1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static int full_match (const char *, const char *);
109 static struct value *make_array_descriptor (struct type *, struct value *);
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const char *, domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (struct expression **, int *, int,
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static int wild_match (const char *, const char *);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
235 static int ada_is_direct_array_type (struct type *);
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
240 static struct value *ada_index_struct_field (int, struct value *, int,
243 static struct value *assign_aggregate (struct value *, struct value *,
247 static void aggregate_assign_from_choices (struct value *, struct value *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
252 static void aggregate_assign_positional (struct value *, struct value *,
254 int *, LONGEST *, int *, int,
258 static void aggregate_assign_others (struct value *, struct value *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 static void ada_forward_operator_length (struct expression *, int, int *,
272 static struct type *ada_find_any_type (const char *name);
275 /* The result of a symbol lookup to be stored in our symbol cache. */
279 /* The name used to perform the lookup. */
281 /* The namespace used during the lookup. */
283 /* The symbol returned by the lookup, or NULL if no matching symbol
286 /* The block where the symbol was found, or NULL if no matching
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
302 #define HASH_SIZE 1009
304 struct ada_symbol_cache
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit;
318 static const char ada_completer_word_break_characters[] =
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
344 /* Space for allocating results of ada_lookup_symbol_list. */
345 static struct obstack symbol_list_obstack;
347 /* Maintenance-related settings for this module. */
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
352 /* Implement the "maintenance set ada" (prefix) command. */
355 maint_set_ada_cmd (char *args, int from_tty)
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
361 /* Implement the "maintenance show ada" (prefix) command. */
364 maint_show_ada_cmd (char *args, int from_tty)
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371 static int ada_ignore_descriptive_types_p = 0;
373 /* Inferior-specific data. */
375 /* Per-inferior data for this module. */
377 struct ada_inferior_data
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
388 const struct exception_support_info *exception_info;
391 /* Our key to this module's inferior data. */
392 static const struct inferior_data *ada_inferior_data;
394 /* A cleanup routine for our inferior data. */
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 struct ada_inferior_data *data;
400 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
405 /* Return our inferior data for the given inferior (INF).
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
416 struct ada_inferior_data *data;
418 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
421 data = XCNEW (struct ada_inferior_data);
422 set_inferior_data (inf, ada_inferior_data, data);
428 /* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
432 ada_inferior_exit (struct inferior *inf)
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
439 /* program-space-specific data. */
441 /* This module's per-program-space data. */
442 struct ada_pspace_data
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
448 /* Key to our per-program-space data. */
449 static const struct program_space_data *ada_pspace_data_handle;
451 /* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
454 This function always returns a valid object. */
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
459 struct ada_pspace_data *data;
461 data = ((struct ada_pspace_data *)
462 program_space_data (pspace, ada_pspace_data_handle));
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
472 /* The cleanup callback for this module's per-program-space data. */
475 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
486 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
487 all typedef layers have been peeled. Otherwise, return TYPE.
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
514 ada_typedef_target_type (struct type *type)
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
521 /* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
526 ada_unqualified_name (const char *decoded_name)
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
537 result = strrchr (decoded_name, '.');
539 result++; /* Skip the dot... */
541 result = decoded_name;
546 /* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
550 add_angle_brackets (const char *str)
552 static char *result = NULL;
555 result = xstrprintf ("<%s>", str);
560 ada_get_gdb_completer_word_break_characters (void)
562 return ada_completer_word_break_characters;
565 /* Print an array element index using the Ada syntax. */
568 ada_print_array_index (struct value *index_value, struct ui_file *stream,
569 const struct value_print_options *options)
571 LA_VALUE_PRINT (index_value, stream, options);
572 fprintf_filtered (stream, " => ");
575 /* Assuming VECT points to an array of *SIZE objects of size
576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
577 updating *SIZE as necessary and returning the (new) array. */
580 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 if (*size < min_size)
585 if (*size < min_size)
587 vect = xrealloc (vect, *size * element_size);
592 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
593 suffix of FIELD_NAME beginning "___". */
596 field_name_match (const char *field_name, const char *target)
598 int len = strlen (target);
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
603 || (startswith (field_name + len, "___")
604 && strcmp (field_name + strlen (field_name) - 6,
609 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
618 ada_get_field_index (const struct type *type, const char *field_name,
622 struct type *struct_type = check_typedef ((struct type *) type);
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
629 error (_("Unable to find field %s in struct %s. Aborting"),
630 field_name, TYPE_NAME (struct_type));
635 /* The length of the prefix of NAME prior to any "___" suffix. */
638 ada_name_prefix_len (const char *name)
644 const char *p = strstr (name, "___");
647 return strlen (name);
653 /* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
657 is_suffix (const char *str, const char *suffix)
664 len2 = strlen (suffix);
665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 /* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
671 static struct value *
672 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 type = ada_check_typedef (type);
675 if (value_type (val) == type)
679 struct value *result;
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
683 ada_ensure_varsize_limit (type);
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
690 result = allocate_value (type);
691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 set_value_component_location (result, val);
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
696 set_value_address (result, value_address (val));
701 static const gdb_byte *
702 cond_offset_host (const gdb_byte *valaddr, long offset)
707 return valaddr + offset;
711 cond_offset_target (CORE_ADDR address, long offset)
716 return address + offset;
719 /* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
724 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
726 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729 lim_warning (const char *format, ...)
733 va_start (args, format);
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
736 vwarning (format, args);
741 /* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
746 ada_ensure_varsize_limit (const struct type *type)
748 if (TYPE_LENGTH (type) > varsize_limit)
749 error (_("object size is larger than varsize-limit"));
752 /* Maximum value of a SIZE-byte signed integer type. */
754 max_of_size (int size)
756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758 return top_bit | (top_bit - 1);
761 /* Minimum value of a SIZE-byte signed integer type. */
763 min_of_size (int size)
765 return -max_of_size (size) - 1;
768 /* Maximum value of a SIZE-byte unsigned integer type. */
770 umax_of_size (int size)
772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774 return top_bit | (top_bit - 1);
777 /* Maximum value of integral type T, as a signed quantity. */
779 max_of_type (struct type *t)
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 return max_of_size (TYPE_LENGTH (t));
787 /* Minimum value of integral type T, as a signed quantity. */
789 min_of_type (struct type *t)
791 if (TYPE_UNSIGNED (t))
794 return min_of_size (TYPE_LENGTH (t));
797 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 ada_discrete_type_high_bound (struct type *type)
801 type = resolve_dynamic_type (type, NULL, 0);
802 switch (TYPE_CODE (type))
804 case TYPE_CODE_RANGE:
805 return TYPE_HIGH_BOUND (type);
807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 return max_of_type (type);
814 error (_("Unexpected type in ada_discrete_type_high_bound."));
818 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 ada_discrete_type_low_bound (struct type *type)
822 type = resolve_dynamic_type (type, NULL, 0);
823 switch (TYPE_CODE (type))
825 case TYPE_CODE_RANGE:
826 return TYPE_LOW_BOUND (type);
828 return TYPE_FIELD_ENUMVAL (type, 0);
833 return min_of_type (type);
835 error (_("Unexpected type in ada_discrete_type_low_bound."));
839 /* The identity on non-range types. For range types, the underlying
840 non-range scalar type. */
843 get_base_type (struct type *type)
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 type = TYPE_TARGET_TYPE (type);
854 /* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
860 ada_get_decoded_value (struct value *value)
862 struct type *type = ada_check_typedef (value_type (value));
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
871 value = ada_coerce_to_simple_array (value);
874 value = ada_to_fixed_value (value);
879 /* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
885 ada_get_decoded_type (struct type *type)
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
895 /* Language Selection */
897 /* If the main program is in Ada, return language_ada, otherwise return LANG
898 (the main program is in Ada iif the adainit symbol is found). */
901 ada_update_initial_language (enum language lang)
903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
904 (struct objfile *) NULL).minsym != NULL)
910 /* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
917 struct bound_minimal_symbol msym;
918 static char *main_program_name = NULL;
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927 if (msym.minsym != NULL)
929 CORE_ADDR main_program_name_addr;
932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
933 if (main_program_name_addr == 0)
934 error (_("Invalid address for Ada main program name."));
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
942 return main_program_name;
945 /* The main procedure doesn't seem to be in Ada. */
951 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
979 /* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
983 ada_encode (const char *decoded)
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
997 for (p = decoded; *p != '\0'; p += 1)
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1006 const struct ada_opname_map *mapping;
1008 for (mapping = ada_opname_table;
1009 mapping->encoded != NULL
1010 && !startswith (p, mapping->decoded); mapping += 1)
1012 if (mapping->encoded == NULL)
1013 error (_("invalid Ada operator name: %s"), p);
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1020 encoding_buffer[k] = *p;
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
1029 /* Return NAME folded to lower case, or, if surrounded by single
1030 quotes, unfolded, but with the quotes stripped away. Result good
1034 ada_fold_name (const char *name)
1036 static char *fold_buffer = NULL;
1037 static size_t fold_buffer_size = 0;
1039 int len = strlen (name);
1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042 if (name[0] == '\'')
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
1051 for (i = 0; i <= len; i += 1)
1052 fold_buffer[i] = tolower (name[i]);
1058 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1061 is_lower_alphanum (const char c)
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1066 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1079 ada_remove_trailing_digits (const char *encoded, int *len)
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1085 while (i > 0 && isdigit (encoded[i]))
1087 if (i >= 0 && encoded[i] == '.')
1089 else if (i >= 0 && encoded[i] == '$')
1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1098 /* Remove the suffix introduced by the compiler for protected object
1102 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 /* Remove trailing N. */
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
1109 the 'P' suffix. The second calls the first one after handling
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1120 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1123 ada_remove_Xbn_suffix (const char *encoded, int *len)
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1130 if (encoded[i] != 'X')
1136 if (isalnum (encoded[i-1]))
1140 /* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
1144 The resulting string is valid until the next call of ada_decode.
1145 If the string is unchanged by decoding, the original string pointer
1149 ada_decode (const char *encoded)
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
1162 if (startswith (encoded, "_ada_"))
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
1168 if (encoded[0] == '_' || encoded[0] == '<')
1171 len0 = strlen (encoded);
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1209 /* Make decoded big enough for possible expansion by operator name. */
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 else if (encoded[i] == '$')
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
1237 /* Is this a symbol function? */
1238 if (at_start_name && encoded[i] == 'O')
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 int op_len = strlen (ada_opname_table[k].encoded);
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 && !isalnum (encoded[i + op_len]))
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1252 j += strlen (ada_opname_table[k].decoded);
1256 if (ada_opname_table[k].encoded != NULL)
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1286 /* Remove _E{DIGITS}+[sb] */
1288 /* Just as for protected object subprograms, there are 2 categories
1289 of subprograms created by the compiler for each entry. The first
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1304 while (k < len0 && isdigit (encoded[k]))
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1315 || (k < len0 && encoded[k] == '_'))
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 /* Replace '__' by '.'. */
1363 /* It's a character part of the decoded name, so just copy it
1365 decoded[j] = encoded[i];
1370 decoded[j] = '\000';
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
1379 if (strcmp (decoded, encoded) == 0)
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1395 /* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400 static struct htab *decoded_names_store;
1402 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
1410 when a decoded name is cached in it. */
1413 ada_decode_symbol (const struct general_symbol_info *arg)
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.demangled_name;
1419 if (!gsymbol->ada_mangled)
1421 const char *decoded = ada_decode (gsymbol->name);
1422 struct obstack *obstack = gsymbol->language_specific.obstack;
1424 gsymbol->ada_mangled = 1;
1426 if (obstack != NULL)
1428 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1431 /* Sometimes, we can't find a corresponding objfile, in
1432 which case, we put the result on the heap. Since we only
1433 decode when needed, we hope this usually does not cause a
1434 significant memory leak (FIXME). */
1436 char **slot = (char **) htab_find_slot (decoded_names_store,
1440 *slot = xstrdup (decoded);
1449 ada_la_decode (const char *encoded, int options)
1451 return xstrdup (ada_decode (encoded));
1454 /* Implement la_sniff_from_mangled_name for Ada. */
1457 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 const char *demangled = ada_decode (mangled);
1463 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 /* Set the gsymbol language to Ada, but still return 0.
1466 Two reasons for that:
1468 1. For Ada, we prefer computing the symbol's decoded name
1469 on the fly rather than pre-compute it, in order to save
1470 memory (Ada projects are typically very large).
1472 2. There are some areas in the definition of the GNAT
1473 encoding where, with a bit of bad luck, we might be able
1474 to decode a non-Ada symbol, generating an incorrect
1475 demangled name (Eg: names ending with "TB" for instance
1476 are identified as task bodies and so stripped from
1477 the decoded name returned).
1479 Returning 1, here, but not setting *DEMANGLED, helps us get a
1480 little bit of the best of both worlds. Because we're last,
1481 we should not affect any of the other languages that were
1482 able to demangle the symbol before us; we get to correctly
1483 tag Ada symbols as such; and even if we incorrectly tagged a
1484 non-Ada symbol, which should be rare, any routing through the
1485 Ada language should be transparent (Ada tries to behave much
1486 like C/C++ with non-Ada symbols). */
1493 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1494 suffixes that encode debugging information or leading _ada_ on
1495 SYM_NAME (see is_name_suffix commentary for the debugging
1496 information that is ignored). If WILD, then NAME need only match a
1497 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1498 either argument is NULL. */
1501 match_name (const char *sym_name, const char *name, int wild)
1503 if (sym_name == NULL || name == NULL)
1506 return wild_match (sym_name, name) == 0;
1509 int len_name = strlen (name);
1511 return (strncmp (sym_name, name, len_name) == 0
1512 && is_name_suffix (sym_name + len_name))
1513 || (startswith (sym_name, "_ada_")
1514 && strncmp (sym_name + 5, name, len_name) == 0
1515 && is_name_suffix (sym_name + len_name + 5));
1522 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1523 generated by the GNAT compiler to describe the index type used
1524 for each dimension of an array, check whether it follows the latest
1525 known encoding. If not, fix it up to conform to the latest encoding.
1526 Otherwise, do nothing. This function also does nothing if
1527 INDEX_DESC_TYPE is NULL.
1529 The GNAT encoding used to describle the array index type evolved a bit.
1530 Initially, the information would be provided through the name of each
1531 field of the structure type only, while the type of these fields was
1532 described as unspecified and irrelevant. The debugger was then expected
1533 to perform a global type lookup using the name of that field in order
1534 to get access to the full index type description. Because these global
1535 lookups can be very expensive, the encoding was later enhanced to make
1536 the global lookup unnecessary by defining the field type as being
1537 the full index type description.
1539 The purpose of this routine is to allow us to support older versions
1540 of the compiler by detecting the use of the older encoding, and by
1541 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1542 we essentially replace each field's meaningless type by the associated
1546 ada_fixup_array_indexes_type (struct type *index_desc_type)
1550 if (index_desc_type == NULL)
1552 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1555 to check one field only, no need to check them all). If not, return
1558 If our INDEX_DESC_TYPE was generated using the older encoding,
1559 the field type should be a meaningless integer type whose name
1560 is not equal to the field name. */
1561 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1562 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1563 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1566 /* Fixup each field of INDEX_DESC_TYPE. */
1567 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1570 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1573 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1577 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579 static const char *bound_name[] = {
1580 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1581 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1584 /* Maximum number of array dimensions we are prepared to handle. */
1586 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1589 /* The desc_* routines return primitive portions of array descriptors
1592 /* The descriptor or array type, if any, indicated by TYPE; removes
1593 level of indirection, if needed. */
1595 static struct type *
1596 desc_base_type (struct type *type)
1600 type = ada_check_typedef (type);
1601 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1602 type = ada_typedef_target_type (type);
1605 && (TYPE_CODE (type) == TYPE_CODE_PTR
1606 || TYPE_CODE (type) == TYPE_CODE_REF))
1607 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1612 /* True iff TYPE indicates a "thin" array pointer type. */
1615 is_thin_pntr (struct type *type)
1618 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1619 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1622 /* The descriptor type for thin pointer type TYPE. */
1624 static struct type *
1625 thin_descriptor_type (struct type *type)
1627 struct type *base_type = desc_base_type (type);
1629 if (base_type == NULL)
1631 if (is_suffix (ada_type_name (base_type), "___XVE"))
1635 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637 if (alt_type == NULL)
1644 /* A pointer to the array data for thin-pointer value VAL. */
1646 static struct value *
1647 thin_data_pntr (struct value *val)
1649 struct type *type = ada_check_typedef (value_type (val));
1650 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652 data_type = lookup_pointer_type (data_type);
1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655 return value_cast (data_type, value_copy (val));
1657 return value_from_longest (data_type, value_address (val));
1660 /* True iff TYPE indicates a "thick" array pointer type. */
1663 is_thick_pntr (struct type *type)
1665 type = desc_base_type (type);
1666 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1667 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1670 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1671 pointer to one, the type of its bounds data; otherwise, NULL. */
1673 static struct type *
1674 desc_bounds_type (struct type *type)
1678 type = desc_base_type (type);
1682 else if (is_thin_pntr (type))
1684 type = thin_descriptor_type (type);
1687 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 return ada_check_typedef (r);
1691 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1700 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1701 one, a pointer to its bounds data. Otherwise NULL. */
1703 static struct value *
1704 desc_bounds (struct value *arr)
1706 struct type *type = ada_check_typedef (value_type (arr));
1708 if (is_thin_pntr (type))
1710 struct type *bounds_type =
1711 desc_bounds_type (thin_descriptor_type (type));
1714 if (bounds_type == NULL)
1715 error (_("Bad GNAT array descriptor"));
1717 /* NOTE: The following calculation is not really kosher, but
1718 since desc_type is an XVE-encoded type (and shouldn't be),
1719 the correct calculation is a real pain. FIXME (and fix GCC). */
1720 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1721 addr = value_as_long (arr);
1723 addr = value_address (arr);
1726 value_from_longest (lookup_pointer_type (bounds_type),
1727 addr - TYPE_LENGTH (bounds_type));
1730 else if (is_thick_pntr (type))
1732 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1733 _("Bad GNAT array descriptor"));
1734 struct type *p_bounds_type = value_type (p_bounds);
1737 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741 if (TYPE_STUB (target_type))
1742 p_bounds = value_cast (lookup_pointer_type
1743 (ada_check_typedef (target_type)),
1747 error (_("Bad GNAT array descriptor"));
1755 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the bounds data. */
1759 fat_pntr_bounds_bitpos (struct type *type)
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765 size of the field containing the address of the bounds data. */
1768 fat_pntr_bounds_bitsize (struct type *type)
1770 type = desc_base_type (type);
1772 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 1);
1775 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1778 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779 pointer to one, the type of its array data (a array-with-no-bounds type);
1780 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1783 static struct type *
1784 desc_data_target_type (struct type *type)
1786 type = desc_base_type (type);
1788 /* NOTE: The following is bogus; see comment in desc_bounds. */
1789 if (is_thin_pntr (type))
1790 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1791 else if (is_thick_pntr (type))
1793 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1796 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1797 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1803 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1806 static struct value *
1807 desc_data (struct value *arr)
1809 struct type *type = value_type (arr);
1811 if (is_thin_pntr (type))
1812 return thin_data_pntr (arr);
1813 else if (is_thick_pntr (type))
1814 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1815 _("Bad GNAT array descriptor"));
1821 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1822 position of the field containing the address of the data. */
1825 fat_pntr_data_bitpos (struct type *type)
1827 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1830 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1831 size of the field containing the address of the data. */
1834 fat_pntr_data_bitsize (struct type *type)
1836 type = desc_base_type (type);
1838 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1839 return TYPE_FIELD_BITSIZE (type, 0);
1841 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1844 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1845 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1846 bound, if WHICH is 1. The first bound is I=1. */
1848 static struct value *
1849 desc_one_bound (struct value *bounds, int i, int which)
1851 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1852 _("Bad GNAT array descriptor bounds"));
1855 /* If BOUNDS is an array-bounds structure type, return the bit position
1856 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1857 bound, if WHICH is 1. The first bound is I=1. */
1860 desc_bound_bitpos (struct type *type, int i, int which)
1862 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1865 /* If BOUNDS is an array-bounds structure type, return the bit field size
1866 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1867 bound, if WHICH is 1. The first bound is I=1. */
1870 desc_bound_bitsize (struct type *type, int i, int which)
1872 type = desc_base_type (type);
1874 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1875 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1880 /* If TYPE is the type of an array-bounds structure, the type of its
1881 Ith bound (numbering from 1). Otherwise, NULL. */
1883 static struct type *
1884 desc_index_type (struct type *type, int i)
1886 type = desc_base_type (type);
1888 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1889 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1894 /* The number of index positions in the array-bounds type TYPE.
1895 Return 0 if TYPE is NULL. */
1898 desc_arity (struct type *type)
1900 type = desc_base_type (type);
1903 return TYPE_NFIELDS (type) / 2;
1907 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1908 an array descriptor type (representing an unconstrained array
1912 ada_is_direct_array_type (struct type *type)
1916 type = ada_check_typedef (type);
1917 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1918 || ada_is_array_descriptor_type (type));
1921 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1925 ada_is_array_type (struct type *type)
1928 && (TYPE_CODE (type) == TYPE_CODE_PTR
1929 || TYPE_CODE (type) == TYPE_CODE_REF))
1930 type = TYPE_TARGET_TYPE (type);
1931 return ada_is_direct_array_type (type);
1934 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1937 ada_is_simple_array_type (struct type *type)
1941 type = ada_check_typedef (type);
1942 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1943 || (TYPE_CODE (type) == TYPE_CODE_PTR
1944 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1945 == TYPE_CODE_ARRAY));
1948 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1951 ada_is_array_descriptor_type (struct type *type)
1953 struct type *data_type = desc_data_target_type (type);
1957 type = ada_check_typedef (type);
1958 return (data_type != NULL
1959 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1960 && desc_arity (desc_bounds_type (type)) > 0);
1963 /* Non-zero iff type is a partially mal-formed GNAT array
1964 descriptor. FIXME: This is to compensate for some problems with
1965 debugging output from GNAT. Re-examine periodically to see if it
1969 ada_is_bogus_array_descriptor (struct type *type)
1973 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1974 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1975 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1976 && !ada_is_array_descriptor_type (type);
1980 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1981 (fat pointer) returns the type of the array data described---specifically,
1982 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1983 in from the descriptor; otherwise, they are left unspecified. If
1984 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1985 returns NULL. The result is simply the type of ARR if ARR is not
1988 ada_type_of_array (struct value *arr, int bounds)
1990 if (ada_is_constrained_packed_array_type (value_type (arr)))
1991 return decode_constrained_packed_array_type (value_type (arr));
1993 if (!ada_is_array_descriptor_type (value_type (arr)))
1994 return value_type (arr);
1998 struct type *array_type =
1999 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2002 TYPE_FIELD_BITSIZE (array_type, 0) =
2003 decode_packed_array_bitsize (value_type (arr));
2009 struct type *elt_type;
2011 struct value *descriptor;
2013 elt_type = ada_array_element_type (value_type (arr), -1);
2014 arity = ada_array_arity (value_type (arr));
2016 if (elt_type == NULL || arity == 0)
2017 return ada_check_typedef (value_type (arr));
2019 descriptor = desc_bounds (arr);
2020 if (value_as_long (descriptor) == 0)
2024 struct type *range_type = alloc_type_copy (value_type (arr));
2025 struct type *array_type = alloc_type_copy (value_type (arr));
2026 struct value *low = desc_one_bound (descriptor, arity, 0);
2027 struct value *high = desc_one_bound (descriptor, arity, 1);
2030 create_static_range_type (range_type, value_type (low),
2031 longest_to_int (value_as_long (low)),
2032 longest_to_int (value_as_long (high)));
2033 elt_type = create_array_type (array_type, elt_type, range_type);
2035 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 /* We need to store the element packed bitsize, as well as
2038 recompute the array size, because it was previously
2039 computed based on the unpacked element size. */
2040 LONGEST lo = value_as_long (low);
2041 LONGEST hi = value_as_long (high);
2043 TYPE_FIELD_BITSIZE (elt_type, 0) =
2044 decode_packed_array_bitsize (value_type (arr));
2045 /* If the array has no element, then the size is already
2046 zero, and does not need to be recomputed. */
2050 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2057 return lookup_pointer_type (elt_type);
2061 /* If ARR does not represent an array, returns ARR unchanged.
2062 Otherwise, returns either a standard GDB array with bounds set
2063 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2064 GDB array. Returns NULL if ARR is a null fat pointer. */
2067 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 if (ada_is_array_descriptor_type (value_type (arr)))
2071 struct type *arrType = ada_type_of_array (arr, 1);
2073 if (arrType == NULL)
2075 return value_cast (arrType, value_copy (desc_data (arr)));
2077 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2078 return decode_constrained_packed_array (arr);
2083 /* If ARR does not represent an array, returns ARR unchanged.
2084 Otherwise, returns a standard GDB array describing ARR (which may
2085 be ARR itself if it already is in the proper form). */
2088 ada_coerce_to_simple_array (struct value *arr)
2090 if (ada_is_array_descriptor_type (value_type (arr)))
2092 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2095 error (_("Bounds unavailable for null array pointer."));
2096 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2097 return value_ind (arrVal);
2099 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2100 return decode_constrained_packed_array (arr);
2105 /* If TYPE represents a GNAT array type, return it translated to an
2106 ordinary GDB array type (possibly with BITSIZE fields indicating
2107 packing). For other types, is the identity. */
2110 ada_coerce_to_simple_array_type (struct type *type)
2112 if (ada_is_constrained_packed_array_type (type))
2113 return decode_constrained_packed_array_type (type);
2115 if (ada_is_array_descriptor_type (type))
2116 return ada_check_typedef (desc_data_target_type (type));
2121 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2124 ada_is_packed_array_type (struct type *type)
2128 type = desc_base_type (type);
2129 type = ada_check_typedef (type);
2131 ada_type_name (type) != NULL
2132 && strstr (ada_type_name (type), "___XP") != NULL;
2135 /* Non-zero iff TYPE represents a standard GNAT constrained
2136 packed-array type. */
2139 ada_is_constrained_packed_array_type (struct type *type)
2141 return ada_is_packed_array_type (type)
2142 && !ada_is_array_descriptor_type (type);
2145 /* Non-zero iff TYPE represents an array descriptor for a
2146 unconstrained packed-array type. */
2149 ada_is_unconstrained_packed_array_type (struct type *type)
2151 return ada_is_packed_array_type (type)
2152 && ada_is_array_descriptor_type (type);
2155 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2156 return the size of its elements in bits. */
2159 decode_packed_array_bitsize (struct type *type)
2161 const char *raw_name;
2165 /* Access to arrays implemented as fat pointers are encoded as a typedef
2166 of the fat pointer type. We need the name of the fat pointer type
2167 to do the decoding, so strip the typedef layer. */
2168 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2169 type = ada_typedef_target_type (type);
2171 raw_name = ada_type_name (ada_check_typedef (type));
2173 raw_name = ada_type_name (desc_base_type (type));
2178 tail = strstr (raw_name, "___XP");
2179 gdb_assert (tail != NULL);
2181 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2184 (_("could not understand bit size information on packed array"));
2191 /* Given that TYPE is a standard GDB array type with all bounds filled
2192 in, and that the element size of its ultimate scalar constituents
2193 (that is, either its elements, or, if it is an array of arrays, its
2194 elements' elements, etc.) is *ELT_BITS, return an identical type,
2195 but with the bit sizes of its elements (and those of any
2196 constituent arrays) recorded in the BITSIZE components of its
2197 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2200 Note that, for arrays whose index type has an XA encoding where
2201 a bound references a record discriminant, getting that discriminant,
2202 and therefore the actual value of that bound, is not possible
2203 because none of the given parameters gives us access to the record.
2204 This function assumes that it is OK in the context where it is being
2205 used to return an array whose bounds are still dynamic and where
2206 the length is arbitrary. */
2208 static struct type *
2209 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 struct type *new_elt_type;
2212 struct type *new_type;
2213 struct type *index_type_desc;
2214 struct type *index_type;
2215 LONGEST low_bound, high_bound;
2217 type = ada_check_typedef (type);
2218 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2221 index_type_desc = ada_find_parallel_type (type, "___XA");
2222 if (index_type_desc)
2223 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2226 index_type = TYPE_INDEX_TYPE (type);
2228 new_type = alloc_type_copy (type);
2230 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 create_array_type (new_type, new_elt_type, index_type);
2233 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2234 TYPE_NAME (new_type) = ada_type_name (type);
2236 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2237 && is_dynamic_type (check_typedef (index_type)))
2238 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2239 low_bound = high_bound = 0;
2240 if (high_bound < low_bound)
2241 *elt_bits = TYPE_LENGTH (new_type) = 0;
2244 *elt_bits *= (high_bound - low_bound + 1);
2245 TYPE_LENGTH (new_type) =
2246 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2249 TYPE_FIXED_INSTANCE (new_type) = 1;
2253 /* The array type encoded by TYPE, where
2254 ada_is_constrained_packed_array_type (TYPE). */
2256 static struct type *
2257 decode_constrained_packed_array_type (struct type *type)
2259 const char *raw_name = ada_type_name (ada_check_typedef (type));
2262 struct type *shadow_type;
2266 raw_name = ada_type_name (desc_base_type (type));
2271 name = (char *) alloca (strlen (raw_name) + 1);
2272 tail = strstr (raw_name, "___XP");
2273 type = desc_base_type (type);
2275 memcpy (name, raw_name, tail - raw_name);
2276 name[tail - raw_name] = '\000';
2278 shadow_type = ada_find_parallel_type_with_name (type, name);
2280 if (shadow_type == NULL)
2282 lim_warning (_("could not find bounds information on packed array"));
2285 shadow_type = check_typedef (shadow_type);
2287 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 lim_warning (_("could not understand bounds "
2290 "information on packed array"));
2294 bits = decode_packed_array_bitsize (type);
2295 return constrained_packed_array_type (shadow_type, &bits);
2298 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2299 array, returns a simple array that denotes that array. Its type is a
2300 standard GDB array type except that the BITSIZEs of the array
2301 target types are set to the number of bits in each element, and the
2302 type length is set appropriately. */
2304 static struct value *
2305 decode_constrained_packed_array (struct value *arr)
2309 /* If our value is a pointer, then dereference it. Likewise if
2310 the value is a reference. Make sure that this operation does not
2311 cause the target type to be fixed, as this would indirectly cause
2312 this array to be decoded. The rest of the routine assumes that
2313 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2314 and "value_ind" routines to perform the dereferencing, as opposed
2315 to using "ada_coerce_ref" or "ada_value_ind". */
2316 arr = coerce_ref (arr);
2317 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2318 arr = value_ind (arr);
2320 type = decode_constrained_packed_array_type (value_type (arr));
2323 error (_("can't unpack array"));
2327 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2328 && ada_is_modular_type (value_type (arr)))
2330 /* This is a (right-justified) modular type representing a packed
2331 array with no wrapper. In order to interpret the value through
2332 the (left-justified) packed array type we just built, we must
2333 first left-justify it. */
2334 int bit_size, bit_pos;
2337 mod = ada_modulus (value_type (arr)) - 1;
2344 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2345 arr = ada_value_primitive_packed_val (arr, NULL,
2346 bit_pos / HOST_CHAR_BIT,
2347 bit_pos % HOST_CHAR_BIT,
2352 return coerce_unspec_val_to_type (arr, type);
2356 /* The value of the element of packed array ARR at the ARITY indices
2357 given in IND. ARR must be a simple array. */
2359 static struct value *
2360 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2363 int bits, elt_off, bit_off;
2364 long elt_total_bit_offset;
2365 struct type *elt_type;
2369 elt_total_bit_offset = 0;
2370 elt_type = ada_check_typedef (value_type (arr));
2371 for (i = 0; i < arity; i += 1)
2373 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2374 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 (_("attempt to do packed indexing of "
2377 "something other than a packed array"));
2380 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2381 LONGEST lowerbound, upperbound;
2384 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 lim_warning (_("don't know bounds of array"));
2387 lowerbound = upperbound = 0;
2390 idx = pos_atr (ind[i]);
2391 if (idx < lowerbound || idx > upperbound)
2392 lim_warning (_("packed array index %ld out of bounds"),
2394 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2395 elt_total_bit_offset += (idx - lowerbound) * bits;
2396 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2399 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2400 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2407 /* Non-zero iff TYPE includes negative integer values. */
2410 has_negatives (struct type *type)
2412 switch (TYPE_CODE (type))
2417 return !TYPE_UNSIGNED (type);
2418 case TYPE_CODE_RANGE:
2419 return TYPE_LOW_BOUND (type) < 0;
2423 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2424 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2425 the unpacked buffer.
2427 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2428 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2433 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2438 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2439 gdb_byte *unpacked, int unpacked_len,
2440 int is_big_endian, int is_signed_type,
2443 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2444 int src_idx; /* Index into the source area */
2445 int src_bytes_left; /* Number of source bytes left to process. */
2446 int srcBitsLeft; /* Number of source bits left to move */
2447 int unusedLS; /* Number of bits in next significant
2448 byte of source that are unused */
2450 int unpacked_idx; /* Index into the unpacked buffer */
2451 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453 unsigned long accum; /* Staging area for bits being transferred */
2454 int accumSize; /* Number of meaningful bits in accum */
2457 /* Transmit bytes from least to most significant; delta is the direction
2458 the indices move. */
2459 int delta = is_big_endian ? -1 : 1;
2461 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2464 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2465 bit_size, unpacked_len);
2467 srcBitsLeft = bit_size;
2468 src_bytes_left = src_len;
2469 unpacked_bytes_left = unpacked_len;
2474 src_idx = src_len - 1;
2476 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2480 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2486 unpacked_idx = unpacked_len - 1;
2490 /* Non-scalar values must be aligned at a byte boundary... */
2492 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2493 /* ... And are placed at the beginning (most-significant) bytes
2495 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2496 unpacked_bytes_left = unpacked_idx + 1;
2501 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503 src_idx = unpacked_idx = 0;
2504 unusedLS = bit_offset;
2507 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2512 while (src_bytes_left > 0)
2514 /* Mask for removing bits of the next source byte that are not
2515 part of the value. */
2516 unsigned int unusedMSMask =
2517 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 /* Sign-extend bits for this byte. */
2520 unsigned int signMask = sign & ~unusedMSMask;
2523 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2524 accumSize += HOST_CHAR_BIT - unusedLS;
2525 if (accumSize >= HOST_CHAR_BIT)
2527 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2528 accumSize -= HOST_CHAR_BIT;
2529 accum >>= HOST_CHAR_BIT;
2530 unpacked_bytes_left -= 1;
2531 unpacked_idx += delta;
2533 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 src_bytes_left -= 1;
2538 while (unpacked_bytes_left > 0)
2540 accum |= sign << accumSize;
2541 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2542 accumSize -= HOST_CHAR_BIT;
2545 accum >>= HOST_CHAR_BIT;
2546 unpacked_bytes_left -= 1;
2547 unpacked_idx += delta;
2551 /* Create a new value of type TYPE from the contents of OBJ starting
2552 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2553 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2554 assigning through the result will set the field fetched from.
2555 VALADDR is ignored unless OBJ is NULL, in which case,
2556 VALADDR+OFFSET must address the start of storage containing the
2557 packed value. The value returned in this case is never an lval.
2558 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2561 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2562 long offset, int bit_offset, int bit_size,
2566 const gdb_byte *src; /* First byte containing data to unpack */
2568 const int is_scalar = is_scalar_type (type);
2569 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2570 gdb::byte_vector staging;
2572 type = ada_check_typedef (type);
2575 src = valaddr + offset;
2577 src = value_contents (obj) + offset;
2579 if (is_dynamic_type (type))
2581 /* The length of TYPE might by dynamic, so we need to resolve
2582 TYPE in order to know its actual size, which we then use
2583 to create the contents buffer of the value we return.
2584 The difficulty is that the data containing our object is
2585 packed, and therefore maybe not at a byte boundary. So, what
2586 we do, is unpack the data into a byte-aligned buffer, and then
2587 use that buffer as our object's value for resolving the type. */
2588 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2589 staging.resize (staging_len);
2591 ada_unpack_from_contents (src, bit_offset, bit_size,
2592 staging.data (), staging.size (),
2593 is_big_endian, has_negatives (type),
2595 type = resolve_dynamic_type (type, staging.data (), 0);
2596 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2598 /* This happens when the length of the object is dynamic,
2599 and is actually smaller than the space reserved for it.
2600 For instance, in an array of variant records, the bit_size
2601 we're given is the array stride, which is constant and
2602 normally equal to the maximum size of its element.
2603 But, in reality, each element only actually spans a portion
2605 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2611 v = allocate_value (type);
2612 src = valaddr + offset;
2614 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2616 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2619 v = value_at (type, value_address (obj) + offset);
2620 buf = (gdb_byte *) alloca (src_len);
2621 read_memory (value_address (v), buf, src_len);
2626 v = allocate_value (type);
2627 src = value_contents (obj) + offset;
2632 long new_offset = offset;
2634 set_value_component_location (v, obj);
2635 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2636 set_value_bitsize (v, bit_size);
2637 if (value_bitpos (v) >= HOST_CHAR_BIT)
2640 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2642 set_value_offset (v, new_offset);
2644 /* Also set the parent value. This is needed when trying to
2645 assign a new value (in inferior memory). */
2646 set_value_parent (v, obj);
2649 set_value_bitsize (v, bit_size);
2650 unpacked = value_contents_writeable (v);
2654 memset (unpacked, 0, TYPE_LENGTH (type));
2658 if (staging.size () == TYPE_LENGTH (type))
2660 /* Small short-cut: If we've unpacked the data into a buffer
2661 of the same size as TYPE's length, then we can reuse that,
2662 instead of doing the unpacking again. */
2663 memcpy (unpacked, staging.data (), staging.size ());
2666 ada_unpack_from_contents (src, bit_offset, bit_size,
2667 unpacked, TYPE_LENGTH (type),
2668 is_big_endian, has_negatives (type), is_scalar);
2673 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2674 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2677 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2678 int src_offset, int n, int bits_big_endian_p)
2680 unsigned int accum, mask;
2681 int accum_bits, chunk_size;
2683 target += targ_offset / HOST_CHAR_BIT;
2684 targ_offset %= HOST_CHAR_BIT;
2685 source += src_offset / HOST_CHAR_BIT;
2686 src_offset %= HOST_CHAR_BIT;
2687 if (bits_big_endian_p)
2689 accum = (unsigned char) *source;
2691 accum_bits = HOST_CHAR_BIT - src_offset;
2697 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2698 accum_bits += HOST_CHAR_BIT;
2700 chunk_size = HOST_CHAR_BIT - targ_offset;
2703 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2704 mask = ((1 << chunk_size) - 1) << unused_right;
2707 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2709 accum_bits -= chunk_size;
2716 accum = (unsigned char) *source >> src_offset;
2718 accum_bits = HOST_CHAR_BIT - src_offset;
2722 accum = accum + ((unsigned char) *source << accum_bits);
2723 accum_bits += HOST_CHAR_BIT;
2725 chunk_size = HOST_CHAR_BIT - targ_offset;
2728 mask = ((1 << chunk_size) - 1) << targ_offset;
2729 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2731 accum_bits -= chunk_size;
2732 accum >>= chunk_size;
2739 /* Store the contents of FROMVAL into the location of TOVAL.
2740 Return a new value with the location of TOVAL and contents of
2741 FROMVAL. Handles assignment into packed fields that have
2742 floating-point or non-scalar types. */
2744 static struct value *
2745 ada_value_assign (struct value *toval, struct value *fromval)
2747 struct type *type = value_type (toval);
2748 int bits = value_bitsize (toval);
2750 toval = ada_coerce_ref (toval);
2751 fromval = ada_coerce_ref (fromval);
2753 if (ada_is_direct_array_type (value_type (toval)))
2754 toval = ada_coerce_to_simple_array (toval);
2755 if (ada_is_direct_array_type (value_type (fromval)))
2756 fromval = ada_coerce_to_simple_array (fromval);
2758 if (!deprecated_value_modifiable (toval))
2759 error (_("Left operand of assignment is not a modifiable lvalue."));
2761 if (VALUE_LVAL (toval) == lval_memory
2763 && (TYPE_CODE (type) == TYPE_CODE_FLT
2764 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2766 int len = (value_bitpos (toval)
2767 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2769 gdb_byte *buffer = (gdb_byte *) alloca (len);
2771 CORE_ADDR to_addr = value_address (toval);
2773 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2774 fromval = value_cast (type, fromval);
2776 read_memory (to_addr, buffer, len);
2777 from_size = value_bitsize (fromval);
2779 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2780 if (gdbarch_bits_big_endian (get_type_arch (type)))
2781 move_bits (buffer, value_bitpos (toval),
2782 value_contents (fromval), from_size - bits, bits, 1);
2784 move_bits (buffer, value_bitpos (toval),
2785 value_contents (fromval), 0, bits, 0);
2786 write_memory_with_notification (to_addr, buffer, len);
2788 val = value_copy (toval);
2789 memcpy (value_contents_raw (val), value_contents (fromval),
2790 TYPE_LENGTH (type));
2791 deprecated_set_value_type (val, type);
2796 return value_assign (toval, fromval);
2800 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2801 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2802 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2803 COMPONENT, and not the inferior's memory. The current contents
2804 of COMPONENT are ignored.
2806 Although not part of the initial design, this function also works
2807 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2808 had a null address, and COMPONENT had an address which is equal to
2809 its offset inside CONTAINER. */
2812 value_assign_to_component (struct value *container, struct value *component,
2815 LONGEST offset_in_container =
2816 (LONGEST) (value_address (component) - value_address (container));
2817 int bit_offset_in_container =
2818 value_bitpos (component) - value_bitpos (container);
2821 val = value_cast (value_type (component), val);
2823 if (value_bitsize (component) == 0)
2824 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2826 bits = value_bitsize (component);
2828 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2829 move_bits (value_contents_writeable (container) + offset_in_container,
2830 value_bitpos (container) + bit_offset_in_container,
2831 value_contents (val),
2832 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2835 move_bits (value_contents_writeable (container) + offset_in_container,
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val), 0, bits, 0);
2840 /* The value of the element of array ARR at the ARITY indices given in IND.
2841 ARR may be either a simple array, GNAT array descriptor, or pointer
2845 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2849 struct type *elt_type;
2851 elt = ada_coerce_to_simple_array (arr);
2853 elt_type = ada_check_typedef (value_type (elt));
2854 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2856 return value_subscript_packed (elt, arity, ind);
2858 for (k = 0; k < arity; k += 1)
2860 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2861 error (_("too many subscripts (%d expected)"), k);
2862 elt = value_subscript (elt, pos_atr (ind[k]));
2867 /* Assuming ARR is a pointer to a GDB array, the value of the element
2868 of *ARR at the ARITY indices given in IND.
2869 Does not read the entire array into memory.
2871 Note: Unlike what one would expect, this function is used instead of
2872 ada_value_subscript for basically all non-packed array types. The reason
2873 for this is that a side effect of doing our own pointer arithmetics instead
2874 of relying on value_subscript is that there is no implicit typedef peeling.
2875 This is important for arrays of array accesses, where it allows us to
2876 preserve the fact that the array's element is an array access, where the
2877 access part os encoded in a typedef layer. */
2879 static struct value *
2880 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2883 struct value *array_ind = ada_value_ind (arr);
2885 = check_typedef (value_enclosing_type (array_ind));
2887 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2888 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2889 return value_subscript_packed (array_ind, arity, ind);
2891 for (k = 0; k < arity; k += 1)
2894 struct value *lwb_value;
2896 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2897 error (_("too many subscripts (%d expected)"), k);
2898 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2900 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2901 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2902 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2903 type = TYPE_TARGET_TYPE (type);
2906 return value_ind (arr);
2909 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2910 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2911 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2912 this array is LOW, as per Ada rules. */
2913 static struct value *
2914 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2917 struct type *type0 = ada_check_typedef (type);
2918 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2919 struct type *index_type
2920 = create_static_range_type (NULL, base_index_type, low, high);
2921 struct type *slice_type =
2922 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2923 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2924 LONGEST base_low_pos, low_pos;
2927 if (!discrete_position (base_index_type, low, &low_pos)
2928 || !discrete_position (base_index_type, base_low, &base_low_pos))
2930 warning (_("unable to get positions in slice, use bounds instead"));
2932 base_low_pos = base_low;
2935 base = value_as_address (array_ptr)
2936 + ((low_pos - base_low_pos)
2937 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2938 return value_at_lazy (slice_type, base);
2942 static struct value *
2943 ada_value_slice (struct value *array, int low, int high)
2945 struct type *type = ada_check_typedef (value_type (array));
2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2947 struct type *index_type
2948 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2949 struct type *slice_type =
2950 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2951 LONGEST low_pos, high_pos;
2953 if (!discrete_position (base_index_type, low, &low_pos)
2954 || !discrete_position (base_index_type, high, &high_pos))
2956 warning (_("unable to get positions in slice, use bounds instead"));
2961 return value_cast (slice_type,
2962 value_slice (array, low, high_pos - low_pos + 1));
2965 /* If type is a record type in the form of a standard GNAT array
2966 descriptor, returns the number of dimensions for type. If arr is a
2967 simple array, returns the number of "array of"s that prefix its
2968 type designation. Otherwise, returns 0. */
2971 ada_array_arity (struct type *type)
2978 type = desc_base_type (type);
2981 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2982 return desc_arity (desc_bounds_type (type));
2984 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2987 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2993 /* If TYPE is a record type in the form of a standard GNAT array
2994 descriptor or a simple array type, returns the element type for
2995 TYPE after indexing by NINDICES indices, or by all indices if
2996 NINDICES is -1. Otherwise, returns NULL. */
2999 ada_array_element_type (struct type *type, int nindices)
3001 type = desc_base_type (type);
3003 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3006 struct type *p_array_type;
3008 p_array_type = desc_data_target_type (type);
3010 k = ada_array_arity (type);
3014 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3015 if (nindices >= 0 && k > nindices)
3017 while (k > 0 && p_array_type != NULL)
3019 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3022 return p_array_type;
3024 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3028 type = TYPE_TARGET_TYPE (type);
3037 /* The type of nth index in arrays of given type (n numbering from 1).
3038 Does not examine memory. Throws an error if N is invalid or TYPE
3039 is not an array type. NAME is the name of the Ada attribute being
3040 evaluated ('range, 'first, 'last, or 'length); it is used in building
3041 the error message. */
3043 static struct type *
3044 ada_index_type (struct type *type, int n, const char *name)
3046 struct type *result_type;
3048 type = desc_base_type (type);
3050 if (n < 0 || n > ada_array_arity (type))
3051 error (_("invalid dimension number to '%s"), name);
3053 if (ada_is_simple_array_type (type))
3057 for (i = 1; i < n; i += 1)
3058 type = TYPE_TARGET_TYPE (type);
3059 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3060 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3061 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3062 perhaps stabsread.c would make more sense. */
3063 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3068 result_type = desc_index_type (desc_bounds_type (type), n);
3069 if (result_type == NULL)
3070 error (_("attempt to take bound of something that is not an array"));
3076 /* Given that arr is an array type, returns the lower bound of the
3077 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3078 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3079 array-descriptor type. It works for other arrays with bounds supplied
3080 by run-time quantities other than discriminants. */
3083 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3085 struct type *type, *index_type_desc, *index_type;
3088 gdb_assert (which == 0 || which == 1);
3090 if (ada_is_constrained_packed_array_type (arr_type))
3091 arr_type = decode_constrained_packed_array_type (arr_type);
3093 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3094 return (LONGEST) - which;
3096 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3097 type = TYPE_TARGET_TYPE (arr_type);
3101 if (TYPE_FIXED_INSTANCE (type))
3103 /* The array has already been fixed, so we do not need to
3104 check the parallel ___XA type again. That encoding has
3105 already been applied, so ignore it now. */
3106 index_type_desc = NULL;
3110 index_type_desc = ada_find_parallel_type (type, "___XA");
3111 ada_fixup_array_indexes_type (index_type_desc);
3114 if (index_type_desc != NULL)
3115 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3119 struct type *elt_type = check_typedef (type);
3121 for (i = 1; i < n; i++)
3122 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3124 index_type = TYPE_INDEX_TYPE (elt_type);
3128 (LONGEST) (which == 0
3129 ? ada_discrete_type_low_bound (index_type)
3130 : ada_discrete_type_high_bound (index_type));
3133 /* Given that arr is an array value, returns the lower bound of the
3134 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3135 WHICH is 1. This routine will also work for arrays with bounds
3136 supplied by run-time quantities other than discriminants. */
3139 ada_array_bound (struct value *arr, int n, int which)
3141 struct type *arr_type;
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3149 else if (ada_is_simple_array_type (arr_type))
3150 return ada_array_bound_from_type (arr_type, n, which);
3152 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3155 /* Given that arr is an array value, returns the length of the
3156 nth index. This routine will also work for arrays with bounds
3157 supplied by run-time quantities other than discriminants.
3158 Does not work for arrays indexed by enumeration types with representation
3159 clauses at the moment. */
3162 ada_array_length (struct value *arr, int n)
3164 struct type *arr_type, *index_type;
3167 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3168 arr = value_ind (arr);
3169 arr_type = value_enclosing_type (arr);
3171 if (ada_is_constrained_packed_array_type (arr_type))
3172 return ada_array_length (decode_constrained_packed_array (arr), n);
3174 if (ada_is_simple_array_type (arr_type))
3176 low = ada_array_bound_from_type (arr_type, n, 0);
3177 high = ada_array_bound_from_type (arr_type, n, 1);
3181 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3182 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3185 arr_type = check_typedef (arr_type);
3186 index_type = TYPE_INDEX_TYPE (arr_type);
3187 if (index_type != NULL)
3189 struct type *base_type;
3190 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3191 base_type = TYPE_TARGET_TYPE (index_type);
3193 base_type = index_type;
3195 low = pos_atr (value_from_longest (base_type, low));
3196 high = pos_atr (value_from_longest (base_type, high));
3198 return high - low + 1;
3201 /* An empty array whose type is that of ARR_TYPE (an array type),
3202 with bounds LOW to LOW-1. */
3204 static struct value *
3205 empty_array (struct type *arr_type, int low)
3207 struct type *arr_type0 = ada_check_typedef (arr_type);
3208 struct type *index_type
3209 = create_static_range_type
3210 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3211 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3213 return allocate_value (create_array_type (NULL, elt_type, index_type));
3217 /* Name resolution */
3219 /* The "decoded" name for the user-definable Ada operator corresponding
3223 ada_decoded_op_name (enum exp_opcode op)
3227 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3229 if (ada_opname_table[i].op == op)
3230 return ada_opname_table[i].decoded;
3232 error (_("Could not find operator name for opcode"));
3236 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3237 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3238 undefined namespace) and converts operators that are
3239 user-defined into appropriate function calls. If CONTEXT_TYPE is
3240 non-null, it provides a preferred result type [at the moment, only
3241 type void has any effect---causing procedures to be preferred over
3242 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3243 return type is preferred. May change (expand) *EXP. */
3246 resolve (struct expression **expp, int void_context_p)
3248 struct type *context_type = NULL;
3252 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3254 resolve_subexp (expp, &pc, 1, context_type);
3257 /* Resolve the operator of the subexpression beginning at
3258 position *POS of *EXPP. "Resolving" consists of replacing
3259 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3260 with their resolutions, replacing built-in operators with
3261 function calls to user-defined operators, where appropriate, and,
3262 when DEPROCEDURE_P is non-zero, converting function-valued variables
3263 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3264 are as in ada_resolve, above. */
3266 static struct value *
3267 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3268 struct type *context_type)
3272 struct expression *exp; /* Convenience: == *expp. */
3273 enum exp_opcode op = (*expp)->elts[pc].opcode;
3274 struct value **argvec; /* Vector of operand types (alloca'ed). */
3275 int nargs; /* Number of operands. */
3282 /* Pass one: resolve operands, saving their types and updating *pos,
3287 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3288 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3293 resolve_subexp (expp, pos, 0, NULL);
3295 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3300 resolve_subexp (expp, pos, 0, NULL);
3305 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3308 case OP_ATR_MODULUS:
3318 case TERNOP_IN_RANGE:
3319 case BINOP_IN_BOUNDS:
3325 case OP_DISCRETE_RANGE:
3327 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3336 arg1 = resolve_subexp (expp, pos, 0, NULL);
3338 resolve_subexp (expp, pos, 1, NULL);
3340 resolve_subexp (expp, pos, 1, value_type (arg1));
3357 case BINOP_LOGICAL_AND:
3358 case BINOP_LOGICAL_OR:
3359 case BINOP_BITWISE_AND:
3360 case BINOP_BITWISE_IOR:
3361 case BINOP_BITWISE_XOR:
3364 case BINOP_NOTEQUAL:
3371 case BINOP_SUBSCRIPT:
3379 case UNOP_LOGICAL_NOT:
3389 case OP_VAR_MSYM_VALUE:
3396 case OP_INTERNALVAR:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3423 error (_("Unexpected operator during name resolution"));
3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3432 /* Pass two: perform any resolution on principal operator. */
3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3441 struct block_symbol *candidates;
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
3450 if (n_candidates > 1)
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3456 for (j = 0; j < n_candidates; j += 1)
3457 switch (SYMBOL_CLASS (candidates[j].symbol))
3462 case LOC_REGPARM_ADDR:
3470 if (j < n_candidates)
3473 while (j < n_candidates)
3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3477 candidates[j] = candidates[n_candidates - 1];
3486 if (n_candidates == 0)
3487 error (_("No definition found for %s"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3499 error (_("Could not find a match for %s"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 printf_filtered (_("Multiple matches for %s\n"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3510 exp->elts[pc + 1].block = candidates[i].block;
3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
3514 innermost_block = candidates[i].block;
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3533 struct block_symbol *candidates;
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
3541 if (n_candidates == 1)
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3551 error (_("Could not find a match for %s"),
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3555 exp->elts[pc + 4].block = candidates[i].block;
3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
3559 innermost_block = candidates[i].block;
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3574 case BINOP_NOTEQUAL:
3582 case UNOP_LOGICAL_NOT:
3584 if (possible_user_operator_p (op, argvec))
3586 struct block_symbol *candidates;
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3594 ada_decoded_op_name (op), NULL);
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
3611 return evaluate_subexp_type (exp, pos);
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 /* The term "match" here is rather loose. The match is heuristic and
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3631 switch (TYPE_CODE (ftype))
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3667 case TYPE_CODE_UNION:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3682 struct type *func_type = SYMBOL_TYPE (func);
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3693 for (i = 0; i < n_actuals; i += 1)
3695 if (actuals[i] == NULL)
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703 if (!ada_type_match (ftype, atype, 1))
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3716 return_match (struct type *func_type, struct type *context_type)
3718 struct type *return_type;
3720 if (func_type == NULL)
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3730 context_type = get_base_type (context_type);
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3760 int m; /* Number of hits */
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 for (k = 0; k < nsyms; k += 1)
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3787 else if (m > 1 && !parse_completion)
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3803 encoded_ordered_before (const char *N0, const char *N1)
3807 else if (N0 == NULL)
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 return (strcmp (N0, N1) < 0);
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3839 sort_choices (struct block_symbol syms[], int nsyms)
3843 for (i = 1; i < nsyms; i += 1)
3845 struct block_symbol sym = syms[i];
3848 for (j = i - 1; j >= 0; j -= 1)
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 syms[j + 1] = syms[j];
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3872 struct type *type = SYMBOL_TYPE (sym);
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3880 if (TYPE_NFIELDS (type) > 0)
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3892 fprintf_filtered (stream, ")");
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3914 int *chosen = XALLOCAVEC (int , nsyms);
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3924 if (select_mode == multiple_symbols_cancel)
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3939 sort_choices (syms, nsyms);
3941 for (i = 0; i < nsyms; i += 1)
3943 if (syms[i].symbol == NULL)
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4002 symtab_to_filename_for_display (symtab));
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031 The user is not allowed to choose more than MAX_RESULTS values.
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4043 int first_choice = is_all_choice ? 2 : 1;
4045 prompt = getenv ("PS2");
4049 args = command_line_input (prompt, 0, annotation_suffix);
4052 error_no_arg (_("one or more choice numbers"));
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4076 error (_("cancelled"));
4078 if (choice < first_choice)
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4085 choice -= first_choice;
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4091 if (j < 0 || choice != choices[j])
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4142 /* Type-class predicates */
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4148 numeric_type_p (struct type *type)
4154 switch (TYPE_CODE (type))
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4171 integer_type_p (struct type *type)
4177 switch (TYPE_CODE (type))
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4193 scalar_type_p (struct type *type)
4199 switch (TYPE_CODE (type))
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4215 discrete_type_p (struct type *type)
4221 switch (TYPE_CODE (type))
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4268 case BINOP_NOTEQUAL:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4283 case UNOP_LOGICAL_NOT:
4285 return (!numeric_type_p (type0));
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304 /* If SYM encodes a renaming,
4306 <renaming> renames <renamed entity>,
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4328 enum ada_renaming_category kind;
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4337 return ADA_NOT_RENAMING;
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 return ADA_NOT_RENAMING;
4351 kind = ADA_OBJECT_RENAMING;
4355 kind = ADA_EXCEPTION_RENAMING;
4359 kind = ADA_PACKAGE_RENAMING;
4363 kind = ADA_SUBPROGRAM_RENAMING;
4367 return ADA_NOT_RENAMING;
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4377 *len = strlen (info) - strlen (suffix);
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4393 enum ada_renaming_category kind;
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4402 name = type_name_no_tag (type);
4404 return ADA_NOT_RENAMING;
4406 name = strstr (name, "___XR");
4408 return ADA_NOT_RENAMING;
4413 kind = ADA_OBJECT_RENAMING;
4416 kind = ADA_EXCEPTION_RENAMING;
4419 kind = ADA_PACKAGE_RENAMING;
4422 kind = ADA_SUBPROGRAM_RENAMING;
4425 return ADA_NOT_RENAMING;
4428 info = TYPE_FIELD_NAME (type, 0);
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4439 *len = suffix - info;
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4451 const char *sym_name;
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4459 /* Evaluation: Function Calls */
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4465 static struct value *
4466 ensure_lval (struct value *val)
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4506 struct value *result;
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4513 if (VALUE_LVAL (actual) != lval_memory)
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4524 result = value_addr (actual);
4528 return value_cast_pointers (formal_type, result, 0);
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4534 /* We need to turn this parameter into an aligner type
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539 value_assign_to_component (aligner, component, actual);
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4552 value_pointer (struct value *value, struct type *type)
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4594 bounds = ensure_lval (bounds);
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4610 descriptor = ensure_lval (descriptor);
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4618 /* Symbol Cache Module */
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4630 /* Initialize the contents of SYM_CACHE. */
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4639 /* Free the memory used by SYM_CACHE. */
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4644 obstack_free (&sym_cache->cache_space, NULL);
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4656 if (pspace_data->sym_cache == NULL)
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4662 return pspace_data->sym_cache;
4665 /* Clear all entries from the symbol cache. */
4668 ada_clear_symbol_cache (void)
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4706 struct cache_entry **e = find_entry (name, domain);
4713 *block = (*e)->block;
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4728 struct cache_entry *e;
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4761 /* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4768 should_use_wild_match (const char *lookup_name)
4770 return (strstr (lookup_name, "__") == NULL);
4773 /* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4776 static struct symbol *
4777 standard_lookup (const char *name, const struct block *block,
4780 /* Initialize it just to avoid a GCC false warning. */
4781 struct block_symbol sym = {NULL, NULL};
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4791 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4795 is_nonfunction (struct block_symbol syms[], int n)
4799 for (i = 0; i < n; i += 1)
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4808 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4809 struct types. Otherwise, they may not. */
4812 equiv_types (struct type *type0, struct type *type1)
4816 if (type0 == NULL || type1 == NULL
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4828 /* True iff SYM0 represents the same entity as SYM1, or one that is
4829 no more defined than that of SYM1. */
4832 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 switch (SYMBOL_CLASS (sym0))
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4850 int len0 = strlen (name0);
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4856 && startswith (name1 + len0, "___XV")));
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4866 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870 add_defn_to_vec (struct obstack *obstackp,
4872 const struct block *block)
4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 prevDefns[i].symbol = sym;
4893 prevDefns[i].block = block;
4899 struct block_symbol info;
4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4907 /* Number of block_symbol structures currently collected in current vector in
4911 num_defns_collected (struct obstack *obstackp)
4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 /* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919 static struct block_symbol *
4920 defns_collected (struct obstack *obstackp, int finish)
4923 return (struct block_symbol *) obstack_finish (obstackp);
4925 return (struct block_symbol *) obstack_base (obstackp);
4928 /* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4934 struct bound_minimal_symbol
4935 ada_lookup_simple_minsym (const char *name)
4937 struct bound_minimal_symbol result;
4938 struct objfile *objfile;
4939 struct minimal_symbol *msymbol;
4940 const int wild_match_p = should_use_wild_match (name);
4942 memset (&result, 0, sizeof (result));
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
4951 if (startswith (name, "standard__"))
4952 name += sizeof ("standard__") - 1;
4954 ALL_MSYMBOLS (objfile, msymbol)
4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4968 /* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4975 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4976 const char *name, domain_enum domain,
4981 /* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
4985 is_nondebugging_type (struct type *type)
4987 const char *name = ada_type_name (type);
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 /* All enumerals should also have the same name (modulo any numerical
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5035 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5040 For instance, consider the following code:
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5056 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
5094 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
5102 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5123 for (j = 0; j < nsyms; j++)
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5141 for (j = 0; j < nsyms; j += 1)
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5183 /* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
5189 xget_renaming_scope (struct type *renaming_type)
5191 /* The renaming types adhere to the following convention:
5192 <scope>__<rename>___<XR extension>.
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
5196 const char *name = type_name_no_tag (renaming_type);
5197 const char *suffix = strstr (name, "___XR");
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5209 /* Make a copy of scope and return it. */
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
5220 /* Return nonzero if NAME corresponds to a package name. */
5223 is_package_name (const char *name)
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
5241 /* Do a quick check that NAME does not contain "__", since library-level
5242 functions names cannot contain "__" in them. */
5243 if (strstr (name, "__") != NULL)
5246 fun_name = xstrprintf ("_ada_%s", name);
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 /* Return nonzero if SYM corresponds to a renaming entity that is
5252 not visible from FUNCTION_NAME. */
5255 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 struct cleanup *old_chain;
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5264 old_chain = make_cleanup (xfree, scope);
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
5269 do_cleanups (old_chain);
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5280 if (startswith (function_name, "_ada_"))
5284 int is_invisible = !startswith (function_name, scope);
5286 do_cleanups (old_chain);
5287 return is_invisible;
5291 /* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5303 Second, GNAT emits a type following a specified encoding for each renaming
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
5329 remove_irrelevant_renamings (struct block_symbol *syms,
5330 int nsyms, const struct block *current_block)
5332 struct symbol *current_function;
5333 const char *current_function_name;
5335 int is_new_style_renaming;
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
5339 First, zero out such symbols, then compress. */
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5343 struct symbol *sym = syms[i].symbol;
5344 const struct block *block = syms[i].block;
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5355 int name_len = suffix - name;
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5363 && block == syms[j].block)
5364 syms[j].symbol = NULL;
5367 if (is_new_style_renaming)
5371 for (j = k = 0; j < nsyms; j += 1)
5372 if (syms[j].symbol != NULL)
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
5383 if (current_block == NULL)
5386 current_function = block_linkage_function (current_block);
5387 if (current_function == NULL)
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5402 == ADA_OBJECT_RENAMING
5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5407 for (j = i + 1; j < nsyms; j += 1)
5408 syms[j - 1] = syms[j];
5418 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5430 const struct block *block, domain_enum domain,
5433 int block_depth = 0;
5435 while (block != NULL)
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5446 block = BLOCK_SUPERBLOCK (block);
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 struct match_data *data = (struct match_data *) data0;
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5513 ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5522 for (renaming = block_using (block);
5524 renaming = renaming->next)
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5540 renaming->searched = 1;
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5551 : renaming->declaration);
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5557 renaming->searched = 0;
5559 return num_defns_collected (obstackp) != defns_mark;
5562 /* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5566 compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
5569 while (*string1 != '\0' && *string2 != '\0')
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
5576 if (casing == case_sensitive_off)
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5596 return strcmp_iw_ordered (string1, string2);
5598 if (*string2 == '\0')
5600 if (is_name_suffix (string1))
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5614 return *string1 - *string2;
5619 /* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5626 compare_names (STRING1, STRING2) <= 0
5628 (they may differ as to what symbols compare equal). */
5631 compare_names (const char *string1, const char *string2)
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5647 /* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5652 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5656 struct objfile *objfile;
5657 struct compunit_symtab *cu;
5658 struct match_data data;
5660 memset (&data, 0, sizeof data);
5661 data.obstackp = obstackp;
5663 ALL_OBJFILES (objfile)
5665 data.objfile = objfile;
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5689 ALL_OBJFILES (objfile)
5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5697 aux_add_nonlocal_symbols,
5699 full_match, compare_names);
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5705 non-zero, enclosing scope and in global scopes, returning the number of
5706 matches. Add these to OBSTACKP.
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
5710 is the one match returned (no other matches in that or
5711 enclosing blocks is returned). If there are any matches in or
5712 surrounding BLOCK, then these alone are returned.
5714 Names prefixed with "standard__" are handled specially: "standard__"
5715 is first stripped off, and only static and global symbols are searched.
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5721 ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5726 int *made_global_lookup_p)
5729 const int wild_match_p = should_use_wild_match (name);
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
5741 if (startswith (name, "standard__"))
5744 name = name + sizeof ("standard__") - 1;
5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5769 if (lookup_cached_symbol (name, domain, &sym, &block))
5772 add_defn_to_vec (obstackp, sym, block);
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
5779 /* Search symbols from all global blocks. */
5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5783 /* Now add symbols from all per-file blocks if we've gotten no hits
5784 (not strictly correct, but perhaps better than an error). */
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5790 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5808 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5810 struct block_symbol **results,
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5825 ndefns = remove_extra_symbols (*results, ndefns);
5827 if (ndefns == 0 && full_search && syms_from_global_search)
5828 cache_symbol (name, domain, NULL, NULL);
5830 if (ndefns == 1 && full_search && syms_from_global_search)
5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5837 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5843 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5844 domain_enum domain, struct block_symbol **results)
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5849 /* Implementation of the la_iterate_over_symbols method. */
5852 ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5857 struct block_symbol *results;
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5862 if (!callback (results[i].symbol))
5867 /* If NAME is the name of an entity, return a string that should
5868 be used to look that entity up in Ada units.
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5875 ada_name_for_lookup (const char *name)
5877 int nlen = strlen (name);
5879 if (name[0] == '<' && name[nlen - 1] == '>')
5880 return std::string (name + 1, nlen - 2);
5882 return ada_encode (ada_fold_name (name));
5885 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
5893 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5895 struct block_symbol *info)
5897 struct block_symbol *candidates;
5900 gdb_assert (info != NULL);
5901 memset (info, 0, sizeof (struct block_symbol));
5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5904 if (n_candidates == 0)
5907 *info = candidates[0];
5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5914 choosing the first symbol if there are multiple choices.
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918 ada_lookup_symbol (const char *name, const struct block *block0,
5919 domain_enum domain, int *is_a_field_of_this)
5921 struct block_symbol info;
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5927 block0, domain, &info);
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5934 const struct block *block,
5935 const domain_enum domain)
5937 struct block_symbol sym;
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940 if (sym.symbol != NULL)
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5955 if (domain == VAR_DOMAIN)
5957 struct gdbarch *gdbarch;
5960 gdbarch = target_gdbarch ();
5962 gdbarch = block_gdbarch (block);
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
5968 return (struct block_symbol) {NULL, NULL};
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5975 are given by any of the regular expressions:
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5979 TKB [subprogram suffix for task bodies]
5980 _E[0-9]+[bs]$ [protected object entry suffixes]
5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
5988 is_name_suffix (const char *str)
5991 const char *matching;
5992 const int len = strlen (str);
5994 /* Skip optional leading __[0-9]+. */
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 while (isdigit (str[0]))
6005 if (str[0] == '.' || str[0] == '$')
6008 while (isdigit (matching[0]))
6010 if (matching[0] == '\0')
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 while (isdigit (matching[0]))
6021 if (matching[0] == '\0')
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6027 if (strcmp (str, "TKB") == 0)
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
6034 all entity names that end with an "N" as a name suffix causes
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
6038 Having a single character like this as a suffix carrying some
6039 information is a bit risky. Perhaps we should change the encoding
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 while (isdigit (matching[0]))
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
6066 while (str[0] != '_' && str[0] != '\0')
6068 if (str[0] != 'n' && str[0] != 'b')
6074 if (str[0] == '\000')
6079 if (str[1] != '_' || str[2] == '\000')
6083 if (strcmp (str + 3, "JM") == 0)
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
6090 if (strcmp (str + 3, "LJM") == 0)
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
6097 if (str[4] == 'R' && str[5] != 'T')
6101 if (!isdigit (str[2]))
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6108 if (str[0] == '$' && isdigit (str[1]))
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6118 /* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
6122 is_valid_name_for_wild_match (const char *name0)
6124 const char *decoded_name = ada_decode (name0);
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6147 const char *name = *namep;
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 if (name == name0 + 5 && startswith (name0, "_ada"))
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6184 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6189 wild_match (const char *name, const char *patn)
6192 const char *name0 = name;
6196 const char *match = name;
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6206 if (name[-1] == '_')
6209 if (!advance_wild_match (&name, name0, *patn))
6214 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6218 full_match (const char *sym_name, const char *search_name)
6220 return !match_name (sym_name, search_name, 0);
6224 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6227 OBJFILE is the section containing BLOCK. */
6230 ada_add_block_symbols (struct obstack *obstackp,
6231 const struct block *block, const char *name,
6232 domain_enum domain, struct objfile *objfile,
6235 struct block_iterator iter;
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6278 if (SYMBOL_IS_ARGUMENT (sym))
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6292 /* Handle renamings. */
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 if (!found_sym && arg_sym != NULL)
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6330 if (SYMBOL_IS_ARGUMENT (sym))
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (arg_sym, objfile),
6356 /* Symbol Completion */
6358 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6362 TEXT_LEN is equal to the length of TEXT.
6363 Perform a wild match if WILD_MATCH_P is set.
6364 ENCODED_P should be set if TEXT represents the start of a symbol name
6365 in its encoded form. */
6368 symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6370 int wild_match_p, int encoded_p)
6372 const int verbatim_match = (text[0] == '<');
6377 /* Strip the leading angle bracket. */
6382 /* First, test against the fully qualified name of the symbol. */
6384 if (strncmp (sym_name, text, text_len) == 0)
6387 if (match && !encoded_p)
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6402 if (match && !verbatim_match)
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6416 /* Second: Try wild matching... */
6418 if (!match && wild_match_p)
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6425 if (strncmp (sym_name, text, text_len) == 0)
6429 /* Finally: If we found a mach, prepare the result to return. */
6435 sym_name = add_angle_brackets (sym_name);
6438 sym_name = ada_decode (sym_name);
6443 /* A companion function to ada_collect_symbol_completion_matches().
6444 Check if SYM_NAME represents a symbol which name would be suitable
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6446 is added as a completion match to TRACKER.
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6453 if WILD_MATCH_P is set, then wild matching is performed.
6454 ENCODED_P should be set if TEXT represents a symbol name in its
6455 encoded formed (in which case the completion should also be
6459 symbol_completion_add (completion_tracker &tracker,
6460 const char *sym_name,
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
6463 int wild_match_p, int encoded_p)
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
6466 wild_match_p, encoded_p);
6472 /* We found a match, so add the appropriate completion to the given
6475 if (word == orig_text)
6477 completion = (char *) xmalloc (strlen (match) + 5);
6478 strcpy (completion, match);
6480 else if (word > orig_text)
6482 /* Return some portion of sym_name. */
6483 completion = (char *) xmalloc (strlen (match) + 5);
6484 strcpy (completion, match + (word - orig_text));
6488 /* Return some of ORIG_TEXT plus sym_name. */
6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6495 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
6498 /* Add the list of possible symbol names completing TEXT0 to TRACKER.
6499 WORD is the entire command on which completion is made. */
6502 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6503 complete_symbol_mode mode,
6504 const char *text0, const char *word,
6505 enum type_code code)
6512 struct compunit_symtab *s;
6513 struct minimal_symbol *msymbol;
6514 struct objfile *objfile;
6515 const struct block *b, *surrounding_static_block = 0;
6517 struct block_iterator iter;
6518 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6520 gdb_assert (code == TYPE_CODE_UNDEF);
6522 if (text0[0] == '<')
6524 text = xstrdup (text0);
6525 make_cleanup (xfree, text);
6526 text_len = strlen (text);
6532 text = xstrdup (ada_encode (text0));
6533 make_cleanup (xfree, text);
6534 text_len = strlen (text);
6535 for (i = 0; i < text_len; i++)
6536 text[i] = tolower (text[i]);
6538 encoded_p = (strstr (text0, "__") != NULL);
6539 /* If the name contains a ".", then the user is entering a fully
6540 qualified entity name, and the match must not be done in wild
6541 mode. Similarly, if the user wants to complete what looks like
6542 an encoded name, the match must not be done in wild mode. */
6543 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6546 /* First, look at the partial symtab symbols. */
6547 expand_symtabs_matching (NULL,
6548 [&] (const char *symname)
6550 return symbol_completion_match (symname,
6558 /* At this point scan through the misc symbol vectors and add each
6559 symbol you find to the list. Eventually we want to ignore
6560 anything that isn't a text symbol (everything else will be
6561 handled by the psymtab code above). */
6563 ALL_MSYMBOLS (objfile, msymbol)
6566 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
6567 text, text_len, text0, word, wild_match_p,
6571 /* Search upwards from currently selected frame (so that we can
6572 complete on local vars. */
6574 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6576 if (!BLOCK_SUPERBLOCK (b))
6577 surrounding_static_block = b; /* For elmin of dups */
6579 ALL_BLOCK_SYMBOLS (b, iter, sym)
6581 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6582 text, text_len, text0, word,
6583 wild_match_p, encoded_p);
6587 /* Go through the symtabs and check the externs and statics for
6588 symbols which match. */
6590 ALL_COMPUNITS (objfile, s)
6593 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6594 ALL_BLOCK_SYMBOLS (b, iter, sym)
6596 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6597 text, text_len, text0, word,
6598 wild_match_p, encoded_p);
6602 ALL_COMPUNITS (objfile, s)
6605 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6606 /* Don't do this block twice. */
6607 if (b == surrounding_static_block)
6609 ALL_BLOCK_SYMBOLS (b, iter, sym)
6611 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6612 text, text_len, text0, word,
6613 wild_match_p, encoded_p);
6617 do_cleanups (old_chain);
6622 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6623 for tagged types. */
6626 ada_is_dispatch_table_ptr_type (struct type *type)
6630 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6633 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6637 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6640 /* Return non-zero if TYPE is an interface tag. */
6643 ada_is_interface_tag (struct type *type)
6645 const char *name = TYPE_NAME (type);
6650 return (strcmp (name, "ada__tags__interface_tag") == 0);
6653 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6654 to be invisible to users. */
6657 ada_is_ignored_field (struct type *type, int field_num)
6659 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6662 /* Check the name of that field. */
6664 const char *name = TYPE_FIELD_NAME (type, field_num);
6666 /* Anonymous field names should not be printed.
6667 brobecker/2007-02-20: I don't think this can actually happen
6668 but we don't want to print the value of annonymous fields anyway. */
6672 /* Normally, fields whose name start with an underscore ("_")
6673 are fields that have been internally generated by the compiler,
6674 and thus should not be printed. The "_parent" field is special,
6675 however: This is a field internally generated by the compiler
6676 for tagged types, and it contains the components inherited from
6677 the parent type. This field should not be printed as is, but
6678 should not be ignored either. */
6679 if (name[0] == '_' && !startswith (name, "_parent"))
6683 /* If this is the dispatch table of a tagged type or an interface tag,
6685 if (ada_is_tagged_type (type, 1)
6686 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6687 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6690 /* Not a special field, so it should not be ignored. */
6694 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6695 pointer or reference type whose ultimate target has a tag field. */
6698 ada_is_tagged_type (struct type *type, int refok)
6700 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6703 /* True iff TYPE represents the type of X'Tag */
6706 ada_is_tag_type (struct type *type)
6708 type = ada_check_typedef (type);
6710 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6714 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6716 return (name != NULL
6717 && strcmp (name, "ada__tags__dispatch_table") == 0);
6721 /* The type of the tag on VAL. */
6724 ada_tag_type (struct value *val)
6726 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6729 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6730 retired at Ada 05). */
6733 is_ada95_tag (struct value *tag)
6735 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6738 /* The value of the tag on VAL. */
6741 ada_value_tag (struct value *val)
6743 return ada_value_struct_elt (val, "_tag", 0);
6746 /* The value of the tag on the object of type TYPE whose contents are
6747 saved at VALADDR, if it is non-null, or is at memory address
6750 static struct value *
6751 value_tag_from_contents_and_address (struct type *type,
6752 const gdb_byte *valaddr,
6755 int tag_byte_offset;
6756 struct type *tag_type;
6758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6761 const gdb_byte *valaddr1 = ((valaddr == NULL)
6763 : valaddr + tag_byte_offset);
6764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6766 return value_from_contents_and_address (tag_type, valaddr1, address1);
6771 static struct type *
6772 type_from_tag (struct value *tag)
6774 const char *type_name = ada_tag_name (tag);
6776 if (type_name != NULL)
6777 return ada_find_any_type (ada_encode (type_name));
6781 /* Given a value OBJ of a tagged type, return a value of this
6782 type at the base address of the object. The base address, as
6783 defined in Ada.Tags, it is the address of the primary tag of
6784 the object, and therefore where the field values of its full
6785 view can be fetched. */
6788 ada_tag_value_at_base_address (struct value *obj)
6791 LONGEST offset_to_top = 0;
6792 struct type *ptr_type, *obj_type;
6794 CORE_ADDR base_address;
6796 obj_type = value_type (obj);
6798 /* It is the responsability of the caller to deref pointers. */
6800 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6801 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6804 tag = ada_value_tag (obj);
6808 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6810 if (is_ada95_tag (tag))
6813 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6814 ptr_type = lookup_pointer_type (ptr_type);
6815 val = value_cast (ptr_type, tag);
6819 /* It is perfectly possible that an exception be raised while
6820 trying to determine the base address, just like for the tag;
6821 see ada_tag_name for more details. We do not print the error
6822 message for the same reason. */
6826 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6829 CATCH (e, RETURN_MASK_ERROR)
6835 /* If offset is null, nothing to do. */
6837 if (offset_to_top == 0)
6840 /* -1 is a special case in Ada.Tags; however, what should be done
6841 is not quite clear from the documentation. So do nothing for
6844 if (offset_to_top == -1)
6847 base_address = value_address (obj) - offset_to_top;
6848 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6850 /* Make sure that we have a proper tag at the new address.
6851 Otherwise, offset_to_top is bogus (which can happen when
6852 the object is not initialized yet). */
6857 obj_type = type_from_tag (tag);
6862 return value_from_contents_and_address (obj_type, NULL, base_address);
6865 /* Return the "ada__tags__type_specific_data" type. */
6867 static struct type *
6868 ada_get_tsd_type (struct inferior *inf)
6870 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6872 if (data->tsd_type == 0)
6873 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6874 return data->tsd_type;
6877 /* Return the TSD (type-specific data) associated to the given TAG.
6878 TAG is assumed to be the tag of a tagged-type entity.
6880 May return NULL if we are unable to get the TSD. */
6882 static struct value *
6883 ada_get_tsd_from_tag (struct value *tag)
6888 /* First option: The TSD is simply stored as a field of our TAG.
6889 Only older versions of GNAT would use this format, but we have
6890 to test it first, because there are no visible markers for
6891 the current approach except the absence of that field. */
6893 val = ada_value_struct_elt (tag, "tsd", 1);
6897 /* Try the second representation for the dispatch table (in which
6898 there is no explicit 'tsd' field in the referent of the tag pointer,
6899 and instead the tsd pointer is stored just before the dispatch
6902 type = ada_get_tsd_type (current_inferior());
6905 type = lookup_pointer_type (lookup_pointer_type (type));
6906 val = value_cast (type, tag);
6909 return value_ind (value_ptradd (val, -1));
6912 /* Given the TSD of a tag (type-specific data), return a string
6913 containing the name of the associated type.
6915 The returned value is good until the next call. May return NULL
6916 if we are unable to determine the tag name. */
6919 ada_tag_name_from_tsd (struct value *tsd)
6921 static char name[1024];
6925 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6928 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6929 for (p = name; *p != '\0'; p += 1)
6935 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6938 Return NULL if the TAG is not an Ada tag, or if we were unable to
6939 determine the name of that tag. The result is good until the next
6943 ada_tag_name (struct value *tag)
6947 if (!ada_is_tag_type (value_type (tag)))
6950 /* It is perfectly possible that an exception be raised while trying
6951 to determine the TAG's name, even under normal circumstances:
6952 The associated variable may be uninitialized or corrupted, for
6953 instance. We do not let any exception propagate past this point.
6954 instead we return NULL.
6956 We also do not print the error message either (which often is very
6957 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6958 the caller print a more meaningful message if necessary. */
6961 struct value *tsd = ada_get_tsd_from_tag (tag);
6964 name = ada_tag_name_from_tsd (tsd);
6966 CATCH (e, RETURN_MASK_ERROR)
6974 /* The parent type of TYPE, or NULL if none. */
6977 ada_parent_type (struct type *type)
6981 type = ada_check_typedef (type);
6983 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987 if (ada_is_parent_field (type, i))
6989 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6991 /* If the _parent field is a pointer, then dereference it. */
6992 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6993 parent_type = TYPE_TARGET_TYPE (parent_type);
6994 /* If there is a parallel XVS type, get the actual base type. */
6995 parent_type = ada_get_base_type (parent_type);
6997 return ada_check_typedef (parent_type);
7003 /* True iff field number FIELD_NUM of structure type TYPE contains the
7004 parent-type (inherited) fields of a derived type. Assumes TYPE is
7005 a structure type with at least FIELD_NUM+1 fields. */
7008 ada_is_parent_field (struct type *type, int field_num)
7010 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7012 return (name != NULL
7013 && (startswith (name, "PARENT")
7014 || startswith (name, "_parent")));
7017 /* True iff field number FIELD_NUM of structure type TYPE is a
7018 transparent wrapper field (which should be silently traversed when doing
7019 field selection and flattened when printing). Assumes TYPE is a
7020 structure type with at least FIELD_NUM+1 fields. Such fields are always
7024 ada_is_wrapper_field (struct type *type, int field_num)
7026 const char *name = TYPE_FIELD_NAME (type, field_num);
7028 if (name != NULL && strcmp (name, "RETVAL") == 0)
7030 /* This happens in functions with "out" or "in out" parameters
7031 which are passed by copy. For such functions, GNAT describes
7032 the function's return type as being a struct where the return
7033 value is in a field called RETVAL, and where the other "out"
7034 or "in out" parameters are fields of that struct. This is not
7039 return (name != NULL
7040 && (startswith (name, "PARENT")
7041 || strcmp (name, "REP") == 0
7042 || startswith (name, "_parent")
7043 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7046 /* True iff field number FIELD_NUM of structure or union type TYPE
7047 is a variant wrapper. Assumes TYPE is a structure type with at least
7048 FIELD_NUM+1 fields. */
7051 ada_is_variant_part (struct type *type, int field_num)
7053 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7055 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7056 || (is_dynamic_field (type, field_num)
7057 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7058 == TYPE_CODE_UNION)));
7061 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7062 whose discriminants are contained in the record type OUTER_TYPE,
7063 returns the type of the controlling discriminant for the variant.
7064 May return NULL if the type could not be found. */
7067 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7069 const char *name = ada_variant_discrim_name (var_type);
7071 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7074 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7075 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7076 represents a 'when others' clause; otherwise 0. */
7079 ada_is_others_clause (struct type *type, int field_num)
7081 const char *name = TYPE_FIELD_NAME (type, field_num);
7083 return (name != NULL && name[0] == 'O');
7086 /* Assuming that TYPE0 is the type of the variant part of a record,
7087 returns the name of the discriminant controlling the variant.
7088 The value is valid until the next call to ada_variant_discrim_name. */
7091 ada_variant_discrim_name (struct type *type0)
7093 static char *result = NULL;
7094 static size_t result_len = 0;
7097 const char *discrim_end;
7098 const char *discrim_start;
7100 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7101 type = TYPE_TARGET_TYPE (type0);
7105 name = ada_type_name (type);
7107 if (name == NULL || name[0] == '\000')
7110 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7113 if (startswith (discrim_end, "___XVN"))
7116 if (discrim_end == name)
7119 for (discrim_start = discrim_end; discrim_start != name + 3;
7122 if (discrim_start == name + 1)
7124 if ((discrim_start > name + 3
7125 && startswith (discrim_start - 3, "___"))
7126 || discrim_start[-1] == '.')
7130 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7131 strncpy (result, discrim_start, discrim_end - discrim_start);
7132 result[discrim_end - discrim_start] = '\0';
7136 /* Scan STR for a subtype-encoded number, beginning at position K.
7137 Put the position of the character just past the number scanned in
7138 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7139 Return 1 if there was a valid number at the given position, and 0
7140 otherwise. A "subtype-encoded" number consists of the absolute value
7141 in decimal, followed by the letter 'm' to indicate a negative number.
7142 Assumes 0m does not occur. */
7145 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7149 if (!isdigit (str[k]))
7152 /* Do it the hard way so as not to make any assumption about
7153 the relationship of unsigned long (%lu scan format code) and
7156 while (isdigit (str[k]))
7158 RU = RU * 10 + (str[k] - '0');
7165 *R = (-(LONGEST) (RU - 1)) - 1;
7171 /* NOTE on the above: Technically, C does not say what the results of
7172 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7173 number representable as a LONGEST (although either would probably work
7174 in most implementations). When RU>0, the locution in the then branch
7175 above is always equivalent to the negative of RU. */
7182 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7183 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7184 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7187 ada_in_variant (LONGEST val, struct type *type, int field_num)
7189 const char *name = TYPE_FIELD_NAME (type, field_num);
7203 if (!ada_scan_number (name, p + 1, &W, &p))
7213 if (!ada_scan_number (name, p + 1, &L, &p)
7214 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7216 if (val >= L && val <= U)
7228 /* FIXME: Lots of redundancy below. Try to consolidate. */
7230 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7231 ARG_TYPE, extract and return the value of one of its (non-static)
7232 fields. FIELDNO says which field. Differs from value_primitive_field
7233 only in that it can handle packed values of arbitrary type. */
7235 static struct value *
7236 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7237 struct type *arg_type)
7241 arg_type = ada_check_typedef (arg_type);
7242 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7244 /* Handle packed fields. */
7246 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7248 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7249 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7251 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7252 offset + bit_pos / 8,
7253 bit_pos % 8, bit_size, type);
7256 return value_primitive_field (arg1, offset, fieldno, arg_type);
7259 /* Find field with name NAME in object of type TYPE. If found,
7260 set the following for each argument that is non-null:
7261 - *FIELD_TYPE_P to the field's type;
7262 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7263 an object of that type;
7264 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7265 - *BIT_SIZE_P to its size in bits if the field is packed, and
7267 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7268 fields up to but not including the desired field, or by the total
7269 number of fields if not found. A NULL value of NAME never
7270 matches; the function just counts visible fields in this case.
7272 Returns 1 if found, 0 otherwise. */
7275 find_struct_field (const char *name, struct type *type, int offset,
7276 struct type **field_type_p,
7277 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7282 type = ada_check_typedef (type);
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
7288 if (bit_offset_p != NULL)
7290 if (bit_size_p != NULL)
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7299 if (t_field_name == NULL)
7302 else if (name != NULL && field_name_match (t_field_name, name))
7304 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7306 if (field_type_p != NULL)
7307 *field_type_p = TYPE_FIELD_TYPE (type, i);
7308 if (byte_offset_p != NULL)
7309 *byte_offset_p = fld_offset;
7310 if (bit_offset_p != NULL)
7311 *bit_offset_p = bit_pos % 8;
7312 if (bit_size_p != NULL)
7313 *bit_size_p = bit_size;
7316 else if (ada_is_wrapper_field (type, i))
7318 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7319 field_type_p, byte_offset_p, bit_offset_p,
7320 bit_size_p, index_p))
7323 else if (ada_is_variant_part (type, i))
7325 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7328 struct type *field_type
7329 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7335 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336 field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7341 else if (index_p != NULL)
7347 /* Number of user-visible fields in record type TYPE. */
7350 num_visible_fields (struct type *type)
7355 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7359 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7360 and search in it assuming it has (class) type TYPE.
7361 If found, return value, else return NULL.
7363 Searches recursively through wrapper fields (e.g., '_parent'). */
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7371 type = ada_check_typedef (type);
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7374 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7376 if (t_field_name == NULL)
7379 else if (field_name_match (t_field_name, name))
7380 return ada_value_primitive_field (arg, offset, i, type);
7382 else if (ada_is_wrapper_field (type, i))
7384 struct value *v = /* Do not let indent join lines here. */
7385 ada_search_struct_field (name, arg,
7386 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387 TYPE_FIELD_TYPE (type, i));
7393 else if (ada_is_variant_part (type, i))
7395 /* PNH: Do we ever get here? See find_struct_field. */
7397 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7399 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7401 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7403 struct value *v = ada_search_struct_field /* Force line
7406 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407 TYPE_FIELD_TYPE (field_type, j));
7417 static struct value *ada_index_struct_field_1 (int *, struct value *,
7418 int, struct type *);
7421 /* Return field #INDEX in ARG, where the index is that returned by
7422 * find_struct_field through its INDEX_P argument. Adjust the address
7423 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7424 * If found, return value, else return NULL. */
7426 static struct value *
7427 ada_index_struct_field (int index, struct value *arg, int offset,
7430 return ada_index_struct_field_1 (&index, arg, offset, type);
7434 /* Auxiliary function for ada_index_struct_field. Like
7435 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7438 static struct value *
7439 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7443 type = ada_check_typedef (type);
7445 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7447 if (TYPE_FIELD_NAME (type, i) == NULL)
7449 else if (ada_is_wrapper_field (type, i))
7451 struct value *v = /* Do not let indent join lines here. */
7452 ada_index_struct_field_1 (index_p, arg,
7453 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7454 TYPE_FIELD_TYPE (type, i));
7460 else if (ada_is_variant_part (type, i))
7462 /* PNH: Do we ever get here? See ada_search_struct_field,
7463 find_struct_field. */
7464 error (_("Cannot assign this kind of variant record"));
7466 else if (*index_p == 0)
7467 return ada_value_primitive_field (arg, offset, i, type);
7474 /* Given ARG, a value of type (pointer or reference to a)*
7475 structure/union, extract the component named NAME from the ultimate
7476 target structure/union and return it as a value with its
7479 The routine searches for NAME among all members of the structure itself
7480 and (recursively) among all members of any wrapper members
7483 If NO_ERR, then simply return NULL in case of error, rather than
7487 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7489 struct type *t, *t1;
7493 t1 = t = ada_check_typedef (value_type (arg));
7494 if (TYPE_CODE (t) == TYPE_CODE_REF)
7496 t1 = TYPE_TARGET_TYPE (t);
7499 t1 = ada_check_typedef (t1);
7500 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7502 arg = coerce_ref (arg);
7507 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7509 t1 = TYPE_TARGET_TYPE (t);
7512 t1 = ada_check_typedef (t1);
7513 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7515 arg = value_ind (arg);
7522 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7526 v = ada_search_struct_field (name, arg, 0, t);
7529 int bit_offset, bit_size, byte_offset;
7530 struct type *field_type;
7533 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 address = value_address (ada_value_ind (arg));
7536 address = value_address (ada_coerce_ref (arg));
7538 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7539 if (find_struct_field (name, t1, 0,
7540 &field_type, &byte_offset, &bit_offset,
7545 if (TYPE_CODE (t) == TYPE_CODE_REF)
7546 arg = ada_coerce_ref (arg);
7548 arg = ada_value_ind (arg);
7549 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7550 bit_offset, bit_size,
7554 v = value_at_lazy (field_type, address + byte_offset);
7558 if (v != NULL || no_err)
7561 error (_("There is no member named %s."), name);
7567 error (_("Attempt to extract a component of "
7568 "a value that is not a record."));
7571 /* Return a string representation of type TYPE. */
7574 type_as_string (struct type *type)
7576 string_file tmp_stream;
7578 type_print (type, "", &tmp_stream, -1);
7580 return std::move (tmp_stream.string ());
7583 /* Given a type TYPE, look up the type of the component of type named NAME.
7584 If DISPP is non-null, add its byte displacement from the beginning of a
7585 structure (pointed to by a value) of type TYPE to *DISPP (does not
7586 work for packed fields).
7588 Matches any field whose name has NAME as a prefix, possibly
7591 TYPE can be either a struct or union. If REFOK, TYPE may also
7592 be a (pointer or reference)+ to a struct or union, and the
7593 ultimate target type will be searched.
7595 Looks recursively into variant clauses and parent types.
7597 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7598 TYPE is not a type of the right kind. */
7600 static struct type *
7601 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7609 if (refok && type != NULL)
7612 type = ada_check_typedef (type);
7613 if (TYPE_CODE (type) != TYPE_CODE_PTR
7614 && TYPE_CODE (type) != TYPE_CODE_REF)
7616 type = TYPE_TARGET_TYPE (type);
7620 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7621 && TYPE_CODE (type) != TYPE_CODE_UNION))
7626 error (_("Type %s is not a structure or union type"),
7627 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7630 type = to_static_fixed_type (type);
7632 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7637 if (t_field_name == NULL)
7640 else if (field_name_match (t_field_name, name))
7641 return TYPE_FIELD_TYPE (type, i);
7643 else if (ada_is_wrapper_field (type, i))
7645 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7651 else if (ada_is_variant_part (type, i))
7654 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7657 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7659 /* FIXME pnh 2008/01/26: We check for a field that is
7660 NOT wrapped in a struct, since the compiler sometimes
7661 generates these for unchecked variant types. Revisit
7662 if the compiler changes this practice. */
7663 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7665 if (v_field_name != NULL
7666 && field_name_match (v_field_name, name))
7667 t = TYPE_FIELD_TYPE (field_type, j);
7669 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7683 const char *name_str = name != NULL ? name : _("<null>");
7685 error (_("Type %s has no component named %s"),
7686 type_as_string (type).c_str (), name_str);
7692 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7694 represents an unchecked union (that is, the variant part of a
7695 record that is named in an Unchecked_Union pragma). */
7698 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7700 const char *discrim_name = ada_variant_discrim_name (var_type);
7702 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE that is stored in GDB at
7708 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7709 numbering from 0) is applicable. Returns -1 if none are. */
7712 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7713 const gdb_byte *outer_valaddr)
7717 const char *discrim_name = ada_variant_discrim_name (var_type);
7718 struct value *outer;
7719 struct value *discrim;
7720 LONGEST discrim_val;
7722 /* Using plain value_from_contents_and_address here causes problems
7723 because we will end up trying to resolve a type that is currently
7724 being constructed. */
7725 outer = value_from_contents_and_address_unresolved (outer_type,
7727 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7728 if (discrim == NULL)
7730 discrim_val = value_as_long (discrim);
7733 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7735 if (ada_is_others_clause (var_type, i))
7737 else if (ada_in_variant (discrim_val, var_type, i))
7741 return others_clause;
7746 /* Dynamic-Sized Records */
7748 /* Strategy: The type ostensibly attached to a value with dynamic size
7749 (i.e., a size that is not statically recorded in the debugging
7750 data) does not accurately reflect the size or layout of the value.
7751 Our strategy is to convert these values to values with accurate,
7752 conventional types that are constructed on the fly. */
7754 /* There is a subtle and tricky problem here. In general, we cannot
7755 determine the size of dynamic records without its data. However,
7756 the 'struct value' data structure, which GDB uses to represent
7757 quantities in the inferior process (the target), requires the size
7758 of the type at the time of its allocation in order to reserve space
7759 for GDB's internal copy of the data. That's why the
7760 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7761 rather than struct value*s.
7763 However, GDB's internal history variables ($1, $2, etc.) are
7764 struct value*s containing internal copies of the data that are not, in
7765 general, the same as the data at their corresponding addresses in
7766 the target. Fortunately, the types we give to these values are all
7767 conventional, fixed-size types (as per the strategy described
7768 above), so that we don't usually have to perform the
7769 'to_fixed_xxx_type' conversions to look at their values.
7770 Unfortunately, there is one exception: if one of the internal
7771 history variables is an array whose elements are unconstrained
7772 records, then we will need to create distinct fixed types for each
7773 element selected. */
7775 /* The upshot of all of this is that many routines take a (type, host
7776 address, target address) triple as arguments to represent a value.
7777 The host address, if non-null, is supposed to contain an internal
7778 copy of the relevant data; otherwise, the program is to consult the
7779 target at the target address. */
7781 /* Assuming that VAL0 represents a pointer value, the result of
7782 dereferencing it. Differs from value_ind in its treatment of
7783 dynamic-sized types. */
7786 ada_value_ind (struct value *val0)
7788 struct value *val = value_ind (val0);
7790 if (ada_is_tagged_type (value_type (val), 0))
7791 val = ada_tag_value_at_base_address (val);
7793 return ada_to_fixed_value (val);
7796 /* The value resulting from dereferencing any "reference to"
7797 qualifiers on VAL0. */
7799 static struct value *
7800 ada_coerce_ref (struct value *val0)
7802 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7804 struct value *val = val0;
7806 val = coerce_ref (val);
7808 if (ada_is_tagged_type (value_type (val), 0))
7809 val = ada_tag_value_at_base_address (val);
7811 return ada_to_fixed_value (val);
7817 /* Return OFF rounded upward if necessary to a multiple of
7818 ALIGNMENT (a power of 2). */
7821 align_value (unsigned int off, unsigned int alignment)
7823 return (off + alignment - 1) & ~(alignment - 1);
7826 /* Return the bit alignment required for field #F of template type TYPE. */
7829 field_alignment (struct type *type, int f)
7831 const char *name = TYPE_FIELD_NAME (type, f);
7835 /* The field name should never be null, unless the debugging information
7836 is somehow malformed. In this case, we assume the field does not
7837 require any alignment. */
7841 len = strlen (name);
7843 if (!isdigit (name[len - 1]))
7846 if (isdigit (name[len - 2]))
7847 align_offset = len - 2;
7849 align_offset = len - 1;
7851 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7852 return TARGET_CHAR_BIT;
7854 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7857 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7859 static struct symbol *
7860 ada_find_any_type_symbol (const char *name)
7864 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7865 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7868 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7872 /* Find a type named NAME. Ignores ambiguity. This routine will look
7873 solely for types defined by debug info, it will not search the GDB
7876 static struct type *
7877 ada_find_any_type (const char *name)
7879 struct symbol *sym = ada_find_any_type_symbol (name);
7882 return SYMBOL_TYPE (sym);
7887 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7888 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7889 symbol, in which case it is returned. Otherwise, this looks for
7890 symbols whose name is that of NAME_SYM suffixed with "___XR".
7891 Return symbol if found, and NULL otherwise. */
7894 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7896 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7899 if (strstr (name, "___XR") != NULL)
7902 sym = find_old_style_renaming_symbol (name, block);
7907 /* Not right yet. FIXME pnh 7/20/2007. */
7908 sym = ada_find_any_type_symbol (name);
7909 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7915 static struct symbol *
7916 find_old_style_renaming_symbol (const char *name, const struct block *block)
7918 const struct symbol *function_sym = block_linkage_function (block);
7921 if (function_sym != NULL)
7923 /* If the symbol is defined inside a function, NAME is not fully
7924 qualified. This means we need to prepend the function name
7925 as well as adding the ``___XR'' suffix to build the name of
7926 the associated renaming symbol. */
7927 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7928 /* Function names sometimes contain suffixes used
7929 for instance to qualify nested subprograms. When building
7930 the XR type name, we need to make sure that this suffix is
7931 not included. So do not include any suffix in the function
7932 name length below. */
7933 int function_name_len = ada_name_prefix_len (function_name);
7934 const int rename_len = function_name_len + 2 /* "__" */
7935 + strlen (name) + 6 /* "___XR\0" */ ;
7937 /* Strip the suffix if necessary. */
7938 ada_remove_trailing_digits (function_name, &function_name_len);
7939 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7940 ada_remove_Xbn_suffix (function_name, &function_name_len);
7942 /* Library-level functions are a special case, as GNAT adds
7943 a ``_ada_'' prefix to the function name to avoid namespace
7944 pollution. However, the renaming symbols themselves do not
7945 have this prefix, so we need to skip this prefix if present. */
7946 if (function_name_len > 5 /* "_ada_" */
7947 && strstr (function_name, "_ada_") == function_name)
7950 function_name_len -= 5;
7953 rename = (char *) alloca (rename_len * sizeof (char));
7954 strncpy (rename, function_name, function_name_len);
7955 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7960 const int rename_len = strlen (name) + 6;
7962 rename = (char *) alloca (rename_len * sizeof (char));
7963 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7966 return ada_find_any_type_symbol (rename);
7969 /* Because of GNAT encoding conventions, several GDB symbols may match a
7970 given type name. If the type denoted by TYPE0 is to be preferred to
7971 that of TYPE1 for purposes of type printing, return non-zero;
7972 otherwise return 0. */
7975 ada_prefer_type (struct type *type0, struct type *type1)
7979 else if (type0 == NULL)
7981 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7983 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7985 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7987 else if (ada_is_constrained_packed_array_type (type0))
7989 else if (ada_is_array_descriptor_type (type0)
7990 && !ada_is_array_descriptor_type (type1))
7994 const char *type0_name = type_name_no_tag (type0);
7995 const char *type1_name = type_name_no_tag (type1);
7997 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7998 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8004 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8005 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8008 ada_type_name (struct type *type)
8012 else if (TYPE_NAME (type) != NULL)
8013 return TYPE_NAME (type);
8015 return TYPE_TAG_NAME (type);
8018 /* Search the list of "descriptive" types associated to TYPE for a type
8019 whose name is NAME. */
8021 static struct type *
8022 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8024 struct type *result, *tmp;
8026 if (ada_ignore_descriptive_types_p)
8029 /* If there no descriptive-type info, then there is no parallel type
8031 if (!HAVE_GNAT_AUX_INFO (type))
8034 result = TYPE_DESCRIPTIVE_TYPE (type);
8035 while (result != NULL)
8037 const char *result_name = ada_type_name (result);
8039 if (result_name == NULL)
8041 warning (_("unexpected null name on descriptive type"));
8045 /* If the names match, stop. */
8046 if (strcmp (result_name, name) == 0)
8049 /* Otherwise, look at the next item on the list, if any. */
8050 if (HAVE_GNAT_AUX_INFO (result))
8051 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8055 /* If not found either, try after having resolved the typedef. */
8060 result = check_typedef (result);
8061 if (HAVE_GNAT_AUX_INFO (result))
8062 result = TYPE_DESCRIPTIVE_TYPE (result);
8068 /* If we didn't find a match, see whether this is a packed array. With
8069 older compilers, the descriptive type information is either absent or
8070 irrelevant when it comes to packed arrays so the above lookup fails.
8071 Fall back to using a parallel lookup by name in this case. */
8072 if (result == NULL && ada_is_constrained_packed_array_type (type))
8073 return ada_find_any_type (name);
8078 /* Find a parallel type to TYPE with the specified NAME, using the
8079 descriptive type taken from the debugging information, if available,
8080 and otherwise using the (slower) name-based method. */
8082 static struct type *
8083 ada_find_parallel_type_with_name (struct type *type, const char *name)
8085 struct type *result = NULL;
8087 if (HAVE_GNAT_AUX_INFO (type))
8088 result = find_parallel_type_by_descriptive_type (type, name);
8090 result = ada_find_any_type (name);
8095 /* Same as above, but specify the name of the parallel type by appending
8096 SUFFIX to the name of TYPE. */
8099 ada_find_parallel_type (struct type *type, const char *suffix)
8102 const char *type_name = ada_type_name (type);
8105 if (type_name == NULL)
8108 len = strlen (type_name);
8110 name = (char *) alloca (len + strlen (suffix) + 1);
8112 strcpy (name, type_name);
8113 strcpy (name + len, suffix);
8115 return ada_find_parallel_type_with_name (type, name);
8118 /* If TYPE is a variable-size record type, return the corresponding template
8119 type describing its fields. Otherwise, return NULL. */
8121 static struct type *
8122 dynamic_template_type (struct type *type)
8124 type = ada_check_typedef (type);
8126 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8127 || ada_type_name (type) == NULL)
8131 int len = strlen (ada_type_name (type));
8133 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8136 return ada_find_parallel_type (type, "___XVE");
8140 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8141 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8144 is_dynamic_field (struct type *templ_type, int field_num)
8146 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8149 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8150 && strstr (name, "___XVL") != NULL;
8153 /* The index of the variant field of TYPE, or -1 if TYPE does not
8154 represent a variant record type. */
8157 variant_field_index (struct type *type)
8161 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8164 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8166 if (ada_is_variant_part (type, f))
8172 /* A record type with no fields. */
8174 static struct type *
8175 empty_record (struct type *templ)
8177 struct type *type = alloc_type_copy (templ);
8179 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8180 TYPE_NFIELDS (type) = 0;
8181 TYPE_FIELDS (type) = NULL;
8182 INIT_CPLUS_SPECIFIC (type);
8183 TYPE_NAME (type) = "<empty>";
8184 TYPE_TAG_NAME (type) = NULL;
8185 TYPE_LENGTH (type) = 0;
8189 /* An ordinary record type (with fixed-length fields) that describes
8190 the value of type TYPE at VALADDR or ADDRESS (see comments at
8191 the beginning of this section) VAL according to GNAT conventions.
8192 DVAL0 should describe the (portion of a) record that contains any
8193 necessary discriminants. It should be NULL if value_type (VAL) is
8194 an outer-level type (i.e., as opposed to a branch of a variant.) A
8195 variant field (unless unchecked) is replaced by a particular branch
8198 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8199 length are not statically known are discarded. As a consequence,
8200 VALADDR, ADDRESS and DVAL0 are ignored.
8202 NOTE: Limitations: For now, we assume that dynamic fields and
8203 variants occupy whole numbers of bytes. However, they need not be
8207 ada_template_to_fixed_record_type_1 (struct type *type,
8208 const gdb_byte *valaddr,
8209 CORE_ADDR address, struct value *dval0,
8210 int keep_dynamic_fields)
8212 struct value *mark = value_mark ();
8215 int nfields, bit_len;
8221 /* Compute the number of fields in this record type that are going
8222 to be processed: unless keep_dynamic_fields, this includes only
8223 fields whose position and length are static will be processed. */
8224 if (keep_dynamic_fields)
8225 nfields = TYPE_NFIELDS (type);
8229 while (nfields < TYPE_NFIELDS (type)
8230 && !ada_is_variant_part (type, nfields)
8231 && !is_dynamic_field (type, nfields))
8235 rtype = alloc_type_copy (type);
8236 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8237 INIT_CPLUS_SPECIFIC (rtype);
8238 TYPE_NFIELDS (rtype) = nfields;
8239 TYPE_FIELDS (rtype) = (struct field *)
8240 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8241 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8242 TYPE_NAME (rtype) = ada_type_name (type);
8243 TYPE_TAG_NAME (rtype) = NULL;
8244 TYPE_FIXED_INSTANCE (rtype) = 1;
8250 for (f = 0; f < nfields; f += 1)
8252 off = align_value (off, field_alignment (type, f))
8253 + TYPE_FIELD_BITPOS (type, f);
8254 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8255 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8257 if (ada_is_variant_part (type, f))
8262 else if (is_dynamic_field (type, f))
8264 const gdb_byte *field_valaddr = valaddr;
8265 CORE_ADDR field_address = address;
8266 struct type *field_type =
8267 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8271 /* rtype's length is computed based on the run-time
8272 value of discriminants. If the discriminants are not
8273 initialized, the type size may be completely bogus and
8274 GDB may fail to allocate a value for it. So check the
8275 size first before creating the value. */
8276 ada_ensure_varsize_limit (rtype);
8277 /* Using plain value_from_contents_and_address here
8278 causes problems because we will end up trying to
8279 resolve a type that is currently being
8281 dval = value_from_contents_and_address_unresolved (rtype,
8284 rtype = value_type (dval);
8289 /* If the type referenced by this field is an aligner type, we need
8290 to unwrap that aligner type, because its size might not be set.
8291 Keeping the aligner type would cause us to compute the wrong
8292 size for this field, impacting the offset of the all the fields
8293 that follow this one. */
8294 if (ada_is_aligner_type (field_type))
8296 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8298 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8299 field_address = cond_offset_target (field_address, field_offset);
8300 field_type = ada_aligned_type (field_type);
8303 field_valaddr = cond_offset_host (field_valaddr,
8304 off / TARGET_CHAR_BIT);
8305 field_address = cond_offset_target (field_address,
8306 off / TARGET_CHAR_BIT);
8308 /* Get the fixed type of the field. Note that, in this case,
8309 we do not want to get the real type out of the tag: if
8310 the current field is the parent part of a tagged record,
8311 we will get the tag of the object. Clearly wrong: the real
8312 type of the parent is not the real type of the child. We
8313 would end up in an infinite loop. */
8314 field_type = ada_get_base_type (field_type);
8315 field_type = ada_to_fixed_type (field_type, field_valaddr,
8316 field_address, dval, 0);
8317 /* If the field size is already larger than the maximum
8318 object size, then the record itself will necessarily
8319 be larger than the maximum object size. We need to make
8320 this check now, because the size might be so ridiculously
8321 large (due to an uninitialized variable in the inferior)
8322 that it would cause an overflow when adding it to the
8324 ada_ensure_varsize_limit (field_type);
8326 TYPE_FIELD_TYPE (rtype, f) = field_type;
8327 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8328 /* The multiplication can potentially overflow. But because
8329 the field length has been size-checked just above, and
8330 assuming that the maximum size is a reasonable value,
8331 an overflow should not happen in practice. So rather than
8332 adding overflow recovery code to this already complex code,
8333 we just assume that it's not going to happen. */
8335 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8339 /* Note: If this field's type is a typedef, it is important
8340 to preserve the typedef layer.
8342 Otherwise, we might be transforming a typedef to a fat
8343 pointer (encoding a pointer to an unconstrained array),
8344 into a basic fat pointer (encoding an unconstrained
8345 array). As both types are implemented using the same
8346 structure, the typedef is the only clue which allows us
8347 to distinguish between the two options. Stripping it
8348 would prevent us from printing this field appropriately. */
8349 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8350 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8351 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8353 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8356 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8358 /* We need to be careful of typedefs when computing
8359 the length of our field. If this is a typedef,
8360 get the length of the target type, not the length
8362 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8363 field_type = ada_typedef_target_type (field_type);
8366 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8369 if (off + fld_bit_len > bit_len)
8370 bit_len = off + fld_bit_len;
8372 TYPE_LENGTH (rtype) =
8373 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8376 /* We handle the variant part, if any, at the end because of certain
8377 odd cases in which it is re-ordered so as NOT to be the last field of
8378 the record. This can happen in the presence of representation
8380 if (variant_field >= 0)
8382 struct type *branch_type;
8384 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8388 /* Using plain value_from_contents_and_address here causes
8389 problems because we will end up trying to resolve a type
8390 that is currently being constructed. */
8391 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8393 rtype = value_type (dval);
8399 to_fixed_variant_branch_type
8400 (TYPE_FIELD_TYPE (type, variant_field),
8401 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8402 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8403 if (branch_type == NULL)
8405 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8406 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8407 TYPE_NFIELDS (rtype) -= 1;
8411 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8412 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8414 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8416 if (off + fld_bit_len > bit_len)
8417 bit_len = off + fld_bit_len;
8418 TYPE_LENGTH (rtype) =
8419 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8423 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8424 should contain the alignment of that record, which should be a strictly
8425 positive value. If null or negative, then something is wrong, most
8426 probably in the debug info. In that case, we don't round up the size
8427 of the resulting type. If this record is not part of another structure,
8428 the current RTYPE length might be good enough for our purposes. */
8429 if (TYPE_LENGTH (type) <= 0)
8431 if (TYPE_NAME (rtype))
8432 warning (_("Invalid type size for `%s' detected: %d."),
8433 TYPE_NAME (rtype), TYPE_LENGTH (type));
8435 warning (_("Invalid type size for <unnamed> detected: %d."),
8436 TYPE_LENGTH (type));
8440 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8441 TYPE_LENGTH (type));
8444 value_free_to_mark (mark);
8445 if (TYPE_LENGTH (rtype) > varsize_limit)
8446 error (_("record type with dynamic size is larger than varsize-limit"));
8450 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8453 static struct type *
8454 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8455 CORE_ADDR address, struct value *dval0)
8457 return ada_template_to_fixed_record_type_1 (type, valaddr,
8461 /* An ordinary record type in which ___XVL-convention fields and
8462 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8463 static approximations, containing all possible fields. Uses
8464 no runtime values. Useless for use in values, but that's OK,
8465 since the results are used only for type determinations. Works on both
8466 structs and unions. Representation note: to save space, we memorize
8467 the result of this function in the TYPE_TARGET_TYPE of the
8470 static struct type *
8471 template_to_static_fixed_type (struct type *type0)
8477 /* No need no do anything if the input type is already fixed. */
8478 if (TYPE_FIXED_INSTANCE (type0))
8481 /* Likewise if we already have computed the static approximation. */
8482 if (TYPE_TARGET_TYPE (type0) != NULL)
8483 return TYPE_TARGET_TYPE (type0);
8485 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8487 nfields = TYPE_NFIELDS (type0);
8489 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8490 recompute all over next time. */
8491 TYPE_TARGET_TYPE (type0) = type;
8493 for (f = 0; f < nfields; f += 1)
8495 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8496 struct type *new_type;
8498 if (is_dynamic_field (type0, f))
8500 field_type = ada_check_typedef (field_type);
8501 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8504 new_type = static_unwrap_type (field_type);
8506 if (new_type != field_type)
8508 /* Clone TYPE0 only the first time we get a new field type. */
8511 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8512 TYPE_CODE (type) = TYPE_CODE (type0);
8513 INIT_CPLUS_SPECIFIC (type);
8514 TYPE_NFIELDS (type) = nfields;
8515 TYPE_FIELDS (type) = (struct field *)
8516 TYPE_ALLOC (type, nfields * sizeof (struct field));
8517 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8518 sizeof (struct field) * nfields);
8519 TYPE_NAME (type) = ada_type_name (type0);
8520 TYPE_TAG_NAME (type) = NULL;
8521 TYPE_FIXED_INSTANCE (type) = 1;
8522 TYPE_LENGTH (type) = 0;
8524 TYPE_FIELD_TYPE (type, f) = new_type;
8525 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8532 /* Given an object of type TYPE whose contents are at VALADDR and
8533 whose address in memory is ADDRESS, returns a revision of TYPE,
8534 which should be a non-dynamic-sized record, in which the variant
8535 part, if any, is replaced with the appropriate branch. Looks
8536 for discriminant values in DVAL0, which can be NULL if the record
8537 contains the necessary discriminant values. */
8539 static struct type *
8540 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8541 CORE_ADDR address, struct value *dval0)
8543 struct value *mark = value_mark ();
8546 struct type *branch_type;
8547 int nfields = TYPE_NFIELDS (type);
8548 int variant_field = variant_field_index (type);
8550 if (variant_field == -1)
8555 dval = value_from_contents_and_address (type, valaddr, address);
8556 type = value_type (dval);
8561 rtype = alloc_type_copy (type);
8562 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8563 INIT_CPLUS_SPECIFIC (rtype);
8564 TYPE_NFIELDS (rtype) = nfields;
8565 TYPE_FIELDS (rtype) =
8566 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8567 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8568 sizeof (struct field) * nfields);
8569 TYPE_NAME (rtype) = ada_type_name (type);
8570 TYPE_TAG_NAME (rtype) = NULL;
8571 TYPE_FIXED_INSTANCE (rtype) = 1;
8572 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8574 branch_type = to_fixed_variant_branch_type
8575 (TYPE_FIELD_TYPE (type, variant_field),
8576 cond_offset_host (valaddr,
8577 TYPE_FIELD_BITPOS (type, variant_field)
8579 cond_offset_target (address,
8580 TYPE_FIELD_BITPOS (type, variant_field)
8581 / TARGET_CHAR_BIT), dval);
8582 if (branch_type == NULL)
8586 for (f = variant_field + 1; f < nfields; f += 1)
8587 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8588 TYPE_NFIELDS (rtype) -= 1;
8592 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8593 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8594 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8595 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8597 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8599 value_free_to_mark (mark);
8603 /* An ordinary record type (with fixed-length fields) that describes
8604 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8605 beginning of this section]. Any necessary discriminants' values
8606 should be in DVAL, a record value; it may be NULL if the object
8607 at ADDR itself contains any necessary discriminant values.
8608 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8609 values from the record are needed. Except in the case that DVAL,
8610 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8611 unchecked) is replaced by a particular branch of the variant.
8613 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8614 is questionable and may be removed. It can arise during the
8615 processing of an unconstrained-array-of-record type where all the
8616 variant branches have exactly the same size. This is because in
8617 such cases, the compiler does not bother to use the XVS convention
8618 when encoding the record. I am currently dubious of this
8619 shortcut and suspect the compiler should be altered. FIXME. */
8621 static struct type *
8622 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8623 CORE_ADDR address, struct value *dval)
8625 struct type *templ_type;
8627 if (TYPE_FIXED_INSTANCE (type0))
8630 templ_type = dynamic_template_type (type0);
8632 if (templ_type != NULL)
8633 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8634 else if (variant_field_index (type0) >= 0)
8636 if (dval == NULL && valaddr == NULL && address == 0)
8638 return to_record_with_fixed_variant_part (type0, valaddr, address,
8643 TYPE_FIXED_INSTANCE (type0) = 1;
8649 /* An ordinary record type (with fixed-length fields) that describes
8650 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8651 union type. Any necessary discriminants' values should be in DVAL,
8652 a record value. That is, this routine selects the appropriate
8653 branch of the union at ADDR according to the discriminant value
8654 indicated in the union's type name. Returns VAR_TYPE0 itself if
8655 it represents a variant subject to a pragma Unchecked_Union. */
8657 static struct type *
8658 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8659 CORE_ADDR address, struct value *dval)
8662 struct type *templ_type;
8663 struct type *var_type;
8665 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8666 var_type = TYPE_TARGET_TYPE (var_type0);
8668 var_type = var_type0;
8670 templ_type = ada_find_parallel_type (var_type, "___XVU");
8672 if (templ_type != NULL)
8673 var_type = templ_type;
8675 if (is_unchecked_variant (var_type, value_type (dval)))
8678 ada_which_variant_applies (var_type,
8679 value_type (dval), value_contents (dval));
8682 return empty_record (var_type);
8683 else if (is_dynamic_field (var_type, which))
8684 return to_fixed_record_type
8685 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8686 valaddr, address, dval);
8687 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8689 to_fixed_record_type
8690 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8692 return TYPE_FIELD_TYPE (var_type, which);
8695 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8696 ENCODING_TYPE, a type following the GNAT conventions for discrete
8697 type encodings, only carries redundant information. */
8700 ada_is_redundant_range_encoding (struct type *range_type,
8701 struct type *encoding_type)
8703 struct type *fixed_range_type;
8704 const char *bounds_str;
8708 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8710 if (TYPE_CODE (get_base_type (range_type))
8711 != TYPE_CODE (get_base_type (encoding_type)))
8713 /* The compiler probably used a simple base type to describe
8714 the range type instead of the range's actual base type,
8715 expecting us to get the real base type from the encoding
8716 anyway. In this situation, the encoding cannot be ignored
8721 if (is_dynamic_type (range_type))
8724 if (TYPE_NAME (encoding_type) == NULL)
8727 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8728 if (bounds_str == NULL)
8731 n = 8; /* Skip "___XDLU_". */
8732 if (!ada_scan_number (bounds_str, n, &lo, &n))
8734 if (TYPE_LOW_BOUND (range_type) != lo)
8737 n += 2; /* Skip the "__" separator between the two bounds. */
8738 if (!ada_scan_number (bounds_str, n, &hi, &n))
8740 if (TYPE_HIGH_BOUND (range_type) != hi)
8746 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8747 a type following the GNAT encoding for describing array type
8748 indices, only carries redundant information. */
8751 ada_is_redundant_index_type_desc (struct type *array_type,
8752 struct type *desc_type)
8754 struct type *this_layer = check_typedef (array_type);
8757 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8759 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8760 TYPE_FIELD_TYPE (desc_type, i)))
8762 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8768 /* Assuming that TYPE0 is an array type describing the type of a value
8769 at ADDR, and that DVAL describes a record containing any
8770 discriminants used in TYPE0, returns a type for the value that
8771 contains no dynamic components (that is, no components whose sizes
8772 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8773 true, gives an error message if the resulting type's size is over
8776 static struct type *
8777 to_fixed_array_type (struct type *type0, struct value *dval,
8780 struct type *index_type_desc;
8781 struct type *result;
8782 int constrained_packed_array_p;
8783 static const char *xa_suffix = "___XA";
8785 type0 = ada_check_typedef (type0);
8786 if (TYPE_FIXED_INSTANCE (type0))
8789 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8790 if (constrained_packed_array_p)
8791 type0 = decode_constrained_packed_array_type (type0);
8793 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8795 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8796 encoding suffixed with 'P' may still be generated. If so,
8797 it should be used to find the XA type. */
8799 if (index_type_desc == NULL)
8801 const char *type_name = ada_type_name (type0);
8803 if (type_name != NULL)
8805 const int len = strlen (type_name);
8806 char *name = (char *) alloca (len + strlen (xa_suffix));
8808 if (type_name[len - 1] == 'P')
8810 strcpy (name, type_name);
8811 strcpy (name + len - 1, xa_suffix);
8812 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8817 ada_fixup_array_indexes_type (index_type_desc);
8818 if (index_type_desc != NULL
8819 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8821 /* Ignore this ___XA parallel type, as it does not bring any
8822 useful information. This allows us to avoid creating fixed
8823 versions of the array's index types, which would be identical
8824 to the original ones. This, in turn, can also help avoid
8825 the creation of fixed versions of the array itself. */
8826 index_type_desc = NULL;
8829 if (index_type_desc == NULL)
8831 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8833 /* NOTE: elt_type---the fixed version of elt_type0---should never
8834 depend on the contents of the array in properly constructed
8836 /* Create a fixed version of the array element type.
8837 We're not providing the address of an element here,
8838 and thus the actual object value cannot be inspected to do
8839 the conversion. This should not be a problem, since arrays of
8840 unconstrained objects are not allowed. In particular, all
8841 the elements of an array of a tagged type should all be of
8842 the same type specified in the debugging info. No need to
8843 consult the object tag. */
8844 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8846 /* Make sure we always create a new array type when dealing with
8847 packed array types, since we're going to fix-up the array
8848 type length and element bitsize a little further down. */
8849 if (elt_type0 == elt_type && !constrained_packed_array_p)
8852 result = create_array_type (alloc_type_copy (type0),
8853 elt_type, TYPE_INDEX_TYPE (type0));
8858 struct type *elt_type0;
8861 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8862 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8864 /* NOTE: result---the fixed version of elt_type0---should never
8865 depend on the contents of the array in properly constructed
8867 /* Create a fixed version of the array element type.
8868 We're not providing the address of an element here,
8869 and thus the actual object value cannot be inspected to do
8870 the conversion. This should not be a problem, since arrays of
8871 unconstrained objects are not allowed. In particular, all
8872 the elements of an array of a tagged type should all be of
8873 the same type specified in the debugging info. No need to
8874 consult the object tag. */
8876 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8879 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8881 struct type *range_type =
8882 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8884 result = create_array_type (alloc_type_copy (elt_type0),
8885 result, range_type);
8886 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8888 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8889 error (_("array type with dynamic size is larger than varsize-limit"));
8892 /* We want to preserve the type name. This can be useful when
8893 trying to get the type name of a value that has already been
8894 printed (for instance, if the user did "print VAR; whatis $". */
8895 TYPE_NAME (result) = TYPE_NAME (type0);
8897 if (constrained_packed_array_p)
8899 /* So far, the resulting type has been created as if the original
8900 type was a regular (non-packed) array type. As a result, the
8901 bitsize of the array elements needs to be set again, and the array
8902 length needs to be recomputed based on that bitsize. */
8903 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8904 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8906 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8907 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8908 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8909 TYPE_LENGTH (result)++;
8912 TYPE_FIXED_INSTANCE (result) = 1;
8917 /* A standard type (containing no dynamically sized components)
8918 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8919 DVAL describes a record containing any discriminants used in TYPE0,
8920 and may be NULL if there are none, or if the object of type TYPE at
8921 ADDRESS or in VALADDR contains these discriminants.
8923 If CHECK_TAG is not null, in the case of tagged types, this function
8924 attempts to locate the object's tag and use it to compute the actual
8925 type. However, when ADDRESS is null, we cannot use it to determine the
8926 location of the tag, and therefore compute the tagged type's actual type.
8927 So we return the tagged type without consulting the tag. */
8929 static struct type *
8930 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8931 CORE_ADDR address, struct value *dval, int check_tag)
8933 type = ada_check_typedef (type);
8934 switch (TYPE_CODE (type))
8938 case TYPE_CODE_STRUCT:
8940 struct type *static_type = to_static_fixed_type (type);
8941 struct type *fixed_record_type =
8942 to_fixed_record_type (type, valaddr, address, NULL);
8944 /* If STATIC_TYPE is a tagged type and we know the object's address,
8945 then we can determine its tag, and compute the object's actual
8946 type from there. Note that we have to use the fixed record
8947 type (the parent part of the record may have dynamic fields
8948 and the way the location of _tag is expressed may depend on
8951 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8954 value_tag_from_contents_and_address
8958 struct type *real_type = type_from_tag (tag);
8960 value_from_contents_and_address (fixed_record_type,
8963 fixed_record_type = value_type (obj);
8964 if (real_type != NULL)
8965 return to_fixed_record_type
8967 value_address (ada_tag_value_at_base_address (obj)), NULL);
8970 /* Check to see if there is a parallel ___XVZ variable.
8971 If there is, then it provides the actual size of our type. */
8972 else if (ada_type_name (fixed_record_type) != NULL)
8974 const char *name = ada_type_name (fixed_record_type);
8976 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8979 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8980 if (get_int_var_value (xvz_name, size)
8981 && TYPE_LENGTH (fixed_record_type) != size)
8983 fixed_record_type = copy_type (fixed_record_type);
8984 TYPE_LENGTH (fixed_record_type) = size;
8986 /* The FIXED_RECORD_TYPE may have be a stub. We have
8987 observed this when the debugging info is STABS, and
8988 apparently it is something that is hard to fix.
8990 In practice, we don't need the actual type definition
8991 at all, because the presence of the XVZ variable allows us
8992 to assume that there must be a XVS type as well, which we
8993 should be able to use later, when we need the actual type
8996 In the meantime, pretend that the "fixed" type we are
8997 returning is NOT a stub, because this can cause trouble
8998 when using this type to create new types targeting it.
8999 Indeed, the associated creation routines often check
9000 whether the target type is a stub and will try to replace
9001 it, thus using a type with the wrong size. This, in turn,
9002 might cause the new type to have the wrong size too.
9003 Consider the case of an array, for instance, where the size
9004 of the array is computed from the number of elements in
9005 our array multiplied by the size of its element. */
9006 TYPE_STUB (fixed_record_type) = 0;
9009 return fixed_record_type;
9011 case TYPE_CODE_ARRAY:
9012 return to_fixed_array_type (type, dval, 1);
9013 case TYPE_CODE_UNION:
9017 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9021 /* The same as ada_to_fixed_type_1, except that it preserves the type
9022 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9024 The typedef layer needs be preserved in order to differentiate between
9025 arrays and array pointers when both types are implemented using the same
9026 fat pointer. In the array pointer case, the pointer is encoded as
9027 a typedef of the pointer type. For instance, considering:
9029 type String_Access is access String;
9030 S1 : String_Access := null;
9032 To the debugger, S1 is defined as a typedef of type String. But
9033 to the user, it is a pointer. So if the user tries to print S1,
9034 we should not dereference the array, but print the array address
9037 If we didn't preserve the typedef layer, we would lose the fact that
9038 the type is to be presented as a pointer (needs de-reference before
9039 being printed). And we would also use the source-level type name. */
9042 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9043 CORE_ADDR address, struct value *dval, int check_tag)
9046 struct type *fixed_type =
9047 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9049 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9050 then preserve the typedef layer.
9052 Implementation note: We can only check the main-type portion of
9053 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9054 from TYPE now returns a type that has the same instance flags
9055 as TYPE. For instance, if TYPE is a "typedef const", and its
9056 target type is a "struct", then the typedef elimination will return
9057 a "const" version of the target type. See check_typedef for more
9058 details about how the typedef layer elimination is done.
9060 brobecker/2010-11-19: It seems to me that the only case where it is
9061 useful to preserve the typedef layer is when dealing with fat pointers.
9062 Perhaps, we could add a check for that and preserve the typedef layer
9063 only in that situation. But this seems unecessary so far, probably
9064 because we call check_typedef/ada_check_typedef pretty much everywhere.
9066 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9067 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9068 == TYPE_MAIN_TYPE (fixed_type)))
9074 /* A standard (static-sized) type corresponding as well as possible to
9075 TYPE0, but based on no runtime data. */
9077 static struct type *
9078 to_static_fixed_type (struct type *type0)
9085 if (TYPE_FIXED_INSTANCE (type0))
9088 type0 = ada_check_typedef (type0);
9090 switch (TYPE_CODE (type0))
9094 case TYPE_CODE_STRUCT:
9095 type = dynamic_template_type (type0);
9097 return template_to_static_fixed_type (type);
9099 return template_to_static_fixed_type (type0);
9100 case TYPE_CODE_UNION:
9101 type = ada_find_parallel_type (type0, "___XVU");
9103 return template_to_static_fixed_type (type);
9105 return template_to_static_fixed_type (type0);
9109 /* A static approximation of TYPE with all type wrappers removed. */
9111 static struct type *
9112 static_unwrap_type (struct type *type)
9114 if (ada_is_aligner_type (type))
9116 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9117 if (ada_type_name (type1) == NULL)
9118 TYPE_NAME (type1) = ada_type_name (type);
9120 return static_unwrap_type (type1);
9124 struct type *raw_real_type = ada_get_base_type (type);
9126 if (raw_real_type == type)
9129 return to_static_fixed_type (raw_real_type);
9133 /* In some cases, incomplete and private types require
9134 cross-references that are not resolved as records (for example,
9136 type FooP is access Foo;
9138 type Foo is array ...;
9139 ). In these cases, since there is no mechanism for producing
9140 cross-references to such types, we instead substitute for FooP a
9141 stub enumeration type that is nowhere resolved, and whose tag is
9142 the name of the actual type. Call these types "non-record stubs". */
9144 /* A type equivalent to TYPE that is not a non-record stub, if one
9145 exists, otherwise TYPE. */
9148 ada_check_typedef (struct type *type)
9153 /* If our type is a typedef type of a fat pointer, then we're done.
9154 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9155 what allows us to distinguish between fat pointers that represent
9156 array types, and fat pointers that represent array access types
9157 (in both cases, the compiler implements them as fat pointers). */
9158 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9159 && is_thick_pntr (ada_typedef_target_type (type)))
9162 type = check_typedef (type);
9163 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9164 || !TYPE_STUB (type)
9165 || TYPE_TAG_NAME (type) == NULL)
9169 const char *name = TYPE_TAG_NAME (type);
9170 struct type *type1 = ada_find_any_type (name);
9175 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9176 stubs pointing to arrays, as we don't create symbols for array
9177 types, only for the typedef-to-array types). If that's the case,
9178 strip the typedef layer. */
9179 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9180 type1 = ada_check_typedef (type1);
9186 /* A value representing the data at VALADDR/ADDRESS as described by
9187 type TYPE0, but with a standard (static-sized) type that correctly
9188 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9189 type, then return VAL0 [this feature is simply to avoid redundant
9190 creation of struct values]. */
9192 static struct value *
9193 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9196 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9198 if (type == type0 && val0 != NULL)
9201 return value_from_contents_and_address (type, 0, address);
9204 /* A value representing VAL, but with a standard (static-sized) type
9205 that correctly describes it. Does not necessarily create a new
9209 ada_to_fixed_value (struct value *val)
9211 val = unwrap_value (val);
9212 val = ada_to_fixed_value_create (value_type (val),
9213 value_address (val),
9221 /* Table mapping attribute numbers to names.
9222 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9224 static const char *attribute_names[] = {
9242 ada_attribute_name (enum exp_opcode n)
9244 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9245 return attribute_names[n - OP_ATR_FIRST + 1];
9247 return attribute_names[0];
9250 /* Evaluate the 'POS attribute applied to ARG. */
9253 pos_atr (struct value *arg)
9255 struct value *val = coerce_ref (arg);
9256 struct type *type = value_type (val);
9259 if (!discrete_type_p (type))
9260 error (_("'POS only defined on discrete types"));
9262 if (!discrete_position (type, value_as_long (val), &result))
9263 error (_("enumeration value is invalid: can't find 'POS"));
9268 static struct value *
9269 value_pos_atr (struct type *type, struct value *arg)
9271 return value_from_longest (type, pos_atr (arg));
9274 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9276 static struct value *
9277 value_val_atr (struct type *type, struct value *arg)
9279 if (!discrete_type_p (type))
9280 error (_("'VAL only defined on discrete types"));
9281 if (!integer_type_p (value_type (arg)))
9282 error (_("'VAL requires integral argument"));
9284 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9286 long pos = value_as_long (arg);
9288 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9289 error (_("argument to 'VAL out of range"));
9290 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9293 return value_from_longest (type, value_as_long (arg));
9299 /* True if TYPE appears to be an Ada character type.
9300 [At the moment, this is true only for Character and Wide_Character;
9301 It is a heuristic test that could stand improvement]. */
9304 ada_is_character_type (struct type *type)
9308 /* If the type code says it's a character, then assume it really is,
9309 and don't check any further. */
9310 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9313 /* Otherwise, assume it's a character type iff it is a discrete type
9314 with a known character type name. */
9315 name = ada_type_name (type);
9316 return (name != NULL
9317 && (TYPE_CODE (type) == TYPE_CODE_INT
9318 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9319 && (strcmp (name, "character") == 0
9320 || strcmp (name, "wide_character") == 0
9321 || strcmp (name, "wide_wide_character") == 0
9322 || strcmp (name, "unsigned char") == 0));
9325 /* True if TYPE appears to be an Ada string type. */
9328 ada_is_string_type (struct type *type)
9330 type = ada_check_typedef (type);
9332 && TYPE_CODE (type) != TYPE_CODE_PTR
9333 && (ada_is_simple_array_type (type)
9334 || ada_is_array_descriptor_type (type))
9335 && ada_array_arity (type) == 1)
9337 struct type *elttype = ada_array_element_type (type, 1);
9339 return ada_is_character_type (elttype);
9345 /* The compiler sometimes provides a parallel XVS type for a given
9346 PAD type. Normally, it is safe to follow the PAD type directly,
9347 but older versions of the compiler have a bug that causes the offset
9348 of its "F" field to be wrong. Following that field in that case
9349 would lead to incorrect results, but this can be worked around
9350 by ignoring the PAD type and using the associated XVS type instead.
9352 Set to True if the debugger should trust the contents of PAD types.
9353 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9354 static int trust_pad_over_xvs = 1;
9356 /* True if TYPE is a struct type introduced by the compiler to force the
9357 alignment of a value. Such types have a single field with a
9358 distinctive name. */
9361 ada_is_aligner_type (struct type *type)
9363 type = ada_check_typedef (type);
9365 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9368 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9369 && TYPE_NFIELDS (type) == 1
9370 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9373 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9374 the parallel type. */
9377 ada_get_base_type (struct type *raw_type)
9379 struct type *real_type_namer;
9380 struct type *raw_real_type;
9382 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9385 if (ada_is_aligner_type (raw_type))
9386 /* The encoding specifies that we should always use the aligner type.
9387 So, even if this aligner type has an associated XVS type, we should
9390 According to the compiler gurus, an XVS type parallel to an aligner
9391 type may exist because of a stabs limitation. In stabs, aligner
9392 types are empty because the field has a variable-sized type, and
9393 thus cannot actually be used as an aligner type. As a result,
9394 we need the associated parallel XVS type to decode the type.
9395 Since the policy in the compiler is to not change the internal
9396 representation based on the debugging info format, we sometimes
9397 end up having a redundant XVS type parallel to the aligner type. */
9400 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9401 if (real_type_namer == NULL
9402 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9403 || TYPE_NFIELDS (real_type_namer) != 1)
9406 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9408 /* This is an older encoding form where the base type needs to be
9409 looked up by name. We prefer the newer enconding because it is
9411 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9412 if (raw_real_type == NULL)
9415 return raw_real_type;
9418 /* The field in our XVS type is a reference to the base type. */
9419 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9422 /* The type of value designated by TYPE, with all aligners removed. */
9425 ada_aligned_type (struct type *type)
9427 if (ada_is_aligner_type (type))
9428 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9430 return ada_get_base_type (type);
9434 /* The address of the aligned value in an object at address VALADDR
9435 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9438 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9440 if (ada_is_aligner_type (type))
9441 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9443 TYPE_FIELD_BITPOS (type,
9444 0) / TARGET_CHAR_BIT);
9451 /* The printed representation of an enumeration literal with encoded
9452 name NAME. The value is good to the next call of ada_enum_name. */
9454 ada_enum_name (const char *name)
9456 static char *result;
9457 static size_t result_len = 0;
9460 /* First, unqualify the enumeration name:
9461 1. Search for the last '.' character. If we find one, then skip
9462 all the preceding characters, the unqualified name starts
9463 right after that dot.
9464 2. Otherwise, we may be debugging on a target where the compiler
9465 translates dots into "__". Search forward for double underscores,
9466 but stop searching when we hit an overloading suffix, which is
9467 of the form "__" followed by digits. */
9469 tmp = strrchr (name, '.');
9474 while ((tmp = strstr (name, "__")) != NULL)
9476 if (isdigit (tmp[2]))
9487 if (name[1] == 'U' || name[1] == 'W')
9489 if (sscanf (name + 2, "%x", &v) != 1)
9495 GROW_VECT (result, result_len, 16);
9496 if (isascii (v) && isprint (v))
9497 xsnprintf (result, result_len, "'%c'", v);
9498 else if (name[1] == 'U')
9499 xsnprintf (result, result_len, "[\"%02x\"]", v);
9501 xsnprintf (result, result_len, "[\"%04x\"]", v);
9507 tmp = strstr (name, "__");
9509 tmp = strstr (name, "$");
9512 GROW_VECT (result, result_len, tmp - name + 1);
9513 strncpy (result, name, tmp - name);
9514 result[tmp - name] = '\0';
9522 /* Evaluate the subexpression of EXP starting at *POS as for
9523 evaluate_type, updating *POS to point just past the evaluated
9526 static struct value *
9527 evaluate_subexp_type (struct expression *exp, int *pos)
9529 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9532 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9535 static struct value *
9536 unwrap_value (struct value *val)
9538 struct type *type = ada_check_typedef (value_type (val));
9540 if (ada_is_aligner_type (type))
9542 struct value *v = ada_value_struct_elt (val, "F", 0);
9543 struct type *val_type = ada_check_typedef (value_type (v));
9545 if (ada_type_name (val_type) == NULL)
9546 TYPE_NAME (val_type) = ada_type_name (type);
9548 return unwrap_value (v);
9552 struct type *raw_real_type =
9553 ada_check_typedef (ada_get_base_type (type));
9555 /* If there is no parallel XVS or XVE type, then the value is
9556 already unwrapped. Return it without further modification. */
9557 if ((type == raw_real_type)
9558 && ada_find_parallel_type (type, "___XVE") == NULL)
9562 coerce_unspec_val_to_type
9563 (val, ada_to_fixed_type (raw_real_type, 0,
9564 value_address (val),
9569 static struct value *
9570 cast_to_fixed (struct type *type, struct value *arg)
9574 if (type == value_type (arg))
9576 else if (ada_is_fixed_point_type (value_type (arg)))
9577 val = ada_float_to_fixed (type,
9578 ada_fixed_to_float (value_type (arg),
9579 value_as_long (arg)));
9582 DOUBLEST argd = value_as_double (arg);
9584 val = ada_float_to_fixed (type, argd);
9587 return value_from_longest (type, val);
9590 static struct value *
9591 cast_from_fixed (struct type *type, struct value *arg)
9593 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9594 value_as_long (arg));
9596 return value_from_double (type, val);
9599 /* Given two array types T1 and T2, return nonzero iff both arrays
9600 contain the same number of elements. */
9603 ada_same_array_size_p (struct type *t1, struct type *t2)
9605 LONGEST lo1, hi1, lo2, hi2;
9607 /* Get the array bounds in order to verify that the size of
9608 the two arrays match. */
9609 if (!get_array_bounds (t1, &lo1, &hi1)
9610 || !get_array_bounds (t2, &lo2, &hi2))
9611 error (_("unable to determine array bounds"));
9613 /* To make things easier for size comparison, normalize a bit
9614 the case of empty arrays by making sure that the difference
9615 between upper bound and lower bound is always -1. */
9621 return (hi1 - lo1 == hi2 - lo2);
9624 /* Assuming that VAL is an array of integrals, and TYPE represents
9625 an array with the same number of elements, but with wider integral
9626 elements, return an array "casted" to TYPE. In practice, this
9627 means that the returned array is built by casting each element
9628 of the original array into TYPE's (wider) element type. */
9630 static struct value *
9631 ada_promote_array_of_integrals (struct type *type, struct value *val)
9633 struct type *elt_type = TYPE_TARGET_TYPE (type);
9638 /* Verify that both val and type are arrays of scalars, and
9639 that the size of val's elements is smaller than the size
9640 of type's element. */
9641 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9642 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9643 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9644 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9645 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9646 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9648 if (!get_array_bounds (type, &lo, &hi))
9649 error (_("unable to determine array bounds"));
9651 res = allocate_value (type);
9653 /* Promote each array element. */
9654 for (i = 0; i < hi - lo + 1; i++)
9656 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9658 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9659 value_contents_all (elt), TYPE_LENGTH (elt_type));
9665 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9666 return the converted value. */
9668 static struct value *
9669 coerce_for_assign (struct type *type, struct value *val)
9671 struct type *type2 = value_type (val);
9676 type2 = ada_check_typedef (type2);
9677 type = ada_check_typedef (type);
9679 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9680 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9682 val = ada_value_ind (val);
9683 type2 = value_type (val);
9686 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9687 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9689 if (!ada_same_array_size_p (type, type2))
9690 error (_("cannot assign arrays of different length"));
9692 if (is_integral_type (TYPE_TARGET_TYPE (type))
9693 && is_integral_type (TYPE_TARGET_TYPE (type2))
9694 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9695 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9697 /* Allow implicit promotion of the array elements to
9699 return ada_promote_array_of_integrals (type, val);
9702 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9703 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9704 error (_("Incompatible types in assignment"));
9705 deprecated_set_value_type (val, type);
9710 static struct value *
9711 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9714 struct type *type1, *type2;
9717 arg1 = coerce_ref (arg1);
9718 arg2 = coerce_ref (arg2);
9719 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9720 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9722 if (TYPE_CODE (type1) != TYPE_CODE_INT
9723 || TYPE_CODE (type2) != TYPE_CODE_INT)
9724 return value_binop (arg1, arg2, op);
9733 return value_binop (arg1, arg2, op);
9736 v2 = value_as_long (arg2);
9738 error (_("second operand of %s must not be zero."), op_string (op));
9740 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9741 return value_binop (arg1, arg2, op);
9743 v1 = value_as_long (arg1);
9748 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9749 v += v > 0 ? -1 : 1;
9757 /* Should not reach this point. */
9761 val = allocate_value (type1);
9762 store_unsigned_integer (value_contents_raw (val),
9763 TYPE_LENGTH (value_type (val)),
9764 gdbarch_byte_order (get_type_arch (type1)), v);
9769 ada_value_equal (struct value *arg1, struct value *arg2)
9771 if (ada_is_direct_array_type (value_type (arg1))
9772 || ada_is_direct_array_type (value_type (arg2)))
9774 /* Automatically dereference any array reference before
9775 we attempt to perform the comparison. */
9776 arg1 = ada_coerce_ref (arg1);
9777 arg2 = ada_coerce_ref (arg2);
9779 arg1 = ada_coerce_to_simple_array (arg1);
9780 arg2 = ada_coerce_to_simple_array (arg2);
9781 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9782 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9783 error (_("Attempt to compare array with non-array"));
9784 /* FIXME: The following works only for types whose
9785 representations use all bits (no padding or undefined bits)
9786 and do not have user-defined equality. */
9788 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9789 && memcmp (value_contents (arg1), value_contents (arg2),
9790 TYPE_LENGTH (value_type (arg1))) == 0;
9792 return value_equal (arg1, arg2);
9795 /* Total number of component associations in the aggregate starting at
9796 index PC in EXP. Assumes that index PC is the start of an
9800 num_component_specs (struct expression *exp, int pc)
9804 m = exp->elts[pc + 1].longconst;
9807 for (i = 0; i < m; i += 1)
9809 switch (exp->elts[pc].opcode)
9815 n += exp->elts[pc + 1].longconst;
9818 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9823 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9824 component of LHS (a simple array or a record), updating *POS past
9825 the expression, assuming that LHS is contained in CONTAINER. Does
9826 not modify the inferior's memory, nor does it modify LHS (unless
9827 LHS == CONTAINER). */
9830 assign_component (struct value *container, struct value *lhs, LONGEST index,
9831 struct expression *exp, int *pos)
9833 struct value *mark = value_mark ();
9836 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9838 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9839 struct value *index_val = value_from_longest (index_type, index);
9841 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9845 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9846 elt = ada_to_fixed_value (elt);
9849 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9850 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9852 value_assign_to_component (container, elt,
9853 ada_evaluate_subexp (NULL, exp, pos,
9856 value_free_to_mark (mark);
9859 /* Assuming that LHS represents an lvalue having a record or array
9860 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9861 of that aggregate's value to LHS, advancing *POS past the
9862 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9863 lvalue containing LHS (possibly LHS itself). Does not modify
9864 the inferior's memory, nor does it modify the contents of
9865 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9867 static struct value *
9868 assign_aggregate (struct value *container,
9869 struct value *lhs, struct expression *exp,
9870 int *pos, enum noside noside)
9872 struct type *lhs_type;
9873 int n = exp->elts[*pos+1].longconst;
9874 LONGEST low_index, high_index;
9877 int max_indices, num_indices;
9881 if (noside != EVAL_NORMAL)
9883 for (i = 0; i < n; i += 1)
9884 ada_evaluate_subexp (NULL, exp, pos, noside);
9888 container = ada_coerce_ref (container);
9889 if (ada_is_direct_array_type (value_type (container)))
9890 container = ada_coerce_to_simple_array (container);
9891 lhs = ada_coerce_ref (lhs);
9892 if (!deprecated_value_modifiable (lhs))
9893 error (_("Left operand of assignment is not a modifiable lvalue."));
9895 lhs_type = value_type (lhs);
9896 if (ada_is_direct_array_type (lhs_type))
9898 lhs = ada_coerce_to_simple_array (lhs);
9899 lhs_type = value_type (lhs);
9900 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9901 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9903 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9906 high_index = num_visible_fields (lhs_type) - 1;
9909 error (_("Left-hand side must be array or record."));
9911 num_specs = num_component_specs (exp, *pos - 3);
9912 max_indices = 4 * num_specs + 4;
9913 indices = XALLOCAVEC (LONGEST, max_indices);
9914 indices[0] = indices[1] = low_index - 1;
9915 indices[2] = indices[3] = high_index + 1;
9918 for (i = 0; i < n; i += 1)
9920 switch (exp->elts[*pos].opcode)
9923 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9924 &num_indices, max_indices,
9925 low_index, high_index);
9928 aggregate_assign_positional (container, lhs, exp, pos, indices,
9929 &num_indices, max_indices,
9930 low_index, high_index);
9934 error (_("Misplaced 'others' clause"));
9935 aggregate_assign_others (container, lhs, exp, pos, indices,
9936 num_indices, low_index, high_index);
9939 error (_("Internal error: bad aggregate clause"));
9946 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9947 construct at *POS, updating *POS past the construct, given that
9948 the positions are relative to lower bound LOW, where HIGH is the
9949 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9950 updating *NUM_INDICES as needed. CONTAINER is as for
9951 assign_aggregate. */
9953 aggregate_assign_positional (struct value *container,
9954 struct value *lhs, struct expression *exp,
9955 int *pos, LONGEST *indices, int *num_indices,
9956 int max_indices, LONGEST low, LONGEST high)
9958 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9960 if (ind - 1 == high)
9961 warning (_("Extra components in aggregate ignored."));
9964 add_component_interval (ind, ind, indices, num_indices, max_indices);
9966 assign_component (container, lhs, ind, exp, pos);
9969 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9972 /* Assign into the components of LHS indexed by the OP_CHOICES
9973 construct at *POS, updating *POS past the construct, given that
9974 the allowable indices are LOW..HIGH. Record the indices assigned
9975 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9976 needed. CONTAINER is as for assign_aggregate. */
9978 aggregate_assign_from_choices (struct value *container,
9979 struct value *lhs, struct expression *exp,
9980 int *pos, LONGEST *indices, int *num_indices,
9981 int max_indices, LONGEST low, LONGEST high)
9984 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9985 int choice_pos, expr_pc;
9986 int is_array = ada_is_direct_array_type (value_type (lhs));
9988 choice_pos = *pos += 3;
9990 for (j = 0; j < n_choices; j += 1)
9991 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9993 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9995 for (j = 0; j < n_choices; j += 1)
9997 LONGEST lower, upper;
9998 enum exp_opcode op = exp->elts[choice_pos].opcode;
10000 if (op == OP_DISCRETE_RANGE)
10003 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10005 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10010 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10022 name = &exp->elts[choice_pos + 2].string;
10025 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10028 error (_("Invalid record component association."));
10030 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10032 if (! find_struct_field (name, value_type (lhs), 0,
10033 NULL, NULL, NULL, NULL, &ind))
10034 error (_("Unknown component name: %s."), name);
10035 lower = upper = ind;
10038 if (lower <= upper && (lower < low || upper > high))
10039 error (_("Index in component association out of bounds."));
10041 add_component_interval (lower, upper, indices, num_indices,
10043 while (lower <= upper)
10048 assign_component (container, lhs, lower, exp, &pos1);
10054 /* Assign the value of the expression in the OP_OTHERS construct in
10055 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10056 have not been previously assigned. The index intervals already assigned
10057 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10058 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10060 aggregate_assign_others (struct value *container,
10061 struct value *lhs, struct expression *exp,
10062 int *pos, LONGEST *indices, int num_indices,
10063 LONGEST low, LONGEST high)
10066 int expr_pc = *pos + 1;
10068 for (i = 0; i < num_indices - 2; i += 2)
10072 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10076 localpos = expr_pc;
10077 assign_component (container, lhs, ind, exp, &localpos);
10080 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10083 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10084 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10085 modifying *SIZE as needed. It is an error if *SIZE exceeds
10086 MAX_SIZE. The resulting intervals do not overlap. */
10088 add_component_interval (LONGEST low, LONGEST high,
10089 LONGEST* indices, int *size, int max_size)
10093 for (i = 0; i < *size; i += 2) {
10094 if (high >= indices[i] && low <= indices[i + 1])
10098 for (kh = i + 2; kh < *size; kh += 2)
10099 if (high < indices[kh])
10101 if (low < indices[i])
10103 indices[i + 1] = indices[kh - 1];
10104 if (high > indices[i + 1])
10105 indices[i + 1] = high;
10106 memcpy (indices + i + 2, indices + kh, *size - kh);
10107 *size -= kh - i - 2;
10110 else if (high < indices[i])
10114 if (*size == max_size)
10115 error (_("Internal error: miscounted aggregate components."));
10117 for (j = *size-1; j >= i+2; j -= 1)
10118 indices[j] = indices[j - 2];
10120 indices[i + 1] = high;
10123 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10126 static struct value *
10127 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10129 if (type == ada_check_typedef (value_type (arg2)))
10132 if (ada_is_fixed_point_type (type))
10133 return (cast_to_fixed (type, arg2));
10135 if (ada_is_fixed_point_type (value_type (arg2)))
10136 return cast_from_fixed (type, arg2);
10138 return value_cast (type, arg2);
10141 /* Evaluating Ada expressions, and printing their result.
10142 ------------------------------------------------------
10147 We usually evaluate an Ada expression in order to print its value.
10148 We also evaluate an expression in order to print its type, which
10149 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10150 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10151 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10152 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10155 Evaluating expressions is a little more complicated for Ada entities
10156 than it is for entities in languages such as C. The main reason for
10157 this is that Ada provides types whose definition might be dynamic.
10158 One example of such types is variant records. Or another example
10159 would be an array whose bounds can only be known at run time.
10161 The following description is a general guide as to what should be
10162 done (and what should NOT be done) in order to evaluate an expression
10163 involving such types, and when. This does not cover how the semantic
10164 information is encoded by GNAT as this is covered separatly. For the
10165 document used as the reference for the GNAT encoding, see exp_dbug.ads
10166 in the GNAT sources.
10168 Ideally, we should embed each part of this description next to its
10169 associated code. Unfortunately, the amount of code is so vast right
10170 now that it's hard to see whether the code handling a particular
10171 situation might be duplicated or not. One day, when the code is
10172 cleaned up, this guide might become redundant with the comments
10173 inserted in the code, and we might want to remove it.
10175 2. ``Fixing'' an Entity, the Simple Case:
10176 -----------------------------------------
10178 When evaluating Ada expressions, the tricky issue is that they may
10179 reference entities whose type contents and size are not statically
10180 known. Consider for instance a variant record:
10182 type Rec (Empty : Boolean := True) is record
10185 when False => Value : Integer;
10188 Yes : Rec := (Empty => False, Value => 1);
10189 No : Rec := (empty => True);
10191 The size and contents of that record depends on the value of the
10192 descriminant (Rec.Empty). At this point, neither the debugging
10193 information nor the associated type structure in GDB are able to
10194 express such dynamic types. So what the debugger does is to create
10195 "fixed" versions of the type that applies to the specific object.
10196 We also informally refer to this opperation as "fixing" an object,
10197 which means creating its associated fixed type.
10199 Example: when printing the value of variable "Yes" above, its fixed
10200 type would look like this:
10207 On the other hand, if we printed the value of "No", its fixed type
10214 Things become a little more complicated when trying to fix an entity
10215 with a dynamic type that directly contains another dynamic type,
10216 such as an array of variant records, for instance. There are
10217 two possible cases: Arrays, and records.
10219 3. ``Fixing'' Arrays:
10220 ---------------------
10222 The type structure in GDB describes an array in terms of its bounds,
10223 and the type of its elements. By design, all elements in the array
10224 have the same type and we cannot represent an array of variant elements
10225 using the current type structure in GDB. When fixing an array,
10226 we cannot fix the array element, as we would potentially need one
10227 fixed type per element of the array. As a result, the best we can do
10228 when fixing an array is to produce an array whose bounds and size
10229 are correct (allowing us to read it from memory), but without having
10230 touched its element type. Fixing each element will be done later,
10231 when (if) necessary.
10233 Arrays are a little simpler to handle than records, because the same
10234 amount of memory is allocated for each element of the array, even if
10235 the amount of space actually used by each element differs from element
10236 to element. Consider for instance the following array of type Rec:
10238 type Rec_Array is array (1 .. 2) of Rec;
10240 The actual amount of memory occupied by each element might be different
10241 from element to element, depending on the value of their discriminant.
10242 But the amount of space reserved for each element in the array remains
10243 fixed regardless. So we simply need to compute that size using
10244 the debugging information available, from which we can then determine
10245 the array size (we multiply the number of elements of the array by
10246 the size of each element).
10248 The simplest case is when we have an array of a constrained element
10249 type. For instance, consider the following type declarations:
10251 type Bounded_String (Max_Size : Integer) is
10253 Buffer : String (1 .. Max_Size);
10255 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10257 In this case, the compiler describes the array as an array of
10258 variable-size elements (identified by its XVS suffix) for which
10259 the size can be read in the parallel XVZ variable.
10261 In the case of an array of an unconstrained element type, the compiler
10262 wraps the array element inside a private PAD type. This type should not
10263 be shown to the user, and must be "unwrap"'ed before printing. Note
10264 that we also use the adjective "aligner" in our code to designate
10265 these wrapper types.
10267 In some cases, the size allocated for each element is statically
10268 known. In that case, the PAD type already has the correct size,
10269 and the array element should remain unfixed.
10271 But there are cases when this size is not statically known.
10272 For instance, assuming that "Five" is an integer variable:
10274 type Dynamic is array (1 .. Five) of Integer;
10275 type Wrapper (Has_Length : Boolean := False) is record
10278 when True => Length : Integer;
10279 when False => null;
10282 type Wrapper_Array is array (1 .. 2) of Wrapper;
10284 Hello : Wrapper_Array := (others => (Has_Length => True,
10285 Data => (others => 17),
10289 The debugging info would describe variable Hello as being an
10290 array of a PAD type. The size of that PAD type is not statically
10291 known, but can be determined using a parallel XVZ variable.
10292 In that case, a copy of the PAD type with the correct size should
10293 be used for the fixed array.
10295 3. ``Fixing'' record type objects:
10296 ----------------------------------
10298 Things are slightly different from arrays in the case of dynamic
10299 record types. In this case, in order to compute the associated
10300 fixed type, we need to determine the size and offset of each of
10301 its components. This, in turn, requires us to compute the fixed
10302 type of each of these components.
10304 Consider for instance the example:
10306 type Bounded_String (Max_Size : Natural) is record
10307 Str : String (1 .. Max_Size);
10310 My_String : Bounded_String (Max_Size => 10);
10312 In that case, the position of field "Length" depends on the size
10313 of field Str, which itself depends on the value of the Max_Size
10314 discriminant. In order to fix the type of variable My_String,
10315 we need to fix the type of field Str. Therefore, fixing a variant
10316 record requires us to fix each of its components.
10318 However, if a component does not have a dynamic size, the component
10319 should not be fixed. In particular, fields that use a PAD type
10320 should not fixed. Here is an example where this might happen
10321 (assuming type Rec above):
10323 type Container (Big : Boolean) is record
10327 when True => Another : Integer;
10328 when False => null;
10331 My_Container : Container := (Big => False,
10332 First => (Empty => True),
10335 In that example, the compiler creates a PAD type for component First,
10336 whose size is constant, and then positions the component After just
10337 right after it. The offset of component After is therefore constant
10340 The debugger computes the position of each field based on an algorithm
10341 that uses, among other things, the actual position and size of the field
10342 preceding it. Let's now imagine that the user is trying to print
10343 the value of My_Container. If the type fixing was recursive, we would
10344 end up computing the offset of field After based on the size of the
10345 fixed version of field First. And since in our example First has
10346 only one actual field, the size of the fixed type is actually smaller
10347 than the amount of space allocated to that field, and thus we would
10348 compute the wrong offset of field After.
10350 To make things more complicated, we need to watch out for dynamic
10351 components of variant records (identified by the ___XVL suffix in
10352 the component name). Even if the target type is a PAD type, the size
10353 of that type might not be statically known. So the PAD type needs
10354 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10355 we might end up with the wrong size for our component. This can be
10356 observed with the following type declarations:
10358 type Octal is new Integer range 0 .. 7;
10359 type Octal_Array is array (Positive range <>) of Octal;
10360 pragma Pack (Octal_Array);
10362 type Octal_Buffer (Size : Positive) is record
10363 Buffer : Octal_Array (1 .. Size);
10367 In that case, Buffer is a PAD type whose size is unset and needs
10368 to be computed by fixing the unwrapped type.
10370 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10371 ----------------------------------------------------------
10373 Lastly, when should the sub-elements of an entity that remained unfixed
10374 thus far, be actually fixed?
10376 The answer is: Only when referencing that element. For instance
10377 when selecting one component of a record, this specific component
10378 should be fixed at that point in time. Or when printing the value
10379 of a record, each component should be fixed before its value gets
10380 printed. Similarly for arrays, the element of the array should be
10381 fixed when printing each element of the array, or when extracting
10382 one element out of that array. On the other hand, fixing should
10383 not be performed on the elements when taking a slice of an array!
10385 Note that one of the side-effects of miscomputing the offset and
10386 size of each field is that we end up also miscomputing the size
10387 of the containing type. This can have adverse results when computing
10388 the value of an entity. GDB fetches the value of an entity based
10389 on the size of its type, and thus a wrong size causes GDB to fetch
10390 the wrong amount of memory. In the case where the computed size is
10391 too small, GDB fetches too little data to print the value of our
10392 entiry. Results in this case as unpredicatble, as we usually read
10393 past the buffer containing the data =:-o. */
10395 /* Implement the evaluate_exp routine in the exp_descriptor structure
10396 for the Ada language. */
10398 static struct value *
10399 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10400 int *pos, enum noside noside)
10402 enum exp_opcode op;
10406 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10409 struct value **argvec;
10413 op = exp->elts[pc].opcode;
10419 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10421 if (noside == EVAL_NORMAL)
10422 arg1 = unwrap_value (arg1);
10424 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10425 then we need to perform the conversion manually, because
10426 evaluate_subexp_standard doesn't do it. This conversion is
10427 necessary in Ada because the different kinds of float/fixed
10428 types in Ada have different representations.
10430 Similarly, we need to perform the conversion from OP_LONG
10432 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10433 arg1 = ada_value_cast (expect_type, arg1, noside);
10439 struct value *result;
10442 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10443 /* The result type will have code OP_STRING, bashed there from
10444 OP_ARRAY. Bash it back. */
10445 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10446 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10452 type = exp->elts[pc + 1].type;
10453 arg1 = evaluate_subexp (type, exp, pos, noside);
10454 if (noside == EVAL_SKIP)
10456 arg1 = ada_value_cast (type, arg1, noside);
10461 type = exp->elts[pc + 1].type;
10462 return ada_evaluate_subexp (type, exp, pos, noside);
10465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10466 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10468 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10469 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10471 return ada_value_assign (arg1, arg1);
10473 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10474 except if the lhs of our assignment is a convenience variable.
10475 In the case of assigning to a convenience variable, the lhs
10476 should be exactly the result of the evaluation of the rhs. */
10477 type = value_type (arg1);
10478 if (VALUE_LVAL (arg1) == lval_internalvar)
10480 arg2 = evaluate_subexp (type, exp, pos, noside);
10481 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10483 if (ada_is_fixed_point_type (value_type (arg1)))
10484 arg2 = cast_to_fixed (value_type (arg1), arg2);
10485 else if (ada_is_fixed_point_type (value_type (arg2)))
10487 (_("Fixed-point values must be assigned to fixed-point variables"));
10489 arg2 = coerce_for_assign (value_type (arg1), arg2);
10490 return ada_value_assign (arg1, arg2);
10493 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 if (noside == EVAL_SKIP)
10497 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10498 return (value_from_longest
10499 (value_type (arg1),
10500 value_as_long (arg1) + value_as_long (arg2)));
10501 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10502 return (value_from_longest
10503 (value_type (arg2),
10504 value_as_long (arg1) + value_as_long (arg2)));
10505 if ((ada_is_fixed_point_type (value_type (arg1))
10506 || ada_is_fixed_point_type (value_type (arg2)))
10507 && value_type (arg1) != value_type (arg2))
10508 error (_("Operands of fixed-point addition must have the same type"));
10509 /* Do the addition, and cast the result to the type of the first
10510 argument. We cannot cast the result to a reference type, so if
10511 ARG1 is a reference type, find its underlying type. */
10512 type = value_type (arg1);
10513 while (TYPE_CODE (type) == TYPE_CODE_REF)
10514 type = TYPE_TARGET_TYPE (type);
10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10516 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10519 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10520 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10521 if (noside == EVAL_SKIP)
10523 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10524 return (value_from_longest
10525 (value_type (arg1),
10526 value_as_long (arg1) - value_as_long (arg2)));
10527 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10528 return (value_from_longest
10529 (value_type (arg2),
10530 value_as_long (arg1) - value_as_long (arg2)));
10531 if ((ada_is_fixed_point_type (value_type (arg1))
10532 || ada_is_fixed_point_type (value_type (arg2)))
10533 && value_type (arg1) != value_type (arg2))
10534 error (_("Operands of fixed-point subtraction "
10535 "must have the same type"));
10536 /* Do the substraction, and cast the result to the type of the first
10537 argument. We cannot cast the result to a reference type, so if
10538 ARG1 is a reference type, find its underlying type. */
10539 type = value_type (arg1);
10540 while (TYPE_CODE (type) == TYPE_CODE_REF)
10541 type = TYPE_TARGET_TYPE (type);
10542 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10543 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10550 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10551 if (noside == EVAL_SKIP)
10553 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10555 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10556 return value_zero (value_type (arg1), not_lval);
10560 type = builtin_type (exp->gdbarch)->builtin_double;
10561 if (ada_is_fixed_point_type (value_type (arg1)))
10562 arg1 = cast_from_fixed (type, arg1);
10563 if (ada_is_fixed_point_type (value_type (arg2)))
10564 arg2 = cast_from_fixed (type, arg2);
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 return ada_value_binop (arg1, arg2, op);
10570 case BINOP_NOTEQUAL:
10571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10572 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10573 if (noside == EVAL_SKIP)
10575 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10579 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10580 tem = ada_value_equal (arg1, arg2);
10582 if (op == BINOP_NOTEQUAL)
10584 type = language_bool_type (exp->language_defn, exp->gdbarch);
10585 return value_from_longest (type, (LONGEST) tem);
10588 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10591 else if (ada_is_fixed_point_type (value_type (arg1)))
10592 return value_cast (value_type (arg1), value_neg (arg1));
10595 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10596 return value_neg (arg1);
10599 case BINOP_LOGICAL_AND:
10600 case BINOP_LOGICAL_OR:
10601 case UNOP_LOGICAL_NOT:
10606 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10607 type = language_bool_type (exp->language_defn, exp->gdbarch);
10608 return value_cast (type, val);
10611 case BINOP_BITWISE_AND:
10612 case BINOP_BITWISE_IOR:
10613 case BINOP_BITWISE_XOR:
10617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10619 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10621 return value_cast (value_type (arg1), val);
10627 if (noside == EVAL_SKIP)
10633 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10634 /* Only encountered when an unresolved symbol occurs in a
10635 context other than a function call, in which case, it is
10637 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10638 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10642 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10643 /* Check to see if this is a tagged type. We also need to handle
10644 the case where the type is a reference to a tagged type, but
10645 we have to be careful to exclude pointers to tagged types.
10646 The latter should be shown as usual (as a pointer), whereas
10647 a reference should mostly be transparent to the user. */
10648 if (ada_is_tagged_type (type, 0)
10649 || (TYPE_CODE (type) == TYPE_CODE_REF
10650 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10652 /* Tagged types are a little special in the fact that the real
10653 type is dynamic and can only be determined by inspecting the
10654 object's tag. This means that we need to get the object's
10655 value first (EVAL_NORMAL) and then extract the actual object
10658 Note that we cannot skip the final step where we extract
10659 the object type from its tag, because the EVAL_NORMAL phase
10660 results in dynamic components being resolved into fixed ones.
10661 This can cause problems when trying to print the type
10662 description of tagged types whose parent has a dynamic size:
10663 We use the type name of the "_parent" component in order
10664 to print the name of the ancestor type in the type description.
10665 If that component had a dynamic size, the resolution into
10666 a fixed type would result in the loss of that type name,
10667 thus preventing us from printing the name of the ancestor
10668 type in the type description. */
10669 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10671 if (TYPE_CODE (type) != TYPE_CODE_REF)
10673 struct type *actual_type;
10675 actual_type = type_from_tag (ada_value_tag (arg1));
10676 if (actual_type == NULL)
10677 /* If, for some reason, we were unable to determine
10678 the actual type from the tag, then use the static
10679 approximation that we just computed as a fallback.
10680 This can happen if the debugging information is
10681 incomplete, for instance. */
10682 actual_type = type;
10683 return value_zero (actual_type, not_lval);
10687 /* In the case of a ref, ada_coerce_ref takes care
10688 of determining the actual type. But the evaluation
10689 should return a ref as it should be valid to ask
10690 for its address; so rebuild a ref after coerce. */
10691 arg1 = ada_coerce_ref (arg1);
10692 return value_ref (arg1, TYPE_CODE_REF);
10696 /* Records and unions for which GNAT encodings have been
10697 generated need to be statically fixed as well.
10698 Otherwise, non-static fixing produces a type where
10699 all dynamic properties are removed, which prevents "ptype"
10700 from being able to completely describe the type.
10701 For instance, a case statement in a variant record would be
10702 replaced by the relevant components based on the actual
10703 value of the discriminants. */
10704 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10705 && dynamic_template_type (type) != NULL)
10706 || (TYPE_CODE (type) == TYPE_CODE_UNION
10707 && ada_find_parallel_type (type, "___XVU") != NULL))
10710 return value_zero (to_static_fixed_type (type), not_lval);
10714 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10715 return ada_to_fixed_value (arg1);
10720 /* Allocate arg vector, including space for the function to be
10721 called in argvec[0] and a terminating NULL. */
10722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10723 argvec = XALLOCAVEC (struct value *, nargs + 2);
10725 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10726 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10727 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10728 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10731 for (tem = 0; tem <= nargs; tem += 1)
10732 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10739 if (ada_is_constrained_packed_array_type
10740 (desc_base_type (value_type (argvec[0]))))
10741 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10743 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10744 /* This is a packed array that has already been fixed, and
10745 therefore already coerced to a simple array. Nothing further
10748 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10750 /* Make sure we dereference references so that all the code below
10751 feels like it's really handling the referenced value. Wrapping
10752 types (for alignment) may be there, so make sure we strip them as
10754 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10756 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10757 && VALUE_LVAL (argvec[0]) == lval_memory)
10758 argvec[0] = value_addr (argvec[0]);
10760 type = ada_check_typedef (value_type (argvec[0]));
10762 /* Ada allows us to implicitly dereference arrays when subscripting
10763 them. So, if this is an array typedef (encoding use for array
10764 access types encoded as fat pointers), strip it now. */
10765 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10766 type = ada_typedef_target_type (type);
10768 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10770 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10772 case TYPE_CODE_FUNC:
10773 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10775 case TYPE_CODE_ARRAY:
10777 case TYPE_CODE_STRUCT:
10778 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10779 argvec[0] = ada_value_ind (argvec[0]);
10780 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10783 error (_("cannot subscript or call something of type `%s'"),
10784 ada_type_name (value_type (argvec[0])));
10789 switch (TYPE_CODE (type))
10791 case TYPE_CODE_FUNC:
10792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10794 if (TYPE_TARGET_TYPE (type) == NULL)
10795 error_call_unknown_return_type (NULL);
10796 return allocate_value (TYPE_TARGET_TYPE (type));
10798 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10799 case TYPE_CODE_INTERNAL_FUNCTION:
10800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10801 /* We don't know anything about what the internal
10802 function might return, but we have to return
10804 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10807 return call_internal_function (exp->gdbarch, exp->language_defn,
10808 argvec[0], nargs, argvec + 1);
10810 case TYPE_CODE_STRUCT:
10814 arity = ada_array_arity (type);
10815 type = ada_array_element_type (type, nargs);
10817 error (_("cannot subscript or call a record"));
10818 if (arity != nargs)
10819 error (_("wrong number of subscripts; expecting %d"), arity);
10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10821 return value_zero (ada_aligned_type (type), lval_memory);
10823 unwrap_value (ada_value_subscript
10824 (argvec[0], nargs, argvec + 1));
10826 case TYPE_CODE_ARRAY:
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10829 type = ada_array_element_type (type, nargs);
10831 error (_("element type of array unknown"));
10833 return value_zero (ada_aligned_type (type), lval_memory);
10836 unwrap_value (ada_value_subscript
10837 (ada_coerce_to_simple_array (argvec[0]),
10838 nargs, argvec + 1));
10839 case TYPE_CODE_PTR: /* Pointer to array */
10840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10842 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10843 type = ada_array_element_type (type, nargs);
10845 error (_("element type of array unknown"));
10847 return value_zero (ada_aligned_type (type), lval_memory);
10850 unwrap_value (ada_value_ptr_subscript (argvec[0],
10851 nargs, argvec + 1));
10854 error (_("Attempt to index or call something other than an "
10855 "array or function"));
10860 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 struct value *low_bound_val =
10862 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10863 struct value *high_bound_val =
10864 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10866 LONGEST high_bound;
10868 low_bound_val = coerce_ref (low_bound_val);
10869 high_bound_val = coerce_ref (high_bound_val);
10870 low_bound = value_as_long (low_bound_val);
10871 high_bound = value_as_long (high_bound_val);
10873 if (noside == EVAL_SKIP)
10876 /* If this is a reference to an aligner type, then remove all
10878 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10879 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10880 TYPE_TARGET_TYPE (value_type (array)) =
10881 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10883 if (ada_is_constrained_packed_array_type (value_type (array)))
10884 error (_("cannot slice a packed array"));
10886 /* If this is a reference to an array or an array lvalue,
10887 convert to a pointer. */
10888 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10889 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10890 && VALUE_LVAL (array) == lval_memory))
10891 array = value_addr (array);
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS
10894 && ada_is_array_descriptor_type (ada_check_typedef
10895 (value_type (array))))
10896 return empty_array (ada_type_of_array (array, 0), low_bound);
10898 array = ada_coerce_to_simple_array_ptr (array);
10900 /* If we have more than one level of pointer indirection,
10901 dereference the value until we get only one level. */
10902 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10903 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10905 array = value_ind (array);
10907 /* Make sure we really do have an array type before going further,
10908 to avoid a SEGV when trying to get the index type or the target
10909 type later down the road if the debug info generated by
10910 the compiler is incorrect or incomplete. */
10911 if (!ada_is_simple_array_type (value_type (array)))
10912 error (_("cannot take slice of non-array"));
10914 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10917 struct type *type0 = ada_check_typedef (value_type (array));
10919 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10920 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10923 struct type *arr_type0 =
10924 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10926 return ada_value_slice_from_ptr (array, arr_type0,
10927 longest_to_int (low_bound),
10928 longest_to_int (high_bound));
10931 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10933 else if (high_bound < low_bound)
10934 return empty_array (value_type (array), low_bound);
10936 return ada_value_slice (array, longest_to_int (low_bound),
10937 longest_to_int (high_bound));
10940 case UNOP_IN_RANGE:
10942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10943 type = check_typedef (exp->elts[pc + 1].type);
10945 if (noside == EVAL_SKIP)
10948 switch (TYPE_CODE (type))
10951 lim_warning (_("Membership test incompletely implemented; "
10952 "always returns true"));
10953 type = language_bool_type (exp->language_defn, exp->gdbarch);
10954 return value_from_longest (type, (LONGEST) 1);
10956 case TYPE_CODE_RANGE:
10957 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10958 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10961 type = language_bool_type (exp->language_defn, exp->gdbarch);
10963 value_from_longest (type,
10964 (value_less (arg1, arg3)
10965 || value_equal (arg1, arg3))
10966 && (value_less (arg2, arg1)
10967 || value_equal (arg2, arg1)));
10970 case BINOP_IN_BOUNDS:
10972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10975 if (noside == EVAL_SKIP)
10978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10980 type = language_bool_type (exp->language_defn, exp->gdbarch);
10981 return value_zero (type, not_lval);
10984 tem = longest_to_int (exp->elts[pc + 1].longconst);
10986 type = ada_index_type (value_type (arg2), tem, "range");
10988 type = value_type (arg1);
10990 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10991 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10993 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10995 type = language_bool_type (exp->language_defn, exp->gdbarch);
10997 value_from_longest (type,
10998 (value_less (arg1, arg3)
10999 || value_equal (arg1, arg3))
11000 && (value_less (arg2, arg1)
11001 || value_equal (arg2, arg1)));
11003 case TERNOP_IN_RANGE:
11004 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 if (noside == EVAL_SKIP)
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11013 type = language_bool_type (exp->language_defn, exp->gdbarch);
11015 value_from_longest (type,
11016 (value_less (arg1, arg3)
11017 || value_equal (arg1, arg3))
11018 && (value_less (arg2, arg1)
11019 || value_equal (arg2, arg1)));
11023 case OP_ATR_LENGTH:
11025 struct type *type_arg;
11027 if (exp->elts[*pos].opcode == OP_TYPE)
11029 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11031 type_arg = check_typedef (exp->elts[pc + 2].type);
11035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11039 if (exp->elts[*pos].opcode != OP_LONG)
11040 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11041 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11044 if (noside == EVAL_SKIP)
11047 if (type_arg == NULL)
11049 arg1 = ada_coerce_ref (arg1);
11051 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11052 arg1 = ada_coerce_to_simple_array (arg1);
11054 if (op == OP_ATR_LENGTH)
11055 type = builtin_type (exp->gdbarch)->builtin_int;
11058 type = ada_index_type (value_type (arg1), tem,
11059 ada_attribute_name (op));
11061 type = builtin_type (exp->gdbarch)->builtin_int;
11064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11065 return allocate_value (type);
11069 default: /* Should never happen. */
11070 error (_("unexpected attribute encountered"));
11072 return value_from_longest
11073 (type, ada_array_bound (arg1, tem, 0));
11075 return value_from_longest
11076 (type, ada_array_bound (arg1, tem, 1));
11077 case OP_ATR_LENGTH:
11078 return value_from_longest
11079 (type, ada_array_length (arg1, tem));
11082 else if (discrete_type_p (type_arg))
11084 struct type *range_type;
11085 const char *name = ada_type_name (type_arg);
11088 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11089 range_type = to_fixed_range_type (type_arg, NULL);
11090 if (range_type == NULL)
11091 range_type = type_arg;
11095 error (_("unexpected attribute encountered"));
11097 return value_from_longest
11098 (range_type, ada_discrete_type_low_bound (range_type));
11100 return value_from_longest
11101 (range_type, ada_discrete_type_high_bound (range_type));
11102 case OP_ATR_LENGTH:
11103 error (_("the 'length attribute applies only to array types"));
11106 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11107 error (_("unimplemented type attribute"));
11112 if (ada_is_constrained_packed_array_type (type_arg))
11113 type_arg = decode_constrained_packed_array_type (type_arg);
11115 if (op == OP_ATR_LENGTH)
11116 type = builtin_type (exp->gdbarch)->builtin_int;
11119 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11121 type = builtin_type (exp->gdbarch)->builtin_int;
11124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11125 return allocate_value (type);
11130 error (_("unexpected attribute encountered"));
11132 low = ada_array_bound_from_type (type_arg, tem, 0);
11133 return value_from_longest (type, low);
11135 high = ada_array_bound_from_type (type_arg, tem, 1);
11136 return value_from_longest (type, high);
11137 case OP_ATR_LENGTH:
11138 low = ada_array_bound_from_type (type_arg, tem, 0);
11139 high = ada_array_bound_from_type (type_arg, tem, 1);
11140 return value_from_longest (type, high - low + 1);
11146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 if (noside == EVAL_SKIP)
11150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11151 return value_zero (ada_tag_type (arg1), not_lval);
11153 return ada_value_tag (arg1);
11157 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160 if (noside == EVAL_SKIP)
11162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11163 return value_zero (value_type (arg1), not_lval);
11166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11167 return value_binop (arg1, arg2,
11168 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11171 case OP_ATR_MODULUS:
11173 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 if (noside == EVAL_SKIP)
11179 if (!ada_is_modular_type (type_arg))
11180 error (_("'modulus must be applied to modular type"));
11182 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11183 ada_modulus (type_arg));
11188 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 if (noside == EVAL_SKIP)
11192 type = builtin_type (exp->gdbarch)->builtin_int;
11193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11194 return value_zero (type, not_lval);
11196 return value_pos_atr (type, arg1);
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 type = value_type (arg1);
11202 /* If the argument is a reference, then dereference its type, since
11203 the user is really asking for the size of the actual object,
11204 not the size of the pointer. */
11205 if (TYPE_CODE (type) == TYPE_CODE_REF)
11206 type = TYPE_TARGET_TYPE (type);
11208 if (noside == EVAL_SKIP)
11210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11213 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11214 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11217 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 type = exp->elts[pc + 2].type;
11220 if (noside == EVAL_SKIP)
11222 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11223 return value_zero (type, not_lval);
11225 return value_val_atr (type, arg1);
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11232 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 return value_zero (value_type (arg1), not_lval);
11236 /* For integer exponentiation operations,
11237 only promote the first argument. */
11238 if (is_integral_type (value_type (arg2)))
11239 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11241 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11243 return value_binop (arg1, arg2, op);
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11255 if (noside == EVAL_SKIP)
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11259 return value_neg (arg1);
11264 preeval_pos = *pos;
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11268 type = ada_check_typedef (value_type (arg1));
11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11271 if (ada_is_array_descriptor_type (type))
11272 /* GDB allows dereferencing GNAT array descriptors. */
11274 struct type *arrType = ada_type_of_array (arg1, 0);
11276 if (arrType == NULL)
11277 error (_("Attempt to dereference null array pointer."));
11278 return value_at_lazy (arrType, 0);
11280 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11281 || TYPE_CODE (type) == TYPE_CODE_REF
11282 /* In C you can dereference an array to get the 1st elt. */
11283 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11285 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11286 only be determined by inspecting the object's tag.
11287 This means that we need to evaluate completely the
11288 expression in order to get its type. */
11290 if ((TYPE_CODE (type) == TYPE_CODE_REF
11291 || TYPE_CODE (type) == TYPE_CODE_PTR)
11292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11296 type = value_type (ada_value_ind (arg1));
11300 type = to_static_fixed_type
11302 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11304 ada_ensure_varsize_limit (type);
11305 return value_zero (type, lval_memory);
11307 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11309 /* GDB allows dereferencing an int. */
11310 if (expect_type == NULL)
11311 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11316 to_static_fixed_type (ada_aligned_type (expect_type));
11317 return value_zero (expect_type, lval_memory);
11321 error (_("Attempt to take contents of a non-pointer value."));
11323 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11324 type = ada_check_typedef (value_type (arg1));
11326 if (TYPE_CODE (type) == TYPE_CODE_INT)
11327 /* GDB allows dereferencing an int. If we were given
11328 the expect_type, then use that as the target type.
11329 Otherwise, assume that the target type is an int. */
11331 if (expect_type != NULL)
11332 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11335 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11336 (CORE_ADDR) value_as_address (arg1));
11339 if (ada_is_array_descriptor_type (type))
11340 /* GDB allows dereferencing GNAT array descriptors. */
11341 return ada_coerce_to_simple_array (arg1);
11343 return ada_value_ind (arg1);
11345 case STRUCTOP_STRUCT:
11346 tem = longest_to_int (exp->elts[pc + 1].longconst);
11347 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11348 preeval_pos = *pos;
11349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
11352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11354 struct type *type1 = value_type (arg1);
11356 if (ada_is_tagged_type (type1, 1))
11358 type = ada_lookup_struct_elt_type (type1,
11359 &exp->elts[pc + 2].string,
11362 /* If the field is not found, check if it exists in the
11363 extension of this object's type. This means that we
11364 need to evaluate completely the expression. */
11368 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11370 arg1 = ada_value_struct_elt (arg1,
11371 &exp->elts[pc + 2].string,
11373 arg1 = unwrap_value (arg1);
11374 type = value_type (ada_to_fixed_value (arg1));
11379 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11382 return value_zero (ada_aligned_type (type), lval_memory);
11386 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11387 arg1 = unwrap_value (arg1);
11388 return ada_to_fixed_value (arg1);
11392 /* The value is not supposed to be used. This is here to make it
11393 easier to accommodate expressions that contain types. */
11395 if (noside == EVAL_SKIP)
11397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11398 return allocate_value (exp->elts[pc + 1].type);
11400 error (_("Attempt to use a type name as an expression"));
11405 case OP_DISCRETE_RANGE:
11406 case OP_POSITIONAL:
11408 if (noside == EVAL_NORMAL)
11412 error (_("Undefined name, ambiguous name, or renaming used in "
11413 "component association: %s."), &exp->elts[pc+2].string);
11415 error (_("Aggregates only allowed on the right of an assignment"));
11417 internal_error (__FILE__, __LINE__,
11418 _("aggregate apparently mangled"));
11421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11423 for (tem = 0; tem < nargs; tem += 1)
11424 ada_evaluate_subexp (NULL, exp, pos, noside);
11429 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11435 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11436 type name that encodes the 'small and 'delta information.
11437 Otherwise, return NULL. */
11439 static const char *
11440 fixed_type_info (struct type *type)
11442 const char *name = ada_type_name (type);
11443 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11445 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11447 const char *tail = strstr (name, "___XF_");
11454 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11455 return fixed_type_info (TYPE_TARGET_TYPE (type));
11460 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11463 ada_is_fixed_point_type (struct type *type)
11465 return fixed_type_info (type) != NULL;
11468 /* Return non-zero iff TYPE represents a System.Address type. */
11471 ada_is_system_address_type (struct type *type)
11473 return (TYPE_NAME (type)
11474 && strcmp (TYPE_NAME (type), "system__address") == 0);
11477 /* Assuming that TYPE is the representation of an Ada fixed-point
11478 type, return its delta, or -1 if the type is malformed and the
11479 delta cannot be determined. */
11482 ada_delta (struct type *type)
11484 const char *encoding = fixed_type_info (type);
11487 /* Strictly speaking, num and den are encoded as integer. However,
11488 they may not fit into a long, and they will have to be converted
11489 to DOUBLEST anyway. So scan them as DOUBLEST. */
11490 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11497 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11498 factor ('SMALL value) associated with the type. */
11501 scaling_factor (struct type *type)
11503 const char *encoding = fixed_type_info (type);
11504 DOUBLEST num0, den0, num1, den1;
11507 /* Strictly speaking, num's and den's are encoded as integer. However,
11508 they may not fit into a long, and they will have to be converted
11509 to DOUBLEST anyway. So scan them as DOUBLEST. */
11510 n = sscanf (encoding,
11511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11512 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11513 &num0, &den0, &num1, &den1);
11518 return num1 / den1;
11520 return num0 / den0;
11524 /* Assuming that X is the representation of a value of fixed-point
11525 type TYPE, return its floating-point equivalent. */
11528 ada_fixed_to_float (struct type *type, LONGEST x)
11530 return (DOUBLEST) x *scaling_factor (type);
11533 /* The representation of a fixed-point value of type TYPE
11534 corresponding to the value X. */
11537 ada_float_to_fixed (struct type *type, DOUBLEST x)
11539 return (LONGEST) (x / scaling_factor (type) + 0.5);
11546 /* Scan STR beginning at position K for a discriminant name, and
11547 return the value of that discriminant field of DVAL in *PX. If
11548 PNEW_K is not null, put the position of the character beyond the
11549 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11550 not alter *PX and *PNEW_K if unsuccessful. */
11553 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11556 static char *bound_buffer = NULL;
11557 static size_t bound_buffer_len = 0;
11558 const char *pstart, *pend, *bound;
11559 struct value *bound_val;
11561 if (dval == NULL || str == NULL || str[k] == '\0')
11565 pend = strstr (pstart, "__");
11569 k += strlen (bound);
11573 int len = pend - pstart;
11575 /* Strip __ and beyond. */
11576 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11577 strncpy (bound_buffer, pstart, len);
11578 bound_buffer[len] = '\0';
11580 bound = bound_buffer;
11584 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11585 if (bound_val == NULL)
11588 *px = value_as_long (bound_val);
11589 if (pnew_k != NULL)
11594 /* Value of variable named NAME in the current environment. If
11595 no such variable found, then if ERR_MSG is null, returns 0, and
11596 otherwise causes an error with message ERR_MSG. */
11598 static struct value *
11599 get_var_value (const char *name, const char *err_msg)
11601 struct block_symbol *syms;
11604 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11609 if (err_msg == NULL)
11612 error (("%s"), err_msg);
11615 return value_of_variable (syms[0].symbol, syms[0].block);
11618 /* Value of integer variable named NAME in the current environment.
11619 If no such variable is found, returns false. Otherwise, sets VALUE
11620 to the variable's value and returns true. */
11623 get_int_var_value (const char *name, LONGEST &value)
11625 struct value *var_val = get_var_value (name, 0);
11630 value = value_as_long (var_val);
11635 /* Return a range type whose base type is that of the range type named
11636 NAME in the current environment, and whose bounds are calculated
11637 from NAME according to the GNAT range encoding conventions.
11638 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11639 corresponding range type from debug information; fall back to using it
11640 if symbol lookup fails. If a new type must be created, allocate it
11641 like ORIG_TYPE was. The bounds information, in general, is encoded
11642 in NAME, the base type given in the named range type. */
11644 static struct type *
11645 to_fixed_range_type (struct type *raw_type, struct value *dval)
11648 struct type *base_type;
11649 const char *subtype_info;
11651 gdb_assert (raw_type != NULL);
11652 gdb_assert (TYPE_NAME (raw_type) != NULL);
11654 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11655 base_type = TYPE_TARGET_TYPE (raw_type);
11657 base_type = raw_type;
11659 name = TYPE_NAME (raw_type);
11660 subtype_info = strstr (name, "___XD");
11661 if (subtype_info == NULL)
11663 LONGEST L = ada_discrete_type_low_bound (raw_type);
11664 LONGEST U = ada_discrete_type_high_bound (raw_type);
11666 if (L < INT_MIN || U > INT_MAX)
11669 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11674 static char *name_buf = NULL;
11675 static size_t name_len = 0;
11676 int prefix_len = subtype_info - name;
11679 const char *bounds_str;
11682 GROW_VECT (name_buf, name_len, prefix_len + 5);
11683 strncpy (name_buf, name, prefix_len);
11684 name_buf[prefix_len] = '\0';
11687 bounds_str = strchr (subtype_info, '_');
11690 if (*subtype_info == 'L')
11692 if (!ada_scan_number (bounds_str, n, &L, &n)
11693 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11695 if (bounds_str[n] == '_')
11697 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11703 strcpy (name_buf + prefix_len, "___L");
11704 if (!get_int_var_value (name_buf, L))
11706 lim_warning (_("Unknown lower bound, using 1."));
11711 if (*subtype_info == 'U')
11713 if (!ada_scan_number (bounds_str, n, &U, &n)
11714 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11719 strcpy (name_buf + prefix_len, "___U");
11720 if (!get_int_var_value (name_buf, U))
11722 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11727 type = create_static_range_type (alloc_type_copy (raw_type),
11729 TYPE_NAME (type) = name;
11734 /* True iff NAME is the name of a range type. */
11737 ada_is_range_type_name (const char *name)
11739 return (name != NULL && strstr (name, "___XD"));
11743 /* Modular types */
11745 /* True iff TYPE is an Ada modular type. */
11748 ada_is_modular_type (struct type *type)
11750 struct type *subranged_type = get_base_type (type);
11752 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11753 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11754 && TYPE_UNSIGNED (subranged_type));
11757 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11760 ada_modulus (struct type *type)
11762 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11766 /* Ada exception catchpoint support:
11767 ---------------------------------
11769 We support 3 kinds of exception catchpoints:
11770 . catchpoints on Ada exceptions
11771 . catchpoints on unhandled Ada exceptions
11772 . catchpoints on failed assertions
11774 Exceptions raised during failed assertions, or unhandled exceptions
11775 could perfectly be caught with the general catchpoint on Ada exceptions.
11776 However, we can easily differentiate these two special cases, and having
11777 the option to distinguish these two cases from the rest can be useful
11778 to zero-in on certain situations.
11780 Exception catchpoints are a specialized form of breakpoint,
11781 since they rely on inserting breakpoints inside known routines
11782 of the GNAT runtime. The implementation therefore uses a standard
11783 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11786 Support in the runtime for exception catchpoints have been changed
11787 a few times already, and these changes affect the implementation
11788 of these catchpoints. In order to be able to support several
11789 variants of the runtime, we use a sniffer that will determine
11790 the runtime variant used by the program being debugged. */
11792 /* Ada's standard exceptions.
11794 The Ada 83 standard also defined Numeric_Error. But there so many
11795 situations where it was unclear from the Ada 83 Reference Manual
11796 (RM) whether Constraint_Error or Numeric_Error should be raised,
11797 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11798 Interpretation saying that anytime the RM says that Numeric_Error
11799 should be raised, the implementation may raise Constraint_Error.
11800 Ada 95 went one step further and pretty much removed Numeric_Error
11801 from the list of standard exceptions (it made it a renaming of
11802 Constraint_Error, to help preserve compatibility when compiling
11803 an Ada83 compiler). As such, we do not include Numeric_Error from
11804 this list of standard exceptions. */
11806 static const char *standard_exc[] = {
11807 "constraint_error",
11813 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11815 /* A structure that describes how to support exception catchpoints
11816 for a given executable. */
11818 struct exception_support_info
11820 /* The name of the symbol to break on in order to insert
11821 a catchpoint on exceptions. */
11822 const char *catch_exception_sym;
11824 /* The name of the symbol to break on in order to insert
11825 a catchpoint on unhandled exceptions. */
11826 const char *catch_exception_unhandled_sym;
11828 /* The name of the symbol to break on in order to insert
11829 a catchpoint on failed assertions. */
11830 const char *catch_assert_sym;
11832 /* Assuming that the inferior just triggered an unhandled exception
11833 catchpoint, this function is responsible for returning the address
11834 in inferior memory where the name of that exception is stored.
11835 Return zero if the address could not be computed. */
11836 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11839 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11840 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11842 /* The following exception support info structure describes how to
11843 implement exception catchpoints with the latest version of the
11844 Ada runtime (as of 2007-03-06). */
11846 static const struct exception_support_info default_exception_support_info =
11848 "__gnat_debug_raise_exception", /* catch_exception_sym */
11849 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11850 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11851 ada_unhandled_exception_name_addr
11854 /* The following exception support info structure describes how to
11855 implement exception catchpoints with a slightly older version
11856 of the Ada runtime. */
11858 static const struct exception_support_info exception_support_info_fallback =
11860 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11861 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11862 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11863 ada_unhandled_exception_name_addr_from_raise
11866 /* Return nonzero if we can detect the exception support routines
11867 described in EINFO.
11869 This function errors out if an abnormal situation is detected
11870 (for instance, if we find the exception support routines, but
11871 that support is found to be incomplete). */
11874 ada_has_this_exception_support (const struct exception_support_info *einfo)
11876 struct symbol *sym;
11878 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11879 that should be compiled with debugging information. As a result, we
11880 expect to find that symbol in the symtabs. */
11882 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11885 /* Perhaps we did not find our symbol because the Ada runtime was
11886 compiled without debugging info, or simply stripped of it.
11887 It happens on some GNU/Linux distributions for instance, where
11888 users have to install a separate debug package in order to get
11889 the runtime's debugging info. In that situation, let the user
11890 know why we cannot insert an Ada exception catchpoint.
11892 Note: Just for the purpose of inserting our Ada exception
11893 catchpoint, we could rely purely on the associated minimal symbol.
11894 But we would be operating in degraded mode anyway, since we are
11895 still lacking the debugging info needed later on to extract
11896 the name of the exception being raised (this name is printed in
11897 the catchpoint message, and is also used when trying to catch
11898 a specific exception). We do not handle this case for now. */
11899 struct bound_minimal_symbol msym
11900 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11902 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11903 error (_("Your Ada runtime appears to be missing some debugging "
11904 "information.\nCannot insert Ada exception catchpoint "
11905 "in this configuration."));
11910 /* Make sure that the symbol we found corresponds to a function. */
11912 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11913 error (_("Symbol \"%s\" is not a function (class = %d)"),
11914 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11919 /* Inspect the Ada runtime and determine which exception info structure
11920 should be used to provide support for exception catchpoints.
11922 This function will always set the per-inferior exception_info,
11923 or raise an error. */
11926 ada_exception_support_info_sniffer (void)
11928 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11930 /* If the exception info is already known, then no need to recompute it. */
11931 if (data->exception_info != NULL)
11934 /* Check the latest (default) exception support info. */
11935 if (ada_has_this_exception_support (&default_exception_support_info))
11937 data->exception_info = &default_exception_support_info;
11941 /* Try our fallback exception suport info. */
11942 if (ada_has_this_exception_support (&exception_support_info_fallback))
11944 data->exception_info = &exception_support_info_fallback;
11948 /* Sometimes, it is normal for us to not be able to find the routine
11949 we are looking for. This happens when the program is linked with
11950 the shared version of the GNAT runtime, and the program has not been
11951 started yet. Inform the user of these two possible causes if
11954 if (ada_update_initial_language (language_unknown) != language_ada)
11955 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11957 /* If the symbol does not exist, then check that the program is
11958 already started, to make sure that shared libraries have been
11959 loaded. If it is not started, this may mean that the symbol is
11960 in a shared library. */
11962 if (ptid_get_pid (inferior_ptid) == 0)
11963 error (_("Unable to insert catchpoint. Try to start the program first."));
11965 /* At this point, we know that we are debugging an Ada program and
11966 that the inferior has been started, but we still are not able to
11967 find the run-time symbols. That can mean that we are in
11968 configurable run time mode, or that a-except as been optimized
11969 out by the linker... In any case, at this point it is not worth
11970 supporting this feature. */
11972 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11975 /* True iff FRAME is very likely to be that of a function that is
11976 part of the runtime system. This is all very heuristic, but is
11977 intended to be used as advice as to what frames are uninteresting
11981 is_known_support_routine (struct frame_info *frame)
11983 enum language func_lang;
11985 const char *fullname;
11987 /* If this code does not have any debugging information (no symtab),
11988 This cannot be any user code. */
11990 symtab_and_line sal = find_frame_sal (frame);
11991 if (sal.symtab == NULL)
11994 /* If there is a symtab, but the associated source file cannot be
11995 located, then assume this is not user code: Selecting a frame
11996 for which we cannot display the code would not be very helpful
11997 for the user. This should also take care of case such as VxWorks
11998 where the kernel has some debugging info provided for a few units. */
12000 fullname = symtab_to_fullname (sal.symtab);
12001 if (access (fullname, R_OK) != 0)
12004 /* Check the unit filename againt the Ada runtime file naming.
12005 We also check the name of the objfile against the name of some
12006 known system libraries that sometimes come with debugging info
12009 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12011 re_comp (known_runtime_file_name_patterns[i]);
12012 if (re_exec (lbasename (sal.symtab->filename)))
12014 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12015 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12019 /* Check whether the function is a GNAT-generated entity. */
12021 gdb::unique_xmalloc_ptr<char> func_name
12022 = find_frame_funname (frame, &func_lang, NULL);
12023 if (func_name == NULL)
12026 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12028 re_comp (known_auxiliary_function_name_patterns[i]);
12029 if (re_exec (func_name.get ()))
12036 /* Find the first frame that contains debugging information and that is not
12037 part of the Ada run-time, starting from FI and moving upward. */
12040 ada_find_printable_frame (struct frame_info *fi)
12042 for (; fi != NULL; fi = get_prev_frame (fi))
12044 if (!is_known_support_routine (fi))
12053 /* Assuming that the inferior just triggered an unhandled exception
12054 catchpoint, return the address in inferior memory where the name
12055 of the exception is stored.
12057 Return zero if the address could not be computed. */
12060 ada_unhandled_exception_name_addr (void)
12062 return parse_and_eval_address ("e.full_name");
12065 /* Same as ada_unhandled_exception_name_addr, except that this function
12066 should be used when the inferior uses an older version of the runtime,
12067 where the exception name needs to be extracted from a specific frame
12068 several frames up in the callstack. */
12071 ada_unhandled_exception_name_addr_from_raise (void)
12074 struct frame_info *fi;
12075 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12077 /* To determine the name of this exception, we need to select
12078 the frame corresponding to RAISE_SYM_NAME. This frame is
12079 at least 3 levels up, so we simply skip the first 3 frames
12080 without checking the name of their associated function. */
12081 fi = get_current_frame ();
12082 for (frame_level = 0; frame_level < 3; frame_level += 1)
12084 fi = get_prev_frame (fi);
12088 enum language func_lang;
12090 gdb::unique_xmalloc_ptr<char> func_name
12091 = find_frame_funname (fi, &func_lang, NULL);
12092 if (func_name != NULL)
12094 if (strcmp (func_name.get (),
12095 data->exception_info->catch_exception_sym) == 0)
12096 break; /* We found the frame we were looking for... */
12097 fi = get_prev_frame (fi);
12105 return parse_and_eval_address ("id.full_name");
12108 /* Assuming the inferior just triggered an Ada exception catchpoint
12109 (of any type), return the address in inferior memory where the name
12110 of the exception is stored, if applicable.
12112 Assumes the selected frame is the current frame.
12114 Return zero if the address could not be computed, or if not relevant. */
12117 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12118 struct breakpoint *b)
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12124 case ada_catch_exception:
12125 return (parse_and_eval_address ("e.full_name"));
12128 case ada_catch_exception_unhandled:
12129 return data->exception_info->unhandled_exception_name_addr ();
12132 case ada_catch_assert:
12133 return 0; /* Exception name is not relevant in this case. */
12137 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12141 return 0; /* Should never be reached. */
12144 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12145 any error that ada_exception_name_addr_1 might cause to be thrown.
12146 When an error is intercepted, a warning with the error message is printed,
12147 and zero is returned. */
12150 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12151 struct breakpoint *b)
12153 CORE_ADDR result = 0;
12157 result = ada_exception_name_addr_1 (ex, b);
12160 CATCH (e, RETURN_MASK_ERROR)
12162 warning (_("failed to get exception name: %s"), e.message);
12170 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12172 /* Ada catchpoints.
12174 In the case of catchpoints on Ada exceptions, the catchpoint will
12175 stop the target on every exception the program throws. When a user
12176 specifies the name of a specific exception, we translate this
12177 request into a condition expression (in text form), and then parse
12178 it into an expression stored in each of the catchpoint's locations.
12179 We then use this condition to check whether the exception that was
12180 raised is the one the user is interested in. If not, then the
12181 target is resumed again. We store the name of the requested
12182 exception, in order to be able to re-set the condition expression
12183 when symbols change. */
12185 /* An instance of this type is used to represent an Ada catchpoint
12186 breakpoint location. */
12188 class ada_catchpoint_location : public bp_location
12191 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12192 : bp_location (ops, owner)
12195 /* The condition that checks whether the exception that was raised
12196 is the specific exception the user specified on catchpoint
12198 expression_up excep_cond_expr;
12201 /* Implement the DTOR method in the bp_location_ops structure for all
12202 Ada exception catchpoint kinds. */
12205 ada_catchpoint_location_dtor (struct bp_location *bl)
12207 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12209 al->excep_cond_expr.reset ();
12212 /* The vtable to be used in Ada catchpoint locations. */
12214 static const struct bp_location_ops ada_catchpoint_location_ops =
12216 ada_catchpoint_location_dtor
12219 /* An instance of this type is used to represent an Ada catchpoint. */
12221 struct ada_catchpoint : public breakpoint
12223 ~ada_catchpoint () override;
12225 /* The name of the specific exception the user specified. */
12226 char *excep_string;
12229 /* Parse the exception condition string in the context of each of the
12230 catchpoint's locations, and store them for later evaluation. */
12233 create_excep_cond_exprs (struct ada_catchpoint *c)
12235 struct cleanup *old_chain;
12236 struct bp_location *bl;
12239 /* Nothing to do if there's no specific exception to catch. */
12240 if (c->excep_string == NULL)
12243 /* Same if there are no locations... */
12244 if (c->loc == NULL)
12247 /* Compute the condition expression in text form, from the specific
12248 expection we want to catch. */
12249 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12250 old_chain = make_cleanup (xfree, cond_string);
12252 /* Iterate over all the catchpoint's locations, and parse an
12253 expression for each. */
12254 for (bl = c->loc; bl != NULL; bl = bl->next)
12256 struct ada_catchpoint_location *ada_loc
12257 = (struct ada_catchpoint_location *) bl;
12260 if (!bl->shlib_disabled)
12267 exp = parse_exp_1 (&s, bl->address,
12268 block_for_pc (bl->address),
12271 CATCH (e, RETURN_MASK_ERROR)
12273 warning (_("failed to reevaluate internal exception condition "
12274 "for catchpoint %d: %s"),
12275 c->number, e.message);
12280 ada_loc->excep_cond_expr = std::move (exp);
12283 do_cleanups (old_chain);
12286 /* ada_catchpoint destructor. */
12288 ada_catchpoint::~ada_catchpoint ()
12290 xfree (this->excep_string);
12293 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12294 structure for all exception catchpoint kinds. */
12296 static struct bp_location *
12297 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12298 struct breakpoint *self)
12300 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12303 /* Implement the RE_SET method in the breakpoint_ops structure for all
12304 exception catchpoint kinds. */
12307 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12309 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12311 /* Call the base class's method. This updates the catchpoint's
12313 bkpt_breakpoint_ops.re_set (b);
12315 /* Reparse the exception conditional expressions. One for each
12317 create_excep_cond_exprs (c);
12320 /* Returns true if we should stop for this breakpoint hit. If the
12321 user specified a specific exception, we only want to cause a stop
12322 if the program thrown that exception. */
12325 should_stop_exception (const struct bp_location *bl)
12327 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12328 const struct ada_catchpoint_location *ada_loc
12329 = (const struct ada_catchpoint_location *) bl;
12332 /* With no specific exception, should always stop. */
12333 if (c->excep_string == NULL)
12336 if (ada_loc->excep_cond_expr == NULL)
12338 /* We will have a NULL expression if back when we were creating
12339 the expressions, this location's had failed to parse. */
12346 struct value *mark;
12348 mark = value_mark ();
12349 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12350 value_free_to_mark (mark);
12352 CATCH (ex, RETURN_MASK_ALL)
12354 exception_fprintf (gdb_stderr, ex,
12355 _("Error in testing exception condition:\n"));
12362 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12363 for all exception catchpoint kinds. */
12366 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12368 bs->stop = should_stop_exception (bs->bp_location_at);
12371 /* Implement the PRINT_IT method in the breakpoint_ops structure
12372 for all exception catchpoint kinds. */
12374 static enum print_stop_action
12375 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12377 struct ui_out *uiout = current_uiout;
12378 struct breakpoint *b = bs->breakpoint_at;
12380 annotate_catchpoint (b->number);
12382 if (uiout->is_mi_like_p ())
12384 uiout->field_string ("reason",
12385 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12386 uiout->field_string ("disp", bpdisp_text (b->disposition));
12389 uiout->text (b->disposition == disp_del
12390 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12391 uiout->field_int ("bkptno", b->number);
12392 uiout->text (", ");
12394 /* ada_exception_name_addr relies on the selected frame being the
12395 current frame. Need to do this here because this function may be
12396 called more than once when printing a stop, and below, we'll
12397 select the first frame past the Ada run-time (see
12398 ada_find_printable_frame). */
12399 select_frame (get_current_frame ());
12403 case ada_catch_exception:
12404 case ada_catch_exception_unhandled:
12406 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12407 char exception_name[256];
12411 read_memory (addr, (gdb_byte *) exception_name,
12412 sizeof (exception_name) - 1);
12413 exception_name [sizeof (exception_name) - 1] = '\0';
12417 /* For some reason, we were unable to read the exception
12418 name. This could happen if the Runtime was compiled
12419 without debugging info, for instance. In that case,
12420 just replace the exception name by the generic string
12421 "exception" - it will read as "an exception" in the
12422 notification we are about to print. */
12423 memcpy (exception_name, "exception", sizeof ("exception"));
12425 /* In the case of unhandled exception breakpoints, we print
12426 the exception name as "unhandled EXCEPTION_NAME", to make
12427 it clearer to the user which kind of catchpoint just got
12428 hit. We used ui_out_text to make sure that this extra
12429 info does not pollute the exception name in the MI case. */
12430 if (ex == ada_catch_exception_unhandled)
12431 uiout->text ("unhandled ");
12432 uiout->field_string ("exception-name", exception_name);
12435 case ada_catch_assert:
12436 /* In this case, the name of the exception is not really
12437 important. Just print "failed assertion" to make it clearer
12438 that his program just hit an assertion-failure catchpoint.
12439 We used ui_out_text because this info does not belong in
12441 uiout->text ("failed assertion");
12444 uiout->text (" at ");
12445 ada_find_printable_frame (get_current_frame ());
12447 return PRINT_SRC_AND_LOC;
12450 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12451 for all exception catchpoint kinds. */
12454 print_one_exception (enum ada_exception_catchpoint_kind ex,
12455 struct breakpoint *b, struct bp_location **last_loc)
12457 struct ui_out *uiout = current_uiout;
12458 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12459 struct value_print_options opts;
12461 get_user_print_options (&opts);
12462 if (opts.addressprint)
12464 annotate_field (4);
12465 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12468 annotate_field (5);
12469 *last_loc = b->loc;
12472 case ada_catch_exception:
12473 if (c->excep_string != NULL)
12475 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12477 uiout->field_string ("what", msg);
12481 uiout->field_string ("what", "all Ada exceptions");
12485 case ada_catch_exception_unhandled:
12486 uiout->field_string ("what", "unhandled Ada exceptions");
12489 case ada_catch_assert:
12490 uiout->field_string ("what", "failed Ada assertions");
12494 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12499 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12500 for all exception catchpoint kinds. */
12503 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12504 struct breakpoint *b)
12506 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12507 struct ui_out *uiout = current_uiout;
12509 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12510 : _("Catchpoint "));
12511 uiout->field_int ("bkptno", b->number);
12512 uiout->text (": ");
12516 case ada_catch_exception:
12517 if (c->excep_string != NULL)
12519 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12520 struct cleanup *old_chain = make_cleanup (xfree, info);
12522 uiout->text (info);
12523 do_cleanups (old_chain);
12526 uiout->text (_("all Ada exceptions"));
12529 case ada_catch_exception_unhandled:
12530 uiout->text (_("unhandled Ada exceptions"));
12533 case ada_catch_assert:
12534 uiout->text (_("failed Ada assertions"));
12538 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12543 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12544 for all exception catchpoint kinds. */
12547 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12548 struct breakpoint *b, struct ui_file *fp)
12550 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12554 case ada_catch_exception:
12555 fprintf_filtered (fp, "catch exception");
12556 if (c->excep_string != NULL)
12557 fprintf_filtered (fp, " %s", c->excep_string);
12560 case ada_catch_exception_unhandled:
12561 fprintf_filtered (fp, "catch exception unhandled");
12564 case ada_catch_assert:
12565 fprintf_filtered (fp, "catch assert");
12569 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12571 print_recreate_thread (b, fp);
12574 /* Virtual table for "catch exception" breakpoints. */
12576 static struct bp_location *
12577 allocate_location_catch_exception (struct breakpoint *self)
12579 return allocate_location_exception (ada_catch_exception, self);
12583 re_set_catch_exception (struct breakpoint *b)
12585 re_set_exception (ada_catch_exception, b);
12589 check_status_catch_exception (bpstat bs)
12591 check_status_exception (ada_catch_exception, bs);
12594 static enum print_stop_action
12595 print_it_catch_exception (bpstat bs)
12597 return print_it_exception (ada_catch_exception, bs);
12601 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12603 print_one_exception (ada_catch_exception, b, last_loc);
12607 print_mention_catch_exception (struct breakpoint *b)
12609 print_mention_exception (ada_catch_exception, b);
12613 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12615 print_recreate_exception (ada_catch_exception, b, fp);
12618 static struct breakpoint_ops catch_exception_breakpoint_ops;
12620 /* Virtual table for "catch exception unhandled" breakpoints. */
12622 static struct bp_location *
12623 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12625 return allocate_location_exception (ada_catch_exception_unhandled, self);
12629 re_set_catch_exception_unhandled (struct breakpoint *b)
12631 re_set_exception (ada_catch_exception_unhandled, b);
12635 check_status_catch_exception_unhandled (bpstat bs)
12637 check_status_exception (ada_catch_exception_unhandled, bs);
12640 static enum print_stop_action
12641 print_it_catch_exception_unhandled (bpstat bs)
12643 return print_it_exception (ada_catch_exception_unhandled, bs);
12647 print_one_catch_exception_unhandled (struct breakpoint *b,
12648 struct bp_location **last_loc)
12650 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12654 print_mention_catch_exception_unhandled (struct breakpoint *b)
12656 print_mention_exception (ada_catch_exception_unhandled, b);
12660 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12661 struct ui_file *fp)
12663 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12666 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12668 /* Virtual table for "catch assert" breakpoints. */
12670 static struct bp_location *
12671 allocate_location_catch_assert (struct breakpoint *self)
12673 return allocate_location_exception (ada_catch_assert, self);
12677 re_set_catch_assert (struct breakpoint *b)
12679 re_set_exception (ada_catch_assert, b);
12683 check_status_catch_assert (bpstat bs)
12685 check_status_exception (ada_catch_assert, bs);
12688 static enum print_stop_action
12689 print_it_catch_assert (bpstat bs)
12691 return print_it_exception (ada_catch_assert, bs);
12695 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12697 print_one_exception (ada_catch_assert, b, last_loc);
12701 print_mention_catch_assert (struct breakpoint *b)
12703 print_mention_exception (ada_catch_assert, b);
12707 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12709 print_recreate_exception (ada_catch_assert, b, fp);
12712 static struct breakpoint_ops catch_assert_breakpoint_ops;
12714 /* Return a newly allocated copy of the first space-separated token
12715 in ARGSP, and then adjust ARGSP to point immediately after that
12718 Return NULL if ARGPS does not contain any more tokens. */
12721 ada_get_next_arg (const char **argsp)
12723 const char *args = *argsp;
12727 args = skip_spaces (args);
12728 if (args[0] == '\0')
12729 return NULL; /* No more arguments. */
12731 /* Find the end of the current argument. */
12733 end = skip_to_space (args);
12735 /* Adjust ARGSP to point to the start of the next argument. */
12739 /* Make a copy of the current argument and return it. */
12741 result = (char *) xmalloc (end - args + 1);
12742 strncpy (result, args, end - args);
12743 result[end - args] = '\0';
12748 /* Split the arguments specified in a "catch exception" command.
12749 Set EX to the appropriate catchpoint type.
12750 Set EXCEP_STRING to the name of the specific exception if
12751 specified by the user.
12752 If a condition is found at the end of the arguments, the condition
12753 expression is stored in COND_STRING (memory must be deallocated
12754 after use). Otherwise COND_STRING is set to NULL. */
12757 catch_ada_exception_command_split (const char *args,
12758 enum ada_exception_catchpoint_kind *ex,
12759 char **excep_string,
12760 char **cond_string)
12762 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12763 char *exception_name;
12766 exception_name = ada_get_next_arg (&args);
12767 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12769 /* This is not an exception name; this is the start of a condition
12770 expression for a catchpoint on all exceptions. So, "un-get"
12771 this token, and set exception_name to NULL. */
12772 xfree (exception_name);
12773 exception_name = NULL;
12776 make_cleanup (xfree, exception_name);
12778 /* Check to see if we have a condition. */
12780 args = skip_spaces (args);
12781 if (startswith (args, "if")
12782 && (isspace (args[2]) || args[2] == '\0'))
12785 args = skip_spaces (args);
12787 if (args[0] == '\0')
12788 error (_("Condition missing after `if' keyword"));
12789 cond = xstrdup (args);
12790 make_cleanup (xfree, cond);
12792 args += strlen (args);
12795 /* Check that we do not have any more arguments. Anything else
12798 if (args[0] != '\0')
12799 error (_("Junk at end of expression"));
12801 discard_cleanups (old_chain);
12803 if (exception_name == NULL)
12805 /* Catch all exceptions. */
12806 *ex = ada_catch_exception;
12807 *excep_string = NULL;
12809 else if (strcmp (exception_name, "unhandled") == 0)
12811 /* Catch unhandled exceptions. */
12812 *ex = ada_catch_exception_unhandled;
12813 *excep_string = NULL;
12817 /* Catch a specific exception. */
12818 *ex = ada_catch_exception;
12819 *excep_string = exception_name;
12821 *cond_string = cond;
12824 /* Return the name of the symbol on which we should break in order to
12825 implement a catchpoint of the EX kind. */
12827 static const char *
12828 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12830 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12832 gdb_assert (data->exception_info != NULL);
12836 case ada_catch_exception:
12837 return (data->exception_info->catch_exception_sym);
12839 case ada_catch_exception_unhandled:
12840 return (data->exception_info->catch_exception_unhandled_sym);
12842 case ada_catch_assert:
12843 return (data->exception_info->catch_assert_sym);
12846 internal_error (__FILE__, __LINE__,
12847 _("unexpected catchpoint kind (%d)"), ex);
12851 /* Return the breakpoint ops "virtual table" used for catchpoints
12854 static const struct breakpoint_ops *
12855 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12859 case ada_catch_exception:
12860 return (&catch_exception_breakpoint_ops);
12862 case ada_catch_exception_unhandled:
12863 return (&catch_exception_unhandled_breakpoint_ops);
12865 case ada_catch_assert:
12866 return (&catch_assert_breakpoint_ops);
12869 internal_error (__FILE__, __LINE__,
12870 _("unexpected catchpoint kind (%d)"), ex);
12874 /* Return the condition that will be used to match the current exception
12875 being raised with the exception that the user wants to catch. This
12876 assumes that this condition is used when the inferior just triggered
12877 an exception catchpoint.
12879 The string returned is a newly allocated string that needs to be
12880 deallocated later. */
12883 ada_exception_catchpoint_cond_string (const char *excep_string)
12887 /* The standard exceptions are a special case. They are defined in
12888 runtime units that have been compiled without debugging info; if
12889 EXCEP_STRING is the not-fully-qualified name of a standard
12890 exception (e.g. "constraint_error") then, during the evaluation
12891 of the condition expression, the symbol lookup on this name would
12892 *not* return this standard exception. The catchpoint condition
12893 may then be set only on user-defined exceptions which have the
12894 same not-fully-qualified name (e.g. my_package.constraint_error).
12896 To avoid this unexcepted behavior, these standard exceptions are
12897 systematically prefixed by "standard". This means that "catch
12898 exception constraint_error" is rewritten into "catch exception
12899 standard.constraint_error".
12901 If an exception named contraint_error is defined in another package of
12902 the inferior program, then the only way to specify this exception as a
12903 breakpoint condition is to use its fully-qualified named:
12904 e.g. my_package.constraint_error. */
12906 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12908 if (strcmp (standard_exc [i], excep_string) == 0)
12910 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12914 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12917 /* Return the symtab_and_line that should be used to insert an exception
12918 catchpoint of the TYPE kind.
12920 EXCEP_STRING should contain the name of a specific exception that
12921 the catchpoint should catch, or NULL otherwise.
12923 ADDR_STRING returns the name of the function where the real
12924 breakpoint that implements the catchpoints is set, depending on the
12925 type of catchpoint we need to create. */
12927 static struct symtab_and_line
12928 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12929 const char **addr_string, const struct breakpoint_ops **ops)
12931 const char *sym_name;
12932 struct symbol *sym;
12934 /* First, find out which exception support info to use. */
12935 ada_exception_support_info_sniffer ();
12937 /* Then lookup the function on which we will break in order to catch
12938 the Ada exceptions requested by the user. */
12939 sym_name = ada_exception_sym_name (ex);
12940 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12942 /* We can assume that SYM is not NULL at this stage. If the symbol
12943 did not exist, ada_exception_support_info_sniffer would have
12944 raised an exception.
12946 Also, ada_exception_support_info_sniffer should have already
12947 verified that SYM is a function symbol. */
12948 gdb_assert (sym != NULL);
12949 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12951 /* Set ADDR_STRING. */
12952 *addr_string = xstrdup (sym_name);
12955 *ops = ada_exception_breakpoint_ops (ex);
12957 return find_function_start_sal (sym, 1);
12960 /* Create an Ada exception catchpoint.
12962 EX_KIND is the kind of exception catchpoint to be created.
12964 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12965 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12966 of the exception to which this catchpoint applies. When not NULL,
12967 the string must be allocated on the heap, and its deallocation
12968 is no longer the responsibility of the caller.
12970 COND_STRING, if not NULL, is the catchpoint condition. This string
12971 must be allocated on the heap, and its deallocation is no longer
12972 the responsibility of the caller.
12974 TEMPFLAG, if nonzero, means that the underlying breakpoint
12975 should be temporary.
12977 FROM_TTY is the usual argument passed to all commands implementations. */
12980 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12981 enum ada_exception_catchpoint_kind ex_kind,
12982 char *excep_string,
12988 const char *addr_string = NULL;
12989 const struct breakpoint_ops *ops = NULL;
12990 struct symtab_and_line sal
12991 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12993 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12994 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12995 ops, tempflag, disabled, from_tty);
12996 c->excep_string = excep_string;
12997 create_excep_cond_exprs (c.get ());
12998 if (cond_string != NULL)
12999 set_breakpoint_condition (c.get (), cond_string, from_tty);
13000 install_breakpoint (0, std::move (c), 1);
13003 /* Implement the "catch exception" command. */
13006 catch_ada_exception_command (char *arg_entry, int from_tty,
13007 struct cmd_list_element *command)
13009 const char *arg = arg_entry;
13010 struct gdbarch *gdbarch = get_current_arch ();
13012 enum ada_exception_catchpoint_kind ex_kind;
13013 char *excep_string = NULL;
13014 char *cond_string = NULL;
13016 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13020 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13022 create_ada_exception_catchpoint (gdbarch, ex_kind,
13023 excep_string, cond_string,
13024 tempflag, 1 /* enabled */,
13028 /* Split the arguments specified in a "catch assert" command.
13030 ARGS contains the command's arguments (or the empty string if
13031 no arguments were passed).
13033 If ARGS contains a condition, set COND_STRING to that condition
13034 (the memory needs to be deallocated after use). */
13037 catch_ada_assert_command_split (const char *args, char **cond_string)
13039 args = skip_spaces (args);
13041 /* Check whether a condition was provided. */
13042 if (startswith (args, "if")
13043 && (isspace (args[2]) || args[2] == '\0'))
13046 args = skip_spaces (args);
13047 if (args[0] == '\0')
13048 error (_("condition missing after `if' keyword"));
13049 *cond_string = xstrdup (args);
13052 /* Otherwise, there should be no other argument at the end of
13054 else if (args[0] != '\0')
13055 error (_("Junk at end of arguments."));
13058 /* Implement the "catch assert" command. */
13061 catch_assert_command (char *arg_entry, int from_tty,
13062 struct cmd_list_element *command)
13064 const char *arg = arg_entry;
13065 struct gdbarch *gdbarch = get_current_arch ();
13067 char *cond_string = NULL;
13069 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13073 catch_ada_assert_command_split (arg, &cond_string);
13074 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13076 tempflag, 1 /* enabled */,
13080 /* Return non-zero if the symbol SYM is an Ada exception object. */
13083 ada_is_exception_sym (struct symbol *sym)
13085 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13087 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13088 && SYMBOL_CLASS (sym) != LOC_BLOCK
13089 && SYMBOL_CLASS (sym) != LOC_CONST
13090 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13091 && type_name != NULL && strcmp (type_name, "exception") == 0);
13094 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13095 Ada exception object. This matches all exceptions except the ones
13096 defined by the Ada language. */
13099 ada_is_non_standard_exception_sym (struct symbol *sym)
13103 if (!ada_is_exception_sym (sym))
13106 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13107 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13108 return 0; /* A standard exception. */
13110 /* Numeric_Error is also a standard exception, so exclude it.
13111 See the STANDARD_EXC description for more details as to why
13112 this exception is not listed in that array. */
13113 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13119 /* A helper function for std::sort, comparing two struct ada_exc_info
13122 The comparison is determined first by exception name, and then
13123 by exception address. */
13126 ada_exc_info::operator< (const ada_exc_info &other) const
13130 result = strcmp (name, other.name);
13133 if (result == 0 && addr < other.addr)
13139 ada_exc_info::operator== (const ada_exc_info &other) const
13141 return addr == other.addr && strcmp (name, other.name) == 0;
13144 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13145 routine, but keeping the first SKIP elements untouched.
13147 All duplicates are also removed. */
13150 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13153 std::sort (exceptions->begin () + skip, exceptions->end ());
13154 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13155 exceptions->end ());
13158 /* Add all exceptions defined by the Ada standard whose name match
13159 a regular expression.
13161 If PREG is not NULL, then this regexp_t object is used to
13162 perform the symbol name matching. Otherwise, no name-based
13163 filtering is performed.
13165 EXCEPTIONS is a vector of exceptions to which matching exceptions
13169 ada_add_standard_exceptions (compiled_regex *preg,
13170 std::vector<ada_exc_info> *exceptions)
13174 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13177 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13179 struct bound_minimal_symbol msymbol
13180 = ada_lookup_simple_minsym (standard_exc[i]);
13182 if (msymbol.minsym != NULL)
13184 struct ada_exc_info info
13185 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13187 exceptions->push_back (info);
13193 /* Add all Ada exceptions defined locally and accessible from the given
13196 If PREG is not NULL, then this regexp_t object is used to
13197 perform the symbol name matching. Otherwise, no name-based
13198 filtering is performed.
13200 EXCEPTIONS is a vector of exceptions to which matching exceptions
13204 ada_add_exceptions_from_frame (compiled_regex *preg,
13205 struct frame_info *frame,
13206 std::vector<ada_exc_info> *exceptions)
13208 const struct block *block = get_frame_block (frame, 0);
13212 struct block_iterator iter;
13213 struct symbol *sym;
13215 ALL_BLOCK_SYMBOLS (block, iter, sym)
13217 switch (SYMBOL_CLASS (sym))
13224 if (ada_is_exception_sym (sym))
13226 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13227 SYMBOL_VALUE_ADDRESS (sym)};
13229 exceptions->push_back (info);
13233 if (BLOCK_FUNCTION (block) != NULL)
13235 block = BLOCK_SUPERBLOCK (block);
13239 /* Return true if NAME matches PREG or if PREG is NULL. */
13242 name_matches_regex (const char *name, compiled_regex *preg)
13244 return (preg == NULL
13245 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13248 /* Add all exceptions defined globally whose name name match
13249 a regular expression, excluding standard exceptions.
13251 The reason we exclude standard exceptions is that they need
13252 to be handled separately: Standard exceptions are defined inside
13253 a runtime unit which is normally not compiled with debugging info,
13254 and thus usually do not show up in our symbol search. However,
13255 if the unit was in fact built with debugging info, we need to
13256 exclude them because they would duplicate the entry we found
13257 during the special loop that specifically searches for those
13258 standard exceptions.
13260 If PREG is not NULL, then this regexp_t object is used to
13261 perform the symbol name matching. Otherwise, no name-based
13262 filtering is performed.
13264 EXCEPTIONS is a vector of exceptions to which matching exceptions
13268 ada_add_global_exceptions (compiled_regex *preg,
13269 std::vector<ada_exc_info> *exceptions)
13271 struct objfile *objfile;
13272 struct compunit_symtab *s;
13274 /* In Ada, the symbol "search name" is a linkage name, whereas the
13275 regular expression used to do the matching refers to the natural
13276 name. So match against the decoded name. */
13277 expand_symtabs_matching (NULL,
13278 [&] (const char *search_name)
13280 const char *decoded = ada_decode (search_name);
13281 return name_matches_regex (decoded, preg);
13286 ALL_COMPUNITS (objfile, s)
13288 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13291 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13293 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13294 struct block_iterator iter;
13295 struct symbol *sym;
13297 ALL_BLOCK_SYMBOLS (b, iter, sym)
13298 if (ada_is_non_standard_exception_sym (sym)
13299 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13301 struct ada_exc_info info
13302 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13304 exceptions->push_back (info);
13310 /* Implements ada_exceptions_list with the regular expression passed
13311 as a regex_t, rather than a string.
13313 If not NULL, PREG is used to filter out exceptions whose names
13314 do not match. Otherwise, all exceptions are listed. */
13316 static std::vector<ada_exc_info>
13317 ada_exceptions_list_1 (compiled_regex *preg)
13319 std::vector<ada_exc_info> result;
13322 /* First, list the known standard exceptions. These exceptions
13323 need to be handled separately, as they are usually defined in
13324 runtime units that have been compiled without debugging info. */
13326 ada_add_standard_exceptions (preg, &result);
13328 /* Next, find all exceptions whose scope is local and accessible
13329 from the currently selected frame. */
13331 if (has_stack_frames ())
13333 prev_len = result.size ();
13334 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13336 if (result.size () > prev_len)
13337 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13340 /* Add all exceptions whose scope is global. */
13342 prev_len = result.size ();
13343 ada_add_global_exceptions (preg, &result);
13344 if (result.size () > prev_len)
13345 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13350 /* Return a vector of ada_exc_info.
13352 If REGEXP is NULL, all exceptions are included in the result.
13353 Otherwise, it should contain a valid regular expression,
13354 and only the exceptions whose names match that regular expression
13355 are included in the result.
13357 The exceptions are sorted in the following order:
13358 - Standard exceptions (defined by the Ada language), in
13359 alphabetical order;
13360 - Exceptions only visible from the current frame, in
13361 alphabetical order;
13362 - Exceptions whose scope is global, in alphabetical order. */
13364 std::vector<ada_exc_info>
13365 ada_exceptions_list (const char *regexp)
13367 if (regexp == NULL)
13368 return ada_exceptions_list_1 (NULL);
13370 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13371 return ada_exceptions_list_1 (®);
13374 /* Implement the "info exceptions" command. */
13377 info_exceptions_command (char *regexp, int from_tty)
13379 struct gdbarch *gdbarch = get_current_arch ();
13381 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13383 if (regexp != NULL)
13385 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13387 printf_filtered (_("All defined Ada exceptions:\n"));
13389 for (const ada_exc_info &info : exceptions)
13390 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13394 /* Information about operators given special treatment in functions
13396 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13398 #define ADA_OPERATORS \
13399 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13400 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13401 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13402 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13403 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13404 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13405 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13406 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13407 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13408 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13409 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13410 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13411 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13412 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13413 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13414 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13415 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13416 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13417 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13420 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13423 switch (exp->elts[pc - 1].opcode)
13426 operator_length_standard (exp, pc, oplenp, argsp);
13429 #define OP_DEFN(op, len, args, binop) \
13430 case op: *oplenp = len; *argsp = args; break;
13436 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13441 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13446 /* Implementation of the exp_descriptor method operator_check. */
13449 ada_operator_check (struct expression *exp, int pos,
13450 int (*objfile_func) (struct objfile *objfile, void *data),
13453 const union exp_element *const elts = exp->elts;
13454 struct type *type = NULL;
13456 switch (elts[pos].opcode)
13458 case UNOP_IN_RANGE:
13460 type = elts[pos + 1].type;
13464 return operator_check_standard (exp, pos, objfile_func, data);
13467 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13469 if (type && TYPE_OBJFILE (type)
13470 && (*objfile_func) (TYPE_OBJFILE (type), data))
13476 static const char *
13477 ada_op_name (enum exp_opcode opcode)
13482 return op_name_standard (opcode);
13484 #define OP_DEFN(op, len, args, binop) case op: return #op;
13489 return "OP_AGGREGATE";
13491 return "OP_CHOICES";
13497 /* As for operator_length, but assumes PC is pointing at the first
13498 element of the operator, and gives meaningful results only for the
13499 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13502 ada_forward_operator_length (struct expression *exp, int pc,
13503 int *oplenp, int *argsp)
13505 switch (exp->elts[pc].opcode)
13508 *oplenp = *argsp = 0;
13511 #define OP_DEFN(op, len, args, binop) \
13512 case op: *oplenp = len; *argsp = args; break;
13518 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13523 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13529 int len = longest_to_int (exp->elts[pc + 1].longconst);
13531 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13539 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13541 enum exp_opcode op = exp->elts[elt].opcode;
13546 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13550 /* Ada attributes ('Foo). */
13553 case OP_ATR_LENGTH:
13557 case OP_ATR_MODULUS:
13564 case UNOP_IN_RANGE:
13566 /* XXX: gdb_sprint_host_address, type_sprint */
13567 fprintf_filtered (stream, _("Type @"));
13568 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13569 fprintf_filtered (stream, " (");
13570 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13571 fprintf_filtered (stream, ")");
13573 case BINOP_IN_BOUNDS:
13574 fprintf_filtered (stream, " (%d)",
13575 longest_to_int (exp->elts[pc + 2].longconst));
13577 case TERNOP_IN_RANGE:
13582 case OP_DISCRETE_RANGE:
13583 case OP_POSITIONAL:
13590 char *name = &exp->elts[elt + 2].string;
13591 int len = longest_to_int (exp->elts[elt + 1].longconst);
13593 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13598 return dump_subexp_body_standard (exp, stream, elt);
13602 for (i = 0; i < nargs; i += 1)
13603 elt = dump_subexp (exp, stream, elt);
13608 /* The Ada extension of print_subexp (q.v.). */
13611 ada_print_subexp (struct expression *exp, int *pos,
13612 struct ui_file *stream, enum precedence prec)
13614 int oplen, nargs, i;
13616 enum exp_opcode op = exp->elts[pc].opcode;
13618 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13625 print_subexp_standard (exp, pos, stream, prec);
13629 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13632 case BINOP_IN_BOUNDS:
13633 /* XXX: sprint_subexp */
13634 print_subexp (exp, pos, stream, PREC_SUFFIX);
13635 fputs_filtered (" in ", stream);
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 fputs_filtered ("'range", stream);
13638 if (exp->elts[pc + 1].longconst > 1)
13639 fprintf_filtered (stream, "(%ld)",
13640 (long) exp->elts[pc + 1].longconst);
13643 case TERNOP_IN_RANGE:
13644 if (prec >= PREC_EQUAL)
13645 fputs_filtered ("(", stream);
13646 /* XXX: sprint_subexp */
13647 print_subexp (exp, pos, stream, PREC_SUFFIX);
13648 fputs_filtered (" in ", stream);
13649 print_subexp (exp, pos, stream, PREC_EQUAL);
13650 fputs_filtered (" .. ", stream);
13651 print_subexp (exp, pos, stream, PREC_EQUAL);
13652 if (prec >= PREC_EQUAL)
13653 fputs_filtered (")", stream);
13658 case OP_ATR_LENGTH:
13662 case OP_ATR_MODULUS:
13667 if (exp->elts[*pos].opcode == OP_TYPE)
13669 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13670 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13671 &type_print_raw_options);
13675 print_subexp (exp, pos, stream, PREC_SUFFIX);
13676 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13681 for (tem = 1; tem < nargs; tem += 1)
13683 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13684 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13686 fputs_filtered (")", stream);
13691 type_print (exp->elts[pc + 1].type, "", stream, 0);
13692 fputs_filtered ("'(", stream);
13693 print_subexp (exp, pos, stream, PREC_PREFIX);
13694 fputs_filtered (")", stream);
13697 case UNOP_IN_RANGE:
13698 /* XXX: sprint_subexp */
13699 print_subexp (exp, pos, stream, PREC_SUFFIX);
13700 fputs_filtered (" in ", stream);
13701 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13702 &type_print_raw_options);
13705 case OP_DISCRETE_RANGE:
13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
13707 fputs_filtered ("..", stream);
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13712 fputs_filtered ("others => ", stream);
13713 print_subexp (exp, pos, stream, PREC_SUFFIX);
13717 for (i = 0; i < nargs-1; i += 1)
13720 fputs_filtered ("|", stream);
13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
13723 fputs_filtered (" => ", stream);
13724 print_subexp (exp, pos, stream, PREC_SUFFIX);
13727 case OP_POSITIONAL:
13728 print_subexp (exp, pos, stream, PREC_SUFFIX);
13732 fputs_filtered ("(", stream);
13733 for (i = 0; i < nargs; i += 1)
13736 fputs_filtered (", ", stream);
13737 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fputs_filtered (")", stream);
13744 /* Table mapping opcodes into strings for printing operators
13745 and precedences of the operators. */
13747 static const struct op_print ada_op_print_tab[] = {
13748 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13749 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13750 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13751 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13752 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13753 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13754 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13755 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13756 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13757 {">=", BINOP_GEQ, PREC_ORDER, 0},
13758 {">", BINOP_GTR, PREC_ORDER, 0},
13759 {"<", BINOP_LESS, PREC_ORDER, 0},
13760 {">>", BINOP_RSH, PREC_SHIFT, 0},
13761 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13762 {"+", BINOP_ADD, PREC_ADD, 0},
13763 {"-", BINOP_SUB, PREC_ADD, 0},
13764 {"&", BINOP_CONCAT, PREC_ADD, 0},
13765 {"*", BINOP_MUL, PREC_MUL, 0},
13766 {"/", BINOP_DIV, PREC_MUL, 0},
13767 {"rem", BINOP_REM, PREC_MUL, 0},
13768 {"mod", BINOP_MOD, PREC_MUL, 0},
13769 {"**", BINOP_EXP, PREC_REPEAT, 0},
13770 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13771 {"-", UNOP_NEG, PREC_PREFIX, 0},
13772 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13773 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13774 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13775 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13776 {".all", UNOP_IND, PREC_SUFFIX, 1},
13777 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13778 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13779 {NULL, OP_NULL, PREC_SUFFIX, 0}
13782 enum ada_primitive_types {
13783 ada_primitive_type_int,
13784 ada_primitive_type_long,
13785 ada_primitive_type_short,
13786 ada_primitive_type_char,
13787 ada_primitive_type_float,
13788 ada_primitive_type_double,
13789 ada_primitive_type_void,
13790 ada_primitive_type_long_long,
13791 ada_primitive_type_long_double,
13792 ada_primitive_type_natural,
13793 ada_primitive_type_positive,
13794 ada_primitive_type_system_address,
13795 nr_ada_primitive_types
13799 ada_language_arch_info (struct gdbarch *gdbarch,
13800 struct language_arch_info *lai)
13802 const struct builtin_type *builtin = builtin_type (gdbarch);
13804 lai->primitive_type_vector
13805 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13808 lai->primitive_type_vector [ada_primitive_type_int]
13809 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13811 lai->primitive_type_vector [ada_primitive_type_long]
13812 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13813 0, "long_integer");
13814 lai->primitive_type_vector [ada_primitive_type_short]
13815 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13816 0, "short_integer");
13817 lai->string_char_type
13818 = lai->primitive_type_vector [ada_primitive_type_char]
13819 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13820 lai->primitive_type_vector [ada_primitive_type_float]
13821 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13822 "float", gdbarch_float_format (gdbarch));
13823 lai->primitive_type_vector [ada_primitive_type_double]
13824 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13825 "long_float", gdbarch_double_format (gdbarch));
13826 lai->primitive_type_vector [ada_primitive_type_long_long]
13827 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13828 0, "long_long_integer");
13829 lai->primitive_type_vector [ada_primitive_type_long_double]
13830 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13831 "long_long_float", gdbarch_long_double_format (gdbarch));
13832 lai->primitive_type_vector [ada_primitive_type_natural]
13833 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13835 lai->primitive_type_vector [ada_primitive_type_positive]
13836 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13838 lai->primitive_type_vector [ada_primitive_type_void]
13839 = builtin->builtin_void;
13841 lai->primitive_type_vector [ada_primitive_type_system_address]
13842 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13844 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13845 = "system__address";
13847 lai->bool_type_symbol = NULL;
13848 lai->bool_type_default = builtin->builtin_bool;
13851 /* Language vector */
13853 /* Not really used, but needed in the ada_language_defn. */
13856 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13858 ada_emit_char (c, type, stream, quoter, 1);
13862 parse (struct parser_state *ps)
13864 warnings_issued = 0;
13865 return ada_parse (ps);
13868 static const struct exp_descriptor ada_exp_descriptor = {
13870 ada_operator_length,
13871 ada_operator_check,
13873 ada_dump_subexp_body,
13874 ada_evaluate_subexp
13877 /* Implement the "la_get_symbol_name_cmp" language_defn method
13880 static symbol_name_cmp_ftype
13881 ada_get_symbol_name_cmp (const char *lookup_name)
13883 if (should_use_wild_match (lookup_name))
13886 return compare_names;
13889 /* Implement the "la_read_var_value" language_defn method for Ada. */
13891 static struct value *
13892 ada_read_var_value (struct symbol *var, const struct block *var_block,
13893 struct frame_info *frame)
13895 const struct block *frame_block = NULL;
13896 struct symbol *renaming_sym = NULL;
13898 /* The only case where default_read_var_value is not sufficient
13899 is when VAR is a renaming... */
13901 frame_block = get_frame_block (frame, NULL);
13903 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13904 if (renaming_sym != NULL)
13905 return ada_read_renaming_var_value (renaming_sym, frame_block);
13907 /* This is a typical case where we expect the default_read_var_value
13908 function to work. */
13909 return default_read_var_value (var, var_block, frame);
13912 static const char *ada_extensions[] =
13914 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13917 extern const struct language_defn ada_language_defn = {
13918 "ada", /* Language name */
13922 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13923 that's not quite what this means. */
13925 macro_expansion_no,
13927 &ada_exp_descriptor,
13931 ada_printchar, /* Print a character constant */
13932 ada_printstr, /* Function to print string constant */
13933 emit_char, /* Function to print single char (not used) */
13934 ada_print_type, /* Print a type using appropriate syntax */
13935 ada_print_typedef, /* Print a typedef using appropriate syntax */
13936 ada_val_print, /* Print a value using appropriate syntax */
13937 ada_value_print, /* Print a top-level value */
13938 ada_read_var_value, /* la_read_var_value */
13939 NULL, /* Language specific skip_trampoline */
13940 NULL, /* name_of_this */
13941 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13942 basic_lookup_transparent_type, /* lookup_transparent_type */
13943 ada_la_decode, /* Language specific symbol demangler */
13944 ada_sniff_from_mangled_name,
13945 NULL, /* Language specific
13946 class_name_from_physname */
13947 ada_op_print_tab, /* expression operators for printing */
13948 0, /* c-style arrays */
13949 1, /* String lower bound */
13950 ada_get_gdb_completer_word_break_characters,
13951 ada_collect_symbol_completion_matches,
13952 ada_language_arch_info,
13953 ada_print_array_index,
13954 default_pass_by_reference,
13956 c_watch_location_expression,
13957 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13958 ada_iterate_over_symbols,
13965 /* Command-list for the "set/show ada" prefix command. */
13966 static struct cmd_list_element *set_ada_list;
13967 static struct cmd_list_element *show_ada_list;
13969 /* Implement the "set ada" prefix command. */
13972 set_ada_command (char *arg, int from_tty)
13974 printf_unfiltered (_(\
13975 "\"set ada\" must be followed by the name of a setting.\n"));
13976 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13979 /* Implement the "show ada" prefix command. */
13982 show_ada_command (char *args, int from_tty)
13984 cmd_show_list (show_ada_list, from_tty, "");
13988 initialize_ada_catchpoint_ops (void)
13990 struct breakpoint_ops *ops;
13992 initialize_breakpoint_ops ();
13994 ops = &catch_exception_breakpoint_ops;
13995 *ops = bkpt_breakpoint_ops;
13996 ops->allocate_location = allocate_location_catch_exception;
13997 ops->re_set = re_set_catch_exception;
13998 ops->check_status = check_status_catch_exception;
13999 ops->print_it = print_it_catch_exception;
14000 ops->print_one = print_one_catch_exception;
14001 ops->print_mention = print_mention_catch_exception;
14002 ops->print_recreate = print_recreate_catch_exception;
14004 ops = &catch_exception_unhandled_breakpoint_ops;
14005 *ops = bkpt_breakpoint_ops;
14006 ops->allocate_location = allocate_location_catch_exception_unhandled;
14007 ops->re_set = re_set_catch_exception_unhandled;
14008 ops->check_status = check_status_catch_exception_unhandled;
14009 ops->print_it = print_it_catch_exception_unhandled;
14010 ops->print_one = print_one_catch_exception_unhandled;
14011 ops->print_mention = print_mention_catch_exception_unhandled;
14012 ops->print_recreate = print_recreate_catch_exception_unhandled;
14014 ops = &catch_assert_breakpoint_ops;
14015 *ops = bkpt_breakpoint_ops;
14016 ops->allocate_location = allocate_location_catch_assert;
14017 ops->re_set = re_set_catch_assert;
14018 ops->check_status = check_status_catch_assert;
14019 ops->print_it = print_it_catch_assert;
14020 ops->print_one = print_one_catch_assert;
14021 ops->print_mention = print_mention_catch_assert;
14022 ops->print_recreate = print_recreate_catch_assert;
14025 /* This module's 'new_objfile' observer. */
14028 ada_new_objfile_observer (struct objfile *objfile)
14030 ada_clear_symbol_cache ();
14033 /* This module's 'free_objfile' observer. */
14036 ada_free_objfile_observer (struct objfile *objfile)
14038 ada_clear_symbol_cache ();
14042 _initialize_ada_language (void)
14044 initialize_ada_catchpoint_ops ();
14046 add_prefix_cmd ("ada", no_class, set_ada_command,
14047 _("Prefix command for changing Ada-specfic settings"),
14048 &set_ada_list, "set ada ", 0, &setlist);
14050 add_prefix_cmd ("ada", no_class, show_ada_command,
14051 _("Generic command for showing Ada-specific settings."),
14052 &show_ada_list, "show ada ", 0, &showlist);
14054 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14055 &trust_pad_over_xvs, _("\
14056 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14057 Show whether an optimization trusting PAD types over XVS types is activated"),
14059 This is related to the encoding used by the GNAT compiler. The debugger\n\
14060 should normally trust the contents of PAD types, but certain older versions\n\
14061 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14062 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14063 work around this bug. It is always safe to turn this option \"off\", but\n\
14064 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14065 this option to \"off\" unless necessary."),
14066 NULL, NULL, &set_ada_list, &show_ada_list);
14068 add_setshow_boolean_cmd ("print-signatures", class_vars,
14069 &print_signatures, _("\
14070 Enable or disable the output of formal and return types for functions in the \
14071 overloads selection menu"), _("\
14072 Show whether the output of formal and return types for functions in the \
14073 overloads selection menu is activated"),
14074 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14076 add_catch_command ("exception", _("\
14077 Catch Ada exceptions, when raised.\n\
14078 With an argument, catch only exceptions with the given name."),
14079 catch_ada_exception_command,
14083 add_catch_command ("assert", _("\
14084 Catch failed Ada assertions, when raised.\n\
14085 With an argument, catch only exceptions with the given name."),
14086 catch_assert_command,
14091 varsize_limit = 65536;
14093 add_info ("exceptions", info_exceptions_command,
14095 List all Ada exception names.\n\
14096 If a regular expression is passed as an argument, only those matching\n\
14097 the regular expression are listed."));
14099 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14100 _("Set Ada maintenance-related variables."),
14101 &maint_set_ada_cmdlist, "maintenance set ada ",
14102 0/*allow-unknown*/, &maintenance_set_cmdlist);
14104 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14105 _("Show Ada maintenance-related variables"),
14106 &maint_show_ada_cmdlist, "maintenance show ada ",
14107 0/*allow-unknown*/, &maintenance_show_cmdlist);
14109 add_setshow_boolean_cmd
14110 ("ignore-descriptive-types", class_maintenance,
14111 &ada_ignore_descriptive_types_p,
14112 _("Set whether descriptive types generated by GNAT should be ignored."),
14113 _("Show whether descriptive types generated by GNAT should be ignored."),
14115 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14116 DWARF attribute."),
14117 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14119 obstack_init (&symbol_list_obstack);
14121 decoded_names_store = htab_create_alloc
14122 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14123 NULL, xcalloc, xfree);
14125 /* The ada-lang observers. */
14126 observer_attach_new_objfile (ada_new_objfile_observer);
14127 observer_attach_free_objfile (ada_free_objfile_observer);
14128 observer_attach_inferior_exit (ada_inferior_exit);
14130 /* Setup various context-specific data. */
14132 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14133 ada_pspace_data_handle
14134 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);