1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static struct type *ada_create_fundamental_type (struct objfile *, int);
76 static void modify_general_field (char *, LONGEST, int, int);
78 static struct type *desc_base_type (struct type *);
80 static struct type *desc_bounds_type (struct type *);
82 static struct value *desc_bounds (struct value *);
84 static int fat_pntr_bounds_bitpos (struct type *);
86 static int fat_pntr_bounds_bitsize (struct type *);
88 static struct type *desc_data_type (struct type *);
90 static struct value *desc_data (struct value *);
92 static int fat_pntr_data_bitpos (struct type *);
94 static int fat_pntr_data_bitsize (struct type *);
96 static struct value *desc_one_bound (struct value *, int, int);
98 static int desc_bound_bitpos (struct type *, int, int);
100 static int desc_bound_bitsize (struct type *, int, int);
102 static struct type *desc_index_type (struct type *, int);
104 static int desc_arity (struct type *);
106 static int ada_type_match (struct type *, struct type *, int);
108 static int ada_args_match (struct symbol *, struct value **, int);
110 static struct value *ensure_lval (struct value *, CORE_ADDR *);
112 static struct value *convert_actual (struct value *, struct type *,
115 static struct value *make_array_descriptor (struct type *, struct value *,
118 static void ada_add_block_symbols (struct obstack *,
119 struct block *, const char *,
120 domain_enum, struct objfile *,
121 struct symtab *, int);
123 static int is_nonfunction (struct ada_symbol_info *, int);
125 static void add_defn_to_vec (struct obstack *, struct symbol *,
126 struct block *, struct symtab *);
128 static int num_defns_collected (struct obstack *);
130 static struct ada_symbol_info *defns_collected (struct obstack *, int);
132 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
133 *, const char *, int,
136 static struct symtab *symtab_for_sym (struct symbol *);
138 static struct value *resolve_subexp (struct expression **, int *, int,
141 static void replace_operator_with_call (struct expression **, int, int, int,
142 struct symbol *, struct block *);
144 static int possible_user_operator_p (enum exp_opcode, struct value **);
146 static char *ada_op_name (enum exp_opcode);
148 static const char *ada_decoded_op_name (enum exp_opcode);
150 static int numeric_type_p (struct type *);
152 static int integer_type_p (struct type *);
154 static int scalar_type_p (struct type *);
156 static int discrete_type_p (struct type *);
158 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
161 static struct value *evaluate_subexp (struct type *, struct expression *,
164 static struct value *evaluate_subexp_type (struct expression *, int *);
166 static int is_dynamic_field (struct type *, int);
168 static struct type *to_fixed_variant_branch_type (struct type *,
170 CORE_ADDR, struct value *);
172 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174 static struct type *to_fixed_range_type (char *, struct value *,
177 static struct type *to_static_fixed_type (struct type *);
179 static struct value *unwrap_value (struct value *);
181 static struct type *packed_array_type (struct type *, long *);
183 static struct type *decode_packed_array_type (struct type *);
185 static struct value *decode_packed_array (struct value *);
187 static struct value *value_subscript_packed (struct value *, int,
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
192 static struct value *coerce_unspec_val_to_type (struct value *,
195 static struct value *get_var_value (char *, char *);
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
199 static int equiv_types (struct type *, struct type *);
201 static int is_name_suffix (const char *);
203 static int wild_match (const char *, int, const char *);
205 static struct value *ada_coerce_ref (struct value *);
207 static LONGEST pos_atr (struct value *);
209 static struct value *value_pos_atr (struct value *);
211 static struct value *value_val_atr (struct type *, struct value *);
213 static struct symbol *standard_lookup (const char *, const struct block *,
216 static struct value *ada_search_struct_field (char *, struct value *, int,
219 static struct value *ada_value_primitive_field (struct value *, int, int,
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 static struct value *ada_to_fixed_value (struct value *);
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
234 static struct value *ada_coerce_to_simple_array (struct value *);
236 static int ada_is_direct_array_type (struct type *);
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
241 static void check_size (const struct type *);
243 static struct value *ada_index_struct_field (int, struct value *, int,
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
249 static void aggregate_assign_from_choices (struct value *, struct value *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
254 static void aggregate_assign_positional (struct value *, struct value *,
256 int *, LONGEST *, int *, int,
260 static void aggregate_assign_others (struct value *, struct value *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
265 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 static void ada_forward_operator_length (struct expression *, int, int *,
276 /* Maximum-sized dynamic type. */
277 static unsigned int varsize_limit;
279 /* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281 static char *ada_completer_word_break_characters =
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 /* The name of the symbol to use to get the name of the main subprogram. */
289 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
292 /* Limit on the number of warnings to raise per expression evaluation. */
293 static int warning_limit = 2;
295 /* Number of warning messages issued; reset to 0 by cleanups after
296 expression evaluation. */
297 static int warnings_issued = 0;
299 static const char *known_runtime_file_name_patterns[] = {
300 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 static const char *known_auxiliary_function_name_patterns[] = {
304 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 /* Space for allocating results of ada_lookup_symbol_list. */
308 static struct obstack symbol_list_obstack;
314 ada_get_gdb_completer_word_break_characters (void)
316 return ada_completer_word_break_characters;
319 /* Print an array element index using the Ada syntax. */
322 ada_print_array_index (struct value *index_value, struct ui_file *stream,
323 int format, enum val_prettyprint pretty)
325 LA_VALUE_PRINT (index_value, stream, format, pretty);
326 fprintf_filtered (stream, " => ");
329 /* Read the string located at ADDR from the inferior and store the
333 extract_string (CORE_ADDR addr, char *buf)
337 /* Loop, reading one byte at a time, until we reach the '\000'
338 end-of-string marker. */
341 target_read_memory (addr + char_index * sizeof (char),
342 buf + char_index * sizeof (char), sizeof (char));
345 while (buf[char_index - 1] != '\000');
348 /* Assuming VECT points to an array of *SIZE objects of size
349 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
350 updating *SIZE as necessary and returning the (new) array. */
353 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
355 if (*size < min_size)
358 if (*size < min_size)
360 vect = xrealloc (vect, *size * element_size);
365 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
366 suffix of FIELD_NAME beginning "___". */
369 field_name_match (const char *field_name, const char *target)
371 int len = strlen (target);
373 (strncmp (field_name, target, len) == 0
374 && (field_name[len] == '\0'
375 || (strncmp (field_name + len, "___", 3) == 0
376 && strcmp (field_name + strlen (field_name) - 6,
381 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
382 FIELD_NAME, and return its index. This function also handles fields
383 whose name have ___ suffixes because the compiler sometimes alters
384 their name by adding such a suffix to represent fields with certain
385 constraints. If the field could not be found, return a negative
386 number if MAYBE_MISSING is set. Otherwise raise an error. */
389 ada_get_field_index (const struct type *type, const char *field_name,
393 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
394 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
398 error (_("Unable to find field %s in struct %s. Aborting"),
399 field_name, TYPE_NAME (type));
404 /* The length of the prefix of NAME prior to any "___" suffix. */
407 ada_name_prefix_len (const char *name)
413 const char *p = strstr (name, "___");
415 return strlen (name);
421 /* Return non-zero if SUFFIX is a suffix of STR.
422 Return zero if STR is null. */
425 is_suffix (const char *str, const char *suffix)
431 len2 = strlen (suffix);
432 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
435 /* Create a value of type TYPE whose contents come from VALADDR, if it
436 is non-null, and whose memory address (in the inferior) is
440 value_from_contents_and_address (struct type *type,
441 const gdb_byte *valaddr,
444 struct value *v = allocate_value (type);
446 set_value_lazy (v, 1);
448 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
449 VALUE_ADDRESS (v) = address;
451 VALUE_LVAL (v) = lval_memory;
455 /* The contents of value VAL, treated as a value of type TYPE. The
456 result is an lval in memory if VAL is. */
458 static struct value *
459 coerce_unspec_val_to_type (struct value *val, struct type *type)
461 type = ada_check_typedef (type);
462 if (value_type (val) == type)
466 struct value *result;
468 /* Make sure that the object size is not unreasonable before
469 trying to allocate some memory for it. */
472 result = allocate_value (type);
473 VALUE_LVAL (result) = VALUE_LVAL (val);
474 set_value_bitsize (result, value_bitsize (val));
475 set_value_bitpos (result, value_bitpos (val));
476 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
478 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
479 set_value_lazy (result, 1);
481 memcpy (value_contents_raw (result), value_contents (val),
487 static const gdb_byte *
488 cond_offset_host (const gdb_byte *valaddr, long offset)
493 return valaddr + offset;
497 cond_offset_target (CORE_ADDR address, long offset)
502 return address + offset;
505 /* Issue a warning (as for the definition of warning in utils.c, but
506 with exactly one argument rather than ...), unless the limit on the
507 number of warnings has passed during the evaluation of the current
510 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
511 provided by "complaint". */
512 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
515 lim_warning (const char *format, ...)
518 va_start (args, format);
520 warnings_issued += 1;
521 if (warnings_issued <= warning_limit)
522 vwarning (format, args);
527 /* Issue an error if the size of an object of type T is unreasonable,
528 i.e. if it would be a bad idea to allocate a value of this type in
532 check_size (const struct type *type)
534 if (TYPE_LENGTH (type) > varsize_limit)
535 error (_("object size is larger than varsize-limit"));
539 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
540 gdbtypes.h, but some of the necessary definitions in that file
541 seem to have gone missing. */
543 /* Maximum value of a SIZE-byte signed integer type. */
545 max_of_size (int size)
547 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
548 return top_bit | (top_bit - 1);
551 /* Minimum value of a SIZE-byte signed integer type. */
553 min_of_size (int size)
555 return -max_of_size (size) - 1;
558 /* Maximum value of a SIZE-byte unsigned integer type. */
560 umax_of_size (int size)
562 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
563 return top_bit | (top_bit - 1);
566 /* Maximum value of integral type T, as a signed quantity. */
568 max_of_type (struct type *t)
570 if (TYPE_UNSIGNED (t))
571 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
573 return max_of_size (TYPE_LENGTH (t));
576 /* Minimum value of integral type T, as a signed quantity. */
578 min_of_type (struct type *t)
580 if (TYPE_UNSIGNED (t))
583 return min_of_size (TYPE_LENGTH (t));
586 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
587 static struct value *
588 discrete_type_high_bound (struct type *type)
590 switch (TYPE_CODE (type))
592 case TYPE_CODE_RANGE:
593 return value_from_longest (TYPE_TARGET_TYPE (type),
594 TYPE_HIGH_BOUND (type));
597 value_from_longest (type,
598 TYPE_FIELD_BITPOS (type,
599 TYPE_NFIELDS (type) - 1));
601 return value_from_longest (type, max_of_type (type));
603 error (_("Unexpected type in discrete_type_high_bound."));
607 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
608 static struct value *
609 discrete_type_low_bound (struct type *type)
611 switch (TYPE_CODE (type))
613 case TYPE_CODE_RANGE:
614 return value_from_longest (TYPE_TARGET_TYPE (type),
615 TYPE_LOW_BOUND (type));
617 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
619 return value_from_longest (type, min_of_type (type));
621 error (_("Unexpected type in discrete_type_low_bound."));
625 /* The identity on non-range types. For range types, the underlying
626 non-range scalar type. */
629 base_type (struct type *type)
631 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
633 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
635 type = TYPE_TARGET_TYPE (type);
641 /* Language Selection */
643 /* If the main program is in Ada, return language_ada, otherwise return LANG
644 (the main program is in Ada iif the adainit symbol is found).
646 MAIN_PST is not used. */
649 ada_update_initial_language (enum language lang,
650 struct partial_symtab *main_pst)
652 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
653 (struct objfile *) NULL) != NULL)
659 /* If the main procedure is written in Ada, then return its name.
660 The result is good until the next call. Return NULL if the main
661 procedure doesn't appear to be in Ada. */
666 struct minimal_symbol *msym;
667 CORE_ADDR main_program_name_addr;
668 static char main_program_name[1024];
670 /* For Ada, the name of the main procedure is stored in a specific
671 string constant, generated by the binder. Look for that symbol,
672 extract its address, and then read that string. If we didn't find
673 that string, then most probably the main procedure is not written
675 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
679 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
680 if (main_program_name_addr == 0)
681 error (_("Invalid address for Ada main program name."));
683 extract_string (main_program_name_addr, main_program_name);
684 return main_program_name;
687 /* The main procedure doesn't seem to be in Ada. */
693 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
696 const struct ada_opname_map ada_opname_table[] = {
697 {"Oadd", "\"+\"", BINOP_ADD},
698 {"Osubtract", "\"-\"", BINOP_SUB},
699 {"Omultiply", "\"*\"", BINOP_MUL},
700 {"Odivide", "\"/\"", BINOP_DIV},
701 {"Omod", "\"mod\"", BINOP_MOD},
702 {"Orem", "\"rem\"", BINOP_REM},
703 {"Oexpon", "\"**\"", BINOP_EXP},
704 {"Olt", "\"<\"", BINOP_LESS},
705 {"Ole", "\"<=\"", BINOP_LEQ},
706 {"Ogt", "\">\"", BINOP_GTR},
707 {"Oge", "\">=\"", BINOP_GEQ},
708 {"Oeq", "\"=\"", BINOP_EQUAL},
709 {"One", "\"/=\"", BINOP_NOTEQUAL},
710 {"Oand", "\"and\"", BINOP_BITWISE_AND},
711 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
712 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
713 {"Oconcat", "\"&\"", BINOP_CONCAT},
714 {"Oabs", "\"abs\"", UNOP_ABS},
715 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
716 {"Oadd", "\"+\"", UNOP_PLUS},
717 {"Osubtract", "\"-\"", UNOP_NEG},
721 /* Return non-zero if STR should be suppressed in info listings. */
724 is_suppressed_name (const char *str)
726 if (strncmp (str, "_ada_", 5) == 0)
728 if (str[0] == '_' || str[0] == '\000')
733 const char *suffix = strstr (str, "___");
734 if (suffix != NULL && suffix[3] != 'X')
737 suffix = str + strlen (str);
738 for (p = suffix - 1; p != str; p -= 1)
742 if (p[0] == 'X' && p[-1] != '_')
746 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
747 if (strncmp (ada_opname_table[i].encoded, p,
748 strlen (ada_opname_table[i].encoded)) == 0)
757 /* The "encoded" form of DECODED, according to GNAT conventions.
758 The result is valid until the next call to ada_encode. */
761 ada_encode (const char *decoded)
763 static char *encoding_buffer = NULL;
764 static size_t encoding_buffer_size = 0;
771 GROW_VECT (encoding_buffer, encoding_buffer_size,
772 2 * strlen (decoded) + 10);
775 for (p = decoded; *p != '\0'; p += 1)
777 if (!ADA_RETAIN_DOTS && *p == '.')
779 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
784 const struct ada_opname_map *mapping;
786 for (mapping = ada_opname_table;
787 mapping->encoded != NULL
788 && strncmp (mapping->decoded, p,
789 strlen (mapping->decoded)) != 0; mapping += 1)
791 if (mapping->encoded == NULL)
792 error (_("invalid Ada operator name: %s"), p);
793 strcpy (encoding_buffer + k, mapping->encoded);
794 k += strlen (mapping->encoded);
799 encoding_buffer[k] = *p;
804 encoding_buffer[k] = '\0';
805 return encoding_buffer;
808 /* Return NAME folded to lower case, or, if surrounded by single
809 quotes, unfolded, but with the quotes stripped away. Result good
813 ada_fold_name (const char *name)
815 static char *fold_buffer = NULL;
816 static size_t fold_buffer_size = 0;
818 int len = strlen (name);
819 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
823 strncpy (fold_buffer, name + 1, len - 2);
824 fold_buffer[len - 2] = '\000';
829 for (i = 0; i <= len; i += 1)
830 fold_buffer[i] = tolower (name[i]);
836 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
839 is_lower_alphanum (const char c)
841 return (isdigit (c) || (isalpha (c) && islower (c)));
845 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
846 These are suffixes introduced by GNAT5 to nested subprogram
847 names, and do not serve any purpose for the debugger.
848 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
849 . Discard final N if it follows a lowercase alphanumeric character
850 (protected object subprogram suffix)
851 . Convert other instances of embedded "__" to `.'.
852 . Discard leading _ada_.
853 . Convert operator names to the appropriate quoted symbols.
854 . Remove everything after first ___ if it is followed by
856 . Replace TK__ with __, and a trailing B or TKB with nothing.
857 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
858 . Put symbols that should be suppressed in <...> brackets.
859 . Remove trailing X[bn]* suffix (indicating names in package bodies).
861 The resulting string is valid until the next call of ada_decode.
862 If the string is unchanged by demangling, the original string pointer
866 ada_decode (const char *encoded)
873 static char *decoding_buffer = NULL;
874 static size_t decoding_buffer_size = 0;
876 if (strncmp (encoded, "_ada_", 5) == 0)
879 if (encoded[0] == '_' || encoded[0] == '<')
882 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
883 len0 = strlen (encoded);
884 if (len0 > 1 && isdigit (encoded[len0 - 1]))
887 while (i > 0 && isdigit (encoded[i]))
889 if (i >= 0 && encoded[i] == '.')
891 else if (i >= 0 && encoded[i] == '$')
893 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
895 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
899 /* Remove trailing N. */
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
910 && encoded[len0 - 1] == 'N'
911 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
914 /* Remove the ___X.* suffix if present. Do not forget to verify that
915 the suffix is located before the current "end" of ENCODED. We want
916 to avoid re-matching parts of ENCODED that have previously been
917 marked as discarded (by decrementing LEN0). */
918 p = strstr (encoded, "___");
919 if (p != NULL && p - encoded < len0 - 3)
927 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
930 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 /* Make decoded big enough for possible expansion by operator name. */
934 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
935 decoded = decoding_buffer;
937 if (len0 > 1 && isdigit (encoded[len0 - 1]))
940 while ((i >= 0 && isdigit (encoded[i]))
941 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
943 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
945 else if (encoded[i] == '$')
949 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
950 decoded[j] = encoded[i];
955 if (at_start_name && encoded[i] == 'O')
958 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
960 int op_len = strlen (ada_opname_table[k].encoded);
961 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
963 && !isalnum (encoded[i + op_len]))
965 strcpy (decoded + j, ada_opname_table[k].decoded);
968 j += strlen (ada_opname_table[k].decoded);
972 if (ada_opname_table[k].encoded != NULL)
977 /* Replace "TK__" with "__", which will eventually be translated
978 into "." (just below). */
980 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
983 /* Remove _E{DIGITS}+[sb] */
985 /* Just as for protected object subprograms, there are 2 categories
986 of subprograms created by the compiler for each entry. The first
987 one implements the actual entry code, and has a suffix following
988 the convention above; the second one implements the barrier and
989 uses the same convention as above, except that the 'E' is replaced
992 Just as above, we do not decode the name of barrier functions
993 to give the user a clue that the code he is debugging has been
994 internally generated. */
996 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
997 && isdigit (encoded[i+2]))
1001 while (k < len0 && isdigit (encoded[k]))
1005 && (encoded[k] == 'b' || encoded[k] == 's'))
1008 /* Just as an extra precaution, make sure that if this
1009 suffix is followed by anything else, it is a '_'.
1010 Otherwise, we matched this sequence by accident. */
1012 || (k < len0 && encoded[k] == '_'))
1017 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1018 the GNAT front-end in protected object subprograms. */
1021 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1023 /* Backtrack a bit up until we reach either the begining of
1024 the encoded name, or "__". Make sure that we only find
1025 digits or lowercase characters. */
1026 const char *ptr = encoded + i - 1;
1028 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1031 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1035 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1039 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1043 else if (!ADA_RETAIN_DOTS
1044 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1053 decoded[j] = encoded[i];
1058 decoded[j] = '\000';
1060 for (i = 0; decoded[i] != '\0'; i += 1)
1061 if (isupper (decoded[i]) || decoded[i] == ' ')
1064 if (strcmp (decoded, encoded) == 0)
1070 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1071 decoded = decoding_buffer;
1072 if (encoded[0] == '<')
1073 strcpy (decoded, encoded);
1075 sprintf (decoded, "<%s>", encoded);
1080 /* Table for keeping permanent unique copies of decoded names. Once
1081 allocated, names in this table are never released. While this is a
1082 storage leak, it should not be significant unless there are massive
1083 changes in the set of decoded names in successive versions of a
1084 symbol table loaded during a single session. */
1085 static struct htab *decoded_names_store;
1087 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1088 in the language-specific part of GSYMBOL, if it has not been
1089 previously computed. Tries to save the decoded name in the same
1090 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1091 in any case, the decoded symbol has a lifetime at least that of
1093 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1094 const, but nevertheless modified to a semantically equivalent form
1095 when a decoded name is cached in it.
1099 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1102 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1103 if (*resultp == NULL)
1105 const char *decoded = ada_decode (gsymbol->name);
1106 if (gsymbol->bfd_section != NULL)
1108 bfd *obfd = gsymbol->bfd_section->owner;
1111 struct objfile *objf;
1114 if (obfd == objf->obfd)
1116 *resultp = obsavestring (decoded, strlen (decoded),
1117 &objf->objfile_obstack);
1123 /* Sometimes, we can't find a corresponding objfile, in which
1124 case, we put the result on the heap. Since we only decode
1125 when needed, we hope this usually does not cause a
1126 significant memory leak (FIXME). */
1127 if (*resultp == NULL)
1129 char **slot = (char **) htab_find_slot (decoded_names_store,
1132 *slot = xstrdup (decoded);
1141 ada_la_decode (const char *encoded, int options)
1143 return xstrdup (ada_decode (encoded));
1146 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1147 suffixes that encode debugging information or leading _ada_ on
1148 SYM_NAME (see is_name_suffix commentary for the debugging
1149 information that is ignored). If WILD, then NAME need only match a
1150 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1151 either argument is NULL. */
1154 ada_match_name (const char *sym_name, const char *name, int wild)
1156 if (sym_name == NULL || name == NULL)
1159 return wild_match (name, strlen (name), sym_name);
1162 int len_name = strlen (name);
1163 return (strncmp (sym_name, name, len_name) == 0
1164 && is_name_suffix (sym_name + len_name))
1165 || (strncmp (sym_name, "_ada_", 5) == 0
1166 && strncmp (sym_name + 5, name, len_name) == 0
1167 && is_name_suffix (sym_name + len_name + 5));
1171 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1172 suppressed in info listings. */
1175 ada_suppress_symbol_printing (struct symbol *sym)
1177 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1180 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1186 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1188 static char *bound_name[] = {
1189 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1190 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1193 /* Maximum number of array dimensions we are prepared to handle. */
1195 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1197 /* Like modify_field, but allows bitpos > wordlength. */
1200 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1202 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1206 /* The desc_* routines return primitive portions of array descriptors
1209 /* The descriptor or array type, if any, indicated by TYPE; removes
1210 level of indirection, if needed. */
1212 static struct type *
1213 desc_base_type (struct type *type)
1217 type = ada_check_typedef (type);
1219 && (TYPE_CODE (type) == TYPE_CODE_PTR
1220 || TYPE_CODE (type) == TYPE_CODE_REF))
1221 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1226 /* True iff TYPE indicates a "thin" array pointer type. */
1229 is_thin_pntr (struct type *type)
1232 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1233 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1236 /* The descriptor type for thin pointer type TYPE. */
1238 static struct type *
1239 thin_descriptor_type (struct type *type)
1241 struct type *base_type = desc_base_type (type);
1242 if (base_type == NULL)
1244 if (is_suffix (ada_type_name (base_type), "___XVE"))
1248 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1249 if (alt_type == NULL)
1256 /* A pointer to the array data for thin-pointer value VAL. */
1258 static struct value *
1259 thin_data_pntr (struct value *val)
1261 struct type *type = value_type (val);
1262 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1263 return value_cast (desc_data_type (thin_descriptor_type (type)),
1266 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1267 VALUE_ADDRESS (val) + value_offset (val));
1270 /* True iff TYPE indicates a "thick" array pointer type. */
1273 is_thick_pntr (struct type *type)
1275 type = desc_base_type (type);
1276 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1277 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1280 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1281 pointer to one, the type of its bounds data; otherwise, NULL. */
1283 static struct type *
1284 desc_bounds_type (struct type *type)
1288 type = desc_base_type (type);
1292 else if (is_thin_pntr (type))
1294 type = thin_descriptor_type (type);
1297 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1299 return ada_check_typedef (r);
1301 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1303 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1305 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1310 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1311 one, a pointer to its bounds data. Otherwise NULL. */
1313 static struct value *
1314 desc_bounds (struct value *arr)
1316 struct type *type = ada_check_typedef (value_type (arr));
1317 if (is_thin_pntr (type))
1319 struct type *bounds_type =
1320 desc_bounds_type (thin_descriptor_type (type));
1323 if (bounds_type == NULL)
1324 error (_("Bad GNAT array descriptor"));
1326 /* NOTE: The following calculation is not really kosher, but
1327 since desc_type is an XVE-encoded type (and shouldn't be),
1328 the correct calculation is a real pain. FIXME (and fix GCC). */
1329 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1330 addr = value_as_long (arr);
1332 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1335 value_from_longest (lookup_pointer_type (bounds_type),
1336 addr - TYPE_LENGTH (bounds_type));
1339 else if (is_thick_pntr (type))
1340 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1341 _("Bad GNAT array descriptor"));
1346 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1347 position of the field containing the address of the bounds data. */
1350 fat_pntr_bounds_bitpos (struct type *type)
1352 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1355 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1356 size of the field containing the address of the bounds data. */
1359 fat_pntr_bounds_bitsize (struct type *type)
1361 type = desc_base_type (type);
1363 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1364 return TYPE_FIELD_BITSIZE (type, 1);
1366 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1369 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1370 pointer to one, the type of its array data (a
1371 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1372 ada_type_of_array to get an array type with bounds data. */
1374 static struct type *
1375 desc_data_type (struct type *type)
1377 type = desc_base_type (type);
1379 /* NOTE: The following is bogus; see comment in desc_bounds. */
1380 if (is_thin_pntr (type))
1381 return lookup_pointer_type
1382 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1383 else if (is_thick_pntr (type))
1384 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1389 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1392 static struct value *
1393 desc_data (struct value *arr)
1395 struct type *type = value_type (arr);
1396 if (is_thin_pntr (type))
1397 return thin_data_pntr (arr);
1398 else if (is_thick_pntr (type))
1399 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1400 _("Bad GNAT array descriptor"));
1406 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1407 position of the field containing the address of the data. */
1410 fat_pntr_data_bitpos (struct type *type)
1412 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 size of the field containing the address of the data. */
1419 fat_pntr_data_bitsize (struct type *type)
1421 type = desc_base_type (type);
1423 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1424 return TYPE_FIELD_BITSIZE (type, 0);
1426 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1429 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1430 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1431 bound, if WHICH is 1. The first bound is I=1. */
1433 static struct value *
1434 desc_one_bound (struct value *bounds, int i, int which)
1436 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1437 _("Bad GNAT array descriptor bounds"));
1440 /* If BOUNDS is an array-bounds structure type, return the bit position
1441 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1442 bound, if WHICH is 1. The first bound is I=1. */
1445 desc_bound_bitpos (struct type *type, int i, int which)
1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1450 /* If BOUNDS is an array-bounds structure type, return the bit field size
1451 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1452 bound, if WHICH is 1. The first bound is I=1. */
1455 desc_bound_bitsize (struct type *type, int i, int which)
1457 type = desc_base_type (type);
1459 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1460 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1462 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1465 /* If TYPE is the type of an array-bounds structure, the type of its
1466 Ith bound (numbering from 1). Otherwise, NULL. */
1468 static struct type *
1469 desc_index_type (struct type *type, int i)
1471 type = desc_base_type (type);
1473 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1474 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1479 /* The number of index positions in the array-bounds type TYPE.
1480 Return 0 if TYPE is NULL. */
1483 desc_arity (struct type *type)
1485 type = desc_base_type (type);
1488 return TYPE_NFIELDS (type) / 2;
1492 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1493 an array descriptor type (representing an unconstrained array
1497 ada_is_direct_array_type (struct type *type)
1501 type = ada_check_typedef (type);
1502 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1503 || ada_is_array_descriptor_type (type));
1506 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1510 ada_is_array_type (struct type *type)
1513 && (TYPE_CODE (type) == TYPE_CODE_PTR
1514 || TYPE_CODE (type) == TYPE_CODE_REF))
1515 type = TYPE_TARGET_TYPE (type);
1516 return ada_is_direct_array_type (type);
1519 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1522 ada_is_simple_array_type (struct type *type)
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || (TYPE_CODE (type) == TYPE_CODE_PTR
1529 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1532 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1535 ada_is_array_descriptor_type (struct type *type)
1537 struct type *data_type = desc_data_type (type);
1541 type = ada_check_typedef (type);
1544 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1545 && TYPE_TARGET_TYPE (data_type) != NULL
1546 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1547 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1548 && desc_arity (desc_bounds_type (type)) > 0;
1551 /* Non-zero iff type is a partially mal-formed GNAT array
1552 descriptor. FIXME: This is to compensate for some problems with
1553 debugging output from GNAT. Re-examine periodically to see if it
1557 ada_is_bogus_array_descriptor (struct type *type)
1561 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1562 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1563 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1564 && !ada_is_array_descriptor_type (type);
1568 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1569 (fat pointer) returns the type of the array data described---specifically,
1570 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1571 in from the descriptor; otherwise, they are left unspecified. If
1572 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1573 returns NULL. The result is simply the type of ARR if ARR is not
1576 ada_type_of_array (struct value *arr, int bounds)
1578 if (ada_is_packed_array_type (value_type (arr)))
1579 return decode_packed_array_type (value_type (arr));
1581 if (!ada_is_array_descriptor_type (value_type (arr)))
1582 return value_type (arr);
1586 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1589 struct type *elt_type;
1591 struct value *descriptor;
1592 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1594 elt_type = ada_array_element_type (value_type (arr), -1);
1595 arity = ada_array_arity (value_type (arr));
1597 if (elt_type == NULL || arity == 0)
1598 return ada_check_typedef (value_type (arr));
1600 descriptor = desc_bounds (arr);
1601 if (value_as_long (descriptor) == 0)
1605 struct type *range_type = alloc_type (objf);
1606 struct type *array_type = alloc_type (objf);
1607 struct value *low = desc_one_bound (descriptor, arity, 0);
1608 struct value *high = desc_one_bound (descriptor, arity, 1);
1611 create_range_type (range_type, value_type (low),
1612 longest_to_int (value_as_long (low)),
1613 longest_to_int (value_as_long (high)));
1614 elt_type = create_array_type (array_type, elt_type, range_type);
1617 return lookup_pointer_type (elt_type);
1621 /* If ARR does not represent an array, returns ARR unchanged.
1622 Otherwise, returns either a standard GDB array with bounds set
1623 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1624 GDB array. Returns NULL if ARR is a null fat pointer. */
1627 ada_coerce_to_simple_array_ptr (struct value *arr)
1629 if (ada_is_array_descriptor_type (value_type (arr)))
1631 struct type *arrType = ada_type_of_array (arr, 1);
1632 if (arrType == NULL)
1634 return value_cast (arrType, value_copy (desc_data (arr)));
1636 else if (ada_is_packed_array_type (value_type (arr)))
1637 return decode_packed_array (arr);
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns a standard GDB array describing ARR (which may
1644 be ARR itself if it already is in the proper form). */
1646 static struct value *
1647 ada_coerce_to_simple_array (struct value *arr)
1649 if (ada_is_array_descriptor_type (value_type (arr)))
1651 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1653 error (_("Bounds unavailable for null array pointer."));
1654 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1655 return value_ind (arrVal);
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1663 /* If TYPE represents a GNAT array type, return it translated to an
1664 ordinary GDB array type (possibly with BITSIZE fields indicating
1665 packing). For other types, is the identity. */
1668 ada_coerce_to_simple_array_type (struct type *type)
1670 struct value *mark = value_mark ();
1671 struct value *dummy = value_from_longest (builtin_type_long, 0);
1672 struct type *result;
1673 deprecated_set_value_type (dummy, type);
1674 result = ada_type_of_array (dummy, 0);
1675 value_free_to_mark (mark);
1679 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1682 ada_is_packed_array_type (struct type *type)
1686 type = desc_base_type (type);
1687 type = ada_check_typedef (type);
1689 ada_type_name (type) != NULL
1690 && strstr (ada_type_name (type), "___XP") != NULL;
1693 /* Given that TYPE is a standard GDB array type with all bounds filled
1694 in, and that the element size of its ultimate scalar constituents
1695 (that is, either its elements, or, if it is an array of arrays, its
1696 elements' elements, etc.) is *ELT_BITS, return an identical type,
1697 but with the bit sizes of its elements (and those of any
1698 constituent arrays) recorded in the BITSIZE components of its
1699 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1702 static struct type *
1703 packed_array_type (struct type *type, long *elt_bits)
1705 struct type *new_elt_type;
1706 struct type *new_type;
1707 LONGEST low_bound, high_bound;
1709 type = ada_check_typedef (type);
1710 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1713 new_type = alloc_type (TYPE_OBJFILE (type));
1714 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1716 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1717 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1718 TYPE_NAME (new_type) = ada_type_name (type);
1720 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1721 &low_bound, &high_bound) < 0)
1722 low_bound = high_bound = 0;
1723 if (high_bound < low_bound)
1724 *elt_bits = TYPE_LENGTH (new_type) = 0;
1727 *elt_bits *= (high_bound - low_bound + 1);
1728 TYPE_LENGTH (new_type) =
1729 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1732 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1736 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1738 static struct type *
1739 decode_packed_array_type (struct type *type)
1742 struct block **blocks;
1743 const char *raw_name = ada_type_name (ada_check_typedef (type));
1744 char *name = (char *) alloca (strlen (raw_name) + 1);
1745 char *tail = strstr (raw_name, "___XP");
1746 struct type *shadow_type;
1750 type = desc_base_type (type);
1752 memcpy (name, raw_name, tail - raw_name);
1753 name[tail - raw_name] = '\000';
1755 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1756 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1758 lim_warning (_("could not find bounds information on packed array"));
1761 shadow_type = SYMBOL_TYPE (sym);
1763 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1765 lim_warning (_("could not understand bounds information on packed array"));
1769 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 (_("could not understand bit size information on packed array"));
1776 return packed_array_type (shadow_type, &bits);
1779 /* Given that ARR is a struct value *indicating a GNAT packed array,
1780 returns a simple array that denotes that array. Its type is a
1781 standard GDB array type except that the BITSIZEs of the array
1782 target types are set to the number of bits in each element, and the
1783 type length is set appropriately. */
1785 static struct value *
1786 decode_packed_array (struct value *arr)
1790 arr = ada_coerce_ref (arr);
1791 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1792 arr = ada_value_ind (arr);
1794 type = decode_packed_array_type (value_type (arr));
1797 error (_("can't unpack array"));
1801 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1803 /* This is a (right-justified) modular type representing a packed
1804 array with no wrapper. In order to interpret the value through
1805 the (left-justified) packed array type we just built, we must
1806 first left-justify it. */
1807 int bit_size, bit_pos;
1810 mod = ada_modulus (value_type (arr)) - 1;
1817 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1818 arr = ada_value_primitive_packed_val (arr, NULL,
1819 bit_pos / HOST_CHAR_BIT,
1820 bit_pos % HOST_CHAR_BIT,
1825 return coerce_unspec_val_to_type (arr, type);
1829 /* The value of the element of packed array ARR at the ARITY indices
1830 given in IND. ARR must be a simple array. */
1832 static struct value *
1833 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1836 int bits, elt_off, bit_off;
1837 long elt_total_bit_offset;
1838 struct type *elt_type;
1842 elt_total_bit_offset = 0;
1843 elt_type = ada_check_typedef (value_type (arr));
1844 for (i = 0; i < arity; i += 1)
1846 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1847 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1849 (_("attempt to do packed indexing of something other than a packed array"));
1852 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1853 LONGEST lowerbound, upperbound;
1856 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1858 lim_warning (_("don't know bounds of array"));
1859 lowerbound = upperbound = 0;
1862 idx = value_as_long (value_pos_atr (ind[i]));
1863 if (idx < lowerbound || idx > upperbound)
1864 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1865 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1866 elt_total_bit_offset += (idx - lowerbound) * bits;
1867 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1870 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1871 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1873 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1878 /* Non-zero iff TYPE includes negative integer values. */
1881 has_negatives (struct type *type)
1883 switch (TYPE_CODE (type))
1888 return !TYPE_UNSIGNED (type);
1889 case TYPE_CODE_RANGE:
1890 return TYPE_LOW_BOUND (type) < 0;
1895 /* Create a new value of type TYPE from the contents of OBJ starting
1896 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1897 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1898 assigning through the result will set the field fetched from.
1899 VALADDR is ignored unless OBJ is NULL, in which case,
1900 VALADDR+OFFSET must address the start of storage containing the
1901 packed value. The value returned in this case is never an lval.
1902 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1905 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1906 long offset, int bit_offset, int bit_size,
1910 int src, /* Index into the source area */
1911 targ, /* Index into the target area */
1912 srcBitsLeft, /* Number of source bits left to move */
1913 nsrc, ntarg, /* Number of source and target bytes */
1914 unusedLS, /* Number of bits in next significant
1915 byte of source that are unused */
1916 accumSize; /* Number of meaningful bits in accum */
1917 unsigned char *bytes; /* First byte containing data to unpack */
1918 unsigned char *unpacked;
1919 unsigned long accum; /* Staging area for bits being transferred */
1921 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1922 /* Transmit bytes from least to most significant; delta is the direction
1923 the indices move. */
1924 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1926 type = ada_check_typedef (type);
1930 v = allocate_value (type);
1931 bytes = (unsigned char *) (valaddr + offset);
1933 else if (value_lazy (obj))
1936 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1937 bytes = (unsigned char *) alloca (len);
1938 read_memory (VALUE_ADDRESS (v), bytes, len);
1942 v = allocate_value (type);
1943 bytes = (unsigned char *) value_contents (obj) + offset;
1948 VALUE_LVAL (v) = VALUE_LVAL (obj);
1949 if (VALUE_LVAL (obj) == lval_internalvar)
1950 VALUE_LVAL (v) = lval_internalvar_component;
1951 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1952 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1953 set_value_bitsize (v, bit_size);
1954 if (value_bitpos (v) >= HOST_CHAR_BIT)
1956 VALUE_ADDRESS (v) += 1;
1957 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1961 set_value_bitsize (v, bit_size);
1962 unpacked = (unsigned char *) value_contents (v);
1964 srcBitsLeft = bit_size;
1966 ntarg = TYPE_LENGTH (type);
1970 memset (unpacked, 0, TYPE_LENGTH (type));
1973 else if (BITS_BIG_ENDIAN)
1976 if (has_negatives (type)
1977 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1981 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1984 switch (TYPE_CODE (type))
1986 case TYPE_CODE_ARRAY:
1987 case TYPE_CODE_UNION:
1988 case TYPE_CODE_STRUCT:
1989 /* Non-scalar values must be aligned at a byte boundary... */
1991 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1992 /* ... And are placed at the beginning (most-significant) bytes
1994 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1998 targ = TYPE_LENGTH (type) - 1;
2004 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2007 unusedLS = bit_offset;
2010 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2017 /* Mask for removing bits of the next source byte that are not
2018 part of the value. */
2019 unsigned int unusedMSMask =
2020 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2022 /* Sign-extend bits for this byte. */
2023 unsigned int signMask = sign & ~unusedMSMask;
2025 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2026 accumSize += HOST_CHAR_BIT - unusedLS;
2027 if (accumSize >= HOST_CHAR_BIT)
2029 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2030 accumSize -= HOST_CHAR_BIT;
2031 accum >>= HOST_CHAR_BIT;
2035 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2042 accum |= sign << accumSize;
2043 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2044 accumSize -= HOST_CHAR_BIT;
2045 accum >>= HOST_CHAR_BIT;
2053 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2054 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2057 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2058 int src_offset, int n)
2060 unsigned int accum, mask;
2061 int accum_bits, chunk_size;
2063 target += targ_offset / HOST_CHAR_BIT;
2064 targ_offset %= HOST_CHAR_BIT;
2065 source += src_offset / HOST_CHAR_BIT;
2066 src_offset %= HOST_CHAR_BIT;
2067 if (BITS_BIG_ENDIAN)
2069 accum = (unsigned char) *source;
2071 accum_bits = HOST_CHAR_BIT - src_offset;
2076 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2077 accum_bits += HOST_CHAR_BIT;
2079 chunk_size = HOST_CHAR_BIT - targ_offset;
2082 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2083 mask = ((1 << chunk_size) - 1) << unused_right;
2086 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2088 accum_bits -= chunk_size;
2095 accum = (unsigned char) *source >> src_offset;
2097 accum_bits = HOST_CHAR_BIT - src_offset;
2101 accum = accum + ((unsigned char) *source << accum_bits);
2102 accum_bits += HOST_CHAR_BIT;
2104 chunk_size = HOST_CHAR_BIT - targ_offset;
2107 mask = ((1 << chunk_size) - 1) << targ_offset;
2108 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2110 accum_bits -= chunk_size;
2111 accum >>= chunk_size;
2118 /* Store the contents of FROMVAL into the location of TOVAL.
2119 Return a new value with the location of TOVAL and contents of
2120 FROMVAL. Handles assignment into packed fields that have
2121 floating-point or non-scalar types. */
2123 static struct value *
2124 ada_value_assign (struct value *toval, struct value *fromval)
2126 struct type *type = value_type (toval);
2127 int bits = value_bitsize (toval);
2129 toval = ada_coerce_ref (toval);
2130 fromval = ada_coerce_ref (fromval);
2132 if (ada_is_direct_array_type (value_type (toval)))
2133 toval = ada_coerce_to_simple_array (toval);
2134 if (ada_is_direct_array_type (value_type (fromval)))
2135 fromval = ada_coerce_to_simple_array (fromval);
2137 if (!deprecated_value_modifiable (toval))
2138 error (_("Left operand of assignment is not a modifiable lvalue."));
2140 if (VALUE_LVAL (toval) == lval_memory
2142 && (TYPE_CODE (type) == TYPE_CODE_FLT
2143 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2145 int len = (value_bitpos (toval)
2146 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2147 char *buffer = (char *) alloca (len);
2149 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2151 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2152 fromval = value_cast (type, fromval);
2154 read_memory (to_addr, buffer, len);
2155 if (BITS_BIG_ENDIAN)
2156 move_bits (buffer, value_bitpos (toval),
2157 value_contents (fromval),
2158 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2161 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2163 write_memory (to_addr, buffer, len);
2164 if (deprecated_memory_changed_hook)
2165 deprecated_memory_changed_hook (to_addr, len);
2167 val = value_copy (toval);
2168 memcpy (value_contents_raw (val), value_contents (fromval),
2169 TYPE_LENGTH (type));
2170 deprecated_set_value_type (val, type);
2175 return value_assign (toval, fromval);
2179 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2180 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2181 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2182 * COMPONENT, and not the inferior's memory. The current contents
2183 * of COMPONENT are ignored. */
2185 value_assign_to_component (struct value *container, struct value *component,
2188 LONGEST offset_in_container =
2189 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2190 - VALUE_ADDRESS (container) - value_offset (container));
2191 int bit_offset_in_container =
2192 value_bitpos (component) - value_bitpos (container);
2195 val = value_cast (value_type (component), val);
2197 if (value_bitsize (component) == 0)
2198 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2200 bits = value_bitsize (component);
2202 if (BITS_BIG_ENDIAN)
2203 move_bits (value_contents_writeable (container) + offset_in_container,
2204 value_bitpos (container) + bit_offset_in_container,
2205 value_contents (val),
2206 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2209 move_bits (value_contents_writeable (container) + offset_in_container,
2210 value_bitpos (container) + bit_offset_in_container,
2211 value_contents (val), 0, bits);
2214 /* The value of the element of array ARR at the ARITY indices given in IND.
2215 ARR may be either a simple array, GNAT array descriptor, or pointer
2219 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2223 struct type *elt_type;
2225 elt = ada_coerce_to_simple_array (arr);
2227 elt_type = ada_check_typedef (value_type (elt));
2228 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2229 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2230 return value_subscript_packed (elt, arity, ind);
2232 for (k = 0; k < arity; k += 1)
2234 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2235 error (_("too many subscripts (%d expected)"), k);
2236 elt = value_subscript (elt, value_pos_atr (ind[k]));
2241 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2242 value of the element of *ARR at the ARITY indices given in
2243 IND. Does not read the entire array into memory. */
2246 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2251 for (k = 0; k < arity; k += 1)
2256 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2257 error (_("too many subscripts (%d expected)"), k);
2258 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2260 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2261 idx = value_pos_atr (ind[k]);
2263 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2264 arr = value_add (arr, idx);
2265 type = TYPE_TARGET_TYPE (type);
2268 return value_ind (arr);
2271 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2272 actual type of ARRAY_PTR is ignored), returns a reference to
2273 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2274 bound of this array is LOW, as per Ada rules. */
2275 static struct value *
2276 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2279 CORE_ADDR base = value_as_address (array_ptr)
2280 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2281 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2282 struct type *index_type =
2283 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2285 struct type *slice_type =
2286 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2287 return value_from_pointer (lookup_reference_type (slice_type), base);
2291 static struct value *
2292 ada_value_slice (struct value *array, int low, int high)
2294 struct type *type = value_type (array);
2295 struct type *index_type =
2296 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2297 struct type *slice_type =
2298 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2299 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2302 /* If type is a record type in the form of a standard GNAT array
2303 descriptor, returns the number of dimensions for type. If arr is a
2304 simple array, returns the number of "array of"s that prefix its
2305 type designation. Otherwise, returns 0. */
2308 ada_array_arity (struct type *type)
2315 type = desc_base_type (type);
2318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2319 return desc_arity (desc_bounds_type (type));
2321 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2324 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2330 /* If TYPE is a record type in the form of a standard GNAT array
2331 descriptor or a simple array type, returns the element type for
2332 TYPE after indexing by NINDICES indices, or by all indices if
2333 NINDICES is -1. Otherwise, returns NULL. */
2336 ada_array_element_type (struct type *type, int nindices)
2338 type = desc_base_type (type);
2340 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2343 struct type *p_array_type;
2345 p_array_type = desc_data_type (type);
2347 k = ada_array_arity (type);
2351 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2352 if (nindices >= 0 && k > nindices)
2354 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2355 while (k > 0 && p_array_type != NULL)
2357 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2360 return p_array_type;
2362 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2364 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2366 type = TYPE_TARGET_TYPE (type);
2375 /* The type of nth index in arrays of given type (n numbering from 1).
2376 Does not examine memory. */
2379 ada_index_type (struct type *type, int n)
2381 struct type *result_type;
2383 type = desc_base_type (type);
2385 if (n > ada_array_arity (type))
2388 if (ada_is_simple_array_type (type))
2392 for (i = 1; i < n; i += 1)
2393 type = TYPE_TARGET_TYPE (type);
2394 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2395 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2396 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2397 perhaps stabsread.c would make more sense. */
2398 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2399 result_type = builtin_type_int;
2404 return desc_index_type (desc_bounds_type (type), n);
2407 /* Given that arr is an array type, returns the lower bound of the
2408 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2409 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2410 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2411 bounds type. It works for other arrays with bounds supplied by
2412 run-time quantities other than discriminants. */
2415 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2416 struct type ** typep)
2419 struct type *index_type_desc;
2421 if (ada_is_packed_array_type (arr_type))
2422 arr_type = decode_packed_array_type (arr_type);
2424 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2427 *typep = builtin_type_int;
2428 return (LONGEST) - which;
2431 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2432 type = TYPE_TARGET_TYPE (arr_type);
2436 index_type_desc = ada_find_parallel_type (type, "___XA");
2437 if (index_type_desc == NULL)
2439 struct type *range_type;
2440 struct type *index_type;
2444 type = TYPE_TARGET_TYPE (type);
2448 range_type = TYPE_INDEX_TYPE (type);
2449 index_type = TYPE_TARGET_TYPE (range_type);
2450 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2451 index_type = builtin_type_long;
2453 *typep = index_type;
2455 (LONGEST) (which == 0
2456 ? TYPE_LOW_BOUND (range_type)
2457 : TYPE_HIGH_BOUND (range_type));
2461 struct type *index_type =
2462 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2463 NULL, TYPE_OBJFILE (arr_type));
2465 *typep = TYPE_TARGET_TYPE (index_type);
2467 (LONGEST) (which == 0
2468 ? TYPE_LOW_BOUND (index_type)
2469 : TYPE_HIGH_BOUND (index_type));
2473 /* Given that arr is an array value, returns the lower bound of the
2474 nth index (numbering from 1) if which is 0, and the upper bound if
2475 which is 1. This routine will also work for arrays with bounds
2476 supplied by run-time quantities other than discriminants. */
2479 ada_array_bound (struct value *arr, int n, int which)
2481 struct type *arr_type = value_type (arr);
2483 if (ada_is_packed_array_type (arr_type))
2484 return ada_array_bound (decode_packed_array (arr), n, which);
2485 else if (ada_is_simple_array_type (arr_type))
2488 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2489 return value_from_longest (type, v);
2492 return desc_one_bound (desc_bounds (arr), n, which);
2495 /* Given that arr is an array value, returns the length of the
2496 nth index. This routine will also work for arrays with bounds
2497 supplied by run-time quantities other than discriminants.
2498 Does not work for arrays indexed by enumeration types with representation
2499 clauses at the moment. */
2502 ada_array_length (struct value *arr, int n)
2504 struct type *arr_type = ada_check_typedef (value_type (arr));
2506 if (ada_is_packed_array_type (arr_type))
2507 return ada_array_length (decode_packed_array (arr), n);
2509 if (ada_is_simple_array_type (arr_type))
2513 ada_array_bound_from_type (arr_type, n, 1, &type) -
2514 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2515 return value_from_longest (type, v);
2519 value_from_longest (builtin_type_int,
2520 value_as_long (desc_one_bound (desc_bounds (arr),
2522 - value_as_long (desc_one_bound (desc_bounds (arr),
2526 /* An empty array whose type is that of ARR_TYPE (an array type),
2527 with bounds LOW to LOW-1. */
2529 static struct value *
2530 empty_array (struct type *arr_type, int low)
2532 struct type *index_type =
2533 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2535 struct type *elt_type = ada_array_element_type (arr_type, 1);
2536 return allocate_value (create_array_type (NULL, elt_type, index_type));
2540 /* Name resolution */
2542 /* The "decoded" name for the user-definable Ada operator corresponding
2546 ada_decoded_op_name (enum exp_opcode op)
2550 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2552 if (ada_opname_table[i].op == op)
2553 return ada_opname_table[i].decoded;
2555 error (_("Could not find operator name for opcode"));
2559 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2560 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2561 undefined namespace) and converts operators that are
2562 user-defined into appropriate function calls. If CONTEXT_TYPE is
2563 non-null, it provides a preferred result type [at the moment, only
2564 type void has any effect---causing procedures to be preferred over
2565 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2566 return type is preferred. May change (expand) *EXP. */
2569 resolve (struct expression **expp, int void_context_p)
2573 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2576 /* Resolve the operator of the subexpression beginning at
2577 position *POS of *EXPP. "Resolving" consists of replacing
2578 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2579 with their resolutions, replacing built-in operators with
2580 function calls to user-defined operators, where appropriate, and,
2581 when DEPROCEDURE_P is non-zero, converting function-valued variables
2582 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2583 are as in ada_resolve, above. */
2585 static struct value *
2586 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2587 struct type *context_type)
2591 struct expression *exp; /* Convenience: == *expp. */
2592 enum exp_opcode op = (*expp)->elts[pc].opcode;
2593 struct value **argvec; /* Vector of operand types (alloca'ed). */
2594 int nargs; /* Number of operands. */
2601 /* Pass one: resolve operands, saving their types and updating *pos,
2606 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2607 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2612 resolve_subexp (expp, pos, 0, NULL);
2614 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2619 resolve_subexp (expp, pos, 0, NULL);
2624 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2627 case OP_ATR_MODULUS:
2637 case TERNOP_IN_RANGE:
2638 case BINOP_IN_BOUNDS:
2644 case OP_DISCRETE_RANGE:
2646 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2655 arg1 = resolve_subexp (expp, pos, 0, NULL);
2657 resolve_subexp (expp, pos, 1, NULL);
2659 resolve_subexp (expp, pos, 1, value_type (arg1));
2676 case BINOP_LOGICAL_AND:
2677 case BINOP_LOGICAL_OR:
2678 case BINOP_BITWISE_AND:
2679 case BINOP_BITWISE_IOR:
2680 case BINOP_BITWISE_XOR:
2683 case BINOP_NOTEQUAL:
2690 case BINOP_SUBSCRIPT:
2698 case UNOP_LOGICAL_NOT:
2714 case OP_INTERNALVAR:
2724 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2727 case STRUCTOP_STRUCT:
2728 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2741 error (_("Unexpected operator during name resolution"));
2744 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2745 for (i = 0; i < nargs; i += 1)
2746 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2750 /* Pass two: perform any resolution on principal operator. */
2757 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2759 struct ada_symbol_info *candidates;
2763 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2764 (exp->elts[pc + 2].symbol),
2765 exp->elts[pc + 1].block, VAR_DOMAIN,
2768 if (n_candidates > 1)
2770 /* Types tend to get re-introduced locally, so if there
2771 are any local symbols that are not types, first filter
2774 for (j = 0; j < n_candidates; j += 1)
2775 switch (SYMBOL_CLASS (candidates[j].sym))
2781 case LOC_REGPARM_ADDR:
2785 case LOC_BASEREG_ARG:
2787 case LOC_COMPUTED_ARG:
2793 if (j < n_candidates)
2796 while (j < n_candidates)
2798 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2800 candidates[j] = candidates[n_candidates - 1];
2809 if (n_candidates == 0)
2810 error (_("No definition found for %s"),
2811 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2812 else if (n_candidates == 1)
2814 else if (deprocedure_p
2815 && !is_nonfunction (candidates, n_candidates))
2817 i = ada_resolve_function
2818 (candidates, n_candidates, NULL, 0,
2819 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2822 error (_("Could not find a match for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 printf_filtered (_("Multiple matches for %s\n"),
2828 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2829 user_select_syms (candidates, n_candidates, 1);
2833 exp->elts[pc + 1].block = candidates[i].block;
2834 exp->elts[pc + 2].symbol = candidates[i].sym;
2835 if (innermost_block == NULL
2836 || contained_in (candidates[i].block, innermost_block))
2837 innermost_block = candidates[i].block;
2841 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2844 replace_operator_with_call (expp, pc, 0, 0,
2845 exp->elts[pc + 2].symbol,
2846 exp->elts[pc + 1].block);
2853 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2854 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2856 struct ada_symbol_info *candidates;
2860 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2861 (exp->elts[pc + 5].symbol),
2862 exp->elts[pc + 4].block, VAR_DOMAIN,
2864 if (n_candidates == 1)
2868 i = ada_resolve_function
2869 (candidates, n_candidates,
2871 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2874 error (_("Could not find a match for %s"),
2875 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2878 exp->elts[pc + 4].block = candidates[i].block;
2879 exp->elts[pc + 5].symbol = candidates[i].sym;
2880 if (innermost_block == NULL
2881 || contained_in (candidates[i].block, innermost_block))
2882 innermost_block = candidates[i].block;
2893 case BINOP_BITWISE_AND:
2894 case BINOP_BITWISE_IOR:
2895 case BINOP_BITWISE_XOR:
2897 case BINOP_NOTEQUAL:
2905 case UNOP_LOGICAL_NOT:
2907 if (possible_user_operator_p (op, argvec))
2909 struct ada_symbol_info *candidates;
2913 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2914 (struct block *) NULL, VAR_DOMAIN,
2916 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2917 ada_decoded_op_name (op), NULL);
2921 replace_operator_with_call (expp, pc, nargs, 1,
2922 candidates[i].sym, candidates[i].block);
2932 return evaluate_subexp_type (exp, pos);
2935 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2936 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2937 a non-pointer. A type of 'void' (which is never a valid expression type)
2938 by convention matches anything. */
2939 /* The term "match" here is rather loose. The match is heuristic and
2940 liberal. FIXME: TOO liberal, in fact. */
2943 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2945 ftype = ada_check_typedef (ftype);
2946 atype = ada_check_typedef (atype);
2948 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2949 ftype = TYPE_TARGET_TYPE (ftype);
2950 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2951 atype = TYPE_TARGET_TYPE (atype);
2953 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2954 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2957 switch (TYPE_CODE (ftype))
2962 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2963 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2964 TYPE_TARGET_TYPE (atype), 0);
2967 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2969 case TYPE_CODE_ENUM:
2970 case TYPE_CODE_RANGE:
2971 switch (TYPE_CODE (atype))
2974 case TYPE_CODE_ENUM:
2975 case TYPE_CODE_RANGE:
2981 case TYPE_CODE_ARRAY:
2982 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2983 || ada_is_array_descriptor_type (atype));
2985 case TYPE_CODE_STRUCT:
2986 if (ada_is_array_descriptor_type (ftype))
2987 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2988 || ada_is_array_descriptor_type (atype));
2990 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2991 && !ada_is_array_descriptor_type (atype));
2993 case TYPE_CODE_UNION:
2995 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2999 /* Return non-zero if the formals of FUNC "sufficiently match" the
3000 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3001 may also be an enumeral, in which case it is treated as a 0-
3002 argument function. */
3005 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3008 struct type *func_type = SYMBOL_TYPE (func);
3010 if (SYMBOL_CLASS (func) == LOC_CONST
3011 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3012 return (n_actuals == 0);
3013 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3016 if (TYPE_NFIELDS (func_type) != n_actuals)
3019 for (i = 0; i < n_actuals; i += 1)
3021 if (actuals[i] == NULL)
3025 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3026 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3028 if (!ada_type_match (ftype, atype, 1))
3035 /* False iff function type FUNC_TYPE definitely does not produce a value
3036 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3037 FUNC_TYPE is not a valid function type with a non-null return type
3038 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3041 return_match (struct type *func_type, struct type *context_type)
3043 struct type *return_type;
3045 if (func_type == NULL)
3048 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3049 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3051 return_type = base_type (func_type);
3052 if (return_type == NULL)
3055 context_type = base_type (context_type);
3057 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3058 return context_type == NULL || return_type == context_type;
3059 else if (context_type == NULL)
3060 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3062 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3066 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3067 function (if any) that matches the types of the NARGS arguments in
3068 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3069 that returns that type, then eliminate matches that don't. If
3070 CONTEXT_TYPE is void and there is at least one match that does not
3071 return void, eliminate all matches that do.
3073 Asks the user if there is more than one match remaining. Returns -1
3074 if there is no such symbol or none is selected. NAME is used
3075 solely for messages. May re-arrange and modify SYMS in
3076 the process; the index returned is for the modified vector. */
3079 ada_resolve_function (struct ada_symbol_info syms[],
3080 int nsyms, struct value **args, int nargs,
3081 const char *name, struct type *context_type)
3084 int m; /* Number of hits */
3085 struct type *fallback;
3086 struct type *return_type;
3088 return_type = context_type;
3089 if (context_type == NULL)
3090 fallback = builtin_type_void;
3097 for (k = 0; k < nsyms; k += 1)
3099 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3101 if (ada_args_match (syms[k].sym, args, nargs)
3102 && return_match (type, return_type))
3108 if (m > 0 || return_type == fallback)
3111 return_type = fallback;
3118 printf_filtered (_("Multiple matches for %s\n"), name);
3119 user_select_syms (syms, m, 1);
3125 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3126 in a listing of choices during disambiguation (see sort_choices, below).
3127 The idea is that overloadings of a subprogram name from the
3128 same package should sort in their source order. We settle for ordering
3129 such symbols by their trailing number (__N or $N). */
3132 encoded_ordered_before (char *N0, char *N1)
3136 else if (N0 == NULL)
3141 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3143 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3145 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3146 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3150 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3153 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3155 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3156 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3158 return (strcmp (N0, N1) < 0);
3162 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3166 sort_choices (struct ada_symbol_info syms[], int nsyms)
3169 for (i = 1; i < nsyms; i += 1)
3171 struct ada_symbol_info sym = syms[i];
3174 for (j = i - 1; j >= 0; j -= 1)
3176 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3177 SYMBOL_LINKAGE_NAME (sym.sym)))
3179 syms[j + 1] = syms[j];
3185 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3186 by asking the user (if necessary), returning the number selected,
3187 and setting the first elements of SYMS items. Error if no symbols
3190 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3191 to be re-integrated one of these days. */
3194 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3197 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3199 int first_choice = (max_results == 1) ? 1 : 2;
3201 if (max_results < 1)
3202 error (_("Request to select 0 symbols!"));
3206 printf_unfiltered (_("[0] cancel\n"));
3207 if (max_results > 1)
3208 printf_unfiltered (_("[1] all\n"));
3210 sort_choices (syms, nsyms);
3212 for (i = 0; i < nsyms; i += 1)
3214 if (syms[i].sym == NULL)
3217 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3219 struct symtab_and_line sal =
3220 find_function_start_sal (syms[i].sym, 1);
3221 if (sal.symtab == NULL)
3222 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3224 SYMBOL_PRINT_NAME (syms[i].sym),
3227 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3228 SYMBOL_PRINT_NAME (syms[i].sym),
3229 sal.symtab->filename, sal.line);
3235 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3236 && SYMBOL_TYPE (syms[i].sym) != NULL
3237 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3238 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3240 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3241 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3243 SYMBOL_PRINT_NAME (syms[i].sym),
3244 symtab->filename, SYMBOL_LINE (syms[i].sym));
3245 else if (is_enumeral
3246 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3248 printf_unfiltered (("[%d] "), i + first_choice);
3249 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3251 printf_unfiltered (_("'(%s) (enumeral)\n"),
3252 SYMBOL_PRINT_NAME (syms[i].sym));
3254 else if (symtab != NULL)
3255 printf_unfiltered (is_enumeral
3256 ? _("[%d] %s in %s (enumeral)\n")
3257 : _("[%d] %s at %s:?\n"),
3259 SYMBOL_PRINT_NAME (syms[i].sym),
3262 printf_unfiltered (is_enumeral
3263 ? _("[%d] %s (enumeral)\n")
3264 : _("[%d] %s at ?\n"),
3266 SYMBOL_PRINT_NAME (syms[i].sym));
3270 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3273 for (i = 0; i < n_chosen; i += 1)
3274 syms[i] = syms[chosen[i]];
3279 /* Read and validate a set of numeric choices from the user in the
3280 range 0 .. N_CHOICES-1. Place the results in increasing
3281 order in CHOICES[0 .. N-1], and return N.
3283 The user types choices as a sequence of numbers on one line
3284 separated by blanks, encoding them as follows:
3286 + A choice of 0 means to cancel the selection, throwing an error.
3287 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3288 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3290 The user is not allowed to choose more than MAX_RESULTS values.
3292 ANNOTATION_SUFFIX, if present, is used to annotate the input
3293 prompts (for use with the -f switch). */
3296 get_selections (int *choices, int n_choices, int max_results,
3297 int is_all_choice, char *annotation_suffix)
3302 int first_choice = is_all_choice ? 2 : 1;
3304 prompt = getenv ("PS2");
3308 printf_unfiltered (("%s "), prompt);
3309 gdb_flush (gdb_stdout);
3311 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3314 error_no_arg (_("one or more choice numbers"));
3318 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3319 order, as given in args. Choices are validated. */
3325 while (isspace (*args))
3327 if (*args == '\0' && n_chosen == 0)
3328 error_no_arg (_("one or more choice numbers"));
3329 else if (*args == '\0')
3332 choice = strtol (args, &args2, 10);
3333 if (args == args2 || choice < 0
3334 || choice > n_choices + first_choice - 1)
3335 error (_("Argument must be choice number"));
3339 error (_("cancelled"));
3341 if (choice < first_choice)
3343 n_chosen = n_choices;
3344 for (j = 0; j < n_choices; j += 1)
3348 choice -= first_choice;
3350 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3354 if (j < 0 || choice != choices[j])
3357 for (k = n_chosen - 1; k > j; k -= 1)
3358 choices[k + 1] = choices[k];
3359 choices[j + 1] = choice;
3364 if (n_chosen > max_results)
3365 error (_("Select no more than %d of the above"), max_results);
3370 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3371 on the function identified by SYM and BLOCK, and taking NARGS
3372 arguments. Update *EXPP as needed to hold more space. */
3375 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3376 int oplen, struct symbol *sym,
3377 struct block *block)
3379 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3380 symbol, -oplen for operator being replaced). */
3381 struct expression *newexp = (struct expression *)
3382 xmalloc (sizeof (struct expression)
3383 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3384 struct expression *exp = *expp;
3386 newexp->nelts = exp->nelts + 7 - oplen;
3387 newexp->language_defn = exp->language_defn;
3388 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3389 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3390 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3392 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3393 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3395 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3396 newexp->elts[pc + 4].block = block;
3397 newexp->elts[pc + 5].symbol = sym;
3403 /* Type-class predicates */
3405 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3409 numeric_type_p (struct type *type)
3415 switch (TYPE_CODE (type))
3420 case TYPE_CODE_RANGE:
3421 return (type == TYPE_TARGET_TYPE (type)
3422 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3429 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3432 integer_type_p (struct type *type)
3438 switch (TYPE_CODE (type))
3442 case TYPE_CODE_RANGE:
3443 return (type == TYPE_TARGET_TYPE (type)
3444 || integer_type_p (TYPE_TARGET_TYPE (type)));
3451 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3454 scalar_type_p (struct type *type)
3460 switch (TYPE_CODE (type))
3463 case TYPE_CODE_RANGE:
3464 case TYPE_CODE_ENUM:
3473 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3476 discrete_type_p (struct type *type)
3482 switch (TYPE_CODE (type))
3485 case TYPE_CODE_RANGE:
3486 case TYPE_CODE_ENUM:
3494 /* Returns non-zero if OP with operands in the vector ARGS could be
3495 a user-defined function. Errs on the side of pre-defined operators
3496 (i.e., result 0). */
3499 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3501 struct type *type0 =
3502 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3503 struct type *type1 =
3504 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3518 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3522 case BINOP_BITWISE_AND:
3523 case BINOP_BITWISE_IOR:
3524 case BINOP_BITWISE_XOR:
3525 return (!(integer_type_p (type0) && integer_type_p (type1)));
3528 case BINOP_NOTEQUAL:
3533 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3536 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3539 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3543 case UNOP_LOGICAL_NOT:
3545 return (!numeric_type_p (type0));
3552 /* NOTE: In the following, we assume that a renaming type's name may
3553 have an ___XD suffix. It would be nice if this went away at some
3556 /* If TYPE encodes a renaming, returns the renaming suffix, which
3557 is XR for an object renaming, XRP for a procedure renaming, XRE for
3558 an exception renaming, and XRS for a subprogram renaming. Returns
3559 NULL if NAME encodes none of these. */
3562 ada_renaming_type (struct type *type)
3564 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3566 const char *name = type_name_no_tag (type);
3567 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3569 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3578 /* Return non-zero iff SYM encodes an object renaming. */
3581 ada_is_object_renaming (struct symbol *sym)
3583 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3584 return renaming_type != NULL
3585 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3588 /* Assuming that SYM encodes a non-object renaming, returns the original
3589 name of the renamed entity. The name is good until the end of
3593 ada_simple_renamed_entity (struct symbol *sym)
3596 const char *raw_name;
3600 type = SYMBOL_TYPE (sym);
3601 if (type == NULL || TYPE_NFIELDS (type) < 1)
3602 error (_("Improperly encoded renaming."));
3604 raw_name = TYPE_FIELD_NAME (type, 0);
3605 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3607 error (_("Improperly encoded renaming."));
3609 result = xmalloc (len + 1);
3610 strncpy (result, raw_name, len);
3611 result[len] = '\000';
3617 /* Evaluation: Function Calls */
3619 /* Return an lvalue containing the value VAL. This is the identity on
3620 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3621 on the stack, using and updating *SP as the stack pointer, and
3622 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3624 static struct value *
3625 ensure_lval (struct value *val, CORE_ADDR *sp)
3627 if (! VALUE_LVAL (val))
3629 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3631 /* The following is taken from the structure-return code in
3632 call_function_by_hand. FIXME: Therefore, some refactoring seems
3634 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3636 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3637 reserving sufficient space. */
3639 if (gdbarch_frame_align_p (current_gdbarch))
3640 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3641 VALUE_ADDRESS (val) = *sp;
3645 /* Stack grows upward. Align the frame, allocate space, and
3646 then again, re-align the frame. */
3647 if (gdbarch_frame_align_p (current_gdbarch))
3648 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3649 VALUE_ADDRESS (val) = *sp;
3651 if (gdbarch_frame_align_p (current_gdbarch))
3652 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3655 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3661 /* Return the value ACTUAL, converted to be an appropriate value for a
3662 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3663 allocating any necessary descriptors (fat pointers), or copies of
3664 values not residing in memory, updating it as needed. */
3666 static struct value *
3667 convert_actual (struct value *actual, struct type *formal_type0,
3670 struct type *actual_type = ada_check_typedef (value_type (actual));
3671 struct type *formal_type = ada_check_typedef (formal_type0);
3672 struct type *formal_target =
3673 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3674 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3675 struct type *actual_target =
3676 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3677 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3679 if (ada_is_array_descriptor_type (formal_target)
3680 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3681 return make_array_descriptor (formal_type, actual, sp);
3682 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3684 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3685 && ada_is_array_descriptor_type (actual_target))
3686 return desc_data (actual);
3687 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3689 if (VALUE_LVAL (actual) != lval_memory)
3692 actual_type = ada_check_typedef (value_type (actual));
3693 val = allocate_value (actual_type);
3694 memcpy ((char *) value_contents_raw (val),
3695 (char *) value_contents (actual),
3696 TYPE_LENGTH (actual_type));
3697 actual = ensure_lval (val, sp);
3699 return value_addr (actual);
3702 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3703 return ada_value_ind (actual);
3709 /* Push a descriptor of type TYPE for array value ARR on the stack at
3710 *SP, updating *SP to reflect the new descriptor. Return either
3711 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3712 to-descriptor type rather than a descriptor type), a struct value *
3713 representing a pointer to this descriptor. */
3715 static struct value *
3716 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3718 struct type *bounds_type = desc_bounds_type (type);
3719 struct type *desc_type = desc_base_type (type);
3720 struct value *descriptor = allocate_value (desc_type);
3721 struct value *bounds = allocate_value (bounds_type);
3724 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3726 modify_general_field (value_contents_writeable (bounds),
3727 value_as_long (ada_array_bound (arr, i, 0)),
3728 desc_bound_bitpos (bounds_type, i, 0),
3729 desc_bound_bitsize (bounds_type, i, 0));
3730 modify_general_field (value_contents_writeable (bounds),
3731 value_as_long (ada_array_bound (arr, i, 1)),
3732 desc_bound_bitpos (bounds_type, i, 1),
3733 desc_bound_bitsize (bounds_type, i, 1));
3736 bounds = ensure_lval (bounds, sp);
3738 modify_general_field (value_contents_writeable (descriptor),
3739 VALUE_ADDRESS (ensure_lval (arr, sp)),
3740 fat_pntr_data_bitpos (desc_type),
3741 fat_pntr_data_bitsize (desc_type));
3743 modify_general_field (value_contents_writeable (descriptor),
3744 VALUE_ADDRESS (bounds),
3745 fat_pntr_bounds_bitpos (desc_type),
3746 fat_pntr_bounds_bitsize (desc_type));
3748 descriptor = ensure_lval (descriptor, sp);
3750 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3751 return value_addr (descriptor);
3757 /* Assuming a dummy frame has been established on the target, perform any
3758 conversions needed for calling function FUNC on the NARGS actual
3759 parameters in ARGS, other than standard C conversions. Does
3760 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3761 does not match the number of arguments expected. Use *SP as a
3762 stack pointer for additional data that must be pushed, updating its
3766 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3771 if (TYPE_NFIELDS (value_type (func)) == 0
3772 || nargs != TYPE_NFIELDS (value_type (func)))
3775 for (i = 0; i < nargs; i += 1)
3777 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3780 /* Dummy definitions for an experimental caching module that is not
3781 * used in the public sources. */
3784 lookup_cached_symbol (const char *name, domain_enum namespace,
3785 struct symbol **sym, struct block **block,
3786 struct symtab **symtab)
3792 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3793 struct block *block, struct symtab *symtab)
3799 /* Return the result of a standard (literal, C-like) lookup of NAME in
3800 given DOMAIN, visible from lexical block BLOCK. */
3802 static struct symbol *
3803 standard_lookup (const char *name, const struct block *block,
3807 struct symtab *symtab;
3809 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3812 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3813 cache_symbol (name, domain, sym, block_found, symtab);
3818 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3819 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3820 since they contend in overloading in the same way. */
3822 is_nonfunction (struct ada_symbol_info syms[], int n)
3826 for (i = 0; i < n; i += 1)
3827 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3828 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3829 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3835 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3836 struct types. Otherwise, they may not. */
3839 equiv_types (struct type *type0, struct type *type1)
3843 if (type0 == NULL || type1 == NULL
3844 || TYPE_CODE (type0) != TYPE_CODE (type1))
3846 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3847 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3848 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3849 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3855 /* True iff SYM0 represents the same entity as SYM1, or one that is
3856 no more defined than that of SYM1. */
3859 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3863 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3864 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3867 switch (SYMBOL_CLASS (sym0))
3873 struct type *type0 = SYMBOL_TYPE (sym0);
3874 struct type *type1 = SYMBOL_TYPE (sym1);
3875 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3876 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3877 int len0 = strlen (name0);
3879 TYPE_CODE (type0) == TYPE_CODE (type1)
3880 && (equiv_types (type0, type1)
3881 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3882 && strncmp (name1 + len0, "___XV", 5) == 0));
3885 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3886 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3892 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3893 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3896 add_defn_to_vec (struct obstack *obstackp,
3898 struct block *block, struct symtab *symtab)
3902 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3904 /* Do not try to complete stub types, as the debugger is probably
3905 already scanning all symbols matching a certain name at the
3906 time when this function is called. Trying to replace the stub
3907 type by its associated full type will cause us to restart a scan
3908 which may lead to an infinite recursion. Instead, the client
3909 collecting the matching symbols will end up collecting several
3910 matches, with at least one of them complete. It can then filter
3911 out the stub ones if needed. */
3913 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3915 if (lesseq_defined_than (sym, prevDefns[i].sym))
3917 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3919 prevDefns[i].sym = sym;
3920 prevDefns[i].block = block;
3921 prevDefns[i].symtab = symtab;
3927 struct ada_symbol_info info;
3931 info.symtab = symtab;
3932 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3936 /* Number of ada_symbol_info structures currently collected in
3937 current vector in *OBSTACKP. */
3940 num_defns_collected (struct obstack *obstackp)
3942 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3945 /* Vector of ada_symbol_info structures currently collected in current
3946 vector in *OBSTACKP. If FINISH, close off the vector and return
3947 its final address. */
3949 static struct ada_symbol_info *
3950 defns_collected (struct obstack *obstackp, int finish)
3953 return obstack_finish (obstackp);
3955 return (struct ada_symbol_info *) obstack_base (obstackp);
3958 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3959 Check the global symbols if GLOBAL, the static symbols if not.
3960 Do wild-card match if WILD. */
3962 static struct partial_symbol *
3963 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3964 int global, domain_enum namespace, int wild)
3966 struct partial_symbol **start;
3967 int name_len = strlen (name);
3968 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3977 pst->objfile->global_psymbols.list + pst->globals_offset :
3978 pst->objfile->static_psymbols.list + pst->statics_offset);
3982 for (i = 0; i < length; i += 1)
3984 struct partial_symbol *psym = start[i];
3986 if (SYMBOL_DOMAIN (psym) == namespace
3987 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4001 int M = (U + i) >> 1;
4002 struct partial_symbol *psym = start[M];
4003 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4005 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4007 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4018 struct partial_symbol *psym = start[i];
4020 if (SYMBOL_DOMAIN (psym) == namespace)
4022 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4030 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4044 int M = (U + i) >> 1;
4045 struct partial_symbol *psym = start[M];
4046 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4048 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4050 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4061 struct partial_symbol *psym = start[i];
4063 if (SYMBOL_DOMAIN (psym) == namespace)
4067 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4070 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4072 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4082 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4092 /* Find a symbol table containing symbol SYM or NULL if none. */
4094 static struct symtab *
4095 symtab_for_sym (struct symbol *sym)
4098 struct objfile *objfile;
4100 struct symbol *tmp_sym;
4101 struct dict_iterator iter;
4104 ALL_PRIMARY_SYMTABS (objfile, s)
4106 switch (SYMBOL_CLASS (sym))
4114 case LOC_CONST_BYTES:
4115 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4116 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4118 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4119 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4125 switch (SYMBOL_CLASS (sym))
4131 case LOC_REGPARM_ADDR:
4136 case LOC_BASEREG_ARG:
4138 case LOC_COMPUTED_ARG:
4139 for (j = FIRST_LOCAL_BLOCK;
4140 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4142 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4143 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4154 /* Return a minimal symbol matching NAME according to Ada decoding
4155 rules. Returns NULL if there is no such minimal symbol. Names
4156 prefixed with "standard__" are handled specially: "standard__" is
4157 first stripped off, and only static and global symbols are searched. */
4159 struct minimal_symbol *
4160 ada_lookup_simple_minsym (const char *name)
4162 struct objfile *objfile;
4163 struct minimal_symbol *msymbol;
4166 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4168 name += sizeof ("standard__") - 1;
4172 wild_match = (strstr (name, "__") == NULL);
4174 ALL_MSYMBOLS (objfile, msymbol)
4176 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4177 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4184 /* For all subprograms that statically enclose the subprogram of the
4185 selected frame, add symbols matching identifier NAME in DOMAIN
4186 and their blocks to the list of data in OBSTACKP, as for
4187 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4191 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4192 const char *name, domain_enum namespace,
4197 /* True if TYPE is definitely an artificial type supplied to a symbol
4198 for which no debugging information was given in the symbol file. */
4201 is_nondebugging_type (struct type *type)
4203 char *name = ada_type_name (type);
4204 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4207 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4208 duplicate other symbols in the list (The only case I know of where
4209 this happens is when object files containing stabs-in-ecoff are
4210 linked with files containing ordinary ecoff debugging symbols (or no
4211 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4212 Returns the number of items in the modified list. */
4215 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4222 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4223 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4224 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4226 for (j = 0; j < nsyms; j += 1)
4229 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4230 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4231 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4232 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4233 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4234 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4237 for (k = i + 1; k < nsyms; k += 1)
4238 syms[k - 1] = syms[k];
4251 /* Given a type that corresponds to a renaming entity, use the type name
4252 to extract the scope (package name or function name, fully qualified,
4253 and following the GNAT encoding convention) where this renaming has been
4254 defined. The string returned needs to be deallocated after use. */
4257 xget_renaming_scope (struct type *renaming_type)
4259 /* The renaming types adhere to the following convention:
4260 <scope>__<rename>___<XR extension>.
4261 So, to extract the scope, we search for the "___XR" extension,
4262 and then backtrack until we find the first "__". */
4264 const char *name = type_name_no_tag (renaming_type);
4265 char *suffix = strstr (name, "___XR");
4270 /* Now, backtrack a bit until we find the first "__". Start looking
4271 at suffix - 3, as the <rename> part is at least one character long. */
4273 for (last = suffix - 3; last > name; last--)
4274 if (last[0] == '_' && last[1] == '_')
4277 /* Make a copy of scope and return it. */
4279 scope_len = last - name;
4280 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4282 strncpy (scope, name, scope_len);
4283 scope[scope_len] = '\0';
4288 /* Return nonzero if NAME corresponds to a package name. */
4291 is_package_name (const char *name)
4293 /* Here, We take advantage of the fact that no symbols are generated
4294 for packages, while symbols are generated for each function.
4295 So the condition for NAME represent a package becomes equivalent
4296 to NAME not existing in our list of symbols. There is only one
4297 small complication with library-level functions (see below). */
4301 /* If it is a function that has not been defined at library level,
4302 then we should be able to look it up in the symbols. */
4303 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4306 /* Library-level function names start with "_ada_". See if function
4307 "_ada_" followed by NAME can be found. */
4309 /* Do a quick check that NAME does not contain "__", since library-level
4310 functions names cannot contain "__" in them. */
4311 if (strstr (name, "__") != NULL)
4314 fun_name = xstrprintf ("_ada_%s", name);
4316 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4319 /* Return nonzero if SYM corresponds to a renaming entity that is
4320 visible from FUNCTION_NAME. */
4323 renaming_is_visible (const struct symbol *sym, char *function_name)
4325 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4327 make_cleanup (xfree, scope);
4329 /* If the rename has been defined in a package, then it is visible. */
4330 if (is_package_name (scope))
4333 /* Check that the rename is in the current function scope by checking
4334 that its name starts with SCOPE. */
4336 /* If the function name starts with "_ada_", it means that it is
4337 a library-level function. Strip this prefix before doing the
4338 comparison, as the encoding for the renaming does not contain
4340 if (strncmp (function_name, "_ada_", 5) == 0)
4343 return (strncmp (function_name, scope, strlen (scope)) == 0);
4346 /* Iterates over the SYMS list and remove any entry that corresponds to
4347 a renaming entity that is not visible from the function associated
4351 GNAT emits a type following a specified encoding for each renaming
4352 entity. Unfortunately, STABS currently does not support the definition
4353 of types that are local to a given lexical block, so all renamings types
4354 are emitted at library level. As a consequence, if an application
4355 contains two renaming entities using the same name, and a user tries to
4356 print the value of one of these entities, the result of the ada symbol
4357 lookup will also contain the wrong renaming type.
4359 This function partially covers for this limitation by attempting to
4360 remove from the SYMS list renaming symbols that should be visible
4361 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4362 method with the current information available. The implementation
4363 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4365 - When the user tries to print a rename in a function while there
4366 is another rename entity defined in a package: Normally, the
4367 rename in the function has precedence over the rename in the
4368 package, so the latter should be removed from the list. This is
4369 currently not the case.
4371 - This function will incorrectly remove valid renames if
4372 the CURRENT_BLOCK corresponds to a function which symbol name
4373 has been changed by an "Export" pragma. As a consequence,
4374 the user will be unable to print such rename entities. */
4377 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4378 int nsyms, const struct block *current_block)
4380 struct symbol *current_function;
4381 char *current_function_name;
4384 /* Extract the function name associated to CURRENT_BLOCK.
4385 Abort if unable to do so. */
4387 if (current_block == NULL)
4390 current_function = block_function (current_block);
4391 if (current_function == NULL)
4394 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4395 if (current_function_name == NULL)
4398 /* Check each of the symbols, and remove it from the list if it is
4399 a type corresponding to a renaming that is out of the scope of
4400 the current block. */
4405 if (ada_is_object_renaming (syms[i].sym)
4406 && !renaming_is_visible (syms[i].sym, current_function_name))
4409 for (j = i + 1; j < nsyms; j++)
4410 syms[j - 1] = syms[j];
4420 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4421 scope and in global scopes, returning the number of matches. Sets
4422 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4423 indicating the symbols found and the blocks and symbol tables (if
4424 any) in which they were found. This vector are transient---good only to
4425 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4426 symbol match within the nest of blocks whose innermost member is BLOCK0,
4427 is the one match returned (no other matches in that or
4428 enclosing blocks is returned). If there are any matches in or
4429 surrounding BLOCK0, then these alone are returned. Otherwise, the
4430 search extends to global and file-scope (static) symbol tables.
4431 Names prefixed with "standard__" are handled specially: "standard__"
4432 is first stripped off, and only static and global symbols are searched. */
4435 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4436 domain_enum namespace,
4437 struct ada_symbol_info **results)
4441 struct partial_symtab *ps;
4442 struct blockvector *bv;
4443 struct objfile *objfile;
4444 struct block *block;
4446 struct minimal_symbol *msymbol;
4452 obstack_free (&symbol_list_obstack, NULL);
4453 obstack_init (&symbol_list_obstack);
4457 /* Search specified block and its superiors. */
4459 wild_match = (strstr (name0, "__") == NULL);
4461 block = (struct block *) block0; /* FIXME: No cast ought to be
4462 needed, but adding const will
4463 have a cascade effect. */
4464 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4468 name = name0 + sizeof ("standard__") - 1;
4472 while (block != NULL)
4475 ada_add_block_symbols (&symbol_list_obstack, block, name,
4476 namespace, NULL, NULL, wild_match);
4478 /* If we found a non-function match, assume that's the one. */
4479 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4480 num_defns_collected (&symbol_list_obstack)))
4483 block = BLOCK_SUPERBLOCK (block);
4486 /* If no luck so far, try to find NAME as a local symbol in some lexically
4487 enclosing subprogram. */
4488 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4489 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4490 name, namespace, wild_match);
4492 /* If we found ANY matches among non-global symbols, we're done. */
4494 if (num_defns_collected (&symbol_list_obstack) > 0)
4498 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4501 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4505 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4506 tables, and psymtab's. */
4508 ALL_PRIMARY_SYMTABS (objfile, s)
4511 bv = BLOCKVECTOR (s);
4512 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4513 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4514 objfile, s, wild_match);
4517 if (namespace == VAR_DOMAIN)
4519 ALL_MSYMBOLS (objfile, msymbol)
4521 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4523 switch (MSYMBOL_TYPE (msymbol))
4525 case mst_solib_trampoline:
4528 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4531 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4533 bv = BLOCKVECTOR (s);
4534 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4535 ada_add_block_symbols (&symbol_list_obstack, block,
4536 SYMBOL_LINKAGE_NAME (msymbol),
4537 namespace, objfile, s, wild_match);
4539 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4541 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4542 ada_add_block_symbols (&symbol_list_obstack, block,
4543 SYMBOL_LINKAGE_NAME (msymbol),
4544 namespace, objfile, s,
4553 ALL_PSYMTABS (objfile, ps)
4557 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4559 s = PSYMTAB_TO_SYMTAB (ps);
4562 bv = BLOCKVECTOR (s);
4563 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4564 ada_add_block_symbols (&symbol_list_obstack, block, name,
4565 namespace, objfile, s, wild_match);
4569 /* Now add symbols from all per-file blocks if we've gotten no hits
4570 (Not strictly correct, but perhaps better than an error).
4571 Do the symtabs first, then check the psymtabs. */
4573 if (num_defns_collected (&symbol_list_obstack) == 0)
4576 ALL_PRIMARY_SYMTABS (objfile, s)
4579 bv = BLOCKVECTOR (s);
4580 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4581 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4582 objfile, s, wild_match);
4585 ALL_PSYMTABS (objfile, ps)
4589 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4591 s = PSYMTAB_TO_SYMTAB (ps);
4592 bv = BLOCKVECTOR (s);
4595 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4596 ada_add_block_symbols (&symbol_list_obstack, block, name,
4597 namespace, objfile, s, wild_match);
4603 ndefns = num_defns_collected (&symbol_list_obstack);
4604 *results = defns_collected (&symbol_list_obstack, 1);
4606 ndefns = remove_extra_symbols (*results, ndefns);
4609 cache_symbol (name0, namespace, NULL, NULL, NULL);
4611 if (ndefns == 1 && cacheIfUnique)
4612 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4613 (*results)[0].symtab);
4615 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4620 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4621 scope and in global scopes, or NULL if none. NAME is folded and
4622 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4623 choosing the first symbol if there are multiple choices.
4624 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4625 table in which the symbol was found (in both cases, these
4626 assignments occur only if the pointers are non-null). */
4629 ada_lookup_symbol (const char *name, const struct block *block0,
4630 domain_enum namespace, int *is_a_field_of_this,
4631 struct symtab **symtab)
4633 struct ada_symbol_info *candidates;
4636 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4637 block0, namespace, &candidates);
4639 if (n_candidates == 0)
4642 if (is_a_field_of_this != NULL)
4643 *is_a_field_of_this = 0;
4647 *symtab = candidates[0].symtab;
4648 if (*symtab == NULL && candidates[0].block != NULL)
4650 struct objfile *objfile;
4653 struct blockvector *bv;
4655 /* Search the list of symtabs for one which contains the
4656 address of the start of this block. */
4657 ALL_PRIMARY_SYMTABS (objfile, s)
4659 bv = BLOCKVECTOR (s);
4660 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4661 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4662 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4665 return fixup_symbol_section (candidates[0].sym, objfile);
4668 /* FIXME: brobecker/2004-11-12: I think that we should never
4669 reach this point. I don't see a reason why we would not
4670 find a symtab for a given block, so I suggest raising an
4671 internal_error exception here. Otherwise, we end up
4672 returning a symbol but no symtab, which certain parts of
4673 the code that rely (indirectly) on this function do not
4674 expect, eventually causing a SEGV. */
4675 return fixup_symbol_section (candidates[0].sym, NULL);
4678 return candidates[0].sym;
4681 static struct symbol *
4682 ada_lookup_symbol_nonlocal (const char *name,
4683 const char *linkage_name,
4684 const struct block *block,
4685 const domain_enum domain, struct symtab **symtab)
4687 if (linkage_name == NULL)
4688 linkage_name = name;
4689 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4694 /* True iff STR is a possible encoded suffix of a normal Ada name
4695 that is to be ignored for matching purposes. Suffixes of parallel
4696 names (e.g., XVE) are not included here. Currently, the possible suffixes
4697 are given by either of the regular expression:
4699 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4701 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4702 _E[0-9]+[bs]$ [protected object entry suffixes]
4703 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4707 is_name_suffix (const char *str)
4710 const char *matching;
4711 const int len = strlen (str);
4713 /* (__[0-9]+)?\.[0-9]+ */
4715 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4718 while (isdigit (matching[0]))
4720 if (matching[0] == '\0')
4724 if (matching[0] == '.' || matching[0] == '$')
4727 while (isdigit (matching[0]))
4729 if (matching[0] == '\0')
4734 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4737 while (isdigit (matching[0]))
4739 if (matching[0] == '\0')
4744 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4745 with a N at the end. Unfortunately, the compiler uses the same
4746 convention for other internal types it creates. So treating
4747 all entity names that end with an "N" as a name suffix causes
4748 some regressions. For instance, consider the case of an enumerated
4749 type. To support the 'Image attribute, it creates an array whose
4751 Having a single character like this as a suffix carrying some
4752 information is a bit risky. Perhaps we should change the encoding
4753 to be something like "_N" instead. In the meantime, do not do
4754 the following check. */
4755 /* Protected Object Subprograms */
4756 if (len == 1 && str [0] == 'N')
4761 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4764 while (isdigit (matching[0]))
4766 if ((matching[0] == 'b' || matching[0] == 's')
4767 && matching [1] == '\0')
4771 /* ??? We should not modify STR directly, as we are doing below. This
4772 is fine in this case, but may become problematic later if we find
4773 that this alternative did not work, and want to try matching
4774 another one from the begining of STR. Since we modified it, we
4775 won't be able to find the begining of the string anymore! */
4779 while (str[0] != '_' && str[0] != '\0')
4781 if (str[0] != 'n' && str[0] != 'b')
4786 if (str[0] == '\000')
4790 if (str[1] != '_' || str[2] == '\000')
4794 if (strcmp (str + 3, "JM") == 0)
4796 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4797 the LJM suffix in favor of the JM one. But we will
4798 still accept LJM as a valid suffix for a reasonable
4799 amount of time, just to allow ourselves to debug programs
4800 compiled using an older version of GNAT. */
4801 if (strcmp (str + 3, "LJM") == 0)
4805 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4806 || str[4] == 'U' || str[4] == 'P')
4808 if (str[4] == 'R' && str[5] != 'T')
4812 if (!isdigit (str[2]))
4814 for (k = 3; str[k] != '\0'; k += 1)
4815 if (!isdigit (str[k]) && str[k] != '_')
4819 if (str[0] == '$' && isdigit (str[1]))
4821 for (k = 2; str[k] != '\0'; k += 1)
4822 if (!isdigit (str[k]) && str[k] != '_')
4829 /* Return nonzero if the given string starts with a dot ('.')
4830 followed by zero or more digits.
4832 Note: brobecker/2003-11-10: A forward declaration has not been
4833 added at the begining of this file yet, because this function
4834 is only used to work around a problem found during wild matching
4835 when trying to match minimal symbol names against symbol names
4836 obtained from dwarf-2 data. This function is therefore currently
4837 only used in wild_match() and is likely to be deleted when the
4838 problem in dwarf-2 is fixed. */
4841 is_dot_digits_suffix (const char *str)
4847 while (isdigit (str[0]))
4849 return (str[0] == '\0');
4852 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4853 Certain symbols appear at first to match, except that they turn out
4854 not to follow the Ada encoding and hence should not be used as a wild
4855 match of a given pattern. */
4858 is_valid_name_for_wild_match (const char *name0)
4860 const char *decoded_name = ada_decode (name0);
4863 for (i=0; decoded_name[i] != '\0'; i++)
4864 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4870 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4871 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4872 informational suffixes of NAME (i.e., for which is_name_suffix is
4876 wild_match (const char *patn0, int patn_len, const char *name0)
4882 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4883 stored in the symbol table for nested function names is sometimes
4884 different from the name of the associated entity stored in
4885 the dwarf-2 data: This is the case for nested subprograms, where
4886 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4887 while the symbol name from the dwarf-2 data does not.
4889 Although the DWARF-2 standard documents that entity names stored
4890 in the dwarf-2 data should be identical to the name as seen in
4891 the source code, GNAT takes a different approach as we already use
4892 a special encoding mechanism to convey the information so that
4893 a C debugger can still use the information generated to debug
4894 Ada programs. A corollary is that the symbol names in the dwarf-2
4895 data should match the names found in the symbol table. I therefore
4896 consider this issue as a compiler defect.
4898 Until the compiler is properly fixed, we work-around the problem
4899 by ignoring such suffixes during the match. We do so by making
4900 a copy of PATN0 and NAME0, and then by stripping such a suffix
4901 if present. We then perform the match on the resulting strings. */
4904 name_len = strlen (name0);
4906 name = (char *) alloca ((name_len + 1) * sizeof (char));
4907 strcpy (name, name0);
4908 dot = strrchr (name, '.');
4909 if (dot != NULL && is_dot_digits_suffix (dot))
4912 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4913 strncpy (patn, patn0, patn_len);
4914 patn[patn_len] = '\0';
4915 dot = strrchr (patn, '.');
4916 if (dot != NULL && is_dot_digits_suffix (dot))
4919 patn_len = dot - patn;
4923 /* Now perform the wild match. */
4925 name_len = strlen (name);
4926 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4927 && strncmp (patn, name + 5, patn_len) == 0
4928 && is_name_suffix (name + patn_len + 5))
4931 while (name_len >= patn_len)
4933 if (strncmp (patn, name, patn_len) == 0
4934 && is_name_suffix (name + patn_len))
4935 return (is_valid_name_for_wild_match (name0));
4942 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4947 if (!islower (name[2]))
4954 if (!islower (name[1]))
4965 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4966 vector *defn_symbols, updating the list of symbols in OBSTACKP
4967 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4968 OBJFILE is the section containing BLOCK.
4969 SYMTAB is recorded with each symbol added. */
4972 ada_add_block_symbols (struct obstack *obstackp,
4973 struct block *block, const char *name,
4974 domain_enum domain, struct objfile *objfile,
4975 struct symtab *symtab, int wild)
4977 struct dict_iterator iter;
4978 int name_len = strlen (name);
4979 /* A matching argument symbol, if any. */
4980 struct symbol *arg_sym;
4981 /* Set true when we find a matching non-argument symbol. */
4990 ALL_BLOCK_SYMBOLS (block, iter, sym)
4992 if (SYMBOL_DOMAIN (sym) == domain
4993 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4995 switch (SYMBOL_CLASS (sym))
5001 case LOC_REGPARM_ADDR:
5002 case LOC_BASEREG_ARG:
5003 case LOC_COMPUTED_ARG:
5006 case LOC_UNRESOLVED:
5010 add_defn_to_vec (obstackp,
5011 fixup_symbol_section (sym, objfile),
5020 ALL_BLOCK_SYMBOLS (block, iter, sym)
5022 if (SYMBOL_DOMAIN (sym) == domain)
5024 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5026 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5028 switch (SYMBOL_CLASS (sym))
5034 case LOC_REGPARM_ADDR:
5035 case LOC_BASEREG_ARG:
5036 case LOC_COMPUTED_ARG:
5039 case LOC_UNRESOLVED:
5043 add_defn_to_vec (obstackp,
5044 fixup_symbol_section (sym, objfile),
5053 if (!found_sym && arg_sym != NULL)
5055 add_defn_to_vec (obstackp,
5056 fixup_symbol_section (arg_sym, objfile),
5065 ALL_BLOCK_SYMBOLS (block, iter, sym)
5067 if (SYMBOL_DOMAIN (sym) == domain)
5071 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5074 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5076 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5081 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5083 switch (SYMBOL_CLASS (sym))
5089 case LOC_REGPARM_ADDR:
5090 case LOC_BASEREG_ARG:
5091 case LOC_COMPUTED_ARG:
5094 case LOC_UNRESOLVED:
5098 add_defn_to_vec (obstackp,
5099 fixup_symbol_section (sym, objfile),
5107 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5108 They aren't parameters, right? */
5109 if (!found_sym && arg_sym != NULL)
5111 add_defn_to_vec (obstackp,
5112 fixup_symbol_section (arg_sym, objfile),
5120 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5121 to be invisible to users. */
5124 ada_is_ignored_field (struct type *type, int field_num)
5126 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5130 const char *name = TYPE_FIELD_NAME (type, field_num);
5131 return (name == NULL
5132 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5136 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5137 pointer or reference type whose ultimate target has a tag field. */
5140 ada_is_tagged_type (struct type *type, int refok)
5142 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5145 /* True iff TYPE represents the type of X'Tag */
5148 ada_is_tag_type (struct type *type)
5150 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5154 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5155 return (name != NULL
5156 && strcmp (name, "ada__tags__dispatch_table") == 0);
5160 /* The type of the tag on VAL. */
5163 ada_tag_type (struct value *val)
5165 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5168 /* The value of the tag on VAL. */
5171 ada_value_tag (struct value *val)
5173 return ada_value_struct_elt (val, "_tag", 0);
5176 /* The value of the tag on the object of type TYPE whose contents are
5177 saved at VALADDR, if it is non-null, or is at memory address
5180 static struct value *
5181 value_tag_from_contents_and_address (struct type *type,
5182 const gdb_byte *valaddr,
5185 int tag_byte_offset, dummy1, dummy2;
5186 struct type *tag_type;
5187 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5190 const gdb_byte *valaddr1 = ((valaddr == NULL)
5192 : valaddr + tag_byte_offset);
5193 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5195 return value_from_contents_and_address (tag_type, valaddr1, address1);
5200 static struct type *
5201 type_from_tag (struct value *tag)
5203 const char *type_name = ada_tag_name (tag);
5204 if (type_name != NULL)
5205 return ada_find_any_type (ada_encode (type_name));
5216 static int ada_tag_name_1 (void *);
5217 static int ada_tag_name_2 (struct tag_args *);
5219 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5220 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5221 The value stored in ARGS->name is valid until the next call to
5225 ada_tag_name_1 (void *args0)
5227 struct tag_args *args = (struct tag_args *) args0;
5228 static char name[1024];
5232 val = ada_value_struct_elt (args->tag, "tsd", 1);
5234 return ada_tag_name_2 (args);
5235 val = ada_value_struct_elt (val, "expanded_name", 1);
5238 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5239 for (p = name; *p != '\0'; p += 1)
5246 /* Utility function for ada_tag_name_1 that tries the second
5247 representation for the dispatch table (in which there is no
5248 explicit 'tsd' field in the referent of the tag pointer, and instead
5249 the tsd pointer is stored just before the dispatch table. */
5252 ada_tag_name_2 (struct tag_args *args)
5254 struct type *info_type;
5255 static char name[1024];
5257 struct value *val, *valp;
5260 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5261 if (info_type == NULL)
5263 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5264 valp = value_cast (info_type, args->tag);
5267 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5270 val = ada_value_struct_elt (val, "expanded_name", 1);
5273 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5274 for (p = name; *p != '\0'; p += 1)
5281 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5285 ada_tag_name (struct value *tag)
5287 struct tag_args args;
5288 if (!ada_is_tag_type (value_type (tag)))
5292 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5296 /* The parent type of TYPE, or NULL if none. */
5299 ada_parent_type (struct type *type)
5303 type = ada_check_typedef (type);
5305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5309 if (ada_is_parent_field (type, i))
5310 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5315 /* True iff field number FIELD_NUM of structure type TYPE contains the
5316 parent-type (inherited) fields of a derived type. Assumes TYPE is
5317 a structure type with at least FIELD_NUM+1 fields. */
5320 ada_is_parent_field (struct type *type, int field_num)
5322 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5323 return (name != NULL
5324 && (strncmp (name, "PARENT", 6) == 0
5325 || strncmp (name, "_parent", 7) == 0));
5328 /* True iff field number FIELD_NUM of structure type TYPE is a
5329 transparent wrapper field (which should be silently traversed when doing
5330 field selection and flattened when printing). Assumes TYPE is a
5331 structure type with at least FIELD_NUM+1 fields. Such fields are always
5335 ada_is_wrapper_field (struct type *type, int field_num)
5337 const char *name = TYPE_FIELD_NAME (type, field_num);
5338 return (name != NULL
5339 && (strncmp (name, "PARENT", 6) == 0
5340 || strcmp (name, "REP") == 0
5341 || strncmp (name, "_parent", 7) == 0
5342 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5345 /* True iff field number FIELD_NUM of structure or union type TYPE
5346 is a variant wrapper. Assumes TYPE is a structure type with at least
5347 FIELD_NUM+1 fields. */
5350 ada_is_variant_part (struct type *type, int field_num)
5352 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5353 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5354 || (is_dynamic_field (type, field_num)
5355 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5356 == TYPE_CODE_UNION)));
5359 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5360 whose discriminants are contained in the record type OUTER_TYPE,
5361 returns the type of the controlling discriminant for the variant. */
5364 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5366 char *name = ada_variant_discrim_name (var_type);
5368 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5370 return builtin_type_int;
5375 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5376 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5377 represents a 'when others' clause; otherwise 0. */
5380 ada_is_others_clause (struct type *type, int field_num)
5382 const char *name = TYPE_FIELD_NAME (type, field_num);
5383 return (name != NULL && name[0] == 'O');
5386 /* Assuming that TYPE0 is the type of the variant part of a record,
5387 returns the name of the discriminant controlling the variant.
5388 The value is valid until the next call to ada_variant_discrim_name. */
5391 ada_variant_discrim_name (struct type *type0)
5393 static char *result = NULL;
5394 static size_t result_len = 0;
5397 const char *discrim_end;
5398 const char *discrim_start;
5400 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5401 type = TYPE_TARGET_TYPE (type0);
5405 name = ada_type_name (type);
5407 if (name == NULL || name[0] == '\000')
5410 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5413 if (strncmp (discrim_end, "___XVN", 6) == 0)
5416 if (discrim_end == name)
5419 for (discrim_start = discrim_end; discrim_start != name + 3;
5422 if (discrim_start == name + 1)
5424 if ((discrim_start > name + 3
5425 && strncmp (discrim_start - 3, "___", 3) == 0)
5426 || discrim_start[-1] == '.')
5430 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5431 strncpy (result, discrim_start, discrim_end - discrim_start);
5432 result[discrim_end - discrim_start] = '\0';
5436 /* Scan STR for a subtype-encoded number, beginning at position K.
5437 Put the position of the character just past the number scanned in
5438 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5439 Return 1 if there was a valid number at the given position, and 0
5440 otherwise. A "subtype-encoded" number consists of the absolute value
5441 in decimal, followed by the letter 'm' to indicate a negative number.
5442 Assumes 0m does not occur. */
5445 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5449 if (!isdigit (str[k]))
5452 /* Do it the hard way so as not to make any assumption about
5453 the relationship of unsigned long (%lu scan format code) and
5456 while (isdigit (str[k]))
5458 RU = RU * 10 + (str[k] - '0');
5465 *R = (-(LONGEST) (RU - 1)) - 1;
5471 /* NOTE on the above: Technically, C does not say what the results of
5472 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5473 number representable as a LONGEST (although either would probably work
5474 in most implementations). When RU>0, the locution in the then branch
5475 above is always equivalent to the negative of RU. */
5482 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5483 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5484 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5487 ada_in_variant (LONGEST val, struct type *type, int field_num)
5489 const char *name = TYPE_FIELD_NAME (type, field_num);
5502 if (!ada_scan_number (name, p + 1, &W, &p))
5511 if (!ada_scan_number (name, p + 1, &L, &p)
5512 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5514 if (val >= L && val <= U)
5526 /* FIXME: Lots of redundancy below. Try to consolidate. */
5528 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5529 ARG_TYPE, extract and return the value of one of its (non-static)
5530 fields. FIELDNO says which field. Differs from value_primitive_field
5531 only in that it can handle packed values of arbitrary type. */
5533 static struct value *
5534 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5535 struct type *arg_type)
5539 arg_type = ada_check_typedef (arg_type);
5540 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5542 /* Handle packed fields. */
5544 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5546 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5547 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5549 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5550 offset + bit_pos / 8,
5551 bit_pos % 8, bit_size, type);
5554 return value_primitive_field (arg1, offset, fieldno, arg_type);
5557 /* Find field with name NAME in object of type TYPE. If found,
5558 set the following for each argument that is non-null:
5559 - *FIELD_TYPE_P to the field's type;
5560 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5561 an object of that type;
5562 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5563 - *BIT_SIZE_P to its size in bits if the field is packed, and
5565 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5566 fields up to but not including the desired field, or by the total
5567 number of fields if not found. A NULL value of NAME never
5568 matches; the function just counts visible fields in this case.
5570 Returns 1 if found, 0 otherwise. */
5573 find_struct_field (char *name, struct type *type, int offset,
5574 struct type **field_type_p,
5575 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5580 type = ada_check_typedef (type);
5582 if (field_type_p != NULL)
5583 *field_type_p = NULL;
5584 if (byte_offset_p != NULL)
5586 if (bit_offset_p != NULL)
5588 if (bit_size_p != NULL)
5591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5593 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5594 int fld_offset = offset + bit_pos / 8;
5595 char *t_field_name = TYPE_FIELD_NAME (type, i);
5597 if (t_field_name == NULL)
5600 else if (name != NULL && field_name_match (t_field_name, name))
5602 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5603 if (field_type_p != NULL)
5604 *field_type_p = TYPE_FIELD_TYPE (type, i);
5605 if (byte_offset_p != NULL)
5606 *byte_offset_p = fld_offset;
5607 if (bit_offset_p != NULL)
5608 *bit_offset_p = bit_pos % 8;
5609 if (bit_size_p != NULL)
5610 *bit_size_p = bit_size;
5613 else if (ada_is_wrapper_field (type, i))
5615 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5616 field_type_p, byte_offset_p, bit_offset_p,
5617 bit_size_p, index_p))
5620 else if (ada_is_variant_part (type, i))
5622 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5625 struct type *field_type
5626 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5628 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5630 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5632 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5633 field_type_p, byte_offset_p,
5634 bit_offset_p, bit_size_p, index_p))
5638 else if (index_p != NULL)
5644 /* Number of user-visible fields in record type TYPE. */
5647 num_visible_fields (struct type *type)
5651 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5655 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5656 and search in it assuming it has (class) type TYPE.
5657 If found, return value, else return NULL.
5659 Searches recursively through wrapper fields (e.g., '_parent'). */
5661 static struct value *
5662 ada_search_struct_field (char *name, struct value *arg, int offset,
5666 type = ada_check_typedef (type);
5668 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5670 char *t_field_name = TYPE_FIELD_NAME (type, i);
5672 if (t_field_name == NULL)
5675 else if (field_name_match (t_field_name, name))
5676 return ada_value_primitive_field (arg, offset, i, type);
5678 else if (ada_is_wrapper_field (type, i))
5680 struct value *v = /* Do not let indent join lines here. */
5681 ada_search_struct_field (name, arg,
5682 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5683 TYPE_FIELD_TYPE (type, i));
5688 else if (ada_is_variant_part (type, i))
5690 /* PNH: Do we ever get here? See find_struct_field. */
5692 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5693 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5695 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5697 struct value *v = ada_search_struct_field /* Force line break. */
5699 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5700 TYPE_FIELD_TYPE (field_type, j));
5709 static struct value *ada_index_struct_field_1 (int *, struct value *,
5710 int, struct type *);
5713 /* Return field #INDEX in ARG, where the index is that returned by
5714 * find_struct_field through its INDEX_P argument. Adjust the address
5715 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5716 * If found, return value, else return NULL. */
5718 static struct value *
5719 ada_index_struct_field (int index, struct value *arg, int offset,
5722 return ada_index_struct_field_1 (&index, arg, offset, type);
5726 /* Auxiliary function for ada_index_struct_field. Like
5727 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5730 static struct value *
5731 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5735 type = ada_check_typedef (type);
5737 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5739 if (TYPE_FIELD_NAME (type, i) == NULL)
5741 else if (ada_is_wrapper_field (type, i))
5743 struct value *v = /* Do not let indent join lines here. */
5744 ada_index_struct_field_1 (index_p, arg,
5745 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5746 TYPE_FIELD_TYPE (type, i));
5751 else if (ada_is_variant_part (type, i))
5753 /* PNH: Do we ever get here? See ada_search_struct_field,
5754 find_struct_field. */
5755 error (_("Cannot assign this kind of variant record"));
5757 else if (*index_p == 0)
5758 return ada_value_primitive_field (arg, offset, i, type);
5765 /* Given ARG, a value of type (pointer or reference to a)*
5766 structure/union, extract the component named NAME from the ultimate
5767 target structure/union and return it as a value with its
5768 appropriate type. If ARG is a pointer or reference and the field
5769 is not packed, returns a reference to the field, otherwise the
5770 value of the field (an lvalue if ARG is an lvalue).
5772 The routine searches for NAME among all members of the structure itself
5773 and (recursively) among all members of any wrapper members
5776 If NO_ERR, then simply return NULL in case of error, rather than
5780 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5782 struct type *t, *t1;
5786 t1 = t = ada_check_typedef (value_type (arg));
5787 if (TYPE_CODE (t) == TYPE_CODE_REF)
5789 t1 = TYPE_TARGET_TYPE (t);
5792 t1 = ada_check_typedef (t1);
5793 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5795 arg = coerce_ref (arg);
5800 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5802 t1 = TYPE_TARGET_TYPE (t);
5805 t1 = ada_check_typedef (t1);
5806 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5808 arg = value_ind (arg);
5815 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5819 v = ada_search_struct_field (name, arg, 0, t);
5822 int bit_offset, bit_size, byte_offset;
5823 struct type *field_type;
5826 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5827 address = value_as_address (arg);
5829 address = unpack_pointer (t, value_contents (arg));
5831 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5832 if (find_struct_field (name, t1, 0,
5833 &field_type, &byte_offset, &bit_offset,
5838 if (TYPE_CODE (t) == TYPE_CODE_REF)
5839 arg = ada_coerce_ref (arg);
5841 arg = ada_value_ind (arg);
5842 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5843 bit_offset, bit_size,
5847 v = value_from_pointer (lookup_reference_type (field_type),
5848 address + byte_offset);
5852 if (v != NULL || no_err)
5855 error (_("There is no member named %s."), name);
5861 error (_("Attempt to extract a component of a value that is not a record."));
5864 /* Given a type TYPE, look up the type of the component of type named NAME.
5865 If DISPP is non-null, add its byte displacement from the beginning of a
5866 structure (pointed to by a value) of type TYPE to *DISPP (does not
5867 work for packed fields).
5869 Matches any field whose name has NAME as a prefix, possibly
5872 TYPE can be either a struct or union. If REFOK, TYPE may also
5873 be a (pointer or reference)+ to a struct or union, and the
5874 ultimate target type will be searched.
5876 Looks recursively into variant clauses and parent types.
5878 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5879 TYPE is not a type of the right kind. */
5881 static struct type *
5882 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5883 int noerr, int *dispp)
5890 if (refok && type != NULL)
5893 type = ada_check_typedef (type);
5894 if (TYPE_CODE (type) != TYPE_CODE_PTR
5895 && TYPE_CODE (type) != TYPE_CODE_REF)
5897 type = TYPE_TARGET_TYPE (type);
5901 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5902 && TYPE_CODE (type) != TYPE_CODE_UNION))
5908 target_terminal_ours ();
5909 gdb_flush (gdb_stdout);
5911 error (_("Type (null) is not a structure or union type"));
5914 /* XXX: type_sprint */
5915 fprintf_unfiltered (gdb_stderr, _("Type "));
5916 type_print (type, "", gdb_stderr, -1);
5917 error (_(" is not a structure or union type"));
5922 type = to_static_fixed_type (type);
5924 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5926 char *t_field_name = TYPE_FIELD_NAME (type, i);
5930 if (t_field_name == NULL)
5933 else if (field_name_match (t_field_name, name))
5936 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5937 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5940 else if (ada_is_wrapper_field (type, i))
5943 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5948 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5953 else if (ada_is_variant_part (type, i))
5956 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5958 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5966 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5977 target_terminal_ours ();
5978 gdb_flush (gdb_stdout);
5981 /* XXX: type_sprint */
5982 fprintf_unfiltered (gdb_stderr, _("Type "));
5983 type_print (type, "", gdb_stderr, -1);
5984 error (_(" has no component named <null>"));
5988 /* XXX: type_sprint */
5989 fprintf_unfiltered (gdb_stderr, _("Type "));
5990 type_print (type, "", gdb_stderr, -1);
5991 error (_(" has no component named %s"), name);
5998 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5999 within a value of type OUTER_TYPE that is stored in GDB at
6000 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6001 numbering from 0) is applicable. Returns -1 if none are. */
6004 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6005 const gdb_byte *outer_valaddr)
6010 struct type *discrim_type;
6011 char *discrim_name = ada_variant_discrim_name (var_type);
6012 LONGEST discrim_val;
6016 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6017 if (discrim_type == NULL)
6019 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6022 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6024 if (ada_is_others_clause (var_type, i))
6026 else if (ada_in_variant (discrim_val, var_type, i))
6030 return others_clause;
6035 /* Dynamic-Sized Records */
6037 /* Strategy: The type ostensibly attached to a value with dynamic size
6038 (i.e., a size that is not statically recorded in the debugging
6039 data) does not accurately reflect the size or layout of the value.
6040 Our strategy is to convert these values to values with accurate,
6041 conventional types that are constructed on the fly. */
6043 /* There is a subtle and tricky problem here. In general, we cannot
6044 determine the size of dynamic records without its data. However,
6045 the 'struct value' data structure, which GDB uses to represent
6046 quantities in the inferior process (the target), requires the size
6047 of the type at the time of its allocation in order to reserve space
6048 for GDB's internal copy of the data. That's why the
6049 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6050 rather than struct value*s.
6052 However, GDB's internal history variables ($1, $2, etc.) are
6053 struct value*s containing internal copies of the data that are not, in
6054 general, the same as the data at their corresponding addresses in
6055 the target. Fortunately, the types we give to these values are all
6056 conventional, fixed-size types (as per the strategy described
6057 above), so that we don't usually have to perform the
6058 'to_fixed_xxx_type' conversions to look at their values.
6059 Unfortunately, there is one exception: if one of the internal
6060 history variables is an array whose elements are unconstrained
6061 records, then we will need to create distinct fixed types for each
6062 element selected. */
6064 /* The upshot of all of this is that many routines take a (type, host
6065 address, target address) triple as arguments to represent a value.
6066 The host address, if non-null, is supposed to contain an internal
6067 copy of the relevant data; otherwise, the program is to consult the
6068 target at the target address. */
6070 /* Assuming that VAL0 represents a pointer value, the result of
6071 dereferencing it. Differs from value_ind in its treatment of
6072 dynamic-sized types. */
6075 ada_value_ind (struct value *val0)
6077 struct value *val = unwrap_value (value_ind (val0));
6078 return ada_to_fixed_value (val);
6081 /* The value resulting from dereferencing any "reference to"
6082 qualifiers on VAL0. */
6084 static struct value *
6085 ada_coerce_ref (struct value *val0)
6087 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6089 struct value *val = val0;
6090 val = coerce_ref (val);
6091 val = unwrap_value (val);
6092 return ada_to_fixed_value (val);
6098 /* Return OFF rounded upward if necessary to a multiple of
6099 ALIGNMENT (a power of 2). */
6102 align_value (unsigned int off, unsigned int alignment)
6104 return (off + alignment - 1) & ~(alignment - 1);
6107 /* Return the bit alignment required for field #F of template type TYPE. */
6110 field_alignment (struct type *type, int f)
6112 const char *name = TYPE_FIELD_NAME (type, f);
6116 /* The field name should never be null, unless the debugging information
6117 is somehow malformed. In this case, we assume the field does not
6118 require any alignment. */
6122 len = strlen (name);
6124 if (!isdigit (name[len - 1]))
6127 if (isdigit (name[len - 2]))
6128 align_offset = len - 2;
6130 align_offset = len - 1;
6132 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6133 return TARGET_CHAR_BIT;
6135 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6138 /* Find a symbol named NAME. Ignores ambiguity. */
6141 ada_find_any_symbol (const char *name)
6145 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6146 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6149 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6153 /* Find a type named NAME. Ignores ambiguity. */
6156 ada_find_any_type (const char *name)
6158 struct symbol *sym = ada_find_any_symbol (name);
6161 return SYMBOL_TYPE (sym);
6166 /* Given a symbol NAME and its associated BLOCK, search all symbols
6167 for its ___XR counterpart, which is the ``renaming'' symbol
6168 associated to NAME. Return this symbol if found, return
6172 ada_find_renaming_symbol (const char *name, struct block *block)
6174 const struct symbol *function_sym = block_function (block);
6177 if (function_sym != NULL)
6179 /* If the symbol is defined inside a function, NAME is not fully
6180 qualified. This means we need to prepend the function name
6181 as well as adding the ``___XR'' suffix to build the name of
6182 the associated renaming symbol. */
6183 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6184 /* Function names sometimes contain suffixes used
6185 for instance to qualify nested subprograms. When building
6186 the XR type name, we need to make sure that this suffix is
6187 not included. So do not include any suffix in the function
6188 name length below. */
6189 const int function_name_len = ada_name_prefix_len (function_name);
6190 const int rename_len = function_name_len + 2 /* "__" */
6191 + strlen (name) + 6 /* "___XR\0" */ ;
6193 /* Strip the suffix if necessary. */
6194 function_name[function_name_len] = '\0';
6196 /* Library-level functions are a special case, as GNAT adds
6197 a ``_ada_'' prefix to the function name to avoid namespace
6198 pollution. However, the renaming symbol themselves do not
6199 have this prefix, so we need to skip this prefix if present. */
6200 if (function_name_len > 5 /* "_ada_" */
6201 && strstr (function_name, "_ada_") == function_name)
6202 function_name = function_name + 5;
6204 rename = (char *) alloca (rename_len * sizeof (char));
6205 sprintf (rename, "%s__%s___XR", function_name, name);
6209 const int rename_len = strlen (name) + 6;
6210 rename = (char *) alloca (rename_len * sizeof (char));
6211 sprintf (rename, "%s___XR", name);
6214 return ada_find_any_symbol (rename);
6217 /* Because of GNAT encoding conventions, several GDB symbols may match a
6218 given type name. If the type denoted by TYPE0 is to be preferred to
6219 that of TYPE1 for purposes of type printing, return non-zero;
6220 otherwise return 0. */
6223 ada_prefer_type (struct type *type0, struct type *type1)
6227 else if (type0 == NULL)
6229 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6231 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6233 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6235 else if (ada_is_packed_array_type (type0))
6237 else if (ada_is_array_descriptor_type (type0)
6238 && !ada_is_array_descriptor_type (type1))
6240 else if (ada_renaming_type (type0) != NULL
6241 && ada_renaming_type (type1) == NULL)
6246 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6247 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6250 ada_type_name (struct type *type)
6254 else if (TYPE_NAME (type) != NULL)
6255 return TYPE_NAME (type);
6257 return TYPE_TAG_NAME (type);
6260 /* Find a parallel type to TYPE whose name is formed by appending
6261 SUFFIX to the name of TYPE. */
6264 ada_find_parallel_type (struct type *type, const char *suffix)
6267 static size_t name_len = 0;
6269 char *typename = ada_type_name (type);
6271 if (typename == NULL)
6274 len = strlen (typename);
6276 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6278 strcpy (name, typename);
6279 strcpy (name + len, suffix);
6281 return ada_find_any_type (name);
6285 /* If TYPE is a variable-size record type, return the corresponding template
6286 type describing its fields. Otherwise, return NULL. */
6288 static struct type *
6289 dynamic_template_type (struct type *type)
6291 type = ada_check_typedef (type);
6293 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6294 || ada_type_name (type) == NULL)
6298 int len = strlen (ada_type_name (type));
6299 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6302 return ada_find_parallel_type (type, "___XVE");
6306 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6307 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6310 is_dynamic_field (struct type *templ_type, int field_num)
6312 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6314 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6315 && strstr (name, "___XVL") != NULL;
6318 /* The index of the variant field of TYPE, or -1 if TYPE does not
6319 represent a variant record type. */
6322 variant_field_index (struct type *type)
6326 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6329 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6331 if (ada_is_variant_part (type, f))
6337 /* A record type with no fields. */
6339 static struct type *
6340 empty_record (struct objfile *objfile)
6342 struct type *type = alloc_type (objfile);
6343 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6344 TYPE_NFIELDS (type) = 0;
6345 TYPE_FIELDS (type) = NULL;
6346 TYPE_NAME (type) = "<empty>";
6347 TYPE_TAG_NAME (type) = NULL;
6348 TYPE_FLAGS (type) = 0;
6349 TYPE_LENGTH (type) = 0;
6353 /* An ordinary record type (with fixed-length fields) that describes
6354 the value of type TYPE at VALADDR or ADDRESS (see comments at
6355 the beginning of this section) VAL according to GNAT conventions.
6356 DVAL0 should describe the (portion of a) record that contains any
6357 necessary discriminants. It should be NULL if value_type (VAL) is
6358 an outer-level type (i.e., as opposed to a branch of a variant.) A
6359 variant field (unless unchecked) is replaced by a particular branch
6362 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6363 length are not statically known are discarded. As a consequence,
6364 VALADDR, ADDRESS and DVAL0 are ignored.
6366 NOTE: Limitations: For now, we assume that dynamic fields and
6367 variants occupy whole numbers of bytes. However, they need not be
6371 ada_template_to_fixed_record_type_1 (struct type *type,
6372 const gdb_byte *valaddr,
6373 CORE_ADDR address, struct value *dval0,
6374 int keep_dynamic_fields)
6376 struct value *mark = value_mark ();
6379 int nfields, bit_len;
6382 int fld_bit_len, bit_incr;
6385 /* Compute the number of fields in this record type that are going
6386 to be processed: unless keep_dynamic_fields, this includes only
6387 fields whose position and length are static will be processed. */
6388 if (keep_dynamic_fields)
6389 nfields = TYPE_NFIELDS (type);
6393 while (nfields < TYPE_NFIELDS (type)
6394 && !ada_is_variant_part (type, nfields)
6395 && !is_dynamic_field (type, nfields))
6399 rtype = alloc_type (TYPE_OBJFILE (type));
6400 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6401 INIT_CPLUS_SPECIFIC (rtype);
6402 TYPE_NFIELDS (rtype) = nfields;
6403 TYPE_FIELDS (rtype) = (struct field *)
6404 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6405 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6406 TYPE_NAME (rtype) = ada_type_name (type);
6407 TYPE_TAG_NAME (rtype) = NULL;
6408 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6414 for (f = 0; f < nfields; f += 1)
6416 off = align_value (off, field_alignment (type, f))
6417 + TYPE_FIELD_BITPOS (type, f);
6418 TYPE_FIELD_BITPOS (rtype, f) = off;
6419 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6421 if (ada_is_variant_part (type, f))
6424 fld_bit_len = bit_incr = 0;
6426 else if (is_dynamic_field (type, f))
6429 dval = value_from_contents_and_address (rtype, valaddr, address);
6433 TYPE_FIELD_TYPE (rtype, f) =
6436 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6437 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6438 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6439 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6440 bit_incr = fld_bit_len =
6441 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6445 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6446 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6447 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6448 bit_incr = fld_bit_len =
6449 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6451 bit_incr = fld_bit_len =
6452 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6454 if (off + fld_bit_len > bit_len)
6455 bit_len = off + fld_bit_len;
6457 TYPE_LENGTH (rtype) =
6458 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6461 /* We handle the variant part, if any, at the end because of certain
6462 odd cases in which it is re-ordered so as NOT the last field of
6463 the record. This can happen in the presence of representation
6465 if (variant_field >= 0)
6467 struct type *branch_type;
6469 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6472 dval = value_from_contents_and_address (rtype, valaddr, address);
6477 to_fixed_variant_branch_type
6478 (TYPE_FIELD_TYPE (type, variant_field),
6479 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6480 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6481 if (branch_type == NULL)
6483 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6484 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6485 TYPE_NFIELDS (rtype) -= 1;
6489 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6490 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6492 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6494 if (off + fld_bit_len > bit_len)
6495 bit_len = off + fld_bit_len;
6496 TYPE_LENGTH (rtype) =
6497 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6501 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6502 should contain the alignment of that record, which should be a strictly
6503 positive value. If null or negative, then something is wrong, most
6504 probably in the debug info. In that case, we don't round up the size
6505 of the resulting type. If this record is not part of another structure,
6506 the current RTYPE length might be good enough for our purposes. */
6507 if (TYPE_LENGTH (type) <= 0)
6509 if (TYPE_NAME (rtype))
6510 warning (_("Invalid type size for `%s' detected: %d."),
6511 TYPE_NAME (rtype), TYPE_LENGTH (type));
6513 warning (_("Invalid type size for <unnamed> detected: %d."),
6514 TYPE_LENGTH (type));
6518 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6519 TYPE_LENGTH (type));
6522 value_free_to_mark (mark);
6523 if (TYPE_LENGTH (rtype) > varsize_limit)
6524 error (_("record type with dynamic size is larger than varsize-limit"));
6528 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6531 static struct type *
6532 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6533 CORE_ADDR address, struct value *dval0)
6535 return ada_template_to_fixed_record_type_1 (type, valaddr,
6539 /* An ordinary record type in which ___XVL-convention fields and
6540 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6541 static approximations, containing all possible fields. Uses
6542 no runtime values. Useless for use in values, but that's OK,
6543 since the results are used only for type determinations. Works on both
6544 structs and unions. Representation note: to save space, we memorize
6545 the result of this function in the TYPE_TARGET_TYPE of the
6548 static struct type *
6549 template_to_static_fixed_type (struct type *type0)
6555 if (TYPE_TARGET_TYPE (type0) != NULL)
6556 return TYPE_TARGET_TYPE (type0);
6558 nfields = TYPE_NFIELDS (type0);
6561 for (f = 0; f < nfields; f += 1)
6563 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6564 struct type *new_type;
6566 if (is_dynamic_field (type0, f))
6567 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6569 new_type = to_static_fixed_type (field_type);
6570 if (type == type0 && new_type != field_type)
6572 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6573 TYPE_CODE (type) = TYPE_CODE (type0);
6574 INIT_CPLUS_SPECIFIC (type);
6575 TYPE_NFIELDS (type) = nfields;
6576 TYPE_FIELDS (type) = (struct field *)
6577 TYPE_ALLOC (type, nfields * sizeof (struct field));
6578 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6579 sizeof (struct field) * nfields);
6580 TYPE_NAME (type) = ada_type_name (type0);
6581 TYPE_TAG_NAME (type) = NULL;
6582 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6583 TYPE_LENGTH (type) = 0;
6585 TYPE_FIELD_TYPE (type, f) = new_type;
6586 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6591 /* Given an object of type TYPE whose contents are at VALADDR and
6592 whose address in memory is ADDRESS, returns a revision of TYPE --
6593 a non-dynamic-sized record with a variant part -- in which
6594 the variant part is replaced with the appropriate branch. Looks
6595 for discriminant values in DVAL0, which can be NULL if the record
6596 contains the necessary discriminant values. */
6598 static struct type *
6599 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6600 CORE_ADDR address, struct value *dval0)
6602 struct value *mark = value_mark ();
6605 struct type *branch_type;
6606 int nfields = TYPE_NFIELDS (type);
6607 int variant_field = variant_field_index (type);
6609 if (variant_field == -1)
6613 dval = value_from_contents_and_address (type, valaddr, address);
6617 rtype = alloc_type (TYPE_OBJFILE (type));
6618 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6619 INIT_CPLUS_SPECIFIC (rtype);
6620 TYPE_NFIELDS (rtype) = nfields;
6621 TYPE_FIELDS (rtype) =
6622 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6623 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6624 sizeof (struct field) * nfields);
6625 TYPE_NAME (rtype) = ada_type_name (type);
6626 TYPE_TAG_NAME (rtype) = NULL;
6627 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6628 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6630 branch_type = to_fixed_variant_branch_type
6631 (TYPE_FIELD_TYPE (type, variant_field),
6632 cond_offset_host (valaddr,
6633 TYPE_FIELD_BITPOS (type, variant_field)
6635 cond_offset_target (address,
6636 TYPE_FIELD_BITPOS (type, variant_field)
6637 / TARGET_CHAR_BIT), dval);
6638 if (branch_type == NULL)
6641 for (f = variant_field + 1; f < nfields; f += 1)
6642 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6643 TYPE_NFIELDS (rtype) -= 1;
6647 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6648 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6649 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6650 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6652 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6654 value_free_to_mark (mark);
6658 /* An ordinary record type (with fixed-length fields) that describes
6659 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6660 beginning of this section]. Any necessary discriminants' values
6661 should be in DVAL, a record value; it may be NULL if the object
6662 at ADDR itself contains any necessary discriminant values.
6663 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6664 values from the record are needed. Except in the case that DVAL,
6665 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6666 unchecked) is replaced by a particular branch of the variant.
6668 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6669 is questionable and may be removed. It can arise during the
6670 processing of an unconstrained-array-of-record type where all the
6671 variant branches have exactly the same size. This is because in
6672 such cases, the compiler does not bother to use the XVS convention
6673 when encoding the record. I am currently dubious of this
6674 shortcut and suspect the compiler should be altered. FIXME. */
6676 static struct type *
6677 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6678 CORE_ADDR address, struct value *dval)
6680 struct type *templ_type;
6682 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6685 templ_type = dynamic_template_type (type0);
6687 if (templ_type != NULL)
6688 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6689 else if (variant_field_index (type0) >= 0)
6691 if (dval == NULL && valaddr == NULL && address == 0)
6693 return to_record_with_fixed_variant_part (type0, valaddr, address,
6698 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6704 /* An ordinary record type (with fixed-length fields) that describes
6705 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6706 union type. Any necessary discriminants' values should be in DVAL,
6707 a record value. That is, this routine selects the appropriate
6708 branch of the union at ADDR according to the discriminant value
6709 indicated in the union's type name. */
6711 static struct type *
6712 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6713 CORE_ADDR address, struct value *dval)
6716 struct type *templ_type;
6717 struct type *var_type;
6719 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6720 var_type = TYPE_TARGET_TYPE (var_type0);
6722 var_type = var_type0;
6724 templ_type = ada_find_parallel_type (var_type, "___XVU");
6726 if (templ_type != NULL)
6727 var_type = templ_type;
6730 ada_which_variant_applies (var_type,
6731 value_type (dval), value_contents (dval));
6734 return empty_record (TYPE_OBJFILE (var_type));
6735 else if (is_dynamic_field (var_type, which))
6736 return to_fixed_record_type
6737 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6738 valaddr, address, dval);
6739 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6741 to_fixed_record_type
6742 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6744 return TYPE_FIELD_TYPE (var_type, which);
6747 /* Assuming that TYPE0 is an array type describing the type of a value
6748 at ADDR, and that DVAL describes a record containing any
6749 discriminants used in TYPE0, returns a type for the value that
6750 contains no dynamic components (that is, no components whose sizes
6751 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6752 true, gives an error message if the resulting type's size is over
6755 static struct type *
6756 to_fixed_array_type (struct type *type0, struct value *dval,
6759 struct type *index_type_desc;
6760 struct type *result;
6762 if (ada_is_packed_array_type (type0) /* revisit? */
6763 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6766 index_type_desc = ada_find_parallel_type (type0, "___XA");
6767 if (index_type_desc == NULL)
6769 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6770 /* NOTE: elt_type---the fixed version of elt_type0---should never
6771 depend on the contents of the array in properly constructed
6773 /* Create a fixed version of the array element type.
6774 We're not providing the address of an element here,
6775 and thus the actual object value cannot be inspected to do
6776 the conversion. This should not be a problem, since arrays of
6777 unconstrained objects are not allowed. In particular, all
6778 the elements of an array of a tagged type should all be of
6779 the same type specified in the debugging info. No need to
6780 consult the object tag. */
6781 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6783 if (elt_type0 == elt_type)
6786 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6787 elt_type, TYPE_INDEX_TYPE (type0));
6792 struct type *elt_type0;
6795 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6796 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6798 /* NOTE: result---the fixed version of elt_type0---should never
6799 depend on the contents of the array in properly constructed
6801 /* Create a fixed version of the array element type.
6802 We're not providing the address of an element here,
6803 and thus the actual object value cannot be inspected to do
6804 the conversion. This should not be a problem, since arrays of
6805 unconstrained objects are not allowed. In particular, all
6806 the elements of an array of a tagged type should all be of
6807 the same type specified in the debugging info. No need to
6808 consult the object tag. */
6809 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6810 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6812 struct type *range_type =
6813 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6814 dval, TYPE_OBJFILE (type0));
6815 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6816 result, range_type);
6818 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6819 error (_("array type with dynamic size is larger than varsize-limit"));
6822 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6827 /* A standard type (containing no dynamically sized components)
6828 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6829 DVAL describes a record containing any discriminants used in TYPE0,
6830 and may be NULL if there are none, or if the object of type TYPE at
6831 ADDRESS or in VALADDR contains these discriminants.
6833 In the case of tagged types, this function attempts to locate the object's
6834 tag and use it to compute the actual type. However, when ADDRESS is null,
6835 we cannot use it to determine the location of the tag, and therefore
6836 compute the tagged type's actual type. So we return the tagged type
6837 without consulting the tag. */
6840 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6841 CORE_ADDR address, struct value *dval)
6843 type = ada_check_typedef (type);
6844 switch (TYPE_CODE (type))
6848 case TYPE_CODE_STRUCT:
6850 struct type *static_type = to_static_fixed_type (type);
6852 /* If STATIC_TYPE is a tagged type and we know the object's address,
6853 then we can determine its tag, and compute the object's actual
6856 if (address != 0 && ada_is_tagged_type (static_type, 0))
6858 struct type *real_type =
6859 type_from_tag (value_tag_from_contents_and_address (static_type,
6862 if (real_type != NULL)
6865 return to_fixed_record_type (type, valaddr, address, NULL);
6867 case TYPE_CODE_ARRAY:
6868 return to_fixed_array_type (type, dval, 1);
6869 case TYPE_CODE_UNION:
6873 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6877 /* A standard (static-sized) type corresponding as well as possible to
6878 TYPE0, but based on no runtime data. */
6880 static struct type *
6881 to_static_fixed_type (struct type *type0)
6888 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6891 type0 = ada_check_typedef (type0);
6893 switch (TYPE_CODE (type0))
6897 case TYPE_CODE_STRUCT:
6898 type = dynamic_template_type (type0);
6900 return template_to_static_fixed_type (type);
6902 return template_to_static_fixed_type (type0);
6903 case TYPE_CODE_UNION:
6904 type = ada_find_parallel_type (type0, "___XVU");
6906 return template_to_static_fixed_type (type);
6908 return template_to_static_fixed_type (type0);
6912 /* A static approximation of TYPE with all type wrappers removed. */
6914 static struct type *
6915 static_unwrap_type (struct type *type)
6917 if (ada_is_aligner_type (type))
6919 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6920 if (ada_type_name (type1) == NULL)
6921 TYPE_NAME (type1) = ada_type_name (type);
6923 return static_unwrap_type (type1);
6927 struct type *raw_real_type = ada_get_base_type (type);
6928 if (raw_real_type == type)
6931 return to_static_fixed_type (raw_real_type);
6935 /* In some cases, incomplete and private types require
6936 cross-references that are not resolved as records (for example,
6938 type FooP is access Foo;
6940 type Foo is array ...;
6941 ). In these cases, since there is no mechanism for producing
6942 cross-references to such types, we instead substitute for FooP a
6943 stub enumeration type that is nowhere resolved, and whose tag is
6944 the name of the actual type. Call these types "non-record stubs". */
6946 /* A type equivalent to TYPE that is not a non-record stub, if one
6947 exists, otherwise TYPE. */
6950 ada_check_typedef (struct type *type)
6952 CHECK_TYPEDEF (type);
6953 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6954 || !TYPE_STUB (type)
6955 || TYPE_TAG_NAME (type) == NULL)
6959 char *name = TYPE_TAG_NAME (type);
6960 struct type *type1 = ada_find_any_type (name);
6961 return (type1 == NULL) ? type : type1;
6965 /* A value representing the data at VALADDR/ADDRESS as described by
6966 type TYPE0, but with a standard (static-sized) type that correctly
6967 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6968 type, then return VAL0 [this feature is simply to avoid redundant
6969 creation of struct values]. */
6971 static struct value *
6972 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6975 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6976 if (type == type0 && val0 != NULL)
6979 return value_from_contents_and_address (type, 0, address);
6982 /* A value representing VAL, but with a standard (static-sized) type
6983 that correctly describes it. Does not necessarily create a new
6986 static struct value *
6987 ada_to_fixed_value (struct value *val)
6989 return ada_to_fixed_value_create (value_type (val),
6990 VALUE_ADDRESS (val) + value_offset (val),
6994 /* A value representing VAL, but with a standard (static-sized) type
6995 chosen to approximate the real type of VAL as well as possible, but
6996 without consulting any runtime values. For Ada dynamic-sized
6997 types, therefore, the type of the result is likely to be inaccurate. */
7000 ada_to_static_fixed_value (struct value *val)
7003 to_static_fixed_type (static_unwrap_type (value_type (val)));
7004 if (type == value_type (val))
7007 return coerce_unspec_val_to_type (val, type);
7013 /* Table mapping attribute numbers to names.
7014 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7016 static const char *attribute_names[] = {
7034 ada_attribute_name (enum exp_opcode n)
7036 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7037 return attribute_names[n - OP_ATR_FIRST + 1];
7039 return attribute_names[0];
7042 /* Evaluate the 'POS attribute applied to ARG. */
7045 pos_atr (struct value *arg)
7047 struct type *type = value_type (arg);
7049 if (!discrete_type_p (type))
7050 error (_("'POS only defined on discrete types"));
7052 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7055 LONGEST v = value_as_long (arg);
7057 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7059 if (v == TYPE_FIELD_BITPOS (type, i))
7062 error (_("enumeration value is invalid: can't find 'POS"));
7065 return value_as_long (arg);
7068 static struct value *
7069 value_pos_atr (struct value *arg)
7071 return value_from_longest (builtin_type_int, pos_atr (arg));
7074 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7076 static struct value *
7077 value_val_atr (struct type *type, struct value *arg)
7079 if (!discrete_type_p (type))
7080 error (_("'VAL only defined on discrete types"));
7081 if (!integer_type_p (value_type (arg)))
7082 error (_("'VAL requires integral argument"));
7084 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7086 long pos = value_as_long (arg);
7087 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7088 error (_("argument to 'VAL out of range"));
7089 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7092 return value_from_longest (type, value_as_long (arg));
7098 /* True if TYPE appears to be an Ada character type.
7099 [At the moment, this is true only for Character and Wide_Character;
7100 It is a heuristic test that could stand improvement]. */
7103 ada_is_character_type (struct type *type)
7105 const char *name = ada_type_name (type);
7108 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7109 || TYPE_CODE (type) == TYPE_CODE_INT
7110 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7111 && (strcmp (name, "character") == 0
7112 || strcmp (name, "wide_character") == 0
7113 || strcmp (name, "unsigned char") == 0);
7116 /* True if TYPE appears to be an Ada string type. */
7119 ada_is_string_type (struct type *type)
7121 type = ada_check_typedef (type);
7123 && TYPE_CODE (type) != TYPE_CODE_PTR
7124 && (ada_is_simple_array_type (type)
7125 || ada_is_array_descriptor_type (type))
7126 && ada_array_arity (type) == 1)
7128 struct type *elttype = ada_array_element_type (type, 1);
7130 return ada_is_character_type (elttype);
7137 /* True if TYPE is a struct type introduced by the compiler to force the
7138 alignment of a value. Such types have a single field with a
7139 distinctive name. */
7142 ada_is_aligner_type (struct type *type)
7144 type = ada_check_typedef (type);
7146 /* If we can find a parallel XVS type, then the XVS type should
7147 be used instead of this type. And hence, this is not an aligner
7149 if (ada_find_parallel_type (type, "___XVS") != NULL)
7152 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7153 && TYPE_NFIELDS (type) == 1
7154 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7157 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7158 the parallel type. */
7161 ada_get_base_type (struct type *raw_type)
7163 struct type *real_type_namer;
7164 struct type *raw_real_type;
7166 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7169 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7170 if (real_type_namer == NULL
7171 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7172 || TYPE_NFIELDS (real_type_namer) != 1)
7175 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7176 if (raw_real_type == NULL)
7179 return raw_real_type;
7182 /* The type of value designated by TYPE, with all aligners removed. */
7185 ada_aligned_type (struct type *type)
7187 if (ada_is_aligner_type (type))
7188 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7190 return ada_get_base_type (type);
7194 /* The address of the aligned value in an object at address VALADDR
7195 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7198 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7200 if (ada_is_aligner_type (type))
7201 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7203 TYPE_FIELD_BITPOS (type,
7204 0) / TARGET_CHAR_BIT);
7211 /* The printed representation of an enumeration literal with encoded
7212 name NAME. The value is good to the next call of ada_enum_name. */
7214 ada_enum_name (const char *name)
7216 static char *result;
7217 static size_t result_len = 0;
7220 /* First, unqualify the enumeration name:
7221 1. Search for the last '.' character. If we find one, then skip
7222 all the preceeding characters, the unqualified name starts
7223 right after that dot.
7224 2. Otherwise, we may be debugging on a target where the compiler
7225 translates dots into "__". Search forward for double underscores,
7226 but stop searching when we hit an overloading suffix, which is
7227 of the form "__" followed by digits. */
7229 tmp = strrchr (name, '.');
7234 while ((tmp = strstr (name, "__")) != NULL)
7236 if (isdigit (tmp[2]))
7246 if (name[1] == 'U' || name[1] == 'W')
7248 if (sscanf (name + 2, "%x", &v) != 1)
7254 GROW_VECT (result, result_len, 16);
7255 if (isascii (v) && isprint (v))
7256 sprintf (result, "'%c'", v);
7257 else if (name[1] == 'U')
7258 sprintf (result, "[\"%02x\"]", v);
7260 sprintf (result, "[\"%04x\"]", v);
7266 tmp = strstr (name, "__");
7268 tmp = strstr (name, "$");
7271 GROW_VECT (result, result_len, tmp - name + 1);
7272 strncpy (result, name, tmp - name);
7273 result[tmp - name] = '\0';
7281 static struct value *
7282 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7285 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7286 (expect_type, exp, pos, noside);
7289 /* Evaluate the subexpression of EXP starting at *POS as for
7290 evaluate_type, updating *POS to point just past the evaluated
7293 static struct value *
7294 evaluate_subexp_type (struct expression *exp, int *pos)
7296 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7297 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7300 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7303 static struct value *
7304 unwrap_value (struct value *val)
7306 struct type *type = ada_check_typedef (value_type (val));
7307 if (ada_is_aligner_type (type))
7309 struct value *v = value_struct_elt (&val, NULL, "F",
7310 NULL, "internal structure");
7311 struct type *val_type = ada_check_typedef (value_type (v));
7312 if (ada_type_name (val_type) == NULL)
7313 TYPE_NAME (val_type) = ada_type_name (type);
7315 return unwrap_value (v);
7319 struct type *raw_real_type =
7320 ada_check_typedef (ada_get_base_type (type));
7322 if (type == raw_real_type)
7326 coerce_unspec_val_to_type
7327 (val, ada_to_fixed_type (raw_real_type, 0,
7328 VALUE_ADDRESS (val) + value_offset (val),
7333 static struct value *
7334 cast_to_fixed (struct type *type, struct value *arg)
7338 if (type == value_type (arg))
7340 else if (ada_is_fixed_point_type (value_type (arg)))
7341 val = ada_float_to_fixed (type,
7342 ada_fixed_to_float (value_type (arg),
7343 value_as_long (arg)));
7347 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7348 val = ada_float_to_fixed (type, argd);
7351 return value_from_longest (type, val);
7354 static struct value *
7355 cast_from_fixed_to_double (struct value *arg)
7357 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7358 value_as_long (arg));
7359 return value_from_double (builtin_type_double, val);
7362 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7363 return the converted value. */
7365 static struct value *
7366 coerce_for_assign (struct type *type, struct value *val)
7368 struct type *type2 = value_type (val);
7372 type2 = ada_check_typedef (type2);
7373 type = ada_check_typedef (type);
7375 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7376 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7378 val = ada_value_ind (val);
7379 type2 = value_type (val);
7382 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7383 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7385 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7386 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7387 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7388 error (_("Incompatible types in assignment"));
7389 deprecated_set_value_type (val, type);
7394 static struct value *
7395 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7398 struct type *type1, *type2;
7401 arg1 = coerce_ref (arg1);
7402 arg2 = coerce_ref (arg2);
7403 type1 = base_type (ada_check_typedef (value_type (arg1)));
7404 type2 = base_type (ada_check_typedef (value_type (arg2)));
7406 if (TYPE_CODE (type1) != TYPE_CODE_INT
7407 || TYPE_CODE (type2) != TYPE_CODE_INT)
7408 return value_binop (arg1, arg2, op);
7417 return value_binop (arg1, arg2, op);
7420 v2 = value_as_long (arg2);
7422 error (_("second operand of %s must not be zero."), op_string (op));
7424 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7425 return value_binop (arg1, arg2, op);
7427 v1 = value_as_long (arg1);
7432 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7433 v += v > 0 ? -1 : 1;
7441 /* Should not reach this point. */
7445 val = allocate_value (type1);
7446 store_unsigned_integer (value_contents_raw (val),
7447 TYPE_LENGTH (value_type (val)), v);
7452 ada_value_equal (struct value *arg1, struct value *arg2)
7454 if (ada_is_direct_array_type (value_type (arg1))
7455 || ada_is_direct_array_type (value_type (arg2)))
7457 arg1 = ada_coerce_to_simple_array (arg1);
7458 arg2 = ada_coerce_to_simple_array (arg2);
7459 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7460 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7461 error (_("Attempt to compare array with non-array"));
7462 /* FIXME: The following works only for types whose
7463 representations use all bits (no padding or undefined bits)
7464 and do not have user-defined equality. */
7466 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7467 && memcmp (value_contents (arg1), value_contents (arg2),
7468 TYPE_LENGTH (value_type (arg1))) == 0;
7470 return value_equal (arg1, arg2);
7473 /* Total number of component associations in the aggregate starting at
7474 index PC in EXP. Assumes that index PC is the start of an
7478 num_component_specs (struct expression *exp, int pc)
7481 m = exp->elts[pc + 1].longconst;
7484 for (i = 0; i < m; i += 1)
7486 switch (exp->elts[pc].opcode)
7492 n += exp->elts[pc + 1].longconst;
7495 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7500 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7501 component of LHS (a simple array or a record), updating *POS past
7502 the expression, assuming that LHS is contained in CONTAINER. Does
7503 not modify the inferior's memory, nor does it modify LHS (unless
7504 LHS == CONTAINER). */
7507 assign_component (struct value *container, struct value *lhs, LONGEST index,
7508 struct expression *exp, int *pos)
7510 struct value *mark = value_mark ();
7512 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7514 struct value *index_val = value_from_longest (builtin_type_int, index);
7515 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7519 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7520 elt = ada_to_fixed_value (unwrap_value (elt));
7523 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7524 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7526 value_assign_to_component (container, elt,
7527 ada_evaluate_subexp (NULL, exp, pos,
7530 value_free_to_mark (mark);
7533 /* Assuming that LHS represents an lvalue having a record or array
7534 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7535 of that aggregate's value to LHS, advancing *POS past the
7536 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7537 lvalue containing LHS (possibly LHS itself). Does not modify
7538 the inferior's memory, nor does it modify the contents of
7539 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7541 static struct value *
7542 assign_aggregate (struct value *container,
7543 struct value *lhs, struct expression *exp,
7544 int *pos, enum noside noside)
7546 struct type *lhs_type;
7547 int n = exp->elts[*pos+1].longconst;
7548 LONGEST low_index, high_index;
7551 int max_indices, num_indices;
7552 int is_array_aggregate;
7554 struct value *mark = value_mark ();
7557 if (noside != EVAL_NORMAL)
7560 for (i = 0; i < n; i += 1)
7561 ada_evaluate_subexp (NULL, exp, pos, noside);
7565 container = ada_coerce_ref (container);
7566 if (ada_is_direct_array_type (value_type (container)))
7567 container = ada_coerce_to_simple_array (container);
7568 lhs = ada_coerce_ref (lhs);
7569 if (!deprecated_value_modifiable (lhs))
7570 error (_("Left operand of assignment is not a modifiable lvalue."));
7572 lhs_type = value_type (lhs);
7573 if (ada_is_direct_array_type (lhs_type))
7575 lhs = ada_coerce_to_simple_array (lhs);
7576 lhs_type = value_type (lhs);
7577 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7578 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7579 is_array_aggregate = 1;
7581 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7584 high_index = num_visible_fields (lhs_type) - 1;
7585 is_array_aggregate = 0;
7588 error (_("Left-hand side must be array or record."));
7590 num_specs = num_component_specs (exp, *pos - 3);
7591 max_indices = 4 * num_specs + 4;
7592 indices = alloca (max_indices * sizeof (indices[0]));
7593 indices[0] = indices[1] = low_index - 1;
7594 indices[2] = indices[3] = high_index + 1;
7597 for (i = 0; i < n; i += 1)
7599 switch (exp->elts[*pos].opcode)
7602 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7603 &num_indices, max_indices,
7604 low_index, high_index);
7607 aggregate_assign_positional (container, lhs, exp, pos, indices,
7608 &num_indices, max_indices,
7609 low_index, high_index);
7613 error (_("Misplaced 'others' clause"));
7614 aggregate_assign_others (container, lhs, exp, pos, indices,
7615 num_indices, low_index, high_index);
7618 error (_("Internal error: bad aggregate clause"));
7625 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7626 construct at *POS, updating *POS past the construct, given that
7627 the positions are relative to lower bound LOW, where HIGH is the
7628 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7629 updating *NUM_INDICES as needed. CONTAINER is as for
7630 assign_aggregate. */
7632 aggregate_assign_positional (struct value *container,
7633 struct value *lhs, struct expression *exp,
7634 int *pos, LONGEST *indices, int *num_indices,
7635 int max_indices, LONGEST low, LONGEST high)
7637 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7639 if (ind - 1 == high)
7640 warning (_("Extra components in aggregate ignored."));
7643 add_component_interval (ind, ind, indices, num_indices, max_indices);
7645 assign_component (container, lhs, ind, exp, pos);
7648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7651 /* Assign into the components of LHS indexed by the OP_CHOICES
7652 construct at *POS, updating *POS past the construct, given that
7653 the allowable indices are LOW..HIGH. Record the indices assigned
7654 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7655 needed. CONTAINER is as for assign_aggregate. */
7657 aggregate_assign_from_choices (struct value *container,
7658 struct value *lhs, struct expression *exp,
7659 int *pos, LONGEST *indices, int *num_indices,
7660 int max_indices, LONGEST low, LONGEST high)
7663 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7664 int choice_pos, expr_pc;
7665 int is_array = ada_is_direct_array_type (value_type (lhs));
7667 choice_pos = *pos += 3;
7669 for (j = 0; j < n_choices; j += 1)
7670 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7672 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7674 for (j = 0; j < n_choices; j += 1)
7676 LONGEST lower, upper;
7677 enum exp_opcode op = exp->elts[choice_pos].opcode;
7678 if (op == OP_DISCRETE_RANGE)
7681 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7683 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7688 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7699 name = &exp->elts[choice_pos + 2].string;
7702 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7705 error (_("Invalid record component association."));
7707 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7709 if (! find_struct_field (name, value_type (lhs), 0,
7710 NULL, NULL, NULL, NULL, &ind))
7711 error (_("Unknown component name: %s."), name);
7712 lower = upper = ind;
7715 if (lower <= upper && (lower < low || upper > high))
7716 error (_("Index in component association out of bounds."));
7718 add_component_interval (lower, upper, indices, num_indices,
7720 while (lower <= upper)
7724 assign_component (container, lhs, lower, exp, &pos1);
7730 /* Assign the value of the expression in the OP_OTHERS construct in
7731 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7732 have not been previously assigned. The index intervals already assigned
7733 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7734 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7736 aggregate_assign_others (struct value *container,
7737 struct value *lhs, struct expression *exp,
7738 int *pos, LONGEST *indices, int num_indices,
7739 LONGEST low, LONGEST high)
7742 int expr_pc = *pos+1;
7744 for (i = 0; i < num_indices - 2; i += 2)
7747 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7751 assign_component (container, lhs, ind, exp, &pos);
7754 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7757 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7758 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7759 modifying *SIZE as needed. It is an error if *SIZE exceeds
7760 MAX_SIZE. The resulting intervals do not overlap. */
7762 add_component_interval (LONGEST low, LONGEST high,
7763 LONGEST* indices, int *size, int max_size)
7766 for (i = 0; i < *size; i += 2) {
7767 if (high >= indices[i] && low <= indices[i + 1])
7770 for (kh = i + 2; kh < *size; kh += 2)
7771 if (high < indices[kh])
7773 if (low < indices[i])
7775 indices[i + 1] = indices[kh - 1];
7776 if (high > indices[i + 1])
7777 indices[i + 1] = high;
7778 memcpy (indices + i + 2, indices + kh, *size - kh);
7779 *size -= kh - i - 2;
7782 else if (high < indices[i])
7786 if (*size == max_size)
7787 error (_("Internal error: miscounted aggregate components."));
7789 for (j = *size-1; j >= i+2; j -= 1)
7790 indices[j] = indices[j - 2];
7792 indices[i + 1] = high;
7795 static struct value *
7796 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7797 int *pos, enum noside noside)
7800 int tem, tem2, tem3;
7802 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7805 struct value **argvec;
7809 op = exp->elts[pc].opcode;
7816 unwrap_value (evaluate_subexp_standard
7817 (expect_type, exp, pos, noside));
7821 struct value *result;
7823 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7824 /* The result type will have code OP_STRING, bashed there from
7825 OP_ARRAY. Bash it back. */
7826 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7827 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7833 type = exp->elts[pc + 1].type;
7834 arg1 = evaluate_subexp (type, exp, pos, noside);
7835 if (noside == EVAL_SKIP)
7837 if (type != ada_check_typedef (value_type (arg1)))
7839 if (ada_is_fixed_point_type (type))
7840 arg1 = cast_to_fixed (type, arg1);
7841 else if (ada_is_fixed_point_type (value_type (arg1)))
7842 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7843 else if (VALUE_LVAL (arg1) == lval_memory)
7845 /* This is in case of the really obscure (and undocumented,
7846 but apparently expected) case of (Foo) Bar.all, where Bar
7847 is an integer constant and Foo is a dynamic-sized type.
7848 If we don't do this, ARG1 will simply be relabeled with
7850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7851 return value_zero (to_static_fixed_type (type), not_lval);
7853 ada_to_fixed_value_create
7854 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7857 arg1 = value_cast (type, arg1);
7863 type = exp->elts[pc + 1].type;
7864 return ada_evaluate_subexp (type, exp, pos, noside);
7867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7868 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7870 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7871 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7873 return ada_value_assign (arg1, arg1);
7875 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7876 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7878 if (ada_is_fixed_point_type (value_type (arg1)))
7879 arg2 = cast_to_fixed (value_type (arg1), arg2);
7880 else if (ada_is_fixed_point_type (value_type (arg2)))
7882 (_("Fixed-point values must be assigned to fixed-point variables"));
7884 arg2 = coerce_for_assign (value_type (arg1), arg2);
7885 return ada_value_assign (arg1, arg2);
7888 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7889 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7890 if (noside == EVAL_SKIP)
7892 if ((ada_is_fixed_point_type (value_type (arg1))
7893 || ada_is_fixed_point_type (value_type (arg2)))
7894 && value_type (arg1) != value_type (arg2))
7895 error (_("Operands of fixed-point addition must have the same type"));
7896 return value_cast (value_type (arg1), value_add (arg1, arg2));
7899 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7900 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7901 if (noside == EVAL_SKIP)
7903 if ((ada_is_fixed_point_type (value_type (arg1))
7904 || ada_is_fixed_point_type (value_type (arg2)))
7905 && value_type (arg1) != value_type (arg2))
7906 error (_("Operands of fixed-point subtraction must have the same type"));
7907 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7912 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7913 if (noside == EVAL_SKIP)
7915 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7916 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7917 return value_zero (value_type (arg1), not_lval);
7920 if (ada_is_fixed_point_type (value_type (arg1)))
7921 arg1 = cast_from_fixed_to_double (arg1);
7922 if (ada_is_fixed_point_type (value_type (arg2)))
7923 arg2 = cast_from_fixed_to_double (arg2);
7924 return ada_value_binop (arg1, arg2, op);
7929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7930 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7931 if (noside == EVAL_SKIP)
7933 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7934 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7935 return value_zero (value_type (arg1), not_lval);
7937 return ada_value_binop (arg1, arg2, op);
7940 case BINOP_NOTEQUAL:
7941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7942 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7943 if (noside == EVAL_SKIP)
7945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7948 tem = ada_value_equal (arg1, arg2);
7949 if (op == BINOP_NOTEQUAL)
7951 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7955 if (noside == EVAL_SKIP)
7957 else if (ada_is_fixed_point_type (value_type (arg1)))
7958 return value_cast (value_type (arg1), value_neg (arg1));
7960 return value_neg (arg1);
7964 if (noside == EVAL_SKIP)
7969 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7970 /* Only encountered when an unresolved symbol occurs in a
7971 context other than a function call, in which case, it is
7973 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7974 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7979 (to_static_fixed_type
7980 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7986 unwrap_value (evaluate_subexp_standard
7987 (expect_type, exp, pos, noside));
7988 return ada_to_fixed_value (arg1);
7994 /* Allocate arg vector, including space for the function to be
7995 called in argvec[0] and a terminating NULL. */
7996 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7998 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8000 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8001 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8002 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8003 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8006 for (tem = 0; tem <= nargs; tem += 1)
8007 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8010 if (noside == EVAL_SKIP)
8014 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8015 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8016 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8017 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8018 && VALUE_LVAL (argvec[0]) == lval_memory))
8019 argvec[0] = value_addr (argvec[0]);
8021 type = ada_check_typedef (value_type (argvec[0]));
8022 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8024 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8026 case TYPE_CODE_FUNC:
8027 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8029 case TYPE_CODE_ARRAY:
8031 case TYPE_CODE_STRUCT:
8032 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8033 argvec[0] = ada_value_ind (argvec[0]);
8034 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8037 error (_("cannot subscript or call something of type `%s'"),
8038 ada_type_name (value_type (argvec[0])));
8043 switch (TYPE_CODE (type))
8045 case TYPE_CODE_FUNC:
8046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8047 return allocate_value (TYPE_TARGET_TYPE (type));
8048 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8049 case TYPE_CODE_STRUCT:
8053 arity = ada_array_arity (type);
8054 type = ada_array_element_type (type, nargs);
8056 error (_("cannot subscript or call a record"));
8058 error (_("wrong number of subscripts; expecting %d"), arity);
8059 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8060 return allocate_value (ada_aligned_type (type));
8062 unwrap_value (ada_value_subscript
8063 (argvec[0], nargs, argvec + 1));
8065 case TYPE_CODE_ARRAY:
8066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8068 type = ada_array_element_type (type, nargs);
8070 error (_("element type of array unknown"));
8072 return allocate_value (ada_aligned_type (type));
8075 unwrap_value (ada_value_subscript
8076 (ada_coerce_to_simple_array (argvec[0]),
8077 nargs, argvec + 1));
8078 case TYPE_CODE_PTR: /* Pointer to array */
8079 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8080 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8082 type = ada_array_element_type (type, nargs);
8084 error (_("element type of array unknown"));
8086 return allocate_value (ada_aligned_type (type));
8089 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8090 nargs, argvec + 1));
8093 error (_("Attempt to index or call something other than an "
8094 "array or function"));
8099 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8100 struct value *low_bound_val =
8101 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8102 struct value *high_bound_val =
8103 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8106 low_bound_val = coerce_ref (low_bound_val);
8107 high_bound_val = coerce_ref (high_bound_val);
8108 low_bound = pos_atr (low_bound_val);
8109 high_bound = pos_atr (high_bound_val);
8111 if (noside == EVAL_SKIP)
8114 /* If this is a reference to an aligner type, then remove all
8116 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8117 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8118 TYPE_TARGET_TYPE (value_type (array)) =
8119 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8121 if (ada_is_packed_array_type (value_type (array)))
8122 error (_("cannot slice a packed array"));
8124 /* If this is a reference to an array or an array lvalue,
8125 convert to a pointer. */
8126 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8127 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8128 && VALUE_LVAL (array) == lval_memory))
8129 array = value_addr (array);
8131 if (noside == EVAL_AVOID_SIDE_EFFECTS
8132 && ada_is_array_descriptor_type (ada_check_typedef
8133 (value_type (array))))
8134 return empty_array (ada_type_of_array (array, 0), low_bound);
8136 array = ada_coerce_to_simple_array_ptr (array);
8138 /* If we have more than one level of pointer indirection,
8139 dereference the value until we get only one level. */
8140 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8141 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8143 array = value_ind (array);
8145 /* Make sure we really do have an array type before going further,
8146 to avoid a SEGV when trying to get the index type or the target
8147 type later down the road if the debug info generated by
8148 the compiler is incorrect or incomplete. */
8149 if (!ada_is_simple_array_type (value_type (array)))
8150 error (_("cannot take slice of non-array"));
8152 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8154 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8155 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8159 struct type *arr_type0 =
8160 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8162 return ada_value_slice_ptr (array, arr_type0,
8163 longest_to_int (low_bound),
8164 longest_to_int (high_bound));
8167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8169 else if (high_bound < low_bound)
8170 return empty_array (value_type (array), low_bound);
8172 return ada_value_slice (array, longest_to_int (low_bound),
8173 longest_to_int (high_bound));
8178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8179 type = exp->elts[pc + 1].type;
8181 if (noside == EVAL_SKIP)
8184 switch (TYPE_CODE (type))
8187 lim_warning (_("Membership test incompletely implemented; "
8188 "always returns true"));
8189 return value_from_longest (builtin_type_int, (LONGEST) 1);
8191 case TYPE_CODE_RANGE:
8192 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8193 arg3 = value_from_longest (builtin_type_int,
8194 TYPE_HIGH_BOUND (type));
8196 value_from_longest (builtin_type_int,
8197 (value_less (arg1, arg3)
8198 || value_equal (arg1, arg3))
8199 && (value_less (arg2, arg1)
8200 || value_equal (arg2, arg1)));
8203 case BINOP_IN_BOUNDS:
8205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8208 if (noside == EVAL_SKIP)
8211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8212 return value_zero (builtin_type_int, not_lval);
8214 tem = longest_to_int (exp->elts[pc + 1].longconst);
8216 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8217 error (_("invalid dimension number to 'range"));
8219 arg3 = ada_array_bound (arg2, tem, 1);
8220 arg2 = ada_array_bound (arg2, tem, 0);
8223 value_from_longest (builtin_type_int,
8224 (value_less (arg1, arg3)
8225 || value_equal (arg1, arg3))
8226 && (value_less (arg2, arg1)
8227 || value_equal (arg2, arg1)));
8229 case TERNOP_IN_RANGE:
8230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8231 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8232 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8234 if (noside == EVAL_SKIP)
8238 value_from_longest (builtin_type_int,
8239 (value_less (arg1, arg3)
8240 || value_equal (arg1, arg3))
8241 && (value_less (arg2, arg1)
8242 || value_equal (arg2, arg1)));
8248 struct type *type_arg;
8249 if (exp->elts[*pos].opcode == OP_TYPE)
8251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8253 type_arg = exp->elts[pc + 2].type;
8257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8261 if (exp->elts[*pos].opcode != OP_LONG)
8262 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8263 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8266 if (noside == EVAL_SKIP)
8269 if (type_arg == NULL)
8271 arg1 = ada_coerce_ref (arg1);
8273 if (ada_is_packed_array_type (value_type (arg1)))
8274 arg1 = ada_coerce_to_simple_array (arg1);
8276 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8277 error (_("invalid dimension number to '%s"),
8278 ada_attribute_name (op));
8280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8282 type = ada_index_type (value_type (arg1), tem);
8285 (_("attempt to take bound of something that is not an array"));
8286 return allocate_value (type);
8291 default: /* Should never happen. */
8292 error (_("unexpected attribute encountered"));
8294 return ada_array_bound (arg1, tem, 0);
8296 return ada_array_bound (arg1, tem, 1);
8298 return ada_array_length (arg1, tem);
8301 else if (discrete_type_p (type_arg))
8303 struct type *range_type;
8304 char *name = ada_type_name (type_arg);
8306 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8308 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8309 if (range_type == NULL)
8310 range_type = type_arg;
8314 error (_("unexpected attribute encountered"));
8316 return discrete_type_low_bound (range_type);
8318 return discrete_type_high_bound (range_type);
8320 error (_("the 'length attribute applies only to array types"));
8323 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8324 error (_("unimplemented type attribute"));
8329 if (ada_is_packed_array_type (type_arg))
8330 type_arg = decode_packed_array_type (type_arg);
8332 if (tem < 1 || tem > ada_array_arity (type_arg))
8333 error (_("invalid dimension number to '%s"),
8334 ada_attribute_name (op));
8336 type = ada_index_type (type_arg, tem);
8339 (_("attempt to take bound of something that is not an array"));
8340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8341 return allocate_value (type);
8346 error (_("unexpected attribute encountered"));
8348 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8349 return value_from_longest (type, low);
8351 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8352 return value_from_longest (type, high);
8354 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8355 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8356 return value_from_longest (type, high - low + 1);
8362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8363 if (noside == EVAL_SKIP)
8366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8367 return value_zero (ada_tag_type (arg1), not_lval);
8369 return ada_value_tag (arg1);
8373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8376 if (noside == EVAL_SKIP)
8378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8379 return value_zero (value_type (arg1), not_lval);
8381 return value_binop (arg1, arg2,
8382 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8384 case OP_ATR_MODULUS:
8386 struct type *type_arg = exp->elts[pc + 2].type;
8387 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8389 if (noside == EVAL_SKIP)
8392 if (!ada_is_modular_type (type_arg))
8393 error (_("'modulus must be applied to modular type"));
8395 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8396 ada_modulus (type_arg));
8401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8403 if (noside == EVAL_SKIP)
8405 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8406 return value_zero (builtin_type_int, not_lval);
8408 return value_pos_atr (arg1);
8411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8412 if (noside == EVAL_SKIP)
8414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8415 return value_zero (builtin_type_int, not_lval);
8417 return value_from_longest (builtin_type_int,
8419 * TYPE_LENGTH (value_type (arg1)));
8422 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8424 type = exp->elts[pc + 2].type;
8425 if (noside == EVAL_SKIP)
8427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8428 return value_zero (type, not_lval);
8430 return value_val_atr (type, arg1);
8433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8435 if (noside == EVAL_SKIP)
8437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8438 return value_zero (value_type (arg1), not_lval);
8440 return value_binop (arg1, arg2, op);
8443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8444 if (noside == EVAL_SKIP)
8450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8451 if (noside == EVAL_SKIP)
8453 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8454 return value_neg (arg1);
8459 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8460 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8461 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8462 if (noside == EVAL_SKIP)
8464 type = ada_check_typedef (value_type (arg1));
8465 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8467 if (ada_is_array_descriptor_type (type))
8468 /* GDB allows dereferencing GNAT array descriptors. */
8470 struct type *arrType = ada_type_of_array (arg1, 0);
8471 if (arrType == NULL)
8472 error (_("Attempt to dereference null array pointer."));
8473 return value_at_lazy (arrType, 0);
8475 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8476 || TYPE_CODE (type) == TYPE_CODE_REF
8477 /* In C you can dereference an array to get the 1st elt. */
8478 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8480 type = to_static_fixed_type
8482 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8484 return value_zero (type, lval_memory);
8486 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8487 /* GDB allows dereferencing an int. */
8488 return value_zero (builtin_type_int, lval_memory);
8490 error (_("Attempt to take contents of a non-pointer value."));
8492 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8493 type = ada_check_typedef (value_type (arg1));
8495 if (ada_is_array_descriptor_type (type))
8496 /* GDB allows dereferencing GNAT array descriptors. */
8497 return ada_coerce_to_simple_array (arg1);
8499 return ada_value_ind (arg1);
8501 case STRUCTOP_STRUCT:
8502 tem = longest_to_int (exp->elts[pc + 1].longconst);
8503 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8504 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8505 if (noside == EVAL_SKIP)
8507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8509 struct type *type1 = value_type (arg1);
8510 if (ada_is_tagged_type (type1, 1))
8512 type = ada_lookup_struct_elt_type (type1,
8513 &exp->elts[pc + 2].string,
8516 /* In this case, we assume that the field COULD exist
8517 in some extension of the type. Return an object of
8518 "type" void, which will match any formal
8519 (see ada_type_match). */
8520 return value_zero (builtin_type_void, lval_memory);
8524 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8527 return value_zero (ada_aligned_type (type), lval_memory);
8531 ada_to_fixed_value (unwrap_value
8532 (ada_value_struct_elt
8533 (arg1, &exp->elts[pc + 2].string, 0)));
8535 /* The value is not supposed to be used. This is here to make it
8536 easier to accommodate expressions that contain types. */
8538 if (noside == EVAL_SKIP)
8540 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8541 return allocate_value (exp->elts[pc + 1].type);
8543 error (_("Attempt to use a type name as an expression"));
8548 case OP_DISCRETE_RANGE:
8551 if (noside == EVAL_NORMAL)
8555 error (_("Undefined name, ambiguous name, or renaming used in "
8556 "component association: %s."), &exp->elts[pc+2].string);
8558 error (_("Aggregates only allowed on the right of an assignment"));
8560 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8563 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8565 for (tem = 0; tem < nargs; tem += 1)
8566 ada_evaluate_subexp (NULL, exp, pos, noside);
8571 return value_from_longest (builtin_type_long, (LONGEST) 1);
8577 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8578 type name that encodes the 'small and 'delta information.
8579 Otherwise, return NULL. */
8582 fixed_type_info (struct type *type)
8584 const char *name = ada_type_name (type);
8585 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8587 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8589 const char *tail = strstr (name, "___XF_");
8595 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8596 return fixed_type_info (TYPE_TARGET_TYPE (type));
8601 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8604 ada_is_fixed_point_type (struct type *type)
8606 return fixed_type_info (type) != NULL;
8609 /* Return non-zero iff TYPE represents a System.Address type. */
8612 ada_is_system_address_type (struct type *type)
8614 return (TYPE_NAME (type)
8615 && strcmp (TYPE_NAME (type), "system__address") == 0);
8618 /* Assuming that TYPE is the representation of an Ada fixed-point
8619 type, return its delta, or -1 if the type is malformed and the
8620 delta cannot be determined. */
8623 ada_delta (struct type *type)
8625 const char *encoding = fixed_type_info (type);
8628 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8631 return (DOUBLEST) num / (DOUBLEST) den;
8634 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8635 factor ('SMALL value) associated with the type. */
8638 scaling_factor (struct type *type)
8640 const char *encoding = fixed_type_info (type);
8641 unsigned long num0, den0, num1, den1;
8644 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8649 return (DOUBLEST) num1 / (DOUBLEST) den1;
8651 return (DOUBLEST) num0 / (DOUBLEST) den0;
8655 /* Assuming that X is the representation of a value of fixed-point
8656 type TYPE, return its floating-point equivalent. */
8659 ada_fixed_to_float (struct type *type, LONGEST x)
8661 return (DOUBLEST) x *scaling_factor (type);
8664 /* The representation of a fixed-point value of type TYPE
8665 corresponding to the value X. */
8668 ada_float_to_fixed (struct type *type, DOUBLEST x)
8670 return (LONGEST) (x / scaling_factor (type) + 0.5);
8674 /* VAX floating formats */
8676 /* Non-zero iff TYPE represents one of the special VAX floating-point
8680 ada_is_vax_floating_type (struct type *type)
8683 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8686 && (TYPE_CODE (type) == TYPE_CODE_INT
8687 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8688 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8691 /* The type of special VAX floating-point type this is, assuming
8692 ada_is_vax_floating_point. */
8695 ada_vax_float_type_suffix (struct type *type)
8697 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8700 /* A value representing the special debugging function that outputs
8701 VAX floating-point values of the type represented by TYPE. Assumes
8702 ada_is_vax_floating_type (TYPE). */
8705 ada_vax_float_print_function (struct type *type)
8707 switch (ada_vax_float_type_suffix (type))
8710 return get_var_value ("DEBUG_STRING_F", 0);
8712 return get_var_value ("DEBUG_STRING_D", 0);
8714 return get_var_value ("DEBUG_STRING_G", 0);
8716 error (_("invalid VAX floating-point type"));
8723 /* Scan STR beginning at position K for a discriminant name, and
8724 return the value of that discriminant field of DVAL in *PX. If
8725 PNEW_K is not null, put the position of the character beyond the
8726 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8727 not alter *PX and *PNEW_K if unsuccessful. */
8730 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8733 static char *bound_buffer = NULL;
8734 static size_t bound_buffer_len = 0;
8737 struct value *bound_val;
8739 if (dval == NULL || str == NULL || str[k] == '\0')
8742 pend = strstr (str + k, "__");
8746 k += strlen (bound);
8750 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8751 bound = bound_buffer;
8752 strncpy (bound_buffer, str + k, pend - (str + k));
8753 bound[pend - (str + k)] = '\0';
8757 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8758 if (bound_val == NULL)
8761 *px = value_as_long (bound_val);
8767 /* Value of variable named NAME in the current environment. If
8768 no such variable found, then if ERR_MSG is null, returns 0, and
8769 otherwise causes an error with message ERR_MSG. */
8771 static struct value *
8772 get_var_value (char *name, char *err_msg)
8774 struct ada_symbol_info *syms;
8777 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8782 if (err_msg == NULL)
8785 error (("%s"), err_msg);
8788 return value_of_variable (syms[0].sym, syms[0].block);
8791 /* Value of integer variable named NAME in the current environment. If
8792 no such variable found, returns 0, and sets *FLAG to 0. If
8793 successful, sets *FLAG to 1. */
8796 get_int_var_value (char *name, int *flag)
8798 struct value *var_val = get_var_value (name, 0);
8810 return value_as_long (var_val);
8815 /* Return a range type whose base type is that of the range type named
8816 NAME in the current environment, and whose bounds are calculated
8817 from NAME according to the GNAT range encoding conventions.
8818 Extract discriminant values, if needed, from DVAL. If a new type
8819 must be created, allocate in OBJFILE's space. The bounds
8820 information, in general, is encoded in NAME, the base type given in
8821 the named range type. */
8823 static struct type *
8824 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8826 struct type *raw_type = ada_find_any_type (name);
8827 struct type *base_type;
8830 if (raw_type == NULL)
8831 base_type = builtin_type_int;
8832 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8833 base_type = TYPE_TARGET_TYPE (raw_type);
8835 base_type = raw_type;
8837 subtype_info = strstr (name, "___XD");
8838 if (subtype_info == NULL)
8842 static char *name_buf = NULL;
8843 static size_t name_len = 0;
8844 int prefix_len = subtype_info - name;
8850 GROW_VECT (name_buf, name_len, prefix_len + 5);
8851 strncpy (name_buf, name, prefix_len);
8852 name_buf[prefix_len] = '\0';
8855 bounds_str = strchr (subtype_info, '_');
8858 if (*subtype_info == 'L')
8860 if (!ada_scan_number (bounds_str, n, &L, &n)
8861 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8863 if (bounds_str[n] == '_')
8865 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8872 strcpy (name_buf + prefix_len, "___L");
8873 L = get_int_var_value (name_buf, &ok);
8876 lim_warning (_("Unknown lower bound, using 1."));
8881 if (*subtype_info == 'U')
8883 if (!ada_scan_number (bounds_str, n, &U, &n)
8884 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8890 strcpy (name_buf + prefix_len, "___U");
8891 U = get_int_var_value (name_buf, &ok);
8894 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8899 if (objfile == NULL)
8900 objfile = TYPE_OBJFILE (base_type);
8901 type = create_range_type (alloc_type (objfile), base_type, L, U);
8902 TYPE_NAME (type) = name;
8907 /* True iff NAME is the name of a range type. */
8910 ada_is_range_type_name (const char *name)
8912 return (name != NULL && strstr (name, "___XD"));
8918 /* True iff TYPE is an Ada modular type. */
8921 ada_is_modular_type (struct type *type)
8923 struct type *subranged_type = base_type (type);
8925 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8926 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8927 && TYPE_UNSIGNED (subranged_type));
8930 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8933 ada_modulus (struct type * type)
8935 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8939 /* Ada exception catchpoint support:
8940 ---------------------------------
8942 We support 3 kinds of exception catchpoints:
8943 . catchpoints on Ada exceptions
8944 . catchpoints on unhandled Ada exceptions
8945 . catchpoints on failed assertions
8947 Exceptions raised during failed assertions, or unhandled exceptions
8948 could perfectly be caught with the general catchpoint on Ada exceptions.
8949 However, we can easily differentiate these two special cases, and having
8950 the option to distinguish these two cases from the rest can be useful
8951 to zero-in on certain situations.
8953 Exception catchpoints are a specialized form of breakpoint,
8954 since they rely on inserting breakpoints inside known routines
8955 of the GNAT runtime. The implementation therefore uses a standard
8956 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8959 Support in the runtime for exception catchpoints have been changed
8960 a few times already, and these changes affect the implementation
8961 of these catchpoints. In order to be able to support several
8962 variants of the runtime, we use a sniffer that will determine
8963 the runtime variant used by the program being debugged.
8965 At this time, we do not support the use of conditions on Ada exception
8966 catchpoints. The COND and COND_STRING fields are therefore set
8967 to NULL (most of the time, see below).
8969 Conditions where EXP_STRING, COND, and COND_STRING are used:
8971 When a user specifies the name of a specific exception in the case
8972 of catchpoints on Ada exceptions, we store the name of that exception
8973 in the EXP_STRING. We then translate this request into an actual
8974 condition stored in COND_STRING, and then parse it into an expression
8977 /* The different types of catchpoints that we introduced for catching
8980 enum exception_catchpoint_kind
8983 ex_catch_exception_unhandled,
8987 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8989 /* A structure that describes how to support exception catchpoints
8990 for a given executable. */
8992 struct exception_support_info
8994 /* The name of the symbol to break on in order to insert
8995 a catchpoint on exceptions. */
8996 const char *catch_exception_sym;
8998 /* The name of the symbol to break on in order to insert
8999 a catchpoint on unhandled exceptions. */
9000 const char *catch_exception_unhandled_sym;
9002 /* The name of the symbol to break on in order to insert
9003 a catchpoint on failed assertions. */
9004 const char *catch_assert_sym;
9006 /* Assuming that the inferior just triggered an unhandled exception
9007 catchpoint, this function is responsible for returning the address
9008 in inferior memory where the name of that exception is stored.
9009 Return zero if the address could not be computed. */
9010 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9013 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9014 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9016 /* The following exception support info structure describes how to
9017 implement exception catchpoints with the latest version of the
9018 Ada runtime (as of 2007-03-06). */
9020 static const struct exception_support_info default_exception_support_info =
9022 "__gnat_debug_raise_exception", /* catch_exception_sym */
9023 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9024 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9025 ada_unhandled_exception_name_addr
9028 /* The following exception support info structure describes how to
9029 implement exception catchpoints with a slightly older version
9030 of the Ada runtime. */
9032 static const struct exception_support_info exception_support_info_fallback =
9034 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9035 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9036 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9037 ada_unhandled_exception_name_addr_from_raise
9040 /* For each executable, we sniff which exception info structure to use
9041 and cache it in the following global variable. */
9043 static const struct exception_support_info *exception_info = NULL;
9045 /* Inspect the Ada runtime and determine which exception info structure
9046 should be used to provide support for exception catchpoints.
9048 This function will always set exception_info, or raise an error. */
9051 ada_exception_support_info_sniffer (void)
9055 /* If the exception info is already known, then no need to recompute it. */
9056 if (exception_info != NULL)
9059 /* Check the latest (default) exception support info. */
9060 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9064 exception_info = &default_exception_support_info;
9068 /* Try our fallback exception suport info. */
9069 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9073 exception_info = &exception_support_info_fallback;
9077 /* Sometimes, it is normal for us to not be able to find the routine
9078 we are looking for. This happens when the program is linked with
9079 the shared version of the GNAT runtime, and the program has not been
9080 started yet. Inform the user of these two possible causes if
9083 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9084 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9086 /* If the symbol does not exist, then check that the program is
9087 already started, to make sure that shared libraries have been
9088 loaded. If it is not started, this may mean that the symbol is
9089 in a shared library. */
9091 if (ptid_get_pid (inferior_ptid) == 0)
9092 error (_("Unable to insert catchpoint. Try to start the program first."));
9094 /* At this point, we know that we are debugging an Ada program and
9095 that the inferior has been started, but we still are not able to
9096 find the run-time symbols. That can mean that we are in
9097 configurable run time mode, or that a-except as been optimized
9098 out by the linker... In any case, at this point it is not worth
9099 supporting this feature. */
9101 error (_("Cannot insert catchpoints in this configuration."));
9104 /* An observer of "executable_changed" events.
9105 Its role is to clear certain cached values that need to be recomputed
9106 each time a new executable is loaded by GDB. */
9109 ada_executable_changed_observer (void *unused)
9111 /* If the executable changed, then it is possible that the Ada runtime
9112 is different. So we need to invalidate the exception support info
9114 exception_info = NULL;
9117 /* Return the name of the function at PC, NULL if could not find it.
9118 This function only checks the debugging information, not the symbol
9122 function_name_from_pc (CORE_ADDR pc)
9126 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9132 /* True iff FRAME is very likely to be that of a function that is
9133 part of the runtime system. This is all very heuristic, but is
9134 intended to be used as advice as to what frames are uninteresting
9138 is_known_support_routine (struct frame_info *frame)
9140 struct symtab_and_line sal;
9144 /* If this code does not have any debugging information (no symtab),
9145 This cannot be any user code. */
9147 find_frame_sal (frame, &sal);
9148 if (sal.symtab == NULL)
9151 /* If there is a symtab, but the associated source file cannot be
9152 located, then assume this is not user code: Selecting a frame
9153 for which we cannot display the code would not be very helpful
9154 for the user. This should also take care of case such as VxWorks
9155 where the kernel has some debugging info provided for a few units. */
9157 if (symtab_to_fullname (sal.symtab) == NULL)
9160 /* Check the unit filename againt the Ada runtime file naming.
9161 We also check the name of the objfile against the name of some
9162 known system libraries that sometimes come with debugging info
9165 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9167 re_comp (known_runtime_file_name_patterns[i]);
9168 if (re_exec (sal.symtab->filename))
9170 if (sal.symtab->objfile != NULL
9171 && re_exec (sal.symtab->objfile->name))
9175 /* Check whether the function is a GNAT-generated entity. */
9177 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9178 if (func_name == NULL)
9181 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9183 re_comp (known_auxiliary_function_name_patterns[i]);
9184 if (re_exec (func_name))
9191 /* Find the first frame that contains debugging information and that is not
9192 part of the Ada run-time, starting from FI and moving upward. */
9195 ada_find_printable_frame (struct frame_info *fi)
9197 for (; fi != NULL; fi = get_prev_frame (fi))
9199 if (!is_known_support_routine (fi))
9208 /* Assuming that the inferior just triggered an unhandled exception
9209 catchpoint, return the address in inferior memory where the name
9210 of the exception is stored.
9212 Return zero if the address could not be computed. */
9215 ada_unhandled_exception_name_addr (void)
9217 return parse_and_eval_address ("e.full_name");
9220 /* Same as ada_unhandled_exception_name_addr, except that this function
9221 should be used when the inferior uses an older version of the runtime,
9222 where the exception name needs to be extracted from a specific frame
9223 several frames up in the callstack. */
9226 ada_unhandled_exception_name_addr_from_raise (void)
9229 struct frame_info *fi;
9231 /* To determine the name of this exception, we need to select
9232 the frame corresponding to RAISE_SYM_NAME. This frame is
9233 at least 3 levels up, so we simply skip the first 3 frames
9234 without checking the name of their associated function. */
9235 fi = get_current_frame ();
9236 for (frame_level = 0; frame_level < 3; frame_level += 1)
9238 fi = get_prev_frame (fi);
9242 const char *func_name =
9243 function_name_from_pc (get_frame_address_in_block (fi));
9244 if (func_name != NULL
9245 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9246 break; /* We found the frame we were looking for... */
9247 fi = get_prev_frame (fi);
9254 return parse_and_eval_address ("id.full_name");
9257 /* Assuming the inferior just triggered an Ada exception catchpoint
9258 (of any type), return the address in inferior memory where the name
9259 of the exception is stored, if applicable.
9261 Return zero if the address could not be computed, or if not relevant. */
9264 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9265 struct breakpoint *b)
9269 case ex_catch_exception:
9270 return (parse_and_eval_address ("e.full_name"));
9273 case ex_catch_exception_unhandled:
9274 return exception_info->unhandled_exception_name_addr ();
9277 case ex_catch_assert:
9278 return 0; /* Exception name is not relevant in this case. */
9282 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9286 return 0; /* Should never be reached. */
9289 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9290 any error that ada_exception_name_addr_1 might cause to be thrown.
9291 When an error is intercepted, a warning with the error message is printed,
9292 and zero is returned. */
9295 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9296 struct breakpoint *b)
9298 struct gdb_exception e;
9299 CORE_ADDR result = 0;
9301 TRY_CATCH (e, RETURN_MASK_ERROR)
9303 result = ada_exception_name_addr_1 (ex, b);
9308 warning (_("failed to get exception name: %s"), e.message);
9315 /* Implement the PRINT_IT method in the breakpoint_ops structure
9316 for all exception catchpoint kinds. */
9318 static enum print_stop_action
9319 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9321 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9322 char exception_name[256];
9326 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9327 exception_name [sizeof (exception_name) - 1] = '\0';
9330 ada_find_printable_frame (get_current_frame ());
9332 annotate_catchpoint (b->number);
9335 case ex_catch_exception:
9337 printf_filtered (_("\nCatchpoint %d, %s at "),
9338 b->number, exception_name);
9340 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9342 case ex_catch_exception_unhandled:
9344 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9345 b->number, exception_name);
9347 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9350 case ex_catch_assert:
9351 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9356 return PRINT_SRC_AND_LOC;
9359 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9360 for all exception catchpoint kinds. */
9363 print_one_exception (enum exception_catchpoint_kind ex,
9364 struct breakpoint *b, CORE_ADDR *last_addr)
9369 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9373 *last_addr = b->loc->address;
9376 case ex_catch_exception:
9377 if (b->exp_string != NULL)
9379 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9381 ui_out_field_string (uiout, "what", msg);
9385 ui_out_field_string (uiout, "what", "all Ada exceptions");
9389 case ex_catch_exception_unhandled:
9390 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9393 case ex_catch_assert:
9394 ui_out_field_string (uiout, "what", "failed Ada assertions");
9398 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9403 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9404 for all exception catchpoint kinds. */
9407 print_mention_exception (enum exception_catchpoint_kind ex,
9408 struct breakpoint *b)
9412 case ex_catch_exception:
9413 if (b->exp_string != NULL)
9414 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9415 b->number, b->exp_string);
9417 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9421 case ex_catch_exception_unhandled:
9422 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9426 case ex_catch_assert:
9427 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9431 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9436 /* Virtual table for "catch exception" breakpoints. */
9438 static enum print_stop_action
9439 print_it_catch_exception (struct breakpoint *b)
9441 return print_it_exception (ex_catch_exception, b);
9445 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9447 print_one_exception (ex_catch_exception, b, last_addr);
9451 print_mention_catch_exception (struct breakpoint *b)
9453 print_mention_exception (ex_catch_exception, b);
9456 static struct breakpoint_ops catch_exception_breakpoint_ops =
9458 print_it_catch_exception,
9459 print_one_catch_exception,
9460 print_mention_catch_exception
9463 /* Virtual table for "catch exception unhandled" breakpoints. */
9465 static enum print_stop_action
9466 print_it_catch_exception_unhandled (struct breakpoint *b)
9468 return print_it_exception (ex_catch_exception_unhandled, b);
9472 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9474 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9478 print_mention_catch_exception_unhandled (struct breakpoint *b)
9480 print_mention_exception (ex_catch_exception_unhandled, b);
9483 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9484 print_it_catch_exception_unhandled,
9485 print_one_catch_exception_unhandled,
9486 print_mention_catch_exception_unhandled
9489 /* Virtual table for "catch assert" breakpoints. */
9491 static enum print_stop_action
9492 print_it_catch_assert (struct breakpoint *b)
9494 return print_it_exception (ex_catch_assert, b);
9498 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9500 print_one_exception (ex_catch_assert, b, last_addr);
9504 print_mention_catch_assert (struct breakpoint *b)
9506 print_mention_exception (ex_catch_assert, b);
9509 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9510 print_it_catch_assert,
9511 print_one_catch_assert,
9512 print_mention_catch_assert
9515 /* Return non-zero if B is an Ada exception catchpoint. */
9518 ada_exception_catchpoint_p (struct breakpoint *b)
9520 return (b->ops == &catch_exception_breakpoint_ops
9521 || b->ops == &catch_exception_unhandled_breakpoint_ops
9522 || b->ops == &catch_assert_breakpoint_ops);
9525 /* Return a newly allocated copy of the first space-separated token
9526 in ARGSP, and then adjust ARGSP to point immediately after that
9529 Return NULL if ARGPS does not contain any more tokens. */
9532 ada_get_next_arg (char **argsp)
9534 char *args = *argsp;
9538 /* Skip any leading white space. */
9540 while (isspace (*args))
9543 if (args[0] == '\0')
9544 return NULL; /* No more arguments. */
9546 /* Find the end of the current argument. */
9549 while (*end != '\0' && !isspace (*end))
9552 /* Adjust ARGSP to point to the start of the next argument. */
9556 /* Make a copy of the current argument and return it. */
9558 result = xmalloc (end - args + 1);
9559 strncpy (result, args, end - args);
9560 result[end - args] = '\0';
9565 /* Split the arguments specified in a "catch exception" command.
9566 Set EX to the appropriate catchpoint type.
9567 Set EXP_STRING to the name of the specific exception if
9568 specified by the user. */
9571 catch_ada_exception_command_split (char *args,
9572 enum exception_catchpoint_kind *ex,
9575 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9576 char *exception_name;
9578 exception_name = ada_get_next_arg (&args);
9579 make_cleanup (xfree, exception_name);
9581 /* Check that we do not have any more arguments. Anything else
9584 while (isspace (*args))
9587 if (args[0] != '\0')
9588 error (_("Junk at end of expression"));
9590 discard_cleanups (old_chain);
9592 if (exception_name == NULL)
9594 /* Catch all exceptions. */
9595 *ex = ex_catch_exception;
9598 else if (strcmp (exception_name, "unhandled") == 0)
9600 /* Catch unhandled exceptions. */
9601 *ex = ex_catch_exception_unhandled;
9606 /* Catch a specific exception. */
9607 *ex = ex_catch_exception;
9608 *exp_string = exception_name;
9612 /* Return the name of the symbol on which we should break in order to
9613 implement a catchpoint of the EX kind. */
9616 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9618 gdb_assert (exception_info != NULL);
9622 case ex_catch_exception:
9623 return (exception_info->catch_exception_sym);
9625 case ex_catch_exception_unhandled:
9626 return (exception_info->catch_exception_unhandled_sym);
9628 case ex_catch_assert:
9629 return (exception_info->catch_assert_sym);
9632 internal_error (__FILE__, __LINE__,
9633 _("unexpected catchpoint kind (%d)"), ex);
9637 /* Return the breakpoint ops "virtual table" used for catchpoints
9640 static struct breakpoint_ops *
9641 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9645 case ex_catch_exception:
9646 return (&catch_exception_breakpoint_ops);
9648 case ex_catch_exception_unhandled:
9649 return (&catch_exception_unhandled_breakpoint_ops);
9651 case ex_catch_assert:
9652 return (&catch_assert_breakpoint_ops);
9655 internal_error (__FILE__, __LINE__,
9656 _("unexpected catchpoint kind (%d)"), ex);
9660 /* Return the condition that will be used to match the current exception
9661 being raised with the exception that the user wants to catch. This
9662 assumes that this condition is used when the inferior just triggered
9663 an exception catchpoint.
9665 The string returned is a newly allocated string that needs to be
9666 deallocated later. */
9669 ada_exception_catchpoint_cond_string (const char *exp_string)
9671 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9674 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9676 static struct expression *
9677 ada_parse_catchpoint_condition (char *cond_string,
9678 struct symtab_and_line sal)
9680 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9683 /* Return the symtab_and_line that should be used to insert an exception
9684 catchpoint of the TYPE kind.
9686 EX_STRING should contain the name of a specific exception
9687 that the catchpoint should catch, or NULL otherwise.
9689 The idea behind all the remaining parameters is that their names match
9690 the name of certain fields in the breakpoint structure that are used to
9691 handle exception catchpoints. This function returns the value to which
9692 these fields should be set, depending on the type of catchpoint we need
9695 If COND and COND_STRING are both non-NULL, any value they might
9696 hold will be free'ed, and then replaced by newly allocated ones.
9697 These parameters are left untouched otherwise. */
9699 static struct symtab_and_line
9700 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9701 char **addr_string, char **cond_string,
9702 struct expression **cond, struct breakpoint_ops **ops)
9704 const char *sym_name;
9706 struct symtab_and_line sal;
9708 /* First, find out which exception support info to use. */
9709 ada_exception_support_info_sniffer ();
9711 /* Then lookup the function on which we will break in order to catch
9712 the Ada exceptions requested by the user. */
9714 sym_name = ada_exception_sym_name (ex);
9715 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9717 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9718 that should be compiled with debugging information. As a result, we
9719 expect to find that symbol in the symtabs. If we don't find it, then
9720 the target most likely does not support Ada exceptions, or we cannot
9721 insert exception breakpoints yet, because the GNAT runtime hasn't been
9724 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9725 in such a way that no debugging information is produced for the symbol
9726 we are looking for. In this case, we could search the minimal symbols
9727 as a fall-back mechanism. This would still be operating in degraded
9728 mode, however, as we would still be missing the debugging information
9729 that is needed in order to extract the name of the exception being
9730 raised (this name is printed in the catchpoint message, and is also
9731 used when trying to catch a specific exception). We do not handle
9732 this case for now. */
9735 error (_("Unable to break on '%s' in this configuration."), sym_name);
9737 /* Make sure that the symbol we found corresponds to a function. */
9738 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9739 error (_("Symbol \"%s\" is not a function (class = %d)"),
9740 sym_name, SYMBOL_CLASS (sym));
9742 sal = find_function_start_sal (sym, 1);
9744 /* Set ADDR_STRING. */
9746 *addr_string = xstrdup (sym_name);
9748 /* Set the COND and COND_STRING (if not NULL). */
9750 if (cond_string != NULL && cond != NULL)
9752 if (*cond_string != NULL)
9754 xfree (*cond_string);
9755 *cond_string = NULL;
9762 if (exp_string != NULL)
9764 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9765 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9770 *ops = ada_exception_breakpoint_ops (ex);
9775 /* Parse the arguments (ARGS) of the "catch exception" command.
9777 Set TYPE to the appropriate exception catchpoint type.
9778 If the user asked the catchpoint to catch only a specific
9779 exception, then save the exception name in ADDR_STRING.
9781 See ada_exception_sal for a description of all the remaining
9782 function arguments of this function. */
9784 struct symtab_and_line
9785 ada_decode_exception_location (char *args, char **addr_string,
9786 char **exp_string, char **cond_string,
9787 struct expression **cond,
9788 struct breakpoint_ops **ops)
9790 enum exception_catchpoint_kind ex;
9792 catch_ada_exception_command_split (args, &ex, exp_string);
9793 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9797 struct symtab_and_line
9798 ada_decode_assert_location (char *args, char **addr_string,
9799 struct breakpoint_ops **ops)
9801 /* Check that no argument where provided at the end of the command. */
9805 while (isspace (*args))
9808 error (_("Junk at end of arguments."));
9811 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9816 /* Information about operators given special treatment in functions
9818 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9820 #define ADA_OPERATORS \
9821 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9822 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9823 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9824 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9828 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9829 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9830 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9831 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9832 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9833 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9834 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9835 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9836 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9837 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9838 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9839 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9842 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9844 switch (exp->elts[pc - 1].opcode)
9847 operator_length_standard (exp, pc, oplenp, argsp);
9850 #define OP_DEFN(op, len, args, binop) \
9851 case op: *oplenp = len; *argsp = args; break;
9857 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9862 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9868 ada_op_name (enum exp_opcode opcode)
9873 return op_name_standard (opcode);
9875 #define OP_DEFN(op, len, args, binop) case op: return #op;
9880 return "OP_AGGREGATE";
9882 return "OP_CHOICES";
9888 /* As for operator_length, but assumes PC is pointing at the first
9889 element of the operator, and gives meaningful results only for the
9890 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9893 ada_forward_operator_length (struct expression *exp, int pc,
9894 int *oplenp, int *argsp)
9896 switch (exp->elts[pc].opcode)
9899 *oplenp = *argsp = 0;
9902 #define OP_DEFN(op, len, args, binop) \
9903 case op: *oplenp = len; *argsp = args; break;
9909 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9914 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9920 int len = longest_to_int (exp->elts[pc + 1].longconst);
9921 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9929 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9931 enum exp_opcode op = exp->elts[elt].opcode;
9936 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9940 /* Ada attributes ('Foo). */
9947 case OP_ATR_MODULUS:
9956 /* XXX: gdb_sprint_host_address, type_sprint */
9957 fprintf_filtered (stream, _("Type @"));
9958 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9959 fprintf_filtered (stream, " (");
9960 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9961 fprintf_filtered (stream, ")");
9963 case BINOP_IN_BOUNDS:
9964 fprintf_filtered (stream, " (%d)",
9965 longest_to_int (exp->elts[pc + 2].longconst));
9967 case TERNOP_IN_RANGE:
9972 case OP_DISCRETE_RANGE:
9980 char *name = &exp->elts[elt + 2].string;
9981 int len = longest_to_int (exp->elts[elt + 1].longconst);
9982 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9987 return dump_subexp_body_standard (exp, stream, elt);
9991 for (i = 0; i < nargs; i += 1)
9992 elt = dump_subexp (exp, stream, elt);
9997 /* The Ada extension of print_subexp (q.v.). */
10000 ada_print_subexp (struct expression *exp, int *pos,
10001 struct ui_file *stream, enum precedence prec)
10003 int oplen, nargs, i;
10005 enum exp_opcode op = exp->elts[pc].opcode;
10007 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10014 print_subexp_standard (exp, pos, stream, prec);
10018 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10021 case BINOP_IN_BOUNDS:
10022 /* XXX: sprint_subexp */
10023 print_subexp (exp, pos, stream, PREC_SUFFIX);
10024 fputs_filtered (" in ", stream);
10025 print_subexp (exp, pos, stream, PREC_SUFFIX);
10026 fputs_filtered ("'range", stream);
10027 if (exp->elts[pc + 1].longconst > 1)
10028 fprintf_filtered (stream, "(%ld)",
10029 (long) exp->elts[pc + 1].longconst);
10032 case TERNOP_IN_RANGE:
10033 if (prec >= PREC_EQUAL)
10034 fputs_filtered ("(", stream);
10035 /* XXX: sprint_subexp */
10036 print_subexp (exp, pos, stream, PREC_SUFFIX);
10037 fputs_filtered (" in ", stream);
10038 print_subexp (exp, pos, stream, PREC_EQUAL);
10039 fputs_filtered (" .. ", stream);
10040 print_subexp (exp, pos, stream, PREC_EQUAL);
10041 if (prec >= PREC_EQUAL)
10042 fputs_filtered (")", stream);
10047 case OP_ATR_LENGTH:
10051 case OP_ATR_MODULUS:
10056 if (exp->elts[*pos].opcode == OP_TYPE)
10058 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10059 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10063 print_subexp (exp, pos, stream, PREC_SUFFIX);
10064 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10068 for (tem = 1; tem < nargs; tem += 1)
10070 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10071 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10073 fputs_filtered (")", stream);
10078 type_print (exp->elts[pc + 1].type, "", stream, 0);
10079 fputs_filtered ("'(", stream);
10080 print_subexp (exp, pos, stream, PREC_PREFIX);
10081 fputs_filtered (")", stream);
10084 case UNOP_IN_RANGE:
10085 /* XXX: sprint_subexp */
10086 print_subexp (exp, pos, stream, PREC_SUFFIX);
10087 fputs_filtered (" in ", stream);
10088 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10091 case OP_DISCRETE_RANGE:
10092 print_subexp (exp, pos, stream, PREC_SUFFIX);
10093 fputs_filtered ("..", stream);
10094 print_subexp (exp, pos, stream, PREC_SUFFIX);
10098 fputs_filtered ("others => ", stream);
10099 print_subexp (exp, pos, stream, PREC_SUFFIX);
10103 for (i = 0; i < nargs-1; i += 1)
10106 fputs_filtered ("|", stream);
10107 print_subexp (exp, pos, stream, PREC_SUFFIX);
10109 fputs_filtered (" => ", stream);
10110 print_subexp (exp, pos, stream, PREC_SUFFIX);
10113 case OP_POSITIONAL:
10114 print_subexp (exp, pos, stream, PREC_SUFFIX);
10118 fputs_filtered ("(", stream);
10119 for (i = 0; i < nargs; i += 1)
10122 fputs_filtered (", ", stream);
10123 print_subexp (exp, pos, stream, PREC_SUFFIX);
10125 fputs_filtered (")", stream);
10130 /* Table mapping opcodes into strings for printing operators
10131 and precedences of the operators. */
10133 static const struct op_print ada_op_print_tab[] = {
10134 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10135 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10136 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10137 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10138 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10139 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10140 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10141 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10142 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10143 {">=", BINOP_GEQ, PREC_ORDER, 0},
10144 {">", BINOP_GTR, PREC_ORDER, 0},
10145 {"<", BINOP_LESS, PREC_ORDER, 0},
10146 {">>", BINOP_RSH, PREC_SHIFT, 0},
10147 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10148 {"+", BINOP_ADD, PREC_ADD, 0},
10149 {"-", BINOP_SUB, PREC_ADD, 0},
10150 {"&", BINOP_CONCAT, PREC_ADD, 0},
10151 {"*", BINOP_MUL, PREC_MUL, 0},
10152 {"/", BINOP_DIV, PREC_MUL, 0},
10153 {"rem", BINOP_REM, PREC_MUL, 0},
10154 {"mod", BINOP_MOD, PREC_MUL, 0},
10155 {"**", BINOP_EXP, PREC_REPEAT, 0},
10156 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10157 {"-", UNOP_NEG, PREC_PREFIX, 0},
10158 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10159 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10160 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10161 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10162 {".all", UNOP_IND, PREC_SUFFIX, 1},
10163 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10164 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10168 /* Fundamental Ada Types */
10170 /* Create a fundamental Ada type using default reasonable for the current
10173 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10174 define fundamental types such as "int" or "double". Others (stabs or
10175 DWARF version 2, etc) do define fundamental types. For the formats which
10176 don't provide fundamental types, gdb can create such types using this
10179 FIXME: Some compilers distinguish explicitly signed integral types
10180 (signed short, signed int, signed long) from "regular" integral types
10181 (short, int, long) in the debugging information. There is some dis-
10182 agreement as to how useful this feature is. In particular, gcc does
10183 not support this. Also, only some debugging formats allow the
10184 distinction to be passed on to a debugger. For now, we always just
10185 use "short", "int", or "long" as the type name, for both the implicit
10186 and explicitly signed types. This also makes life easier for the
10187 gdb test suite since we don't have to account for the differences
10188 in output depending upon what the compiler and debugging format
10189 support. We will probably have to re-examine the issue when gdb
10190 starts taking it's fundamental type information directly from the
10191 debugging information supplied by the compiler. fnf@cygnus.com */
10193 static struct type *
10194 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10196 struct type *type = NULL;
10201 /* FIXME: For now, if we are asked to produce a type not in this
10202 language, create the equivalent of a C integer type with the
10203 name "<?type?>". When all the dust settles from the type
10204 reconstruction work, this should probably become an error. */
10205 type = init_type (TYPE_CODE_INT,
10206 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10207 0, "<?type?>", objfile);
10208 warning (_("internal error: no Ada fundamental type %d"), typeid);
10211 type = init_type (TYPE_CODE_VOID,
10212 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10213 0, "void", objfile);
10216 type = init_type (TYPE_CODE_INT,
10217 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10218 0, "character", objfile);
10220 case FT_SIGNED_CHAR:
10221 type = init_type (TYPE_CODE_INT,
10222 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10223 0, "signed char", objfile);
10225 case FT_UNSIGNED_CHAR:
10226 type = init_type (TYPE_CODE_INT,
10227 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10228 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10231 type = init_type (TYPE_CODE_INT,
10232 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10233 0, "short_integer", objfile);
10235 case FT_SIGNED_SHORT:
10236 type = init_type (TYPE_CODE_INT,
10237 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10238 0, "short_integer", objfile);
10240 case FT_UNSIGNED_SHORT:
10241 type = init_type (TYPE_CODE_INT,
10242 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10243 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10246 type = init_type (TYPE_CODE_INT,
10247 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10248 0, "integer", objfile);
10250 case FT_SIGNED_INTEGER:
10251 type = init_type (TYPE_CODE_INT,
10252 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10253 0, "integer", objfile); /* FIXME -fnf */
10255 case FT_UNSIGNED_INTEGER:
10256 type = init_type (TYPE_CODE_INT,
10257 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10258 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10261 type = init_type (TYPE_CODE_INT,
10262 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10263 0, "long_integer", objfile);
10265 case FT_SIGNED_LONG:
10266 type = init_type (TYPE_CODE_INT,
10267 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10268 0, "long_integer", objfile);
10270 case FT_UNSIGNED_LONG:
10271 type = init_type (TYPE_CODE_INT,
10272 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10273 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10276 type = init_type (TYPE_CODE_INT,
10277 gdbarch_long_long_bit (current_gdbarch)
10279 0, "long_long_integer", objfile);
10281 case FT_SIGNED_LONG_LONG:
10282 type = init_type (TYPE_CODE_INT,
10283 gdbarch_long_long_bit (current_gdbarch)
10285 0, "long_long_integer", objfile);
10287 case FT_UNSIGNED_LONG_LONG:
10288 type = init_type (TYPE_CODE_INT,
10289 gdbarch_long_long_bit (current_gdbarch)
10291 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10294 type = init_type (TYPE_CODE_FLT,
10295 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10296 0, "float", objfile);
10298 case FT_DBL_PREC_FLOAT:
10299 type = init_type (TYPE_CODE_FLT,
10300 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10301 0, "long_float", objfile);
10303 case FT_EXT_PREC_FLOAT:
10304 type = init_type (TYPE_CODE_FLT,
10305 gdbarch_long_double_bit (current_gdbarch)
10307 0, "long_long_float", objfile);
10313 enum ada_primitive_types {
10314 ada_primitive_type_int,
10315 ada_primitive_type_long,
10316 ada_primitive_type_short,
10317 ada_primitive_type_char,
10318 ada_primitive_type_float,
10319 ada_primitive_type_double,
10320 ada_primitive_type_void,
10321 ada_primitive_type_long_long,
10322 ada_primitive_type_long_double,
10323 ada_primitive_type_natural,
10324 ada_primitive_type_positive,
10325 ada_primitive_type_system_address,
10326 nr_ada_primitive_types
10330 ada_language_arch_info (struct gdbarch *gdbarch,
10331 struct language_arch_info *lai)
10333 const struct builtin_type *builtin = builtin_type (gdbarch);
10334 lai->primitive_type_vector
10335 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10337 lai->primitive_type_vector [ada_primitive_type_int] =
10338 init_type (TYPE_CODE_INT,
10339 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10340 0, "integer", (struct objfile *) NULL);
10341 lai->primitive_type_vector [ada_primitive_type_long] =
10342 init_type (TYPE_CODE_INT,
10343 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10344 0, "long_integer", (struct objfile *) NULL);
10345 lai->primitive_type_vector [ada_primitive_type_short] =
10346 init_type (TYPE_CODE_INT,
10347 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10348 0, "short_integer", (struct objfile *) NULL);
10349 lai->string_char_type =
10350 lai->primitive_type_vector [ada_primitive_type_char] =
10351 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10352 0, "character", (struct objfile *) NULL);
10353 lai->primitive_type_vector [ada_primitive_type_float] =
10354 init_type (TYPE_CODE_FLT,
10355 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10356 0, "float", (struct objfile *) NULL);
10357 lai->primitive_type_vector [ada_primitive_type_double] =
10358 init_type (TYPE_CODE_FLT,
10359 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10360 0, "long_float", (struct objfile *) NULL);
10361 lai->primitive_type_vector [ada_primitive_type_long_long] =
10362 init_type (TYPE_CODE_INT,
10363 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10364 0, "long_long_integer", (struct objfile *) NULL);
10365 lai->primitive_type_vector [ada_primitive_type_long_double] =
10366 init_type (TYPE_CODE_FLT,
10367 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10368 0, "long_long_float", (struct objfile *) NULL);
10369 lai->primitive_type_vector [ada_primitive_type_natural] =
10370 init_type (TYPE_CODE_INT,
10371 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10372 0, "natural", (struct objfile *) NULL);
10373 lai->primitive_type_vector [ada_primitive_type_positive] =
10374 init_type (TYPE_CODE_INT,
10375 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10376 0, "positive", (struct objfile *) NULL);
10377 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10379 lai->primitive_type_vector [ada_primitive_type_system_address] =
10380 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10381 (struct objfile *) NULL));
10382 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10383 = "system__address";
10386 /* Language vector */
10388 /* Not really used, but needed in the ada_language_defn. */
10391 emit_char (int c, struct ui_file *stream, int quoter)
10393 ada_emit_char (c, stream, quoter, 1);
10399 warnings_issued = 0;
10400 return ada_parse ();
10403 static const struct exp_descriptor ada_exp_descriptor = {
10405 ada_operator_length,
10407 ada_dump_subexp_body,
10408 ada_evaluate_subexp
10411 const struct language_defn ada_language_defn = {
10412 "ada", /* Language name */
10417 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10418 that's not quite what this means. */
10420 &ada_exp_descriptor,
10424 ada_printchar, /* Print a character constant */
10425 ada_printstr, /* Function to print string constant */
10426 emit_char, /* Function to print single char (not used) */
10427 ada_create_fundamental_type, /* Create fundamental type in this language */
10428 ada_print_type, /* Print a type using appropriate syntax */
10429 ada_val_print, /* Print a value using appropriate syntax */
10430 ada_value_print, /* Print a top-level value */
10431 NULL, /* Language specific skip_trampoline */
10432 NULL, /* value_of_this */
10433 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10434 basic_lookup_transparent_type, /* lookup_transparent_type */
10435 ada_la_decode, /* Language specific symbol demangler */
10436 NULL, /* Language specific class_name_from_physname */
10437 ada_op_print_tab, /* expression operators for printing */
10438 0, /* c-style arrays */
10439 1, /* String lower bound */
10441 ada_get_gdb_completer_word_break_characters,
10442 ada_language_arch_info,
10443 ada_print_array_index,
10444 default_pass_by_reference,
10449 _initialize_ada_language (void)
10451 add_language (&ada_language_defn);
10453 varsize_limit = 65536;
10455 obstack_init (&symbol_list_obstack);
10457 decoded_names_store = htab_create_alloc
10458 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10459 NULL, xcalloc, xfree);