 int max_indices, num_indices;
9880 if (noside != EVAL_NORMAL)
9882 for (i = 0; i < n; i += 1)
9883 ada_evaluate_subexp (NULL, exp, pos, noside);
9887 container = ada_coerce_ref (container);
9888 if (ada_is_direct_array_type (value_type (container)))
9889 container = ada_coerce_to_simple_array (container);
9890 lhs = ada_coerce_ref (lhs);
9891 if (!deprecated_value_modifiable (lhs))
9892 error (_("Left operand of assignment is not a modifiable lvalue."));
9894 lhs_type = value_type (lhs);
9895 if (ada_is_direct_array_type (lhs_type))
9897 lhs = ada_coerce_to_simple_array (lhs);
9898 lhs_type = value_type (lhs);
9899 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9900 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9902 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9905 high_index = num_visible_fields (lhs_type) - 1;
9908 error (_("Left-hand side must be array or record."));
9910 num_specs = num_component_specs (exp, *pos - 3);
9911 max_indices = 4 * num_specs + 4;
9912 indices = XALLOCAVEC (LONGEST, max_indices);
9913 indices[0] = indices[1] = low_index - 1;
9914 indices[2] = indices[3] = high_index + 1;
9917 for (i = 0; i < n; i += 1)
9919 switch (exp->elts[*pos].opcode)
9922 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9923 &num_indices, max_indices,
9924 low_index, high_index);
9927 aggregate_assign_positional (container, lhs, exp, pos, indices,
9928 &num_indices, max_indices,
9929 low_index, high_index);
9933 error (_("Misplaced 'others' clause"));
9934 aggregate_assign_others (container, lhs, exp, pos, indices,
9935 num_indices, low_index, high_index);
9938 error (_("Internal error: bad aggregate clause"));
9945 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9946 construct at *POS, updating *POS past the construct, given that
9947 the positions are relative to lower bound LOW, where HIGH is the
9948 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9949 updating *NUM_INDICES as needed. CONTAINER is as for
9950 assign_aggregate. */
9952 aggregate_assign_positional (struct value *container,
9953 struct value *lhs, struct expression *exp,
9954 int *pos, LONGEST *indices, int *num_indices,
9955 int max_indices, LONGEST low, LONGEST high)
9957 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9959 if (ind - 1 == high)
9960 warning (_("Extra components in aggregate ignored."));
9963 add_component_interval (ind, ind, indices, num_indices, max_indices);
9965 assign_component (container, lhs, ind, exp, pos);
9968 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9971 /* Assign into the components of LHS indexed by the OP_CHOICES
9972 construct at *POS, updating *POS past the construct, given that
9973 the allowable indices are LOW..HIGH. Record the indices assigned
9974 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9975 needed. CONTAINER is as for assign_aggregate. */
9977 aggregate_assign_from_choices (struct value *container,
9978 struct value *lhs, struct expression *exp,
9979 int *pos, LONGEST *indices, int *num_indices,
9980 int max_indices, LONGEST low, LONGEST high)
9983 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9984 int choice_pos, expr_pc;
9985 int is_array = ada_is_direct_array_type (value_type (lhs));
9987 choice_pos = *pos += 3;
9989 for (j = 0; j < n_choices; j += 1)
9990 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9992 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9994 for (j = 0; j < n_choices; j += 1)
9996 LONGEST lower, upper;
9997 enum exp_opcode op = exp->elts[choice_pos].opcode;
9999 if (op == OP_DISCRETE_RANGE)
10002 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10004 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10009 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10021 name = &exp->elts[choice_pos + 2].string;
10024 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10027 error (_("Invalid record component association."));
10029 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10031 if (! find_struct_field (name, value_type (lhs), 0,
10032 NULL, NULL, NULL, NULL, &ind))
10033 error (_("Unknown component name: %s."), name);
10034 lower = upper = ind;
10037 if (lower <= upper && (lower < low || upper > high))
10038 error (_("Index in component association out of bounds."));
10040 add_component_interval (lower, upper, indices, num_indices,
10042 while (lower <= upper)
10047 assign_component (container, lhs, lower, exp, &pos1);
10053 /* Assign the value of the expression in the OP_OTHERS construct in
10054 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10055 have not been previously assigned. The index intervals already assigned
10056 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10057 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10059 aggregate_assign_others (struct value *container,
10060 struct value *lhs, struct expression *exp,
10061 int *pos, LONGEST *indices, int num_indices,
10062 LONGEST low, LONGEST high)
10065 int expr_pc = *pos + 1;
10067 for (i = 0; i < num_indices - 2; i += 2)
10071 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10075 localpos = expr_pc;
10076 assign_component (container, lhs, ind, exp, &localpos);
10079 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10082 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10083 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10084 modifying *SIZE as needed. It is an error if *SIZE exceeds
10085 MAX_SIZE. The resulting intervals do not overlap. */
10087 add_component_interval (LONGEST low, LONGEST high,
10088 LONGEST* indices, int *size, int max_size)
10092 for (i = 0; i < *size; i += 2) {
10093 if (high >= indices[i] && low <= indices[i + 1])
10097 for (kh = i + 2; kh < *size; kh += 2)
10098 if (high < indices[kh])
10100 if (low < indices[i])
10102 indices[i + 1] = indices[kh - 1];
10103 if (high > indices[i + 1])
10104 indices[i + 1] = high;
10105 memcpy (indices + i + 2, indices + kh, *size - kh);
10106 *size -= kh - i - 2;
10109 else if (high < indices[i])
10113 if (*size == max_size)
10114 error (_("Internal error: miscounted aggregate components."));
10116 for (j = *size-1; j >= i+2; j -= 1)
10117 indices[j] = indices[j - 2];
10119 indices[i + 1] = high;
10122 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10125 static struct value *
10126 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10128 if (type == ada_check_typedef (value_type (arg2)))
10131 if (ada_is_fixed_point_type (type))
10132 return (cast_to_fixed (type, arg2));
10134 if (ada_is_fixed_point_type (value_type (arg2)))
10135 return cast_from_fixed (type, arg2);
10137 return value_cast (type, arg2);
10140 /* Evaluating Ada expressions, and printing their result.
10141 ------------------------------------------------------
10146 We usually evaluate an Ada expression in order to print its value.
10147 We also evaluate an expression in order to print its type, which
10148 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10149 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10150 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10151 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10154 Evaluating expressions is a little more complicated for Ada entities
10155 than it is for entities in languages such as C. The main reason for
10156 this is that Ada provides types whose definition might be dynamic.
10157 One example of such types is variant records. Or another example
10158 would be an array whose bounds can only be known at run time.
10160 The following description is a general guide as to what should be
10161 done (and what should NOT be done) in order to evaluate an expression
10162 involving such types, and when. This does not cover how the semantic
10163 information is encoded by GNAT as this is covered separatly. For the
10164 document used as the reference for the GNAT encoding, see exp_dbug.ads
10165 in the GNAT sources.
10167 Ideally, we should embed each part of this description next to its
10168 associated code. Unfortunately, the amount of code is so vast right
10169 now that it's hard to see whether the code handling a particular
10170 situation might be duplicated or not. One day, when the code is
10171 cleaned up, this guide might become redundant with the comments
10172 inserted in the code, and we might want to remove it.
10174 2. ``Fixing'' an Entity, the Simple Case:
10175 -----------------------------------------
10177 When evaluating Ada expressions, the tricky issue is that they may
10178 reference entities whose type contents and size are not statically
10179 known. Consider for instance a variant record:
10181 type Rec (Empty : Boolean := True) is record
10184 when False => Value : Integer;
10187 Yes : Rec := (Empty => False, Value => 1);
10188 No : Rec := (empty => True);
10190 The size and contents of that record depends on the value of the
10191 descriminant (Rec.Empty). At this point, neither the debugging
10192 information nor the associated type structure in GDB are able to
10193 express such dynamic types. So what the debugger does is to create
10194 "fixed" versions of the type that applies to the specific object.
10195 We also informally refer to this opperation as "fixing" an object,
10196 which means creating its associated fixed type.
10198 Example: when printing the value of variable "Yes" above, its fixed
10199 type would look like this:
10206 On the other hand, if we printed the value of "No", its fixed type
10213 Things become a little more complicated when trying to fix an entity
10214 with a dynamic type that directly contains another dynamic type,
10215 such as an array of variant records, for instance. There are
10216 two possible cases: Arrays, and records.
10218 3. ``Fixing'' Arrays:
10219 ---------------------
10221 The type structure in GDB describes an array in terms of its bounds,
10222 and the type of its elements. By design, all elements in the array
10223 have the same type and we cannot represent an array of variant elements
10224 using the current type structure in GDB. When fixing an array,
10225 we cannot fix the array element, as we would potentially need one
10226 fixed type per element of the array. As a result, the best we can do
10227 when fixing an array is to produce an array whose bounds and size
10228 are correct (allowing us to read it from memory), but without having
10229 touched its element type. Fixing each element will be done later,
10230 when (if) necessary.
10232 Arrays are a little simpler to handle than records, because the same
10233 amount of memory is allocated for each element of the array, even if
10234 the amount of space actually used by each element differs from element
10235 to element. Consider for instance the following array of type Rec:
10237 type Rec_Array is array (1 .. 2) of Rec;
10239 The actual amount of memory occupied by each element might be different
10240 from element to element, depending on the value of their discriminant.
10241 But the amount of space reserved for each element in the array remains
10242 fixed regardless. So we simply need to compute that size using
10243 the debugging information available, from which we can then determine
10244 the array size (we multiply the number of elements of the array by
10245 the size of each element).
10247 The simplest case is when we have an array of a constrained element
10248 type. For instance, consider the following type declarations:
10250 type Bounded_String (Max_Size : Integer) is
10252 Buffer : String (1 .. Max_Size);
10254 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10256 In this case, the compiler describes the array as an array of
10257 variable-size elements (identified by its XVS suffix) for which
10258 the size can be read in the parallel XVZ variable.
10260 In the case of an array of an unconstrained element type, the compiler
10261 wraps the array element inside a private PAD type. This type should not
10262 be shown to the user, and must be "unwrap"'ed before printing. Note
10263 that we also use the adjective "aligner" in our code to designate
10264 these wrapper types.
10266 In some cases, the size allocated for each element is statically
10267 known. In that case, the PAD type already has the correct size,
10268 and the array element should remain unfixed.
10270 But there are cases when this size is not statically known.
10271 For instance, assuming that "Five" is an integer variable:
10273 type Dynamic is array (1 .. Five) of Integer;
10274 type Wrapper (Has_Length : Boolean := False) is record
10277 when True => Length : Integer;
10278 when False => null;
10281 type Wrapper_Array is array (1 .. 2) of Wrapper;
10283 Hello : Wrapper_Array := (others => (Has_Length => True,
10284 Data => (others => 17),
10288 The debugging info would describe variable Hello as being an
10289 array of a PAD type. The size of that PAD type is not statically
10290 known, but can be determined using a parallel XVZ variable.
10291 In that case, a copy of the PAD type with the correct size should
10292 be used for the fixed array.
10294 3. ``Fixing'' record type objects:
10295 ----------------------------------
10297 Things are slightly different from arrays in the case of dynamic
10298 record types. In this case, in order to compute the associated
10299 fixed type, we need to determine the size and offset of each of
10300 its components. This, in turn, requires us to compute the fixed
10301 type of each of these components.
10303 Consider for instance the example:
10305 type Bounded_String (Max_Size : Natural) is record
10306 Str : String (1 .. Max_Size);
10309 My_String : Bounded_String (Max_Size => 10);
10311 In that case, the position of field "Length" depends on the size
10312 of field Str, which itself depends on the value of the Max_Size
10313 discriminant. In order to fix the type of variable My_String,
10314 we need to fix the type of field Str. Therefore, fixing a variant
10315 record requires us to fix each of its components.
10317 However, if a component does not have a dynamic size, the component
10318 should not be fixed. In particular, fields that use a PAD type
10319 should not fixed. Here is an example where this might happen
10320 (assuming type Rec above):
10322 type Container (Big : Boolean) is record
10326 when True => Another : Integer;
10327 when False => null;
10330 My_Container : Container := (Big => False,
10331 First => (Empty => True),
10334 In that example, the compiler creates a PAD type for component First,
10335 whose size is constant, and then positions the component After just
10336 right after it. The offset of component After is therefore constant
10339 The debugger computes the position of each field based on an algorithm
10340 that uses, among other things, the actual position and size of the field
10341 preceding it. Let's now imagine that the user is trying to print
10342 the value of My_Container. If the type fixing was recursive, we would
10343 end up computing the offset of field After based on the size of the
10344 fixed version of field First. And since in our example First has
10345 only one actual field, the size of the fixed type is actually smaller
10346 than the amount of space allocated to that field, and thus we would
10347 compute the wrong offset of field After.
10349 To make things more complicated, we need to watch out for dynamic
10350 components of variant records (identified by the ___XVL suffix in
10351 the component name). Even if the target type is a PAD type, the size
10352 of that type might not be statically known. So the PAD type needs
10353 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10354 we might end up with the wrong size for our component. This can be
10355 observed with the following type declarations:
10357 type Octal is new Integer range 0 .. 7;
10358 type Octal_Array is array (Positive range <>) of Octal;
10359 pragma Pack (Octal_Array);
10361 type Octal_Buffer (Size : Positive) is record
10362 Buffer : Octal_Array (1 .. Size);
10366 In that case, Buffer is a PAD type whose size is unset and needs
10367 to be computed by fixing the unwrapped type.
10369 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10370 ----------------------------------------------------------
10372 Lastly, when should the sub-elements of an entity that remained unfixed
10373 thus far, be actually fixed?
10375 The answer is: Only when referencing that element. For instance
10376 when selecting one component of a record, this specific component
10377 should be fixed at that point in time. Or when printing the value
10378 of a record, each component should be fixed before its value gets
10379 printed. Similarly for arrays, the element of the array should be
10380 fixed when printing each element of the array, or when extracting
10381 one element out of that array. On the other hand, fixing should
10382 not be performed on the elements when taking a slice of an array!
10384 Note that one of the side-effects of miscomputing the offset and
10385 size of each field is that we end up also miscomputing the size
10386 of the containing type. This can have adverse results when computing
10387 the value of an entity. GDB fetches the value of an entity based
10388 on the size of its type, and thus a wrong size causes GDB to fetch
10389 the wrong amount of memory. In the case where the computed size is
10390 too small, GDB fetches too little data to print the value of our
10391 entiry. Results in this case as unpredicatble, as we usually read
10392 past the buffer containing the data =:-o. */
10394 /* Implement the evaluate_exp routine in the exp_descriptor structure
10395 for the Ada language. */
10397 static struct value *
10398 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10399 int *pos, enum noside noside)
10401 enum exp_opcode op;
10405 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10408 struct value **argvec;
10412 op = exp->elts[pc].opcode;
10418 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10420 if (noside == EVAL_NORMAL)
10421 arg1 = unwrap_value (arg1);
10423 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10424 then we need to perform the conversion manually, because
10425 evaluate_subexp_standard doesn't do it. This conversion is
10426 necessary in Ada because the different kinds of float/fixed
10427 types in Ada have different representations.
10429 Similarly, we need to perform the conversion from OP_LONG
10431 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10432 arg1 = ada_value_cast (expect_type, arg1, noside);
10438 struct value *result;
10441 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10442 /* The result type will have code OP_STRING, bashed there from
10443 OP_ARRAY. Bash it back. */
10444 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10445 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10451 type = exp->elts[pc + 1].type;
10452 arg1 = evaluate_subexp (type, exp, pos, noside);
10453 if (noside == EVAL_SKIP)
10455 arg1 = ada_value_cast (type, arg1, noside);
10460 type = exp->elts[pc + 1].type;
10461 return ada_evaluate_subexp (type, exp, pos, noside);
10464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10465 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10467 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10468 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10470 return ada_value_assign (arg1, arg1);
10472 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10473 except if the lhs of our assignment is a convenience variable.
10474 In the case of assigning to a convenience variable, the lhs
10475 should be exactly the result of the evaluation of the rhs. */
10476 type = value_type (arg1);
10477 if (VALUE_LVAL (arg1) == lval_internalvar)
10479 arg2 = evaluate_subexp (type, exp, pos, noside);
10480 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10482 if (ada_is_fixed_point_type (value_type (arg1)))
10483 arg2 = cast_to_fixed (value_type (arg1), arg2);
10484 else if (ada_is_fixed_point_type (value_type (arg2)))
10486 (_("Fixed-point values must be assigned to fixed-point variables"));
10488 arg2 = coerce_for_assign (value_type (arg1), arg2);
10489 return ada_value_assign (arg1, arg2);
10492 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 if (noside == EVAL_SKIP)
10496 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg1),
10499 value_as_long (arg1) + value_as_long (arg2)));
10500 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg2),
10503 value_as_long (arg1) + value_as_long (arg2)));
10504 if ((ada_is_fixed_point_type (value_type (arg1))
10505 || ada_is_fixed_point_type (value_type (arg2)))
10506 && value_type (arg1) != value_type (arg2))
10507 error (_("Operands of fixed-point addition must have the same type"));
10508 /* Do the addition, and cast the result to the type of the first
10509 argument. We cannot cast the result to a reference type, so if
10510 ARG1 is a reference type, find its underlying type. */
10511 type = value_type (arg1);
10512 while (TYPE_CODE (type) == TYPE_CODE_REF)
10513 type = TYPE_TARGET_TYPE (type);
10514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10515 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10518 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10519 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10520 if (noside == EVAL_SKIP)
10522 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10523 return (value_from_longest
10524 (value_type (arg1),
10525 value_as_long (arg1) - value_as_long (arg2)));
10526 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10527 return (value_from_longest
10528 (value_type (arg2),
10529 value_as_long (arg1) - value_as_long (arg2)));
10530 if ((ada_is_fixed_point_type (value_type (arg1))
10531 || ada_is_fixed_point_type (value_type (arg2)))
10532 && value_type (arg1) != value_type (arg2))
10533 error (_("Operands of fixed-point subtraction "
10534 "must have the same type"));
10535 /* Do the substraction, and cast the result to the type of the first
10536 argument. We cannot cast the result to a reference type, so if
10537 ARG1 is a reference type, find its underlying type. */
10538 type = value_type (arg1);
10539 while (TYPE_CODE (type) == TYPE_CODE_REF)
10540 type = TYPE_TARGET_TYPE (type);
10541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10542 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10550 if (noside == EVAL_SKIP)
10552 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 return value_zero (value_type (arg1), not_lval);
10559 type = builtin_type (exp->gdbarch)->builtin_double;
10560 if (ada_is_fixed_point_type (value_type (arg1)))
10561 arg1 = cast_from_fixed (type, arg1);
10562 if (ada_is_fixed_point_type (value_type (arg2)))
10563 arg2 = cast_from_fixed (type, arg2);
10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10565 return ada_value_binop (arg1, arg2, op);
10569 case BINOP_NOTEQUAL:
10570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10571 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10572 if (noside == EVAL_SKIP)
10574 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10578 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10579 tem = ada_value_equal (arg1, arg2);
10581 if (op == BINOP_NOTEQUAL)
10583 type = language_bool_type (exp->language_defn, exp->gdbarch);
10584 return value_from_longest (type, (LONGEST) tem);
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 if (noside == EVAL_SKIP)
10590 else if (ada_is_fixed_point_type (value_type (arg1)))
10591 return value_cast (value_type (arg1), value_neg (arg1));
10594 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10595 return value_neg (arg1);
10598 case BINOP_LOGICAL_AND:
10599 case BINOP_LOGICAL_OR:
10600 case UNOP_LOGICAL_NOT:
10605 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10606 type = language_bool_type (exp->language_defn, exp->gdbarch);
10607 return value_cast (type, val);
10610 case BINOP_BITWISE_AND:
10611 case BINOP_BITWISE_IOR:
10612 case BINOP_BITWISE_XOR:
10616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10618 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10620 return value_cast (value_type (arg1), val);
10626 if (noside == EVAL_SKIP)
10632 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10633 /* Only encountered when an unresolved symbol occurs in a
10634 context other than a function call, in which case, it is
10636 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10637 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10639 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10641 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10642 /* Check to see if this is a tagged type. We also need to handle
10643 the case where the type is a reference to a tagged type, but
10644 we have to be careful to exclude pointers to tagged types.
10645 The latter should be shown as usual (as a pointer), whereas
10646 a reference should mostly be transparent to the user. */
10647 if (ada_is_tagged_type (type, 0)
10648 || (TYPE_CODE (type) == TYPE_CODE_REF
10649 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10651 /* Tagged types are a little special in the fact that the real
10652 type is dynamic and can only be determined by inspecting the
10653 object's tag. This means that we need to get the object's
10654 value first (EVAL_NORMAL) and then extract the actual object
10657 Note that we cannot skip the final step where we extract
10658 the object type from its tag, because the EVAL_NORMAL phase
10659 results in dynamic components being resolved into fixed ones.
10660 This can cause problems when trying to print the type
10661 description of tagged types whose parent has a dynamic size:
10662 We use the type name of the "_parent" component in order
10663 to print the name of the ancestor type in the type description.
10664 If that component had a dynamic size, the resolution into
10665 a fixed type would result in the loss of that type name,
10666 thus preventing us from printing the name of the ancestor
10667 type in the type description. */
10668 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10670 if (TYPE_CODE (type) != TYPE_CODE_REF)
10672 struct type *actual_type;
10674 actual_type = type_from_tag (ada_value_tag (arg1));
10675 if (actual_type == NULL)
10676 /* If, for some reason, we were unable to determine
10677 the actual type from the tag, then use the static
10678 approximation that we just computed as a fallback.
10679 This can happen if the debugging information is
10680 incomplete, for instance. */
10681 actual_type = type;
10682 return value_zero (actual_type, not_lval);
10686 /* In the case of a ref, ada_coerce_ref takes care
10687 of determining the actual type. But the evaluation
10688 should return a ref as it should be valid to ask
10689 for its address; so rebuild a ref after coerce. */
10690 arg1 = ada_coerce_ref (arg1);
10691 return value_ref (arg1, TYPE_CODE_REF);
10695 /* Records and unions for which GNAT encodings have been
10696 generated need to be statically fixed as well.
10697 Otherwise, non-static fixing produces a type where
10698 all dynamic properties are removed, which prevents "ptype"
10699 from being able to completely describe the type.
10700 For instance, a case statement in a variant record would be
10701 replaced by the relevant components based on the actual
10702 value of the discriminants. */
10703 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10704 && dynamic_template_type (type) != NULL)
10705 || (TYPE_CODE (type) == TYPE_CODE_UNION
10706 && ada_find_parallel_type (type, "___XVU") != NULL))
10709 return value_zero (to_static_fixed_type (type), not_lval);
10713 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10714 return ada_to_fixed_value (arg1);
10719 /* Allocate arg vector, including space for the function to be
10720 called in argvec[0] and a terminating NULL. */
10721 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10722 argvec = XALLOCAVEC (struct value *, nargs + 2);
10724 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10725 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10726 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10727 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10730 for (tem = 0; tem <= nargs; tem += 1)
10731 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 if (noside == EVAL_SKIP)
10738 if (ada_is_constrained_packed_array_type
10739 (desc_base_type (value_type (argvec[0]))))
10740 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10741 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10742 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10743 /* This is a packed array that has already been fixed, and
10744 therefore already coerced to a simple array. Nothing further
10747 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10749 /* Make sure we dereference references so that all the code below
10750 feels like it's really handling the referenced value. Wrapping
10751 types (for alignment) may be there, so make sure we strip them as
10753 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10755 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10756 && VALUE_LVAL (argvec[0]) == lval_memory)
10757 argvec[0] = value_addr (argvec[0]);
10759 type = ada_check_typedef (value_type (argvec[0]));
10761 /* Ada allows us to implicitly dereference arrays when subscripting
10762 them. So, if this is an array typedef (encoding use for array
10763 access types encoded as fat pointers), strip it now. */
10764 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10765 type = ada_typedef_target_type (type);
10767 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10769 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10771 case TYPE_CODE_FUNC:
10772 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10774 case TYPE_CODE_ARRAY:
10776 case TYPE_CODE_STRUCT:
10777 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10778 argvec[0] = ada_value_ind (argvec[0]);
10779 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10782 error (_("cannot subscript or call something of type `%s'"),
10783 ada_type_name (value_type (argvec[0])));
10788 switch (TYPE_CODE (type))
10790 case TYPE_CODE_FUNC:
10791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10793 if (TYPE_TARGET_TYPE (type) == NULL)
10794 error_call_unknown_return_type (NULL);
10795 return allocate_value (TYPE_TARGET_TYPE (type));
10797 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10798 case TYPE_CODE_INTERNAL_FUNCTION:
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 /* We don't know anything about what the internal
10801 function might return, but we have to return
10803 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10806 return call_internal_function (exp->gdbarch, exp->language_defn,
10807 argvec[0], nargs, argvec + 1);
10809 case TYPE_CODE_STRUCT:
10813 arity = ada_array_arity (type);
10814 type = ada_array_element_type (type, nargs);
10816 error (_("cannot subscript or call a record"));
10817 if (arity != nargs)
10818 error (_("wrong number of subscripts; expecting %d"), arity);
10819 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10820 return value_zero (ada_aligned_type (type), lval_memory);
10822 unwrap_value (ada_value_subscript
10823 (argvec[0], nargs, argvec + 1));
10825 case TYPE_CODE_ARRAY:
10826 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 type = ada_array_element_type (type, nargs);
10830 error (_("element type of array unknown"));
10832 return value_zero (ada_aligned_type (type), lval_memory);
10835 unwrap_value (ada_value_subscript
10836 (ada_coerce_to_simple_array (argvec[0]),
10837 nargs, argvec + 1));
10838 case TYPE_CODE_PTR: /* Pointer to array */
10839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10842 type = ada_array_element_type (type, nargs);
10844 error (_("element type of array unknown"));
10846 return value_zero (ada_aligned_type (type), lval_memory);
10849 unwrap_value (ada_value_ptr_subscript (argvec[0],
10850 nargs, argvec + 1));
10853 error (_("Attempt to index or call something other than an "
10854 "array or function"));
10859 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10860 struct value *low_bound_val =
10861 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10862 struct value *high_bound_val =
10863 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 LONGEST high_bound;
10867 low_bound_val = coerce_ref (low_bound_val);
10868 high_bound_val = coerce_ref (high_bound_val);
10869 low_bound = value_as_long (low_bound_val);
10870 high_bound = value_as_long (high_bound_val);
10872 if (noside == EVAL_SKIP)
10875 /* If this is a reference to an aligner type, then remove all
10877 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10878 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10879 TYPE_TARGET_TYPE (value_type (array)) =
10880 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10882 if (ada_is_constrained_packed_array_type (value_type (array)))
10883 error (_("cannot slice a packed array"));
10885 /* If this is a reference to an array or an array lvalue,
10886 convert to a pointer. */
10887 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10888 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10889 && VALUE_LVAL (array) == lval_memory))
10890 array = value_addr (array);
10892 if (noside == EVAL_AVOID_SIDE_EFFECTS
10893 && ada_is_array_descriptor_type (ada_check_typedef
10894 (value_type (array))))
10895 return empty_array (ada_type_of_array (array, 0), low_bound);
10897 array = ada_coerce_to_simple_array_ptr (array);
10899 /* If we have more than one level of pointer indirection,
10900 dereference the value until we get only one level. */
10901 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10902 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10904 array = value_ind (array);
10906 /* Make sure we really do have an array type before going further,
10907 to avoid a SEGV when trying to get the index type or the target
10908 type later down the road if the debug info generated by
10909 the compiler is incorrect or incomplete. */
10910 if (!ada_is_simple_array_type (value_type (array)))
10911 error (_("cannot take slice of non-array"));
10913 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10916 struct type *type0 = ada_check_typedef (value_type (array));
10918 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10919 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10922 struct type *arr_type0 =
10923 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10925 return ada_value_slice_from_ptr (array, arr_type0,
10926 longest_to_int (low_bound),
10927 longest_to_int (high_bound));
10930 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 else if (high_bound < low_bound)
10933 return empty_array (value_type (array), low_bound);
10935 return ada_value_slice (array, longest_to_int (low_bound),
10936 longest_to_int (high_bound));
10939 case UNOP_IN_RANGE:
10941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10942 type = check_typedef (exp->elts[pc + 1].type);
10944 if (noside == EVAL_SKIP)
10947 switch (TYPE_CODE (type))
10950 lim_warning (_("Membership test incompletely implemented; "
10951 "always returns true"));
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_from_longest (type, (LONGEST) 1);
10955 case TYPE_CODE_RANGE:
10956 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10957 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10960 type = language_bool_type (exp->language_defn, exp->gdbarch);
10962 value_from_longest (type,
10963 (value_less (arg1, arg3)
10964 || value_equal (arg1, arg3))
10965 && (value_less (arg2, arg1)
10966 || value_equal (arg2, arg1)));
10969 case BINOP_IN_BOUNDS:
10971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10974 if (noside == EVAL_SKIP)
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
10980 return value_zero (type, not_lval);
10983 tem = longest_to_int (exp->elts[pc + 1].longconst);
10985 type = ada_index_type (value_type (arg2), tem, "range");
10987 type = value_type (arg1);
10989 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10990 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10993 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10994 type = language_bool_type (exp->language_defn, exp->gdbarch);
10996 value_from_longest (type,
10997 (value_less (arg1, arg3)
10998 || value_equal (arg1, arg3))
10999 && (value_less (arg2, arg1)
11000 || value_equal (arg2, arg1)));
11002 case TERNOP_IN_RANGE:
11003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 if (noside == EVAL_SKIP)
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11014 value_from_longest (type,
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11022 case OP_ATR_LENGTH:
11024 struct type *type_arg;
11026 if (exp->elts[*pos].opcode == OP_TYPE)
11028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11030 type_arg = check_typedef (exp->elts[pc + 2].type);
11034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11038 if (exp->elts[*pos].opcode != OP_LONG)
11039 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11040 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11043 if (noside == EVAL_SKIP)
11046 if (type_arg == NULL)
11048 arg1 = ada_coerce_ref (arg1);
11050 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11051 arg1 = ada_coerce_to_simple_array (arg1);
11053 if (op == OP_ATR_LENGTH)
11054 type = builtin_type (exp->gdbarch)->builtin_int;
11057 type = ada_index_type (value_type (arg1), tem,
11058 ada_attribute_name (op));
11060 type = builtin_type (exp->gdbarch)->builtin_int;
11063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11064 return allocate_value (type);
11068 default: /* Should never happen. */
11069 error (_("unexpected attribute encountered"));
11071 return value_from_longest
11072 (type, ada_array_bound (arg1, tem, 0));
11074 return value_from_longest
11075 (type, ada_array_bound (arg1, tem, 1));
11076 case OP_ATR_LENGTH:
11077 return value_from_longest
11078 (type, ada_array_length (arg1, tem));
11081 else if (discrete_type_p (type_arg))
11083 struct type *range_type;
11084 const char *name = ada_type_name (type_arg);
11087 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11088 range_type = to_fixed_range_type (type_arg, NULL);
11089 if (range_type == NULL)
11090 range_type = type_arg;
11094 error (_("unexpected attribute encountered"));
11096 return value_from_longest
11097 (range_type, ada_discrete_type_low_bound (range_type));
11099 return value_from_longest
11100 (range_type, ada_discrete_type_high_bound (range_type));
11101 case OP_ATR_LENGTH:
11102 error (_("the 'length attribute applies only to array types"));
11105 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11106 error (_("unimplemented type attribute"));
11111 if (ada_is_constrained_packed_array_type (type_arg))
11112 type_arg = decode_constrained_packed_array_type (type_arg);
11114 if (op == OP_ATR_LENGTH)
11115 type = builtin_type (exp->gdbarch)->builtin_int;
11118 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11120 type = builtin_type (exp->gdbarch)->builtin_int;
11123 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 return allocate_value (type);
11129 error (_("unexpected attribute encountered"));
11131 low = ada_array_bound_from_type (type_arg, tem, 0);
11132 return value_from_longest (type, low);
11134 high = ada_array_bound_from_type (type_arg, tem, 1);
11135 return value_from_longest (type, high);
11136 case OP_ATR_LENGTH:
11137 low = ada_array_bound_from_type (type_arg, tem, 0);
11138 high = ada_array_bound_from_type (type_arg, tem, 1);
11139 return value_from_longest (type, high - low + 1);
11145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146 if (noside == EVAL_SKIP)
11149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11150 return value_zero (ada_tag_type (arg1), not_lval);
11152 return ada_value_tag (arg1);
11156 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 if (noside == EVAL_SKIP)
11161 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11162 return value_zero (value_type (arg1), not_lval);
11165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11166 return value_binop (arg1, arg2,
11167 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11170 case OP_ATR_MODULUS:
11172 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11174 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11175 if (noside == EVAL_SKIP)
11178 if (!ada_is_modular_type (type_arg))
11179 error (_("'modulus must be applied to modular type"));
11181 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11182 ada_modulus (type_arg));
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 if (noside == EVAL_SKIP)
11191 type = builtin_type (exp->gdbarch)->builtin_int;
11192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11193 return value_zero (type, not_lval);
11195 return value_pos_atr (type, arg1);
11198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 type = value_type (arg1);
11201 /* If the argument is a reference, then dereference its type, since
11202 the user is really asking for the size of the actual object,
11203 not the size of the pointer. */
11204 if (TYPE_CODE (type) == TYPE_CODE_REF)
11205 type = TYPE_TARGET_TYPE (type);
11207 if (noside == EVAL_SKIP)
11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11210 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11212 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11213 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 type = exp->elts[pc + 2].type;
11219 if (noside == EVAL_SKIP)
11221 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11222 return value_zero (type, not_lval);
11224 return value_val_atr (type, arg1);
11227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11231 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11232 return value_zero (value_type (arg1), not_lval);
11235 /* For integer exponentiation operations,
11236 only promote the first argument. */
11237 if (is_integral_type (value_type (arg2)))
11238 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11240 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11242 return value_binop (arg1, arg2, op);
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 if (noside == EVAL_SKIP)
11256 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11257 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11258 return value_neg (arg1);
11263 preeval_pos = *pos;
11264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11265 if (noside == EVAL_SKIP)
11267 type = ada_check_typedef (value_type (arg1));
11268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 if (ada_is_array_descriptor_type (type))
11271 /* GDB allows dereferencing GNAT array descriptors. */
11273 struct type *arrType = ada_type_of_array (arg1, 0);
11275 if (arrType == NULL)
11276 error (_("Attempt to dereference null array pointer."));
11277 return value_at_lazy (arrType, 0);
11279 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11280 || TYPE_CODE (type) == TYPE_CODE_REF
11281 /* In C you can dereference an array to get the 1st elt. */
11282 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11284 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11285 only be determined by inspecting the object's tag.
11286 This means that we need to evaluate completely the
11287 expression in order to get its type. */
11289 if ((TYPE_CODE (type) == TYPE_CODE_REF
11290 || TYPE_CODE (type) == TYPE_CODE_PTR)
11291 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11295 type = value_type (ada_value_ind (arg1));
11299 type = to_static_fixed_type
11301 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11303 ada_ensure_varsize_limit (type);
11304 return value_zero (type, lval_memory);
11306 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11308 /* GDB allows dereferencing an int. */
11309 if (expect_type == NULL)
11310 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11315 to_static_fixed_type (ada_aligned_type (expect_type));
11316 return value_zero (expect_type, lval_memory);
11320 error (_("Attempt to take contents of a non-pointer value."));
11322 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11323 type = ada_check_typedef (value_type (arg1));
11325 if (TYPE_CODE (type) == TYPE_CODE_INT)
11326 /* GDB allows dereferencing an int. If we were given
11327 the expect_type, then use that as the target type.
11328 Otherwise, assume that the target type is an int. */
11330 if (expect_type != NULL)
11331 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11334 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11335 (CORE_ADDR) value_as_address (arg1));
11338 if (ada_is_array_descriptor_type (type))
11339 /* GDB allows dereferencing GNAT array descriptors. */
11340 return ada_coerce_to_simple_array (arg1);
11342 return ada_value_ind (arg1);
11344 case STRUCTOP_STRUCT:
11345 tem = longest_to_int (exp->elts[pc + 1].longconst);
11346 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11347 preeval_pos = *pos;
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 if (noside == EVAL_SKIP)
11351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11353 struct type *type1 = value_type (arg1);
11355 if (ada_is_tagged_type (type1, 1))
11357 type = ada_lookup_struct_elt_type (type1,
11358 &exp->elts[pc + 2].string,
11361 /* If the field is not found, check if it exists in the
11362 extension of this object's type. This means that we
11363 need to evaluate completely the expression. */
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11369 arg1 = ada_value_struct_elt (arg1,
11370 &exp->elts[pc + 2].string,
11372 arg1 = unwrap_value (arg1);
11373 type = value_type (ada_to_fixed_value (arg1));
11378 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11381 return value_zero (ada_aligned_type (type), lval_memory);
11385 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11386 arg1 = unwrap_value (arg1);
11387 return ada_to_fixed_value (arg1);
11391 /* The value is not supposed to be used. This is here to make it
11392 easier to accommodate expressions that contain types. */
11394 if (noside == EVAL_SKIP)
11396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11397 return allocate_value (exp->elts[pc + 1].type);
11399 error (_("Attempt to use a type name as an expression"));
11404 case OP_DISCRETE_RANGE:
11405 case OP_POSITIONAL:
11407 if (noside == EVAL_NORMAL)
11411 error (_("Undefined name, ambiguous name, or renaming used in "
11412 "component association: %s."), &exp->elts[pc+2].string);
11414 error (_("Aggregates only allowed on the right of an assignment"));
11416 internal_error (__FILE__, __LINE__,
11417 _("aggregate apparently mangled"));
11420 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11422 for (tem = 0; tem < nargs; tem += 1)
11423 ada_evaluate_subexp (NULL, exp, pos, noside);
11428 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11434 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11435 type name that encodes the 'small and 'delta information.
11436 Otherwise, return NULL. */
11438 static const char *
11439 fixed_type_info (struct type *type)
11441 const char *name = ada_type_name (type);
11442 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11444 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11446 const char *tail = strstr (name, "___XF_");
11453 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11454 return fixed_type_info (TYPE_TARGET_TYPE (type));
11459 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11462 ada_is_fixed_point_type (struct type *type)
11464 return fixed_type_info (type) != NULL;
11467 /* Return non-zero iff TYPE represents a System.Address type. */
11470 ada_is_system_address_type (struct type *type)
11472 return (TYPE_NAME (type)
11473 && strcmp (TYPE_NAME (type), "system__address") == 0);
11476 /* Assuming that TYPE is the representation of an Ada fixed-point
11477 type, return its delta, or -1 if the type is malformed and the
11478 delta cannot be determined. */
11481 ada_delta (struct type *type)
11483 const char *encoding = fixed_type_info (type);
11486 /* Strictly speaking, num and den are encoded as integer. However,
11487 they may not fit into a long, and they will have to be converted
11488 to DOUBLEST anyway. So scan them as DOUBLEST. */
11489 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11496 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11497 factor ('SMALL value) associated with the type. */
11500 scaling_factor (struct type *type)
11502 const char *encoding = fixed_type_info (type);
11503 DOUBLEST num0, den0, num1, den1;
11506 /* Strictly speaking, num's and den's are encoded as integer. However,
11507 they may not fit into a long, and they will have to be converted
11508 to DOUBLEST anyway. So scan them as DOUBLEST. */
11509 n = sscanf (encoding,
11510 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11512 &num0, &den0, &num1, &den1);
11517 return num1 / den1;
11519 return num0 / den0;
11523 /* Assuming that X is the representation of a value of fixed-point
11524 type TYPE, return its floating-point equivalent. */
11527 ada_fixed_to_float (struct type *type, LONGEST x)
11529 return (DOUBLEST) x *scaling_factor (type);
11532 /* The representation of a fixed-point value of type TYPE
11533 corresponding to the value X. */
11536 ada_float_to_fixed (struct type *type, DOUBLEST x)
11538 return (LONGEST) (x / scaling_factor (type) + 0.5);
11545 /* Scan STR beginning at position K for a discriminant name, and
11546 return the value of that discriminant field of DVAL in *PX. If
11547 PNEW_K is not null, put the position of the character beyond the
11548 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11549 not alter *PX and *PNEW_K if unsuccessful. */
11552 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11555 static char *bound_buffer = NULL;
11556 static size_t bound_buffer_len = 0;
11557 const char *pstart, *pend, *bound;
11558 struct value *bound_val;
11560 if (dval == NULL || str == NULL || str[k] == '\0')
11564 pend = strstr (pstart, "__");
11568 k += strlen (bound);
11572 int len = pend - pstart;
11574 /* Strip __ and beyond. */
11575 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11576 strncpy (bound_buffer, pstart, len);
11577 bound_buffer[len] = '\0';
11579 bound = bound_buffer;
11583 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11584 if (bound_val == NULL)
11587 *px = value_as_long (bound_val);
11588 if (pnew_k != NULL)
11593 /* Value of variable named NAME in the current environment. If
11594 no such variable found, then if ERR_MSG is null, returns 0, and
11595 otherwise causes an error with message ERR_MSG. */
11597 static struct value *
11598 get_var_value (const char *name, const char *err_msg)
11600 struct block_symbol *syms;
11603 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11608 if (err_msg == NULL)
11611 error (("%s"), err_msg);
11614 return value_of_variable (syms[0].symbol, syms[0].block);
11617 /* Value of integer variable named NAME in the current environment.
11618 If no such variable is found, returns false. Otherwise, sets VALUE
11619 to the variable's value and returns true. */
11622 get_int_var_value (const char *name, LONGEST &value)
11624 struct value *var_val = get_var_value (name, 0);
11629 value = value_as_long (var_val);
11634 /* Return a range type whose base type is that of the range type named
11635 NAME in the current environment, and whose bounds are calculated
11636 from NAME according to the GNAT range encoding conventions.
11637 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11638 corresponding range type from debug information; fall back to using it
11639 if symbol lookup fails. If a new type must be created, allocate it
11640 like ORIG_TYPE was. The bounds information, in general, is encoded
11641 in NAME, the base type given in the named range type. */
11643 static struct type *
11644 to_fixed_range_type (struct type *raw_type, struct value *dval)
11647 struct type *base_type;
11648 const char *subtype_info;
11650 gdb_assert (raw_type != NULL);
11651 gdb_assert (TYPE_NAME (raw_type) != NULL);
11653 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11654 base_type = TYPE_TARGET_TYPE (raw_type);
11656 base_type = raw_type;
11658 name = TYPE_NAME (raw_type);
11659 subtype_info = strstr (name, "___XD");
11660 if (subtype_info == NULL)
11662 LONGEST L = ada_discrete_type_low_bound (raw_type);
11663 LONGEST U = ada_discrete_type_high_bound (raw_type);
11665 if (L < INT_MIN || U > INT_MAX)
11668 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11673 static char *name_buf = NULL;
11674 static size_t name_len = 0;
11675 int prefix_len = subtype_info - name;
11678 const char *bounds_str;
11681 GROW_VECT (name_buf, name_len, prefix_len + 5);
11682 strncpy (name_buf, name, prefix_len);
11683 name_buf[prefix_len] = '\0';
11686 bounds_str = strchr (subtype_info, '_');
11689 if (*subtype_info == 'L')
11691 if (!ada_scan_number (bounds_str, n, &L, &n)
11692 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11694 if (bounds_str[n] == '_')
11696 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11702 strcpy (name_buf + prefix_len, "___L");
11703 if (!get_int_var_value (name_buf, L))
11705 lim_warning (_("Unknown lower bound, using 1."));
11710 if (*subtype_info == 'U')
11712 if (!ada_scan_number (bounds_str, n, &U, &n)
11713 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11718 strcpy (name_buf + prefix_len, "___U");
11719 if (!get_int_var_value (name_buf, U))
11721 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11726 type = create_static_range_type (alloc_type_copy (raw_type),
11728 TYPE_NAME (type) = name;
11733 /* True iff NAME is the name of a range type. */
11736 ada_is_range_type_name (const char *name)
11738 return (name != NULL && strstr (name, "___XD"));
11742 /* Modular types */
11744 /* True iff TYPE is an Ada modular type. */
11747 ada_is_modular_type (struct type *type)
11749 struct type *subranged_type = get_base_type (type);
11751 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11752 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11753 && TYPE_UNSIGNED (subranged_type));
11756 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11759 ada_modulus (struct type *type)
11761 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11765 /* Ada exception catchpoint support:
11766 ---------------------------------
11768 We support 3 kinds of exception catchpoints:
11769 . catchpoints on Ada exceptions
11770 . catchpoints on unhandled Ada exceptions
11771 . catchpoints on failed assertions
11773 Exceptions raised during failed assertions, or unhandled exceptions
11774 could perfectly be caught with the general catchpoint on Ada exceptions.
11775 However, we can easily differentiate these two special cases, and having
11776 the option to distinguish these two cases from the rest can be useful
11777 to zero-in on certain situations.
11779 Exception catchpoints are a specialized form of breakpoint,
11780 since they rely on inserting breakpoints inside known routines
11781 of the GNAT runtime. The implementation therefore uses a standard
11782 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11785 Support in the runtime for exception catchpoints have been changed
11786 a few times already, and these changes affect the implementation
11787 of these catchpoints. In order to be able to support several
11788 variants of the runtime, we use a sniffer that will determine
11789 the runtime variant used by the program being debugged. */
11791 /* Ada's standard exceptions.
11793 The Ada 83 standard also defined Numeric_Error. But there so many
11794 situations where it was unclear from the Ada 83 Reference Manual
11795 (RM) whether Constraint_Error or Numeric_Error should be raised,
11796 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11797 Interpretation saying that anytime the RM says that Numeric_Error
11798 should be raised, the implementation may raise Constraint_Error.
11799 Ada 95 went one step further and pretty much removed Numeric_Error
11800 from the list of standard exceptions (it made it a renaming of
11801 Constraint_Error, to help preserve compatibility when compiling
11802 an Ada83 compiler). As such, we do not include Numeric_Error from
11803 this list of standard exceptions. */
11805 static const char *standard_exc[] = {
11806 "constraint_error",
11812 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11814 /* A structure that describes how to support exception catchpoints
11815 for a given executable. */
11817 struct exception_support_info
11819 /* The name of the symbol to break on in order to insert
11820 a catchpoint on exceptions. */
11821 const char *catch_exception_sym;
11823 /* The name of the symbol to break on in order to insert
11824 a catchpoint on unhandled exceptions. */
11825 const char *catch_exception_unhandled_sym;
11827 /* The name of the symbol to break on in order to insert
11828 a catchpoint on failed assertions. */
11829 const char *catch_assert_sym;
11831 /* Assuming that the inferior just triggered an unhandled exception
11832 catchpoint, this function is responsible for returning the address
11833 in inferior memory where the name of that exception is stored.
11834 Return zero if the address could not be computed. */
11835 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11838 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11839 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11841 /* The following exception support info structure describes how to
11842 implement exception catchpoints with the latest version of the
11843 Ada runtime (as of 2007-03-06). */
11845 static const struct exception_support_info default_exception_support_info =
11847 "__gnat_debug_raise_exception", /* catch_exception_sym */
11848 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11849 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11850 ada_unhandled_exception_name_addr
11853 /* The following exception support info structure describes how to
11854 implement exception catchpoints with a slightly older version
11855 of the Ada runtime. */
11857 static const struct exception_support_info exception_support_info_fallback =
11859 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11862 ada_unhandled_exception_name_addr_from_raise
11865 /* Return nonzero if we can detect the exception support routines
11866 described in EINFO.
11868 This function errors out if an abnormal situation is detected
11869 (for instance, if we find the exception support routines, but
11870 that support is found to be incomplete). */
11873 ada_has_this_exception_support (const struct exception_support_info *einfo)
11875 struct symbol *sym;
11877 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11878 that should be compiled with debugging information. As a result, we
11879 expect to find that symbol in the symtabs. */
11881 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11884 /* Perhaps we did not find our symbol because the Ada runtime was
11885 compiled without debugging info, or simply stripped of it.
11886 It happens on some GNU/Linux distributions for instance, where
11887 users have to install a separate debug package in order to get
11888 the runtime's debugging info. In that situation, let the user
11889 know why we cannot insert an Ada exception catchpoint.
11891 Note: Just for the purpose of inserting our Ada exception
11892 catchpoint, we could rely purely on the associated minimal symbol.
11893 But we would be operating in degraded mode anyway, since we are
11894 still lacking the debugging info needed later on to extract
11895 the name of the exception being raised (this name is printed in
11896 the catchpoint message, and is also used when trying to catch
11897 a specific exception). We do not handle this case for now. */
11898 struct bound_minimal_symbol msym
11899 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11901 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11902 error (_("Your Ada runtime appears to be missing some debugging "
11903 "information.\nCannot insert Ada exception catchpoint "
11904 "in this configuration."));
11909 /* Make sure that the symbol we found corresponds to a function. */
11911 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11912 error (_("Symbol \"%s\" is not a function (class = %d)"),
11913 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11918 /* Inspect the Ada runtime and determine which exception info structure
11919 should be used to provide support for exception catchpoints.
11921 This function will always set the per-inferior exception_info,
11922 or raise an error. */
11925 ada_exception_support_info_sniffer (void)
11927 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11929 /* If the exception info is already known, then no need to recompute it. */
11930 if (data->exception_info != NULL)
11933 /* Check the latest (default) exception support info. */
11934 if (ada_has_this_exception_support (&default_exception_support_info))
11936 data->exception_info = &default_exception_support_info;
11940 /* Try our fallback exception suport info. */
11941 if (ada_has_this_exception_support (&exception_support_info_fallback))
11943 data->exception_info = &exception_support_info_fallback;
11947 /* Sometimes, it is normal for us to not be able to find the routine
11948 we are looking for. This happens when the program is linked with
11949 the shared version of the GNAT runtime, and the program has not been
11950 started yet. Inform the user of these two possible causes if
11953 if (ada_update_initial_language (language_unknown) != language_ada)
11954 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11956 /* If the symbol does not exist, then check that the program is
11957 already started, to make sure that shared libraries have been
11958 loaded. If it is not started, this may mean that the symbol is
11959 in a shared library. */
11961 if (ptid_get_pid (inferior_ptid) == 0)
11962 error (_("Unable to insert catchpoint. Try to start the program first."));
11964 /* At this point, we know that we are debugging an Ada program and
11965 that the inferior has been started, but we still are not able to
11966 find the run-time symbols. That can mean that we are in
11967 configurable run time mode, or that a-except as been optimized
11968 out by the linker... In any case, at this point it is not worth
11969 supporting this feature. */
11971 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11974 /* True iff FRAME is very likely to be that of a function that is
11975 part of the runtime system. This is all very heuristic, but is
11976 intended to be used as advice as to what frames are uninteresting
11980 is_known_support_routine (struct frame_info *frame)
11983 enum language func_lang;
11985 const char *fullname;
11987 /* If this code does not have any debugging information (no symtab),
11988 This cannot be any user code. */
11990 symtab_and_line sal = find_frame_sal (frame);
11991 if (sal.symtab == NULL)
11994 /* If there is a symtab, but the associated source file cannot be
11995 located, then assume this is not user code: Selecting a frame
11996 for which we cannot display the code would not be very helpful
11997 for the user. This should also take care of case such as VxWorks
11998 where the kernel has some debugging info provided for a few units. */
12000 fullname = symtab_to_fullname (sal.symtab);
12001 if (access (fullname, R_OK) != 0)
12004 /* Check the unit filename againt the Ada runtime file naming.
12005 We also check the name of the objfile against the name of some
12006 known system libraries that sometimes come with debugging info
12009 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12011 re_comp (known_runtime_file_name_patterns[i]);
12012 if (re_exec (lbasename (sal.symtab->filename)))
12014 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12015 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12019 /* Check whether the function is a GNAT-generated entity. */
12021 find_frame_funname (frame, &func_name, &func_lang, NULL);
12022 if (func_name == NULL)
12025 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12027 re_comp (known_auxiliary_function_name_patterns[i]);
12028 if (re_exec (func_name))
12039 /* Find the first frame that contains debugging information and that is not
12040 part of the Ada run-time, starting from FI and moving upward. */
12043 ada_find_printable_frame (struct frame_info *fi)
12045 for (; fi != NULL; fi = get_prev_frame (fi))
12047 if (!is_known_support_routine (fi))
12056 /* Assuming that the inferior just triggered an unhandled exception
12057 catchpoint, return the address in inferior memory where the name
12058 of the exception is stored.
12060 Return zero if the address could not be computed. */
12063 ada_unhandled_exception_name_addr (void)
12065 return parse_and_eval_address ("e.full_name");
12068 /* Same as ada_unhandled_exception_name_addr, except that this function
12069 should be used when the inferior uses an older version of the runtime,
12070 where the exception name needs to be extracted from a specific frame
12071 several frames up in the callstack. */
12074 ada_unhandled_exception_name_addr_from_raise (void)
12077 struct frame_info *fi;
12078 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12079 struct cleanup *old_chain;
12081 /* To determine the name of this exception, we need to select
12082 the frame corresponding to RAISE_SYM_NAME. This frame is
12083 at least 3 levels up, so we simply skip the first 3 frames
12084 without checking the name of their associated function. */
12085 fi = get_current_frame ();
12086 for (frame_level = 0; frame_level < 3; frame_level += 1)
12088 fi = get_prev_frame (fi);
12090 old_chain = make_cleanup (null_cleanup, NULL);
12094 enum language func_lang;
12096 find_frame_funname (fi, &func_name, &func_lang, NULL);
12097 if (func_name != NULL)
12099 make_cleanup (xfree, func_name);
12101 if (strcmp (func_name,
12102 data->exception_info->catch_exception_sym) == 0)
12103 break; /* We found the frame we were looking for... */
12104 fi = get_prev_frame (fi);
12107 do_cleanups (old_chain);
12113 return parse_and_eval_address ("id.full_name");
12116 /* Assuming the inferior just triggered an Ada exception catchpoint
12117 (of any type), return the address in inferior memory where the name
12118 of the exception is stored, if applicable.
12120 Assumes the selected frame is the current frame.
12122 Return zero if the address could not be computed, or if not relevant. */
12125 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12126 struct breakpoint *b)
12128 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12132 case ada_catch_exception:
12133 return (parse_and_eval_address ("e.full_name"));
12136 case ada_catch_exception_unhandled:
12137 return data->exception_info->unhandled_exception_name_addr ();
12140 case ada_catch_assert:
12141 return 0; /* Exception name is not relevant in this case. */
12145 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12149 return 0; /* Should never be reached. */
12152 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12153 any error that ada_exception_name_addr_1 might cause to be thrown.
12154 When an error is intercepted, a warning with the error message is printed,
12155 and zero is returned. */
12158 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12159 struct breakpoint *b)
12161 CORE_ADDR result = 0;
12165 result = ada_exception_name_addr_1 (ex, b);
12168 CATCH (e, RETURN_MASK_ERROR)
12170 warning (_("failed to get exception name: %s"), e.message);
12178 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12180 /* Ada catchpoints.
12182 In the case of catchpoints on Ada exceptions, the catchpoint will
12183 stop the target on every exception the program throws. When a user
12184 specifies the name of a specific exception, we translate this
12185 request into a condition expression (in text form), and then parse
12186 it into an expression stored in each of the catchpoint's locations.
12187 We then use this condition to check whether the exception that was
12188 raised is the one the user is interested in. If not, then the
12189 target is resumed again. We store the name of the requested
12190 exception, in order to be able to re-set the condition expression
12191 when symbols change. */
12193 /* An instance of this type is used to represent an Ada catchpoint
12194 breakpoint location. */
12196 class ada_catchpoint_location : public bp_location
12199 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12200 : bp_location (ops, owner)
12203 /* The condition that checks whether the exception that was raised
12204 is the specific exception the user specified on catchpoint
12206 expression_up excep_cond_expr;
12209 /* Implement the DTOR method in the bp_location_ops structure for all
12210 Ada exception catchpoint kinds. */
12213 ada_catchpoint_location_dtor (struct bp_location *bl)
12215 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12217 al->excep_cond_expr.reset ();
12220 /* The vtable to be used in Ada catchpoint locations. */
12222 static const struct bp_location_ops ada_catchpoint_location_ops =
12224 ada_catchpoint_location_dtor
12227 /* An instance of this type is used to represent an Ada catchpoint. */
12229 struct ada_catchpoint : public breakpoint
12231 ~ada_catchpoint () override;
12233 /* The name of the specific exception the user specified. */
12234 char *excep_string;
12237 /* Parse the exception condition string in the context of each of the
12238 catchpoint's locations, and store them for later evaluation. */
12241 create_excep_cond_exprs (struct ada_catchpoint *c)
12243 struct cleanup *old_chain;
12244 struct bp_location *bl;
12247 /* Nothing to do if there's no specific exception to catch. */
12248 if (c->excep_string == NULL)
12251 /* Same if there are no locations... */
12252 if (c->loc == NULL)
12255 /* Compute the condition expression in text form, from the specific
12256 expection we want to catch. */
12257 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12258 old_chain = make_cleanup (xfree, cond_string);
12260 /* Iterate over all the catchpoint's locations, and parse an
12261 expression for each. */
12262 for (bl = c->loc; bl != NULL; bl = bl->next)
12264 struct ada_catchpoint_location *ada_loc
12265 = (struct ada_catchpoint_location *) bl;
12268 if (!bl->shlib_disabled)
12275 exp = parse_exp_1 (&s, bl->address,
12276 block_for_pc (bl->address),
12279 CATCH (e, RETURN_MASK_ERROR)
12281 warning (_("failed to reevaluate internal exception condition "
12282 "for catchpoint %d: %s"),
12283 c->number, e.message);
12288 ada_loc->excep_cond_expr = std::move (exp);
12291 do_cleanups (old_chain);
12294 /* ada_catchpoint destructor. */
12296 ada_catchpoint::~ada_catchpoint ()
12298 xfree (this->excep_string);
12301 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12302 structure for all exception catchpoint kinds. */
12304 static struct bp_location *
12305 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12306 struct breakpoint *self)
12308 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12311 /* Implement the RE_SET method in the breakpoint_ops structure for all
12312 exception catchpoint kinds. */
12315 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12317 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12319 /* Call the base class's method. This updates the catchpoint's
12321 bkpt_breakpoint_ops.re_set (b);
12323 /* Reparse the exception conditional expressions. One for each
12325 create_excep_cond_exprs (c);
12328 /* Returns true if we should stop for this breakpoint hit. If the
12329 user specified a specific exception, we only want to cause a stop
12330 if the program thrown that exception. */
12333 should_stop_exception (const struct bp_location *bl)
12335 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12336 const struct ada_catchpoint_location *ada_loc
12337 = (const struct ada_catchpoint_location *) bl;
12340 /* With no specific exception, should always stop. */
12341 if (c->excep_string == NULL)
12344 if (ada_loc->excep_cond_expr == NULL)
12346 /* We will have a NULL expression if back when we were creating
12347 the expressions, this location's had failed to parse. */
12354 struct value *mark;
12356 mark = value_mark ();
12357 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12358 value_free_to_mark (mark);
12360 CATCH (ex, RETURN_MASK_ALL)
12362 exception_fprintf (gdb_stderr, ex,
12363 _("Error in testing exception condition:\n"));
12370 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12371 for all exception catchpoint kinds. */
12374 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12376 bs->stop = should_stop_exception (bs->bp_location_at);
12379 /* Implement the PRINT_IT method in the breakpoint_ops structure
12380 for all exception catchpoint kinds. */
12382 static enum print_stop_action
12383 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12385 struct ui_out *uiout = current_uiout;
12386 struct breakpoint *b = bs->breakpoint_at;
12388 annotate_catchpoint (b->number);
12390 if (uiout->is_mi_like_p ())
12392 uiout->field_string ("reason",
12393 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12394 uiout->field_string ("disp", bpdisp_text (b->disposition));
12397 uiout->text (b->disposition == disp_del
12398 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12399 uiout->field_int ("bkptno", b->number);
12400 uiout->text (", ");
12402 /* ada_exception_name_addr relies on the selected frame being the
12403 current frame. Need to do this here because this function may be
12404 called more than once when printing a stop, and below, we'll
12405 select the first frame past the Ada run-time (see
12406 ada_find_printable_frame). */
12407 select_frame (get_current_frame ());
12411 case ada_catch_exception:
12412 case ada_catch_exception_unhandled:
12414 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12415 char exception_name[256];
12419 read_memory (addr, (gdb_byte *) exception_name,
12420 sizeof (exception_name) - 1);
12421 exception_name [sizeof (exception_name) - 1] = '\0';
12425 /* For some reason, we were unable to read the exception
12426 name. This could happen if the Runtime was compiled
12427 without debugging info, for instance. In that case,
12428 just replace the exception name by the generic string
12429 "exception" - it will read as "an exception" in the
12430 notification we are about to print. */
12431 memcpy (exception_name, "exception", sizeof ("exception"));
12433 /* In the case of unhandled exception breakpoints, we print
12434 the exception name as "unhandled EXCEPTION_NAME", to make
12435 it clearer to the user which kind of catchpoint just got
12436 hit. We used ui_out_text to make sure that this extra
12437 info does not pollute the exception name in the MI case. */
12438 if (ex == ada_catch_exception_unhandled)
12439 uiout->text ("unhandled ");
12440 uiout->field_string ("exception-name", exception_name);
12443 case ada_catch_assert:
12444 /* In this case, the name of the exception is not really
12445 important. Just print "failed assertion" to make it clearer
12446 that his program just hit an assertion-failure catchpoint.
12447 We used ui_out_text because this info does not belong in
12449 uiout->text ("failed assertion");
12452 uiout->text (" at ");
12453 ada_find_printable_frame (get_current_frame ());
12455 return PRINT_SRC_AND_LOC;
12458 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12459 for all exception catchpoint kinds. */
12462 print_one_exception (enum ada_exception_catchpoint_kind ex,
12463 struct breakpoint *b, struct bp_location **last_loc)
12465 struct ui_out *uiout = current_uiout;
12466 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12467 struct value_print_options opts;
12469 get_user_print_options (&opts);
12470 if (opts.addressprint)
12472 annotate_field (4);
12473 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12476 annotate_field (5);
12477 *last_loc = b->loc;
12480 case ada_catch_exception:
12481 if (c->excep_string != NULL)
12483 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12485 uiout->field_string ("what", msg);
12489 uiout->field_string ("what", "all Ada exceptions");
12493 case ada_catch_exception_unhandled:
12494 uiout->field_string ("what", "unhandled Ada exceptions");
12497 case ada_catch_assert:
12498 uiout->field_string ("what", "failed Ada assertions");
12502 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12507 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12508 for all exception catchpoint kinds. */
12511 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12512 struct breakpoint *b)
12514 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12515 struct ui_out *uiout = current_uiout;
12517 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12518 : _("Catchpoint "));
12519 uiout->field_int ("bkptno", b->number);
12520 uiout->text (": ");
12524 case ada_catch_exception:
12525 if (c->excep_string != NULL)
12527 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12528 struct cleanup *old_chain = make_cleanup (xfree, info);
12530 uiout->text (info);
12531 do_cleanups (old_chain);
12534 uiout->text (_("all Ada exceptions"));
12537 case ada_catch_exception_unhandled:
12538 uiout->text (_("unhandled Ada exceptions"));
12541 case ada_catch_assert:
12542 uiout->text (_("failed Ada assertions"));
12546 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12551 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12552 for all exception catchpoint kinds. */
12555 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12556 struct breakpoint *b, struct ui_file *fp)
12558 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12562 case ada_catch_exception:
12563 fprintf_filtered (fp, "catch exception");
12564 if (c->excep_string != NULL)
12565 fprintf_filtered (fp, " %s", c->excep_string);
12568 case ada_catch_exception_unhandled:
12569 fprintf_filtered (fp, "catch exception unhandled");
12572 case ada_catch_assert:
12573 fprintf_filtered (fp, "catch assert");
12577 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12579 print_recreate_thread (b, fp);
12582 /* Virtual table for "catch exception" breakpoints. */
12584 static struct bp_location *
12585 allocate_location_catch_exception (struct breakpoint *self)
12587 return allocate_location_exception (ada_catch_exception, self);
12591 re_set_catch_exception (struct breakpoint *b)
12593 re_set_exception (ada_catch_exception, b);
12597 check_status_catch_exception (bpstat bs)
12599 check_status_exception (ada_catch_exception, bs);
12602 static enum print_stop_action
12603 print_it_catch_exception (bpstat bs)
12605 return print_it_exception (ada_catch_exception, bs);
12609 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12611 print_one_exception (ada_catch_exception, b, last_loc);
12615 print_mention_catch_exception (struct breakpoint *b)
12617 print_mention_exception (ada_catch_exception, b);
12621 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12623 print_recreate_exception (ada_catch_exception, b, fp);
12626 static struct breakpoint_ops catch_exception_breakpoint_ops;
12628 /* Virtual table for "catch exception unhandled" breakpoints. */
12630 static struct bp_location *
12631 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12633 return allocate_location_exception (ada_catch_exception_unhandled, self);
12637 re_set_catch_exception_unhandled (struct breakpoint *b)
12639 re_set_exception (ada_catch_exception_unhandled, b);
12643 check_status_catch_exception_unhandled (bpstat bs)
12645 check_status_exception (ada_catch_exception_unhandled, bs);
12648 static enum print_stop_action
12649 print_it_catch_exception_unhandled (bpstat bs)
12651 return print_it_exception (ada_catch_exception_unhandled, bs);
12655 print_one_catch_exception_unhandled (struct breakpoint *b,
12656 struct bp_location **last_loc)
12658 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12662 print_mention_catch_exception_unhandled (struct breakpoint *b)
12664 print_mention_exception (ada_catch_exception_unhandled, b);
12668 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12669 struct ui_file *fp)
12671 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12674 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12676 /* Virtual table for "catch assert" breakpoints. */
12678 static struct bp_location *
12679 allocate_location_catch_assert (struct breakpoint *self)
12681 return allocate_location_exception (ada_catch_assert, self);
12685 re_set_catch_assert (struct breakpoint *b)
12687 re_set_exception (ada_catch_assert, b);
12691 check_status_catch_assert (bpstat bs)
12693 check_status_exception (ada_catch_assert, bs);
12696 static enum print_stop_action
12697 print_it_catch_assert (bpstat bs)
12699 return print_it_exception (ada_catch_assert, bs);
12703 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12705 print_one_exception (ada_catch_assert, b, last_loc);
12709 print_mention_catch_assert (struct breakpoint *b)
12711 print_mention_exception (ada_catch_assert, b);
12715 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12717 print_recreate_exception (ada_catch_assert, b, fp);
12720 static struct breakpoint_ops catch_assert_breakpoint_ops;
12722 /* Return a newly allocated copy of the first space-separated token
12723 in ARGSP, and then adjust ARGSP to point immediately after that
12726 Return NULL if ARGPS does not contain any more tokens. */
12729 ada_get_next_arg (const char **argsp)
12731 const char *args = *argsp;
12735 args = skip_spaces (args);
12736 if (args[0] == '\0')
12737 return NULL; /* No more arguments. */
12739 /* Find the end of the current argument. */
12741 end = skip_to_space (args);
12743 /* Adjust ARGSP to point to the start of the next argument. */
12747 /* Make a copy of the current argument and return it. */
12749 result = (char *) xmalloc (end - args + 1);
12750 strncpy (result, args, end - args);
12751 result[end - args] = '\0';
12756 /* Split the arguments specified in a "catch exception" command.
12757 Set EX to the appropriate catchpoint type.
12758 Set EXCEP_STRING to the name of the specific exception if
12759 specified by the user.
12760 If a condition is found at the end of the arguments, the condition
12761 expression is stored in COND_STRING (memory must be deallocated
12762 after use). Otherwise COND_STRING is set to NULL. */
12765 catch_ada_exception_command_split (const char *args,
12766 enum ada_exception_catchpoint_kind *ex,
12767 char **excep_string,
12768 char **cond_string)
12770 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12771 char *exception_name;
12774 exception_name = ada_get_next_arg (&args);
12775 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12777 /* This is not an exception name; this is the start of a condition
12778 expression for a catchpoint on all exceptions. So, "un-get"
12779 this token, and set exception_name to NULL. */
12780 xfree (exception_name);
12781 exception_name = NULL;
12784 make_cleanup (xfree, exception_name);
12786 /* Check to see if we have a condition. */
12788 args = skip_spaces (args);
12789 if (startswith (args, "if")
12790 && (isspace (args[2]) || args[2] == '\0'))
12793 args = skip_spaces (args);
12795 if (args[0] == '\0')
12796 error (_("Condition missing after `if' keyword"));
12797 cond = xstrdup (args);
12798 make_cleanup (xfree, cond);
12800 args += strlen (args);
12803 /* Check that we do not have any more arguments. Anything else
12806 if (args[0] != '\0')
12807 error (_("Junk at end of expression"));
12809 discard_cleanups (old_chain);
12811 if (exception_name == NULL)
12813 /* Catch all exceptions. */
12814 *ex = ada_catch_exception;
12815 *excep_string = NULL;
12817 else if (strcmp (exception_name, "unhandled") == 0)
12819 /* Catch unhandled exceptions. */
12820 *ex = ada_catch_exception_unhandled;
12821 *excep_string = NULL;
12825 /* Catch a specific exception. */
12826 *ex = ada_catch_exception;
12827 *excep_string = exception_name;
12829 *cond_string = cond;
12832 /* Return the name of the symbol on which we should break in order to
12833 implement a catchpoint of the EX kind. */
12835 static const char *
12836 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12838 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12840 gdb_assert (data->exception_info != NULL);
12844 case ada_catch_exception:
12845 return (data->exception_info->catch_exception_sym);
12847 case ada_catch_exception_unhandled:
12848 return (data->exception_info->catch_exception_unhandled_sym);
12850 case ada_catch_assert:
12851 return (data->exception_info->catch_assert_sym);
12854 internal_error (__FILE__, __LINE__,
12855 _("unexpected catchpoint kind (%d)"), ex);
12859 /* Return the breakpoint ops "virtual table" used for catchpoints
12862 static const struct breakpoint_ops *
12863 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12867 case ada_catch_exception:
12868 return (&catch_exception_breakpoint_ops);
12870 case ada_catch_exception_unhandled:
12871 return (&catch_exception_unhandled_breakpoint_ops);
12873 case ada_catch_assert:
12874 return (&catch_assert_breakpoint_ops);
12877 internal_error (__FILE__, __LINE__,
12878 _("unexpected catchpoint kind (%d)"), ex);
12882 /* Return the condition that will be used to match the current exception
12883 being raised with the exception that the user wants to catch. This
12884 assumes that this condition is used when the inferior just triggered
12885 an exception catchpoint.
12887 The string returned is a newly allocated string that needs to be
12888 deallocated later. */
12891 ada_exception_catchpoint_cond_string (const char *excep_string)
12895 /* The standard exceptions are a special case. They are defined in
12896 runtime units that have been compiled without debugging info; if
12897 EXCEP_STRING is the not-fully-qualified name of a standard
12898 exception (e.g. "constraint_error") then, during the evaluation
12899 of the condition expression, the symbol lookup on this name would
12900 *not* return this standard exception. The catchpoint condition
12901 may then be set only on user-defined exceptions which have the
12902 same not-fully-qualified name (e.g. my_package.constraint_error).
12904 To avoid this unexcepted behavior, these standard exceptions are
12905 systematically prefixed by "standard". This means that "catch
12906 exception constraint_error" is rewritten into "catch exception
12907 standard.constraint_error".
12909 If an exception named contraint_error is defined in another package of
12910 the inferior program, then the only way to specify this exception as a
12911 breakpoint condition is to use its fully-qualified named:
12912 e.g. my_package.constraint_error. */
12914 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12916 if (strcmp (standard_exc [i], excep_string) == 0)
12918 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12922 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12925 /* Return the symtab_and_line that should be used to insert an exception
12926 catchpoint of the TYPE kind.
12928 EXCEP_STRING should contain the name of a specific exception that
12929 the catchpoint should catch, or NULL otherwise.
12931 ADDR_STRING returns the name of the function where the real
12932 breakpoint that implements the catchpoints is set, depending on the
12933 type of catchpoint we need to create. */
12935 static struct symtab_and_line
12936 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12937 char **addr_string, const struct breakpoint_ops **ops)
12939 const char *sym_name;
12940 struct symbol *sym;
12942 /* First, find out which exception support info to use. */
12943 ada_exception_support_info_sniffer ();
12945 /* Then lookup the function on which we will break in order to catch
12946 the Ada exceptions requested by the user. */
12947 sym_name = ada_exception_sym_name (ex);
12948 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12950 /* We can assume that SYM is not NULL at this stage. If the symbol
12951 did not exist, ada_exception_support_info_sniffer would have
12952 raised an exception.
12954 Also, ada_exception_support_info_sniffer should have already
12955 verified that SYM is a function symbol. */
12956 gdb_assert (sym != NULL);
12957 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12959 /* Set ADDR_STRING. */
12960 *addr_string = xstrdup (sym_name);
12963 *ops = ada_exception_breakpoint_ops (ex);
12965 return find_function_start_sal (sym, 1);
12968 /* Create an Ada exception catchpoint.
12970 EX_KIND is the kind of exception catchpoint to be created.
12972 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12973 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12974 of the exception to which this catchpoint applies. When not NULL,
12975 the string must be allocated on the heap, and its deallocation
12976 is no longer the responsibility of the caller.
12978 COND_STRING, if not NULL, is the catchpoint condition. This string
12979 must be allocated on the heap, and its deallocation is no longer
12980 the responsibility of the caller.
12982 TEMPFLAG, if nonzero, means that the underlying breakpoint
12983 should be temporary.
12985 FROM_TTY is the usual argument passed to all commands implementations. */
12988 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12989 enum ada_exception_catchpoint_kind ex_kind,
12990 char *excep_string,
12996 char *addr_string = NULL;
12997 const struct breakpoint_ops *ops = NULL;
12998 struct symtab_and_line sal
12999 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13001 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13002 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13003 ops, tempflag, disabled, from_tty);
13004 c->excep_string = excep_string;
13005 create_excep_cond_exprs (c.get ());
13006 if (cond_string != NULL)
13007 set_breakpoint_condition (c.get (), cond_string, from_tty);
13008 install_breakpoint (0, std::move (c), 1);
13011 /* Implement the "catch exception" command. */
13014 catch_ada_exception_command (char *arg_entry, int from_tty,
13015 struct cmd_list_element *command)
13017 const char *arg = arg_entry;
13018 struct gdbarch *gdbarch = get_current_arch ();
13020 enum ada_exception_catchpoint_kind ex_kind;
13021 char *excep_string = NULL;
13022 char *cond_string = NULL;
13024 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13028 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13030 create_ada_exception_catchpoint (gdbarch, ex_kind,
13031 excep_string, cond_string,
13032 tempflag, 1 /* enabled */,
13036 /* Split the arguments specified in a "catch assert" command.
13038 ARGS contains the command's arguments (or the empty string if
13039 no arguments were passed).
13041 If ARGS contains a condition, set COND_STRING to that condition
13042 (the memory needs to be deallocated after use). */
13045 catch_ada_assert_command_split (const char *args, char **cond_string)
13047 args = skip_spaces (args);
13049 /* Check whether a condition was provided. */
13050 if (startswith (args, "if")
13051 && (isspace (args[2]) || args[2] == '\0'))
13054 args = skip_spaces (args);
13055 if (args[0] == '\0')
13056 error (_("condition missing after `if' keyword"));
13057 *cond_string = xstrdup (args);
13060 /* Otherwise, there should be no other argument at the end of
13062 else if (args[0] != '\0')
13063 error (_("Junk at end of arguments."));
13066 /* Implement the "catch assert" command. */
13069 catch_assert_command (char *arg_entry, int from_tty,
13070 struct cmd_list_element *command)
13072 const char *arg = arg_entry;
13073 struct gdbarch *gdbarch = get_current_arch ();
13075 char *cond_string = NULL;
13077 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13081 catch_ada_assert_command_split (arg, &cond_string);
13082 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13084 tempflag, 1 /* enabled */,
13088 /* Return non-zero if the symbol SYM is an Ada exception object. */
13091 ada_is_exception_sym (struct symbol *sym)
13093 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13095 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13096 && SYMBOL_CLASS (sym) != LOC_BLOCK
13097 && SYMBOL_CLASS (sym) != LOC_CONST
13098 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13099 && type_name != NULL && strcmp (type_name, "exception") == 0);
13102 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13103 Ada exception object. This matches all exceptions except the ones
13104 defined by the Ada language. */
13107 ada_is_non_standard_exception_sym (struct symbol *sym)
13111 if (!ada_is_exception_sym (sym))
13114 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13115 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13116 return 0; /* A standard exception. */
13118 /* Numeric_Error is also a standard exception, so exclude it.
13119 See the STANDARD_EXC description for more details as to why
13120 this exception is not listed in that array. */
13121 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13127 /* A helper function for qsort, comparing two struct ada_exc_info
13130 The comparison is determined first by exception name, and then
13131 by exception address. */
13134 compare_ada_exception_info (const void *a, const void *b)
13136 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13137 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13140 result = strcmp (exc_a->name, exc_b->name);
13144 if (exc_a->addr < exc_b->addr)
13146 if (exc_a->addr > exc_b->addr)
13152 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13153 routine, but keeping the first SKIP elements untouched.
13155 All duplicates are also removed. */
13158 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13161 struct ada_exc_info *to_sort
13162 = VEC_address (ada_exc_info, *exceptions) + skip;
13164 = VEC_length (ada_exc_info, *exceptions) - skip;
13167 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13168 compare_ada_exception_info);
13170 for (i = 1, j = 1; i < to_sort_len; i++)
13171 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13172 to_sort[j++] = to_sort[i];
13174 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13177 /* Add all exceptions defined by the Ada standard whose name match
13178 a regular expression.
13180 If PREG is not NULL, then this regexp_t object is used to
13181 perform the symbol name matching. Otherwise, no name-based
13182 filtering is performed.
13184 EXCEPTIONS is a vector of exceptions to which matching exceptions
13188 ada_add_standard_exceptions (compiled_regex *preg,
13189 VEC(ada_exc_info) **exceptions)
13193 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13196 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13198 struct bound_minimal_symbol msymbol
13199 = ada_lookup_simple_minsym (standard_exc[i]);
13201 if (msymbol.minsym != NULL)
13203 struct ada_exc_info info
13204 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13206 VEC_safe_push (ada_exc_info, *exceptions, &info);
13212 /* Add all Ada exceptions defined locally and accessible from the given
13215 If PREG is not NULL, then this regexp_t object is used to
13216 perform the symbol name matching. Otherwise, no name-based
13217 filtering is performed.
13219 EXCEPTIONS is a vector of exceptions to which matching exceptions
13223 ada_add_exceptions_from_frame (compiled_regex *preg,
13224 struct frame_info *frame,
13225 VEC(ada_exc_info) **exceptions)
13227 const struct block *block = get_frame_block (frame, 0);
13231 struct block_iterator iter;
13232 struct symbol *sym;
13234 ALL_BLOCK_SYMBOLS (block, iter, sym)
13236 switch (SYMBOL_CLASS (sym))
13243 if (ada_is_exception_sym (sym))
13245 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13246 SYMBOL_VALUE_ADDRESS (sym)};
13248 VEC_safe_push (ada_exc_info, *exceptions, &info);
13252 if (BLOCK_FUNCTION (block) != NULL)
13254 block = BLOCK_SUPERBLOCK (block);
13258 /* Return true if NAME matches PREG or if PREG is NULL. */
13261 name_matches_regex (const char *name, compiled_regex *preg)
13263 return (preg == NULL
13264 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13267 /* Add all exceptions defined globally whose name name match
13268 a regular expression, excluding standard exceptions.
13270 The reason we exclude standard exceptions is that they need
13271 to be handled separately: Standard exceptions are defined inside
13272 a runtime unit which is normally not compiled with debugging info,
13273 and thus usually do not show up in our symbol search. However,
13274 if the unit was in fact built with debugging info, we need to
13275 exclude them because they would duplicate the entry we found
13276 during the special loop that specifically searches for those
13277 standard exceptions.
13279 If PREG is not NULL, then this regexp_t object is used to
13280 perform the symbol name matching. Otherwise, no name-based
13281 filtering is performed.
13283 EXCEPTIONS is a vector of exceptions to which matching exceptions
13287 ada_add_global_exceptions (compiled_regex *preg,
13288 VEC(ada_exc_info) **exceptions)
13290 struct objfile *objfile;
13291 struct compunit_symtab *s;
13293 /* In Ada, the symbol "search name" is a linkage name, whereas the
13294 regular expression used to do the matching refers to the natural
13295 name. So match against the decoded name. */
13296 expand_symtabs_matching (NULL,
13297 [&] (const char *search_name)
13299 const char *decoded = ada_decode (search_name);
13300 return name_matches_regex (decoded, preg);
13305 ALL_COMPUNITS (objfile, s)
13307 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13310 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13312 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13313 struct block_iterator iter;
13314 struct symbol *sym;
13316 ALL_BLOCK_SYMBOLS (b, iter, sym)
13317 if (ada_is_non_standard_exception_sym (sym)
13318 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13320 struct ada_exc_info info
13321 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13323 VEC_safe_push (ada_exc_info, *exceptions, &info);
13329 /* Implements ada_exceptions_list with the regular expression passed
13330 as a regex_t, rather than a string.
13332 If not NULL, PREG is used to filter out exceptions whose names
13333 do not match. Otherwise, all exceptions are listed. */
13335 static VEC(ada_exc_info) *
13336 ada_exceptions_list_1 (compiled_regex *preg)
13338 VEC(ada_exc_info) *result = NULL;
13339 struct cleanup *old_chain
13340 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13343 /* First, list the known standard exceptions. These exceptions
13344 need to be handled separately, as they are usually defined in
13345 runtime units that have been compiled without debugging info. */
13347 ada_add_standard_exceptions (preg, &result);
13349 /* Next, find all exceptions whose scope is local and accessible
13350 from the currently selected frame. */
13352 if (has_stack_frames ())
13354 prev_len = VEC_length (ada_exc_info, result);
13355 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13357 if (VEC_length (ada_exc_info, result) > prev_len)
13358 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13361 /* Add all exceptions whose scope is global. */
13363 prev_len = VEC_length (ada_exc_info, result);
13364 ada_add_global_exceptions (preg, &result);
13365 if (VEC_length (ada_exc_info, result) > prev_len)
13366 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13368 discard_cleanups (old_chain);
13372 /* Return a vector of ada_exc_info.
13374 If REGEXP is NULL, all exceptions are included in the result.
13375 Otherwise, it should contain a valid regular expression,
13376 and only the exceptions whose names match that regular expression
13377 are included in the result.
13379 The exceptions are sorted in the following order:
13380 - Standard exceptions (defined by the Ada language), in
13381 alphabetical order;
13382 - Exceptions only visible from the current frame, in
13383 alphabetical order;
13384 - Exceptions whose scope is global, in alphabetical order. */
13386 VEC(ada_exc_info) *
13387 ada_exceptions_list (const char *regexp)
13389 if (regexp == NULL)
13390 return ada_exceptions_list_1 (NULL);
13392 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13393 return ada_exceptions_list_1 (®);
13396 /* Implement the "info exceptions" command. */
13399 info_exceptions_command (char *regexp, int from_tty)
13401 VEC(ada_exc_info) *exceptions;
13402 struct cleanup *cleanup;
13403 struct gdbarch *gdbarch = get_current_arch ();
13405 struct ada_exc_info *info;
13407 exceptions = ada_exceptions_list (regexp);
13408 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13410 if (regexp != NULL)
13412 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13414 printf_filtered (_("All defined Ada exceptions:\n"));
13416 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13417 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13419 do_cleanups (cleanup);
13423 /* Information about operators given special treatment in functions
13425 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13427 #define ADA_OPERATORS \
13428 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13429 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13430 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13431 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13432 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13433 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13434 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13435 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13436 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13437 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13438 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13439 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13440 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13441 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13442 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13443 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13444 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13445 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13446 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13449 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13452 switch (exp->elts[pc - 1].opcode)
13455 operator_length_standard (exp, pc, oplenp, argsp);
13458 #define OP_DEFN(op, len, args, binop) \
13459 case op: *oplenp = len; *argsp = args; break;
13465 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13470 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13475 /* Implementation of the exp_descriptor method operator_check. */
13478 ada_operator_check (struct expression *exp, int pos,
13479 int (*objfile_func) (struct objfile *objfile, void *data),
13482 const union exp_element *const elts = exp->elts;
13483 struct type *type = NULL;
13485 switch (elts[pos].opcode)
13487 case UNOP_IN_RANGE:
13489 type = elts[pos + 1].type;
13493 return operator_check_standard (exp, pos, objfile_func, data);
13496 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13498 if (type && TYPE_OBJFILE (type)
13499 && (*objfile_func) (TYPE_OBJFILE (type), data))
13505 static const char *
13506 ada_op_name (enum exp_opcode opcode)
13511 return op_name_standard (opcode);
13513 #define OP_DEFN(op, len, args, binop) case op: return #op;
13518 return "OP_AGGREGATE";
13520 return "OP_CHOICES";
13526 /* As for operator_length, but assumes PC is pointing at the first
13527 element of the operator, and gives meaningful results only for the
13528 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13531 ada_forward_operator_length (struct expression *exp, int pc,
13532 int *oplenp, int *argsp)
13534 switch (exp->elts[pc].opcode)
13537 *oplenp = *argsp = 0;
13540 #define OP_DEFN(op, len, args, binop) \
13541 case op: *oplenp = len; *argsp = args; break;
13547 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13552 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13558 int len = longest_to_int (exp->elts[pc + 1].longconst);
13560 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13568 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13570 enum exp_opcode op = exp->elts[elt].opcode;
13575 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13579 /* Ada attributes ('Foo). */
13582 case OP_ATR_LENGTH:
13586 case OP_ATR_MODULUS:
13593 case UNOP_IN_RANGE:
13595 /* XXX: gdb_sprint_host_address, type_sprint */
13596 fprintf_filtered (stream, _("Type @"));
13597 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13598 fprintf_filtered (stream, " (");
13599 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13600 fprintf_filtered (stream, ")");
13602 case BINOP_IN_BOUNDS:
13603 fprintf_filtered (stream, " (%d)",
13604 longest_to_int (exp->elts[pc + 2].longconst));
13606 case TERNOP_IN_RANGE:
13611 case OP_DISCRETE_RANGE:
13612 case OP_POSITIONAL:
13619 char *name = &exp->elts[elt + 2].string;
13620 int len = longest_to_int (exp->elts[elt + 1].longconst);
13622 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13627 return dump_subexp_body_standard (exp, stream, elt);
13631 for (i = 0; i < nargs; i += 1)
13632 elt = dump_subexp (exp, stream, elt);
13637 /* The Ada extension of print_subexp (q.v.). */
13640 ada_print_subexp (struct expression *exp, int *pos,
13641 struct ui_file *stream, enum precedence prec)
13643 int oplen, nargs, i;
13645 enum exp_opcode op = exp->elts[pc].opcode;
13647 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13654 print_subexp_standard (exp, pos, stream, prec);
13658 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13661 case BINOP_IN_BOUNDS:
13662 /* XXX: sprint_subexp */
13663 print_subexp (exp, pos, stream, PREC_SUFFIX);
13664 fputs_filtered (" in ", stream);
13665 print_subexp (exp, pos, stream, PREC_SUFFIX);
13666 fputs_filtered ("'range", stream);
13667 if (exp->elts[pc + 1].longconst > 1)
13668 fprintf_filtered (stream, "(%ld)",
13669 (long) exp->elts[pc + 1].longconst);
13672 case TERNOP_IN_RANGE:
13673 if (prec >= PREC_EQUAL)
13674 fputs_filtered ("(", stream);
13675 /* XXX: sprint_subexp */
13676 print_subexp (exp, pos, stream, PREC_SUFFIX);
13677 fputs_filtered (" in ", stream);
13678 print_subexp (exp, pos, stream, PREC_EQUAL);
13679 fputs_filtered (" .. ", stream);
13680 print_subexp (exp, pos, stream, PREC_EQUAL);
13681 if (prec >= PREC_EQUAL)
13682 fputs_filtered (")", stream);
13687 case OP_ATR_LENGTH:
13691 case OP_ATR_MODULUS:
13696 if (exp->elts[*pos].opcode == OP_TYPE)
13698 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13699 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13700 &type_print_raw_options);
13704 print_subexp (exp, pos, stream, PREC_SUFFIX);
13705 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13710 for (tem = 1; tem < nargs; tem += 1)
13712 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13713 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13715 fputs_filtered (")", stream);
13720 type_print (exp->elts[pc + 1].type, "", stream, 0);
13721 fputs_filtered ("'(", stream);
13722 print_subexp (exp, pos, stream, PREC_PREFIX);
13723 fputs_filtered (")", stream);
13726 case UNOP_IN_RANGE:
13727 /* XXX: sprint_subexp */
13728 print_subexp (exp, pos, stream, PREC_SUFFIX);
13729 fputs_filtered (" in ", stream);
13730 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13731 &type_print_raw_options);
13734 case OP_DISCRETE_RANGE:
13735 print_subexp (exp, pos, stream, PREC_SUFFIX);
13736 fputs_filtered ("..", stream);
13737 print_subexp (exp, pos, stream, PREC_SUFFIX);
13741 fputs_filtered ("others => ", stream);
13742 print_subexp (exp, pos, stream, PREC_SUFFIX);
13746 for (i = 0; i < nargs-1; i += 1)
13749 fputs_filtered ("|", stream);
13750 print_subexp (exp, pos, stream, PREC_SUFFIX);
13752 fputs_filtered (" => ", stream);
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13756 case OP_POSITIONAL:
13757 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 fputs_filtered ("(", stream);
13762 for (i = 0; i < nargs; i += 1)
13765 fputs_filtered (", ", stream);
13766 print_subexp (exp, pos, stream, PREC_SUFFIX);
13768 fputs_filtered (")", stream);
13773 /* Table mapping opcodes into strings for printing operators
13774 and precedences of the operators. */
13776 static const struct op_print ada_op_print_tab[] = {
13777 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13778 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13779 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13780 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13781 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13782 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13783 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13784 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13785 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13786 {">=", BINOP_GEQ, PREC_ORDER, 0},
13787 {">", BINOP_GTR, PREC_ORDER, 0},
13788 {"<", BINOP_LESS, PREC_ORDER, 0},
13789 {">>", BINOP_RSH, PREC_SHIFT, 0},
13790 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13791 {"+", BINOP_ADD, PREC_ADD, 0},
13792 {"-", BINOP_SUB, PREC_ADD, 0},
13793 {"&", BINOP_CONCAT, PREC_ADD, 0},
13794 {"*", BINOP_MUL, PREC_MUL, 0},
13795 {"/", BINOP_DIV, PREC_MUL, 0},
13796 {"rem", BINOP_REM, PREC_MUL, 0},
13797 {"mod", BINOP_MOD, PREC_MUL, 0},
13798 {"**", BINOP_EXP, PREC_REPEAT, 0},
13799 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13800 {"-", UNOP_NEG, PREC_PREFIX, 0},
13801 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13802 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13803 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13804 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13805 {".all", UNOP_IND, PREC_SUFFIX, 1},
13806 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13807 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13808 {NULL, OP_NULL, PREC_SUFFIX, 0}
13811 enum ada_primitive_types {
13812 ada_primitive_type_int,
13813 ada_primitive_type_long,
13814 ada_primitive_type_short,
13815 ada_primitive_type_char,
13816 ada_primitive_type_float,
13817 ada_primitive_type_double,
13818 ada_primitive_type_void,
13819 ada_primitive_type_long_long,
13820 ada_primitive_type_long_double,
13821 ada_primitive_type_natural,
13822 ada_primitive_type_positive,
13823 ada_primitive_type_system_address,
13824 nr_ada_primitive_types
13828 ada_language_arch_info (struct gdbarch *gdbarch,
13829 struct language_arch_info *lai)
13831 const struct builtin_type *builtin = builtin_type (gdbarch);
13833 lai->primitive_type_vector
13834 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13837 lai->primitive_type_vector [ada_primitive_type_int]
13838 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13840 lai->primitive_type_vector [ada_primitive_type_long]
13841 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13842 0, "long_integer");
13843 lai->primitive_type_vector [ada_primitive_type_short]
13844 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13845 0, "short_integer");
13846 lai->string_char_type
13847 = lai->primitive_type_vector [ada_primitive_type_char]
13848 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13849 lai->primitive_type_vector [ada_primitive_type_float]
13850 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13851 "float", gdbarch_float_format (gdbarch));
13852 lai->primitive_type_vector [ada_primitive_type_double]
13853 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13854 "long_float", gdbarch_double_format (gdbarch));
13855 lai->primitive_type_vector [ada_primitive_type_long_long]
13856 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13857 0, "long_long_integer");
13858 lai->primitive_type_vector [ada_primitive_type_long_double]
13859 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13860 "long_long_float", gdbarch_long_double_format (gdbarch));
13861 lai->primitive_type_vector [ada_primitive_type_natural]
13862 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13864 lai->primitive_type_vector [ada_primitive_type_positive]
13865 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13867 lai->primitive_type_vector [ada_primitive_type_void]
13868 = builtin->builtin_void;
13870 lai->primitive_type_vector [ada_primitive_type_system_address]
13871 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13872 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13873 = "system__address";
13875 lai->bool_type_symbol = NULL;
13876 lai->bool_type_default = builtin->builtin_bool;
13879 /* Language vector */
13881 /* Not really used, but needed in the ada_language_defn. */
13884 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13886 ada_emit_char (c, type, stream, quoter, 1);
13890 parse (struct parser_state *ps)
13892 warnings_issued = 0;
13893 return ada_parse (ps);
13896 static const struct exp_descriptor ada_exp_descriptor = {
13898 ada_operator_length,
13899 ada_operator_check,
13901 ada_dump_subexp_body,
13902 ada_evaluate_subexp
13905 /* Implement the "la_get_symbol_name_cmp" language_defn method
13908 static symbol_name_cmp_ftype
13909 ada_get_symbol_name_cmp (const char *lookup_name)
13911 if (should_use_wild_match (lookup_name))
13914 return compare_names;
13917 /* Implement the "la_read_var_value" language_defn method for Ada. */
13919 static struct value *
13920 ada_read_var_value (struct symbol *var, const struct block *var_block,
13921 struct frame_info *frame)
13923 const struct block *frame_block = NULL;
13924 struct symbol *renaming_sym = NULL;
13926 /* The only case where default_read_var_value is not sufficient
13927 is when VAR is a renaming... */
13929 frame_block = get_frame_block (frame, NULL);
13931 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13932 if (renaming_sym != NULL)
13933 return ada_read_renaming_var_value (renaming_sym, frame_block);
13935 /* This is a typical case where we expect the default_read_var_value
13936 function to work. */
13937 return default_read_var_value (var, var_block, frame);
13940 static const char *ada_extensions[] =
13942 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13945 extern const struct language_defn ada_language_defn = {
13946 "ada", /* Language name */
13950 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13951 that's not quite what this means. */
13953 macro_expansion_no,
13955 &ada_exp_descriptor,
13959 ada_printchar, /* Print a character constant */
13960 ada_printstr, /* Function to print string constant */
13961 emit_char, /* Function to print single char (not used) */
13962 ada_print_type, /* Print a type using appropriate syntax */
13963 ada_print_typedef, /* Print a typedef using appropriate syntax */
13964 ada_val_print, /* Print a value using appropriate syntax */
13965 ada_value_print, /* Print a top-level value */
13966 ada_read_var_value, /* la_read_var_value */
13967 NULL, /* Language specific skip_trampoline */
13968 NULL, /* name_of_this */
13969 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13970 basic_lookup_transparent_type, /* lookup_transparent_type */
13971 ada_la_decode, /* Language specific symbol demangler */
13972 ada_sniff_from_mangled_name,
13973 NULL, /* Language specific
13974 class_name_from_physname */
13975 ada_op_print_tab, /* expression operators for printing */
13976 0, /* c-style arrays */
13977 1, /* String lower bound */
13978 ada_get_gdb_completer_word_break_characters,
13979 ada_collect_symbol_completion_matches,
13980 ada_language_arch_info,
13981 ada_print_array_index,
13982 default_pass_by_reference,
13984 c_watch_location_expression,
13985 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13986 ada_iterate_over_symbols,
13993 /* Command-list for the "set/show ada" prefix command. */
13994 static struct cmd_list_element *set_ada_list;
13995 static struct cmd_list_element *show_ada_list;
13997 /* Implement the "set ada" prefix command. */
14000 set_ada_command (char *arg, int from_tty)
14002 printf_unfiltered (_(\
14003 "\"set ada\" must be followed by the name of a setting.\n"));
14004 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14007 /* Implement the "show ada" prefix command. */
14010 show_ada_command (char *args, int from_tty)
14012 cmd_show_list (show_ada_list, from_tty, "");
14016 initialize_ada_catchpoint_ops (void)
14018 struct breakpoint_ops *ops;
14020 initialize_breakpoint_ops ();
14022 ops = &catch_exception_breakpoint_ops;
14023 *ops = bkpt_breakpoint_ops;
14024 ops->allocate_location = allocate_location_catch_exception;
14025 ops->re_set = re_set_catch_exception;
14026 ops->check_status = check_status_catch_exception;
14027 ops->print_it = print_it_catch_exception;
14028 ops->print_one = print_one_catch_exception;
14029 ops->print_mention = print_mention_catch_exception;
14030 ops->print_recreate = print_recreate_catch_exception;
14032 ops = &catch_exception_unhandled_breakpoint_ops;
14033 *ops = bkpt_breakpoint_ops;
14034 ops->allocate_location = allocate_location_catch_exception_unhandled;
14035 ops->re_set = re_set_catch_exception_unhandled;
14036 ops->check_status = check_status_catch_exception_unhandled;
14037 ops->print_it = print_it_catch_exception_unhandled;
14038 ops->print_one = print_one_catch_exception_unhandled;
14039 ops->print_mention = print_mention_catch_exception_unhandled;
14040 ops->print_recreate = print_recreate_catch_exception_unhandled;
14042 ops = &catch_assert_breakpoint_ops;
14043 *ops = bkpt_breakpoint_ops;
14044 ops->allocate_location = allocate_location_catch_assert;
14045 ops->re_set = re_set_catch_assert;
14046 ops->check_status = check_status_catch_assert;
14047 ops->print_it = print_it_catch_assert;
14048 ops->print_one = print_one_catch_assert;
14049 ops->print_mention = print_mention_catch_assert;
14050 ops->print_recreate = print_recreate_catch_assert;
14053 /* This module's 'new_objfile' observer. */
14056 ada_new_objfile_observer (struct objfile *objfile)
14058 ada_clear_symbol_cache ();
14061 /* This module's 'free_objfile' observer. */
14064 ada_free_objfile_observer (struct objfile *objfile)
14066 ada_clear_symbol_cache ();
14070 _initialize_ada_language (void)
14072 initialize_ada_catchpoint_ops ();
14074 add_prefix_cmd ("ada", no_class, set_ada_command,
14075 _("Prefix command for changing Ada-specfic settings"),
14076 &set_ada_list, "set ada ", 0, &setlist);
14078 add_prefix_cmd ("ada", no_class, show_ada_command,
14079 _("Generic command for showing Ada-specific settings."),
14080 &show_ada_list, "show ada ", 0, &showlist);
14082 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14083 &trust_pad_over_xvs, _("\
14084 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14085 Show whether an optimization trusting PAD types over XVS types is activated"),
14087 This is related to the encoding used by the GNAT compiler. The debugger\n\
14088 should normally trust the contents of PAD types, but certain older versions\n\
14089 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14090 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14091 work around this bug. It is always safe to turn this option \"off\", but\n\
14092 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14093 this option to \"off\" unless necessary."),
14094 NULL, NULL, &set_ada_list, &show_ada_list);
14096 add_setshow_boolean_cmd ("print-signatures", class_vars,
14097 &print_signatures, _("\
14098 Enable or disable the output of formal and return types for functions in the \
14099 overloads selection menu"), _("\
14100 Show whether the output of formal and return types for functions in the \
14101 overloads selection menu is activated"),
14102 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14104 add_catch_command ("exception", _("\
14105 Catch Ada exceptions, when raised.\n\
14106 With an argument, catch only exceptions with the given name."),
14107 catch_ada_exception_command,
14111 add_catch_command ("assert", _("\
14112 Catch failed Ada assertions, when raised.\n\
14113 With an argument, catch only exceptions with the given name."),
14114 catch_assert_command,
14119 varsize_limit = 65536;
14121 add_info ("exceptions", info_exceptions_command,
14123 List all Ada exception names.\n\
14124 If a regular expression is passed as an argument, only those matching\n\
14125 the regular expression are listed."));
14127 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14128 _("Set Ada maintenance-related variables."),
14129 &maint_set_ada_cmdlist, "maintenance set ada ",
14130 0/*allow-unknown*/, &maintenance_set_cmdlist);
14132 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14133 _("Show Ada maintenance-related variables"),
14134 &maint_show_ada_cmdlist, "maintenance show ada ",
14135 0/*allow-unknown*/, &maintenance_show_cmdlist);
14137 add_setshow_boolean_cmd
14138 ("ignore-descriptive-types", class_maintenance,
14139 &ada_ignore_descriptive_types_p,
14140 _("Set whether descriptive types generated by GNAT should be ignored."),
14141 _("Show whether descriptive types generated by GNAT should be ignored."),
14143 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14144 DWARF attribute."),
14145 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14147 obstack_init (&symbol_list_obstack);
14149 decoded_names_store = htab_create_alloc
14150 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14151 NULL, xcalloc, xfree);
14153 /* The ada-lang observers. */
14154 observer_attach_new_objfile (ada_new_objfile_observer);
14155 observer_attach_free_objfile (ada_free_objfile_observer);
14156 observer_attach_inferior_exit (ada_inferior_exit);
14158 /* Setup various context-specific data. */
14160 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14161 ada_pspace_data_handle
14162 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);