-Wwrite-strings: The Rest
[external/binutils.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3    Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66    differently signed operands (truncation direction is undefined in C).
67    Copied from valarith.c.  */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static int full_match (const char *, const char *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110                                    const struct block *, const char *,
111                                    domain_enum, struct objfile *, int);
112
113 static void ada_add_all_symbols (struct obstack *, const struct block *,
114                                  const char *, domain_enum, int, int *);
115
116 static int is_nonfunction (struct block_symbol *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119                              const struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct block_symbol *defns_collected (struct obstack *, int);
124
125 static struct value *resolve_subexp (struct expression **, int *, int,
126                                      struct type *);
127
128 static void replace_operator_with_call (struct expression **, int, int, int,
129                                         struct symbol *, const struct block *);
130
131 static int possible_user_operator_p (enum exp_opcode, struct value **);
132
133 static const char *ada_op_name (enum exp_opcode);
134
135 static const char *ada_decoded_op_name (enum exp_opcode);
136
137 static int numeric_type_p (struct type *);
138
139 static int integer_type_p (struct type *);
140
141 static int scalar_type_p (struct type *);
142
143 static int discrete_type_p (struct type *);
144
145 static enum ada_renaming_category parse_old_style_renaming (struct type *,
146                                                             const char **,
147                                                             int *,
148                                                             const char **);
149
150 static struct symbol *find_old_style_renaming_symbol (const char *,
151                                                       const struct block *);
152
153 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
154                                                 int, int, int *);
155
156 static struct value *evaluate_subexp_type (struct expression *, int *);
157
158 static struct type *ada_find_parallel_type_with_name (struct type *,
159                                                       const char *);
160
161 static int is_dynamic_field (struct type *, int);
162
163 static struct type *to_fixed_variant_branch_type (struct type *,
164                                                   const gdb_byte *,
165                                                   CORE_ADDR, struct value *);
166
167 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168
169 static struct type *to_fixed_range_type (struct type *, struct value *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type  (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189                                              struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194                                                 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static int wild_match (const char *, const char *);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217                                        domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220                                               struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223                                                 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226                               struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229                                                 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232                                  struct value **, int, const char *,
233                                  struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238                                     struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241                                              struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *, 
244                                        struct expression *,
245                                        int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *, 
248                                            struct expression *,
249                                            int *, LONGEST *, int *,
250                                            int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253                                          struct expression *,
254                                          int *, LONGEST *, int *, int,
255                                          LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259                                      struct expression *,
260                                      int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267                                           int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270                                          int *);
271
272 static struct type *ada_find_any_type (const char *name);
273 \f
274
275 /* The result of a symbol lookup to be stored in our symbol cache.  */
276
277 struct cache_entry
278 {
279   /* The name used to perform the lookup.  */
280   const char *name;
281   /* The namespace used during the lookup.  */
282   domain_enum domain;
283   /* The symbol returned by the lookup, or NULL if no matching symbol
284      was found.  */
285   struct symbol *sym;
286   /* The block where the symbol was found, or NULL if no matching
287      symbol was found.  */
288   const struct block *block;
289   /* A pointer to the next entry with the same hash.  */
290   struct cache_entry *next;
291 };
292
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294    lookups in the course of executing the user's commands.
295
296    The cache is implemented using a simple, fixed-sized hash.
297    The size is fixed on the grounds that there are not likely to be
298    all that many symbols looked up during any given session, regardless
299    of the size of the symbol table.  If we decide to go to a resizable
300    table, let's just use the stuff from libiberty instead.  */
301
302 #define HASH_SIZE 1009
303
304 struct ada_symbol_cache
305 {
306   /* An obstack used to store the entries in our cache.  */
307   struct obstack cache_space;
308
309   /* The root of the hash table used to implement our symbol cache.  */
310   struct cache_entry *root[HASH_SIZE];
311 };
312
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314
315 /* Maximum-sized dynamic type.  */
316 static unsigned int varsize_limit;
317
318 static const char ada_completer_word_break_characters[] =
319 #ifdef VMS
320   " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322   " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram.  */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327   = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation.  */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333    expression evaluation.  */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337   ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341   ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Space for allocating results of ada_lookup_symbol_list.  */
345 static struct obstack symbol_list_obstack;
346
347 /* Maintenance-related settings for this module.  */
348
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
351
352 /* Implement the "maintenance set ada" (prefix) command.  */
353
354 static void
355 maint_set_ada_cmd (char *args, int from_tty)
356 {
357   help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358              gdb_stdout);
359 }
360
361 /* Implement the "maintenance show ada" (prefix) command.  */
362
363 static void
364 maint_show_ada_cmd (char *args, int from_tty)
365 {
366   cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 }
368
369 /* The "maintenance ada set/show ignore-descriptive-type" value.  */
370
371 static int ada_ignore_descriptive_types_p = 0;
372
373                         /* Inferior-specific data.  */
374
375 /* Per-inferior data for this module.  */
376
377 struct ada_inferior_data
378 {
379   /* The ada__tags__type_specific_data type, which is used when decoding
380      tagged types.  With older versions of GNAT, this type was directly
381      accessible through a component ("tsd") in the object tag.  But this
382      is no longer the case, so we cache it for each inferior.  */
383   struct type *tsd_type;
384
385   /* The exception_support_info data.  This data is used to determine
386      how to implement support for Ada exception catchpoints in a given
387      inferior.  */
388   const struct exception_support_info *exception_info;
389 };
390
391 /* Our key to this module's inferior data.  */
392 static const struct inferior_data *ada_inferior_data;
393
394 /* A cleanup routine for our inferior data.  */
395 static void
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397 {
398   struct ada_inferior_data *data;
399
400   data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
401   if (data != NULL)
402     xfree (data);
403 }
404
405 /* Return our inferior data for the given inferior (INF).
406
407    This function always returns a valid pointer to an allocated
408    ada_inferior_data structure.  If INF's inferior data has not
409    been previously set, this functions creates a new one with all
410    fields set to zero, sets INF's inferior to it, and then returns
411    a pointer to that newly allocated ada_inferior_data.  */
412
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
415 {
416   struct ada_inferior_data *data;
417
418   data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
419   if (data == NULL)
420     {
421       data = XCNEW (struct ada_inferior_data);
422       set_inferior_data (inf, ada_inferior_data, data);
423     }
424
425   return data;
426 }
427
428 /* Perform all necessary cleanups regarding our module's inferior data
429    that is required after the inferior INF just exited.  */
430
431 static void
432 ada_inferior_exit (struct inferior *inf)
433 {
434   ada_inferior_data_cleanup (inf, NULL);
435   set_inferior_data (inf, ada_inferior_data, NULL);
436 }
437
438
439                         /* program-space-specific data.  */
440
441 /* This module's per-program-space data.  */
442 struct ada_pspace_data
443 {
444   /* The Ada symbol cache.  */
445   struct ada_symbol_cache *sym_cache;
446 };
447
448 /* Key to our per-program-space data.  */
449 static const struct program_space_data *ada_pspace_data_handle;
450
451 /* Return this module's data for the given program space (PSPACE).
452    If not is found, add a zero'ed one now.
453
454    This function always returns a valid object.  */
455
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
458 {
459   struct ada_pspace_data *data;
460
461   data = ((struct ada_pspace_data *)
462           program_space_data (pspace, ada_pspace_data_handle));
463   if (data == NULL)
464     {
465       data = XCNEW (struct ada_pspace_data);
466       set_program_space_data (pspace, ada_pspace_data_handle, data);
467     }
468
469   return data;
470 }
471
472 /* The cleanup callback for this module's per-program-space data.  */
473
474 static void
475 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 {
477   struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
478
479   if (pspace_data->sym_cache != NULL)
480     ada_free_symbol_cache (pspace_data->sym_cache);
481   xfree (pspace_data);
482 }
483
484                         /* Utilities */
485
486 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
487    all typedef layers have been peeled.  Otherwise, return TYPE.
488
489    Normally, we really expect a typedef type to only have 1 typedef layer.
490    In other words, we really expect the target type of a typedef type to be
491    a non-typedef type.  This is particularly true for Ada units, because
492    the language does not have a typedef vs not-typedef distinction.
493    In that respect, the Ada compiler has been trying to eliminate as many
494    typedef definitions in the debugging information, since they generally
495    do not bring any extra information (we still use typedef under certain
496    circumstances related mostly to the GNAT encoding).
497
498    Unfortunately, we have seen situations where the debugging information
499    generated by the compiler leads to such multiple typedef layers.  For
500    instance, consider the following example with stabs:
501
502      .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503      .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505    This is an error in the debugging information which causes type
506    pck__float_array___XUP to be defined twice, and the second time,
507    it is defined as a typedef of a typedef.
508
509    This is on the fringe of legality as far as debugging information is
510    concerned, and certainly unexpected.  But it is easy to handle these
511    situations correctly, so we can afford to be lenient in this case.  */
512
513 static struct type *
514 ada_typedef_target_type (struct type *type)
515 {
516   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517     type = TYPE_TARGET_TYPE (type);
518   return type;
519 }
520
521 /* Given DECODED_NAME a string holding a symbol name in its
522    decoded form (ie using the Ada dotted notation), returns
523    its unqualified name.  */
524
525 static const char *
526 ada_unqualified_name (const char *decoded_name)
527 {
528   const char *result;
529   
530   /* If the decoded name starts with '<', it means that the encoded
531      name does not follow standard naming conventions, and thus that
532      it is not your typical Ada symbol name.  Trying to unqualify it
533      is therefore pointless and possibly erroneous.  */
534   if (decoded_name[0] == '<')
535     return decoded_name;
536
537   result = strrchr (decoded_name, '.');
538   if (result != NULL)
539     result++;                   /* Skip the dot...  */
540   else
541     result = decoded_name;
542
543   return result;
544 }
545
546 /* Return a string starting with '<', followed by STR, and '>'.
547    The result is good until the next call.  */
548
549 static char *
550 add_angle_brackets (const char *str)
551 {
552   static char *result = NULL;
553
554   xfree (result);
555   result = xstrprintf ("<%s>", str);
556   return result;
557 }
558
559 static const char *
560 ada_get_gdb_completer_word_break_characters (void)
561 {
562   return ada_completer_word_break_characters;
563 }
564
565 /* Print an array element index using the Ada syntax.  */
566
567 static void
568 ada_print_array_index (struct value *index_value, struct ui_file *stream,
569                        const struct value_print_options *options)
570 {
571   LA_VALUE_PRINT (index_value, stream, options);
572   fprintf_filtered (stream, " => ");
573 }
574
575 /* Assuming VECT points to an array of *SIZE objects of size
576    ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
577    updating *SIZE as necessary and returning the (new) array.  */
578
579 void *
580 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
581 {
582   if (*size < min_size)
583     {
584       *size *= 2;
585       if (*size < min_size)
586         *size = min_size;
587       vect = xrealloc (vect, *size * element_size);
588     }
589   return vect;
590 }
591
592 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
593    suffix of FIELD_NAME beginning "___".  */
594
595 static int
596 field_name_match (const char *field_name, const char *target)
597 {
598   int len = strlen (target);
599
600   return
601     (strncmp (field_name, target, len) == 0
602      && (field_name[len] == '\0'
603          || (startswith (field_name + len, "___")
604              && strcmp (field_name + strlen (field_name) - 6,
605                         "___XVN") != 0)));
606 }
607
608
609 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610    a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611    and return its index.  This function also handles fields whose name
612    have ___ suffixes because the compiler sometimes alters their name
613    by adding such a suffix to represent fields with certain constraints.
614    If the field could not be found, return a negative number if
615    MAYBE_MISSING is set.  Otherwise raise an error.  */
616
617 int
618 ada_get_field_index (const struct type *type, const char *field_name,
619                      int maybe_missing)
620 {
621   int fieldno;
622   struct type *struct_type = check_typedef ((struct type *) type);
623
624   for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625     if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
626       return fieldno;
627
628   if (!maybe_missing)
629     error (_("Unable to find field %s in struct %s.  Aborting"),
630            field_name, TYPE_NAME (struct_type));
631
632   return -1;
633 }
634
635 /* The length of the prefix of NAME prior to any "___" suffix.  */
636
637 int
638 ada_name_prefix_len (const char *name)
639 {
640   if (name == NULL)
641     return 0;
642   else
643     {
644       const char *p = strstr (name, "___");
645
646       if (p == NULL)
647         return strlen (name);
648       else
649         return p - name;
650     }
651 }
652
653 /* Return non-zero if SUFFIX is a suffix of STR.
654    Return zero if STR is null.  */
655
656 static int
657 is_suffix (const char *str, const char *suffix)
658 {
659   int len1, len2;
660
661   if (str == NULL)
662     return 0;
663   len1 = strlen (str);
664   len2 = strlen (suffix);
665   return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
666 }
667
668 /* The contents of value VAL, treated as a value of type TYPE.  The
669    result is an lval in memory if VAL is.  */
670
671 static struct value *
672 coerce_unspec_val_to_type (struct value *val, struct type *type)
673 {
674   type = ada_check_typedef (type);
675   if (value_type (val) == type)
676     return val;
677   else
678     {
679       struct value *result;
680
681       /* Make sure that the object size is not unreasonable before
682          trying to allocate some memory for it.  */
683       ada_ensure_varsize_limit (type);
684
685       if (value_lazy (val)
686           || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687         result = allocate_value_lazy (type);
688       else
689         {
690           result = allocate_value (type);
691           value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
692         }
693       set_value_component_location (result, val);
694       set_value_bitsize (result, value_bitsize (val));
695       set_value_bitpos (result, value_bitpos (val));
696       set_value_address (result, value_address (val));
697       return result;
698     }
699 }
700
701 static const gdb_byte *
702 cond_offset_host (const gdb_byte *valaddr, long offset)
703 {
704   if (valaddr == NULL)
705     return NULL;
706   else
707     return valaddr + offset;
708 }
709
710 static CORE_ADDR
711 cond_offset_target (CORE_ADDR address, long offset)
712 {
713   if (address == 0)
714     return 0;
715   else
716     return address + offset;
717 }
718
719 /* Issue a warning (as for the definition of warning in utils.c, but
720    with exactly one argument rather than ...), unless the limit on the
721    number of warnings has passed during the evaluation of the current
722    expression.  */
723
724 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725    provided by "complaint".  */
726 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
727
728 static void
729 lim_warning (const char *format, ...)
730 {
731   va_list args;
732
733   va_start (args, format);
734   warnings_issued += 1;
735   if (warnings_issued <= warning_limit)
736     vwarning (format, args);
737
738   va_end (args);
739 }
740
741 /* Issue an error if the size of an object of type T is unreasonable,
742    i.e. if it would be a bad idea to allocate a value of this type in
743    GDB.  */
744
745 void
746 ada_ensure_varsize_limit (const struct type *type)
747 {
748   if (TYPE_LENGTH (type) > varsize_limit)
749     error (_("object size is larger than varsize-limit"));
750 }
751
752 /* Maximum value of a SIZE-byte signed integer type.  */
753 static LONGEST
754 max_of_size (int size)
755 {
756   LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
757
758   return top_bit | (top_bit - 1);
759 }
760
761 /* Minimum value of a SIZE-byte signed integer type.  */
762 static LONGEST
763 min_of_size (int size)
764 {
765   return -max_of_size (size) - 1;
766 }
767
768 /* Maximum value of a SIZE-byte unsigned integer type.  */
769 static ULONGEST
770 umax_of_size (int size)
771 {
772   ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
773
774   return top_bit | (top_bit - 1);
775 }
776
777 /* Maximum value of integral type T, as a signed quantity.  */
778 static LONGEST
779 max_of_type (struct type *t)
780 {
781   if (TYPE_UNSIGNED (t))
782     return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783   else
784     return max_of_size (TYPE_LENGTH (t));
785 }
786
787 /* Minimum value of integral type T, as a signed quantity.  */
788 static LONGEST
789 min_of_type (struct type *t)
790 {
791   if (TYPE_UNSIGNED (t)) 
792     return 0;
793   else
794     return min_of_size (TYPE_LENGTH (t));
795 }
796
797 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
798 LONGEST
799 ada_discrete_type_high_bound (struct type *type)
800 {
801   type = resolve_dynamic_type (type, NULL, 0);
802   switch (TYPE_CODE (type))
803     {
804     case TYPE_CODE_RANGE:
805       return TYPE_HIGH_BOUND (type);
806     case TYPE_CODE_ENUM:
807       return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
808     case TYPE_CODE_BOOL:
809       return 1;
810     case TYPE_CODE_CHAR:
811     case TYPE_CODE_INT:
812       return max_of_type (type);
813     default:
814       error (_("Unexpected type in ada_discrete_type_high_bound."));
815     }
816 }
817
818 /* The smallest value in the domain of TYPE, a discrete type, as an integer.  */
819 LONGEST
820 ada_discrete_type_low_bound (struct type *type)
821 {
822   type = resolve_dynamic_type (type, NULL, 0);
823   switch (TYPE_CODE (type))
824     {
825     case TYPE_CODE_RANGE:
826       return TYPE_LOW_BOUND (type);
827     case TYPE_CODE_ENUM:
828       return TYPE_FIELD_ENUMVAL (type, 0);
829     case TYPE_CODE_BOOL:
830       return 0;
831     case TYPE_CODE_CHAR:
832     case TYPE_CODE_INT:
833       return min_of_type (type);
834     default:
835       error (_("Unexpected type in ada_discrete_type_low_bound."));
836     }
837 }
838
839 /* The identity on non-range types.  For range types, the underlying
840    non-range scalar type.  */
841
842 static struct type *
843 get_base_type (struct type *type)
844 {
845   while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846     {
847       if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848         return type;
849       type = TYPE_TARGET_TYPE (type);
850     }
851   return type;
852 }
853
854 /* Return a decoded version of the given VALUE.  This means returning
855    a value whose type is obtained by applying all the GNAT-specific
856    encondings, making the resulting type a static but standard description
857    of the initial type.  */
858
859 struct value *
860 ada_get_decoded_value (struct value *value)
861 {
862   struct type *type = ada_check_typedef (value_type (value));
863
864   if (ada_is_array_descriptor_type (type)
865       || (ada_is_constrained_packed_array_type (type)
866           && TYPE_CODE (type) != TYPE_CODE_PTR))
867     {
868       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)  /* array access type.  */
869         value = ada_coerce_to_simple_array_ptr (value);
870       else
871         value = ada_coerce_to_simple_array (value);
872     }
873   else
874     value = ada_to_fixed_value (value);
875
876   return value;
877 }
878
879 /* Same as ada_get_decoded_value, but with the given TYPE.
880    Because there is no associated actual value for this type,
881    the resulting type might be a best-effort approximation in
882    the case of dynamic types.  */
883
884 struct type *
885 ada_get_decoded_type (struct type *type)
886 {
887   type = to_static_fixed_type (type);
888   if (ada_is_constrained_packed_array_type (type))
889     type = ada_coerce_to_simple_array_type (type);
890   return type;
891 }
892
893 \f
894
895                                 /* Language Selection */
896
897 /* If the main program is in Ada, return language_ada, otherwise return LANG
898    (the main program is in Ada iif the adainit symbol is found).  */
899
900 enum language
901 ada_update_initial_language (enum language lang)
902 {
903   if (lookup_minimal_symbol ("adainit", (const char *) NULL,
904                              (struct objfile *) NULL).minsym != NULL)
905     return language_ada;
906
907   return lang;
908 }
909
910 /* If the main procedure is written in Ada, then return its name.
911    The result is good until the next call.  Return NULL if the main
912    procedure doesn't appear to be in Ada.  */
913
914 char *
915 ada_main_name (void)
916 {
917   struct bound_minimal_symbol msym;
918   static char *main_program_name = NULL;
919
920   /* For Ada, the name of the main procedure is stored in a specific
921      string constant, generated by the binder.  Look for that symbol,
922      extract its address, and then read that string.  If we didn't find
923      that string, then most probably the main procedure is not written
924      in Ada.  */
925   msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
927   if (msym.minsym != NULL)
928     {
929       CORE_ADDR main_program_name_addr;
930       int err_code;
931
932       main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
933       if (main_program_name_addr == 0)
934         error (_("Invalid address for Ada main program name."));
935
936       xfree (main_program_name);
937       target_read_string (main_program_name_addr, &main_program_name,
938                           1024, &err_code);
939
940       if (err_code != 0)
941         return NULL;
942       return main_program_name;
943     }
944
945   /* The main procedure doesn't seem to be in Ada.  */
946   return NULL;
947 }
948 \f
949                                 /* Symbols */
950
951 /* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
952    of NULLs.  */
953
954 const struct ada_opname_map ada_opname_table[] = {
955   {"Oadd", "\"+\"", BINOP_ADD},
956   {"Osubtract", "\"-\"", BINOP_SUB},
957   {"Omultiply", "\"*\"", BINOP_MUL},
958   {"Odivide", "\"/\"", BINOP_DIV},
959   {"Omod", "\"mod\"", BINOP_MOD},
960   {"Orem", "\"rem\"", BINOP_REM},
961   {"Oexpon", "\"**\"", BINOP_EXP},
962   {"Olt", "\"<\"", BINOP_LESS},
963   {"Ole", "\"<=\"", BINOP_LEQ},
964   {"Ogt", "\">\"", BINOP_GTR},
965   {"Oge", "\">=\"", BINOP_GEQ},
966   {"Oeq", "\"=\"", BINOP_EQUAL},
967   {"One", "\"/=\"", BINOP_NOTEQUAL},
968   {"Oand", "\"and\"", BINOP_BITWISE_AND},
969   {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970   {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971   {"Oconcat", "\"&\"", BINOP_CONCAT},
972   {"Oabs", "\"abs\"", UNOP_ABS},
973   {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974   {"Oadd", "\"+\"", UNOP_PLUS},
975   {"Osubtract", "\"-\"", UNOP_NEG},
976   {NULL, NULL}
977 };
978
979 /* The "encoded" form of DECODED, according to GNAT conventions.
980    The result is valid until the next call to ada_encode.  */
981
982 char *
983 ada_encode (const char *decoded)
984 {
985   static char *encoding_buffer = NULL;
986   static size_t encoding_buffer_size = 0;
987   const char *p;
988   int k;
989
990   if (decoded == NULL)
991     return NULL;
992
993   GROW_VECT (encoding_buffer, encoding_buffer_size,
994              2 * strlen (decoded) + 10);
995
996   k = 0;
997   for (p = decoded; *p != '\0'; p += 1)
998     {
999       if (*p == '.')
1000         {
1001           encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002           k += 2;
1003         }
1004       else if (*p == '"')
1005         {
1006           const struct ada_opname_map *mapping;
1007
1008           for (mapping = ada_opname_table;
1009                mapping->encoded != NULL
1010                && !startswith (p, mapping->decoded); mapping += 1)
1011             ;
1012           if (mapping->encoded == NULL)
1013             error (_("invalid Ada operator name: %s"), p);
1014           strcpy (encoding_buffer + k, mapping->encoded);
1015           k += strlen (mapping->encoded);
1016           break;
1017         }
1018       else
1019         {
1020           encoding_buffer[k] = *p;
1021           k += 1;
1022         }
1023     }
1024
1025   encoding_buffer[k] = '\0';
1026   return encoding_buffer;
1027 }
1028
1029 /* Return NAME folded to lower case, or, if surrounded by single
1030    quotes, unfolded, but with the quotes stripped away.  Result good
1031    to next call.  */
1032
1033 char *
1034 ada_fold_name (const char *name)
1035 {
1036   static char *fold_buffer = NULL;
1037   static size_t fold_buffer_size = 0;
1038
1039   int len = strlen (name);
1040   GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1041
1042   if (name[0] == '\'')
1043     {
1044       strncpy (fold_buffer, name + 1, len - 2);
1045       fold_buffer[len - 2] = '\000';
1046     }
1047   else
1048     {
1049       int i;
1050
1051       for (i = 0; i <= len; i += 1)
1052         fold_buffer[i] = tolower (name[i]);
1053     }
1054
1055   return fold_buffer;
1056 }
1057
1058 /* Return nonzero if C is either a digit or a lowercase alphabet character.  */
1059
1060 static int
1061 is_lower_alphanum (const char c)
1062 {
1063   return (isdigit (c) || (isalpha (c) && islower (c)));
1064 }
1065
1066 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1067    This function saves in LEN the length of that same symbol name but
1068    without either of these suffixes:
1069      . .{DIGIT}+
1070      . ${DIGIT}+
1071      . ___{DIGIT}+
1072      . __{DIGIT}+.
1073
1074    These are suffixes introduced by the compiler for entities such as
1075    nested subprogram for instance, in order to avoid name clashes.
1076    They do not serve any purpose for the debugger.  */
1077
1078 static void
1079 ada_remove_trailing_digits (const char *encoded, int *len)
1080 {
1081   if (*len > 1 && isdigit (encoded[*len - 1]))
1082     {
1083       int i = *len - 2;
1084
1085       while (i > 0 && isdigit (encoded[i]))
1086         i--;
1087       if (i >= 0 && encoded[i] == '.')
1088         *len = i;
1089       else if (i >= 0 && encoded[i] == '$')
1090         *len = i;
1091       else if (i >= 2 && startswith (encoded + i - 2, "___"))
1092         *len = i - 2;
1093       else if (i >= 1 && startswith (encoded + i - 1, "__"))
1094         *len = i - 1;
1095     }
1096 }
1097
1098 /* Remove the suffix introduced by the compiler for protected object
1099    subprograms.  */
1100
1101 static void
1102 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103 {
1104   /* Remove trailing N.  */
1105
1106   /* Protected entry subprograms are broken into two
1107      separate subprograms: The first one is unprotected, and has
1108      a 'N' suffix; the second is the protected version, and has
1109      the 'P' suffix.  The second calls the first one after handling
1110      the protection.  Since the P subprograms are internally generated,
1111      we leave these names undecoded, giving the user a clue that this
1112      entity is internal.  */
1113
1114   if (*len > 1
1115       && encoded[*len - 1] == 'N'
1116       && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117     *len = *len - 1;
1118 }
1119
1120 /* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
1121
1122 static void
1123 ada_remove_Xbn_suffix (const char *encoded, int *len)
1124 {
1125   int i = *len - 1;
1126
1127   while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128     i--;
1129
1130   if (encoded[i] != 'X')
1131     return;
1132
1133   if (i == 0)
1134     return;
1135
1136   if (isalnum (encoded[i-1]))
1137     *len = i;
1138 }
1139
1140 /* If ENCODED follows the GNAT entity encoding conventions, then return
1141    the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
1142    replaced by ENCODED.
1143
1144    The resulting string is valid until the next call of ada_decode.
1145    If the string is unchanged by decoding, the original string pointer
1146    is returned.  */
1147
1148 const char *
1149 ada_decode (const char *encoded)
1150 {
1151   int i, j;
1152   int len0;
1153   const char *p;
1154   char *decoded;
1155   int at_start_name;
1156   static char *decoding_buffer = NULL;
1157   static size_t decoding_buffer_size = 0;
1158
1159   /* The name of the Ada main procedure starts with "_ada_".
1160      This prefix is not part of the decoded name, so skip this part
1161      if we see this prefix.  */
1162   if (startswith (encoded, "_ada_"))
1163     encoded += 5;
1164
1165   /* If the name starts with '_', then it is not a properly encoded
1166      name, so do not attempt to decode it.  Similarly, if the name
1167      starts with '<', the name should not be decoded.  */
1168   if (encoded[0] == '_' || encoded[0] == '<')
1169     goto Suppress;
1170
1171   len0 = strlen (encoded);
1172
1173   ada_remove_trailing_digits (encoded, &len0);
1174   ada_remove_po_subprogram_suffix (encoded, &len0);
1175
1176   /* Remove the ___X.* suffix if present.  Do not forget to verify that
1177      the suffix is located before the current "end" of ENCODED.  We want
1178      to avoid re-matching parts of ENCODED that have previously been
1179      marked as discarded (by decrementing LEN0).  */
1180   p = strstr (encoded, "___");
1181   if (p != NULL && p - encoded < len0 - 3)
1182     {
1183       if (p[3] == 'X')
1184         len0 = p - encoded;
1185       else
1186         goto Suppress;
1187     }
1188
1189   /* Remove any trailing TKB suffix.  It tells us that this symbol
1190      is for the body of a task, but that information does not actually
1191      appear in the decoded name.  */
1192
1193   if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1194     len0 -= 3;
1195
1196   /* Remove any trailing TB suffix.  The TB suffix is slightly different
1197      from the TKB suffix because it is used for non-anonymous task
1198      bodies.  */
1199
1200   if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1201     len0 -= 2;
1202
1203   /* Remove trailing "B" suffixes.  */
1204   /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1205
1206   if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1207     len0 -= 1;
1208
1209   /* Make decoded big enough for possible expansion by operator name.  */
1210
1211   GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212   decoded = decoding_buffer;
1213
1214   /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1215
1216   if (len0 > 1 && isdigit (encoded[len0 - 1]))
1217     {
1218       i = len0 - 2;
1219       while ((i >= 0 && isdigit (encoded[i]))
1220              || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221         i -= 1;
1222       if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223         len0 = i - 1;
1224       else if (encoded[i] == '$')
1225         len0 = i;
1226     }
1227
1228   /* The first few characters that are not alphabetic are not part
1229      of any encoding we use, so we can copy them over verbatim.  */
1230
1231   for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232     decoded[j] = encoded[i];
1233
1234   at_start_name = 1;
1235   while (i < len0)
1236     {
1237       /* Is this a symbol function?  */
1238       if (at_start_name && encoded[i] == 'O')
1239         {
1240           int k;
1241
1242           for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243             {
1244               int op_len = strlen (ada_opname_table[k].encoded);
1245               if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246                             op_len - 1) == 0)
1247                   && !isalnum (encoded[i + op_len]))
1248                 {
1249                   strcpy (decoded + j, ada_opname_table[k].decoded);
1250                   at_start_name = 0;
1251                   i += op_len;
1252                   j += strlen (ada_opname_table[k].decoded);
1253                   break;
1254                 }
1255             }
1256           if (ada_opname_table[k].encoded != NULL)
1257             continue;
1258         }
1259       at_start_name = 0;
1260
1261       /* Replace "TK__" with "__", which will eventually be translated
1262          into "." (just below).  */
1263
1264       if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1265         i += 2;
1266
1267       /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268          be translated into "." (just below).  These are internal names
1269          generated for anonymous blocks inside which our symbol is nested.  */
1270
1271       if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272           && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273           && isdigit (encoded [i+4]))
1274         {
1275           int k = i + 5;
1276           
1277           while (k < len0 && isdigit (encoded[k]))
1278             k++;  /* Skip any extra digit.  */
1279
1280           /* Double-check that the "__B_{DIGITS}+" sequence we found
1281              is indeed followed by "__".  */
1282           if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283             i = k;
1284         }
1285
1286       /* Remove _E{DIGITS}+[sb] */
1287
1288       /* Just as for protected object subprograms, there are 2 categories
1289          of subprograms created by the compiler for each entry.  The first
1290          one implements the actual entry code, and has a suffix following
1291          the convention above; the second one implements the barrier and
1292          uses the same convention as above, except that the 'E' is replaced
1293          by a 'B'.
1294
1295          Just as above, we do not decode the name of barrier functions
1296          to give the user a clue that the code he is debugging has been
1297          internally generated.  */
1298
1299       if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300           && isdigit (encoded[i+2]))
1301         {
1302           int k = i + 3;
1303
1304           while (k < len0 && isdigit (encoded[k]))
1305             k++;
1306
1307           if (k < len0
1308               && (encoded[k] == 'b' || encoded[k] == 's'))
1309             {
1310               k++;
1311               /* Just as an extra precaution, make sure that if this
1312                  suffix is followed by anything else, it is a '_'.
1313                  Otherwise, we matched this sequence by accident.  */
1314               if (k == len0
1315                   || (k < len0 && encoded[k] == '_'))
1316                 i = k;
1317             }
1318         }
1319
1320       /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1321          the GNAT front-end in protected object subprograms.  */
1322
1323       if (i < len0 + 3
1324           && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325         {
1326           /* Backtrack a bit up until we reach either the begining of
1327              the encoded name, or "__".  Make sure that we only find
1328              digits or lowercase characters.  */
1329           const char *ptr = encoded + i - 1;
1330
1331           while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332             ptr--;
1333           if (ptr < encoded
1334               || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335             i++;
1336         }
1337
1338       if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339         {
1340           /* This is a X[bn]* sequence not separated from the previous
1341              part of the name with a non-alpha-numeric character (in other
1342              words, immediately following an alpha-numeric character), then
1343              verify that it is placed at the end of the encoded name.  If
1344              not, then the encoding is not valid and we should abort the
1345              decoding.  Otherwise, just skip it, it is used in body-nested
1346              package names.  */
1347           do
1348             i += 1;
1349           while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350           if (i < len0)
1351             goto Suppress;
1352         }
1353       else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1354         {
1355          /* Replace '__' by '.'.  */
1356           decoded[j] = '.';
1357           at_start_name = 1;
1358           i += 2;
1359           j += 1;
1360         }
1361       else
1362         {
1363           /* It's a character part of the decoded name, so just copy it
1364              over.  */
1365           decoded[j] = encoded[i];
1366           i += 1;
1367           j += 1;
1368         }
1369     }
1370   decoded[j] = '\000';
1371
1372   /* Decoded names should never contain any uppercase character.
1373      Double-check this, and abort the decoding if we find one.  */
1374
1375   for (i = 0; decoded[i] != '\0'; i += 1)
1376     if (isupper (decoded[i]) || decoded[i] == ' ')
1377       goto Suppress;
1378
1379   if (strcmp (decoded, encoded) == 0)
1380     return encoded;
1381   else
1382     return decoded;
1383
1384 Suppress:
1385   GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386   decoded = decoding_buffer;
1387   if (encoded[0] == '<')
1388     strcpy (decoded, encoded);
1389   else
1390     xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1391   return decoded;
1392
1393 }
1394
1395 /* Table for keeping permanent unique copies of decoded names.  Once
1396    allocated, names in this table are never released.  While this is a
1397    storage leak, it should not be significant unless there are massive
1398    changes in the set of decoded names in successive versions of a 
1399    symbol table loaded during a single session.  */
1400 static struct htab *decoded_names_store;
1401
1402 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403    in the language-specific part of GSYMBOL, if it has not been
1404    previously computed.  Tries to save the decoded name in the same
1405    obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406    in any case, the decoded symbol has a lifetime at least that of
1407    GSYMBOL).
1408    The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409    const, but nevertheless modified to a semantically equivalent form
1410    when a decoded name is cached in it.  */
1411
1412 const char *
1413 ada_decode_symbol (const struct general_symbol_info *arg)
1414 {
1415   struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416   const char **resultp =
1417     &gsymbol->language_specific.demangled_name;
1418
1419   if (!gsymbol->ada_mangled)
1420     {
1421       const char *decoded = ada_decode (gsymbol->name);
1422       struct obstack *obstack = gsymbol->language_specific.obstack;
1423
1424       gsymbol->ada_mangled = 1;
1425
1426       if (obstack != NULL)
1427         *resultp
1428           = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1429       else
1430         {
1431           /* Sometimes, we can't find a corresponding objfile, in
1432              which case, we put the result on the heap.  Since we only
1433              decode when needed, we hope this usually does not cause a
1434              significant memory leak (FIXME).  */
1435
1436           char **slot = (char **) htab_find_slot (decoded_names_store,
1437                                                   decoded, INSERT);
1438
1439           if (*slot == NULL)
1440             *slot = xstrdup (decoded);
1441           *resultp = *slot;
1442         }
1443     }
1444
1445   return *resultp;
1446 }
1447
1448 static char *
1449 ada_la_decode (const char *encoded, int options)
1450 {
1451   return xstrdup (ada_decode (encoded));
1452 }
1453
1454 /* Implement la_sniff_from_mangled_name for Ada.  */
1455
1456 static int
1457 ada_sniff_from_mangled_name (const char *mangled, char **out)
1458 {
1459   const char *demangled = ada_decode (mangled);
1460
1461   *out = NULL;
1462
1463   if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1464     {
1465       /* Set the gsymbol language to Ada, but still return 0.
1466          Two reasons for that:
1467
1468          1. For Ada, we prefer computing the symbol's decoded name
1469          on the fly rather than pre-compute it, in order to save
1470          memory (Ada projects are typically very large).
1471
1472          2. There are some areas in the definition of the GNAT
1473          encoding where, with a bit of bad luck, we might be able
1474          to decode a non-Ada symbol, generating an incorrect
1475          demangled name (Eg: names ending with "TB" for instance
1476          are identified as task bodies and so stripped from
1477          the decoded name returned).
1478
1479          Returning 1, here, but not setting *DEMANGLED, helps us get a
1480          little bit of the best of both worlds.  Because we're last,
1481          we should not affect any of the other languages that were
1482          able to demangle the symbol before us; we get to correctly
1483          tag Ada symbols as such; and even if we incorrectly tagged a
1484          non-Ada symbol, which should be rare, any routing through the
1485          Ada language should be transparent (Ada tries to behave much
1486          like C/C++ with non-Ada symbols).  */
1487       return 1;
1488     }
1489
1490   return 0;
1491 }
1492
1493 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1494    suffixes that encode debugging information or leading _ada_ on
1495    SYM_NAME (see is_name_suffix commentary for the debugging
1496    information that is ignored).  If WILD, then NAME need only match a
1497    suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1498    either argument is NULL.  */
1499
1500 static int
1501 match_name (const char *sym_name, const char *name, int wild)
1502 {
1503   if (sym_name == NULL || name == NULL)
1504     return 0;
1505   else if (wild)
1506     return wild_match (sym_name, name) == 0;
1507   else
1508     {
1509       int len_name = strlen (name);
1510
1511       return (strncmp (sym_name, name, len_name) == 0
1512               && is_name_suffix (sym_name + len_name))
1513         || (startswith (sym_name, "_ada_")
1514             && strncmp (sym_name + 5, name, len_name) == 0
1515             && is_name_suffix (sym_name + len_name + 5));
1516     }
1517 }
1518 \f
1519
1520                                 /* Arrays */
1521
1522 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1523    generated by the GNAT compiler to describe the index type used
1524    for each dimension of an array, check whether it follows the latest
1525    known encoding.  If not, fix it up to conform to the latest encoding.
1526    Otherwise, do nothing.  This function also does nothing if
1527    INDEX_DESC_TYPE is NULL.
1528
1529    The GNAT encoding used to describle the array index type evolved a bit.
1530    Initially, the information would be provided through the name of each
1531    field of the structure type only, while the type of these fields was
1532    described as unspecified and irrelevant.  The debugger was then expected
1533    to perform a global type lookup using the name of that field in order
1534    to get access to the full index type description.  Because these global
1535    lookups can be very expensive, the encoding was later enhanced to make
1536    the global lookup unnecessary by defining the field type as being
1537    the full index type description.
1538
1539    The purpose of this routine is to allow us to support older versions
1540    of the compiler by detecting the use of the older encoding, and by
1541    fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1542    we essentially replace each field's meaningless type by the associated
1543    index subtype).  */
1544
1545 void
1546 ada_fixup_array_indexes_type (struct type *index_desc_type)
1547 {
1548   int i;
1549
1550   if (index_desc_type == NULL)
1551     return;
1552   gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1553
1554   /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1555      to check one field only, no need to check them all).  If not, return
1556      now.
1557
1558      If our INDEX_DESC_TYPE was generated using the older encoding,
1559      the field type should be a meaningless integer type whose name
1560      is not equal to the field name.  */
1561   if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1562       && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1563                  TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1564     return;
1565
1566   /* Fixup each field of INDEX_DESC_TYPE.  */
1567   for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1568    {
1569      const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1570      struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1571
1572      if (raw_type)
1573        TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1574    }
1575 }
1576
1577 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1578
1579 static const char *bound_name[] = {
1580   "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1581   "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1582 };
1583
1584 /* Maximum number of array dimensions we are prepared to handle.  */
1585
1586 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1587
1588
1589 /* The desc_* routines return primitive portions of array descriptors
1590    (fat pointers).  */
1591
1592 /* The descriptor or array type, if any, indicated by TYPE; removes
1593    level of indirection, if needed.  */
1594
1595 static struct type *
1596 desc_base_type (struct type *type)
1597 {
1598   if (type == NULL)
1599     return NULL;
1600   type = ada_check_typedef (type);
1601   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1602     type = ada_typedef_target_type (type);
1603
1604   if (type != NULL
1605       && (TYPE_CODE (type) == TYPE_CODE_PTR
1606           || TYPE_CODE (type) == TYPE_CODE_REF))
1607     return ada_check_typedef (TYPE_TARGET_TYPE (type));
1608   else
1609     return type;
1610 }
1611
1612 /* True iff TYPE indicates a "thin" array pointer type.  */
1613
1614 static int
1615 is_thin_pntr (struct type *type)
1616 {
1617   return
1618     is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1619     || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1620 }
1621
1622 /* The descriptor type for thin pointer type TYPE.  */
1623
1624 static struct type *
1625 thin_descriptor_type (struct type *type)
1626 {
1627   struct type *base_type = desc_base_type (type);
1628
1629   if (base_type == NULL)
1630     return NULL;
1631   if (is_suffix (ada_type_name (base_type), "___XVE"))
1632     return base_type;
1633   else
1634     {
1635       struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1636
1637       if (alt_type == NULL)
1638         return base_type;
1639       else
1640         return alt_type;
1641     }
1642 }
1643
1644 /* A pointer to the array data for thin-pointer value VAL.  */
1645
1646 static struct value *
1647 thin_data_pntr (struct value *val)
1648 {
1649   struct type *type = ada_check_typedef (value_type (val));
1650   struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1651
1652   data_type = lookup_pointer_type (data_type);
1653
1654   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655     return value_cast (data_type, value_copy (val));
1656   else
1657     return value_from_longest (data_type, value_address (val));
1658 }
1659
1660 /* True iff TYPE indicates a "thick" array pointer type.  */
1661
1662 static int
1663 is_thick_pntr (struct type *type)
1664 {
1665   type = desc_base_type (type);
1666   return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1667           && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1668 }
1669
1670 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1671    pointer to one, the type of its bounds data; otherwise, NULL.  */
1672
1673 static struct type *
1674 desc_bounds_type (struct type *type)
1675 {
1676   struct type *r;
1677
1678   type = desc_base_type (type);
1679
1680   if (type == NULL)
1681     return NULL;
1682   else if (is_thin_pntr (type))
1683     {
1684       type = thin_descriptor_type (type);
1685       if (type == NULL)
1686         return NULL;
1687       r = lookup_struct_elt_type (type, "BOUNDS", 1);
1688       if (r != NULL)
1689         return ada_check_typedef (r);
1690     }
1691   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1692     {
1693       r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1694       if (r != NULL)
1695         return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1696     }
1697   return NULL;
1698 }
1699
1700 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1701    one, a pointer to its bounds data.   Otherwise NULL.  */
1702
1703 static struct value *
1704 desc_bounds (struct value *arr)
1705 {
1706   struct type *type = ada_check_typedef (value_type (arr));
1707
1708   if (is_thin_pntr (type))
1709     {
1710       struct type *bounds_type =
1711         desc_bounds_type (thin_descriptor_type (type));
1712       LONGEST addr;
1713
1714       if (bounds_type == NULL)
1715         error (_("Bad GNAT array descriptor"));
1716
1717       /* NOTE: The following calculation is not really kosher, but
1718          since desc_type is an XVE-encoded type (and shouldn't be),
1719          the correct calculation is a real pain.  FIXME (and fix GCC).  */
1720       if (TYPE_CODE (type) == TYPE_CODE_PTR)
1721         addr = value_as_long (arr);
1722       else
1723         addr = value_address (arr);
1724
1725       return
1726         value_from_longest (lookup_pointer_type (bounds_type),
1727                             addr - TYPE_LENGTH (bounds_type));
1728     }
1729
1730   else if (is_thick_pntr (type))
1731     {
1732       struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1733                                                _("Bad GNAT array descriptor"));
1734       struct type *p_bounds_type = value_type (p_bounds);
1735
1736       if (p_bounds_type
1737           && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1738         {
1739           struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1740
1741           if (TYPE_STUB (target_type))
1742             p_bounds = value_cast (lookup_pointer_type
1743                                    (ada_check_typedef (target_type)),
1744                                    p_bounds);
1745         }
1746       else
1747         error (_("Bad GNAT array descriptor"));
1748
1749       return p_bounds;
1750     }
1751   else
1752     return NULL;
1753 }
1754
1755 /* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1756    position of the field containing the address of the bounds data.  */
1757
1758 static int
1759 fat_pntr_bounds_bitpos (struct type *type)
1760 {
1761   return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1762 }
1763
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765    size of the field containing the address of the bounds data.  */
1766
1767 static int
1768 fat_pntr_bounds_bitsize (struct type *type)
1769 {
1770   type = desc_base_type (type);
1771
1772   if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1773     return TYPE_FIELD_BITSIZE (type, 1);
1774   else
1775     return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1776 }
1777
1778 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779    pointer to one, the type of its array data (a array-with-no-bounds type);
1780    otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1781    data.  */
1782
1783 static struct type *
1784 desc_data_target_type (struct type *type)
1785 {
1786   type = desc_base_type (type);
1787
1788   /* NOTE: The following is bogus; see comment in desc_bounds.  */
1789   if (is_thin_pntr (type))
1790     return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1791   else if (is_thick_pntr (type))
1792     {
1793       struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1794
1795       if (data_type
1796           && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1797         return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1798     }
1799
1800   return NULL;
1801 }
1802
1803 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1804    its array data.  */
1805
1806 static struct value *
1807 desc_data (struct value *arr)
1808 {
1809   struct type *type = value_type (arr);
1810
1811   if (is_thin_pntr (type))
1812     return thin_data_pntr (arr);
1813   else if (is_thick_pntr (type))
1814     return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1815                              _("Bad GNAT array descriptor"));
1816   else
1817     return NULL;
1818 }
1819
1820
1821 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1822    position of the field containing the address of the data.  */
1823
1824 static int
1825 fat_pntr_data_bitpos (struct type *type)
1826 {
1827   return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1828 }
1829
1830 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1831    size of the field containing the address of the data.  */
1832
1833 static int
1834 fat_pntr_data_bitsize (struct type *type)
1835 {
1836   type = desc_base_type (type);
1837
1838   if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1839     return TYPE_FIELD_BITSIZE (type, 0);
1840   else
1841     return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1842 }
1843
1844 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1845    the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1846    bound, if WHICH is 1.  The first bound is I=1.  */
1847
1848 static struct value *
1849 desc_one_bound (struct value *bounds, int i, int which)
1850 {
1851   return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1852                            _("Bad GNAT array descriptor bounds"));
1853 }
1854
1855 /* If BOUNDS is an array-bounds structure type, return the bit position
1856    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1857    bound, if WHICH is 1.  The first bound is I=1.  */
1858
1859 static int
1860 desc_bound_bitpos (struct type *type, int i, int which)
1861 {
1862   return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1863 }
1864
1865 /* If BOUNDS is an array-bounds structure type, return the bit field size
1866    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1867    bound, if WHICH is 1.  The first bound is I=1.  */
1868
1869 static int
1870 desc_bound_bitsize (struct type *type, int i, int which)
1871 {
1872   type = desc_base_type (type);
1873
1874   if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1875     return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1876   else
1877     return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1878 }
1879
1880 /* If TYPE is the type of an array-bounds structure, the type of its
1881    Ith bound (numbering from 1).  Otherwise, NULL.  */
1882
1883 static struct type *
1884 desc_index_type (struct type *type, int i)
1885 {
1886   type = desc_base_type (type);
1887
1888   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1889     return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1890   else
1891     return NULL;
1892 }
1893
1894 /* The number of index positions in the array-bounds type TYPE.
1895    Return 0 if TYPE is NULL.  */
1896
1897 static int
1898 desc_arity (struct type *type)
1899 {
1900   type = desc_base_type (type);
1901
1902   if (type != NULL)
1903     return TYPE_NFIELDS (type) / 2;
1904   return 0;
1905 }
1906
1907 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or 
1908    an array descriptor type (representing an unconstrained array
1909    type).  */
1910
1911 static int
1912 ada_is_direct_array_type (struct type *type)
1913 {
1914   if (type == NULL)
1915     return 0;
1916   type = ada_check_typedef (type);
1917   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1918           || ada_is_array_descriptor_type (type));
1919 }
1920
1921 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1922  * to one.  */
1923
1924 static int
1925 ada_is_array_type (struct type *type)
1926 {
1927   while (type != NULL 
1928          && (TYPE_CODE (type) == TYPE_CODE_PTR 
1929              || TYPE_CODE (type) == TYPE_CODE_REF))
1930     type = TYPE_TARGET_TYPE (type);
1931   return ada_is_direct_array_type (type);
1932 }
1933
1934 /* Non-zero iff TYPE is a simple array type or pointer to one.  */
1935
1936 int
1937 ada_is_simple_array_type (struct type *type)
1938 {
1939   if (type == NULL)
1940     return 0;
1941   type = ada_check_typedef (type);
1942   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1943           || (TYPE_CODE (type) == TYPE_CODE_PTR
1944               && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1945                  == TYPE_CODE_ARRAY));
1946 }
1947
1948 /* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1949
1950 int
1951 ada_is_array_descriptor_type (struct type *type)
1952 {
1953   struct type *data_type = desc_data_target_type (type);
1954
1955   if (type == NULL)
1956     return 0;
1957   type = ada_check_typedef (type);
1958   return (data_type != NULL
1959           && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1960           && desc_arity (desc_bounds_type (type)) > 0);
1961 }
1962
1963 /* Non-zero iff type is a partially mal-formed GNAT array
1964    descriptor.  FIXME: This is to compensate for some problems with
1965    debugging output from GNAT.  Re-examine periodically to see if it
1966    is still needed.  */
1967
1968 int
1969 ada_is_bogus_array_descriptor (struct type *type)
1970 {
1971   return
1972     type != NULL
1973     && TYPE_CODE (type) == TYPE_CODE_STRUCT
1974     && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1975         || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1976     && !ada_is_array_descriptor_type (type);
1977 }
1978
1979
1980 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1981    (fat pointer) returns the type of the array data described---specifically,
1982    a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1983    in from the descriptor; otherwise, they are left unspecified.  If
1984    the ARR denotes a null array descriptor and BOUNDS is non-zero,
1985    returns NULL.  The result is simply the type of ARR if ARR is not
1986    a descriptor.  */
1987 struct type *
1988 ada_type_of_array (struct value *arr, int bounds)
1989 {
1990   if (ada_is_constrained_packed_array_type (value_type (arr)))
1991     return decode_constrained_packed_array_type (value_type (arr));
1992
1993   if (!ada_is_array_descriptor_type (value_type (arr)))
1994     return value_type (arr);
1995
1996   if (!bounds)
1997     {
1998       struct type *array_type =
1999         ada_check_typedef (desc_data_target_type (value_type (arr)));
2000
2001       if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2002         TYPE_FIELD_BITSIZE (array_type, 0) =
2003           decode_packed_array_bitsize (value_type (arr));
2004       
2005       return array_type;
2006     }
2007   else
2008     {
2009       struct type *elt_type;
2010       int arity;
2011       struct value *descriptor;
2012
2013       elt_type = ada_array_element_type (value_type (arr), -1);
2014       arity = ada_array_arity (value_type (arr));
2015
2016       if (elt_type == NULL || arity == 0)
2017         return ada_check_typedef (value_type (arr));
2018
2019       descriptor = desc_bounds (arr);
2020       if (value_as_long (descriptor) == 0)
2021         return NULL;
2022       while (arity > 0)
2023         {
2024           struct type *range_type = alloc_type_copy (value_type (arr));
2025           struct type *array_type = alloc_type_copy (value_type (arr));
2026           struct value *low = desc_one_bound (descriptor, arity, 0);
2027           struct value *high = desc_one_bound (descriptor, arity, 1);
2028
2029           arity -= 1;
2030           create_static_range_type (range_type, value_type (low),
2031                                     longest_to_int (value_as_long (low)),
2032                                     longest_to_int (value_as_long (high)));
2033           elt_type = create_array_type (array_type, elt_type, range_type);
2034
2035           if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2036             {
2037               /* We need to store the element packed bitsize, as well as
2038                  recompute the array size, because it was previously
2039                  computed based on the unpacked element size.  */
2040               LONGEST lo = value_as_long (low);
2041               LONGEST hi = value_as_long (high);
2042
2043               TYPE_FIELD_BITSIZE (elt_type, 0) =
2044                 decode_packed_array_bitsize (value_type (arr));
2045               /* If the array has no element, then the size is already
2046                  zero, and does not need to be recomputed.  */
2047               if (lo < hi)
2048                 {
2049                   int array_bitsize =
2050                         (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2051
2052                   TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2053                 }
2054             }
2055         }
2056
2057       return lookup_pointer_type (elt_type);
2058     }
2059 }
2060
2061 /* If ARR does not represent an array, returns ARR unchanged.
2062    Otherwise, returns either a standard GDB array with bounds set
2063    appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2064    GDB array.  Returns NULL if ARR is a null fat pointer.  */
2065
2066 struct value *
2067 ada_coerce_to_simple_array_ptr (struct value *arr)
2068 {
2069   if (ada_is_array_descriptor_type (value_type (arr)))
2070     {
2071       struct type *arrType = ada_type_of_array (arr, 1);
2072
2073       if (arrType == NULL)
2074         return NULL;
2075       return value_cast (arrType, value_copy (desc_data (arr)));
2076     }
2077   else if (ada_is_constrained_packed_array_type (value_type (arr)))
2078     return decode_constrained_packed_array (arr);
2079   else
2080     return arr;
2081 }
2082
2083 /* If ARR does not represent an array, returns ARR unchanged.
2084    Otherwise, returns a standard GDB array describing ARR (which may
2085    be ARR itself if it already is in the proper form).  */
2086
2087 struct value *
2088 ada_coerce_to_simple_array (struct value *arr)
2089 {
2090   if (ada_is_array_descriptor_type (value_type (arr)))
2091     {
2092       struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2093
2094       if (arrVal == NULL)
2095         error (_("Bounds unavailable for null array pointer."));
2096       ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2097       return value_ind (arrVal);
2098     }
2099   else if (ada_is_constrained_packed_array_type (value_type (arr)))
2100     return decode_constrained_packed_array (arr);
2101   else
2102     return arr;
2103 }
2104
2105 /* If TYPE represents a GNAT array type, return it translated to an
2106    ordinary GDB array type (possibly with BITSIZE fields indicating
2107    packing).  For other types, is the identity.  */
2108
2109 struct type *
2110 ada_coerce_to_simple_array_type (struct type *type)
2111 {
2112   if (ada_is_constrained_packed_array_type (type))
2113     return decode_constrained_packed_array_type (type);
2114
2115   if (ada_is_array_descriptor_type (type))
2116     return ada_check_typedef (desc_data_target_type (type));
2117
2118   return type;
2119 }
2120
2121 /* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
2122
2123 static int
2124 ada_is_packed_array_type  (struct type *type)
2125 {
2126   if (type == NULL)
2127     return 0;
2128   type = desc_base_type (type);
2129   type = ada_check_typedef (type);
2130   return
2131     ada_type_name (type) != NULL
2132     && strstr (ada_type_name (type), "___XP") != NULL;
2133 }
2134
2135 /* Non-zero iff TYPE represents a standard GNAT constrained
2136    packed-array type.  */
2137
2138 int
2139 ada_is_constrained_packed_array_type (struct type *type)
2140 {
2141   return ada_is_packed_array_type (type)
2142     && !ada_is_array_descriptor_type (type);
2143 }
2144
2145 /* Non-zero iff TYPE represents an array descriptor for a
2146    unconstrained packed-array type.  */
2147
2148 static int
2149 ada_is_unconstrained_packed_array_type (struct type *type)
2150 {
2151   return ada_is_packed_array_type (type)
2152     && ada_is_array_descriptor_type (type);
2153 }
2154
2155 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2156    return the size of its elements in bits.  */
2157
2158 static long
2159 decode_packed_array_bitsize (struct type *type)
2160 {
2161   const char *raw_name;
2162   const char *tail;
2163   long bits;
2164
2165   /* Access to arrays implemented as fat pointers are encoded as a typedef
2166      of the fat pointer type.  We need the name of the fat pointer type
2167      to do the decoding, so strip the typedef layer.  */
2168   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2169     type = ada_typedef_target_type (type);
2170
2171   raw_name = ada_type_name (ada_check_typedef (type));
2172   if (!raw_name)
2173     raw_name = ada_type_name (desc_base_type (type));
2174
2175   if (!raw_name)
2176     return 0;
2177
2178   tail = strstr (raw_name, "___XP");
2179   gdb_assert (tail != NULL);
2180
2181   if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2182     {
2183       lim_warning
2184         (_("could not understand bit size information on packed array"));
2185       return 0;
2186     }
2187
2188   return bits;
2189 }
2190
2191 /* Given that TYPE is a standard GDB array type with all bounds filled
2192    in, and that the element size of its ultimate scalar constituents
2193    (that is, either its elements, or, if it is an array of arrays, its
2194    elements' elements, etc.) is *ELT_BITS, return an identical type,
2195    but with the bit sizes of its elements (and those of any
2196    constituent arrays) recorded in the BITSIZE components of its
2197    TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2198    in bits.
2199
2200    Note that, for arrays whose index type has an XA encoding where
2201    a bound references a record discriminant, getting that discriminant,
2202    and therefore the actual value of that bound, is not possible
2203    because none of the given parameters gives us access to the record.
2204    This function assumes that it is OK in the context where it is being
2205    used to return an array whose bounds are still dynamic and where
2206    the length is arbitrary.  */
2207
2208 static struct type *
2209 constrained_packed_array_type (struct type *type, long *elt_bits)
2210 {
2211   struct type *new_elt_type;
2212   struct type *new_type;
2213   struct type *index_type_desc;
2214   struct type *index_type;
2215   LONGEST low_bound, high_bound;
2216
2217   type = ada_check_typedef (type);
2218   if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2219     return type;
2220
2221   index_type_desc = ada_find_parallel_type (type, "___XA");
2222   if (index_type_desc)
2223     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2224                                       NULL);
2225   else
2226     index_type = TYPE_INDEX_TYPE (type);
2227
2228   new_type = alloc_type_copy (type);
2229   new_elt_type =
2230     constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2231                                    elt_bits);
2232   create_array_type (new_type, new_elt_type, index_type);
2233   TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2234   TYPE_NAME (new_type) = ada_type_name (type);
2235
2236   if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2237        && is_dynamic_type (check_typedef (index_type)))
2238       || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2239     low_bound = high_bound = 0;
2240   if (high_bound < low_bound)
2241     *elt_bits = TYPE_LENGTH (new_type) = 0;
2242   else
2243     {
2244       *elt_bits *= (high_bound - low_bound + 1);
2245       TYPE_LENGTH (new_type) =
2246         (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2247     }
2248
2249   TYPE_FIXED_INSTANCE (new_type) = 1;
2250   return new_type;
2251 }
2252
2253 /* The array type encoded by TYPE, where
2254    ada_is_constrained_packed_array_type (TYPE).  */
2255
2256 static struct type *
2257 decode_constrained_packed_array_type (struct type *type)
2258 {
2259   const char *raw_name = ada_type_name (ada_check_typedef (type));
2260   char *name;
2261   const char *tail;
2262   struct type *shadow_type;
2263   long bits;
2264
2265   if (!raw_name)
2266     raw_name = ada_type_name (desc_base_type (type));
2267
2268   if (!raw_name)
2269     return NULL;
2270
2271   name = (char *) alloca (strlen (raw_name) + 1);
2272   tail = strstr (raw_name, "___XP");
2273   type = desc_base_type (type);
2274
2275   memcpy (name, raw_name, tail - raw_name);
2276   name[tail - raw_name] = '\000';
2277
2278   shadow_type = ada_find_parallel_type_with_name (type, name);
2279
2280   if (shadow_type == NULL)
2281     {
2282       lim_warning (_("could not find bounds information on packed array"));
2283       return NULL;
2284     }
2285   shadow_type = check_typedef (shadow_type);
2286
2287   if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2288     {
2289       lim_warning (_("could not understand bounds "
2290                      "information on packed array"));
2291       return NULL;
2292     }
2293
2294   bits = decode_packed_array_bitsize (type);
2295   return constrained_packed_array_type (shadow_type, &bits);
2296 }
2297
2298 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2299    array, returns a simple array that denotes that array.  Its type is a
2300    standard GDB array type except that the BITSIZEs of the array
2301    target types are set to the number of bits in each element, and the
2302    type length is set appropriately.  */
2303
2304 static struct value *
2305 decode_constrained_packed_array (struct value *arr)
2306 {
2307   struct type *type;
2308
2309   /* If our value is a pointer, then dereference it. Likewise if
2310      the value is a reference.  Make sure that this operation does not
2311      cause the target type to be fixed, as this would indirectly cause
2312      this array to be decoded.  The rest of the routine assumes that
2313      the array hasn't been decoded yet, so we use the basic "coerce_ref"
2314      and "value_ind" routines to perform the dereferencing, as opposed
2315      to using "ada_coerce_ref" or "ada_value_ind".  */
2316   arr = coerce_ref (arr);
2317   if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2318     arr = value_ind (arr);
2319
2320   type = decode_constrained_packed_array_type (value_type (arr));
2321   if (type == NULL)
2322     {
2323       error (_("can't unpack array"));
2324       return NULL;
2325     }
2326
2327   if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2328       && ada_is_modular_type (value_type (arr)))
2329     {
2330        /* This is a (right-justified) modular type representing a packed
2331          array with no wrapper.  In order to interpret the value through
2332          the (left-justified) packed array type we just built, we must
2333          first left-justify it.  */
2334       int bit_size, bit_pos;
2335       ULONGEST mod;
2336
2337       mod = ada_modulus (value_type (arr)) - 1;
2338       bit_size = 0;
2339       while (mod > 0)
2340         {
2341           bit_size += 1;
2342           mod >>= 1;
2343         }
2344       bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2345       arr = ada_value_primitive_packed_val (arr, NULL,
2346                                             bit_pos / HOST_CHAR_BIT,
2347                                             bit_pos % HOST_CHAR_BIT,
2348                                             bit_size,
2349                                             type);
2350     }
2351
2352   return coerce_unspec_val_to_type (arr, type);
2353 }
2354
2355
2356 /* The value of the element of packed array ARR at the ARITY indices
2357    given in IND.   ARR must be a simple array.  */
2358
2359 static struct value *
2360 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2361 {
2362   int i;
2363   int bits, elt_off, bit_off;
2364   long elt_total_bit_offset;
2365   struct type *elt_type;
2366   struct value *v;
2367
2368   bits = 0;
2369   elt_total_bit_offset = 0;
2370   elt_type = ada_check_typedef (value_type (arr));
2371   for (i = 0; i < arity; i += 1)
2372     {
2373       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2374           || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2375         error
2376           (_("attempt to do packed indexing of "
2377              "something other than a packed array"));
2378       else
2379         {
2380           struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2381           LONGEST lowerbound, upperbound;
2382           LONGEST idx;
2383
2384           if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2385             {
2386               lim_warning (_("don't know bounds of array"));
2387               lowerbound = upperbound = 0;
2388             }
2389
2390           idx = pos_atr (ind[i]);
2391           if (idx < lowerbound || idx > upperbound)
2392             lim_warning (_("packed array index %ld out of bounds"),
2393                          (long) idx);
2394           bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2395           elt_total_bit_offset += (idx - lowerbound) * bits;
2396           elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2397         }
2398     }
2399   elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2400   bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2401
2402   v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2403                                       bits, elt_type);
2404   return v;
2405 }
2406
2407 /* Non-zero iff TYPE includes negative integer values.  */
2408
2409 static int
2410 has_negatives (struct type *type)
2411 {
2412   switch (TYPE_CODE (type))
2413     {
2414     default:
2415       return 0;
2416     case TYPE_CODE_INT:
2417       return !TYPE_UNSIGNED (type);
2418     case TYPE_CODE_RANGE:
2419       return TYPE_LOW_BOUND (type) < 0;
2420     }
2421 }
2422
2423 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2424    unpack that data into UNPACKED.  UNPACKED_LEN is the size in bytes of
2425    the unpacked buffer.
2426
2427    The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2428    enough to contain at least BIT_OFFSET bits.  If not, an error is raised.
2429
2430    IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2431    zero otherwise.
2432
2433    IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2434
2435    IS_SCALAR is nonzero if the data corresponds to a signed type.  */
2436
2437 static void
2438 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2439                           gdb_byte *unpacked, int unpacked_len,
2440                           int is_big_endian, int is_signed_type,
2441                           int is_scalar)
2442 {
2443   int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2444   int src_idx;                  /* Index into the source area */
2445   int src_bytes_left;           /* Number of source bytes left to process.  */
2446   int srcBitsLeft;              /* Number of source bits left to move */
2447   int unusedLS;                 /* Number of bits in next significant
2448                                    byte of source that are unused */
2449
2450   int unpacked_idx;             /* Index into the unpacked buffer */
2451   int unpacked_bytes_left;      /* Number of bytes left to set in unpacked.  */
2452
2453   unsigned long accum;          /* Staging area for bits being transferred */
2454   int accumSize;                /* Number of meaningful bits in accum */
2455   unsigned char sign;
2456
2457   /* Transmit bytes from least to most significant; delta is the direction
2458      the indices move.  */
2459   int delta = is_big_endian ? -1 : 1;
2460
2461   /* Make sure that unpacked is large enough to receive the BIT_SIZE
2462      bits from SRC.  .*/
2463   if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2464     error (_("Cannot unpack %d bits into buffer of %d bytes"),
2465            bit_size, unpacked_len);
2466
2467   srcBitsLeft = bit_size;
2468   src_bytes_left = src_len;
2469   unpacked_bytes_left = unpacked_len;
2470   sign = 0;
2471
2472   if (is_big_endian)
2473     {
2474       src_idx = src_len - 1;
2475       if (is_signed_type
2476           && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2477         sign = ~0;
2478
2479       unusedLS =
2480         (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2481         % HOST_CHAR_BIT;
2482
2483       if (is_scalar)
2484         {
2485           accumSize = 0;
2486           unpacked_idx = unpacked_len - 1;
2487         }
2488       else
2489         {
2490           /* Non-scalar values must be aligned at a byte boundary...  */
2491           accumSize =
2492             (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2493           /* ... And are placed at the beginning (most-significant) bytes
2494              of the target.  */
2495           unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2496           unpacked_bytes_left = unpacked_idx + 1;
2497         }
2498     }
2499   else
2500     {
2501       int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2502
2503       src_idx = unpacked_idx = 0;
2504       unusedLS = bit_offset;
2505       accumSize = 0;
2506
2507       if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2508         sign = ~0;
2509     }
2510
2511   accum = 0;
2512   while (src_bytes_left > 0)
2513     {
2514       /* Mask for removing bits of the next source byte that are not
2515          part of the value.  */
2516       unsigned int unusedMSMask =
2517         (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2518         1;
2519       /* Sign-extend bits for this byte.  */
2520       unsigned int signMask = sign & ~unusedMSMask;
2521
2522       accum |=
2523         (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2524       accumSize += HOST_CHAR_BIT - unusedLS;
2525       if (accumSize >= HOST_CHAR_BIT)
2526         {
2527           unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2528           accumSize -= HOST_CHAR_BIT;
2529           accum >>= HOST_CHAR_BIT;
2530           unpacked_bytes_left -= 1;
2531           unpacked_idx += delta;
2532         }
2533       srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2534       unusedLS = 0;
2535       src_bytes_left -= 1;
2536       src_idx += delta;
2537     }
2538   while (unpacked_bytes_left > 0)
2539     {
2540       accum |= sign << accumSize;
2541       unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2542       accumSize -= HOST_CHAR_BIT;
2543       if (accumSize < 0)
2544         accumSize = 0;
2545       accum >>= HOST_CHAR_BIT;
2546       unpacked_bytes_left -= 1;
2547       unpacked_idx += delta;
2548     }
2549 }
2550
2551 /* Create a new value of type TYPE from the contents of OBJ starting
2552    at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2553    proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2554    assigning through the result will set the field fetched from.
2555    VALADDR is ignored unless OBJ is NULL, in which case,
2556    VALADDR+OFFSET must address the start of storage containing the 
2557    packed value.  The value returned  in this case is never an lval.
2558    Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2559
2560 struct value *
2561 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2562                                 long offset, int bit_offset, int bit_size,
2563                                 struct type *type)
2564 {
2565   struct value *v;
2566   const gdb_byte *src;                /* First byte containing data to unpack */
2567   gdb_byte *unpacked;
2568   const int is_scalar = is_scalar_type (type);
2569   const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2570   std::unique_ptr<gdb_byte[]> staging;
2571   int staging_len = 0;
2572
2573   type = ada_check_typedef (type);
2574
2575   if (obj == NULL)
2576     src = valaddr + offset;
2577   else
2578     src = value_contents (obj) + offset;
2579
2580   if (is_dynamic_type (type))
2581     {
2582       /* The length of TYPE might by dynamic, so we need to resolve
2583          TYPE in order to know its actual size, which we then use
2584          to create the contents buffer of the value we return.
2585          The difficulty is that the data containing our object is
2586          packed, and therefore maybe not at a byte boundary.  So, what
2587          we do, is unpack the data into a byte-aligned buffer, and then
2588          use that buffer as our object's value for resolving the type.  */
2589       staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2590       staging.reset (new gdb_byte[staging_len]);
2591
2592       ada_unpack_from_contents (src, bit_offset, bit_size,
2593                                 staging.get (), staging_len,
2594                                 is_big_endian, has_negatives (type),
2595                                 is_scalar);
2596       type = resolve_dynamic_type (type, staging.get (), 0);
2597       if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2598         {
2599           /* This happens when the length of the object is dynamic,
2600              and is actually smaller than the space reserved for it.
2601              For instance, in an array of variant records, the bit_size
2602              we're given is the array stride, which is constant and
2603              normally equal to the maximum size of its element.
2604              But, in reality, each element only actually spans a portion
2605              of that stride.  */
2606           bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2607         }
2608     }
2609
2610   if (obj == NULL)
2611     {
2612       v = allocate_value (type);
2613       src = valaddr + offset;
2614     }
2615   else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2616     {
2617       int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2618       gdb_byte *buf;
2619
2620       v = value_at (type, value_address (obj) + offset);
2621       buf = (gdb_byte *) alloca (src_len);
2622       read_memory (value_address (v), buf, src_len);
2623       src = buf;
2624     }
2625   else
2626     {
2627       v = allocate_value (type);
2628       src = value_contents (obj) + offset;
2629     }
2630
2631   if (obj != NULL)
2632     {
2633       long new_offset = offset;
2634
2635       set_value_component_location (v, obj);
2636       set_value_bitpos (v, bit_offset + value_bitpos (obj));
2637       set_value_bitsize (v, bit_size);
2638       if (value_bitpos (v) >= HOST_CHAR_BIT)
2639         {
2640           ++new_offset;
2641           set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2642         }
2643       set_value_offset (v, new_offset);
2644
2645       /* Also set the parent value.  This is needed when trying to
2646          assign a new value (in inferior memory).  */
2647       set_value_parent (v, obj);
2648     }
2649   else
2650     set_value_bitsize (v, bit_size);
2651   unpacked = value_contents_writeable (v);
2652
2653   if (bit_size == 0)
2654     {
2655       memset (unpacked, 0, TYPE_LENGTH (type));
2656       return v;
2657     }
2658
2659   if (staging != NULL && staging_len == TYPE_LENGTH (type))
2660     {
2661       /* Small short-cut: If we've unpacked the data into a buffer
2662          of the same size as TYPE's length, then we can reuse that,
2663          instead of doing the unpacking again.  */
2664       memcpy (unpacked, staging.get (), staging_len);
2665     }
2666   else
2667     ada_unpack_from_contents (src, bit_offset, bit_size,
2668                               unpacked, TYPE_LENGTH (type),
2669                               is_big_endian, has_negatives (type), is_scalar);
2670
2671   return v;
2672 }
2673
2674 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2675    TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2676    not overlap.  */
2677 static void
2678 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2679            int src_offset, int n, int bits_big_endian_p)
2680 {
2681   unsigned int accum, mask;
2682   int accum_bits, chunk_size;
2683
2684   target += targ_offset / HOST_CHAR_BIT;
2685   targ_offset %= HOST_CHAR_BIT;
2686   source += src_offset / HOST_CHAR_BIT;
2687   src_offset %= HOST_CHAR_BIT;
2688   if (bits_big_endian_p)
2689     {
2690       accum = (unsigned char) *source;
2691       source += 1;
2692       accum_bits = HOST_CHAR_BIT - src_offset;
2693
2694       while (n > 0)
2695         {
2696           int unused_right;
2697
2698           accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2699           accum_bits += HOST_CHAR_BIT;
2700           source += 1;
2701           chunk_size = HOST_CHAR_BIT - targ_offset;
2702           if (chunk_size > n)
2703             chunk_size = n;
2704           unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2705           mask = ((1 << chunk_size) - 1) << unused_right;
2706           *target =
2707             (*target & ~mask)
2708             | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2709           n -= chunk_size;
2710           accum_bits -= chunk_size;
2711           target += 1;
2712           targ_offset = 0;
2713         }
2714     }
2715   else
2716     {
2717       accum = (unsigned char) *source >> src_offset;
2718       source += 1;
2719       accum_bits = HOST_CHAR_BIT - src_offset;
2720
2721       while (n > 0)
2722         {
2723           accum = accum + ((unsigned char) *source << accum_bits);
2724           accum_bits += HOST_CHAR_BIT;
2725           source += 1;
2726           chunk_size = HOST_CHAR_BIT - targ_offset;
2727           if (chunk_size > n)
2728             chunk_size = n;
2729           mask = ((1 << chunk_size) - 1) << targ_offset;
2730           *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2731           n -= chunk_size;
2732           accum_bits -= chunk_size;
2733           accum >>= chunk_size;
2734           target += 1;
2735           targ_offset = 0;
2736         }
2737     }
2738 }
2739
2740 /* Store the contents of FROMVAL into the location of TOVAL.
2741    Return a new value with the location of TOVAL and contents of
2742    FROMVAL.   Handles assignment into packed fields that have
2743    floating-point or non-scalar types.  */
2744
2745 static struct value *
2746 ada_value_assign (struct value *toval, struct value *fromval)
2747 {
2748   struct type *type = value_type (toval);
2749   int bits = value_bitsize (toval);
2750
2751   toval = ada_coerce_ref (toval);
2752   fromval = ada_coerce_ref (fromval);
2753
2754   if (ada_is_direct_array_type (value_type (toval)))
2755     toval = ada_coerce_to_simple_array (toval);
2756   if (ada_is_direct_array_type (value_type (fromval)))
2757     fromval = ada_coerce_to_simple_array (fromval);
2758
2759   if (!deprecated_value_modifiable (toval))
2760     error (_("Left operand of assignment is not a modifiable lvalue."));
2761
2762   if (VALUE_LVAL (toval) == lval_memory
2763       && bits > 0
2764       && (TYPE_CODE (type) == TYPE_CODE_FLT
2765           || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2766     {
2767       int len = (value_bitpos (toval)
2768                  + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2769       int from_size;
2770       gdb_byte *buffer = (gdb_byte *) alloca (len);
2771       struct value *val;
2772       CORE_ADDR to_addr = value_address (toval);
2773
2774       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2775         fromval = value_cast (type, fromval);
2776
2777       read_memory (to_addr, buffer, len);
2778       from_size = value_bitsize (fromval);
2779       if (from_size == 0)
2780         from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2781       if (gdbarch_bits_big_endian (get_type_arch (type)))
2782         move_bits (buffer, value_bitpos (toval),
2783                    value_contents (fromval), from_size - bits, bits, 1);
2784       else
2785         move_bits (buffer, value_bitpos (toval),
2786                    value_contents (fromval), 0, bits, 0);
2787       write_memory_with_notification (to_addr, buffer, len);
2788
2789       val = value_copy (toval);
2790       memcpy (value_contents_raw (val), value_contents (fromval),
2791               TYPE_LENGTH (type));
2792       deprecated_set_value_type (val, type);
2793
2794       return val;
2795     }
2796
2797   return value_assign (toval, fromval);
2798 }
2799
2800
2801 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2802    CONTAINER, assign the contents of VAL to COMPONENTS's place in
2803    CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2804    COMPONENT, and not the inferior's memory.  The current contents
2805    of COMPONENT are ignored.
2806
2807    Although not part of the initial design, this function also works
2808    when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2809    had a null address, and COMPONENT had an address which is equal to
2810    its offset inside CONTAINER.  */
2811
2812 static void
2813 value_assign_to_component (struct value *container, struct value *component,
2814                            struct value *val)
2815 {
2816   LONGEST offset_in_container =
2817     (LONGEST)  (value_address (component) - value_address (container));
2818   int bit_offset_in_container =
2819     value_bitpos (component) - value_bitpos (container);
2820   int bits;
2821
2822   val = value_cast (value_type (component), val);
2823
2824   if (value_bitsize (component) == 0)
2825     bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2826   else
2827     bits = value_bitsize (component);
2828
2829   if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2830     move_bits (value_contents_writeable (container) + offset_in_container,
2831                value_bitpos (container) + bit_offset_in_container,
2832                value_contents (val),
2833                TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2834                bits, 1);
2835   else
2836     move_bits (value_contents_writeable (container) + offset_in_container,
2837                value_bitpos (container) + bit_offset_in_container,
2838                value_contents (val), 0, bits, 0);
2839 }
2840
2841 /* The value of the element of array ARR at the ARITY indices given in IND.
2842    ARR may be either a simple array, GNAT array descriptor, or pointer
2843    thereto.  */
2844
2845 struct value *
2846 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2847 {
2848   int k;
2849   struct value *elt;
2850   struct type *elt_type;
2851
2852   elt = ada_coerce_to_simple_array (arr);
2853
2854   elt_type = ada_check_typedef (value_type (elt));
2855   if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2856       && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2857     return value_subscript_packed (elt, arity, ind);
2858
2859   for (k = 0; k < arity; k += 1)
2860     {
2861       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2862         error (_("too many subscripts (%d expected)"), k);
2863       elt = value_subscript (elt, pos_atr (ind[k]));
2864     }
2865   return elt;
2866 }
2867
2868 /* Assuming ARR is a pointer to a GDB array, the value of the element
2869    of *ARR at the ARITY indices given in IND.
2870    Does not read the entire array into memory.
2871
2872    Note: Unlike what one would expect, this function is used instead of
2873    ada_value_subscript for basically all non-packed array types.  The reason
2874    for this is that a side effect of doing our own pointer arithmetics instead
2875    of relying on value_subscript is that there is no implicit typedef peeling.
2876    This is important for arrays of array accesses, where it allows us to
2877    preserve the fact that the array's element is an array access, where the
2878    access part os encoded in a typedef layer.  */
2879
2880 static struct value *
2881 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2882 {
2883   int k;
2884   struct value *array_ind = ada_value_ind (arr);
2885   struct type *type
2886     = check_typedef (value_enclosing_type (array_ind));
2887
2888   if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2889       && TYPE_FIELD_BITSIZE (type, 0) > 0)
2890     return value_subscript_packed (array_ind, arity, ind);
2891
2892   for (k = 0; k < arity; k += 1)
2893     {
2894       LONGEST lwb, upb;
2895       struct value *lwb_value;
2896
2897       if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2898         error (_("too many subscripts (%d expected)"), k);
2899       arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2900                         value_copy (arr));
2901       get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2902       lwb_value = value_from_longest (value_type(ind[k]), lwb);
2903       arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2904       type = TYPE_TARGET_TYPE (type);
2905     }
2906
2907   return value_ind (arr);
2908 }
2909
2910 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2911    actual type of ARRAY_PTR is ignored), returns the Ada slice of
2912    HIGH'Pos-LOW'Pos+1 elements starting at index LOW.  The lower bound of
2913    this array is LOW, as per Ada rules.  */
2914 static struct value *
2915 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2916                           int low, int high)
2917 {
2918   struct type *type0 = ada_check_typedef (type);
2919   struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2920   struct type *index_type
2921     = create_static_range_type (NULL, base_index_type, low, high);
2922   struct type *slice_type =
2923     create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2924   int base_low =  ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2925   LONGEST base_low_pos, low_pos;
2926   CORE_ADDR base;
2927
2928   if (!discrete_position (base_index_type, low, &low_pos)
2929       || !discrete_position (base_index_type, base_low, &base_low_pos))
2930     {
2931       warning (_("unable to get positions in slice, use bounds instead"));
2932       low_pos = low;
2933       base_low_pos = base_low;
2934     }
2935
2936   base = value_as_address (array_ptr)
2937     + ((low_pos - base_low_pos)
2938        * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2939   return value_at_lazy (slice_type, base);
2940 }
2941
2942
2943 static struct value *
2944 ada_value_slice (struct value *array, int low, int high)
2945 {
2946   struct type *type = ada_check_typedef (value_type (array));
2947   struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2948   struct type *index_type
2949     = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2950   struct type *slice_type =
2951     create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2952   LONGEST low_pos, high_pos;
2953
2954   if (!discrete_position (base_index_type, low, &low_pos)
2955       || !discrete_position (base_index_type, high, &high_pos))
2956     {
2957       warning (_("unable to get positions in slice, use bounds instead"));
2958       low_pos = low;
2959       high_pos = high;
2960     }
2961
2962   return value_cast (slice_type,
2963                      value_slice (array, low, high_pos - low_pos + 1));
2964 }
2965
2966 /* If type is a record type in the form of a standard GNAT array
2967    descriptor, returns the number of dimensions for type.  If arr is a
2968    simple array, returns the number of "array of"s that prefix its
2969    type designation.  Otherwise, returns 0.  */
2970
2971 int
2972 ada_array_arity (struct type *type)
2973 {
2974   int arity;
2975
2976   if (type == NULL)
2977     return 0;
2978
2979   type = desc_base_type (type);
2980
2981   arity = 0;
2982   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2983     return desc_arity (desc_bounds_type (type));
2984   else
2985     while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2986       {
2987         arity += 1;
2988         type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2989       }
2990
2991   return arity;
2992 }
2993
2994 /* If TYPE is a record type in the form of a standard GNAT array
2995    descriptor or a simple array type, returns the element type for
2996    TYPE after indexing by NINDICES indices, or by all indices if
2997    NINDICES is -1.  Otherwise, returns NULL.  */
2998
2999 struct type *
3000 ada_array_element_type (struct type *type, int nindices)
3001 {
3002   type = desc_base_type (type);
3003
3004   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3005     {
3006       int k;
3007       struct type *p_array_type;
3008
3009       p_array_type = desc_data_target_type (type);
3010
3011       k = ada_array_arity (type);
3012       if (k == 0)
3013         return NULL;
3014
3015       /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
3016       if (nindices >= 0 && k > nindices)
3017         k = nindices;
3018       while (k > 0 && p_array_type != NULL)
3019         {
3020           p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3021           k -= 1;
3022         }
3023       return p_array_type;
3024     }
3025   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026     {
3027       while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3028         {
3029           type = TYPE_TARGET_TYPE (type);
3030           nindices -= 1;
3031         }
3032       return type;
3033     }
3034
3035   return NULL;
3036 }
3037
3038 /* The type of nth index in arrays of given type (n numbering from 1).
3039    Does not examine memory.  Throws an error if N is invalid or TYPE
3040    is not an array type.  NAME is the name of the Ada attribute being
3041    evaluated ('range, 'first, 'last, or 'length); it is used in building
3042    the error message.  */
3043
3044 static struct type *
3045 ada_index_type (struct type *type, int n, const char *name)
3046 {
3047   struct type *result_type;
3048
3049   type = desc_base_type (type);
3050
3051   if (n < 0 || n > ada_array_arity (type))
3052     error (_("invalid dimension number to '%s"), name);
3053
3054   if (ada_is_simple_array_type (type))
3055     {
3056       int i;
3057
3058       for (i = 1; i < n; i += 1)
3059         type = TYPE_TARGET_TYPE (type);
3060       result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3061       /* FIXME: The stabs type r(0,0);bound;bound in an array type
3062          has a target type of TYPE_CODE_UNDEF.  We compensate here, but
3063          perhaps stabsread.c would make more sense.  */
3064       if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3065         result_type = NULL;
3066     }
3067   else
3068     {
3069       result_type = desc_index_type (desc_bounds_type (type), n);
3070       if (result_type == NULL)
3071         error (_("attempt to take bound of something that is not an array"));
3072     }
3073
3074   return result_type;
3075 }
3076
3077 /* Given that arr is an array type, returns the lower bound of the
3078    Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3079    WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
3080    array-descriptor type.  It works for other arrays with bounds supplied
3081    by run-time quantities other than discriminants.  */
3082
3083 static LONGEST
3084 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3085 {
3086   struct type *type, *index_type_desc, *index_type;
3087   int i;
3088
3089   gdb_assert (which == 0 || which == 1);
3090
3091   if (ada_is_constrained_packed_array_type (arr_type))
3092     arr_type = decode_constrained_packed_array_type (arr_type);
3093
3094   if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3095     return (LONGEST) - which;
3096
3097   if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3098     type = TYPE_TARGET_TYPE (arr_type);
3099   else
3100     type = arr_type;
3101
3102   if (TYPE_FIXED_INSTANCE (type))
3103     {
3104       /* The array has already been fixed, so we do not need to
3105          check the parallel ___XA type again.  That encoding has
3106          already been applied, so ignore it now.  */
3107       index_type_desc = NULL;
3108     }
3109   else
3110     {
3111       index_type_desc = ada_find_parallel_type (type, "___XA");
3112       ada_fixup_array_indexes_type (index_type_desc);
3113     }
3114
3115   if (index_type_desc != NULL)
3116     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3117                                       NULL);
3118   else
3119     {
3120       struct type *elt_type = check_typedef (type);
3121
3122       for (i = 1; i < n; i++)
3123         elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3124
3125       index_type = TYPE_INDEX_TYPE (elt_type);
3126     }
3127
3128   return
3129     (LONGEST) (which == 0
3130                ? ada_discrete_type_low_bound (index_type)
3131                : ada_discrete_type_high_bound (index_type));
3132 }
3133
3134 /* Given that arr is an array value, returns the lower bound of the
3135    nth index (numbering from 1) if WHICH is 0, and the upper bound if
3136    WHICH is 1.  This routine will also work for arrays with bounds
3137    supplied by run-time quantities other than discriminants.  */
3138
3139 static LONGEST
3140 ada_array_bound (struct value *arr, int n, int which)
3141 {
3142   struct type *arr_type;
3143
3144   if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3145     arr = value_ind (arr);
3146   arr_type = value_enclosing_type (arr);
3147
3148   if (ada_is_constrained_packed_array_type (arr_type))
3149     return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3150   else if (ada_is_simple_array_type (arr_type))
3151     return ada_array_bound_from_type (arr_type, n, which);
3152   else
3153     return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3154 }
3155
3156 /* Given that arr is an array value, returns the length of the
3157    nth index.  This routine will also work for arrays with bounds
3158    supplied by run-time quantities other than discriminants.
3159    Does not work for arrays indexed by enumeration types with representation
3160    clauses at the moment.  */
3161
3162 static LONGEST
3163 ada_array_length (struct value *arr, int n)
3164 {
3165   struct type *arr_type, *index_type;
3166   int low, high;
3167
3168   if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3169     arr = value_ind (arr);
3170   arr_type = value_enclosing_type (arr);
3171
3172   if (ada_is_constrained_packed_array_type (arr_type))
3173     return ada_array_length (decode_constrained_packed_array (arr), n);
3174
3175   if (ada_is_simple_array_type (arr_type))
3176     {
3177       low = ada_array_bound_from_type (arr_type, n, 0);
3178       high = ada_array_bound_from_type (arr_type, n, 1);
3179     }
3180   else
3181     {
3182       low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3183       high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3184     }
3185
3186   arr_type = check_typedef (arr_type);
3187   index_type = TYPE_INDEX_TYPE (arr_type);
3188   if (index_type != NULL)
3189     {
3190       struct type *base_type;
3191       if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3192         base_type = TYPE_TARGET_TYPE (index_type);
3193       else
3194         base_type = index_type;
3195
3196       low = pos_atr (value_from_longest (base_type, low));
3197       high = pos_atr (value_from_longest (base_type, high));
3198     }
3199   return high - low + 1;
3200 }
3201
3202 /* An empty array whose type is that of ARR_TYPE (an array type),
3203    with bounds LOW to LOW-1.  */
3204
3205 static struct value *
3206 empty_array (struct type *arr_type, int low)
3207 {
3208   struct type *arr_type0 = ada_check_typedef (arr_type);
3209   struct type *index_type
3210     = create_static_range_type
3211         (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),  low, low - 1);
3212   struct type *elt_type = ada_array_element_type (arr_type0, 1);
3213
3214   return allocate_value (create_array_type (NULL, elt_type, index_type));
3215 }
3216 \f
3217
3218                                 /* Name resolution */
3219
3220 /* The "decoded" name for the user-definable Ada operator corresponding
3221    to OP.  */
3222
3223 static const char *
3224 ada_decoded_op_name (enum exp_opcode op)
3225 {
3226   int i;
3227
3228   for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3229     {
3230       if (ada_opname_table[i].op == op)
3231         return ada_opname_table[i].decoded;
3232     }
3233   error (_("Could not find operator name for opcode"));
3234 }
3235
3236
3237 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3238    references (marked by OP_VAR_VALUE nodes in which the symbol has an
3239    undefined namespace) and converts operators that are
3240    user-defined into appropriate function calls.  If CONTEXT_TYPE is
3241    non-null, it provides a preferred result type [at the moment, only
3242    type void has any effect---causing procedures to be preferred over
3243    functions in calls].  A null CONTEXT_TYPE indicates that a non-void
3244    return type is preferred.  May change (expand) *EXP.  */
3245
3246 static void
3247 resolve (struct expression **expp, int void_context_p)
3248 {
3249   struct type *context_type = NULL;
3250   int pc = 0;
3251
3252   if (void_context_p)
3253     context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3254
3255   resolve_subexp (expp, &pc, 1, context_type);
3256 }
3257
3258 /* Resolve the operator of the subexpression beginning at
3259    position *POS of *EXPP.  "Resolving" consists of replacing
3260    the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3261    with their resolutions, replacing built-in operators with
3262    function calls to user-defined operators, where appropriate, and,
3263    when DEPROCEDURE_P is non-zero, converting function-valued variables
3264    into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
3265    are as in ada_resolve, above.  */
3266
3267 static struct value *
3268 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3269                 struct type *context_type)
3270 {
3271   int pc = *pos;
3272   int i;
3273   struct expression *exp;       /* Convenience: == *expp.  */
3274   enum exp_opcode op = (*expp)->elts[pc].opcode;
3275   struct value **argvec;        /* Vector of operand types (alloca'ed).  */
3276   int nargs;                    /* Number of operands.  */
3277   int oplen;
3278
3279   argvec = NULL;
3280   nargs = 0;
3281   exp = *expp;
3282
3283   /* Pass one: resolve operands, saving their types and updating *pos,
3284      if needed.  */
3285   switch (op)
3286     {
3287     case OP_FUNCALL:
3288       if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3289           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3290         *pos += 7;
3291       else
3292         {
3293           *pos += 3;
3294           resolve_subexp (expp, pos, 0, NULL);
3295         }
3296       nargs = longest_to_int (exp->elts[pc + 1].longconst);
3297       break;
3298
3299     case UNOP_ADDR:
3300       *pos += 1;
3301       resolve_subexp (expp, pos, 0, NULL);
3302       break;
3303
3304     case UNOP_QUAL:
3305       *pos += 3;
3306       resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3307       break;
3308
3309     case OP_ATR_MODULUS:
3310     case OP_ATR_SIZE:
3311     case OP_ATR_TAG:
3312     case OP_ATR_FIRST:
3313     case OP_ATR_LAST:
3314     case OP_ATR_LENGTH:
3315     case OP_ATR_POS:
3316     case OP_ATR_VAL:
3317     case OP_ATR_MIN:
3318     case OP_ATR_MAX:
3319     case TERNOP_IN_RANGE:
3320     case BINOP_IN_BOUNDS:
3321     case UNOP_IN_RANGE:
3322     case OP_AGGREGATE:
3323     case OP_OTHERS:
3324     case OP_CHOICES:
3325     case OP_POSITIONAL:
3326     case OP_DISCRETE_RANGE:
3327     case OP_NAME:
3328       ada_forward_operator_length (exp, pc, &oplen, &nargs);
3329       *pos += oplen;
3330       break;
3331
3332     case BINOP_ASSIGN:
3333       {
3334         struct value *arg1;
3335
3336         *pos += 1;
3337         arg1 = resolve_subexp (expp, pos, 0, NULL);
3338         if (arg1 == NULL)
3339           resolve_subexp (expp, pos, 1, NULL);
3340         else
3341           resolve_subexp (expp, pos, 1, value_type (arg1));
3342         break;
3343       }
3344
3345     case UNOP_CAST:
3346       *pos += 3;
3347       nargs = 1;
3348       break;
3349
3350     case BINOP_ADD:
3351     case BINOP_SUB:
3352     case BINOP_MUL:
3353     case BINOP_DIV:
3354     case BINOP_REM:
3355     case BINOP_MOD:
3356     case BINOP_EXP:
3357     case BINOP_CONCAT:
3358     case BINOP_LOGICAL_AND:
3359     case BINOP_LOGICAL_OR:
3360     case BINOP_BITWISE_AND:
3361     case BINOP_BITWISE_IOR:
3362     case BINOP_BITWISE_XOR:
3363
3364     case BINOP_EQUAL:
3365     case BINOP_NOTEQUAL:
3366     case BINOP_LESS:
3367     case BINOP_GTR:
3368     case BINOP_LEQ:
3369     case BINOP_GEQ:
3370
3371     case BINOP_REPEAT:
3372     case BINOP_SUBSCRIPT:
3373     case BINOP_COMMA:
3374       *pos += 1;
3375       nargs = 2;
3376       break;
3377
3378     case UNOP_NEG:
3379     case UNOP_PLUS:
3380     case UNOP_LOGICAL_NOT:
3381     case UNOP_ABS:
3382     case UNOP_IND:
3383       *pos += 1;
3384       nargs = 1;
3385       break;
3386
3387     case OP_LONG:
3388     case OP_DOUBLE:
3389     case OP_VAR_VALUE:
3390       *pos += 4;
3391       break;
3392
3393     case OP_TYPE:
3394     case OP_BOOL:
3395     case OP_LAST:
3396     case OP_INTERNALVAR:
3397       *pos += 3;
3398       break;
3399
3400     case UNOP_MEMVAL:
3401       *pos += 3;
3402       nargs = 1;
3403       break;
3404
3405     case OP_REGISTER:
3406       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3407       break;
3408
3409     case STRUCTOP_STRUCT:
3410       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3411       nargs = 1;
3412       break;
3413
3414     case TERNOP_SLICE:
3415       *pos += 1;
3416       nargs = 3;
3417       break;
3418
3419     case OP_STRING:
3420       break;
3421
3422     default:
3423       error (_("Unexpected operator during name resolution"));
3424     }
3425
3426   argvec = XALLOCAVEC (struct value *, nargs + 1);
3427   for (i = 0; i < nargs; i += 1)
3428     argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429   argvec[i] = NULL;
3430   exp = *expp;
3431
3432   /* Pass two: perform any resolution on principal operator.  */
3433   switch (op)
3434     {
3435     default:
3436       break;
3437
3438     case OP_VAR_VALUE:
3439       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3440         {
3441           struct block_symbol *candidates;
3442           int n_candidates;
3443
3444           n_candidates =
3445             ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446                                     (exp->elts[pc + 2].symbol),
3447                                     exp->elts[pc + 1].block, VAR_DOMAIN,
3448                                     &candidates);
3449
3450           if (n_candidates > 1)
3451             {
3452               /* Types tend to get re-introduced locally, so if there
3453                  are any local symbols that are not types, first filter
3454                  out all types.  */
3455               int j;
3456               for (j = 0; j < n_candidates; j += 1)
3457                 switch (SYMBOL_CLASS (candidates[j].symbol))
3458                   {
3459                   case LOC_REGISTER:
3460                   case LOC_ARG:
3461                   case LOC_REF_ARG:
3462                   case LOC_REGPARM_ADDR:
3463                   case LOC_LOCAL:
3464                   case LOC_COMPUTED:
3465                     goto FoundNonType;
3466                   default:
3467                     break;
3468                   }
3469             FoundNonType:
3470               if (j < n_candidates)
3471                 {
3472                   j = 0;
3473                   while (j < n_candidates)
3474                     {
3475                       if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3476                         {
3477                           candidates[j] = candidates[n_candidates - 1];
3478                           n_candidates -= 1;
3479                         }
3480                       else
3481                         j += 1;
3482                     }
3483                 }
3484             }
3485
3486           if (n_candidates == 0)
3487             error (_("No definition found for %s"),
3488                    SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489           else if (n_candidates == 1)
3490             i = 0;
3491           else if (deprocedure_p
3492                    && !is_nonfunction (candidates, n_candidates))
3493             {
3494               i = ada_resolve_function
3495                 (candidates, n_candidates, NULL, 0,
3496                  SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497                  context_type);
3498               if (i < 0)
3499                 error (_("Could not find a match for %s"),
3500                        SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501             }
3502           else
3503             {
3504               printf_filtered (_("Multiple matches for %s\n"),
3505                                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506               user_select_syms (candidates, n_candidates, 1);
3507               i = 0;
3508             }
3509
3510           exp->elts[pc + 1].block = candidates[i].block;
3511           exp->elts[pc + 2].symbol = candidates[i].symbol;
3512           if (innermost_block == NULL
3513               || contained_in (candidates[i].block, innermost_block))
3514             innermost_block = candidates[i].block;
3515         }
3516
3517       if (deprocedure_p
3518           && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3519               == TYPE_CODE_FUNC))
3520         {
3521           replace_operator_with_call (expp, pc, 0, 0,
3522                                       exp->elts[pc + 2].symbol,
3523                                       exp->elts[pc + 1].block);
3524           exp = *expp;
3525         }
3526       break;
3527
3528     case OP_FUNCALL:
3529       {
3530         if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3531             && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3532           {
3533             struct block_symbol *candidates;
3534             int n_candidates;
3535
3536             n_candidates =
3537               ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538                                       (exp->elts[pc + 5].symbol),
3539                                       exp->elts[pc + 4].block, VAR_DOMAIN,
3540                                       &candidates);
3541             if (n_candidates == 1)
3542               i = 0;
3543             else
3544               {
3545                 i = ada_resolve_function
3546                   (candidates, n_candidates,
3547                    argvec, nargs,
3548                    SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549                    context_type);
3550                 if (i < 0)
3551                   error (_("Could not find a match for %s"),
3552                          SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553               }
3554
3555             exp->elts[pc + 4].block = candidates[i].block;
3556             exp->elts[pc + 5].symbol = candidates[i].symbol;
3557             if (innermost_block == NULL
3558                 || contained_in (candidates[i].block, innermost_block))
3559               innermost_block = candidates[i].block;
3560           }
3561       }
3562       break;
3563     case BINOP_ADD:
3564     case BINOP_SUB:
3565     case BINOP_MUL:
3566     case BINOP_DIV:
3567     case BINOP_REM:
3568     case BINOP_MOD:
3569     case BINOP_CONCAT:
3570     case BINOP_BITWISE_AND:
3571     case BINOP_BITWISE_IOR:
3572     case BINOP_BITWISE_XOR:
3573     case BINOP_EQUAL:
3574     case BINOP_NOTEQUAL:
3575     case BINOP_LESS:
3576     case BINOP_GTR:
3577     case BINOP_LEQ:
3578     case BINOP_GEQ:
3579     case BINOP_EXP:
3580     case UNOP_NEG:
3581     case UNOP_PLUS:
3582     case UNOP_LOGICAL_NOT:
3583     case UNOP_ABS:
3584       if (possible_user_operator_p (op, argvec))
3585         {
3586           struct block_symbol *candidates;
3587           int n_candidates;
3588
3589           n_candidates =
3590             ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591                                     (struct block *) NULL, VAR_DOMAIN,
3592                                     &candidates);
3593           i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3594                                     ada_decoded_op_name (op), NULL);
3595           if (i < 0)
3596             break;
3597
3598           replace_operator_with_call (expp, pc, nargs, 1,
3599                                       candidates[i].symbol,
3600                                       candidates[i].block);
3601           exp = *expp;
3602         }
3603       break;
3604
3605     case OP_TYPE:
3606     case OP_REGISTER:
3607       return NULL;
3608     }
3609
3610   *pos = pc;
3611   return evaluate_subexp_type (exp, pos);
3612 }
3613
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3615    MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616    a non-pointer.  */
3617 /* The term "match" here is rather loose.  The match is heuristic and
3618    liberal.  */
3619
3620 static int
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 {
3623   ftype = ada_check_typedef (ftype);
3624   atype = ada_check_typedef (atype);
3625
3626   if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627     ftype = TYPE_TARGET_TYPE (ftype);
3628   if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629     atype = TYPE_TARGET_TYPE (atype);
3630
3631   switch (TYPE_CODE (ftype))
3632     {
3633     default:
3634       return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635     case TYPE_CODE_PTR:
3636       if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637         return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638                                TYPE_TARGET_TYPE (atype), 0);
3639       else
3640         return (may_deref
3641                 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642     case TYPE_CODE_INT:
3643     case TYPE_CODE_ENUM:
3644     case TYPE_CODE_RANGE:
3645       switch (TYPE_CODE (atype))
3646         {
3647         case TYPE_CODE_INT:
3648         case TYPE_CODE_ENUM:
3649         case TYPE_CODE_RANGE:
3650           return 1;
3651         default:
3652           return 0;
3653         }
3654
3655     case TYPE_CODE_ARRAY:
3656       return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657               || ada_is_array_descriptor_type (atype));
3658
3659     case TYPE_CODE_STRUCT:
3660       if (ada_is_array_descriptor_type (ftype))
3661         return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662                 || ada_is_array_descriptor_type (atype));
3663       else
3664         return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665                 && !ada_is_array_descriptor_type (atype));
3666
3667     case TYPE_CODE_UNION:
3668     case TYPE_CODE_FLT:
3669       return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670     }
3671 }
3672
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674    vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3675    may also be an enumeral, in which case it is treated as a 0-
3676    argument function.  */
3677
3678 static int
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3680 {
3681   int i;
3682   struct type *func_type = SYMBOL_TYPE (func);
3683
3684   if (SYMBOL_CLASS (func) == LOC_CONST
3685       && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686     return (n_actuals == 0);
3687   else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688     return 0;
3689
3690   if (TYPE_NFIELDS (func_type) != n_actuals)
3691     return 0;
3692
3693   for (i = 0; i < n_actuals; i += 1)
3694     {
3695       if (actuals[i] == NULL)
3696         return 0;
3697       else
3698         {
3699           struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700                                                                    i));
3701           struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702
3703           if (!ada_type_match (ftype, atype, 1))
3704             return 0;
3705         }
3706     }
3707   return 1;
3708 }
3709
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711    compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3712    FUNC_TYPE is not a valid function type with a non-null return type
3713    or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3714
3715 static int
3716 return_match (struct type *func_type, struct type *context_type)
3717 {
3718   struct type *return_type;
3719
3720   if (func_type == NULL)
3721     return 1;
3722
3723   if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724     return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725   else
3726     return_type = get_base_type (func_type);
3727   if (return_type == NULL)
3728     return 1;
3729
3730   context_type = get_base_type (context_type);
3731
3732   if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733     return context_type == NULL || return_type == context_type;
3734   else if (context_type == NULL)
3735     return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736   else
3737     return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738 }
3739
3740
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3742    function (if any) that matches the types of the NARGS arguments in
3743    ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3744    that returns that type, then eliminate matches that don't.  If
3745    CONTEXT_TYPE is void and there is at least one match that does not
3746    return void, eliminate all matches that do.
3747
3748    Asks the user if there is more than one match remaining.  Returns -1
3749    if there is no such symbol or none is selected.  NAME is used
3750    solely for messages.  May re-arrange and modify SYMS in
3751    the process; the index returned is for the modified vector.  */
3752
3753 static int
3754 ada_resolve_function (struct block_symbol syms[],
3755                       int nsyms, struct value **args, int nargs,
3756                       const char *name, struct type *context_type)
3757 {
3758   int fallback;
3759   int k;
3760   int m;                        /* Number of hits */
3761
3762   m = 0;
3763   /* In the first pass of the loop, we only accept functions matching
3764      context_type.  If none are found, we add a second pass of the loop
3765      where every function is accepted.  */
3766   for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767     {
3768       for (k = 0; k < nsyms; k += 1)
3769         {
3770           struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771
3772           if (ada_args_match (syms[k].symbol, args, nargs)
3773               && (fallback || return_match (type, context_type)))
3774             {
3775               syms[m] = syms[k];
3776               m += 1;
3777             }
3778         }
3779     }
3780
3781   /* If we got multiple matches, ask the user which one to use.  Don't do this
3782      interactive thing during completion, though, as the purpose of the
3783      completion is providing a list of all possible matches.  Prompting the
3784      user to filter it down would be completely unexpected in this case.  */
3785   if (m == 0)
3786     return -1;
3787   else if (m > 1 && !parse_completion)
3788     {
3789       printf_filtered (_("Multiple matches for %s\n"), name);
3790       user_select_syms (syms, m, 1);
3791       return 0;
3792     }
3793   return 0;
3794 }
3795
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797    in a listing of choices during disambiguation (see sort_choices, below).
3798    The idea is that overloadings of a subprogram name from the
3799    same package should sort in their source order.  We settle for ordering
3800    such symbols by their trailing number (__N  or $N).  */
3801
3802 static int
3803 encoded_ordered_before (const char *N0, const char *N1)
3804 {
3805   if (N1 == NULL)
3806     return 0;
3807   else if (N0 == NULL)
3808     return 1;
3809   else
3810     {
3811       int k0, k1;
3812
3813       for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814         ;
3815       for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816         ;
3817       if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818           && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819         {
3820           int n0, n1;
3821
3822           n0 = k0;
3823           while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824             n0 -= 1;
3825           n1 = k1;
3826           while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827             n1 -= 1;
3828           if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829             return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830         }
3831       return (strcmp (N0, N1) < 0);
3832     }
3833 }
3834
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836    encoded names.  */
3837
3838 static void
3839 sort_choices (struct block_symbol syms[], int nsyms)
3840 {
3841   int i;
3842
3843   for (i = 1; i < nsyms; i += 1)
3844     {
3845       struct block_symbol sym = syms[i];
3846       int j;
3847
3848       for (j = i - 1; j >= 0; j -= 1)
3849         {
3850           if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851                                       SYMBOL_LINKAGE_NAME (sym.symbol)))
3852             break;
3853           syms[j + 1] = syms[j];
3854         }
3855       syms[j + 1] = sym;
3856     }
3857 }
3858
3859 /* Whether GDB should display formals and return types for functions in the
3860    overloads selection menu.  */
3861 static int print_signatures = 1;
3862
3863 /* Print the signature for SYM on STREAM according to the FLAGS options.  For
3864    all but functions, the signature is just the name of the symbol.  For
3865    functions, this is the name of the function, the list of types for formals
3866    and the return type (if any).  */
3867
3868 static void
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870                             const struct type_print_options *flags)
3871 {
3872   struct type *type = SYMBOL_TYPE (sym);
3873
3874   fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875   if (!print_signatures
3876       || type == NULL
3877       || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878     return;
3879
3880   if (TYPE_NFIELDS (type) > 0)
3881     {
3882       int i;
3883
3884       fprintf_filtered (stream, " (");
3885       for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886         {
3887           if (i > 0)
3888             fprintf_filtered (stream, "; ");
3889           ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890                           flags);
3891         }
3892       fprintf_filtered (stream, ")");
3893     }
3894   if (TYPE_TARGET_TYPE (type) != NULL
3895       && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896     {
3897       fprintf_filtered (stream, " return ");
3898       ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899     }
3900 }
3901
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 
3903    by asking the user (if necessary), returning the number selected, 
3904    and setting the first elements of SYMS items.  Error if no symbols
3905    selected.  */
3906
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908    to be re-integrated one of these days.  */
3909
3910 int
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3912 {
3913   int i;
3914   int *chosen = XALLOCAVEC (int , nsyms);
3915   int n_chosen;
3916   int first_choice = (max_results == 1) ? 1 : 2;
3917   const char *select_mode = multiple_symbols_select_mode ();
3918
3919   if (max_results < 1)
3920     error (_("Request to select 0 symbols!"));
3921   if (nsyms <= 1)
3922     return nsyms;
3923
3924   if (select_mode == multiple_symbols_cancel)
3925     error (_("\
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3928   
3929   /* If select_mode is "all", then return all possible symbols.
3930      Only do that if more than one symbol can be selected, of course.
3931      Otherwise, display the menu as usual.  */
3932   if (select_mode == multiple_symbols_all && max_results > 1)
3933     return nsyms;
3934
3935   printf_unfiltered (_("[0] cancel\n"));
3936   if (max_results > 1)
3937     printf_unfiltered (_("[1] all\n"));
3938
3939   sort_choices (syms, nsyms);
3940
3941   for (i = 0; i < nsyms; i += 1)
3942     {
3943       if (syms[i].symbol == NULL)
3944         continue;
3945
3946       if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947         {
3948           struct symtab_and_line sal =
3949             find_function_start_sal (syms[i].symbol, 1);
3950
3951           printf_unfiltered ("[%d] ", i + first_choice);
3952           ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953                                       &type_print_raw_options);
3954           if (sal.symtab == NULL)
3955             printf_unfiltered (_(" at <no source file available>:%d\n"),
3956                                sal.line);
3957           else
3958             printf_unfiltered (_(" at %s:%d\n"),
3959                                symtab_to_filename_for_display (sal.symtab),
3960                                sal.line);
3961           continue;
3962         }
3963       else
3964         {
3965           int is_enumeral =
3966             (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967              && SYMBOL_TYPE (syms[i].symbol) != NULL
3968              && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969           struct symtab *symtab = NULL;
3970
3971           if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972             symtab = symbol_symtab (syms[i].symbol);
3973
3974           if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975             {
3976               printf_unfiltered ("[%d] ", i + first_choice);
3977               ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978                                           &type_print_raw_options);
3979               printf_unfiltered (_(" at %s:%d\n"),
3980                                  symtab_to_filename_for_display (symtab),
3981                                  SYMBOL_LINE (syms[i].symbol));
3982             }
3983           else if (is_enumeral
3984                    && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985             {
3986               printf_unfiltered (("[%d] "), i + first_choice);
3987               ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988                               gdb_stdout, -1, 0, &type_print_raw_options);
3989               printf_unfiltered (_("'(%s) (enumeral)\n"),
3990                                  SYMBOL_PRINT_NAME (syms[i].symbol));
3991             }
3992           else
3993             {
3994               printf_unfiltered ("[%d] ", i + first_choice);
3995               ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996                                           &type_print_raw_options);
3997
3998               if (symtab != NULL)
3999                 printf_unfiltered (is_enumeral
4000                                    ? _(" in %s (enumeral)\n")
4001                                    : _(" at %s:?\n"),
4002                                    symtab_to_filename_for_display (symtab));
4003               else
4004                 printf_unfiltered (is_enumeral
4005                                    ? _(" (enumeral)\n")
4006                                    : _(" at ?\n"));
4007             }
4008         }
4009     }
4010
4011   n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4012                              "overload-choice");
4013
4014   for (i = 0; i < n_chosen; i += 1)
4015     syms[i] = syms[chosen[i]];
4016
4017   return n_chosen;
4018 }
4019
4020 /* Read and validate a set of numeric choices from the user in the
4021    range 0 .. N_CHOICES-1.  Place the results in increasing
4022    order in CHOICES[0 .. N-1], and return N.
4023
4024    The user types choices as a sequence of numbers on one line
4025    separated by blanks, encoding them as follows:
4026
4027      + A choice of 0 means to cancel the selection, throwing an error.
4028      + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029      + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4031    The user is not allowed to choose more than MAX_RESULTS values.
4032
4033    ANNOTATION_SUFFIX, if present, is used to annotate the input
4034    prompts (for use with the -f switch).  */
4035
4036 int
4037 get_selections (int *choices, int n_choices, int max_results,
4038                 int is_all_choice, const char *annotation_suffix)
4039 {
4040   char *args;
4041   const char *prompt;
4042   int n_chosen;
4043   int first_choice = is_all_choice ? 2 : 1;
4044
4045   prompt = getenv ("PS2");
4046   if (prompt == NULL)
4047     prompt = "> ";
4048
4049   args = command_line_input (prompt, 0, annotation_suffix);
4050
4051   if (args == NULL)
4052     error_no_arg (_("one or more choice numbers"));
4053
4054   n_chosen = 0;
4055
4056   /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057      order, as given in args.  Choices are validated.  */
4058   while (1)
4059     {
4060       char *args2;
4061       int choice, j;
4062
4063       args = skip_spaces (args);
4064       if (*args == '\0' && n_chosen == 0)
4065         error_no_arg (_("one or more choice numbers"));
4066       else if (*args == '\0')
4067         break;
4068
4069       choice = strtol (args, &args2, 10);
4070       if (args == args2 || choice < 0
4071           || choice > n_choices + first_choice - 1)
4072         error (_("Argument must be choice number"));
4073       args = args2;
4074
4075       if (choice == 0)
4076         error (_("cancelled"));
4077
4078       if (choice < first_choice)
4079         {
4080           n_chosen = n_choices;
4081           for (j = 0; j < n_choices; j += 1)
4082             choices[j] = j;
4083           break;
4084         }
4085       choice -= first_choice;
4086
4087       for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4088         {
4089         }
4090
4091       if (j < 0 || choice != choices[j])
4092         {
4093           int k;
4094
4095           for (k = n_chosen - 1; k > j; k -= 1)
4096             choices[k + 1] = choices[k];
4097           choices[j + 1] = choice;
4098           n_chosen += 1;
4099         }
4100     }
4101
4102   if (n_chosen > max_results)
4103     error (_("Select no more than %d of the above"), max_results);
4104
4105   return n_chosen;
4106 }
4107
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109    on the function identified by SYM and BLOCK, and taking NARGS
4110    arguments.  Update *EXPP as needed to hold more space.  */
4111
4112 static void
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114                             int oplen, struct symbol *sym,
4115                             const struct block *block)
4116 {
4117   /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118      symbol, -oplen for operator being replaced).  */
4119   struct expression *newexp = (struct expression *)
4120     xzalloc (sizeof (struct expression)
4121              + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122   struct expression *exp = *expp;
4123
4124   newexp->nelts = exp->nelts + 7 - oplen;
4125   newexp->language_defn = exp->language_defn;
4126   newexp->gdbarch = exp->gdbarch;
4127   memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128   memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129           EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130
4131   newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132   newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134   newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135   newexp->elts[pc + 4].block = block;
4136   newexp->elts[pc + 5].symbol = sym;
4137
4138   *expp = newexp;
4139   xfree (exp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145    or FLOAT).  */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150   if (type == NULL)
4151     return 0;
4152   else
4153     {
4154       switch (TYPE_CODE (type))
4155         {
4156         case TYPE_CODE_INT:
4157         case TYPE_CODE_FLT:
4158           return 1;
4159         case TYPE_CODE_RANGE:
4160           return (type == TYPE_TARGET_TYPE (type)
4161                   || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162         default:
4163           return 0;
4164         }
4165     }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs).  */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173   if (type == NULL)
4174     return 0;
4175   else
4176     {
4177       switch (TYPE_CODE (type))
4178         {
4179         case TYPE_CODE_INT:
4180           return 1;
4181         case TYPE_CODE_RANGE:
4182           return (type == TYPE_TARGET_TYPE (type)
4183                   || integer_type_p (TYPE_TARGET_TYPE (type)));
4184         default:
4185           return 0;
4186         }
4187     }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195   if (type == NULL)
4196     return 0;
4197   else
4198     {
4199       switch (TYPE_CODE (type))
4200         {
4201         case TYPE_CODE_INT:
4202         case TYPE_CODE_RANGE:
4203         case TYPE_CODE_ENUM:
4204         case TYPE_CODE_FLT:
4205           return 1;
4206         default:
4207           return 0;
4208         }
4209     }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM).  */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217   if (type == NULL)
4218     return 0;
4219   else
4220     {
4221       switch (TYPE_CODE (type))
4222         {
4223         case TYPE_CODE_INT:
4224         case TYPE_CODE_RANGE:
4225         case TYPE_CODE_ENUM:
4226         case TYPE_CODE_BOOL:
4227           return 1;
4228         default:
4229           return 0;
4230         }
4231     }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235    a user-defined function.  Errs on the side of pre-defined operators
4236    (i.e., result 0).  */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241   struct type *type0 =
4242     (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243   struct type *type1 =
4244     (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246   if (type0 == NULL)
4247     return 0;
4248
4249   switch (op)
4250     {
4251     default:
4252       return 0;
4253
4254     case BINOP_ADD:
4255     case BINOP_SUB:
4256     case BINOP_MUL:
4257     case BINOP_DIV:
4258       return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260     case BINOP_REM:
4261     case BINOP_MOD:
4262     case BINOP_BITWISE_AND:
4263     case BINOP_BITWISE_IOR:
4264     case BINOP_BITWISE_XOR:
4265       return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267     case BINOP_EQUAL:
4268     case BINOP_NOTEQUAL:
4269     case BINOP_LESS:
4270     case BINOP_GTR:
4271     case BINOP_LEQ:
4272     case BINOP_GEQ:
4273       return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275     case BINOP_CONCAT:
4276       return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278     case BINOP_EXP:
4279       return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281     case UNOP_NEG:
4282     case UNOP_PLUS:
4283     case UNOP_LOGICAL_NOT:
4284     case UNOP_ABS:
4285       return (!numeric_type_p (type0));
4286
4287     }
4288 }
4289 \f
4290                                 /* Renaming */
4291
4292 /* NOTES: 
4293
4294    1. In the following, we assume that a renaming type's name may
4295       have an ___XD suffix.  It would be nice if this went away at some
4296       point.
4297    2. We handle both the (old) purely type-based representation of 
4298       renamings and the (new) variable-based encoding.  At some point,
4299       it is devoutly to be hoped that the former goes away 
4300       (FIXME: hilfinger-2007-07-09).
4301    3. Subprogram renamings are not implemented, although the XRS
4302       suffix is recognized (FIXME: hilfinger-2007-07-09).  */
4303
4304 /* If SYM encodes a renaming, 
4305
4306        <renaming> renames <renamed entity>,
4307
4308    sets *LEN to the length of the renamed entity's name,
4309    *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310    the string describing the subcomponent selected from the renamed
4311    entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312    (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313    are undefined).  Otherwise, returns a value indicating the category
4314    of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315    (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316    subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
4317    strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318    deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319    may be NULL, in which case they are not assigned.
4320
4321    [Currently, however, GCC does not generate subprogram renamings.]  */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325                     const char **renamed_entity, int *len, 
4326                     const char **renaming_expr)
4327 {
4328   enum ada_renaming_category kind;
4329   const char *info;
4330   const char *suffix;
4331
4332   if (sym == NULL)
4333     return ADA_NOT_RENAMING;
4334   switch (SYMBOL_CLASS (sym)) 
4335     {
4336     default:
4337       return ADA_NOT_RENAMING;
4338     case LOC_TYPEDEF:
4339       return parse_old_style_renaming (SYMBOL_TYPE (sym), 
4340                                        renamed_entity, len, renaming_expr);
4341     case LOC_LOCAL:
4342     case LOC_STATIC:
4343     case LOC_COMPUTED:
4344     case LOC_OPTIMIZED_OUT:
4345       info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346       if (info == NULL)
4347         return ADA_NOT_RENAMING;
4348       switch (info[5])
4349         {
4350         case '_':
4351           kind = ADA_OBJECT_RENAMING;
4352           info += 6;
4353           break;
4354         case 'E':
4355           kind = ADA_EXCEPTION_RENAMING;
4356           info += 7;
4357           break;
4358         case 'P':
4359           kind = ADA_PACKAGE_RENAMING;
4360           info += 7;
4361           break;
4362         case 'S':
4363           kind = ADA_SUBPROGRAM_RENAMING;
4364           info += 7;
4365           break;
4366         default:
4367           return ADA_NOT_RENAMING;
4368         }
4369     }
4370
4371   if (renamed_entity != NULL)
4372     *renamed_entity = info;
4373   suffix = strstr (info, "___XE");
4374   if (suffix == NULL || suffix == info)
4375     return ADA_NOT_RENAMING;
4376   if (len != NULL)
4377     *len = strlen (info) - strlen (suffix);
4378   suffix += 5;
4379   if (renaming_expr != NULL)
4380     *renaming_expr = suffix;
4381   return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385    exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386    *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
4387    ADA_NOT_RENAMING otherwise.  */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390                           const char **renamed_entity, int *len, 
4391                           const char **renaming_expr)
4392 {
4393   enum ada_renaming_category kind;
4394   const char *name;
4395   const char *info;
4396   const char *suffix;
4397
4398   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 
4399       || TYPE_NFIELDS (type) != 1)
4400     return ADA_NOT_RENAMING;
4401
4402   name = type_name_no_tag (type);
4403   if (name == NULL)
4404     return ADA_NOT_RENAMING;
4405   
4406   name = strstr (name, "___XR");
4407   if (name == NULL)
4408     return ADA_NOT_RENAMING;
4409   switch (name[5])
4410     {
4411     case '\0':
4412     case '_':
4413       kind = ADA_OBJECT_RENAMING;
4414       break;
4415     case 'E':
4416       kind = ADA_EXCEPTION_RENAMING;
4417       break;
4418     case 'P':
4419       kind = ADA_PACKAGE_RENAMING;
4420       break;
4421     case 'S':
4422       kind = ADA_SUBPROGRAM_RENAMING;
4423       break;
4424     default:
4425       return ADA_NOT_RENAMING;
4426     }
4427
4428   info = TYPE_FIELD_NAME (type, 0);
4429   if (info == NULL)
4430     return ADA_NOT_RENAMING;
4431   if (renamed_entity != NULL)
4432     *renamed_entity = info;
4433   suffix = strstr (info, "___XE");
4434   if (renaming_expr != NULL)
4435     *renaming_expr = suffix + 5;
4436   if (suffix == NULL || suffix == info)
4437     return ADA_NOT_RENAMING;
4438   if (len != NULL)
4439     *len = suffix - info;
4440   return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444    be a symbol encoding a renaming expression.  BLOCK is the block
4445    used to evaluate the renaming.  */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449                              const struct block *block)
4450 {
4451   const char *sym_name;
4452
4453   sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454   expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455   return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459                                 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL.  This is the identity on
4462    lvalues, and otherwise has the side-effect of allocating memory
4463    in the inferior where a copy of the value contents is copied.  */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468   if (VALUE_LVAL (val) == not_lval
4469       || VALUE_LVAL (val) == lval_internalvar)
4470     {
4471       int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472       const CORE_ADDR addr =
4473         value_as_long (value_allocate_space_in_inferior (len));
4474
4475       VALUE_LVAL (val) = lval_memory;
4476       set_value_address (val, addr);
4477       write_memory (addr, value_contents (val), len);
4478     }
4479
4480   return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484    formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4485    allocating any necessary descriptors (fat pointers), or copies of
4486    values not residing in memory, updating it as needed.  */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491   struct type *actual_type = ada_check_typedef (value_type (actual));
4492   struct type *formal_type = ada_check_typedef (formal_type0);
4493   struct type *formal_target =
4494     TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495     ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496   struct type *actual_target =
4497     TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498     ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500   if (ada_is_array_descriptor_type (formal_target)
4501       && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502     return make_array_descriptor (formal_type, actual);
4503   else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504            || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505     {
4506       struct value *result;
4507
4508       if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509           && ada_is_array_descriptor_type (actual_target))
4510         result = desc_data (actual);
4511       else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512         {
4513           if (VALUE_LVAL (actual) != lval_memory)
4514             {
4515               struct value *val;
4516
4517               actual_type = ada_check_typedef (value_type (actual));
4518               val = allocate_value (actual_type);
4519               memcpy ((char *) value_contents_raw (val),
4520                       (char *) value_contents (actual),
4521                       TYPE_LENGTH (actual_type));
4522               actual = ensure_lval (val);
4523             }
4524           result = value_addr (actual);
4525         }
4526       else
4527         return actual;
4528       return value_cast_pointers (formal_type, result, 0);
4529     }
4530   else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531     return ada_value_ind (actual);
4532   else if (ada_is_aligner_type (formal_type))
4533     {
4534       /* We need to turn this parameter into an aligner type
4535          as well.  */
4536       struct value *aligner = allocate_value (formal_type);
4537       struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539       value_assign_to_component (aligner, component, actual);
4540       return aligner;
4541     }
4542
4543   return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547    type TYPE.  This is usually an inefficient no-op except on some targets
4548    (such as AVR) where the representation of a pointer and an address
4549    differs.  */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554   struct gdbarch *gdbarch = get_type_arch (type);
4555   unsigned len = TYPE_LENGTH (type);
4556   gdb_byte *buf = (gdb_byte *) alloca (len);
4557   CORE_ADDR addr;
4558
4559   addr = value_address (value);
4560   gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561   addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562   return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567    *SP, updating *SP to reflect the new descriptor.  Return either
4568    an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569    to-descriptor type rather than a descriptor type), a struct value *
4570    representing a pointer to this descriptor.  */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575   struct type *bounds_type = desc_bounds_type (type);
4576   struct type *desc_type = desc_base_type (type);
4577   struct value *descriptor = allocate_value (desc_type);
4578   struct value *bounds = allocate_value (bounds_type);
4579   int i;
4580
4581   for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582        i > 0; i -= 1)
4583     {
4584       modify_field (value_type (bounds), value_contents_writeable (bounds),
4585                     ada_array_bound (arr, i, 0),
4586                     desc_bound_bitpos (bounds_type, i, 0),
4587                     desc_bound_bitsize (bounds_type, i, 0));
4588       modify_field (value_type (bounds), value_contents_writeable (bounds),
4589                     ada_array_bound (arr, i, 1),
4590                     desc_bound_bitpos (bounds_type, i, 1),
4591                     desc_bound_bitsize (bounds_type, i, 1));
4592     }
4593
4594   bounds = ensure_lval (bounds);
4595
4596   modify_field (value_type (descriptor),
4597                 value_contents_writeable (descriptor),
4598                 value_pointer (ensure_lval (arr),
4599                                TYPE_FIELD_TYPE (desc_type, 0)),
4600                 fat_pntr_data_bitpos (desc_type),
4601                 fat_pntr_data_bitsize (desc_type));
4602
4603   modify_field (value_type (descriptor),
4604                 value_contents_writeable (descriptor),
4605                 value_pointer (bounds,
4606                                TYPE_FIELD_TYPE (desc_type, 1)),
4607                 fat_pntr_bounds_bitpos (desc_type),
4608                 fat_pntr_bounds_bitsize (desc_type));
4609
4610   descriptor = ensure_lval (descriptor);
4611
4612   if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613     return value_addr (descriptor);
4614   else
4615     return descriptor;
4616 }
4617 \f
4618                                 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621    this cache does bring some noticeable improvements.  Depending
4622    on the type of entity being printed, the cache can make it as much
4623    as an order of magnitude faster than without it.
4624
4625    The descriptive type DWARF extension has significantly reduced
4626    the need for this cache, at least when DWARF is being used.  However,
4627    even in this case, some expensive name-based symbol searches are still
4628    sometimes necessary - to find an XVZ variable, mostly.  */
4629
4630 /* Initialize the contents of SYM_CACHE.  */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635   obstack_init (&sym_cache->cache_space);
4636   memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE.  */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644   obstack_free (&sym_cache->cache_space, NULL);
4645   xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649    If not allocated for this PSPACE yet, allocate and initialize one.  */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654   struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656   if (pspace_data->sym_cache == NULL)
4657     {
4658       pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659       ada_init_symbol_cache (pspace_data->sym_cache);
4660     }
4661
4662   return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache.  */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670   struct ada_symbol_cache *sym_cache
4671     = ada_get_symbol_cache (current_program_space);
4672
4673   obstack_free (&sym_cache->cache_space, NULL);
4674   ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678    Return it if found, or NULL otherwise.  */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683   struct ada_symbol_cache *sym_cache
4684     = ada_get_symbol_cache (current_program_space);
4685   int h = msymbol_hash (name) % HASH_SIZE;
4686   struct cache_entry **e;
4687
4688   for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689     {
4690       if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691         return e;
4692     }
4693   return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697    Return 1 if found, 0 otherwise.
4698
4699    If an entry was found and SYM is not NULL, set *SYM to the entry's
4700    SYM.  Same principle for BLOCK if not NULL.  */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704                       struct symbol **sym, const struct block **block)
4705 {
4706   struct cache_entry **e = find_entry (name, domain);
4707
4708   if (e == NULL)
4709     return 0;
4710   if (sym != NULL)
4711     *sym = (*e)->sym;
4712   if (block != NULL)
4713     *block = (*e)->block;
4714   return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718    in domain DOMAIN, save this result in our symbol cache.  */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722               const struct block *block)
4723 {
4724   struct ada_symbol_cache *sym_cache
4725     = ada_get_symbol_cache (current_program_space);
4726   int h;
4727   char *copy;
4728   struct cache_entry *e;
4729
4730   /* Symbols for builtin types don't have a block.
4731      For now don't cache such symbols.  */
4732   if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733     return;
4734
4735   /* If the symbol is a local symbol, then do not cache it, as a search
4736      for that symbol depends on the context.  To determine whether
4737      the symbol is local or not, we check the block where we found it
4738      against the global and static blocks of its associated symtab.  */
4739   if (sym
4740       && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741                             GLOBAL_BLOCK) != block
4742       && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743                             STATIC_BLOCK) != block)
4744     return;
4745
4746   h = msymbol_hash (name) % HASH_SIZE;
4747   e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748                                             sizeof (*e));
4749   e->next = sym_cache->root[h];
4750   sym_cache->root[h] = e;
4751   e->name = copy
4752     = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753   strcpy (copy, name);
4754   e->sym = sym;
4755   e->domain = domain;
4756   e->block = block;
4757 }
4758 \f
4759                                 /* Symbol Lookup */
4760
4761 /* Return nonzero if wild matching should be used when searching for
4762    all symbols matching LOOKUP_NAME.
4763
4764    LOOKUP_NAME is expected to be a symbol name after transformation
4765    for Ada lookups (see ada_name_for_lookup).  */
4766
4767 static int
4768 should_use_wild_match (const char *lookup_name)
4769 {
4770   return (strstr (lookup_name, "__") == NULL);
4771 }
4772
4773 /* Return the result of a standard (literal, C-like) lookup of NAME in
4774    given DOMAIN, visible from lexical block BLOCK.  */
4775
4776 static struct symbol *
4777 standard_lookup (const char *name, const struct block *block,
4778                  domain_enum domain)
4779 {
4780   /* Initialize it just to avoid a GCC false warning.  */
4781   struct block_symbol sym = {NULL, NULL};
4782
4783   if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784     return sym.symbol;
4785   sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4786   cache_symbol (name, domain, sym.symbol, sym.block);
4787   return sym.symbol;
4788 }
4789
4790
4791 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4792    in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions, 
4793    since they contend in overloading in the same way.  */
4794 static int
4795 is_nonfunction (struct block_symbol syms[], int n)
4796 {
4797   int i;
4798
4799   for (i = 0; i < n; i += 1)
4800     if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801         && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802             || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4803       return 1;
4804
4805   return 0;
4806 }
4807
4808 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4809    struct types.  Otherwise, they may not.  */
4810
4811 static int
4812 equiv_types (struct type *type0, struct type *type1)
4813 {
4814   if (type0 == type1)
4815     return 1;
4816   if (type0 == NULL || type1 == NULL
4817       || TYPE_CODE (type0) != TYPE_CODE (type1))
4818     return 0;
4819   if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4820        || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821       && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4822       && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4823     return 1;
4824
4825   return 0;
4826 }
4827
4828 /* True iff SYM0 represents the same entity as SYM1, or one that is
4829    no more defined than that of SYM1.  */
4830
4831 static int
4832 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4833 {
4834   if (sym0 == sym1)
4835     return 1;
4836   if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4837       || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4838     return 0;
4839
4840   switch (SYMBOL_CLASS (sym0))
4841     {
4842     case LOC_UNDEF:
4843       return 1;
4844     case LOC_TYPEDEF:
4845       {
4846         struct type *type0 = SYMBOL_TYPE (sym0);
4847         struct type *type1 = SYMBOL_TYPE (sym1);
4848         const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849         const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4850         int len0 = strlen (name0);
4851
4852         return
4853           TYPE_CODE (type0) == TYPE_CODE (type1)
4854           && (equiv_types (type0, type1)
4855               || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4856                   && startswith (name1 + len0, "___XV")));
4857       }
4858     case LOC_CONST:
4859       return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4860         && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4861     default:
4862       return 0;
4863     }
4864 }
4865
4866 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4867    records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4868
4869 static void
4870 add_defn_to_vec (struct obstack *obstackp,
4871                  struct symbol *sym,
4872                  const struct block *block)
4873 {
4874   int i;
4875   struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4876
4877   /* Do not try to complete stub types, as the debugger is probably
4878      already scanning all symbols matching a certain name at the
4879      time when this function is called.  Trying to replace the stub
4880      type by its associated full type will cause us to restart a scan
4881      which may lead to an infinite recursion.  Instead, the client
4882      collecting the matching symbols will end up collecting several
4883      matches, with at least one of them complete.  It can then filter
4884      out the stub ones if needed.  */
4885
4886   for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887     {
4888       if (lesseq_defined_than (sym, prevDefns[i].symbol))
4889         return;
4890       else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4891         {
4892           prevDefns[i].symbol = sym;
4893           prevDefns[i].block = block;
4894           return;
4895         }
4896     }
4897
4898   {
4899     struct block_symbol info;
4900
4901     info.symbol = sym;
4902     info.block = block;
4903     obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4904   }
4905 }
4906
4907 /* Number of block_symbol structures currently collected in current vector in
4908    OBSTACKP.  */
4909
4910 static int
4911 num_defns_collected (struct obstack *obstackp)
4912 {
4913   return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4914 }
4915
4916 /* Vector of block_symbol structures currently collected in current vector in
4917    OBSTACKP.  If FINISH, close off the vector and return its final address.  */
4918
4919 static struct block_symbol *
4920 defns_collected (struct obstack *obstackp, int finish)
4921 {
4922   if (finish)
4923     return (struct block_symbol *) obstack_finish (obstackp);
4924   else
4925     return (struct block_symbol *) obstack_base (obstackp);
4926 }
4927
4928 /* Return a bound minimal symbol matching NAME according to Ada
4929    decoding rules.  Returns an invalid symbol if there is no such
4930    minimal symbol.  Names prefixed with "standard__" are handled
4931    specially: "standard__" is first stripped off, and only static and
4932    global symbols are searched.  */
4933
4934 struct bound_minimal_symbol
4935 ada_lookup_simple_minsym (const char *name)
4936 {
4937   struct bound_minimal_symbol result;
4938   struct objfile *objfile;
4939   struct minimal_symbol *msymbol;
4940   const int wild_match_p = should_use_wild_match (name);
4941
4942   memset (&result, 0, sizeof (result));
4943
4944   /* Special case: If the user specifies a symbol name inside package
4945      Standard, do a non-wild matching of the symbol name without
4946      the "standard__" prefix.  This was primarily introduced in order
4947      to allow the user to specifically access the standard exceptions
4948      using, for instance, Standard.Constraint_Error when Constraint_Error
4949      is ambiguous (due to the user defining its own Constraint_Error
4950      entity inside its program).  */
4951   if (startswith (name, "standard__"))
4952     name += sizeof ("standard__") - 1;
4953
4954   ALL_MSYMBOLS (objfile, msymbol)
4955   {
4956     if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4957         && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4958       {
4959         result.minsym = msymbol;
4960         result.objfile = objfile;
4961         break;
4962       }
4963   }
4964
4965   return result;
4966 }
4967
4968 /* For all subprograms that statically enclose the subprogram of the
4969    selected frame, add symbols matching identifier NAME in DOMAIN
4970    and their blocks to the list of data in OBSTACKP, as for
4971    ada_add_block_symbols (q.v.).   If WILD_MATCH_P, treat as NAME
4972    with a wildcard prefix.  */
4973
4974 static void
4975 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4976                                   const char *name, domain_enum domain,
4977                                   int wild_match_p)
4978 {
4979 }
4980
4981 /* True if TYPE is definitely an artificial type supplied to a symbol
4982    for which no debugging information was given in the symbol file.  */
4983
4984 static int
4985 is_nondebugging_type (struct type *type)
4986 {
4987   const char *name = ada_type_name (type);
4988
4989   return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4990 }
4991
4992 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993    that are deemed "identical" for practical purposes.
4994
4995    This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996    types and that their number of enumerals is identical (in other
4997    words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)).  */
4998
4999 static int
5000 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5001 {
5002   int i;
5003
5004   /* The heuristic we use here is fairly conservative.  We consider
5005      that 2 enumerate types are identical if they have the same
5006      number of enumerals and that all enumerals have the same
5007      underlying value and name.  */
5008
5009   /* All enums in the type should have an identical underlying value.  */
5010   for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011     if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5012       return 0;
5013
5014   /* All enumerals should also have the same name (modulo any numerical
5015      suffix).  */
5016   for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017     {
5018       const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019       const char *name_2 = TYPE_FIELD_NAME (type2, i);
5020       int len_1 = strlen (name_1);
5021       int len_2 = strlen (name_2);
5022
5023       ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024       ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025       if (len_1 != len_2
5026           || strncmp (TYPE_FIELD_NAME (type1, i),
5027                       TYPE_FIELD_NAME (type2, i),
5028                       len_1) != 0)
5029         return 0;
5030     }
5031
5032   return 1;
5033 }
5034
5035 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036    that are deemed "identical" for practical purposes.  Sometimes,
5037    enumerals are not strictly identical, but their types are so similar
5038    that they can be considered identical.
5039
5040    For instance, consider the following code:
5041
5042       type Color is (Black, Red, Green, Blue, White);
5043       type RGB_Color is new Color range Red .. Blue;
5044
5045    Type RGB_Color is a subrange of an implicit type which is a copy
5046    of type Color. If we call that implicit type RGB_ColorB ("B" is
5047    for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048    As a result, when an expression references any of the enumeral
5049    by name (Eg. "print green"), the expression is technically
5050    ambiguous and the user should be asked to disambiguate. But
5051    doing so would only hinder the user, since it wouldn't matter
5052    what choice he makes, the outcome would always be the same.
5053    So, for practical purposes, we consider them as the same.  */
5054
5055 static int
5056 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5057 {
5058   int i;
5059
5060   /* Before performing a thorough comparison check of each type,
5061      we perform a series of inexpensive checks.  We expect that these
5062      checks will quickly fail in the vast majority of cases, and thus
5063      help prevent the unnecessary use of a more expensive comparison.
5064      Said comparison also expects us to make some of these checks
5065      (see ada_identical_enum_types_p).  */
5066
5067   /* Quick check: All symbols should have an enum type.  */
5068   for (i = 0; i < nsyms; i++)
5069     if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5070       return 0;
5071
5072   /* Quick check: They should all have the same value.  */
5073   for (i = 1; i < nsyms; i++)
5074     if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5075       return 0;
5076
5077   /* Quick check: They should all have the same number of enumerals.  */
5078   for (i = 1; i < nsyms; i++)
5079     if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080         != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5081       return 0;
5082
5083   /* All the sanity checks passed, so we might have a set of
5084      identical enumeration types.  Perform a more complete
5085      comparison of the type of each symbol.  */
5086   for (i = 1; i < nsyms; i++)
5087     if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088                                      SYMBOL_TYPE (syms[0].symbol)))
5089       return 0;
5090
5091   return 1;
5092 }
5093
5094 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095    duplicate other symbols in the list (The only case I know of where
5096    this happens is when object files containing stabs-in-ecoff are
5097    linked with files containing ordinary ecoff debugging symbols (or no
5098    debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
5099    Returns the number of items in the modified list.  */
5100
5101 static int
5102 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5103 {
5104   int i, j;
5105
5106   /* We should never be called with less than 2 symbols, as there
5107      cannot be any extra symbol in that case.  But it's easy to
5108      handle, since we have nothing to do in that case.  */
5109   if (nsyms < 2)
5110     return nsyms;
5111
5112   i = 0;
5113   while (i < nsyms)
5114     {
5115       int remove_p = 0;
5116
5117       /* If two symbols have the same name and one of them is a stub type,
5118          the get rid of the stub.  */
5119
5120       if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121           && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5122         {
5123           for (j = 0; j < nsyms; j++)
5124             {
5125               if (j != i
5126                   && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127                   && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129                              SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5130                 remove_p = 1;
5131             }
5132         }
5133
5134       /* Two symbols with the same name, same class and same address
5135          should be identical.  */
5136
5137       else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138           && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139           && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5140         {
5141           for (j = 0; j < nsyms; j += 1)
5142             {
5143               if (i != j
5144                   && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146                              SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147                   && SYMBOL_CLASS (syms[i].symbol)
5148                        == SYMBOL_CLASS (syms[j].symbol)
5149                   && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150                   == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5151                 remove_p = 1;
5152             }
5153         }
5154       
5155       if (remove_p)
5156         {
5157           for (j = i + 1; j < nsyms; j += 1)
5158             syms[j - 1] = syms[j];
5159           nsyms -= 1;
5160         }
5161
5162       i += 1;
5163     }
5164
5165   /* If all the remaining symbols are identical enumerals, then
5166      just keep the first one and discard the rest.
5167
5168      Unlike what we did previously, we do not discard any entry
5169      unless they are ALL identical.  This is because the symbol
5170      comparison is not a strict comparison, but rather a practical
5171      comparison.  If all symbols are considered identical, then
5172      we can just go ahead and use the first one and discard the rest.
5173      But if we cannot reduce the list to a single element, we have
5174      to ask the user to disambiguate anyways.  And if we have to
5175      present a multiple-choice menu, it's less confusing if the list
5176      isn't missing some choices that were identical and yet distinct.  */
5177   if (symbols_are_identical_enums (syms, nsyms))
5178     nsyms = 1;
5179
5180   return nsyms;
5181 }
5182
5183 /* Given a type that corresponds to a renaming entity, use the type name
5184    to extract the scope (package name or function name, fully qualified,
5185    and following the GNAT encoding convention) where this renaming has been
5186    defined.  The string returned needs to be deallocated after use.  */
5187
5188 static char *
5189 xget_renaming_scope (struct type *renaming_type)
5190 {
5191   /* The renaming types adhere to the following convention:
5192      <scope>__<rename>___<XR extension>.
5193      So, to extract the scope, we search for the "___XR" extension,
5194      and then backtrack until we find the first "__".  */
5195
5196   const char *name = type_name_no_tag (renaming_type);
5197   const char *suffix = strstr (name, "___XR");
5198   const char *last;
5199   int scope_len;
5200   char *scope;
5201
5202   /* Now, backtrack a bit until we find the first "__".  Start looking
5203      at suffix - 3, as the <rename> part is at least one character long.  */
5204
5205   for (last = suffix - 3; last > name; last--)
5206     if (last[0] == '_' && last[1] == '_')
5207       break;
5208
5209   /* Make a copy of scope and return it.  */
5210
5211   scope_len = last - name;
5212   scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5213
5214   strncpy (scope, name, scope_len);
5215   scope[scope_len] = '\0';
5216
5217   return scope;
5218 }
5219
5220 /* Return nonzero if NAME corresponds to a package name.  */
5221
5222 static int
5223 is_package_name (const char *name)
5224 {
5225   /* Here, We take advantage of the fact that no symbols are generated
5226      for packages, while symbols are generated for each function.
5227      So the condition for NAME represent a package becomes equivalent
5228      to NAME not existing in our list of symbols.  There is only one
5229      small complication with library-level functions (see below).  */
5230
5231   char *fun_name;
5232
5233   /* If it is a function that has not been defined at library level,
5234      then we should be able to look it up in the symbols.  */
5235   if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5236     return 0;
5237
5238   /* Library-level function names start with "_ada_".  See if function
5239      "_ada_" followed by NAME can be found.  */
5240
5241   /* Do a quick check that NAME does not contain "__", since library-level
5242      functions names cannot contain "__" in them.  */
5243   if (strstr (name, "__") != NULL)
5244     return 0;
5245
5246   fun_name = xstrprintf ("_ada_%s", name);
5247
5248   return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5249 }
5250
5251 /* Return nonzero if SYM corresponds to a renaming entity that is
5252    not visible from FUNCTION_NAME.  */
5253
5254 static int
5255 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5256 {
5257   char *scope;
5258   struct cleanup *old_chain;
5259
5260   if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5261     return 0;
5262
5263   scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5264   old_chain = make_cleanup (xfree, scope);
5265
5266   /* If the rename has been defined in a package, then it is visible.  */
5267   if (is_package_name (scope))
5268     {
5269       do_cleanups (old_chain);
5270       return 0;
5271     }
5272
5273   /* Check that the rename is in the current function scope by checking
5274      that its name starts with SCOPE.  */
5275
5276   /* If the function name starts with "_ada_", it means that it is
5277      a library-level function.  Strip this prefix before doing the
5278      comparison, as the encoding for the renaming does not contain
5279      this prefix.  */
5280   if (startswith (function_name, "_ada_"))
5281     function_name += 5;
5282
5283   {
5284     int is_invisible = !startswith (function_name, scope);
5285
5286     do_cleanups (old_chain);
5287     return is_invisible;
5288   }
5289 }
5290
5291 /* Remove entries from SYMS that corresponds to a renaming entity that
5292    is not visible from the function associated with CURRENT_BLOCK or
5293    that is superfluous due to the presence of more specific renaming
5294    information.  Places surviving symbols in the initial entries of
5295    SYMS and returns the number of surviving symbols.
5296    
5297    Rationale:
5298    First, in cases where an object renaming is implemented as a
5299    reference variable, GNAT may produce both the actual reference
5300    variable and the renaming encoding.  In this case, we discard the
5301    latter.
5302
5303    Second, GNAT emits a type following a specified encoding for each renaming
5304    entity.  Unfortunately, STABS currently does not support the definition
5305    of types that are local to a given lexical block, so all renamings types
5306    are emitted at library level.  As a consequence, if an application
5307    contains two renaming entities using the same name, and a user tries to
5308    print the value of one of these entities, the result of the ada symbol
5309    lookup will also contain the wrong renaming type.
5310
5311    This function partially covers for this limitation by attempting to
5312    remove from the SYMS list renaming symbols that should be visible
5313    from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
5314    method with the current information available.  The implementation
5315    below has a couple of limitations (FIXME: brobecker-2003-05-12):  
5316    
5317       - When the user tries to print a rename in a function while there
5318         is another rename entity defined in a package:  Normally, the
5319         rename in the function has precedence over the rename in the
5320         package, so the latter should be removed from the list.  This is
5321         currently not the case.
5322         
5323       - This function will incorrectly remove valid renames if
5324         the CURRENT_BLOCK corresponds to a function which symbol name
5325         has been changed by an "Export" pragma.  As a consequence,
5326         the user will be unable to print such rename entities.  */
5327
5328 static int
5329 remove_irrelevant_renamings (struct block_symbol *syms,
5330                              int nsyms, const struct block *current_block)
5331 {
5332   struct symbol *current_function;
5333   const char *current_function_name;
5334   int i;
5335   int is_new_style_renaming;
5336
5337   /* If there is both a renaming foo___XR... encoded as a variable and
5338      a simple variable foo in the same block, discard the latter.
5339      First, zero out such symbols, then compress.  */
5340   is_new_style_renaming = 0;
5341   for (i = 0; i < nsyms; i += 1)
5342     {
5343       struct symbol *sym = syms[i].symbol;
5344       const struct block *block = syms[i].block;
5345       const char *name;
5346       const char *suffix;
5347
5348       if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349         continue;
5350       name = SYMBOL_LINKAGE_NAME (sym);
5351       suffix = strstr (name, "___XR");
5352
5353       if (suffix != NULL)
5354         {
5355           int name_len = suffix - name;
5356           int j;
5357
5358           is_new_style_renaming = 1;
5359           for (j = 0; j < nsyms; j += 1)
5360             if (i != j && syms[j].symbol != NULL
5361                 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5362                             name_len) == 0
5363                 && block == syms[j].block)
5364               syms[j].symbol = NULL;
5365         }
5366     }
5367   if (is_new_style_renaming)
5368     {
5369       int j, k;
5370
5371       for (j = k = 0; j < nsyms; j += 1)
5372         if (syms[j].symbol != NULL)
5373             {
5374               syms[k] = syms[j];
5375               k += 1;
5376             }
5377       return k;
5378     }
5379
5380   /* Extract the function name associated to CURRENT_BLOCK.
5381      Abort if unable to do so.  */
5382
5383   if (current_block == NULL)
5384     return nsyms;
5385
5386   current_function = block_linkage_function (current_block);
5387   if (current_function == NULL)
5388     return nsyms;
5389
5390   current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391   if (current_function_name == NULL)
5392     return nsyms;
5393
5394   /* Check each of the symbols, and remove it from the list if it is
5395      a type corresponding to a renaming that is out of the scope of
5396      the current block.  */
5397
5398   i = 0;
5399   while (i < nsyms)
5400     {
5401       if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5402           == ADA_OBJECT_RENAMING
5403           && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5404         {
5405           int j;
5406
5407           for (j = i + 1; j < nsyms; j += 1)
5408             syms[j - 1] = syms[j];
5409           nsyms -= 1;
5410         }
5411       else
5412         i += 1;
5413     }
5414
5415   return nsyms;
5416 }
5417
5418 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419    whose name and domain match NAME and DOMAIN respectively.
5420    If no match was found, then extend the search to "enclosing"
5421    routines (in other words, if we're inside a nested function,
5422    search the symbols defined inside the enclosing functions).
5423    If WILD_MATCH_P is nonzero, perform the naming matching in
5424    "wild" mode (see function "wild_match" for more info).
5425
5426    Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
5427
5428 static void
5429 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5430                        const struct block *block, domain_enum domain,
5431                        int wild_match_p)
5432 {
5433   int block_depth = 0;
5434
5435   while (block != NULL)
5436     {
5437       block_depth += 1;
5438       ada_add_block_symbols (obstackp, block, name, domain, NULL,
5439                              wild_match_p);
5440
5441       /* If we found a non-function match, assume that's the one.  */
5442       if (is_nonfunction (defns_collected (obstackp, 0),
5443                           num_defns_collected (obstackp)))
5444         return;
5445
5446       block = BLOCK_SUPERBLOCK (block);
5447     }
5448
5449   /* If no luck so far, try to find NAME as a local symbol in some lexically
5450      enclosing subprogram.  */
5451   if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452     add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5453 }
5454
5455 /* An object of this type is used as the user_data argument when
5456    calling the map_matching_symbols method.  */
5457
5458 struct match_data
5459 {
5460   struct objfile *objfile;
5461   struct obstack *obstackp;
5462   struct symbol *arg_sym;
5463   int found_sym;
5464 };
5465
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467    to a list of symbols.  DATA0 is a pointer to a struct match_data *
5468    containing the obstack that collects the symbol list, the file that SYM
5469    must come from, a flag indicating whether a non-argument symbol has
5470    been found in the current block, and the last argument symbol
5471    passed in SYM within the current block (if any).  When SYM is null,
5472    marking the end of a block, the argument symbol is added if no
5473    other has been found.  */
5474
5475 static int
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477 {
5478   struct match_data *data = (struct match_data *) data0;
5479   
5480   if (sym == NULL)
5481     {
5482       if (!data->found_sym && data->arg_sym != NULL) 
5483         add_defn_to_vec (data->obstackp,
5484                          fixup_symbol_section (data->arg_sym, data->objfile),
5485                          block);
5486       data->found_sym = 0;
5487       data->arg_sym = NULL;
5488     }
5489   else 
5490     {
5491       if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492         return 0;
5493       else if (SYMBOL_IS_ARGUMENT (sym))
5494         data->arg_sym = sym;
5495       else
5496         {
5497           data->found_sym = 1;
5498           add_defn_to_vec (data->obstackp,
5499                            fixup_symbol_section (sym, data->objfile),
5500                            block);
5501         }
5502     }
5503   return 0;
5504 }
5505
5506 /* Helper for add_nonlocal_symbols.  Find symbols in DOMAIN which are targetted
5507    by renamings matching NAME in BLOCK.  Add these symbols to OBSTACKP.  If
5508    WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509    function "wild_match" for more information).  Return whether we found such
5510    symbols.  */
5511
5512 static int
5513 ada_add_block_renamings (struct obstack *obstackp,
5514                          const struct block *block,
5515                          const char *name,
5516                          domain_enum domain,
5517                          int wild_match_p)
5518 {
5519   struct using_direct *renaming;
5520   int defns_mark = num_defns_collected (obstackp);
5521
5522   for (renaming = block_using (block);
5523        renaming != NULL;
5524        renaming = renaming->next)
5525     {
5526       const char *r_name;
5527       int name_match;
5528
5529       /* Avoid infinite recursions: skip this renaming if we are actually
5530          already traversing it.
5531
5532          Currently, symbol lookup in Ada don't use the namespace machinery from
5533          C++/Fortran support: skip namespace imports that use them.  */
5534       if (renaming->searched
5535           || (renaming->import_src != NULL
5536               && renaming->import_src[0] != '\0')
5537           || (renaming->import_dest != NULL
5538               && renaming->import_dest[0] != '\0'))
5539         continue;
5540       renaming->searched = 1;
5541
5542       /* TODO: here, we perform another name-based symbol lookup, which can
5543          pull its own multiple overloads.  In theory, we should be able to do
5544          better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545          not a simple name.  But in order to do this, we would need to enhance
5546          the DWARF reader to associate a symbol to this renaming, instead of a
5547          name.  So, for now, we do something simpler: re-use the C++/Fortran
5548          namespace machinery.  */
5549       r_name = (renaming->alias != NULL
5550                 ? renaming->alias
5551                 : renaming->declaration);
5552       name_match
5553         = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554       if (name_match == 0)
5555         ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556                              1, NULL);
5557       renaming->searched = 0;
5558     }
5559   return num_defns_collected (obstackp) != defns_mark;
5560 }
5561
5562 /* Implements compare_names, but only applying the comparision using
5563    the given CASING.  */
5564
5565 static int
5566 compare_names_with_case (const char *string1, const char *string2,
5567                          enum case_sensitivity casing)
5568 {
5569   while (*string1 != '\0' && *string2 != '\0')
5570     {
5571       char c1, c2;
5572
5573       if (isspace (*string1) || isspace (*string2))
5574         return strcmp_iw_ordered (string1, string2);
5575
5576       if (casing == case_sensitive_off)
5577         {
5578           c1 = tolower (*string1);
5579           c2 = tolower (*string2);
5580         }
5581       else
5582         {
5583           c1 = *string1;
5584           c2 = *string2;
5585         }
5586       if (c1 != c2)
5587         break;
5588
5589       string1 += 1;
5590       string2 += 1;
5591     }
5592
5593   switch (*string1)
5594     {
5595     case '(':
5596       return strcmp_iw_ordered (string1, string2);
5597     case '_':
5598       if (*string2 == '\0')
5599         {
5600           if (is_name_suffix (string1))
5601             return 0;
5602           else
5603             return 1;
5604         }
5605       /* FALLTHROUGH */
5606     default:
5607       if (*string2 == '(')
5608         return strcmp_iw_ordered (string1, string2);
5609       else
5610         {
5611           if (casing == case_sensitive_off)
5612             return tolower (*string1) - tolower (*string2);
5613           else
5614             return *string1 - *string2;
5615         }
5616     }
5617 }
5618
5619 /* Compare STRING1 to STRING2, with results as for strcmp.
5620    Compatible with strcmp_iw_ordered in that...
5621
5622        strcmp_iw_ordered (STRING1, STRING2) <= 0
5623
5624    ... implies...
5625
5626        compare_names (STRING1, STRING2) <= 0
5627
5628    (they may differ as to what symbols compare equal).  */
5629
5630 static int
5631 compare_names (const char *string1, const char *string2)
5632 {
5633   int result;
5634
5635   /* Similar to what strcmp_iw_ordered does, we need to perform
5636      a case-insensitive comparison first, and only resort to
5637      a second, case-sensitive, comparison if the first one was
5638      not sufficient to differentiate the two strings.  */
5639
5640   result = compare_names_with_case (string1, string2, case_sensitive_off);
5641   if (result == 0)
5642     result = compare_names_with_case (string1, string2, case_sensitive_on);
5643
5644   return result;
5645 }
5646
5647 /* Add to OBSTACKP all non-local symbols whose name and domain match
5648    NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
5649    symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
5650
5651 static void
5652 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653                       domain_enum domain, int global,
5654                       int is_wild_match)
5655 {
5656   struct objfile *objfile;
5657   struct compunit_symtab *cu;
5658   struct match_data data;
5659
5660   memset (&data, 0, sizeof data);
5661   data.obstackp = obstackp;
5662
5663   ALL_OBJFILES (objfile)
5664     {
5665       data.objfile = objfile;
5666
5667       if (is_wild_match)
5668         objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669                                                aux_add_nonlocal_symbols, &data,
5670                                                wild_match, NULL);
5671       else
5672         objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673                                                aux_add_nonlocal_symbols, &data,
5674                                                full_match, compare_names);
5675
5676       ALL_OBJFILE_COMPUNITS (objfile, cu)
5677         {
5678           const struct block *global_block
5679             = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681           if (ada_add_block_renamings (obstackp, global_block , name, domain,
5682                                        is_wild_match))
5683             data.found_sym = 1;
5684         }
5685     }
5686
5687   if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688     {
5689       ALL_OBJFILES (objfile)
5690         {
5691           char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5692           strcpy (name1, "_ada_");
5693           strcpy (name1 + sizeof ("_ada_") - 1, name);
5694           data.objfile = objfile;
5695           objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696                                                  global,
5697                                                  aux_add_nonlocal_symbols,
5698                                                  &data,
5699                                                  full_match, compare_names);
5700         }
5701     }           
5702 }
5703
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5705    non-zero, enclosing scope and in global scopes, returning the number of
5706    matches.  Add these to OBSTACKP.
5707
5708    When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709    symbol match within the nest of blocks whose innermost member is BLOCK,
5710    is the one match returned (no other matches in that or
5711    enclosing blocks is returned).  If there are any matches in or
5712    surrounding BLOCK, then these alone are returned.
5713
5714    Names prefixed with "standard__" are handled specially: "standard__"
5715    is first stripped off, and only static and global symbols are searched.
5716
5717    If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718    to lookup global symbols.  */
5719
5720 static void
5721 ada_add_all_symbols (struct obstack *obstackp,
5722                      const struct block *block,
5723                      const char *name,
5724                      domain_enum domain,
5725                      int full_search,
5726                      int *made_global_lookup_p)
5727 {
5728   struct symbol *sym;
5729   const int wild_match_p = should_use_wild_match (name);
5730
5731   if (made_global_lookup_p)
5732     *made_global_lookup_p = 0;
5733
5734   /* Special case: If the user specifies a symbol name inside package
5735      Standard, do a non-wild matching of the symbol name without
5736      the "standard__" prefix.  This was primarily introduced in order
5737      to allow the user to specifically access the standard exceptions
5738      using, for instance, Standard.Constraint_Error when Constraint_Error
5739      is ambiguous (due to the user defining its own Constraint_Error
5740      entity inside its program).  */
5741   if (startswith (name, "standard__"))
5742     {
5743       block = NULL;
5744       name = name + sizeof ("standard__") - 1;
5745     }
5746
5747   /* Check the non-global symbols.  If we have ANY match, then we're done.  */
5748
5749   if (block != NULL)
5750     {
5751       if (full_search)
5752         ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5753       else
5754         {
5755           /* In the !full_search case we're are being called by
5756              ada_iterate_over_symbols, and we don't want to search
5757              superblocks.  */
5758           ada_add_block_symbols (obstackp, block, name, domain, NULL,
5759                                  wild_match_p);
5760         }
5761       if (num_defns_collected (obstackp) > 0 || !full_search)
5762         return;
5763     }
5764
5765   /* No non-global symbols found.  Check our cache to see if we have
5766      already performed this search before.  If we have, then return
5767      the same result.  */
5768
5769   if (lookup_cached_symbol (name, domain, &sym, &block))
5770     {
5771       if (sym != NULL)
5772         add_defn_to_vec (obstackp, sym, block);
5773       return;
5774     }
5775
5776   if (made_global_lookup_p)
5777     *made_global_lookup_p = 1;
5778
5779   /* Search symbols from all global blocks.  */
5780  
5781   add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5782
5783   /* Now add symbols from all per-file blocks if we've gotten no hits
5784      (not strictly correct, but perhaps better than an error).  */
5785
5786   if (num_defns_collected (obstackp) == 0)
5787     add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5788 }
5789
5790 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791    non-zero, enclosing scope and in global scopes, returning the number of
5792    matches.
5793    Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794    indicating the symbols found and the blocks and symbol tables (if
5795    any) in which they were found.  This vector is transient---good only to
5796    the next call of ada_lookup_symbol_list.
5797
5798    When full_search is non-zero, any non-function/non-enumeral
5799    symbol match within the nest of blocks whose innermost member is BLOCK,
5800    is the one match returned (no other matches in that or
5801    enclosing blocks is returned).  If there are any matches in or
5802    surrounding BLOCK, then these alone are returned.
5803
5804    Names prefixed with "standard__" are handled specially: "standard__"
5805    is first stripped off, and only static and global symbols are searched.  */
5806
5807 static int
5808 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809                                domain_enum domain,
5810                                struct block_symbol **results,
5811                                int full_search)
5812 {
5813   const int wild_match_p = should_use_wild_match (name);
5814   int syms_from_global_search;
5815   int ndefns;
5816
5817   obstack_free (&symbol_list_obstack, NULL);
5818   obstack_init (&symbol_list_obstack);
5819   ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820                        full_search, &syms_from_global_search);
5821
5822   ndefns = num_defns_collected (&symbol_list_obstack);
5823   *results = defns_collected (&symbol_list_obstack, 1);
5824
5825   ndefns = remove_extra_symbols (*results, ndefns);
5826
5827   if (ndefns == 0 && full_search && syms_from_global_search)
5828     cache_symbol (name, domain, NULL, NULL);
5829
5830   if (ndefns == 1 && full_search && syms_from_global_search)
5831     cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5832
5833   ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5834   return ndefns;
5835 }
5836
5837 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838    in global scopes, returning the number of matches, and setting *RESULTS
5839    to a vector of (SYM,BLOCK) tuples.
5840    See ada_lookup_symbol_list_worker for further details.  */
5841
5842 int
5843 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5844                         domain_enum domain, struct block_symbol **results)
5845 {
5846   return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5847 }
5848
5849 /* Implementation of the la_iterate_over_symbols method.  */
5850
5851 static void
5852 ada_iterate_over_symbols
5853   (const struct block *block, const char *name, domain_enum domain,
5854    gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856   int ndefs, i;
5857   struct block_symbol *results;
5858
5859   ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860   for (i = 0; i < ndefs; ++i)
5861     {
5862       if (!callback (results[i].symbol))
5863         break;
5864     }
5865 }
5866
5867 /* If NAME is the name of an entity, return a string that should
5868    be used to look that entity up in Ada units.
5869
5870    NAME can have any form that the "break" or "print" commands might
5871    recognize.  In other words, it does not have to be the "natural"
5872    name, or the "encoded" name.  */
5873
5874 std::string
5875 ada_name_for_lookup (const char *name)
5876 {
5877   int nlen = strlen (name);
5878
5879   if (name[0] == '<' && name[nlen - 1] == '>')
5880     return std::string (name + 1, nlen - 2);
5881   else
5882     return ada_encode (ada_fold_name (name));
5883 }
5884
5885 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886    to 1, but choosing the first symbol found if there are multiple
5887    choices.
5888
5889    The result is stored in *INFO, which must be non-NULL.
5890    If no match is found, INFO->SYM is set to NULL.  */
5891
5892 void
5893 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5894                            domain_enum domain,
5895                            struct block_symbol *info)
5896 {
5897   struct block_symbol *candidates;
5898   int n_candidates;
5899
5900   gdb_assert (info != NULL);
5901   memset (info, 0, sizeof (struct block_symbol));
5902
5903   n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5904   if (n_candidates == 0)
5905     return;
5906
5907   *info = candidates[0];
5908   info->symbol = fixup_symbol_section (info->symbol, NULL);
5909 }
5910
5911 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912    scope and in global scopes, or NULL if none.  NAME is folded and
5913    encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
5914    choosing the first symbol if there are multiple choices.
5915    If IS_A_FIELD_OF_THIS is not NULL, it is set to zero.  */
5916
5917 struct block_symbol
5918 ada_lookup_symbol (const char *name, const struct block *block0,
5919                    domain_enum domain, int *is_a_field_of_this)
5920 {
5921   struct block_symbol info;
5922
5923   if (is_a_field_of_this != NULL)
5924     *is_a_field_of_this = 0;
5925
5926   ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5927                              block0, domain, &info);
5928   return info;
5929 }
5930
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933                             const char *name,
5934                             const struct block *block,
5935                             const domain_enum domain)
5936 {
5937   struct block_symbol sym;
5938
5939   sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940   if (sym.symbol != NULL)
5941     return sym;
5942
5943   /* If we haven't found a match at this point, try the primitive
5944      types.  In other languages, this search is performed before
5945      searching for global symbols in order to short-circuit that
5946      global-symbol search if it happens that the name corresponds
5947      to a primitive type.  But we cannot do the same in Ada, because
5948      it is perfectly legitimate for a program to declare a type which
5949      has the same name as a standard type.  If looking up a type in
5950      that situation, we have traditionally ignored the primitive type
5951      in favor of user-defined types.  This is why, unlike most other
5952      languages, we search the primitive types this late and only after
5953      having searched the global symbols without success.  */
5954
5955   if (domain == VAR_DOMAIN)
5956     {
5957       struct gdbarch *gdbarch;
5958
5959       if (block == NULL)
5960         gdbarch = target_gdbarch ();
5961       else
5962         gdbarch = block_gdbarch (block);
5963       sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964       if (sym.symbol != NULL)
5965         return sym;
5966     }
5967
5968   return (struct block_symbol) {NULL, NULL};
5969 }
5970
5971
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973    that is to be ignored for matching purposes.  Suffixes of parallel
5974    names (e.g., XVE) are not included here.  Currently, the possible suffixes
5975    are given by any of the regular expressions:
5976
5977    [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
5978    ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
5979    TKB              [subprogram suffix for task bodies]
5980    _E[0-9]+[bs]$    [protected object entry suffixes]
5981    (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982
5983    Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984    match is performed.  This sequence is used to differentiate homonyms,
5985    is an optional part of a valid name suffix.  */
5986
5987 static int
5988 is_name_suffix (const char *str)
5989 {
5990   int k;
5991   const char *matching;
5992   const int len = strlen (str);
5993
5994   /* Skip optional leading __[0-9]+.  */
5995
5996   if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997     {
5998       str += 3;
5999       while (isdigit (str[0]))
6000         str += 1;
6001     }
6002   
6003   /* [.$][0-9]+ */
6004
6005   if (str[0] == '.' || str[0] == '$')
6006     {
6007       matching = str + 1;
6008       while (isdigit (matching[0]))
6009         matching += 1;
6010       if (matching[0] == '\0')
6011         return 1;
6012     }
6013
6014   /* ___[0-9]+ */
6015
6016   if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017     {
6018       matching = str + 3;
6019       while (isdigit (matching[0]))
6020         matching += 1;
6021       if (matching[0] == '\0')
6022         return 1;
6023     }
6024
6025   /* "TKB" suffixes are used for subprograms implementing task bodies.  */
6026
6027   if (strcmp (str, "TKB") == 0)
6028     return 1;
6029
6030 #if 0
6031   /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032      with a N at the end.  Unfortunately, the compiler uses the same
6033      convention for other internal types it creates.  So treating
6034      all entity names that end with an "N" as a name suffix causes
6035      some regressions.  For instance, consider the case of an enumerated
6036      type.  To support the 'Image attribute, it creates an array whose
6037      name ends with N.
6038      Having a single character like this as a suffix carrying some
6039      information is a bit risky.  Perhaps we should change the encoding
6040      to be something like "_N" instead.  In the meantime, do not do
6041      the following check.  */
6042   /* Protected Object Subprograms */
6043   if (len == 1 && str [0] == 'N')
6044     return 1;
6045 #endif
6046
6047   /* _E[0-9]+[bs]$ */
6048   if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049     {
6050       matching = str + 3;
6051       while (isdigit (matching[0]))
6052         matching += 1;
6053       if ((matching[0] == 'b' || matching[0] == 's')
6054           && matching [1] == '\0')
6055         return 1;
6056     }
6057
6058   /* ??? We should not modify STR directly, as we are doing below.  This
6059      is fine in this case, but may become problematic later if we find
6060      that this alternative did not work, and want to try matching
6061      another one from the begining of STR.  Since we modified it, we
6062      won't be able to find the begining of the string anymore!  */
6063   if (str[0] == 'X')
6064     {
6065       str += 1;
6066       while (str[0] != '_' && str[0] != '\0')
6067         {
6068           if (str[0] != 'n' && str[0] != 'b')
6069             return 0;
6070           str += 1;
6071         }
6072     }
6073
6074   if (str[0] == '\000')
6075     return 1;
6076
6077   if (str[0] == '_')
6078     {
6079       if (str[1] != '_' || str[2] == '\000')
6080         return 0;
6081       if (str[2] == '_')
6082         {
6083           if (strcmp (str + 3, "JM") == 0)
6084             return 1;
6085           /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086              the LJM suffix in favor of the JM one.  But we will
6087              still accept LJM as a valid suffix for a reasonable
6088              amount of time, just to allow ourselves to debug programs
6089              compiled using an older version of GNAT.  */
6090           if (strcmp (str + 3, "LJM") == 0)
6091             return 1;
6092           if (str[3] != 'X')
6093             return 0;
6094           if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095               || str[4] == 'U' || str[4] == 'P')
6096             return 1;
6097           if (str[4] == 'R' && str[5] != 'T')
6098             return 1;
6099           return 0;
6100         }
6101       if (!isdigit (str[2]))
6102         return 0;
6103       for (k = 3; str[k] != '\0'; k += 1)
6104         if (!isdigit (str[k]) && str[k] != '_')
6105           return 0;
6106       return 1;
6107     }
6108   if (str[0] == '$' && isdigit (str[1]))
6109     {
6110       for (k = 2; str[k] != '\0'; k += 1)
6111         if (!isdigit (str[k]) && str[k] != '_')
6112           return 0;
6113       return 1;
6114     }
6115   return 0;
6116 }
6117
6118 /* Return non-zero if the string starting at NAME and ending before
6119    NAME_END contains no capital letters.  */
6120
6121 static int
6122 is_valid_name_for_wild_match (const char *name0)
6123 {
6124   const char *decoded_name = ada_decode (name0);
6125   int i;
6126
6127   /* If the decoded name starts with an angle bracket, it means that
6128      NAME0 does not follow the GNAT encoding format.  It should then
6129      not be allowed as a possible wild match.  */
6130   if (decoded_name[0] == '<')
6131     return 0;
6132
6133   for (i=0; decoded_name[i] != '\0'; i++)
6134     if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135       return 0;
6136
6137   return 1;
6138 }
6139
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141    that could start a simple name.  Assumes that *NAMEP points into
6142    the string beginning at NAME0.  */
6143
6144 static int
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6146 {
6147   const char *name = *namep;
6148
6149   while (1)
6150     {
6151       int t0, t1;
6152
6153       t0 = *name;
6154       if (t0 == '_')
6155         {
6156           t1 = name[1];
6157           if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158             {
6159               name += 1;
6160               if (name == name0 + 5 && startswith (name0, "_ada"))
6161                 break;
6162               else
6163                 name += 1;
6164             }
6165           else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166                                  || name[2] == target0))
6167             {
6168               name += 2;
6169               break;
6170             }
6171           else
6172             return 0;
6173         }
6174       else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175         name += 1;
6176       else
6177         return 0;
6178     }
6179
6180   *namep = name;
6181   return 1;
6182 }
6183
6184 /* Return 0 iff NAME encodes a name of the form prefix.PATN.  Ignores any
6185    informational suffixes of NAME (i.e., for which is_name_suffix is
6186    true).  Assumes that PATN is a lower-cased Ada simple name.  */
6187
6188 static int
6189 wild_match (const char *name, const char *patn)
6190 {
6191   const char *p;
6192   const char *name0 = name;
6193
6194   while (1)
6195     {
6196       const char *match = name;
6197
6198       if (*name == *patn)
6199         {
6200           for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201             if (*p != *name)
6202               break;
6203           if (*p == '\0' && is_name_suffix (name))
6204             return match != name0 && !is_valid_name_for_wild_match (name0);
6205
6206           if (name[-1] == '_')
6207             name -= 1;
6208         }
6209       if (!advance_wild_match (&name, name0, *patn))
6210         return 1;
6211     }
6212 }
6213
6214 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215    informational suffix.  */
6216
6217 static int
6218 full_match (const char *sym_name, const char *search_name)
6219 {
6220   return !match_name (sym_name, search_name, 0);
6221 }
6222
6223
6224 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225    vector *defn_symbols, updating the list of symbols in OBSTACKP 
6226    (if necessary).  If WILD, treat as NAME with a wildcard prefix.
6227    OBJFILE is the section containing BLOCK.  */
6228
6229 static void
6230 ada_add_block_symbols (struct obstack *obstackp,
6231                        const struct block *block, const char *name,
6232                        domain_enum domain, struct objfile *objfile,
6233                        int wild)
6234 {
6235   struct block_iterator iter;
6236   int name_len = strlen (name);
6237   /* A matching argument symbol, if any.  */
6238   struct symbol *arg_sym;
6239   /* Set true when we find a matching non-argument symbol.  */
6240   int found_sym;
6241   struct symbol *sym;
6242
6243   arg_sym = NULL;
6244   found_sym = 0;
6245   if (wild)
6246     {
6247       for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248            sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6249       {
6250         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251                                    SYMBOL_DOMAIN (sym), domain)
6252             && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6253           {
6254             if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255               continue;
6256             else if (SYMBOL_IS_ARGUMENT (sym))
6257               arg_sym = sym;
6258             else
6259               {
6260                 found_sym = 1;
6261                 add_defn_to_vec (obstackp,
6262                                  fixup_symbol_section (sym, objfile),
6263                                  block);
6264               }
6265           }
6266       }
6267     }
6268   else
6269     {
6270      for (sym = block_iter_match_first (block, name, full_match, &iter);
6271           sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6272       {
6273         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274                                    SYMBOL_DOMAIN (sym), domain))
6275           {
6276             if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277               {
6278                 if (SYMBOL_IS_ARGUMENT (sym))
6279                   arg_sym = sym;
6280                 else
6281                   {
6282                     found_sym = 1;
6283                     add_defn_to_vec (obstackp,
6284                                      fixup_symbol_section (sym, objfile),
6285                                      block);
6286                   }
6287               }
6288           }
6289       }
6290     }
6291
6292   /* Handle renamings.  */
6293
6294   if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6295     found_sym = 1;
6296
6297   if (!found_sym && arg_sym != NULL)
6298     {
6299       add_defn_to_vec (obstackp,
6300                        fixup_symbol_section (arg_sym, objfile),
6301                        block);
6302     }
6303
6304   if (!wild)
6305     {
6306       arg_sym = NULL;
6307       found_sym = 0;
6308
6309       ALL_BLOCK_SYMBOLS (block, iter, sym)
6310       {
6311         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312                                    SYMBOL_DOMAIN (sym), domain))
6313           {
6314             int cmp;
6315
6316             cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6317             if (cmp == 0)
6318               {
6319                 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6320                 if (cmp == 0)
6321                   cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6322                                  name_len);
6323               }
6324
6325             if (cmp == 0
6326                 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327               {
6328                 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329                   {
6330                     if (SYMBOL_IS_ARGUMENT (sym))
6331                       arg_sym = sym;
6332                     else
6333                       {
6334                         found_sym = 1;
6335                         add_defn_to_vec (obstackp,
6336                                          fixup_symbol_section (sym, objfile),
6337                                          block);
6338                       }
6339                   }
6340               }
6341           }
6342       }
6343
6344       /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345          They aren't parameters, right?  */
6346       if (!found_sym && arg_sym != NULL)
6347         {
6348           add_defn_to_vec (obstackp,
6349                            fixup_symbol_section (arg_sym, objfile),
6350                            block);
6351         }
6352     }
6353 }
6354 \f
6355
6356                                 /* Symbol Completion */
6357
6358 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359    name in a form that's appropriate for the completion.  The result
6360    does not need to be deallocated, but is only good until the next call.
6361
6362    TEXT_LEN is equal to the length of TEXT.
6363    Perform a wild match if WILD_MATCH_P is set.
6364    ENCODED_P should be set if TEXT represents the start of a symbol name
6365    in its encoded form.  */
6366
6367 static const char *
6368 symbol_completion_match (const char *sym_name,
6369                          const char *text, int text_len,
6370                          int wild_match_p, int encoded_p)
6371 {
6372   const int verbatim_match = (text[0] == '<');
6373   int match = 0;
6374
6375   if (verbatim_match)
6376     {
6377       /* Strip the leading angle bracket.  */
6378       text = text + 1;
6379       text_len--;
6380     }
6381
6382   /* First, test against the fully qualified name of the symbol.  */
6383
6384   if (strncmp (sym_name, text, text_len) == 0)
6385     match = 1;
6386
6387   if (match && !encoded_p)
6388     {
6389       /* One needed check before declaring a positive match is to verify
6390          that iff we are doing a verbatim match, the decoded version
6391          of the symbol name starts with '<'.  Otherwise, this symbol name
6392          is not a suitable completion.  */
6393       const char *sym_name_copy = sym_name;
6394       int has_angle_bracket;
6395
6396       sym_name = ada_decode (sym_name);
6397       has_angle_bracket = (sym_name[0] == '<');
6398       match = (has_angle_bracket == verbatim_match);
6399       sym_name = sym_name_copy;
6400     }
6401
6402   if (match && !verbatim_match)
6403     {
6404       /* When doing non-verbatim match, another check that needs to
6405          be done is to verify that the potentially matching symbol name
6406          does not include capital letters, because the ada-mode would
6407          not be able to understand these symbol names without the
6408          angle bracket notation.  */
6409       const char *tmp;
6410
6411       for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412       if (*tmp != '\0')
6413         match = 0;
6414     }
6415
6416   /* Second: Try wild matching...  */
6417
6418   if (!match && wild_match_p)
6419     {
6420       /* Since we are doing wild matching, this means that TEXT
6421          may represent an unqualified symbol name.  We therefore must
6422          also compare TEXT against the unqualified name of the symbol.  */
6423       sym_name = ada_unqualified_name (ada_decode (sym_name));
6424
6425       if (strncmp (sym_name, text, text_len) == 0)
6426         match = 1;
6427     }
6428
6429   /* Finally: If we found a mach, prepare the result to return.  */
6430
6431   if (!match)
6432     return NULL;
6433
6434   if (verbatim_match)
6435     sym_name = add_angle_brackets (sym_name);
6436
6437   if (!encoded_p)
6438     sym_name = ada_decode (sym_name);
6439
6440   return sym_name;
6441 }
6442
6443 /* A companion function to ada_make_symbol_completion_list().
6444    Check if SYM_NAME represents a symbol which name would be suitable
6445    to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6446    it is appended at the end of the given string vector SV.
6447
6448    ORIG_TEXT is the string original string from the user command
6449    that needs to be completed.  WORD is the entire command on which
6450    completion should be performed.  These two parameters are used to
6451    determine which part of the symbol name should be added to the
6452    completion vector.
6453    if WILD_MATCH_P is set, then wild matching is performed.
6454    ENCODED_P should be set if TEXT represents a symbol name in its
6455    encoded formed (in which case the completion should also be
6456    encoded).  */
6457
6458 static void
6459 symbol_completion_add (VEC(char_ptr) **sv,
6460                        const char *sym_name,
6461                        const char *text, int text_len,
6462                        const char *orig_text, const char *word,
6463                        int wild_match_p, int encoded_p)
6464 {
6465   const char *match = symbol_completion_match (sym_name, text, text_len,
6466                                                wild_match_p, encoded_p);
6467   char *completion;
6468
6469   if (match == NULL)
6470     return;
6471
6472   /* We found a match, so add the appropriate completion to the given
6473      string vector.  */
6474
6475   if (word == orig_text)
6476     {
6477       completion = (char *) xmalloc (strlen (match) + 5);
6478       strcpy (completion, match);
6479     }
6480   else if (word > orig_text)
6481     {
6482       /* Return some portion of sym_name.  */
6483       completion = (char *) xmalloc (strlen (match) + 5);
6484       strcpy (completion, match + (word - orig_text));
6485     }
6486   else
6487     {
6488       /* Return some of ORIG_TEXT plus sym_name.  */
6489       completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6490       strncpy (completion, word, orig_text - word);
6491       completion[orig_text - word] = '\0';
6492       strcat (completion, match);
6493     }
6494
6495   VEC_safe_push (char_ptr, *sv, completion);
6496 }
6497
6498 /* Return a list of possible symbol names completing TEXT0.  WORD is
6499    the entire command on which completion is made.  */
6500
6501 static VEC (char_ptr) *
6502 ada_make_symbol_completion_list (const char *text0, const char *word,
6503                                  enum type_code code)
6504 {
6505   char *text;
6506   int text_len;
6507   int wild_match_p;
6508   int encoded_p;
6509   VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6510   struct symbol *sym;
6511   struct compunit_symtab *s;
6512   struct minimal_symbol *msymbol;
6513   struct objfile *objfile;
6514   const struct block *b, *surrounding_static_block = 0;
6515   int i;
6516   struct block_iterator iter;
6517   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6518
6519   gdb_assert (code == TYPE_CODE_UNDEF);
6520
6521   if (text0[0] == '<')
6522     {
6523       text = xstrdup (text0);
6524       make_cleanup (xfree, text);
6525       text_len = strlen (text);
6526       wild_match_p = 0;
6527       encoded_p = 1;
6528     }
6529   else
6530     {
6531       text = xstrdup (ada_encode (text0));
6532       make_cleanup (xfree, text);
6533       text_len = strlen (text);
6534       for (i = 0; i < text_len; i++)
6535         text[i] = tolower (text[i]);
6536
6537       encoded_p = (strstr (text0, "__") != NULL);
6538       /* If the name contains a ".", then the user is entering a fully
6539          qualified entity name, and the match must not be done in wild
6540          mode.  Similarly, if the user wants to complete what looks like
6541          an encoded name, the match must not be done in wild mode.  */
6542       wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6543     }
6544
6545   /* First, look at the partial symtab symbols.  */
6546   expand_symtabs_matching (NULL,
6547                            [&] (const char *symname)
6548                            {
6549                              return symbol_completion_match (symname,
6550                                                              text, text_len,
6551                                                              wild_match_p,
6552                                                              encoded_p);
6553                            },
6554                            NULL,
6555                            ALL_DOMAIN);
6556
6557   /* At this point scan through the misc symbol vectors and add each
6558      symbol you find to the list.  Eventually we want to ignore
6559      anything that isn't a text symbol (everything else will be
6560      handled by the psymtab code above).  */
6561
6562   ALL_MSYMBOLS (objfile, msymbol)
6563   {
6564     QUIT;
6565     symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6566                            text, text_len, text0, word, wild_match_p,
6567                            encoded_p);
6568   }
6569
6570   /* Search upwards from currently selected frame (so that we can
6571      complete on local vars.  */
6572
6573   for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6574     {
6575       if (!BLOCK_SUPERBLOCK (b))
6576         surrounding_static_block = b;   /* For elmin of dups */
6577
6578       ALL_BLOCK_SYMBOLS (b, iter, sym)
6579       {
6580         symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6581                                text, text_len, text0, word,
6582                                wild_match_p, encoded_p);
6583       }
6584     }
6585
6586   /* Go through the symtabs and check the externs and statics for
6587      symbols which match.  */
6588
6589   ALL_COMPUNITS (objfile, s)
6590   {
6591     QUIT;
6592     b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6593     ALL_BLOCK_SYMBOLS (b, iter, sym)
6594     {
6595       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6596                              text, text_len, text0, word,
6597                              wild_match_p, encoded_p);
6598     }
6599   }
6600
6601   ALL_COMPUNITS (objfile, s)
6602   {
6603     QUIT;
6604     b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6605     /* Don't do this block twice.  */
6606     if (b == surrounding_static_block)
6607       continue;
6608     ALL_BLOCK_SYMBOLS (b, iter, sym)
6609     {
6610       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6611                              text, text_len, text0, word,
6612                              wild_match_p, encoded_p);
6613     }
6614   }
6615
6616   do_cleanups (old_chain);
6617   return completions;
6618 }
6619
6620                                 /* Field Access */
6621
6622 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6623    for tagged types.  */
6624
6625 static int
6626 ada_is_dispatch_table_ptr_type (struct type *type)
6627 {
6628   const char *name;
6629
6630   if (TYPE_CODE (type) != TYPE_CODE_PTR)
6631     return 0;
6632
6633   name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6634   if (name == NULL)
6635     return 0;
6636
6637   return (strcmp (name, "ada__tags__dispatch_table") == 0);
6638 }
6639
6640 /* Return non-zero if TYPE is an interface tag.  */
6641
6642 static int
6643 ada_is_interface_tag (struct type *type)
6644 {
6645   const char *name = TYPE_NAME (type);
6646
6647   if (name == NULL)
6648     return 0;
6649
6650   return (strcmp (name, "ada__tags__interface_tag") == 0);
6651 }
6652
6653 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6654    to be invisible to users.  */
6655
6656 int
6657 ada_is_ignored_field (struct type *type, int field_num)
6658 {
6659   if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6660     return 1;
6661
6662   /* Check the name of that field.  */
6663   {
6664     const char *name = TYPE_FIELD_NAME (type, field_num);
6665
6666     /* Anonymous field names should not be printed.
6667        brobecker/2007-02-20: I don't think this can actually happen
6668        but we don't want to print the value of annonymous fields anyway.  */
6669     if (name == NULL)
6670       return 1;
6671
6672     /* Normally, fields whose name start with an underscore ("_")
6673        are fields that have been internally generated by the compiler,
6674        and thus should not be printed.  The "_parent" field is special,
6675        however: This is a field internally generated by the compiler
6676        for tagged types, and it contains the components inherited from
6677        the parent type.  This field should not be printed as is, but
6678        should not be ignored either.  */
6679     if (name[0] == '_' && !startswith (name, "_parent"))
6680       return 1;
6681   }
6682
6683   /* If this is the dispatch table of a tagged type or an interface tag,
6684      then ignore.  */
6685   if (ada_is_tagged_type (type, 1)
6686       && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6687           || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6688     return 1;
6689
6690   /* Not a special field, so it should not be ignored.  */
6691   return 0;
6692 }
6693
6694 /* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
6695    pointer or reference type whose ultimate target has a tag field.  */
6696
6697 int
6698 ada_is_tagged_type (struct type *type, int refok)
6699 {
6700   return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6701 }
6702
6703 /* True iff TYPE represents the type of X'Tag */
6704
6705 int
6706 ada_is_tag_type (struct type *type)
6707 {
6708   type = ada_check_typedef (type);
6709
6710   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6711     return 0;
6712   else
6713     {
6714       const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6715
6716       return (name != NULL
6717               && strcmp (name, "ada__tags__dispatch_table") == 0);
6718     }
6719 }
6720
6721 /* The type of the tag on VAL.  */
6722
6723 struct type *
6724 ada_tag_type (struct value *val)
6725 {
6726   return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6727 }
6728
6729 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6730    retired at Ada 05).  */
6731
6732 static int
6733 is_ada95_tag (struct value *tag)
6734 {
6735   return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6736 }
6737
6738 /* The value of the tag on VAL.  */
6739
6740 struct value *
6741 ada_value_tag (struct value *val)
6742 {
6743   return ada_value_struct_elt (val, "_tag", 0);
6744 }
6745
6746 /* The value of the tag on the object of type TYPE whose contents are
6747    saved at VALADDR, if it is non-null, or is at memory address
6748    ADDRESS.  */
6749
6750 static struct value *
6751 value_tag_from_contents_and_address (struct type *type,
6752                                      const gdb_byte *valaddr,
6753                                      CORE_ADDR address)
6754 {
6755   int tag_byte_offset;
6756   struct type *tag_type;
6757
6758   if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6759                          NULL, NULL, NULL))
6760     {
6761       const gdb_byte *valaddr1 = ((valaddr == NULL)
6762                                   ? NULL
6763                                   : valaddr + tag_byte_offset);
6764       CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6765
6766       return value_from_contents_and_address (tag_type, valaddr1, address1);
6767     }
6768   return NULL;
6769 }
6770
6771 static struct type *
6772 type_from_tag (struct value *tag)
6773 {
6774   const char *type_name = ada_tag_name (tag);
6775
6776   if (type_name != NULL)
6777     return ada_find_any_type (ada_encode (type_name));
6778   return NULL;
6779 }
6780
6781 /* Given a value OBJ of a tagged type, return a value of this
6782    type at the base address of the object.  The base address, as
6783    defined in Ada.Tags, it is the address of the primary tag of
6784    the object, and therefore where the field values of its full
6785    view can be fetched.  */
6786
6787 struct value *
6788 ada_tag_value_at_base_address (struct value *obj)
6789 {
6790   struct value *val;
6791   LONGEST offset_to_top = 0;
6792   struct type *ptr_type, *obj_type;
6793   struct value *tag;
6794   CORE_ADDR base_address;
6795
6796   obj_type = value_type (obj);
6797
6798   /* It is the responsability of the caller to deref pointers.  */
6799
6800   if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6801       || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6802     return obj;
6803
6804   tag = ada_value_tag (obj);
6805   if (!tag)
6806     return obj;
6807
6808   /* Base addresses only appeared with Ada 05 and multiple inheritance.  */
6809
6810   if (is_ada95_tag (tag))
6811     return obj;
6812
6813   ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6814   ptr_type = lookup_pointer_type (ptr_type);
6815   val = value_cast (ptr_type, tag);
6816   if (!val)
6817     return obj;
6818
6819   /* It is perfectly possible that an exception be raised while
6820      trying to determine the base address, just like for the tag;
6821      see ada_tag_name for more details.  We do not print the error
6822      message for the same reason.  */
6823
6824   TRY
6825     {
6826       offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6827     }
6828
6829   CATCH (e, RETURN_MASK_ERROR)
6830     {
6831       return obj;
6832     }
6833   END_CATCH
6834
6835   /* If offset is null, nothing to do.  */
6836
6837   if (offset_to_top == 0)
6838     return obj;
6839
6840   /* -1 is a special case in Ada.Tags; however, what should be done
6841      is not quite clear from the documentation.  So do nothing for
6842      now.  */
6843
6844   if (offset_to_top == -1)
6845     return obj;
6846
6847   base_address = value_address (obj) - offset_to_top;
6848   tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6849
6850   /* Make sure that we have a proper tag at the new address.
6851      Otherwise, offset_to_top is bogus (which can happen when
6852      the object is not initialized yet).  */
6853
6854   if (!tag)
6855     return obj;
6856
6857   obj_type = type_from_tag (tag);
6858
6859   if (!obj_type)
6860     return obj;
6861
6862   return value_from_contents_and_address (obj_type, NULL, base_address);
6863 }
6864
6865 /* Return the "ada__tags__type_specific_data" type.  */
6866
6867 static struct type *
6868 ada_get_tsd_type (struct inferior *inf)
6869 {
6870   struct ada_inferior_data *data = get_ada_inferior_data (inf);
6871
6872   if (data->tsd_type == 0)
6873     data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6874   return data->tsd_type;
6875 }
6876
6877 /* Return the TSD (type-specific data) associated to the given TAG.
6878    TAG is assumed to be the tag of a tagged-type entity.
6879
6880    May return NULL if we are unable to get the TSD.  */
6881
6882 static struct value *
6883 ada_get_tsd_from_tag (struct value *tag)
6884 {
6885   struct value *val;
6886   struct type *type;
6887
6888   /* First option: The TSD is simply stored as a field of our TAG.
6889      Only older versions of GNAT would use this format, but we have
6890      to test it first, because there are no visible markers for
6891      the current approach except the absence of that field.  */
6892
6893   val = ada_value_struct_elt (tag, "tsd", 1);
6894   if (val)
6895     return val;
6896
6897   /* Try the second representation for the dispatch table (in which
6898      there is no explicit 'tsd' field in the referent of the tag pointer,
6899      and instead the tsd pointer is stored just before the dispatch
6900      table.  */
6901
6902   type = ada_get_tsd_type (current_inferior());
6903   if (type == NULL)
6904     return NULL;
6905   type = lookup_pointer_type (lookup_pointer_type (type));
6906   val = value_cast (type, tag);
6907   if (val == NULL)
6908     return NULL;
6909   return value_ind (value_ptradd (val, -1));
6910 }
6911
6912 /* Given the TSD of a tag (type-specific data), return a string
6913    containing the name of the associated type.
6914
6915    The returned value is good until the next call.  May return NULL
6916    if we are unable to determine the tag name.  */
6917
6918 static char *
6919 ada_tag_name_from_tsd (struct value *tsd)
6920 {
6921   static char name[1024];
6922   char *p;
6923   struct value *val;
6924
6925   val = ada_value_struct_elt (tsd, "expanded_name", 1);
6926   if (val == NULL)
6927     return NULL;
6928   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6929   for (p = name; *p != '\0'; p += 1)
6930     if (isalpha (*p))
6931       *p = tolower (*p);
6932   return name;
6933 }
6934
6935 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6936    a C string.
6937
6938    Return NULL if the TAG is not an Ada tag, or if we were unable to
6939    determine the name of that tag.  The result is good until the next
6940    call.  */
6941
6942 const char *
6943 ada_tag_name (struct value *tag)
6944 {
6945   char *name = NULL;
6946
6947   if (!ada_is_tag_type (value_type (tag)))
6948     return NULL;
6949
6950   /* It is perfectly possible that an exception be raised while trying
6951      to determine the TAG's name, even under normal circumstances:
6952      The associated variable may be uninitialized or corrupted, for
6953      instance. We do not let any exception propagate past this point.
6954      instead we return NULL.
6955
6956      We also do not print the error message either (which often is very
6957      low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6958      the caller print a more meaningful message if necessary.  */
6959   TRY
6960     {
6961       struct value *tsd = ada_get_tsd_from_tag (tag);
6962
6963       if (tsd != NULL)
6964         name = ada_tag_name_from_tsd (tsd);
6965     }
6966   CATCH (e, RETURN_MASK_ERROR)
6967     {
6968     }
6969   END_CATCH
6970
6971   return name;
6972 }
6973
6974 /* The parent type of TYPE, or NULL if none.  */
6975
6976 struct type *
6977 ada_parent_type (struct type *type)
6978 {
6979   int i;
6980
6981   type = ada_check_typedef (type);
6982
6983   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6984     return NULL;
6985
6986   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987     if (ada_is_parent_field (type, i))
6988       {
6989         struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6990
6991         /* If the _parent field is a pointer, then dereference it.  */
6992         if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6993           parent_type = TYPE_TARGET_TYPE (parent_type);
6994         /* If there is a parallel XVS type, get the actual base type.  */
6995         parent_type = ada_get_base_type (parent_type);
6996
6997         return ada_check_typedef (parent_type);
6998       }
6999
7000   return NULL;
7001 }
7002
7003 /* True iff field number FIELD_NUM of structure type TYPE contains the
7004    parent-type (inherited) fields of a derived type.  Assumes TYPE is
7005    a structure type with at least FIELD_NUM+1 fields.  */
7006
7007 int
7008 ada_is_parent_field (struct type *type, int field_num)
7009 {
7010   const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7011
7012   return (name != NULL
7013           && (startswith (name, "PARENT")
7014               || startswith (name, "_parent")));
7015 }
7016
7017 /* True iff field number FIELD_NUM of structure type TYPE is a
7018    transparent wrapper field (which should be silently traversed when doing
7019    field selection and flattened when printing).  Assumes TYPE is a
7020    structure type with at least FIELD_NUM+1 fields.  Such fields are always
7021    structures.  */
7022
7023 int
7024 ada_is_wrapper_field (struct type *type, int field_num)
7025 {
7026   const char *name = TYPE_FIELD_NAME (type, field_num);
7027
7028   if (name != NULL && strcmp (name, "RETVAL") == 0)
7029     {
7030       /* This happens in functions with "out" or "in out" parameters
7031          which are passed by copy.  For such functions, GNAT describes
7032          the function's return type as being a struct where the return
7033          value is in a field called RETVAL, and where the other "out"
7034          or "in out" parameters are fields of that struct.  This is not
7035          a wrapper.  */
7036       return 0;
7037     }
7038
7039   return (name != NULL
7040           && (startswith (name, "PARENT")
7041               || strcmp (name, "REP") == 0
7042               || startswith (name, "_parent")
7043               || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7044 }
7045
7046 /* True iff field number FIELD_NUM of structure or union type TYPE
7047    is a variant wrapper.  Assumes TYPE is a structure type with at least
7048    FIELD_NUM+1 fields.  */
7049
7050 int
7051 ada_is_variant_part (struct type *type, int field_num)
7052 {
7053   struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7054
7055   return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7056           || (is_dynamic_field (type, field_num)
7057               && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 
7058                   == TYPE_CODE_UNION)));
7059 }
7060
7061 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7062    whose discriminants are contained in the record type OUTER_TYPE,
7063    returns the type of the controlling discriminant for the variant.
7064    May return NULL if the type could not be found.  */
7065
7066 struct type *
7067 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7068 {
7069   const char *name = ada_variant_discrim_name (var_type);
7070
7071   return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7072 }
7073
7074 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7075    valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7076    represents a 'when others' clause; otherwise 0.  */
7077
7078 int
7079 ada_is_others_clause (struct type *type, int field_num)
7080 {
7081   const char *name = TYPE_FIELD_NAME (type, field_num);
7082
7083   return (name != NULL && name[0] == 'O');
7084 }
7085
7086 /* Assuming that TYPE0 is the type of the variant part of a record,
7087    returns the name of the discriminant controlling the variant.
7088    The value is valid until the next call to ada_variant_discrim_name.  */
7089
7090 const char *
7091 ada_variant_discrim_name (struct type *type0)
7092 {
7093   static char *result = NULL;
7094   static size_t result_len = 0;
7095   struct type *type;
7096   const char *name;
7097   const char *discrim_end;
7098   const char *discrim_start;
7099
7100   if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7101     type = TYPE_TARGET_TYPE (type0);
7102   else
7103     type = type0;
7104
7105   name = ada_type_name (type);
7106
7107   if (name == NULL || name[0] == '\000')
7108     return "";
7109
7110   for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7111        discrim_end -= 1)
7112     {
7113       if (startswith (discrim_end, "___XVN"))
7114         break;
7115     }
7116   if (discrim_end == name)
7117     return "";
7118
7119   for (discrim_start = discrim_end; discrim_start != name + 3;
7120        discrim_start -= 1)
7121     {
7122       if (discrim_start == name + 1)
7123         return "";
7124       if ((discrim_start > name + 3
7125            && startswith (discrim_start - 3, "___"))
7126           || discrim_start[-1] == '.')
7127         break;
7128     }
7129
7130   GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7131   strncpy (result, discrim_start, discrim_end - discrim_start);
7132   result[discrim_end - discrim_start] = '\0';
7133   return result;
7134 }
7135
7136 /* Scan STR for a subtype-encoded number, beginning at position K.
7137    Put the position of the character just past the number scanned in
7138    *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
7139    Return 1 if there was a valid number at the given position, and 0
7140    otherwise.  A "subtype-encoded" number consists of the absolute value
7141    in decimal, followed by the letter 'm' to indicate a negative number.
7142    Assumes 0m does not occur.  */
7143
7144 int
7145 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7146 {
7147   ULONGEST RU;
7148
7149   if (!isdigit (str[k]))
7150     return 0;
7151
7152   /* Do it the hard way so as not to make any assumption about
7153      the relationship of unsigned long (%lu scan format code) and
7154      LONGEST.  */
7155   RU = 0;
7156   while (isdigit (str[k]))
7157     {
7158       RU = RU * 10 + (str[k] - '0');
7159       k += 1;
7160     }
7161
7162   if (str[k] == 'm')
7163     {
7164       if (R != NULL)
7165         *R = (-(LONGEST) (RU - 1)) - 1;
7166       k += 1;
7167     }
7168   else if (R != NULL)
7169     *R = (LONGEST) RU;
7170
7171   /* NOTE on the above: Technically, C does not say what the results of
7172      - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7173      number representable as a LONGEST (although either would probably work
7174      in most implementations).  When RU>0, the locution in the then branch
7175      above is always equivalent to the negative of RU.  */
7176
7177   if (new_k != NULL)
7178     *new_k = k;
7179   return 1;
7180 }
7181
7182 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7183    and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7184    in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
7185
7186 int
7187 ada_in_variant (LONGEST val, struct type *type, int field_num)
7188 {
7189   const char *name = TYPE_FIELD_NAME (type, field_num);
7190   int p;
7191
7192   p = 0;
7193   while (1)
7194     {
7195       switch (name[p])
7196         {
7197         case '\0':
7198           return 0;
7199         case 'S':
7200           {
7201             LONGEST W;
7202
7203             if (!ada_scan_number (name, p + 1, &W, &p))
7204               return 0;
7205             if (val == W)
7206               return 1;
7207             break;
7208           }
7209         case 'R':
7210           {
7211             LONGEST L, U;
7212
7213             if (!ada_scan_number (name, p + 1, &L, &p)
7214                 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7215               return 0;
7216             if (val >= L && val <= U)
7217               return 1;
7218             break;
7219           }
7220         case 'O':
7221           return 1;
7222         default:
7223           return 0;
7224         }
7225     }
7226 }
7227
7228 /* FIXME: Lots of redundancy below.  Try to consolidate.  */
7229
7230 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7231    ARG_TYPE, extract and return the value of one of its (non-static)
7232    fields.  FIELDNO says which field.   Differs from value_primitive_field
7233    only in that it can handle packed values of arbitrary type.  */
7234
7235 static struct value *
7236 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7237                            struct type *arg_type)
7238 {
7239   struct type *type;
7240
7241   arg_type = ada_check_typedef (arg_type);
7242   type = TYPE_FIELD_TYPE (arg_type, fieldno);
7243
7244   /* Handle packed fields.  */
7245
7246   if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7247     {
7248       int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7249       int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7250
7251       return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7252                                              offset + bit_pos / 8,
7253                                              bit_pos % 8, bit_size, type);
7254     }
7255   else
7256     return value_primitive_field (arg1, offset, fieldno, arg_type);
7257 }
7258
7259 /* Find field with name NAME in object of type TYPE.  If found, 
7260    set the following for each argument that is non-null:
7261     - *FIELD_TYPE_P to the field's type; 
7262     - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 
7263       an object of that type;
7264     - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 
7265     - *BIT_SIZE_P to its size in bits if the field is packed, and 
7266       0 otherwise;
7267    If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7268    fields up to but not including the desired field, or by the total
7269    number of fields if not found.   A NULL value of NAME never
7270    matches; the function just counts visible fields in this case.
7271    
7272    Returns 1 if found, 0 otherwise.  */
7273
7274 static int
7275 find_struct_field (const char *name, struct type *type, int offset,
7276                    struct type **field_type_p,
7277                    int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7278                    int *index_p)
7279 {
7280   int i;
7281
7282   type = ada_check_typedef (type);
7283
7284   if (field_type_p != NULL)
7285     *field_type_p = NULL;
7286   if (byte_offset_p != NULL)
7287     *byte_offset_p = 0;
7288   if (bit_offset_p != NULL)
7289     *bit_offset_p = 0;
7290   if (bit_size_p != NULL)
7291     *bit_size_p = 0;
7292
7293   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294     {
7295       int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296       int fld_offset = offset + bit_pos / 8;
7297       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298
7299       if (t_field_name == NULL)
7300         continue;
7301
7302       else if (name != NULL && field_name_match (t_field_name, name))
7303         {
7304           int bit_size = TYPE_FIELD_BITSIZE (type, i);
7305
7306           if (field_type_p != NULL)
7307             *field_type_p = TYPE_FIELD_TYPE (type, i);
7308           if (byte_offset_p != NULL)
7309             *byte_offset_p = fld_offset;
7310           if (bit_offset_p != NULL)
7311             *bit_offset_p = bit_pos % 8;
7312           if (bit_size_p != NULL)
7313             *bit_size_p = bit_size;
7314           return 1;
7315         }
7316       else if (ada_is_wrapper_field (type, i))
7317         {
7318           if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7319                                  field_type_p, byte_offset_p, bit_offset_p,
7320                                  bit_size_p, index_p))
7321             return 1;
7322         }
7323       else if (ada_is_variant_part (type, i))
7324         {
7325           /* PNH: Wait.  Do we ever execute this section, or is ARG always of 
7326              fixed type?? */
7327           int j;
7328           struct type *field_type
7329             = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7330
7331           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7332             {
7333               if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7334                                      fld_offset
7335                                      + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336                                      field_type_p, byte_offset_p,
7337                                      bit_offset_p, bit_size_p, index_p))
7338                 return 1;
7339             }
7340         }
7341       else if (index_p != NULL)
7342         *index_p += 1;
7343     }
7344   return 0;
7345 }
7346
7347 /* Number of user-visible fields in record type TYPE.  */
7348
7349 static int
7350 num_visible_fields (struct type *type)
7351 {
7352   int n;
7353
7354   n = 0;
7355   find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7356   return n;
7357 }
7358
7359 /* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
7360    and search in it assuming it has (class) type TYPE.
7361    If found, return value, else return NULL.
7362
7363    Searches recursively through wrapper fields (e.g., '_parent').  */
7364
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7367                          struct type *type)
7368 {
7369   int i;
7370
7371   type = ada_check_typedef (type);
7372   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373     {
7374       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7375
7376       if (t_field_name == NULL)
7377         continue;
7378
7379       else if (field_name_match (t_field_name, name))
7380         return ada_value_primitive_field (arg, offset, i, type);
7381
7382       else if (ada_is_wrapper_field (type, i))
7383         {
7384           struct value *v =     /* Do not let indent join lines here.  */
7385             ada_search_struct_field (name, arg,
7386                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387                                      TYPE_FIELD_TYPE (type, i));
7388
7389           if (v != NULL)
7390             return v;
7391         }
7392
7393       else if (ada_is_variant_part (type, i))
7394         {
7395           /* PNH: Do we ever get here?  See find_struct_field.  */
7396           int j;
7397           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7398                                                                         i));
7399           int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7400
7401           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7402             {
7403               struct value *v = ada_search_struct_field /* Force line
7404                                                            break.  */
7405                 (name, arg,
7406                  var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407                  TYPE_FIELD_TYPE (field_type, j));
7408
7409               if (v != NULL)
7410                 return v;
7411             }
7412         }
7413     }
7414   return NULL;
7415 }
7416
7417 static struct value *ada_index_struct_field_1 (int *, struct value *,
7418                                                int, struct type *);
7419
7420
7421 /* Return field #INDEX in ARG, where the index is that returned by
7422  * find_struct_field through its INDEX_P argument.  Adjust the address
7423  * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7424  * If found, return value, else return NULL.  */
7425
7426 static struct value *
7427 ada_index_struct_field (int index, struct value *arg, int offset,
7428                         struct type *type)
7429 {
7430   return ada_index_struct_field_1 (&index, arg, offset, type);
7431 }
7432
7433
7434 /* Auxiliary function for ada_index_struct_field.  Like
7435  * ada_index_struct_field, but takes index from *INDEX_P and modifies
7436  * *INDEX_P.  */
7437
7438 static struct value *
7439 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7440                           struct type *type)
7441 {
7442   int i;
7443   type = ada_check_typedef (type);
7444
7445   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7446     {
7447       if (TYPE_FIELD_NAME (type, i) == NULL)
7448         continue;
7449       else if (ada_is_wrapper_field (type, i))
7450         {
7451           struct value *v =     /* Do not let indent join lines here.  */
7452             ada_index_struct_field_1 (index_p, arg,
7453                                       offset + TYPE_FIELD_BITPOS (type, i) / 8,
7454                                       TYPE_FIELD_TYPE (type, i));
7455
7456           if (v != NULL)
7457             return v;
7458         }
7459
7460       else if (ada_is_variant_part (type, i))
7461         {
7462           /* PNH: Do we ever get here?  See ada_search_struct_field,
7463              find_struct_field.  */
7464           error (_("Cannot assign this kind of variant record"));
7465         }
7466       else if (*index_p == 0)
7467         return ada_value_primitive_field (arg, offset, i, type);
7468       else
7469         *index_p -= 1;
7470     }
7471   return NULL;
7472 }
7473
7474 /* Given ARG, a value of type (pointer or reference to a)*
7475    structure/union, extract the component named NAME from the ultimate
7476    target structure/union and return it as a value with its
7477    appropriate type.
7478
7479    The routine searches for NAME among all members of the structure itself
7480    and (recursively) among all members of any wrapper members
7481    (e.g., '_parent').
7482
7483    If NO_ERR, then simply return NULL in case of error, rather than 
7484    calling error.  */
7485
7486 struct value *
7487 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7488 {
7489   struct type *t, *t1;
7490   struct value *v;
7491
7492   v = NULL;
7493   t1 = t = ada_check_typedef (value_type (arg));
7494   if (TYPE_CODE (t) == TYPE_CODE_REF)
7495     {
7496       t1 = TYPE_TARGET_TYPE (t);
7497       if (t1 == NULL)
7498         goto BadValue;
7499       t1 = ada_check_typedef (t1);
7500       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7501         {
7502           arg = coerce_ref (arg);
7503           t = t1;
7504         }
7505     }
7506
7507   while (TYPE_CODE (t) == TYPE_CODE_PTR)
7508     {
7509       t1 = TYPE_TARGET_TYPE (t);
7510       if (t1 == NULL)
7511         goto BadValue;
7512       t1 = ada_check_typedef (t1);
7513       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7514         {
7515           arg = value_ind (arg);
7516           t = t1;
7517         }
7518       else
7519         break;
7520     }
7521
7522   if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7523     goto BadValue;
7524
7525   if (t1 == t)
7526     v = ada_search_struct_field (name, arg, 0, t);
7527   else
7528     {
7529       int bit_offset, bit_size, byte_offset;
7530       struct type *field_type;
7531       CORE_ADDR address;
7532
7533       if (TYPE_CODE (t) == TYPE_CODE_PTR)
7534         address = value_address (ada_value_ind (arg));
7535       else
7536         address = value_address (ada_coerce_ref (arg));
7537
7538       t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7539       if (find_struct_field (name, t1, 0,
7540                              &field_type, &byte_offset, &bit_offset,
7541                              &bit_size, NULL))
7542         {
7543           if (bit_size != 0)
7544             {
7545               if (TYPE_CODE (t) == TYPE_CODE_REF)
7546                 arg = ada_coerce_ref (arg);
7547               else
7548                 arg = ada_value_ind (arg);
7549               v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7550                                                   bit_offset, bit_size,
7551                                                   field_type);
7552             }
7553           else
7554             v = value_at_lazy (field_type, address + byte_offset);
7555         }
7556     }
7557
7558   if (v != NULL || no_err)
7559     return v;
7560   else
7561     error (_("There is no member named %s."), name);
7562
7563  BadValue:
7564   if (no_err)
7565     return NULL;
7566   else
7567     error (_("Attempt to extract a component of "
7568              "a value that is not a record."));
7569 }
7570
7571 /* Return a string representation of type TYPE.  */
7572
7573 static std::string
7574 type_as_string (struct type *type)
7575 {
7576   string_file tmp_stream;
7577
7578   type_print (type, "", &tmp_stream, -1);
7579
7580   return std::move (tmp_stream.string ());
7581 }
7582
7583 /* Given a type TYPE, look up the type of the component of type named NAME.
7584    If DISPP is non-null, add its byte displacement from the beginning of a
7585    structure (pointed to by a value) of type TYPE to *DISPP (does not
7586    work for packed fields).
7587
7588    Matches any field whose name has NAME as a prefix, possibly
7589    followed by "___".
7590
7591    TYPE can be either a struct or union.  If REFOK, TYPE may also 
7592    be a (pointer or reference)+ to a struct or union, and the
7593    ultimate target type will be searched.
7594
7595    Looks recursively into variant clauses and parent types.
7596
7597    If NOERR is nonzero, return NULL if NAME is not suitably defined or
7598    TYPE is not a type of the right kind.  */
7599
7600 static struct type *
7601 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7602                             int noerr, int *dispp)
7603 {
7604   int i;
7605
7606   if (name == NULL)
7607     goto BadName;
7608
7609   if (refok && type != NULL)
7610     while (1)
7611       {
7612         type = ada_check_typedef (type);
7613         if (TYPE_CODE (type) != TYPE_CODE_PTR
7614             && TYPE_CODE (type) != TYPE_CODE_REF)
7615           break;
7616         type = TYPE_TARGET_TYPE (type);
7617       }
7618
7619   if (type == NULL
7620       || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7621           && TYPE_CODE (type) != TYPE_CODE_UNION))
7622     {
7623       if (noerr)
7624         return NULL;
7625
7626       error (_("Type %s is not a structure or union type"),
7627              type != NULL ? type_as_string (type).c_str () : _("(null)"));
7628     }
7629
7630   type = to_static_fixed_type (type);
7631
7632   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7633     {
7634       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7635       struct type *t;
7636       int disp;
7637
7638       if (t_field_name == NULL)
7639         continue;
7640
7641       else if (field_name_match (t_field_name, name))
7642         {
7643           if (dispp != NULL)
7644             *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7645           return TYPE_FIELD_TYPE (type, i);
7646         }
7647
7648       else if (ada_is_wrapper_field (type, i))
7649         {
7650           disp = 0;
7651           t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7652                                           0, 1, &disp);
7653           if (t != NULL)
7654             {
7655               if (dispp != NULL)
7656                 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7657               return t;
7658             }
7659         }
7660
7661       else if (ada_is_variant_part (type, i))
7662         {
7663           int j;
7664           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7665                                                                         i));
7666
7667           for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7668             {
7669               /* FIXME pnh 2008/01/26: We check for a field that is
7670                  NOT wrapped in a struct, since the compiler sometimes
7671                  generates these for unchecked variant types.  Revisit
7672                  if the compiler changes this practice.  */
7673               const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7674               disp = 0;
7675               if (v_field_name != NULL 
7676                   && field_name_match (v_field_name, name))
7677                 t = TYPE_FIELD_TYPE (field_type, j);
7678               else
7679                 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7680                                                                  j),
7681                                                 name, 0, 1, &disp);
7682
7683               if (t != NULL)
7684                 {
7685                   if (dispp != NULL)
7686                     *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7687                   return t;
7688                 }
7689             }
7690         }
7691
7692     }
7693
7694 BadName:
7695   if (!noerr)
7696     {
7697       const char *name_str = name != NULL ? name : _("<null>");
7698
7699       error (_("Type %s has no component named %s"),
7700              type_as_string (type).c_str (), name_str);
7701     }
7702
7703   return NULL;
7704 }
7705
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707    within a value of type OUTER_TYPE, return true iff VAR_TYPE
7708    represents an unchecked union (that is, the variant part of a
7709    record that is named in an Unchecked_Union pragma).  */
7710
7711 static int
7712 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7713 {
7714   const char *discrim_name = ada_variant_discrim_name (var_type);
7715
7716   return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) 
7717           == NULL);
7718 }
7719
7720
7721 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7722    within a value of type OUTER_TYPE that is stored in GDB at
7723    OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7724    numbering from 0) is applicable.  Returns -1 if none are.  */
7725
7726 int
7727 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7728                            const gdb_byte *outer_valaddr)
7729 {
7730   int others_clause;
7731   int i;
7732   const char *discrim_name = ada_variant_discrim_name (var_type);
7733   struct value *outer;
7734   struct value *discrim;
7735   LONGEST discrim_val;
7736
7737   /* Using plain value_from_contents_and_address here causes problems
7738      because we will end up trying to resolve a type that is currently
7739      being constructed.  */
7740   outer = value_from_contents_and_address_unresolved (outer_type,
7741                                                       outer_valaddr, 0);
7742   discrim = ada_value_struct_elt (outer, discrim_name, 1);
7743   if (discrim == NULL)
7744     return -1;
7745   discrim_val = value_as_long (discrim);
7746
7747   others_clause = -1;
7748   for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7749     {
7750       if (ada_is_others_clause (var_type, i))
7751         others_clause = i;
7752       else if (ada_in_variant (discrim_val, var_type, i))
7753         return i;
7754     }
7755
7756   return others_clause;
7757 }
7758 \f
7759
7760
7761                                 /* Dynamic-Sized Records */
7762
7763 /* Strategy: The type ostensibly attached to a value with dynamic size
7764    (i.e., a size that is not statically recorded in the debugging
7765    data) does not accurately reflect the size or layout of the value.
7766    Our strategy is to convert these values to values with accurate,
7767    conventional types that are constructed on the fly.  */
7768
7769 /* There is a subtle and tricky problem here.  In general, we cannot
7770    determine the size of dynamic records without its data.  However,
7771    the 'struct value' data structure, which GDB uses to represent
7772    quantities in the inferior process (the target), requires the size
7773    of the type at the time of its allocation in order to reserve space
7774    for GDB's internal copy of the data.  That's why the
7775    'to_fixed_xxx_type' routines take (target) addresses as parameters,
7776    rather than struct value*s.
7777
7778    However, GDB's internal history variables ($1, $2, etc.) are
7779    struct value*s containing internal copies of the data that are not, in
7780    general, the same as the data at their corresponding addresses in
7781    the target.  Fortunately, the types we give to these values are all
7782    conventional, fixed-size types (as per the strategy described
7783    above), so that we don't usually have to perform the
7784    'to_fixed_xxx_type' conversions to look at their values.
7785    Unfortunately, there is one exception: if one of the internal
7786    history variables is an array whose elements are unconstrained
7787    records, then we will need to create distinct fixed types for each
7788    element selected.  */
7789
7790 /* The upshot of all of this is that many routines take a (type, host
7791    address, target address) triple as arguments to represent a value.
7792    The host address, if non-null, is supposed to contain an internal
7793    copy of the relevant data; otherwise, the program is to consult the
7794    target at the target address.  */
7795
7796 /* Assuming that VAL0 represents a pointer value, the result of
7797    dereferencing it.  Differs from value_ind in its treatment of
7798    dynamic-sized types.  */
7799
7800 struct value *
7801 ada_value_ind (struct value *val0)
7802 {
7803   struct value *val = value_ind (val0);
7804
7805   if (ada_is_tagged_type (value_type (val), 0))
7806     val = ada_tag_value_at_base_address (val);
7807
7808   return ada_to_fixed_value (val);
7809 }
7810
7811 /* The value resulting from dereferencing any "reference to"
7812    qualifiers on VAL0.  */
7813
7814 static struct value *
7815 ada_coerce_ref (struct value *val0)
7816 {
7817   if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7818     {
7819       struct value *val = val0;
7820
7821       val = coerce_ref (val);
7822
7823       if (ada_is_tagged_type (value_type (val), 0))
7824         val = ada_tag_value_at_base_address (val);
7825
7826       return ada_to_fixed_value (val);
7827     }
7828   else
7829     return val0;
7830 }
7831
7832 /* Return OFF rounded upward if necessary to a multiple of
7833    ALIGNMENT (a power of 2).  */
7834
7835 static unsigned int
7836 align_value (unsigned int off, unsigned int alignment)
7837 {
7838   return (off + alignment - 1) & ~(alignment - 1);
7839 }
7840
7841 /* Return the bit alignment required for field #F of template type TYPE.  */
7842
7843 static unsigned int
7844 field_alignment (struct type *type, int f)
7845 {
7846   const char *name = TYPE_FIELD_NAME (type, f);
7847   int len;
7848   int align_offset;
7849
7850   /* The field name should never be null, unless the debugging information
7851      is somehow malformed.  In this case, we assume the field does not
7852      require any alignment.  */
7853   if (name == NULL)
7854     return 1;
7855
7856   len = strlen (name);
7857
7858   if (!isdigit (name[len - 1]))
7859     return 1;
7860
7861   if (isdigit (name[len - 2]))
7862     align_offset = len - 2;
7863   else
7864     align_offset = len - 1;
7865
7866   if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7867     return TARGET_CHAR_BIT;
7868
7869   return atoi (name + align_offset) * TARGET_CHAR_BIT;
7870 }
7871
7872 /* Find a typedef or tag symbol named NAME.  Ignores ambiguity.  */
7873
7874 static struct symbol *
7875 ada_find_any_type_symbol (const char *name)
7876 {
7877   struct symbol *sym;
7878
7879   sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7880   if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7881     return sym;
7882
7883   sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7884   return sym;
7885 }
7886
7887 /* Find a type named NAME.  Ignores ambiguity.  This routine will look
7888    solely for types defined by debug info, it will not search the GDB
7889    primitive types.  */
7890
7891 static struct type *
7892 ada_find_any_type (const char *name)
7893 {
7894   struct symbol *sym = ada_find_any_type_symbol (name);
7895
7896   if (sym != NULL)
7897     return SYMBOL_TYPE (sym);
7898
7899   return NULL;
7900 }
7901
7902 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7903    associated with NAME_SYM's name.  NAME_SYM may itself be a renaming
7904    symbol, in which case it is returned.  Otherwise, this looks for
7905    symbols whose name is that of NAME_SYM suffixed with  "___XR".
7906    Return symbol if found, and NULL otherwise.  */
7907
7908 struct symbol *
7909 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7910 {
7911   const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7912   struct symbol *sym;
7913
7914   if (strstr (name, "___XR") != NULL)
7915      return name_sym;
7916
7917   sym = find_old_style_renaming_symbol (name, block);
7918
7919   if (sym != NULL)
7920     return sym;
7921
7922   /* Not right yet.  FIXME pnh 7/20/2007.  */
7923   sym = ada_find_any_type_symbol (name);
7924   if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7925     return sym;
7926   else
7927     return NULL;
7928 }
7929
7930 static struct symbol *
7931 find_old_style_renaming_symbol (const char *name, const struct block *block)
7932 {
7933   const struct symbol *function_sym = block_linkage_function (block);
7934   char *rename;
7935
7936   if (function_sym != NULL)
7937     {
7938       /* If the symbol is defined inside a function, NAME is not fully
7939          qualified.  This means we need to prepend the function name
7940          as well as adding the ``___XR'' suffix to build the name of
7941          the associated renaming symbol.  */
7942       const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7943       /* Function names sometimes contain suffixes used
7944          for instance to qualify nested subprograms.  When building
7945          the XR type name, we need to make sure that this suffix is
7946          not included.  So do not include any suffix in the function
7947          name length below.  */
7948       int function_name_len = ada_name_prefix_len (function_name);
7949       const int rename_len = function_name_len + 2      /*  "__" */
7950         + strlen (name) + 6 /* "___XR\0" */ ;
7951
7952       /* Strip the suffix if necessary.  */
7953       ada_remove_trailing_digits (function_name, &function_name_len);
7954       ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7955       ada_remove_Xbn_suffix (function_name, &function_name_len);
7956
7957       /* Library-level functions are a special case, as GNAT adds
7958          a ``_ada_'' prefix to the function name to avoid namespace
7959          pollution.  However, the renaming symbols themselves do not
7960          have this prefix, so we need to skip this prefix if present.  */
7961       if (function_name_len > 5 /* "_ada_" */
7962           && strstr (function_name, "_ada_") == function_name)
7963         {
7964           function_name += 5;
7965           function_name_len -= 5;
7966         }
7967
7968       rename = (char *) alloca (rename_len * sizeof (char));
7969       strncpy (rename, function_name, function_name_len);
7970       xsnprintf (rename + function_name_len, rename_len - function_name_len,
7971                  "__%s___XR", name);
7972     }
7973   else
7974     {
7975       const int rename_len = strlen (name) + 6;
7976
7977       rename = (char *) alloca (rename_len * sizeof (char));
7978       xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7979     }
7980
7981   return ada_find_any_type_symbol (rename);
7982 }
7983
7984 /* Because of GNAT encoding conventions, several GDB symbols may match a
7985    given type name.  If the type denoted by TYPE0 is to be preferred to
7986    that of TYPE1 for purposes of type printing, return non-zero;
7987    otherwise return 0.  */
7988
7989 int
7990 ada_prefer_type (struct type *type0, struct type *type1)
7991 {
7992   if (type1 == NULL)
7993     return 1;
7994   else if (type0 == NULL)
7995     return 0;
7996   else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7997     return 1;
7998   else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7999     return 0;
8000   else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8001     return 1;
8002   else if (ada_is_constrained_packed_array_type (type0))
8003     return 1;
8004   else if (ada_is_array_descriptor_type (type0)
8005            && !ada_is_array_descriptor_type (type1))
8006     return 1;
8007   else
8008     {
8009       const char *type0_name = type_name_no_tag (type0);
8010       const char *type1_name = type_name_no_tag (type1);
8011
8012       if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8013           && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8014         return 1;
8015     }
8016   return 0;
8017 }
8018
8019 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8020    null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
8021
8022 const char *
8023 ada_type_name (struct type *type)
8024 {
8025   if (type == NULL)
8026     return NULL;
8027   else if (TYPE_NAME (type) != NULL)
8028     return TYPE_NAME (type);
8029   else
8030     return TYPE_TAG_NAME (type);
8031 }
8032
8033 /* Search the list of "descriptive" types associated to TYPE for a type
8034    whose name is NAME.  */
8035
8036 static struct type *
8037 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8038 {
8039   struct type *result, *tmp;
8040
8041   if (ada_ignore_descriptive_types_p)
8042     return NULL;
8043
8044   /* If there no descriptive-type info, then there is no parallel type
8045      to be found.  */
8046   if (!HAVE_GNAT_AUX_INFO (type))
8047     return NULL;
8048
8049   result = TYPE_DESCRIPTIVE_TYPE (type);
8050   while (result != NULL)
8051     {
8052       const char *result_name = ada_type_name (result);
8053
8054       if (result_name == NULL)
8055         {
8056           warning (_("unexpected null name on descriptive type"));
8057           return NULL;
8058         }
8059
8060       /* If the names match, stop.  */
8061       if (strcmp (result_name, name) == 0)
8062         break;
8063
8064       /* Otherwise, look at the next item on the list, if any.  */
8065       if (HAVE_GNAT_AUX_INFO (result))
8066         tmp = TYPE_DESCRIPTIVE_TYPE (result);
8067       else
8068         tmp = NULL;
8069
8070       /* If not found either, try after having resolved the typedef.  */
8071       if (tmp != NULL)
8072         result = tmp;
8073       else
8074         {
8075           result = check_typedef (result);
8076           if (HAVE_GNAT_AUX_INFO (result))
8077             result = TYPE_DESCRIPTIVE_TYPE (result);
8078           else
8079             result = NULL;
8080         }
8081     }
8082
8083   /* If we didn't find a match, see whether this is a packed array.  With
8084      older compilers, the descriptive type information is either absent or
8085      irrelevant when it comes to packed arrays so the above lookup fails.
8086      Fall back to using a parallel lookup by name in this case.  */
8087   if (result == NULL && ada_is_constrained_packed_array_type (type))
8088     return ada_find_any_type (name);
8089
8090   return result;
8091 }
8092
8093 /* Find a parallel type to TYPE with the specified NAME, using the
8094    descriptive type taken from the debugging information, if available,
8095    and otherwise using the (slower) name-based method.  */
8096
8097 static struct type *
8098 ada_find_parallel_type_with_name (struct type *type, const char *name)
8099 {
8100   struct type *result = NULL;
8101
8102   if (HAVE_GNAT_AUX_INFO (type))
8103     result = find_parallel_type_by_descriptive_type (type, name);
8104   else
8105     result = ada_find_any_type (name);
8106
8107   return result;
8108 }
8109
8110 /* Same as above, but specify the name of the parallel type by appending
8111    SUFFIX to the name of TYPE.  */
8112
8113 struct type *
8114 ada_find_parallel_type (struct type *type, const char *suffix)
8115 {
8116   char *name;
8117   const char *type_name = ada_type_name (type);
8118   int len;
8119
8120   if (type_name == NULL)
8121     return NULL;
8122
8123   len = strlen (type_name);
8124
8125   name = (char *) alloca (len + strlen (suffix) + 1);
8126
8127   strcpy (name, type_name);
8128   strcpy (name + len, suffix);
8129
8130   return ada_find_parallel_type_with_name (type, name);
8131 }
8132
8133 /* If TYPE is a variable-size record type, return the corresponding template
8134    type describing its fields.  Otherwise, return NULL.  */
8135
8136 static struct type *
8137 dynamic_template_type (struct type *type)
8138 {
8139   type = ada_check_typedef (type);
8140
8141   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8142       || ada_type_name (type) == NULL)
8143     return NULL;
8144   else
8145     {
8146       int len = strlen (ada_type_name (type));
8147
8148       if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8149         return type;
8150       else
8151         return ada_find_parallel_type (type, "___XVE");
8152     }
8153 }
8154
8155 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8156    non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
8157
8158 static int
8159 is_dynamic_field (struct type *templ_type, int field_num)
8160 {
8161   const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8162
8163   return name != NULL
8164     && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8165     && strstr (name, "___XVL") != NULL;
8166 }
8167
8168 /* The index of the variant field of TYPE, or -1 if TYPE does not
8169    represent a variant record type.  */
8170
8171 static int
8172 variant_field_index (struct type *type)
8173 {
8174   int f;
8175
8176   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8177     return -1;
8178
8179   for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8180     {
8181       if (ada_is_variant_part (type, f))
8182         return f;
8183     }
8184   return -1;
8185 }
8186
8187 /* A record type with no fields.  */
8188
8189 static struct type *
8190 empty_record (struct type *templ)
8191 {
8192   struct type *type = alloc_type_copy (templ);
8193
8194   TYPE_CODE (type) = TYPE_CODE_STRUCT;
8195   TYPE_NFIELDS (type) = 0;
8196   TYPE_FIELDS (type) = NULL;
8197   INIT_CPLUS_SPECIFIC (type);
8198   TYPE_NAME (type) = "<empty>";
8199   TYPE_TAG_NAME (type) = NULL;
8200   TYPE_LENGTH (type) = 0;
8201   return type;
8202 }
8203
8204 /* An ordinary record type (with fixed-length fields) that describes
8205    the value of type TYPE at VALADDR or ADDRESS (see comments at
8206    the beginning of this section) VAL according to GNAT conventions.
8207    DVAL0 should describe the (portion of a) record that contains any
8208    necessary discriminants.  It should be NULL if value_type (VAL) is
8209    an outer-level type (i.e., as opposed to a branch of a variant.)  A
8210    variant field (unless unchecked) is replaced by a particular branch
8211    of the variant.
8212
8213    If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8214    length are not statically known are discarded.  As a consequence,
8215    VALADDR, ADDRESS and DVAL0 are ignored.
8216
8217    NOTE: Limitations: For now, we assume that dynamic fields and
8218    variants occupy whole numbers of bytes.  However, they need not be
8219    byte-aligned.  */
8220
8221 struct type *
8222 ada_template_to_fixed_record_type_1 (struct type *type,
8223                                      const gdb_byte *valaddr,
8224                                      CORE_ADDR address, struct value *dval0,
8225                                      int keep_dynamic_fields)
8226 {
8227   struct value *mark = value_mark ();
8228   struct value *dval;
8229   struct type *rtype;
8230   int nfields, bit_len;
8231   int variant_field;
8232   long off;
8233   int fld_bit_len;
8234   int f;
8235
8236   /* Compute the number of fields in this record type that are going
8237      to be processed: unless keep_dynamic_fields, this includes only
8238      fields whose position and length are static will be processed.  */
8239   if (keep_dynamic_fields)
8240     nfields = TYPE_NFIELDS (type);
8241   else
8242     {
8243       nfields = 0;
8244       while (nfields < TYPE_NFIELDS (type)
8245              && !ada_is_variant_part (type, nfields)
8246              && !is_dynamic_field (type, nfields))
8247         nfields++;
8248     }
8249
8250   rtype = alloc_type_copy (type);
8251   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8252   INIT_CPLUS_SPECIFIC (rtype);
8253   TYPE_NFIELDS (rtype) = nfields;
8254   TYPE_FIELDS (rtype) = (struct field *)
8255     TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8256   memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8257   TYPE_NAME (rtype) = ada_type_name (type);
8258   TYPE_TAG_NAME (rtype) = NULL;
8259   TYPE_FIXED_INSTANCE (rtype) = 1;
8260
8261   off = 0;
8262   bit_len = 0;
8263   variant_field = -1;
8264
8265   for (f = 0; f < nfields; f += 1)
8266     {
8267       off = align_value (off, field_alignment (type, f))
8268         + TYPE_FIELD_BITPOS (type, f);
8269       SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8270       TYPE_FIELD_BITSIZE (rtype, f) = 0;
8271
8272       if (ada_is_variant_part (type, f))
8273         {
8274           variant_field = f;
8275           fld_bit_len = 0;
8276         }
8277       else if (is_dynamic_field (type, f))
8278         {
8279           const gdb_byte *field_valaddr = valaddr;
8280           CORE_ADDR field_address = address;
8281           struct type *field_type =
8282             TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8283
8284           if (dval0 == NULL)
8285             {
8286               /* rtype's length is computed based on the run-time
8287                  value of discriminants.  If the discriminants are not
8288                  initialized, the type size may be completely bogus and
8289                  GDB may fail to allocate a value for it.  So check the
8290                  size first before creating the value.  */
8291               ada_ensure_varsize_limit (rtype);
8292               /* Using plain value_from_contents_and_address here
8293                  causes problems because we will end up trying to
8294                  resolve a type that is currently being
8295                  constructed.  */
8296               dval = value_from_contents_and_address_unresolved (rtype,
8297                                                                  valaddr,
8298                                                                  address);
8299               rtype = value_type (dval);
8300             }
8301           else
8302             dval = dval0;
8303
8304           /* If the type referenced by this field is an aligner type, we need
8305              to unwrap that aligner type, because its size might not be set.
8306              Keeping the aligner type would cause us to compute the wrong
8307              size for this field, impacting the offset of the all the fields
8308              that follow this one.  */
8309           if (ada_is_aligner_type (field_type))
8310             {
8311               long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8312
8313               field_valaddr = cond_offset_host (field_valaddr, field_offset);
8314               field_address = cond_offset_target (field_address, field_offset);
8315               field_type = ada_aligned_type (field_type);
8316             }
8317
8318           field_valaddr = cond_offset_host (field_valaddr,
8319                                             off / TARGET_CHAR_BIT);
8320           field_address = cond_offset_target (field_address,
8321                                               off / TARGET_CHAR_BIT);
8322
8323           /* Get the fixed type of the field.  Note that, in this case,
8324              we do not want to get the real type out of the tag: if
8325              the current field is the parent part of a tagged record,
8326              we will get the tag of the object.  Clearly wrong: the real
8327              type of the parent is not the real type of the child.  We
8328              would end up in an infinite loop.  */
8329           field_type = ada_get_base_type (field_type);
8330           field_type = ada_to_fixed_type (field_type, field_valaddr,
8331                                           field_address, dval, 0);
8332           /* If the field size is already larger than the maximum
8333              object size, then the record itself will necessarily
8334              be larger than the maximum object size.  We need to make
8335              this check now, because the size might be so ridiculously
8336              large (due to an uninitialized variable in the inferior)
8337              that it would cause an overflow when adding it to the
8338              record size.  */
8339           ada_ensure_varsize_limit (field_type);
8340
8341           TYPE_FIELD_TYPE (rtype, f) = field_type;
8342           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8343           /* The multiplication can potentially overflow.  But because
8344              the field length has been size-checked just above, and
8345              assuming that the maximum size is a reasonable value,
8346              an overflow should not happen in practice.  So rather than
8347              adding overflow recovery code to this already complex code,
8348              we just assume that it's not going to happen.  */
8349           fld_bit_len =
8350             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8351         }
8352       else
8353         {
8354           /* Note: If this field's type is a typedef, it is important
8355              to preserve the typedef layer.
8356
8357              Otherwise, we might be transforming a typedef to a fat
8358              pointer (encoding a pointer to an unconstrained array),
8359              into a basic fat pointer (encoding an unconstrained
8360              array).  As both types are implemented using the same
8361              structure, the typedef is the only clue which allows us
8362              to distinguish between the two options.  Stripping it
8363              would prevent us from printing this field appropriately.  */
8364           TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8365           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8366           if (TYPE_FIELD_BITSIZE (type, f) > 0)
8367             fld_bit_len =
8368               TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8369           else
8370             {
8371               struct type *field_type = TYPE_FIELD_TYPE (type, f);
8372
8373               /* We need to be careful of typedefs when computing
8374                  the length of our field.  If this is a typedef,
8375                  get the length of the target type, not the length
8376                  of the typedef.  */
8377               if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8378                 field_type = ada_typedef_target_type (field_type);
8379
8380               fld_bit_len =
8381                 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8382             }
8383         }
8384       if (off + fld_bit_len > bit_len)
8385         bit_len = off + fld_bit_len;
8386       off += fld_bit_len;
8387       TYPE_LENGTH (rtype) =
8388         align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8389     }
8390
8391   /* We handle the variant part, if any, at the end because of certain
8392      odd cases in which it is re-ordered so as NOT to be the last field of
8393      the record.  This can happen in the presence of representation
8394      clauses.  */
8395   if (variant_field >= 0)
8396     {
8397       struct type *branch_type;
8398
8399       off = TYPE_FIELD_BITPOS (rtype, variant_field);
8400
8401       if (dval0 == NULL)
8402         {
8403           /* Using plain value_from_contents_and_address here causes
8404              problems because we will end up trying to resolve a type
8405              that is currently being constructed.  */
8406           dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8407                                                              address);
8408           rtype = value_type (dval);
8409         }
8410       else
8411         dval = dval0;
8412
8413       branch_type =
8414         to_fixed_variant_branch_type
8415         (TYPE_FIELD_TYPE (type, variant_field),
8416          cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8417          cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8418       if (branch_type == NULL)
8419         {
8420           for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8421             TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8422           TYPE_NFIELDS (rtype) -= 1;
8423         }
8424       else
8425         {
8426           TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8427           TYPE_FIELD_NAME (rtype, variant_field) = "S";
8428           fld_bit_len =
8429             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8430             TARGET_CHAR_BIT;
8431           if (off + fld_bit_len > bit_len)
8432             bit_len = off + fld_bit_len;
8433           TYPE_LENGTH (rtype) =
8434             align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8435         }
8436     }
8437
8438   /* According to exp_dbug.ads, the size of TYPE for variable-size records
8439      should contain the alignment of that record, which should be a strictly
8440      positive value.  If null or negative, then something is wrong, most
8441      probably in the debug info.  In that case, we don't round up the size
8442      of the resulting type.  If this record is not part of another structure,
8443      the current RTYPE length might be good enough for our purposes.  */
8444   if (TYPE_LENGTH (type) <= 0)
8445     {
8446       if (TYPE_NAME (rtype))
8447         warning (_("Invalid type size for `%s' detected: %d."),
8448                  TYPE_NAME (rtype), TYPE_LENGTH (type));
8449       else
8450         warning (_("Invalid type size for <unnamed> detected: %d."),
8451                  TYPE_LENGTH (type));
8452     }
8453   else
8454     {
8455       TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8456                                          TYPE_LENGTH (type));
8457     }
8458
8459   value_free_to_mark (mark);
8460   if (TYPE_LENGTH (rtype) > varsize_limit)
8461     error (_("record type with dynamic size is larger than varsize-limit"));
8462   return rtype;
8463 }
8464
8465 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8466    of 1.  */
8467
8468 static struct type *
8469 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8470                                CORE_ADDR address, struct value *dval0)
8471 {
8472   return ada_template_to_fixed_record_type_1 (type, valaddr,
8473                                               address, dval0, 1);
8474 }
8475
8476 /* An ordinary record type in which ___XVL-convention fields and
8477    ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8478    static approximations, containing all possible fields.  Uses
8479    no runtime values.  Useless for use in values, but that's OK,
8480    since the results are used only for type determinations.   Works on both
8481    structs and unions.  Representation note: to save space, we memorize
8482    the result of this function in the TYPE_TARGET_TYPE of the
8483    template type.  */
8484
8485 static struct type *
8486 template_to_static_fixed_type (struct type *type0)
8487 {
8488   struct type *type;
8489   int nfields;
8490   int f;
8491
8492   /* No need no do anything if the input type is already fixed.  */
8493   if (TYPE_FIXED_INSTANCE (type0))
8494     return type0;
8495
8496   /* Likewise if we already have computed the static approximation.  */
8497   if (TYPE_TARGET_TYPE (type0) != NULL)
8498     return TYPE_TARGET_TYPE (type0);
8499
8500   /* Don't clone TYPE0 until we are sure we are going to need a copy.  */
8501   type = type0;
8502   nfields = TYPE_NFIELDS (type0);
8503
8504   /* Whether or not we cloned TYPE0, cache the result so that we don't do
8505      recompute all over next time.  */
8506   TYPE_TARGET_TYPE (type0) = type;
8507
8508   for (f = 0; f < nfields; f += 1)
8509     {
8510       struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8511       struct type *new_type;
8512
8513       if (is_dynamic_field (type0, f))
8514         {
8515           field_type = ada_check_typedef (field_type);
8516           new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8517         }
8518       else
8519         new_type = static_unwrap_type (field_type);
8520
8521       if (new_type != field_type)
8522         {
8523           /* Clone TYPE0 only the first time we get a new field type.  */
8524           if (type == type0)
8525             {
8526               TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8527               TYPE_CODE (type) = TYPE_CODE (type0);
8528               INIT_CPLUS_SPECIFIC (type);
8529               TYPE_NFIELDS (type) = nfields;
8530               TYPE_FIELDS (type) = (struct field *)
8531                 TYPE_ALLOC (type, nfields * sizeof (struct field));
8532               memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8533                       sizeof (struct field) * nfields);
8534               TYPE_NAME (type) = ada_type_name (type0);
8535               TYPE_TAG_NAME (type) = NULL;
8536               TYPE_FIXED_INSTANCE (type) = 1;
8537               TYPE_LENGTH (type) = 0;
8538             }
8539           TYPE_FIELD_TYPE (type, f) = new_type;
8540           TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8541         }
8542     }
8543
8544   return type;
8545 }
8546
8547 /* Given an object of type TYPE whose contents are at VALADDR and
8548    whose address in memory is ADDRESS, returns a revision of TYPE,
8549    which should be a non-dynamic-sized record, in which the variant
8550    part, if any, is replaced with the appropriate branch.  Looks
8551    for discriminant values in DVAL0, which can be NULL if the record
8552    contains the necessary discriminant values.  */
8553
8554 static struct type *
8555 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8556                                    CORE_ADDR address, struct value *dval0)
8557 {
8558   struct value *mark = value_mark ();
8559   struct value *dval;
8560   struct type *rtype;
8561   struct type *branch_type;
8562   int nfields = TYPE_NFIELDS (type);
8563   int variant_field = variant_field_index (type);
8564
8565   if (variant_field == -1)
8566     return type;
8567
8568   if (dval0 == NULL)
8569     {
8570       dval = value_from_contents_and_address (type, valaddr, address);
8571       type = value_type (dval);
8572     }
8573   else
8574     dval = dval0;
8575
8576   rtype = alloc_type_copy (type);
8577   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8578   INIT_CPLUS_SPECIFIC (rtype);
8579   TYPE_NFIELDS (rtype) = nfields;
8580   TYPE_FIELDS (rtype) =
8581     (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8582   memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8583           sizeof (struct field) * nfields);
8584   TYPE_NAME (rtype) = ada_type_name (type);
8585   TYPE_TAG_NAME (rtype) = NULL;
8586   TYPE_FIXED_INSTANCE (rtype) = 1;
8587   TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8588
8589   branch_type = to_fixed_variant_branch_type
8590     (TYPE_FIELD_TYPE (type, variant_field),
8591      cond_offset_host (valaddr,
8592                        TYPE_FIELD_BITPOS (type, variant_field)
8593                        / TARGET_CHAR_BIT),
8594      cond_offset_target (address,
8595                          TYPE_FIELD_BITPOS (type, variant_field)
8596                          / TARGET_CHAR_BIT), dval);
8597   if (branch_type == NULL)
8598     {
8599       int f;
8600
8601       for (f = variant_field + 1; f < nfields; f += 1)
8602         TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8603       TYPE_NFIELDS (rtype) -= 1;
8604     }
8605   else
8606     {
8607       TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8608       TYPE_FIELD_NAME (rtype, variant_field) = "S";
8609       TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8610       TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8611     }
8612   TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8613
8614   value_free_to_mark (mark);
8615   return rtype;
8616 }
8617
8618 /* An ordinary record type (with fixed-length fields) that describes
8619    the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8620    beginning of this section].   Any necessary discriminants' values
8621    should be in DVAL, a record value; it may be NULL if the object
8622    at ADDR itself contains any necessary discriminant values.
8623    Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8624    values from the record are needed.  Except in the case that DVAL,
8625    VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8626    unchecked) is replaced by a particular branch of the variant.
8627
8628    NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8629    is questionable and may be removed.  It can arise during the
8630    processing of an unconstrained-array-of-record type where all the
8631    variant branches have exactly the same size.  This is because in
8632    such cases, the compiler does not bother to use the XVS convention
8633    when encoding the record.  I am currently dubious of this
8634    shortcut and suspect the compiler should be altered.  FIXME.  */
8635
8636 static struct type *
8637 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8638                       CORE_ADDR address, struct value *dval)
8639 {
8640   struct type *templ_type;
8641
8642   if (TYPE_FIXED_INSTANCE (type0))
8643     return type0;
8644
8645   templ_type = dynamic_template_type (type0);
8646
8647   if (templ_type != NULL)
8648     return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8649   else if (variant_field_index (type0) >= 0)
8650     {
8651       if (dval == NULL && valaddr == NULL && address == 0)
8652         return type0;
8653       return to_record_with_fixed_variant_part (type0, valaddr, address,
8654                                                 dval);
8655     }
8656   else
8657     {
8658       TYPE_FIXED_INSTANCE (type0) = 1;
8659       return type0;
8660     }
8661
8662 }
8663
8664 /* An ordinary record type (with fixed-length fields) that describes
8665    the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8666    union type.  Any necessary discriminants' values should be in DVAL,
8667    a record value.  That is, this routine selects the appropriate
8668    branch of the union at ADDR according to the discriminant value
8669    indicated in the union's type name.  Returns VAR_TYPE0 itself if
8670    it represents a variant subject to a pragma Unchecked_Union.  */
8671
8672 static struct type *
8673 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8674                               CORE_ADDR address, struct value *dval)
8675 {
8676   int which;
8677   struct type *templ_type;
8678   struct type *var_type;
8679
8680   if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8681     var_type = TYPE_TARGET_TYPE (var_type0);
8682   else
8683     var_type = var_type0;
8684
8685   templ_type = ada_find_parallel_type (var_type, "___XVU");
8686
8687   if (templ_type != NULL)
8688     var_type = templ_type;
8689
8690   if (is_unchecked_variant (var_type, value_type (dval)))
8691       return var_type0;
8692   which =
8693     ada_which_variant_applies (var_type,
8694                                value_type (dval), value_contents (dval));
8695
8696   if (which < 0)
8697     return empty_record (var_type);
8698   else if (is_dynamic_field (var_type, which))
8699     return to_fixed_record_type
8700       (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8701        valaddr, address, dval);
8702   else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8703     return
8704       to_fixed_record_type
8705       (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8706   else
8707     return TYPE_FIELD_TYPE (var_type, which);
8708 }
8709
8710 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8711    ENCODING_TYPE, a type following the GNAT conventions for discrete
8712    type encodings, only carries redundant information.  */
8713
8714 static int
8715 ada_is_redundant_range_encoding (struct type *range_type,
8716                                  struct type *encoding_type)
8717 {
8718   struct type *fixed_range_type;
8719   const char *bounds_str;
8720   int n;
8721   LONGEST lo, hi;
8722
8723   gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8724
8725   if (TYPE_CODE (get_base_type (range_type))
8726       != TYPE_CODE (get_base_type (encoding_type)))
8727     {
8728       /* The compiler probably used a simple base type to describe
8729          the range type instead of the range's actual base type,
8730          expecting us to get the real base type from the encoding
8731          anyway.  In this situation, the encoding cannot be ignored
8732          as redundant.  */
8733       return 0;
8734     }
8735
8736   if (is_dynamic_type (range_type))
8737     return 0;
8738
8739   if (TYPE_NAME (encoding_type) == NULL)
8740     return 0;
8741
8742   bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8743   if (bounds_str == NULL)
8744     return 0;
8745
8746   n = 8; /* Skip "___XDLU_".  */
8747   if (!ada_scan_number (bounds_str, n, &lo, &n))
8748     return 0;
8749   if (TYPE_LOW_BOUND (range_type) != lo)
8750     return 0;
8751
8752   n += 2; /* Skip the "__" separator between the two bounds.  */
8753   if (!ada_scan_number (bounds_str, n, &hi, &n))
8754     return 0;
8755   if (TYPE_HIGH_BOUND (range_type) != hi)
8756     return 0;
8757
8758   return 1;
8759 }
8760
8761 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8762    a type following the GNAT encoding for describing array type
8763    indices, only carries redundant information.  */
8764
8765 static int
8766 ada_is_redundant_index_type_desc (struct type *array_type,
8767                                   struct type *desc_type)
8768 {
8769   struct type *this_layer = check_typedef (array_type);
8770   int i;
8771
8772   for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8773     {
8774       if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8775                                             TYPE_FIELD_TYPE (desc_type, i)))
8776         return 0;
8777       this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8778     }
8779
8780   return 1;
8781 }
8782
8783 /* Assuming that TYPE0 is an array type describing the type of a value
8784    at ADDR, and that DVAL describes a record containing any
8785    discriminants used in TYPE0, returns a type for the value that
8786    contains no dynamic components (that is, no components whose sizes
8787    are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
8788    true, gives an error message if the resulting type's size is over
8789    varsize_limit.  */
8790
8791 static struct type *
8792 to_fixed_array_type (struct type *type0, struct value *dval,
8793                      int ignore_too_big)
8794 {
8795   struct type *index_type_desc;
8796   struct type *result;
8797   int constrained_packed_array_p;
8798   static const char *xa_suffix = "___XA";
8799
8800   type0 = ada_check_typedef (type0);
8801   if (TYPE_FIXED_INSTANCE (type0))
8802     return type0;
8803
8804   constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8805   if (constrained_packed_array_p)
8806     type0 = decode_constrained_packed_array_type (type0);
8807
8808   index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8809
8810   /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8811      encoding suffixed with 'P' may still be generated.  If so,
8812      it should be used to find the XA type.  */
8813
8814   if (index_type_desc == NULL)
8815     {
8816       const char *type_name = ada_type_name (type0);
8817
8818       if (type_name != NULL)
8819         {
8820           const int len = strlen (type_name);
8821           char *name = (char *) alloca (len + strlen (xa_suffix));
8822
8823           if (type_name[len - 1] == 'P')
8824             {
8825               strcpy (name, type_name);
8826               strcpy (name + len - 1, xa_suffix);
8827               index_type_desc = ada_find_parallel_type_with_name (type0, name);
8828             }
8829         }
8830     }
8831
8832   ada_fixup_array_indexes_type (index_type_desc);
8833   if (index_type_desc != NULL
8834       && ada_is_redundant_index_type_desc (type0, index_type_desc))
8835     {
8836       /* Ignore this ___XA parallel type, as it does not bring any
8837          useful information.  This allows us to avoid creating fixed
8838          versions of the array's index types, which would be identical
8839          to the original ones.  This, in turn, can also help avoid
8840          the creation of fixed versions of the array itself.  */
8841       index_type_desc = NULL;
8842     }
8843
8844   if (index_type_desc == NULL)
8845     {
8846       struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8847
8848       /* NOTE: elt_type---the fixed version of elt_type0---should never
8849          depend on the contents of the array in properly constructed
8850          debugging data.  */
8851       /* Create a fixed version of the array element type.
8852          We're not providing the address of an element here,
8853          and thus the actual object value cannot be inspected to do
8854          the conversion.  This should not be a problem, since arrays of
8855          unconstrained objects are not allowed.  In particular, all
8856          the elements of an array of a tagged type should all be of
8857          the same type specified in the debugging info.  No need to
8858          consult the object tag.  */
8859       struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8860
8861       /* Make sure we always create a new array type when dealing with
8862          packed array types, since we're going to fix-up the array
8863          type length and element bitsize a little further down.  */
8864       if (elt_type0 == elt_type && !constrained_packed_array_p)
8865         result = type0;
8866       else
8867         result = create_array_type (alloc_type_copy (type0),
8868                                     elt_type, TYPE_INDEX_TYPE (type0));
8869     }
8870   else
8871     {
8872       int i;
8873       struct type *elt_type0;
8874
8875       elt_type0 = type0;
8876       for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8877         elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8878
8879       /* NOTE: result---the fixed version of elt_type0---should never
8880          depend on the contents of the array in properly constructed
8881          debugging data.  */
8882       /* Create a fixed version of the array element type.
8883          We're not providing the address of an element here,
8884          and thus the actual object value cannot be inspected to do
8885          the conversion.  This should not be a problem, since arrays of
8886          unconstrained objects are not allowed.  In particular, all
8887          the elements of an array of a tagged type should all be of
8888          the same type specified in the debugging info.  No need to
8889          consult the object tag.  */
8890       result =
8891         ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8892
8893       elt_type0 = type0;
8894       for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8895         {
8896           struct type *range_type =
8897             to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8898
8899           result = create_array_type (alloc_type_copy (elt_type0),
8900                                       result, range_type);
8901           elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8902         }
8903       if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8904         error (_("array type with dynamic size is larger than varsize-limit"));
8905     }
8906
8907   /* We want to preserve the type name.  This can be useful when
8908      trying to get the type name of a value that has already been
8909      printed (for instance, if the user did "print VAR; whatis $".  */
8910   TYPE_NAME (result) = TYPE_NAME (type0);
8911
8912   if (constrained_packed_array_p)
8913     {
8914       /* So far, the resulting type has been created as if the original
8915          type was a regular (non-packed) array type.  As a result, the
8916          bitsize of the array elements needs to be set again, and the array
8917          length needs to be recomputed based on that bitsize.  */
8918       int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8919       int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8920
8921       TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8922       TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8923       if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8924         TYPE_LENGTH (result)++;
8925     }
8926
8927   TYPE_FIXED_INSTANCE (result) = 1;
8928   return result;
8929 }
8930
8931
8932 /* A standard type (containing no dynamically sized components)
8933    corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8934    DVAL describes a record containing any discriminants used in TYPE0,
8935    and may be NULL if there are none, or if the object of type TYPE at
8936    ADDRESS or in VALADDR contains these discriminants.
8937    
8938    If CHECK_TAG is not null, in the case of tagged types, this function
8939    attempts to locate the object's tag and use it to compute the actual
8940    type.  However, when ADDRESS is null, we cannot use it to determine the
8941    location of the tag, and therefore compute the tagged type's actual type.
8942    So we return the tagged type without consulting the tag.  */
8943    
8944 static struct type *
8945 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8946                    CORE_ADDR address, struct value *dval, int check_tag)
8947 {
8948   type = ada_check_typedef (type);
8949   switch (TYPE_CODE (type))
8950     {
8951     default:
8952       return type;
8953     case TYPE_CODE_STRUCT:
8954       {
8955         struct type *static_type = to_static_fixed_type (type);
8956         struct type *fixed_record_type =
8957           to_fixed_record_type (type, valaddr, address, NULL);
8958
8959         /* If STATIC_TYPE is a tagged type and we know the object's address,
8960            then we can determine its tag, and compute the object's actual
8961            type from there.  Note that we have to use the fixed record
8962            type (the parent part of the record may have dynamic fields
8963            and the way the location of _tag is expressed may depend on
8964            them).  */
8965
8966         if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8967           {
8968             struct value *tag =
8969               value_tag_from_contents_and_address
8970               (fixed_record_type,
8971                valaddr,
8972                address);
8973             struct type *real_type = type_from_tag (tag);
8974             struct value *obj =
8975               value_from_contents_and_address (fixed_record_type,
8976                                                valaddr,
8977                                                address);
8978             fixed_record_type = value_type (obj);
8979             if (real_type != NULL)
8980               return to_fixed_record_type
8981                 (real_type, NULL,
8982                  value_address (ada_tag_value_at_base_address (obj)), NULL);
8983           }
8984
8985         /* Check to see if there is a parallel ___XVZ variable.
8986            If there is, then it provides the actual size of our type.  */
8987         else if (ada_type_name (fixed_record_type) != NULL)
8988           {
8989             const char *name = ada_type_name (fixed_record_type);
8990             char *xvz_name
8991               = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8992             int xvz_found = 0;
8993             LONGEST size;
8994
8995             xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8996             size = get_int_var_value (xvz_name, &xvz_found);
8997             if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8998               {
8999                 fixed_record_type = copy_type (fixed_record_type);
9000                 TYPE_LENGTH (fixed_record_type) = size;
9001
9002                 /* The FIXED_RECORD_TYPE may have be a stub.  We have
9003                    observed this when the debugging info is STABS, and
9004                    apparently it is something that is hard to fix.
9005
9006                    In practice, we don't need the actual type definition
9007                    at all, because the presence of the XVZ variable allows us
9008                    to assume that there must be a XVS type as well, which we
9009                    should be able to use later, when we need the actual type
9010                    definition.
9011
9012                    In the meantime, pretend that the "fixed" type we are
9013                    returning is NOT a stub, because this can cause trouble
9014                    when using this type to create new types targeting it.
9015                    Indeed, the associated creation routines often check
9016                    whether the target type is a stub and will try to replace
9017                    it, thus using a type with the wrong size.  This, in turn,
9018                    might cause the new type to have the wrong size too.
9019                    Consider the case of an array, for instance, where the size
9020                    of the array is computed from the number of elements in
9021                    our array multiplied by the size of its element.  */
9022                 TYPE_STUB (fixed_record_type) = 0;
9023               }
9024           }
9025         return fixed_record_type;
9026       }
9027     case TYPE_CODE_ARRAY:
9028       return to_fixed_array_type (type, dval, 1);
9029     case TYPE_CODE_UNION:
9030       if (dval == NULL)
9031         return type;
9032       else
9033         return to_fixed_variant_branch_type (type, valaddr, address, dval);
9034     }
9035 }
9036
9037 /* The same as ada_to_fixed_type_1, except that it preserves the type
9038    if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9039
9040    The typedef layer needs be preserved in order to differentiate between
9041    arrays and array pointers when both types are implemented using the same
9042    fat pointer.  In the array pointer case, the pointer is encoded as
9043    a typedef of the pointer type.  For instance, considering:
9044
9045           type String_Access is access String;
9046           S1 : String_Access := null;
9047
9048    To the debugger, S1 is defined as a typedef of type String.  But
9049    to the user, it is a pointer.  So if the user tries to print S1,
9050    we should not dereference the array, but print the array address
9051    instead.
9052
9053    If we didn't preserve the typedef layer, we would lose the fact that
9054    the type is to be presented as a pointer (needs de-reference before
9055    being printed).  And we would also use the source-level type name.  */
9056
9057 struct type *
9058 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9059                    CORE_ADDR address, struct value *dval, int check_tag)
9060
9061 {
9062   struct type *fixed_type =
9063     ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9064
9065   /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9066       then preserve the typedef layer.
9067
9068       Implementation note: We can only check the main-type portion of
9069       the TYPE and FIXED_TYPE, because eliminating the typedef layer
9070       from TYPE now returns a type that has the same instance flags
9071       as TYPE.  For instance, if TYPE is a "typedef const", and its
9072       target type is a "struct", then the typedef elimination will return
9073       a "const" version of the target type.  See check_typedef for more
9074       details about how the typedef layer elimination is done.
9075
9076       brobecker/2010-11-19: It seems to me that the only case where it is
9077       useful to preserve the typedef layer is when dealing with fat pointers.
9078       Perhaps, we could add a check for that and preserve the typedef layer
9079       only in that situation.  But this seems unecessary so far, probably
9080       because we call check_typedef/ada_check_typedef pretty much everywhere.
9081       */
9082   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9083       && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9084           == TYPE_MAIN_TYPE (fixed_type)))
9085     return type;
9086
9087   return fixed_type;
9088 }
9089
9090 /* A standard (static-sized) type corresponding as well as possible to
9091    TYPE0, but based on no runtime data.  */
9092
9093 static struct type *
9094 to_static_fixed_type (struct type *type0)
9095 {
9096   struct type *type;
9097
9098   if (type0 == NULL)
9099     return NULL;
9100
9101   if (TYPE_FIXED_INSTANCE (type0))
9102     return type0;
9103
9104   type0 = ada_check_typedef (type0);
9105
9106   switch (TYPE_CODE (type0))
9107     {
9108     default:
9109       return type0;
9110     case TYPE_CODE_STRUCT:
9111       type = dynamic_template_type (type0);
9112       if (type != NULL)
9113         return template_to_static_fixed_type (type);
9114       else
9115         return template_to_static_fixed_type (type0);
9116     case TYPE_CODE_UNION:
9117       type = ada_find_parallel_type (type0, "___XVU");
9118       if (type != NULL)
9119         return template_to_static_fixed_type (type);
9120       else
9121         return template_to_static_fixed_type (type0);
9122     }
9123 }
9124
9125 /* A static approximation of TYPE with all type wrappers removed.  */
9126
9127 static struct type *
9128 static_unwrap_type (struct type *type)
9129 {
9130   if (ada_is_aligner_type (type))
9131     {
9132       struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9133       if (ada_type_name (type1) == NULL)
9134         TYPE_NAME (type1) = ada_type_name (type);
9135
9136       return static_unwrap_type (type1);
9137     }
9138   else
9139     {
9140       struct type *raw_real_type = ada_get_base_type (type);
9141
9142       if (raw_real_type == type)
9143         return type;
9144       else
9145         return to_static_fixed_type (raw_real_type);
9146     }
9147 }
9148
9149 /* In some cases, incomplete and private types require
9150    cross-references that are not resolved as records (for example,
9151       type Foo;
9152       type FooP is access Foo;
9153       V: FooP;
9154       type Foo is array ...;
9155    ).  In these cases, since there is no mechanism for producing
9156    cross-references to such types, we instead substitute for FooP a
9157    stub enumeration type that is nowhere resolved, and whose tag is
9158    the name of the actual type.  Call these types "non-record stubs".  */
9159
9160 /* A type equivalent to TYPE that is not a non-record stub, if one
9161    exists, otherwise TYPE.  */
9162
9163 struct type *
9164 ada_check_typedef (struct type *type)
9165 {
9166   if (type == NULL)
9167     return NULL;
9168
9169   /* If our type is a typedef type of a fat pointer, then we're done.
9170      We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9171      what allows us to distinguish between fat pointers that represent
9172      array types, and fat pointers that represent array access types
9173      (in both cases, the compiler implements them as fat pointers).  */
9174   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9175       && is_thick_pntr (ada_typedef_target_type (type)))
9176     return type;
9177
9178   type = check_typedef (type);
9179   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9180       || !TYPE_STUB (type)
9181       || TYPE_TAG_NAME (type) == NULL)
9182     return type;
9183   else
9184     {
9185       const char *name = TYPE_TAG_NAME (type);
9186       struct type *type1 = ada_find_any_type (name);
9187
9188       if (type1 == NULL)
9189         return type;
9190
9191       /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9192          stubs pointing to arrays, as we don't create symbols for array
9193          types, only for the typedef-to-array types).  If that's the case,
9194          strip the typedef layer.  */
9195       if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9196         type1 = ada_check_typedef (type1);
9197
9198       return type1;
9199     }
9200 }
9201
9202 /* A value representing the data at VALADDR/ADDRESS as described by
9203    type TYPE0, but with a standard (static-sized) type that correctly
9204    describes it.  If VAL0 is not NULL and TYPE0 already is a standard
9205    type, then return VAL0 [this feature is simply to avoid redundant
9206    creation of struct values].  */
9207
9208 static struct value *
9209 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9210                            struct value *val0)
9211 {
9212   struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9213
9214   if (type == type0 && val0 != NULL)
9215     return val0;
9216   else
9217     return value_from_contents_and_address (type, 0, address);
9218 }
9219
9220 /* A value representing VAL, but with a standard (static-sized) type
9221    that correctly describes it.  Does not necessarily create a new
9222    value.  */
9223
9224 struct value *
9225 ada_to_fixed_value (struct value *val)
9226 {
9227   val = unwrap_value (val);
9228   val = ada_to_fixed_value_create (value_type (val),
9229                                       value_address (val),
9230                                       val);
9231   return val;
9232 }
9233 \f
9234
9235 /* Attributes */
9236
9237 /* Table mapping attribute numbers to names.
9238    NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
9239
9240 static const char *attribute_names[] = {
9241   "<?>",
9242
9243   "first",
9244   "last",
9245   "length",
9246   "image",
9247   "max",
9248   "min",
9249   "modulus",
9250   "pos",
9251   "size",
9252   "tag",
9253   "val",
9254   0
9255 };
9256
9257 const char *
9258 ada_attribute_name (enum exp_opcode n)
9259 {
9260   if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9261     return attribute_names[n - OP_ATR_FIRST + 1];
9262   else
9263     return attribute_names[0];
9264 }
9265
9266 /* Evaluate the 'POS attribute applied to ARG.  */
9267
9268 static LONGEST
9269 pos_atr (struct value *arg)
9270 {
9271   struct value *val = coerce_ref (arg);
9272   struct type *type = value_type (val);
9273   LONGEST result;
9274
9275   if (!discrete_type_p (type))
9276     error (_("'POS only defined on discrete types"));
9277
9278   if (!discrete_position (type, value_as_long (val), &result))
9279     error (_("enumeration value is invalid: can't find 'POS"));
9280
9281   return result;
9282 }
9283
9284 static struct value *
9285 value_pos_atr (struct type *type, struct value *arg)
9286 {
9287   return value_from_longest (type, pos_atr (arg));
9288 }
9289
9290 /* Evaluate the TYPE'VAL attribute applied to ARG.  */
9291
9292 static struct value *
9293 value_val_atr (struct type *type, struct value *arg)
9294 {
9295   if (!discrete_type_p (type))
9296     error (_("'VAL only defined on discrete types"));
9297   if (!integer_type_p (value_type (arg)))
9298     error (_("'VAL requires integral argument"));
9299
9300   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9301     {
9302       long pos = value_as_long (arg);
9303
9304       if (pos < 0 || pos >= TYPE_NFIELDS (type))
9305         error (_("argument to 'VAL out of range"));
9306       return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9307     }
9308   else
9309     return value_from_longest (type, value_as_long (arg));
9310 }
9311 \f
9312
9313                                 /* Evaluation */
9314
9315 /* True if TYPE appears to be an Ada character type.
9316    [At the moment, this is true only for Character and Wide_Character;
9317    It is a heuristic test that could stand improvement].  */
9318
9319 int
9320 ada_is_character_type (struct type *type)
9321 {
9322   const char *name;
9323
9324   /* If the type code says it's a character, then assume it really is,
9325      and don't check any further.  */
9326   if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9327     return 1;
9328   
9329   /* Otherwise, assume it's a character type iff it is a discrete type
9330      with a known character type name.  */
9331   name = ada_type_name (type);
9332   return (name != NULL
9333           && (TYPE_CODE (type) == TYPE_CODE_INT
9334               || TYPE_CODE (type) == TYPE_CODE_RANGE)
9335           && (strcmp (name, "character") == 0
9336               || strcmp (name, "wide_character") == 0
9337               || strcmp (name, "wide_wide_character") == 0
9338               || strcmp (name, "unsigned char") == 0));
9339 }
9340
9341 /* True if TYPE appears to be an Ada string type.  */
9342
9343 int
9344 ada_is_string_type (struct type *type)
9345 {
9346   type = ada_check_typedef (type);
9347   if (type != NULL
9348       && TYPE_CODE (type) != TYPE_CODE_PTR
9349       && (ada_is_simple_array_type (type)
9350           || ada_is_array_descriptor_type (type))
9351       && ada_array_arity (type) == 1)
9352     {
9353       struct type *elttype = ada_array_element_type (type, 1);
9354
9355       return ada_is_character_type (elttype);
9356     }
9357   else
9358     return 0;
9359 }
9360
9361 /* The compiler sometimes provides a parallel XVS type for a given
9362    PAD type.  Normally, it is safe to follow the PAD type directly,
9363    but older versions of the compiler have a bug that causes the offset
9364    of its "F" field to be wrong.  Following that field in that case
9365    would lead to incorrect results, but this can be worked around
9366    by ignoring the PAD type and using the associated XVS type instead.
9367
9368    Set to True if the debugger should trust the contents of PAD types.
9369    Otherwise, ignore the PAD type if there is a parallel XVS type.  */
9370 static int trust_pad_over_xvs = 1;
9371
9372 /* True if TYPE is a struct type introduced by the compiler to force the
9373    alignment of a value.  Such types have a single field with a
9374    distinctive name.  */
9375
9376 int
9377 ada_is_aligner_type (struct type *type)
9378 {
9379   type = ada_check_typedef (type);
9380
9381   if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9382     return 0;
9383
9384   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9385           && TYPE_NFIELDS (type) == 1
9386           && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9387 }
9388
9389 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9390    the parallel type.  */
9391
9392 struct type *
9393 ada_get_base_type (struct type *raw_type)
9394 {
9395   struct type *real_type_namer;
9396   struct type *raw_real_type;
9397
9398   if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9399     return raw_type;
9400
9401   if (ada_is_aligner_type (raw_type))
9402     /* The encoding specifies that we should always use the aligner type.
9403        So, even if this aligner type has an associated XVS type, we should
9404        simply ignore it.
9405
9406        According to the compiler gurus, an XVS type parallel to an aligner
9407        type may exist because of a stabs limitation.  In stabs, aligner
9408        types are empty because the field has a variable-sized type, and
9409        thus cannot actually be used as an aligner type.  As a result,
9410        we need the associated parallel XVS type to decode the type.
9411        Since the policy in the compiler is to not change the internal
9412        representation based on the debugging info format, we sometimes
9413        end up having a redundant XVS type parallel to the aligner type.  */
9414     return raw_type;
9415
9416   real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9417   if (real_type_namer == NULL
9418       || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9419       || TYPE_NFIELDS (real_type_namer) != 1)
9420     return raw_type;
9421
9422   if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9423     {
9424       /* This is an older encoding form where the base type needs to be
9425          looked up by name.  We prefer the newer enconding because it is
9426          more efficient.  */
9427       raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9428       if (raw_real_type == NULL)
9429         return raw_type;
9430       else
9431         return raw_real_type;
9432     }
9433
9434   /* The field in our XVS type is a reference to the base type.  */
9435   return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9436 }
9437
9438 /* The type of value designated by TYPE, with all aligners removed.  */
9439
9440 struct type *
9441 ada_aligned_type (struct type *type)
9442 {
9443   if (ada_is_aligner_type (type))
9444     return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9445   else
9446     return ada_get_base_type (type);
9447 }
9448
9449
9450 /* The address of the aligned value in an object at address VALADDR
9451    having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
9452
9453 const gdb_byte *
9454 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9455 {
9456   if (ada_is_aligner_type (type))
9457     return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9458                                    valaddr +
9459                                    TYPE_FIELD_BITPOS (type,
9460                                                       0) / TARGET_CHAR_BIT);
9461   else
9462     return valaddr;
9463 }
9464
9465
9466
9467 /* The printed representation of an enumeration literal with encoded
9468    name NAME.  The value is good to the next call of ada_enum_name.  */
9469 const char *
9470 ada_enum_name (const char *name)
9471 {
9472   static char *result;
9473   static size_t result_len = 0;
9474   const char *tmp;
9475
9476   /* First, unqualify the enumeration name:
9477      1. Search for the last '.' character.  If we find one, then skip
9478      all the preceding characters, the unqualified name starts
9479      right after that dot.
9480      2. Otherwise, we may be debugging on a target where the compiler
9481      translates dots into "__".  Search forward for double underscores,
9482      but stop searching when we hit an overloading suffix, which is
9483      of the form "__" followed by digits.  */
9484
9485   tmp = strrchr (name, '.');
9486   if (tmp != NULL)
9487     name = tmp + 1;
9488   else
9489     {
9490       while ((tmp = strstr (name, "__")) != NULL)
9491         {
9492           if (isdigit (tmp[2]))
9493             break;
9494           else
9495             name = tmp + 2;
9496         }
9497     }
9498
9499   if (name[0] == 'Q')
9500     {
9501       int v;
9502
9503       if (name[1] == 'U' || name[1] == 'W')
9504         {
9505           if (sscanf (name + 2, "%x", &v) != 1)
9506             return name;
9507         }
9508       else
9509         return name;
9510
9511       GROW_VECT (result, result_len, 16);
9512       if (isascii (v) && isprint (v))
9513         xsnprintf (result, result_len, "'%c'", v);
9514       else if (name[1] == 'U')
9515         xsnprintf (result, result_len, "[\"%02x\"]", v);
9516       else
9517         xsnprintf (result, result_len, "[\"%04x\"]", v);
9518
9519       return result;
9520     }
9521   else
9522     {
9523       tmp = strstr (name, "__");
9524       if (tmp == NULL)
9525         tmp = strstr (name, "$");
9526       if (tmp != NULL)
9527         {
9528           GROW_VECT (result, result_len, tmp - name + 1);
9529           strncpy (result, name, tmp - name);
9530           result[tmp - name] = '\0';
9531           return result;
9532         }
9533
9534       return name;
9535     }
9536 }
9537
9538 /* Evaluate the subexpression of EXP starting at *POS as for
9539    evaluate_type, updating *POS to point just past the evaluated
9540    expression.  */
9541
9542 static struct value *
9543 evaluate_subexp_type (struct expression *exp, int *pos)
9544 {
9545   return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9546 }
9547
9548 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9549    value it wraps.  */
9550
9551 static struct value *
9552 unwrap_value (struct value *val)
9553 {
9554   struct type *type = ada_check_typedef (value_type (val));
9555
9556   if (ada_is_aligner_type (type))
9557     {
9558       struct value *v = ada_value_struct_elt (val, "F", 0);
9559       struct type *val_type = ada_check_typedef (value_type (v));
9560
9561       if (ada_type_name (val_type) == NULL)
9562         TYPE_NAME (val_type) = ada_type_name (type);
9563
9564       return unwrap_value (v);
9565     }
9566   else
9567     {
9568       struct type *raw_real_type =
9569         ada_check_typedef (ada_get_base_type (type));
9570
9571       /* If there is no parallel XVS or XVE type, then the value is
9572          already unwrapped.  Return it without further modification.  */
9573       if ((type == raw_real_type)
9574           && ada_find_parallel_type (type, "___XVE") == NULL)
9575         return val;
9576
9577       return
9578         coerce_unspec_val_to_type
9579         (val, ada_to_fixed_type (raw_real_type, 0,
9580                                  value_address (val),
9581                                  NULL, 1));
9582     }
9583 }
9584
9585 static struct value *
9586 cast_to_fixed (struct type *type, struct value *arg)
9587 {
9588   LONGEST val;
9589
9590   if (type == value_type (arg))
9591     return arg;
9592   else if (ada_is_fixed_point_type (value_type (arg)))
9593     val = ada_float_to_fixed (type,
9594                               ada_fixed_to_float (value_type (arg),
9595                                                   value_as_long (arg)));
9596   else
9597     {
9598       DOUBLEST argd = value_as_double (arg);
9599
9600       val = ada_float_to_fixed (type, argd);
9601     }
9602
9603   return value_from_longest (type, val);
9604 }
9605
9606 static struct value *
9607 cast_from_fixed (struct type *type, struct value *arg)
9608 {
9609   DOUBLEST val = ada_fixed_to_float (value_type (arg),
9610                                      value_as_long (arg));
9611
9612   return value_from_double (type, val);
9613 }
9614
9615 /* Given two array types T1 and T2, return nonzero iff both arrays
9616    contain the same number of elements.  */
9617
9618 static int
9619 ada_same_array_size_p (struct type *t1, struct type *t2)
9620 {
9621   LONGEST lo1, hi1, lo2, hi2;
9622
9623   /* Get the array bounds in order to verify that the size of
9624      the two arrays match.  */
9625   if (!get_array_bounds (t1, &lo1, &hi1)
9626       || !get_array_bounds (t2, &lo2, &hi2))
9627     error (_("unable to determine array bounds"));
9628
9629   /* To make things easier for size comparison, normalize a bit
9630      the case of empty arrays by making sure that the difference
9631      between upper bound and lower bound is always -1.  */
9632   if (lo1 > hi1)
9633     hi1 = lo1 - 1;
9634   if (lo2 > hi2)
9635     hi2 = lo2 - 1;
9636
9637   return (hi1 - lo1 == hi2 - lo2);
9638 }
9639
9640 /* Assuming that VAL is an array of integrals, and TYPE represents
9641    an array with the same number of elements, but with wider integral
9642    elements, return an array "casted" to TYPE.  In practice, this
9643    means that the returned array is built by casting each element
9644    of the original array into TYPE's (wider) element type.  */
9645
9646 static struct value *
9647 ada_promote_array_of_integrals (struct type *type, struct value *val)
9648 {
9649   struct type *elt_type = TYPE_TARGET_TYPE (type);
9650   LONGEST lo, hi;
9651   struct value *res;
9652   LONGEST i;
9653
9654   /* Verify that both val and type are arrays of scalars, and
9655      that the size of val's elements is smaller than the size
9656      of type's element.  */
9657   gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9658   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9659   gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9660   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9661   gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9662               > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9663
9664   if (!get_array_bounds (type, &lo, &hi))
9665     error (_("unable to determine array bounds"));
9666
9667   res = allocate_value (type);
9668
9669   /* Promote each array element.  */
9670   for (i = 0; i < hi - lo + 1; i++)
9671     {
9672       struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9673
9674       memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9675               value_contents_all (elt), TYPE_LENGTH (elt_type));
9676     }
9677
9678   return res;
9679 }
9680
9681 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9682    return the converted value.  */
9683
9684 static struct value *
9685 coerce_for_assign (struct type *type, struct value *val)
9686 {
9687   struct type *type2 = value_type (val);
9688
9689   if (type == type2)
9690     return val;
9691
9692   type2 = ada_check_typedef (type2);
9693   type = ada_check_typedef (type);
9694
9695   if (TYPE_CODE (type2) == TYPE_CODE_PTR
9696       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9697     {
9698       val = ada_value_ind (val);
9699       type2 = value_type (val);
9700     }
9701
9702   if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9703       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9704     {
9705       if (!ada_same_array_size_p (type, type2))
9706         error (_("cannot assign arrays of different length"));
9707
9708       if (is_integral_type (TYPE_TARGET_TYPE (type))
9709           && is_integral_type (TYPE_TARGET_TYPE (type2))
9710           && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9711                < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9712         {
9713           /* Allow implicit promotion of the array elements to
9714              a wider type.  */
9715           return ada_promote_array_of_integrals (type, val);
9716         }
9717
9718       if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9719           != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9720         error (_("Incompatible types in assignment"));
9721       deprecated_set_value_type (val, type);
9722     }
9723   return val;
9724 }
9725
9726 static struct value *
9727 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9728 {
9729   struct value *val;
9730   struct type *type1, *type2;
9731   LONGEST v, v1, v2;
9732
9733   arg1 = coerce_ref (arg1);
9734   arg2 = coerce_ref (arg2);
9735   type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9736   type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9737
9738   if (TYPE_CODE (type1) != TYPE_CODE_INT
9739       || TYPE_CODE (type2) != TYPE_CODE_INT)
9740     return value_binop (arg1, arg2, op);
9741
9742   switch (op)
9743     {
9744     case BINOP_MOD:
9745     case BINOP_DIV:
9746     case BINOP_REM:
9747       break;
9748     default:
9749       return value_binop (arg1, arg2, op);
9750     }
9751
9752   v2 = value_as_long (arg2);
9753   if (v2 == 0)
9754     error (_("second operand of %s must not be zero."), op_string (op));
9755
9756   if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9757     return value_binop (arg1, arg2, op);
9758
9759   v1 = value_as_long (arg1);
9760   switch (op)
9761     {
9762     case BINOP_DIV:
9763       v = v1 / v2;
9764       if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9765         v += v > 0 ? -1 : 1;
9766       break;
9767     case BINOP_REM:
9768       v = v1 % v2;
9769       if (v * v1 < 0)
9770         v -= v2;
9771       break;
9772     default:
9773       /* Should not reach this point.  */
9774       v = 0;
9775     }
9776
9777   val = allocate_value (type1);
9778   store_unsigned_integer (value_contents_raw (val),
9779                           TYPE_LENGTH (value_type (val)),
9780                           gdbarch_byte_order (get_type_arch (type1)), v);
9781   return val;
9782 }
9783
9784 static int
9785 ada_value_equal (struct value *arg1, struct value *arg2)
9786 {
9787   if (ada_is_direct_array_type (value_type (arg1))
9788       || ada_is_direct_array_type (value_type (arg2)))
9789     {
9790       /* Automatically dereference any array reference before
9791          we attempt to perform the comparison.  */
9792       arg1 = ada_coerce_ref (arg1);
9793       arg2 = ada_coerce_ref (arg2);
9794       
9795       arg1 = ada_coerce_to_simple_array (arg1);
9796       arg2 = ada_coerce_to_simple_array (arg2);
9797       if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9798           || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9799         error (_("Attempt to compare array with non-array"));
9800       /* FIXME: The following works only for types whose
9801          representations use all bits (no padding or undefined bits)
9802          and do not have user-defined equality.  */
9803       return
9804         TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9805         && memcmp (value_contents (arg1), value_contents (arg2),
9806                    TYPE_LENGTH (value_type (arg1))) == 0;
9807     }
9808   return value_equal (arg1, arg2);
9809 }
9810
9811 /* Total number of component associations in the aggregate starting at
9812    index PC in EXP.  Assumes that index PC is the start of an
9813    OP_AGGREGATE.  */
9814
9815 static int
9816 num_component_specs (struct expression *exp, int pc)
9817 {
9818   int n, m, i;
9819
9820   m = exp->elts[pc + 1].longconst;
9821   pc += 3;
9822   n = 0;
9823   for (i = 0; i < m; i += 1)
9824     {
9825       switch (exp->elts[pc].opcode) 
9826         {
9827         default:
9828           n += 1;
9829           break;
9830         case OP_CHOICES:
9831           n += exp->elts[pc + 1].longconst;
9832           break;
9833         }
9834       ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9835     }
9836   return n;
9837 }
9838
9839 /* Assign the result of evaluating EXP starting at *POS to the INDEXth 
9840    component of LHS (a simple array or a record), updating *POS past
9841    the expression, assuming that LHS is contained in CONTAINER.  Does
9842    not modify the inferior's memory, nor does it modify LHS (unless
9843    LHS == CONTAINER).  */
9844
9845 static void
9846 assign_component (struct value *container, struct value *lhs, LONGEST index,
9847                   struct expression *exp, int *pos)
9848 {
9849   struct value *mark = value_mark ();
9850   struct value *elt;
9851
9852   if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9853     {
9854       struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9855       struct value *index_val = value_from_longest (index_type, index);
9856
9857       elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9858     }
9859   else
9860     {
9861       elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9862       elt = ada_to_fixed_value (elt);
9863     }
9864
9865   if (exp->elts[*pos].opcode == OP_AGGREGATE)
9866     assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9867   else
9868     value_assign_to_component (container, elt, 
9869                                ada_evaluate_subexp (NULL, exp, pos, 
9870                                                     EVAL_NORMAL));
9871
9872   value_free_to_mark (mark);
9873 }
9874
9875 /* Assuming that LHS represents an lvalue having a record or array
9876    type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9877    of that aggregate's value to LHS, advancing *POS past the
9878    aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
9879    lvalue containing LHS (possibly LHS itself).  Does not modify
9880    the inferior's memory, nor does it modify the contents of 
9881    LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
9882
9883 static struct value *
9884 assign_aggregate (struct value *container, 
9885                   struct value *lhs, struct expression *exp, 
9886                   int *pos, enum noside noside)
9887 {
9888   struct type *lhs_type;
9889   int n = exp->elts[*pos+1].longconst;
9890   LONGEST low_index, high_index;
9891   int num_specs;
9892   LONGEST *indices;
9893   int max_indices, num_indices;
9894   int i;
9895
9896   *pos += 3;
9897   if (noside != EVAL_NORMAL)
9898     {
9899       for (i = 0; i < n; i += 1)
9900         ada_evaluate_subexp (NULL, exp, pos, noside);
9901       return container;
9902     }
9903
9904   container = ada_coerce_ref (container);
9905   if (ada_is_direct_array_type (value_type (container)))
9906     container = ada_coerce_to_simple_array (container);
9907   lhs = ada_coerce_ref (lhs);
9908   if (!deprecated_value_modifiable (lhs))
9909     error (_("Left operand of assignment is not a modifiable lvalue."));
9910
9911   lhs_type = value_type (lhs);
9912   if (ada_is_direct_array_type (lhs_type))
9913     {
9914       lhs = ada_coerce_to_simple_array (lhs);
9915       lhs_type = value_type (lhs);
9916       low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9917       high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9918     }
9919   else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9920     {
9921       low_index = 0;
9922       high_index = num_visible_fields (lhs_type) - 1;
9923     }
9924   else
9925     error (_("Left-hand side must be array or record."));
9926
9927   num_specs = num_component_specs (exp, *pos - 3);
9928   max_indices = 4 * num_specs + 4;
9929   indices = XALLOCAVEC (LONGEST, max_indices);
9930   indices[0] = indices[1] = low_index - 1;
9931   indices[2] = indices[3] = high_index + 1;
9932   num_indices = 4;
9933
9934   for (i = 0; i < n; i += 1)
9935     {
9936       switch (exp->elts[*pos].opcode)
9937         {
9938           case OP_CHOICES:
9939             aggregate_assign_from_choices (container, lhs, exp, pos, indices, 
9940                                            &num_indices, max_indices,
9941                                            low_index, high_index);
9942             break;
9943           case OP_POSITIONAL:
9944             aggregate_assign_positional (container, lhs, exp, pos, indices,
9945                                          &num_indices, max_indices,
9946                                          low_index, high_index);
9947             break;
9948           case OP_OTHERS:
9949             if (i != n-1)
9950               error (_("Misplaced 'others' clause"));
9951             aggregate_assign_others (container, lhs, exp, pos, indices, 
9952                                      num_indices, low_index, high_index);
9953             break;
9954           default:
9955             error (_("Internal error: bad aggregate clause"));
9956         }
9957     }
9958
9959   return container;
9960 }
9961               
9962 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9963    construct at *POS, updating *POS past the construct, given that
9964    the positions are relative to lower bound LOW, where HIGH is the 
9965    upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
9966    updating *NUM_INDICES as needed.  CONTAINER is as for
9967    assign_aggregate.  */
9968 static void
9969 aggregate_assign_positional (struct value *container,
9970                              struct value *lhs, struct expression *exp,
9971                              int *pos, LONGEST *indices, int *num_indices,
9972                              int max_indices, LONGEST low, LONGEST high) 
9973 {
9974   LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9975   
9976   if (ind - 1 == high)
9977     warning (_("Extra components in aggregate ignored."));
9978   if (ind <= high)
9979     {
9980       add_component_interval (ind, ind, indices, num_indices, max_indices);
9981       *pos += 3;
9982       assign_component (container, lhs, ind, exp, pos);
9983     }
9984   else
9985     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9986 }
9987
9988 /* Assign into the components of LHS indexed by the OP_CHOICES
9989    construct at *POS, updating *POS past the construct, given that
9990    the allowable indices are LOW..HIGH.  Record the indices assigned
9991    to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9992    needed.  CONTAINER is as for assign_aggregate.  */
9993 static void
9994 aggregate_assign_from_choices (struct value *container,
9995                                struct value *lhs, struct expression *exp,
9996                                int *pos, LONGEST *indices, int *num_indices,
9997                                int max_indices, LONGEST low, LONGEST high) 
9998 {
9999   int j;
10000   int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10001   int choice_pos, expr_pc;
10002   int is_array = ada_is_direct_array_type (value_type (lhs));
10003
10004   choice_pos = *pos += 3;
10005
10006   for (j = 0; j < n_choices; j += 1)
10007     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10008   expr_pc = *pos;
10009   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10010   
10011   for (j = 0; j < n_choices; j += 1)
10012     {
10013       LONGEST lower, upper;
10014       enum exp_opcode op = exp->elts[choice_pos].opcode;
10015
10016       if (op == OP_DISCRETE_RANGE)
10017         {
10018           choice_pos += 1;
10019           lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10020                                                       EVAL_NORMAL));
10021           upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 
10022                                                       EVAL_NORMAL));
10023         }
10024       else if (is_array)
10025         {
10026           lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 
10027                                                       EVAL_NORMAL));
10028           upper = lower;
10029         }
10030       else
10031         {
10032           int ind;
10033           const char *name;
10034
10035           switch (op)
10036             {
10037             case OP_NAME:
10038               name = &exp->elts[choice_pos + 2].string;
10039               break;
10040             case OP_VAR_VALUE:
10041               name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10042               break;
10043             default:
10044               error (_("Invalid record component association."));
10045             }
10046           ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10047           ind = 0;
10048           if (! find_struct_field (name, value_type (lhs), 0, 
10049                                    NULL, NULL, NULL, NULL, &ind))
10050             error (_("Unknown component name: %s."), name);
10051           lower = upper = ind;
10052         }
10053
10054       if (lower <= upper && (lower < low || upper > high))
10055         error (_("Index in component association out of bounds."));
10056
10057       add_component_interval (lower, upper, indices, num_indices,
10058                               max_indices);
10059       while (lower <= upper)
10060         {
10061           int pos1;
10062
10063           pos1 = expr_pc;
10064           assign_component (container, lhs, lower, exp, &pos1);
10065           lower += 1;
10066         }
10067     }
10068 }
10069
10070 /* Assign the value of the expression in the OP_OTHERS construct in
10071    EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10072    have not been previously assigned.  The index intervals already assigned
10073    are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the 
10074    OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
10075 static void
10076 aggregate_assign_others (struct value *container,
10077                          struct value *lhs, struct expression *exp,
10078                          int *pos, LONGEST *indices, int num_indices,
10079                          LONGEST low, LONGEST high) 
10080 {
10081   int i;
10082   int expr_pc = *pos + 1;
10083   
10084   for (i = 0; i < num_indices - 2; i += 2)
10085     {
10086       LONGEST ind;
10087
10088       for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10089         {
10090           int localpos;
10091
10092           localpos = expr_pc;
10093           assign_component (container, lhs, ind, exp, &localpos);
10094         }
10095     }
10096   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10097 }
10098
10099 /* Add the interval [LOW .. HIGH] to the sorted set of intervals 
10100    [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10101    modifying *SIZE as needed.  It is an error if *SIZE exceeds
10102    MAX_SIZE.  The resulting intervals do not overlap.  */
10103 static void
10104 add_component_interval (LONGEST low, LONGEST high, 
10105                         LONGEST* indices, int *size, int max_size)
10106 {
10107   int i, j;
10108
10109   for (i = 0; i < *size; i += 2) {
10110     if (high >= indices[i] && low <= indices[i + 1])
10111       {
10112         int kh;
10113
10114         for (kh = i + 2; kh < *size; kh += 2)
10115           if (high < indices[kh])
10116             break;
10117         if (low < indices[i])
10118           indices[i] = low;
10119         indices[i + 1] = indices[kh - 1];
10120         if (high > indices[i + 1])
10121           indices[i + 1] = high;
10122         memcpy (indices + i + 2, indices + kh, *size - kh);
10123         *size -= kh - i - 2;
10124         return;
10125       }
10126     else if (high < indices[i])
10127       break;
10128   }
10129         
10130   if (*size == max_size)
10131     error (_("Internal error: miscounted aggregate components."));
10132   *size += 2;
10133   for (j = *size-1; j >= i+2; j -= 1)
10134     indices[j] = indices[j - 2];
10135   indices[i] = low;
10136   indices[i + 1] = high;
10137 }
10138
10139 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10140    is different.  */
10141
10142 static struct value *
10143 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10144 {
10145   if (type == ada_check_typedef (value_type (arg2)))
10146     return arg2;
10147
10148   if (ada_is_fixed_point_type (type))
10149     return (cast_to_fixed (type, arg2));
10150
10151   if (ada_is_fixed_point_type (value_type (arg2)))
10152     return cast_from_fixed (type, arg2);
10153
10154   return value_cast (type, arg2);
10155 }
10156
10157 /*  Evaluating Ada expressions, and printing their result.
10158     ------------------------------------------------------
10159
10160     1. Introduction:
10161     ----------------
10162
10163     We usually evaluate an Ada expression in order to print its value.
10164     We also evaluate an expression in order to print its type, which
10165     happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10166     but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
10167     EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10168     the evaluation compared to the EVAL_NORMAL, but is otherwise very
10169     similar.
10170
10171     Evaluating expressions is a little more complicated for Ada entities
10172     than it is for entities in languages such as C.  The main reason for
10173     this is that Ada provides types whose definition might be dynamic.
10174     One example of such types is variant records.  Or another example
10175     would be an array whose bounds can only be known at run time.
10176
10177     The following description is a general guide as to what should be
10178     done (and what should NOT be done) in order to evaluate an expression
10179     involving such types, and when.  This does not cover how the semantic
10180     information is encoded by GNAT as this is covered separatly.  For the
10181     document used as the reference for the GNAT encoding, see exp_dbug.ads
10182     in the GNAT sources.
10183
10184     Ideally, we should embed each part of this description next to its
10185     associated code.  Unfortunately, the amount of code is so vast right
10186     now that it's hard to see whether the code handling a particular
10187     situation might be duplicated or not.  One day, when the code is
10188     cleaned up, this guide might become redundant with the comments
10189     inserted in the code, and we might want to remove it.
10190
10191     2. ``Fixing'' an Entity, the Simple Case:
10192     -----------------------------------------
10193
10194     When evaluating Ada expressions, the tricky issue is that they may
10195     reference entities whose type contents and size are not statically
10196     known.  Consider for instance a variant record:
10197
10198        type Rec (Empty : Boolean := True) is record
10199           case Empty is
10200              when True => null;
10201              when False => Value : Integer;
10202           end case;
10203        end record;
10204        Yes : Rec := (Empty => False, Value => 1);
10205        No  : Rec := (empty => True);
10206
10207     The size and contents of that record depends on the value of the
10208     descriminant (Rec.Empty).  At this point, neither the debugging
10209     information nor the associated type structure in GDB are able to
10210     express such dynamic types.  So what the debugger does is to create
10211     "fixed" versions of the type that applies to the specific object.
10212     We also informally refer to this opperation as "fixing" an object,
10213     which means creating its associated fixed type.
10214
10215     Example: when printing the value of variable "Yes" above, its fixed
10216     type would look like this:
10217
10218        type Rec is record
10219           Empty : Boolean;
10220           Value : Integer;
10221        end record;
10222
10223     On the other hand, if we printed the value of "No", its fixed type
10224     would become:
10225
10226        type Rec is record
10227           Empty : Boolean;
10228        end record;
10229
10230     Things become a little more complicated when trying to fix an entity
10231     with a dynamic type that directly contains another dynamic type,
10232     such as an array of variant records, for instance.  There are
10233     two possible cases: Arrays, and records.
10234
10235     3. ``Fixing'' Arrays:
10236     ---------------------
10237
10238     The type structure in GDB describes an array in terms of its bounds,
10239     and the type of its elements.  By design, all elements in the array
10240     have the same type and we cannot represent an array of variant elements
10241     using the current type structure in GDB.  When fixing an array,
10242     we cannot fix the array element, as we would potentially need one
10243     fixed type per element of the array.  As a result, the best we can do
10244     when fixing an array is to produce an array whose bounds and size
10245     are correct (allowing us to read it from memory), but without having
10246     touched its element type.  Fixing each element will be done later,
10247     when (if) necessary.
10248
10249     Arrays are a little simpler to handle than records, because the same
10250     amount of memory is allocated for each element of the array, even if
10251     the amount of space actually used by each element differs from element
10252     to element.  Consider for instance the following array of type Rec:
10253
10254        type Rec_Array is array (1 .. 2) of Rec;
10255
10256     The actual amount of memory occupied by each element might be different
10257     from element to element, depending on the value of their discriminant.
10258     But the amount of space reserved for each element in the array remains
10259     fixed regardless.  So we simply need to compute that size using
10260     the debugging information available, from which we can then determine
10261     the array size (we multiply the number of elements of the array by
10262     the size of each element).
10263
10264     The simplest case is when we have an array of a constrained element
10265     type. For instance, consider the following type declarations:
10266
10267         type Bounded_String (Max_Size : Integer) is
10268            Length : Integer;
10269            Buffer : String (1 .. Max_Size);
10270         end record;
10271         type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10272
10273     In this case, the compiler describes the array as an array of
10274     variable-size elements (identified by its XVS suffix) for which
10275     the size can be read in the parallel XVZ variable.
10276
10277     In the case of an array of an unconstrained element type, the compiler
10278     wraps the array element inside a private PAD type.  This type should not
10279     be shown to the user, and must be "unwrap"'ed before printing.  Note
10280     that we also use the adjective "aligner" in our code to designate
10281     these wrapper types.
10282
10283     In some cases, the size allocated for each element is statically
10284     known.  In that case, the PAD type already has the correct size,
10285     and the array element should remain unfixed.
10286
10287     But there are cases when this size is not statically known.
10288     For instance, assuming that "Five" is an integer variable:
10289
10290         type Dynamic is array (1 .. Five) of Integer;
10291         type Wrapper (Has_Length : Boolean := False) is record
10292            Data : Dynamic;
10293            case Has_Length is
10294               when True => Length : Integer;
10295               when False => null;
10296            end case;
10297         end record;
10298         type Wrapper_Array is array (1 .. 2) of Wrapper;
10299
10300         Hello : Wrapper_Array := (others => (Has_Length => True,
10301                                              Data => (others => 17),
10302                                              Length => 1));
10303
10304
10305     The debugging info would describe variable Hello as being an
10306     array of a PAD type.  The size of that PAD type is not statically
10307     known, but can be determined using a parallel XVZ variable.
10308     In that case, a copy of the PAD type with the correct size should
10309     be used for the fixed array.
10310
10311     3. ``Fixing'' record type objects:
10312     ----------------------------------
10313
10314     Things are slightly different from arrays in the case of dynamic
10315     record types.  In this case, in order to compute the associated
10316     fixed type, we need to determine the size and offset of each of
10317     its components.  This, in turn, requires us to compute the fixed
10318     type of each of these components.
10319
10320     Consider for instance the example:
10321
10322         type Bounded_String (Max_Size : Natural) is record
10323            Str : String (1 .. Max_Size);
10324            Length : Natural;
10325         end record;
10326         My_String : Bounded_String (Max_Size => 10);
10327
10328     In that case, the position of field "Length" depends on the size
10329     of field Str, which itself depends on the value of the Max_Size
10330     discriminant.  In order to fix the type of variable My_String,
10331     we need to fix the type of field Str.  Therefore, fixing a variant
10332     record requires us to fix each of its components.
10333
10334     However, if a component does not have a dynamic size, the component
10335     should not be fixed.  In particular, fields that use a PAD type
10336     should not fixed.  Here is an example where this might happen
10337     (assuming type Rec above):
10338
10339        type Container (Big : Boolean) is record
10340           First : Rec;
10341           After : Integer;
10342           case Big is
10343              when True => Another : Integer;
10344              when False => null;
10345           end case;
10346        end record;
10347        My_Container : Container := (Big => False,
10348                                     First => (Empty => True),
10349                                     After => 42);
10350
10351     In that example, the compiler creates a PAD type for component First,
10352     whose size is constant, and then positions the component After just
10353     right after it.  The offset of component After is therefore constant
10354     in this case.
10355
10356     The debugger computes the position of each field based on an algorithm
10357     that uses, among other things, the actual position and size of the field
10358     preceding it.  Let's now imagine that the user is trying to print
10359     the value of My_Container.  If the type fixing was recursive, we would
10360     end up computing the offset of field After based on the size of the
10361     fixed version of field First.  And since in our example First has
10362     only one actual field, the size of the fixed type is actually smaller
10363     than the amount of space allocated to that field, and thus we would
10364     compute the wrong offset of field After.
10365
10366     To make things more complicated, we need to watch out for dynamic
10367     components of variant records (identified by the ___XVL suffix in
10368     the component name).  Even if the target type is a PAD type, the size
10369     of that type might not be statically known.  So the PAD type needs
10370     to be unwrapped and the resulting type needs to be fixed.  Otherwise,
10371     we might end up with the wrong size for our component.  This can be
10372     observed with the following type declarations:
10373
10374         type Octal is new Integer range 0 .. 7;
10375         type Octal_Array is array (Positive range <>) of Octal;
10376         pragma Pack (Octal_Array);
10377
10378         type Octal_Buffer (Size : Positive) is record
10379            Buffer : Octal_Array (1 .. Size);
10380            Length : Integer;
10381         end record;
10382
10383     In that case, Buffer is a PAD type whose size is unset and needs
10384     to be computed by fixing the unwrapped type.
10385
10386     4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10387     ----------------------------------------------------------
10388
10389     Lastly, when should the sub-elements of an entity that remained unfixed
10390     thus far, be actually fixed?
10391
10392     The answer is: Only when referencing that element.  For instance
10393     when selecting one component of a record, this specific component
10394     should be fixed at that point in time.  Or when printing the value
10395     of a record, each component should be fixed before its value gets
10396     printed.  Similarly for arrays, the element of the array should be
10397     fixed when printing each element of the array, or when extracting
10398     one element out of that array.  On the other hand, fixing should
10399     not be performed on the elements when taking a slice of an array!
10400
10401     Note that one of the side-effects of miscomputing the offset and
10402     size of each field is that we end up also miscomputing the size
10403     of the containing type.  This can have adverse results when computing
10404     the value of an entity.  GDB fetches the value of an entity based
10405     on the size of its type, and thus a wrong size causes GDB to fetch
10406     the wrong amount of memory.  In the case where the computed size is
10407     too small, GDB fetches too little data to print the value of our
10408     entiry.  Results in this case as unpredicatble, as we usually read
10409     past the buffer containing the data =:-o.  */
10410
10411 /* Implement the evaluate_exp routine in the exp_descriptor structure
10412    for the Ada language.  */
10413
10414 static struct value *
10415 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10416                      int *pos, enum noside noside)
10417 {
10418   enum exp_opcode op;
10419   int tem;
10420   int pc;
10421   int preeval_pos;
10422   struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10423   struct type *type;
10424   int nargs, oplen;
10425   struct value **argvec;
10426
10427   pc = *pos;
10428   *pos += 1;
10429   op = exp->elts[pc].opcode;
10430
10431   switch (op)
10432     {
10433     default:
10434       *pos -= 1;
10435       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10436
10437       if (noside == EVAL_NORMAL)
10438         arg1 = unwrap_value (arg1);
10439
10440       /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10441          then we need to perform the conversion manually, because
10442          evaluate_subexp_standard doesn't do it.  This conversion is
10443          necessary in Ada because the different kinds of float/fixed
10444          types in Ada have different representations.
10445
10446          Similarly, we need to perform the conversion from OP_LONG
10447          ourselves.  */
10448       if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10449         arg1 = ada_value_cast (expect_type, arg1, noside);
10450
10451       return arg1;
10452
10453     case OP_STRING:
10454       {
10455         struct value *result;
10456
10457         *pos -= 1;
10458         result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459         /* The result type will have code OP_STRING, bashed there from 
10460            OP_ARRAY.  Bash it back.  */
10461         if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10462           TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10463         return result;
10464       }
10465
10466     case UNOP_CAST:
10467       (*pos) += 2;
10468       type = exp->elts[pc + 1].type;
10469       arg1 = evaluate_subexp (type, exp, pos, noside);
10470       if (noside == EVAL_SKIP)
10471         goto nosideret;
10472       arg1 = ada_value_cast (type, arg1, noside);
10473       return arg1;
10474
10475     case UNOP_QUAL:
10476       (*pos) += 2;
10477       type = exp->elts[pc + 1].type;
10478       return ada_evaluate_subexp (type, exp, pos, noside);
10479
10480     case BINOP_ASSIGN:
10481       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482       if (exp->elts[*pos].opcode == OP_AGGREGATE)
10483         {
10484           arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10485           if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10486             return arg1;
10487           return ada_value_assign (arg1, arg1);
10488         }
10489       /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10490          except if the lhs of our assignment is a convenience variable.
10491          In the case of assigning to a convenience variable, the lhs
10492          should be exactly the result of the evaluation of the rhs.  */
10493       type = value_type (arg1);
10494       if (VALUE_LVAL (arg1) == lval_internalvar)
10495          type = NULL;
10496       arg2 = evaluate_subexp (type, exp, pos, noside);
10497       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10498         return arg1;
10499       if (ada_is_fixed_point_type (value_type (arg1)))
10500         arg2 = cast_to_fixed (value_type (arg1), arg2);
10501       else if (ada_is_fixed_point_type (value_type (arg2)))
10502         error
10503           (_("Fixed-point values must be assigned to fixed-point variables"));
10504       else
10505         arg2 = coerce_for_assign (value_type (arg1), arg2);
10506       return ada_value_assign (arg1, arg2);
10507
10508     case BINOP_ADD:
10509       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10510       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10511       if (noside == EVAL_SKIP)
10512         goto nosideret;
10513       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10514         return (value_from_longest
10515                  (value_type (arg1),
10516                   value_as_long (arg1) + value_as_long (arg2)));
10517       if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10518         return (value_from_longest
10519                  (value_type (arg2),
10520                   value_as_long (arg1) + value_as_long (arg2)));
10521       if ((ada_is_fixed_point_type (value_type (arg1))
10522            || ada_is_fixed_point_type (value_type (arg2)))
10523           && value_type (arg1) != value_type (arg2))
10524         error (_("Operands of fixed-point addition must have the same type"));
10525       /* Do the addition, and cast the result to the type of the first
10526          argument.  We cannot cast the result to a reference type, so if
10527          ARG1 is a reference type, find its underlying type.  */
10528       type = value_type (arg1);
10529       while (TYPE_CODE (type) == TYPE_CODE_REF)
10530         type = TYPE_TARGET_TYPE (type);
10531       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10532       return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10533
10534     case BINOP_SUB:
10535       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10536       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10537       if (noside == EVAL_SKIP)
10538         goto nosideret;
10539       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10540         return (value_from_longest
10541                  (value_type (arg1),
10542                   value_as_long (arg1) - value_as_long (arg2)));
10543       if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10544         return (value_from_longest
10545                  (value_type (arg2),
10546                   value_as_long (arg1) - value_as_long (arg2)));
10547       if ((ada_is_fixed_point_type (value_type (arg1))
10548            || ada_is_fixed_point_type (value_type (arg2)))
10549           && value_type (arg1) != value_type (arg2))
10550         error (_("Operands of fixed-point subtraction "
10551                  "must have the same type"));
10552       /* Do the substraction, and cast the result to the type of the first
10553          argument.  We cannot cast the result to a reference type, so if
10554          ARG1 is a reference type, find its underlying type.  */
10555       type = value_type (arg1);
10556       while (TYPE_CODE (type) == TYPE_CODE_REF)
10557         type = TYPE_TARGET_TYPE (type);
10558       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10559       return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10560
10561     case BINOP_MUL:
10562     case BINOP_DIV:
10563     case BINOP_REM:
10564     case BINOP_MOD:
10565       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10567       if (noside == EVAL_SKIP)
10568         goto nosideret;
10569       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10570         {
10571           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10572           return value_zero (value_type (arg1), not_lval);
10573         }
10574       else
10575         {
10576           type = builtin_type (exp->gdbarch)->builtin_double;
10577           if (ada_is_fixed_point_type (value_type (arg1)))
10578             arg1 = cast_from_fixed (type, arg1);
10579           if (ada_is_fixed_point_type (value_type (arg2)))
10580             arg2 = cast_from_fixed (type, arg2);
10581           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10582           return ada_value_binop (arg1, arg2, op);
10583         }
10584
10585     case BINOP_EQUAL:
10586     case BINOP_NOTEQUAL:
10587       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10589       if (noside == EVAL_SKIP)
10590         goto nosideret;
10591       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592         tem = 0;
10593       else
10594         {
10595           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10596           tem = ada_value_equal (arg1, arg2);
10597         }
10598       if (op == BINOP_NOTEQUAL)
10599         tem = !tem;
10600       type = language_bool_type (exp->language_defn, exp->gdbarch);
10601       return value_from_longest (type, (LONGEST) tem);
10602
10603     case UNOP_NEG:
10604       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605       if (noside == EVAL_SKIP)
10606         goto nosideret;
10607       else if (ada_is_fixed_point_type (value_type (arg1)))
10608         return value_cast (value_type (arg1), value_neg (arg1));
10609       else
10610         {
10611           unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10612           return value_neg (arg1);
10613         }
10614
10615     case BINOP_LOGICAL_AND:
10616     case BINOP_LOGICAL_OR:
10617     case UNOP_LOGICAL_NOT:
10618       {
10619         struct value *val;
10620
10621         *pos -= 1;
10622         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10623         type = language_bool_type (exp->language_defn, exp->gdbarch);
10624         return value_cast (type, val);
10625       }
10626
10627     case BINOP_BITWISE_AND:
10628     case BINOP_BITWISE_IOR:
10629     case BINOP_BITWISE_XOR:
10630       {
10631         struct value *val;
10632
10633         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10634         *pos = pc;
10635         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636
10637         return value_cast (value_type (arg1), val);
10638       }
10639
10640     case OP_VAR_VALUE:
10641       *pos -= 1;
10642
10643       if (noside == EVAL_SKIP)
10644         {
10645           *pos += 4;
10646           goto nosideret;
10647         }
10648
10649       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10650         /* Only encountered when an unresolved symbol occurs in a
10651            context other than a function call, in which case, it is
10652            invalid.  */
10653         error (_("Unexpected unresolved symbol, %s, during evaluation"),
10654                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10655
10656       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657         {
10658           type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10659           /* Check to see if this is a tagged type.  We also need to handle
10660              the case where the type is a reference to a tagged type, but
10661              we have to be careful to exclude pointers to tagged types.
10662              The latter should be shown as usual (as a pointer), whereas
10663              a reference should mostly be transparent to the user.  */
10664           if (ada_is_tagged_type (type, 0)
10665               || (TYPE_CODE (type) == TYPE_CODE_REF
10666                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10667             {
10668               /* Tagged types are a little special in the fact that the real
10669                  type is dynamic and can only be determined by inspecting the
10670                  object's tag.  This means that we need to get the object's
10671                  value first (EVAL_NORMAL) and then extract the actual object
10672                  type from its tag.
10673
10674                  Note that we cannot skip the final step where we extract
10675                  the object type from its tag, because the EVAL_NORMAL phase
10676                  results in dynamic components being resolved into fixed ones.
10677                  This can cause problems when trying to print the type
10678                  description of tagged types whose parent has a dynamic size:
10679                  We use the type name of the "_parent" component in order
10680                  to print the name of the ancestor type in the type description.
10681                  If that component had a dynamic size, the resolution into
10682                  a fixed type would result in the loss of that type name,
10683                  thus preventing us from printing the name of the ancestor
10684                  type in the type description.  */
10685               arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10686
10687               if (TYPE_CODE (type) != TYPE_CODE_REF)
10688                 {
10689                   struct type *actual_type;
10690
10691                   actual_type = type_from_tag (ada_value_tag (arg1));
10692                   if (actual_type == NULL)
10693                     /* If, for some reason, we were unable to determine
10694                        the actual type from the tag, then use the static
10695                        approximation that we just computed as a fallback.
10696                        This can happen if the debugging information is
10697                        incomplete, for instance.  */
10698                     actual_type = type;
10699                   return value_zero (actual_type, not_lval);
10700                 }
10701               else
10702                 {
10703                   /* In the case of a ref, ada_coerce_ref takes care
10704                      of determining the actual type.  But the evaluation
10705                      should return a ref as it should be valid to ask
10706                      for its address; so rebuild a ref after coerce.  */
10707                   arg1 = ada_coerce_ref (arg1);
10708                   return value_ref (arg1, TYPE_CODE_REF);
10709                 }
10710             }
10711
10712           /* Records and unions for which GNAT encodings have been
10713              generated need to be statically fixed as well.
10714              Otherwise, non-static fixing produces a type where
10715              all dynamic properties are removed, which prevents "ptype"
10716              from being able to completely describe the type.
10717              For instance, a case statement in a variant record would be
10718              replaced by the relevant components based on the actual
10719              value of the discriminants.  */
10720           if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10721                && dynamic_template_type (type) != NULL)
10722               || (TYPE_CODE (type) == TYPE_CODE_UNION
10723                   && ada_find_parallel_type (type, "___XVU") != NULL))
10724             {
10725               *pos += 4;
10726               return value_zero (to_static_fixed_type (type), not_lval);
10727             }
10728         }
10729
10730       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10731       return ada_to_fixed_value (arg1);
10732
10733     case OP_FUNCALL:
10734       (*pos) += 2;
10735
10736       /* Allocate arg vector, including space for the function to be
10737          called in argvec[0] and a terminating NULL.  */
10738       nargs = longest_to_int (exp->elts[pc + 1].longconst);
10739       argvec = XALLOCAVEC (struct value *, nargs + 2);
10740
10741       if (exp->elts[*pos].opcode == OP_VAR_VALUE
10742           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10743         error (_("Unexpected unresolved symbol, %s, during evaluation"),
10744                SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10745       else
10746         {
10747           for (tem = 0; tem <= nargs; tem += 1)
10748             argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749           argvec[tem] = 0;
10750
10751           if (noside == EVAL_SKIP)
10752             goto nosideret;
10753         }
10754
10755       if (ada_is_constrained_packed_array_type
10756           (desc_base_type (value_type (argvec[0]))))
10757         argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10758       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10759                && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10760         /* This is a packed array that has already been fixed, and
10761            therefore already coerced to a simple array.  Nothing further
10762            to do.  */
10763         ;
10764       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10765         {
10766           /* Make sure we dereference references so that all the code below
10767              feels like it's really handling the referenced value.  Wrapping
10768              types (for alignment) may be there, so make sure we strip them as
10769              well.  */
10770           argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10771         }
10772       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10773                && VALUE_LVAL (argvec[0]) == lval_memory)
10774         argvec[0] = value_addr (argvec[0]);
10775
10776       type = ada_check_typedef (value_type (argvec[0]));
10777
10778       /* Ada allows us to implicitly dereference arrays when subscripting
10779          them.  So, if this is an array typedef (encoding use for array
10780          access types encoded as fat pointers), strip it now.  */
10781       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10782         type = ada_typedef_target_type (type);
10783
10784       if (TYPE_CODE (type) == TYPE_CODE_PTR)
10785         {
10786           switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10787             {
10788             case TYPE_CODE_FUNC:
10789               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10790               break;
10791             case TYPE_CODE_ARRAY:
10792               break;
10793             case TYPE_CODE_STRUCT:
10794               if (noside != EVAL_AVOID_SIDE_EFFECTS)
10795                 argvec[0] = ada_value_ind (argvec[0]);
10796               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10797               break;
10798             default:
10799               error (_("cannot subscript or call something of type `%s'"),
10800                      ada_type_name (value_type (argvec[0])));
10801               break;
10802             }
10803         }
10804
10805       switch (TYPE_CODE (type))
10806         {
10807         case TYPE_CODE_FUNC:
10808           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10809             {
10810               struct type *rtype = TYPE_TARGET_TYPE (type);
10811
10812               if (TYPE_GNU_IFUNC (type))
10813                 return allocate_value (TYPE_TARGET_TYPE (rtype));
10814               return allocate_value (rtype);
10815             }
10816           return call_function_by_hand (argvec[0], nargs, argvec + 1);
10817         case TYPE_CODE_INTERNAL_FUNCTION:
10818           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819             /* We don't know anything about what the internal
10820                function might return, but we have to return
10821                something.  */
10822             return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10823                                not_lval);
10824           else
10825             return call_internal_function (exp->gdbarch, exp->language_defn,
10826                                            argvec[0], nargs, argvec + 1);
10827
10828         case TYPE_CODE_STRUCT:
10829           {
10830             int arity;
10831
10832             arity = ada_array_arity (type);
10833             type = ada_array_element_type (type, nargs);
10834             if (type == NULL)
10835               error (_("cannot subscript or call a record"));
10836             if (arity != nargs)
10837               error (_("wrong number of subscripts; expecting %d"), arity);
10838             if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839               return value_zero (ada_aligned_type (type), lval_memory);
10840             return
10841               unwrap_value (ada_value_subscript
10842                             (argvec[0], nargs, argvec + 1));
10843           }
10844         case TYPE_CODE_ARRAY:
10845           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846             {
10847               type = ada_array_element_type (type, nargs);
10848               if (type == NULL)
10849                 error (_("element type of array unknown"));
10850               else
10851                 return value_zero (ada_aligned_type (type), lval_memory);
10852             }
10853           return
10854             unwrap_value (ada_value_subscript
10855                           (ada_coerce_to_simple_array (argvec[0]),
10856                            nargs, argvec + 1));
10857         case TYPE_CODE_PTR:     /* Pointer to array */
10858           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10859             {
10860               type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10861               type = ada_array_element_type (type, nargs);
10862               if (type == NULL)
10863                 error (_("element type of array unknown"));
10864               else
10865                 return value_zero (ada_aligned_type (type), lval_memory);
10866             }
10867           return
10868             unwrap_value (ada_value_ptr_subscript (argvec[0],
10869                                                    nargs, argvec + 1));
10870
10871         default:
10872           error (_("Attempt to index or call something other than an "
10873                    "array or function"));
10874         }
10875
10876     case TERNOP_SLICE:
10877       {
10878         struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879         struct value *low_bound_val =
10880           evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881         struct value *high_bound_val =
10882           evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883         LONGEST low_bound;
10884         LONGEST high_bound;
10885
10886         low_bound_val = coerce_ref (low_bound_val);
10887         high_bound_val = coerce_ref (high_bound_val);
10888         low_bound = value_as_long (low_bound_val);
10889         high_bound = value_as_long (high_bound_val);
10890
10891         if (noside == EVAL_SKIP)
10892           goto nosideret;
10893
10894         /* If this is a reference to an aligner type, then remove all
10895            the aligners.  */
10896         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10897             && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10898           TYPE_TARGET_TYPE (value_type (array)) =
10899             ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10900
10901         if (ada_is_constrained_packed_array_type (value_type (array)))
10902           error (_("cannot slice a packed array"));
10903
10904         /* If this is a reference to an array or an array lvalue,
10905            convert to a pointer.  */
10906         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10907             || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10908                 && VALUE_LVAL (array) == lval_memory))
10909           array = value_addr (array);
10910
10911         if (noside == EVAL_AVOID_SIDE_EFFECTS
10912             && ada_is_array_descriptor_type (ada_check_typedef
10913                                              (value_type (array))))
10914           return empty_array (ada_type_of_array (array, 0), low_bound);
10915
10916         array = ada_coerce_to_simple_array_ptr (array);
10917
10918         /* If we have more than one level of pointer indirection,
10919            dereference the value until we get only one level.  */
10920         while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10921                && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10922                      == TYPE_CODE_PTR))
10923           array = value_ind (array);
10924
10925         /* Make sure we really do have an array type before going further,
10926            to avoid a SEGV when trying to get the index type or the target
10927            type later down the road if the debug info generated by
10928            the compiler is incorrect or incomplete.  */
10929         if (!ada_is_simple_array_type (value_type (array)))
10930           error (_("cannot take slice of non-array"));
10931
10932         if (TYPE_CODE (ada_check_typedef (value_type (array)))
10933             == TYPE_CODE_PTR)
10934           {
10935             struct type *type0 = ada_check_typedef (value_type (array));
10936
10937             if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10938               return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10939             else
10940               {
10941                 struct type *arr_type0 =
10942                   to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10943
10944                 return ada_value_slice_from_ptr (array, arr_type0,
10945                                                  longest_to_int (low_bound),
10946                                                  longest_to_int (high_bound));
10947               }
10948           }
10949         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10950           return array;
10951         else if (high_bound < low_bound)
10952           return empty_array (value_type (array), low_bound);
10953         else
10954           return ada_value_slice (array, longest_to_int (low_bound),
10955                                   longest_to_int (high_bound));
10956       }
10957
10958     case UNOP_IN_RANGE:
10959       (*pos) += 2;
10960       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961       type = check_typedef (exp->elts[pc + 1].type);
10962
10963       if (noside == EVAL_SKIP)
10964         goto nosideret;
10965
10966       switch (TYPE_CODE (type))
10967         {
10968         default:
10969           lim_warning (_("Membership test incompletely implemented; "
10970                          "always returns true"));
10971           type = language_bool_type (exp->language_defn, exp->gdbarch);
10972           return value_from_longest (type, (LONGEST) 1);
10973
10974         case TYPE_CODE_RANGE:
10975           arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10976           arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10977           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10978           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10979           type = language_bool_type (exp->language_defn, exp->gdbarch);
10980           return
10981             value_from_longest (type,
10982                                 (value_less (arg1, arg3)
10983                                  || value_equal (arg1, arg3))
10984                                 && (value_less (arg2, arg1)
10985                                     || value_equal (arg2, arg1)));
10986         }
10987
10988     case BINOP_IN_BOUNDS:
10989       (*pos) += 2;
10990       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10992
10993       if (noside == EVAL_SKIP)
10994         goto nosideret;
10995
10996       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10997         {
10998           type = language_bool_type (exp->language_defn, exp->gdbarch);
10999           return value_zero (type, not_lval);
11000         }
11001
11002       tem = longest_to_int (exp->elts[pc + 1].longconst);
11003
11004       type = ada_index_type (value_type (arg2), tem, "range");
11005       if (!type)
11006         type = value_type (arg1);
11007
11008       arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11009       arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11010
11011       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11012       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11013       type = language_bool_type (exp->language_defn, exp->gdbarch);
11014       return
11015         value_from_longest (type,
11016                             (value_less (arg1, arg3)
11017                              || value_equal (arg1, arg3))
11018                             && (value_less (arg2, arg1)
11019                                 || value_equal (arg2, arg1)));
11020
11021     case TERNOP_IN_RANGE:
11022       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024       arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025
11026       if (noside == EVAL_SKIP)
11027         goto nosideret;
11028
11029       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11030       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11031       type = language_bool_type (exp->language_defn, exp->gdbarch);
11032       return
11033         value_from_longest (type,
11034                             (value_less (arg1, arg3)
11035                              || value_equal (arg1, arg3))
11036                             && (value_less (arg2, arg1)
11037                                 || value_equal (arg2, arg1)));
11038
11039     case OP_ATR_FIRST:
11040     case OP_ATR_LAST:
11041     case OP_ATR_LENGTH:
11042       {
11043         struct type *type_arg;
11044
11045         if (exp->elts[*pos].opcode == OP_TYPE)
11046           {
11047             evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11048             arg1 = NULL;
11049             type_arg = check_typedef (exp->elts[pc + 2].type);
11050           }
11051         else
11052           {
11053             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054             type_arg = NULL;
11055           }
11056
11057         if (exp->elts[*pos].opcode != OP_LONG)
11058           error (_("Invalid operand to '%s"), ada_attribute_name (op));
11059         tem = longest_to_int (exp->elts[*pos + 2].longconst);
11060         *pos += 4;
11061
11062         if (noside == EVAL_SKIP)
11063           goto nosideret;
11064
11065         if (type_arg == NULL)
11066           {
11067             arg1 = ada_coerce_ref (arg1);
11068
11069             if (ada_is_constrained_packed_array_type (value_type (arg1)))
11070               arg1 = ada_coerce_to_simple_array (arg1);
11071
11072             if (op == OP_ATR_LENGTH)
11073               type = builtin_type (exp->gdbarch)->builtin_int;
11074             else
11075               {
11076                 type = ada_index_type (value_type (arg1), tem,
11077                                        ada_attribute_name (op));
11078                 if (type == NULL)
11079                   type = builtin_type (exp->gdbarch)->builtin_int;
11080               }
11081
11082             if (noside == EVAL_AVOID_SIDE_EFFECTS)
11083               return allocate_value (type);
11084
11085             switch (op)
11086               {
11087               default:          /* Should never happen.  */
11088                 error (_("unexpected attribute encountered"));
11089               case OP_ATR_FIRST:
11090                 return value_from_longest
11091                         (type, ada_array_bound (arg1, tem, 0));
11092               case OP_ATR_LAST:
11093                 return value_from_longest
11094                         (type, ada_array_bound (arg1, tem, 1));
11095               case OP_ATR_LENGTH:
11096                 return value_from_longest
11097                         (type, ada_array_length (arg1, tem));
11098               }
11099           }
11100         else if (discrete_type_p (type_arg))
11101           {
11102             struct type *range_type;
11103             const char *name = ada_type_name (type_arg);
11104
11105             range_type = NULL;
11106             if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11107               range_type = to_fixed_range_type (type_arg, NULL);
11108             if (range_type == NULL)
11109               range_type = type_arg;
11110             switch (op)
11111               {
11112               default:
11113                 error (_("unexpected attribute encountered"));
11114               case OP_ATR_FIRST:
11115                 return value_from_longest 
11116                   (range_type, ada_discrete_type_low_bound (range_type));
11117               case OP_ATR_LAST:
11118                 return value_from_longest
11119                   (range_type, ada_discrete_type_high_bound (range_type));
11120               case OP_ATR_LENGTH:
11121                 error (_("the 'length attribute applies only to array types"));
11122               }
11123           }
11124         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11125           error (_("unimplemented type attribute"));
11126         else
11127           {
11128             LONGEST low, high;
11129
11130             if (ada_is_constrained_packed_array_type (type_arg))
11131               type_arg = decode_constrained_packed_array_type (type_arg);
11132
11133             if (op == OP_ATR_LENGTH)
11134               type = builtin_type (exp->gdbarch)->builtin_int;
11135             else
11136               {
11137                 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11138                 if (type == NULL)
11139                   type = builtin_type (exp->gdbarch)->builtin_int;
11140               }
11141
11142             if (noside == EVAL_AVOID_SIDE_EFFECTS)
11143               return allocate_value (type);
11144
11145             switch (op)
11146               {
11147               default:
11148                 error (_("unexpected attribute encountered"));
11149               case OP_ATR_FIRST:
11150                 low = ada_array_bound_from_type (type_arg, tem, 0);
11151                 return value_from_longest (type, low);
11152               case OP_ATR_LAST:
11153                 high = ada_array_bound_from_type (type_arg, tem, 1);
11154                 return value_from_longest (type, high);
11155               case OP_ATR_LENGTH:
11156                 low = ada_array_bound_from_type (type_arg, tem, 0);
11157                 high = ada_array_bound_from_type (type_arg, tem, 1);
11158                 return value_from_longest (type, high - low + 1);
11159               }
11160           }
11161       }
11162
11163     case OP_ATR_TAG:
11164       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165       if (noside == EVAL_SKIP)
11166         goto nosideret;
11167
11168       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169         return value_zero (ada_tag_type (arg1), not_lval);
11170
11171       return ada_value_tag (arg1);
11172
11173     case OP_ATR_MIN:
11174     case OP_ATR_MAX:
11175       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178       if (noside == EVAL_SKIP)
11179         goto nosideret;
11180       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11181         return value_zero (value_type (arg1), not_lval);
11182       else
11183         {
11184           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11185           return value_binop (arg1, arg2,
11186                               op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11187         }
11188
11189     case OP_ATR_MODULUS:
11190       {
11191         struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11192
11193         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11194         if (noside == EVAL_SKIP)
11195           goto nosideret;
11196
11197         if (!ada_is_modular_type (type_arg))
11198           error (_("'modulus must be applied to modular type"));
11199
11200         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11201                                    ada_modulus (type_arg));
11202       }
11203
11204
11205     case OP_ATR_POS:
11206       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11208       if (noside == EVAL_SKIP)
11209         goto nosideret;
11210       type = builtin_type (exp->gdbarch)->builtin_int;
11211       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11212         return value_zero (type, not_lval);
11213       else
11214         return value_pos_atr (type, arg1);
11215
11216     case OP_ATR_SIZE:
11217       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218       type = value_type (arg1);
11219
11220       /* If the argument is a reference, then dereference its type, since
11221          the user is really asking for the size of the actual object,
11222          not the size of the pointer.  */
11223       if (TYPE_CODE (type) == TYPE_CODE_REF)
11224         type = TYPE_TARGET_TYPE (type);
11225
11226       if (noside == EVAL_SKIP)
11227         goto nosideret;
11228       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229         return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11230       else
11231         return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11232                                    TARGET_CHAR_BIT * TYPE_LENGTH (type));
11233
11234     case OP_ATR_VAL:
11235       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11236       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237       type = exp->elts[pc + 2].type;
11238       if (noside == EVAL_SKIP)
11239         goto nosideret;
11240       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241         return value_zero (type, not_lval);
11242       else
11243         return value_val_atr (type, arg1);
11244
11245     case BINOP_EXP:
11246       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248       if (noside == EVAL_SKIP)
11249         goto nosideret;
11250       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251         return value_zero (value_type (arg1), not_lval);
11252       else
11253         {
11254           /* For integer exponentiation operations,
11255              only promote the first argument.  */
11256           if (is_integral_type (value_type (arg2)))
11257             unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258           else
11259             binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11260
11261           return value_binop (arg1, arg2, op);
11262         }
11263
11264     case UNOP_PLUS:
11265       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266       if (noside == EVAL_SKIP)
11267         goto nosideret;
11268       else
11269         return arg1;
11270
11271     case UNOP_ABS:
11272       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273       if (noside == EVAL_SKIP)
11274         goto nosideret;
11275       unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11276       if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11277         return value_neg (arg1);
11278       else
11279         return arg1;
11280
11281     case UNOP_IND:
11282       preeval_pos = *pos;
11283       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11284       if (noside == EVAL_SKIP)
11285         goto nosideret;
11286       type = ada_check_typedef (value_type (arg1));
11287       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11288         {
11289           if (ada_is_array_descriptor_type (type))
11290             /* GDB allows dereferencing GNAT array descriptors.  */
11291             {
11292               struct type *arrType = ada_type_of_array (arg1, 0);
11293
11294               if (arrType == NULL)
11295                 error (_("Attempt to dereference null array pointer."));
11296               return value_at_lazy (arrType, 0);
11297             }
11298           else if (TYPE_CODE (type) == TYPE_CODE_PTR
11299                    || TYPE_CODE (type) == TYPE_CODE_REF
11300                    /* In C you can dereference an array to get the 1st elt.  */
11301                    || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11302             {
11303             /* As mentioned in the OP_VAR_VALUE case, tagged types can
11304                only be determined by inspecting the object's tag.
11305                This means that we need to evaluate completely the
11306                expression in order to get its type.  */
11307
11308               if ((TYPE_CODE (type) == TYPE_CODE_REF
11309                    || TYPE_CODE (type) == TYPE_CODE_PTR)
11310                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11311                 {
11312                   arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11313                                           EVAL_NORMAL);
11314                   type = value_type (ada_value_ind (arg1));
11315                 }
11316               else
11317                 {
11318                   type = to_static_fixed_type
11319                     (ada_aligned_type
11320                      (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11321                 }
11322               ada_ensure_varsize_limit (type);
11323               return value_zero (type, lval_memory);
11324             }
11325           else if (TYPE_CODE (type) == TYPE_CODE_INT)
11326             {
11327               /* GDB allows dereferencing an int.  */
11328               if (expect_type == NULL)
11329                 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11330                                    lval_memory);
11331               else
11332                 {
11333                   expect_type = 
11334                     to_static_fixed_type (ada_aligned_type (expect_type));
11335                   return value_zero (expect_type, lval_memory);
11336                 }
11337             }
11338           else
11339             error (_("Attempt to take contents of a non-pointer value."));
11340         }
11341       arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
11342       type = ada_check_typedef (value_type (arg1));
11343
11344       if (TYPE_CODE (type) == TYPE_CODE_INT)
11345           /* GDB allows dereferencing an int.  If we were given
11346              the expect_type, then use that as the target type.
11347              Otherwise, assume that the target type is an int.  */
11348         {
11349           if (expect_type != NULL)
11350             return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11351                                               arg1));
11352           else
11353             return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11354                                   (CORE_ADDR) value_as_address (arg1));
11355         }
11356
11357       if (ada_is_array_descriptor_type (type))
11358         /* GDB allows dereferencing GNAT array descriptors.  */
11359         return ada_coerce_to_simple_array (arg1);
11360       else
11361         return ada_value_ind (arg1);
11362
11363     case STRUCTOP_STRUCT:
11364       tem = longest_to_int (exp->elts[pc + 1].longconst);
11365       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11366       preeval_pos = *pos;
11367       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368       if (noside == EVAL_SKIP)
11369         goto nosideret;
11370       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371         {
11372           struct type *type1 = value_type (arg1);
11373
11374           if (ada_is_tagged_type (type1, 1))
11375             {
11376               type = ada_lookup_struct_elt_type (type1,
11377                                                  &exp->elts[pc + 2].string,
11378                                                  1, 1, NULL);
11379
11380               /* If the field is not found, check if it exists in the
11381                  extension of this object's type. This means that we
11382                  need to evaluate completely the expression.  */
11383
11384               if (type == NULL)
11385                 {
11386                   arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11387                                           EVAL_NORMAL);
11388                   arg1 = ada_value_struct_elt (arg1,
11389                                                &exp->elts[pc + 2].string,
11390                                                0);
11391                   arg1 = unwrap_value (arg1);
11392                   type = value_type (ada_to_fixed_value (arg1));
11393                 }
11394             }
11395           else
11396             type =
11397               ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11398                                           0, NULL);
11399
11400           return value_zero (ada_aligned_type (type), lval_memory);
11401         }
11402       else
11403         {
11404           arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11405           arg1 = unwrap_value (arg1);
11406           return ada_to_fixed_value (arg1);
11407         }
11408
11409     case OP_TYPE:
11410       /* The value is not supposed to be used.  This is here to make it
11411          easier to accommodate expressions that contain types.  */
11412       (*pos) += 2;
11413       if (noside == EVAL_SKIP)
11414         goto nosideret;
11415       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11416         return allocate_value (exp->elts[pc + 1].type);
11417       else
11418         error (_("Attempt to use a type name as an expression"));
11419
11420     case OP_AGGREGATE:
11421     case OP_CHOICES:
11422     case OP_OTHERS:
11423     case OP_DISCRETE_RANGE:
11424     case OP_POSITIONAL:
11425     case OP_NAME:
11426       if (noside == EVAL_NORMAL)
11427         switch (op) 
11428           {
11429           case OP_NAME:
11430             error (_("Undefined name, ambiguous name, or renaming used in "
11431                      "component association: %s."), &exp->elts[pc+2].string);
11432           case OP_AGGREGATE:
11433             error (_("Aggregates only allowed on the right of an assignment"));
11434           default:
11435             internal_error (__FILE__, __LINE__,
11436                             _("aggregate apparently mangled"));
11437           }
11438
11439       ada_forward_operator_length (exp, pc, &oplen, &nargs);
11440       *pos += oplen - 1;
11441       for (tem = 0; tem < nargs; tem += 1) 
11442         ada_evaluate_subexp (NULL, exp, pos, noside);
11443       goto nosideret;
11444     }
11445
11446 nosideret:
11447   return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11448 }
11449 \f
11450
11451                                 /* Fixed point */
11452
11453 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11454    type name that encodes the 'small and 'delta information.
11455    Otherwise, return NULL.  */
11456
11457 static const char *
11458 fixed_type_info (struct type *type)
11459 {
11460   const char *name = ada_type_name (type);
11461   enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11462
11463   if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11464     {
11465       const char *tail = strstr (name, "___XF_");
11466
11467       if (tail == NULL)
11468         return NULL;
11469       else
11470         return tail + 5;
11471     }
11472   else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11473     return fixed_type_info (TYPE_TARGET_TYPE (type));
11474   else
11475     return NULL;
11476 }
11477
11478 /* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
11479
11480 int
11481 ada_is_fixed_point_type (struct type *type)
11482 {
11483   return fixed_type_info (type) != NULL;
11484 }
11485
11486 /* Return non-zero iff TYPE represents a System.Address type.  */
11487
11488 int
11489 ada_is_system_address_type (struct type *type)
11490 {
11491   return (TYPE_NAME (type)
11492           && strcmp (TYPE_NAME (type), "system__address") == 0);
11493 }
11494
11495 /* Assuming that TYPE is the representation of an Ada fixed-point
11496    type, return its delta, or -1 if the type is malformed and the
11497    delta cannot be determined.  */
11498
11499 DOUBLEST
11500 ada_delta (struct type *type)
11501 {
11502   const char *encoding = fixed_type_info (type);
11503   DOUBLEST num, den;
11504
11505   /* Strictly speaking, num and den are encoded as integer.  However,
11506      they may not fit into a long, and they will have to be converted
11507      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
11508   if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11509               &num, &den) < 2)
11510     return -1.0;
11511   else
11512     return num / den;
11513 }
11514
11515 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11516    factor ('SMALL value) associated with the type.  */
11517
11518 static DOUBLEST
11519 scaling_factor (struct type *type)
11520 {
11521   const char *encoding = fixed_type_info (type);
11522   DOUBLEST num0, den0, num1, den1;
11523   int n;
11524
11525   /* Strictly speaking, num's and den's are encoded as integer.  However,
11526      they may not fit into a long, and they will have to be converted
11527      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
11528   n = sscanf (encoding,
11529               "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11530               "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11531               &num0, &den0, &num1, &den1);
11532
11533   if (n < 2)
11534     return 1.0;
11535   else if (n == 4)
11536     return num1 / den1;
11537   else
11538     return num0 / den0;
11539 }
11540
11541
11542 /* Assuming that X is the representation of a value of fixed-point
11543    type TYPE, return its floating-point equivalent.  */
11544
11545 DOUBLEST
11546 ada_fixed_to_float (struct type *type, LONGEST x)
11547 {
11548   return (DOUBLEST) x *scaling_factor (type);
11549 }
11550
11551 /* The representation of a fixed-point value of type TYPE
11552    corresponding to the value X.  */
11553
11554 LONGEST
11555 ada_float_to_fixed (struct type *type, DOUBLEST x)
11556 {
11557   return (LONGEST) (x / scaling_factor (type) + 0.5);
11558 }
11559
11560 \f
11561
11562                                 /* Range types */
11563
11564 /* Scan STR beginning at position K for a discriminant name, and
11565    return the value of that discriminant field of DVAL in *PX.  If
11566    PNEW_K is not null, put the position of the character beyond the
11567    name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
11568    not alter *PX and *PNEW_K if unsuccessful.  */
11569
11570 static int
11571 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11572                     int *pnew_k)
11573 {
11574   static char *bound_buffer = NULL;
11575   static size_t bound_buffer_len = 0;
11576   const char *pstart, *pend, *bound;
11577   struct value *bound_val;
11578
11579   if (dval == NULL || str == NULL || str[k] == '\0')
11580     return 0;
11581
11582   pstart = str + k;
11583   pend = strstr (pstart, "__");
11584   if (pend == NULL)
11585     {
11586       bound = pstart;
11587       k += strlen (bound);
11588     }
11589   else
11590     {
11591       int len = pend - pstart;
11592
11593       /* Strip __ and beyond.  */
11594       GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11595       strncpy (bound_buffer, pstart, len);
11596       bound_buffer[len] = '\0';
11597
11598       bound = bound_buffer;
11599       k = pend - str;
11600     }
11601
11602   bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11603   if (bound_val == NULL)
11604     return 0;
11605
11606   *px = value_as_long (bound_val);
11607   if (pnew_k != NULL)
11608     *pnew_k = k;
11609   return 1;
11610 }
11611
11612 /* Value of variable named NAME in the current environment.  If
11613    no such variable found, then if ERR_MSG is null, returns 0, and
11614    otherwise causes an error with message ERR_MSG.  */
11615
11616 static struct value *
11617 get_var_value (char *name, char *err_msg)
11618 {
11619   struct block_symbol *syms;
11620   int nsyms;
11621
11622   nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11623                                   &syms);
11624
11625   if (nsyms != 1)
11626     {
11627       if (err_msg == NULL)
11628         return 0;
11629       else
11630         error (("%s"), err_msg);
11631     }
11632
11633   return value_of_variable (syms[0].symbol, syms[0].block);
11634 }
11635
11636 /* Value of integer variable named NAME in the current environment.  If
11637    no such variable found, returns 0, and sets *FLAG to 0.  If
11638    successful, sets *FLAG to 1.  */
11639
11640 LONGEST
11641 get_int_var_value (char *name, int *flag)
11642 {
11643   struct value *var_val = get_var_value (name, 0);
11644
11645   if (var_val == 0)
11646     {
11647       if (flag != NULL)
11648         *flag = 0;
11649       return 0;
11650     }
11651   else
11652     {
11653       if (flag != NULL)
11654         *flag = 1;
11655       return value_as_long (var_val);
11656     }
11657 }
11658
11659
11660 /* Return a range type whose base type is that of the range type named
11661    NAME in the current environment, and whose bounds are calculated
11662    from NAME according to the GNAT range encoding conventions.
11663    Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
11664    corresponding range type from debug information; fall back to using it
11665    if symbol lookup fails.  If a new type must be created, allocate it
11666    like ORIG_TYPE was.  The bounds information, in general, is encoded
11667    in NAME, the base type given in the named range type.  */
11668
11669 static struct type *
11670 to_fixed_range_type (struct type *raw_type, struct value *dval)
11671 {
11672   const char *name;
11673   struct type *base_type;
11674   const char *subtype_info;
11675
11676   gdb_assert (raw_type != NULL);
11677   gdb_assert (TYPE_NAME (raw_type) != NULL);
11678
11679   if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11680     base_type = TYPE_TARGET_TYPE (raw_type);
11681   else
11682     base_type = raw_type;
11683
11684   name = TYPE_NAME (raw_type);
11685   subtype_info = strstr (name, "___XD");
11686   if (subtype_info == NULL)
11687     {
11688       LONGEST L = ada_discrete_type_low_bound (raw_type);
11689       LONGEST U = ada_discrete_type_high_bound (raw_type);
11690
11691       if (L < INT_MIN || U > INT_MAX)
11692         return raw_type;
11693       else
11694         return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11695                                          L, U);
11696     }
11697   else
11698     {
11699       static char *name_buf = NULL;
11700       static size_t name_len = 0;
11701       int prefix_len = subtype_info - name;
11702       LONGEST L, U;
11703       struct type *type;
11704       const char *bounds_str;
11705       int n;
11706
11707       GROW_VECT (name_buf, name_len, prefix_len + 5);
11708       strncpy (name_buf, name, prefix_len);
11709       name_buf[prefix_len] = '\0';
11710
11711       subtype_info += 5;
11712       bounds_str = strchr (subtype_info, '_');
11713       n = 1;
11714
11715       if (*subtype_info == 'L')
11716         {
11717           if (!ada_scan_number (bounds_str, n, &L, &n)
11718               && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11719             return raw_type;
11720           if (bounds_str[n] == '_')
11721             n += 2;
11722           else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
11723             n += 1;
11724           subtype_info += 1;
11725         }
11726       else
11727         {
11728           int ok;
11729
11730           strcpy (name_buf + prefix_len, "___L");
11731           L = get_int_var_value (name_buf, &ok);
11732           if (!ok)
11733             {
11734               lim_warning (_("Unknown lower bound, using 1."));
11735               L = 1;
11736             }
11737         }
11738
11739       if (*subtype_info == 'U')
11740         {
11741           if (!ada_scan_number (bounds_str, n, &U, &n)
11742               && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11743             return raw_type;
11744         }
11745       else
11746         {
11747           int ok;
11748
11749           strcpy (name_buf + prefix_len, "___U");
11750           U = get_int_var_value (name_buf, &ok);
11751           if (!ok)
11752             {
11753               lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11754               U = L;
11755             }
11756         }
11757
11758       type = create_static_range_type (alloc_type_copy (raw_type),
11759                                        base_type, L, U);
11760       TYPE_NAME (type) = name;
11761       return type;
11762     }
11763 }
11764
11765 /* True iff NAME is the name of a range type.  */
11766
11767 int
11768 ada_is_range_type_name (const char *name)
11769 {
11770   return (name != NULL && strstr (name, "___XD"));
11771 }
11772 \f
11773
11774                                 /* Modular types */
11775
11776 /* True iff TYPE is an Ada modular type.  */
11777
11778 int
11779 ada_is_modular_type (struct type *type)
11780 {
11781   struct type *subranged_type = get_base_type (type);
11782
11783   return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11784           && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11785           && TYPE_UNSIGNED (subranged_type));
11786 }
11787
11788 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
11789
11790 ULONGEST
11791 ada_modulus (struct type *type)
11792 {
11793   return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11794 }
11795 \f
11796
11797 /* Ada exception catchpoint support:
11798    ---------------------------------
11799
11800    We support 3 kinds of exception catchpoints:
11801      . catchpoints on Ada exceptions
11802      . catchpoints on unhandled Ada exceptions
11803      . catchpoints on failed assertions
11804
11805    Exceptions raised during failed assertions, or unhandled exceptions
11806    could perfectly be caught with the general catchpoint on Ada exceptions.
11807    However, we can easily differentiate these two special cases, and having
11808    the option to distinguish these two cases from the rest can be useful
11809    to zero-in on certain situations.
11810
11811    Exception catchpoints are a specialized form of breakpoint,
11812    since they rely on inserting breakpoints inside known routines
11813    of the GNAT runtime.  The implementation therefore uses a standard
11814    breakpoint structure of the BP_BREAKPOINT type, but with its own set
11815    of breakpoint_ops.
11816
11817    Support in the runtime for exception catchpoints have been changed
11818    a few times already, and these changes affect the implementation
11819    of these catchpoints.  In order to be able to support several
11820    variants of the runtime, we use a sniffer that will determine
11821    the runtime variant used by the program being debugged.  */
11822
11823 /* Ada's standard exceptions.
11824
11825    The Ada 83 standard also defined Numeric_Error.  But there so many
11826    situations where it was unclear from the Ada 83 Reference Manual
11827    (RM) whether Constraint_Error or Numeric_Error should be raised,
11828    that the ARG (Ada Rapporteur Group) eventually issued a Binding
11829    Interpretation saying that anytime the RM says that Numeric_Error
11830    should be raised, the implementation may raise Constraint_Error.
11831    Ada 95 went one step further and pretty much removed Numeric_Error
11832    from the list of standard exceptions (it made it a renaming of
11833    Constraint_Error, to help preserve compatibility when compiling
11834    an Ada83 compiler). As such, we do not include Numeric_Error from
11835    this list of standard exceptions.  */
11836
11837 static const char *standard_exc[] = {
11838   "constraint_error",
11839   "program_error",
11840   "storage_error",
11841   "tasking_error"
11842 };
11843
11844 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11845
11846 /* A structure that describes how to support exception catchpoints
11847    for a given executable.  */
11848
11849 struct exception_support_info
11850 {
11851    /* The name of the symbol to break on in order to insert
11852       a catchpoint on exceptions.  */
11853    const char *catch_exception_sym;
11854
11855    /* The name of the symbol to break on in order to insert
11856       a catchpoint on unhandled exceptions.  */
11857    const char *catch_exception_unhandled_sym;
11858
11859    /* The name of the symbol to break on in order to insert
11860       a catchpoint on failed assertions.  */
11861    const char *catch_assert_sym;
11862
11863    /* Assuming that the inferior just triggered an unhandled exception
11864       catchpoint, this function is responsible for returning the address
11865       in inferior memory where the name of that exception is stored.
11866       Return zero if the address could not be computed.  */
11867    ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11868 };
11869
11870 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11871 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11872
11873 /* The following exception support info structure describes how to
11874    implement exception catchpoints with the latest version of the
11875    Ada runtime (as of 2007-03-06).  */
11876
11877 static const struct exception_support_info default_exception_support_info =
11878 {
11879   "__gnat_debug_raise_exception", /* catch_exception_sym */
11880   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11881   "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11882   ada_unhandled_exception_name_addr
11883 };
11884
11885 /* The following exception support info structure describes how to
11886    implement exception catchpoints with a slightly older version
11887    of the Ada runtime.  */
11888
11889 static const struct exception_support_info exception_support_info_fallback =
11890 {
11891   "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11892   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11893   "system__assertions__raise_assert_failure",  /* catch_assert_sym */
11894   ada_unhandled_exception_name_addr_from_raise
11895 };
11896
11897 /* Return nonzero if we can detect the exception support routines
11898    described in EINFO.
11899
11900    This function errors out if an abnormal situation is detected
11901    (for instance, if we find the exception support routines, but
11902    that support is found to be incomplete).  */
11903
11904 static int
11905 ada_has_this_exception_support (const struct exception_support_info *einfo)
11906 {
11907   struct symbol *sym;
11908
11909   /* The symbol we're looking up is provided by a unit in the GNAT runtime
11910      that should be compiled with debugging information.  As a result, we
11911      expect to find that symbol in the symtabs.  */
11912
11913   sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11914   if (sym == NULL)
11915     {
11916       /* Perhaps we did not find our symbol because the Ada runtime was
11917          compiled without debugging info, or simply stripped of it.
11918          It happens on some GNU/Linux distributions for instance, where
11919          users have to install a separate debug package in order to get
11920          the runtime's debugging info.  In that situation, let the user
11921          know why we cannot insert an Ada exception catchpoint.
11922
11923          Note: Just for the purpose of inserting our Ada exception
11924          catchpoint, we could rely purely on the associated minimal symbol.
11925          But we would be operating in degraded mode anyway, since we are
11926          still lacking the debugging info needed later on to extract
11927          the name of the exception being raised (this name is printed in
11928          the catchpoint message, and is also used when trying to catch
11929          a specific exception).  We do not handle this case for now.  */
11930       struct bound_minimal_symbol msym
11931         = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11932
11933       if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11934         error (_("Your Ada runtime appears to be missing some debugging "
11935                  "information.\nCannot insert Ada exception catchpoint "
11936                  "in this configuration."));
11937
11938       return 0;
11939     }
11940
11941   /* Make sure that the symbol we found corresponds to a function.  */
11942
11943   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11944     error (_("Symbol \"%s\" is not a function (class = %d)"),
11945            SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11946
11947   return 1;
11948 }
11949
11950 /* Inspect the Ada runtime and determine which exception info structure
11951    should be used to provide support for exception catchpoints.
11952
11953    This function will always set the per-inferior exception_info,
11954    or raise an error.  */
11955
11956 static void
11957 ada_exception_support_info_sniffer (void)
11958 {
11959   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11960
11961   /* If the exception info is already known, then no need to recompute it.  */
11962   if (data->exception_info != NULL)
11963     return;
11964
11965   /* Check the latest (default) exception support info.  */
11966   if (ada_has_this_exception_support (&default_exception_support_info))
11967     {
11968       data->exception_info = &default_exception_support_info;
11969       return;
11970     }
11971
11972   /* Try our fallback exception suport info.  */
11973   if (ada_has_this_exception_support (&exception_support_info_fallback))
11974     {
11975       data->exception_info = &exception_support_info_fallback;
11976       return;
11977     }
11978
11979   /* Sometimes, it is normal for us to not be able to find the routine
11980      we are looking for.  This happens when the program is linked with
11981      the shared version of the GNAT runtime, and the program has not been
11982      started yet.  Inform the user of these two possible causes if
11983      applicable.  */
11984
11985   if (ada_update_initial_language (language_unknown) != language_ada)
11986     error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
11987
11988   /* If the symbol does not exist, then check that the program is
11989      already started, to make sure that shared libraries have been
11990      loaded.  If it is not started, this may mean that the symbol is
11991      in a shared library.  */
11992
11993   if (ptid_get_pid (inferior_ptid) == 0)
11994     error (_("Unable to insert catchpoint. Try to start the program first."));
11995
11996   /* At this point, we know that we are debugging an Ada program and
11997      that the inferior has been started, but we still are not able to
11998      find the run-time symbols.  That can mean that we are in
11999      configurable run time mode, or that a-except as been optimized
12000      out by the linker...  In any case, at this point it is not worth
12001      supporting this feature.  */
12002
12003   error (_("Cannot insert Ada exception catchpoints in this configuration."));
12004 }
12005
12006 /* True iff FRAME is very likely to be that of a function that is
12007    part of the runtime system.  This is all very heuristic, but is
12008    intended to be used as advice as to what frames are uninteresting
12009    to most users.  */
12010
12011 static int
12012 is_known_support_routine (struct frame_info *frame)
12013 {
12014   struct symtab_and_line sal;
12015   char *func_name;
12016   enum language func_lang;
12017   int i;
12018   const char *fullname;
12019
12020   /* If this code does not have any debugging information (no symtab),
12021      This cannot be any user code.  */
12022
12023   find_frame_sal (frame, &sal);
12024   if (sal.symtab == NULL)
12025     return 1;
12026
12027   /* If there is a symtab, but the associated source file cannot be
12028      located, then assume this is not user code:  Selecting a frame
12029      for which we cannot display the code would not be very helpful
12030      for the user.  This should also take care of case such as VxWorks
12031      where the kernel has some debugging info provided for a few units.  */
12032
12033   fullname = symtab_to_fullname (sal.symtab);
12034   if (access (fullname, R_OK) != 0)
12035     return 1;
12036
12037   /* Check the unit filename againt the Ada runtime file naming.
12038      We also check the name of the objfile against the name of some
12039      known system libraries that sometimes come with debugging info
12040      too.  */
12041
12042   for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12043     {
12044       re_comp (known_runtime_file_name_patterns[i]);
12045       if (re_exec (lbasename (sal.symtab->filename)))
12046         return 1;
12047       if (SYMTAB_OBJFILE (sal.symtab) != NULL
12048           && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12049         return 1;
12050     }
12051
12052   /* Check whether the function is a GNAT-generated entity.  */
12053
12054   find_frame_funname (frame, &func_name, &func_lang, NULL);
12055   if (func_name == NULL)
12056     return 1;
12057
12058   for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12059     {
12060       re_comp (known_auxiliary_function_name_patterns[i]);
12061       if (re_exec (func_name))
12062         {
12063           xfree (func_name);
12064           return 1;
12065         }
12066     }
12067
12068   xfree (func_name);
12069   return 0;
12070 }
12071
12072 /* Find the first frame that contains debugging information and that is not
12073    part of the Ada run-time, starting from FI and moving upward.  */
12074
12075 void
12076 ada_find_printable_frame (struct frame_info *fi)
12077 {
12078   for (; fi != NULL; fi = get_prev_frame (fi))
12079     {
12080       if (!is_known_support_routine (fi))
12081         {
12082           select_frame (fi);
12083           break;
12084         }
12085     }
12086
12087 }
12088
12089 /* Assuming that the inferior just triggered an unhandled exception
12090    catchpoint, return the address in inferior memory where the name
12091    of the exception is stored.
12092    
12093    Return zero if the address could not be computed.  */
12094
12095 static CORE_ADDR
12096 ada_unhandled_exception_name_addr (void)
12097 {
12098   return parse_and_eval_address ("e.full_name");
12099 }
12100
12101 /* Same as ada_unhandled_exception_name_addr, except that this function
12102    should be used when the inferior uses an older version of the runtime,
12103    where the exception name needs to be extracted from a specific frame
12104    several frames up in the callstack.  */
12105
12106 static CORE_ADDR
12107 ada_unhandled_exception_name_addr_from_raise (void)
12108 {
12109   int frame_level;
12110   struct frame_info *fi;
12111   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12112   struct cleanup *old_chain;
12113
12114   /* To determine the name of this exception, we need to select
12115      the frame corresponding to RAISE_SYM_NAME.  This frame is
12116      at least 3 levels up, so we simply skip the first 3 frames
12117      without checking the name of their associated function.  */
12118   fi = get_current_frame ();
12119   for (frame_level = 0; frame_level < 3; frame_level += 1)
12120     if (fi != NULL)
12121       fi = get_prev_frame (fi); 
12122
12123   old_chain = make_cleanup (null_cleanup, NULL);
12124   while (fi != NULL)
12125     {
12126       char *func_name;
12127       enum language func_lang;
12128
12129       find_frame_funname (fi, &func_name, &func_lang, NULL);
12130       if (func_name != NULL)
12131         {
12132           make_cleanup (xfree, func_name);
12133
12134           if (strcmp (func_name,
12135                       data->exception_info->catch_exception_sym) == 0)
12136             break; /* We found the frame we were looking for...  */
12137           fi = get_prev_frame (fi);
12138         }
12139     }
12140   do_cleanups (old_chain);
12141
12142   if (fi == NULL)
12143     return 0;
12144
12145   select_frame (fi);
12146   return parse_and_eval_address ("id.full_name");
12147 }
12148
12149 /* Assuming the inferior just triggered an Ada exception catchpoint
12150    (of any type), return the address in inferior memory where the name
12151    of the exception is stored, if applicable.
12152
12153    Assumes the selected frame is the current frame.
12154
12155    Return zero if the address could not be computed, or if not relevant.  */
12156
12157 static CORE_ADDR
12158 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12159                            struct breakpoint *b)
12160 {
12161   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12162
12163   switch (ex)
12164     {
12165       case ada_catch_exception:
12166         return (parse_and_eval_address ("e.full_name"));
12167         break;
12168
12169       case ada_catch_exception_unhandled:
12170         return data->exception_info->unhandled_exception_name_addr ();
12171         break;
12172       
12173       case ada_catch_assert:
12174         return 0;  /* Exception name is not relevant in this case.  */
12175         break;
12176
12177       default:
12178         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12179         break;
12180     }
12181
12182   return 0; /* Should never be reached.  */
12183 }
12184
12185 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12186    any error that ada_exception_name_addr_1 might cause to be thrown.
12187    When an error is intercepted, a warning with the error message is printed,
12188    and zero is returned.  */
12189
12190 static CORE_ADDR
12191 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12192                          struct breakpoint *b)
12193 {
12194   CORE_ADDR result = 0;
12195
12196   TRY
12197     {
12198       result = ada_exception_name_addr_1 (ex, b);
12199     }
12200
12201   CATCH (e, RETURN_MASK_ERROR)
12202     {
12203       warning (_("failed to get exception name: %s"), e.message);
12204       return 0;
12205     }
12206   END_CATCH
12207
12208   return result;
12209 }
12210
12211 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12212
12213 /* Ada catchpoints.
12214
12215    In the case of catchpoints on Ada exceptions, the catchpoint will
12216    stop the target on every exception the program throws.  When a user
12217    specifies the name of a specific exception, we translate this
12218    request into a condition expression (in text form), and then parse
12219    it into an expression stored in each of the catchpoint's locations.
12220    We then use this condition to check whether the exception that was
12221    raised is the one the user is interested in.  If not, then the
12222    target is resumed again.  We store the name of the requested
12223    exception, in order to be able to re-set the condition expression
12224    when symbols change.  */
12225
12226 /* An instance of this type is used to represent an Ada catchpoint
12227    breakpoint location.  It includes a "struct bp_location" as a kind
12228    of base class; users downcast to "struct bp_location *" when
12229    needed.  */
12230
12231 struct ada_catchpoint_location
12232 {
12233   /* The base class.  */
12234   struct bp_location base;
12235
12236   /* The condition that checks whether the exception that was raised
12237      is the specific exception the user specified on catchpoint
12238      creation.  */
12239   expression_up excep_cond_expr;
12240 };
12241
12242 /* Implement the DTOR method in the bp_location_ops structure for all
12243    Ada exception catchpoint kinds.  */
12244
12245 static void
12246 ada_catchpoint_location_dtor (struct bp_location *bl)
12247 {
12248   struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12249
12250   al->excep_cond_expr.reset ();
12251 }
12252
12253 /* The vtable to be used in Ada catchpoint locations.  */
12254
12255 static const struct bp_location_ops ada_catchpoint_location_ops =
12256 {
12257   ada_catchpoint_location_dtor
12258 };
12259
12260 /* An instance of this type is used to represent an Ada catchpoint.
12261    It includes a "struct breakpoint" as a kind of base class; users
12262    downcast to "struct breakpoint *" when needed.  */
12263
12264 struct ada_catchpoint
12265 {
12266   /* The base class.  */
12267   struct breakpoint base;
12268
12269   /* The name of the specific exception the user specified.  */
12270   char *excep_string;
12271 };
12272
12273 /* Parse the exception condition string in the context of each of the
12274    catchpoint's locations, and store them for later evaluation.  */
12275
12276 static void
12277 create_excep_cond_exprs (struct ada_catchpoint *c)
12278 {
12279   struct cleanup *old_chain;
12280   struct bp_location *bl;
12281   char *cond_string;
12282
12283   /* Nothing to do if there's no specific exception to catch.  */
12284   if (c->excep_string == NULL)
12285     return;
12286
12287   /* Same if there are no locations... */
12288   if (c->base.loc == NULL)
12289     return;
12290
12291   /* Compute the condition expression in text form, from the specific
12292      expection we want to catch.  */
12293   cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12294   old_chain = make_cleanup (xfree, cond_string);
12295
12296   /* Iterate over all the catchpoint's locations, and parse an
12297      expression for each.  */
12298   for (bl = c->base.loc; bl != NULL; bl = bl->next)
12299     {
12300       struct ada_catchpoint_location *ada_loc
12301         = (struct ada_catchpoint_location *) bl;
12302       expression_up exp;
12303
12304       if (!bl->shlib_disabled)
12305         {
12306           const char *s;
12307
12308           s = cond_string;
12309           TRY
12310             {
12311               exp = parse_exp_1 (&s, bl->address,
12312                                  block_for_pc (bl->address),
12313                                  0);
12314             }
12315           CATCH (e, RETURN_MASK_ERROR)
12316             {
12317               warning (_("failed to reevaluate internal exception condition "
12318                          "for catchpoint %d: %s"),
12319                        c->base.number, e.message);
12320             }
12321           END_CATCH
12322         }
12323
12324       ada_loc->excep_cond_expr = std::move (exp);
12325     }
12326
12327   do_cleanups (old_chain);
12328 }
12329
12330 /* Implement the DTOR method in the breakpoint_ops structure for all
12331    exception catchpoint kinds.  */
12332
12333 static void
12334 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12335 {
12336   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12337
12338   xfree (c->excep_string);
12339
12340   bkpt_breakpoint_ops.dtor (b);
12341 }
12342
12343 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12344    structure for all exception catchpoint kinds.  */
12345
12346 static struct bp_location *
12347 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12348                              struct breakpoint *self)
12349 {
12350   struct ada_catchpoint_location *loc;
12351
12352   loc = new ada_catchpoint_location ();
12353   init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12354   loc->excep_cond_expr = NULL;
12355   return &loc->base;
12356 }
12357
12358 /* Implement the RE_SET method in the breakpoint_ops structure for all
12359    exception catchpoint kinds.  */
12360
12361 static void
12362 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12363 {
12364   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12365
12366   /* Call the base class's method.  This updates the catchpoint's
12367      locations.  */
12368   bkpt_breakpoint_ops.re_set (b);
12369
12370   /* Reparse the exception conditional expressions.  One for each
12371      location.  */
12372   create_excep_cond_exprs (c);
12373 }
12374
12375 /* Returns true if we should stop for this breakpoint hit.  If the
12376    user specified a specific exception, we only want to cause a stop
12377    if the program thrown that exception.  */
12378
12379 static int
12380 should_stop_exception (const struct bp_location *bl)
12381 {
12382   struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12383   const struct ada_catchpoint_location *ada_loc
12384     = (const struct ada_catchpoint_location *) bl;
12385   int stop;
12386
12387   /* With no specific exception, should always stop.  */
12388   if (c->excep_string == NULL)
12389     return 1;
12390
12391   if (ada_loc->excep_cond_expr == NULL)
12392     {
12393       /* We will have a NULL expression if back when we were creating
12394          the expressions, this location's had failed to parse.  */
12395       return 1;
12396     }
12397
12398   stop = 1;
12399   TRY
12400     {
12401       struct value *mark;
12402
12403       mark = value_mark ();
12404       stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12405       value_free_to_mark (mark);
12406     }
12407   CATCH (ex, RETURN_MASK_ALL)
12408     {
12409       exception_fprintf (gdb_stderr, ex,
12410                          _("Error in testing exception condition:\n"));
12411     }
12412   END_CATCH
12413
12414   return stop;
12415 }
12416
12417 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12418    for all exception catchpoint kinds.  */
12419
12420 static void
12421 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12422 {
12423   bs->stop = should_stop_exception (bs->bp_location_at);
12424 }
12425
12426 /* Implement the PRINT_IT method in the breakpoint_ops structure
12427    for all exception catchpoint kinds.  */
12428
12429 static enum print_stop_action
12430 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12431 {
12432   struct ui_out *uiout = current_uiout;
12433   struct breakpoint *b = bs->breakpoint_at;
12434
12435   annotate_catchpoint (b->number);
12436
12437   if (uiout->is_mi_like_p ())
12438     {
12439       uiout->field_string ("reason",
12440                            async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12441       uiout->field_string ("disp", bpdisp_text (b->disposition));
12442     }
12443
12444   uiout->text (b->disposition == disp_del
12445                ? "\nTemporary catchpoint " : "\nCatchpoint ");
12446   uiout->field_int ("bkptno", b->number);
12447   uiout->text (", ");
12448
12449   /* ada_exception_name_addr relies on the selected frame being the
12450      current frame.  Need to do this here because this function may be
12451      called more than once when printing a stop, and below, we'll
12452      select the first frame past the Ada run-time (see
12453      ada_find_printable_frame).  */
12454   select_frame (get_current_frame ());
12455
12456   switch (ex)
12457     {
12458       case ada_catch_exception:
12459       case ada_catch_exception_unhandled:
12460         {
12461           const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12462           char exception_name[256];
12463
12464           if (addr != 0)
12465             {
12466               read_memory (addr, (gdb_byte *) exception_name,
12467                            sizeof (exception_name) - 1);
12468               exception_name [sizeof (exception_name) - 1] = '\0';
12469             }
12470           else
12471             {
12472               /* For some reason, we were unable to read the exception
12473                  name.  This could happen if the Runtime was compiled
12474                  without debugging info, for instance.  In that case,
12475                  just replace the exception name by the generic string
12476                  "exception" - it will read as "an exception" in the
12477                  notification we are about to print.  */
12478               memcpy (exception_name, "exception", sizeof ("exception"));
12479             }
12480           /* In the case of unhandled exception breakpoints, we print
12481              the exception name as "unhandled EXCEPTION_NAME", to make
12482              it clearer to the user which kind of catchpoint just got
12483              hit.  We used ui_out_text to make sure that this extra
12484              info does not pollute the exception name in the MI case.  */
12485           if (ex == ada_catch_exception_unhandled)
12486             uiout->text ("unhandled ");
12487           uiout->field_string ("exception-name", exception_name);
12488         }
12489         break;
12490       case ada_catch_assert:
12491         /* In this case, the name of the exception is not really
12492            important.  Just print "failed assertion" to make it clearer
12493            that his program just hit an assertion-failure catchpoint.
12494            We used ui_out_text because this info does not belong in
12495            the MI output.  */
12496         uiout->text ("failed assertion");
12497         break;
12498     }
12499   uiout->text (" at ");
12500   ada_find_printable_frame (get_current_frame ());
12501
12502   return PRINT_SRC_AND_LOC;
12503 }
12504
12505 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12506    for all exception catchpoint kinds.  */
12507
12508 static void
12509 print_one_exception (enum ada_exception_catchpoint_kind ex,
12510                      struct breakpoint *b, struct bp_location **last_loc)
12511
12512   struct ui_out *uiout = current_uiout;
12513   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12514   struct value_print_options opts;
12515
12516   get_user_print_options (&opts);
12517   if (opts.addressprint)
12518     {
12519       annotate_field (4);
12520       uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12521     }
12522
12523   annotate_field (5);
12524   *last_loc = b->loc;
12525   switch (ex)
12526     {
12527       case ada_catch_exception:
12528         if (c->excep_string != NULL)
12529           {
12530             char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12531
12532             uiout->field_string ("what", msg);
12533             xfree (msg);
12534           }
12535         else
12536           uiout->field_string ("what", "all Ada exceptions");
12537         
12538         break;
12539
12540       case ada_catch_exception_unhandled:
12541         uiout->field_string ("what", "unhandled Ada exceptions");
12542         break;
12543       
12544       case ada_catch_assert:
12545         uiout->field_string ("what", "failed Ada assertions");
12546         break;
12547
12548       default:
12549         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12550         break;
12551     }
12552 }
12553
12554 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12555    for all exception catchpoint kinds.  */
12556
12557 static void
12558 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12559                          struct breakpoint *b)
12560 {
12561   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12562   struct ui_out *uiout = current_uiout;
12563
12564   uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12565                                                  : _("Catchpoint "));
12566   uiout->field_int ("bkptno", b->number);
12567   uiout->text (": ");
12568
12569   switch (ex)
12570     {
12571       case ada_catch_exception:
12572         if (c->excep_string != NULL)
12573           {
12574             char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12575             struct cleanup *old_chain = make_cleanup (xfree, info);
12576
12577             uiout->text (info);
12578             do_cleanups (old_chain);
12579           }
12580         else
12581           uiout->text (_("all Ada exceptions"));
12582         break;
12583
12584       case ada_catch_exception_unhandled:
12585         uiout->text (_("unhandled Ada exceptions"));
12586         break;
12587       
12588       case ada_catch_assert:
12589         uiout->text (_("failed Ada assertions"));
12590         break;
12591
12592       default:
12593         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12594         break;
12595     }
12596 }
12597
12598 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12599    for all exception catchpoint kinds.  */
12600
12601 static void
12602 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12603                           struct breakpoint *b, struct ui_file *fp)
12604 {
12605   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12606
12607   switch (ex)
12608     {
12609       case ada_catch_exception:
12610         fprintf_filtered (fp, "catch exception");
12611         if (c->excep_string != NULL)
12612           fprintf_filtered (fp, " %s", c->excep_string);
12613         break;
12614
12615       case ada_catch_exception_unhandled:
12616         fprintf_filtered (fp, "catch exception unhandled");
12617         break;
12618
12619       case ada_catch_assert:
12620         fprintf_filtered (fp, "catch assert");
12621         break;
12622
12623       default:
12624         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12625     }
12626   print_recreate_thread (b, fp);
12627 }
12628
12629 /* Virtual table for "catch exception" breakpoints.  */
12630
12631 static void
12632 dtor_catch_exception (struct breakpoint *b)
12633 {
12634   dtor_exception (ada_catch_exception, b);
12635 }
12636
12637 static struct bp_location *
12638 allocate_location_catch_exception (struct breakpoint *self)
12639 {
12640   return allocate_location_exception (ada_catch_exception, self);
12641 }
12642
12643 static void
12644 re_set_catch_exception (struct breakpoint *b)
12645 {
12646   re_set_exception (ada_catch_exception, b);
12647 }
12648
12649 static void
12650 check_status_catch_exception (bpstat bs)
12651 {
12652   check_status_exception (ada_catch_exception, bs);
12653 }
12654
12655 static enum print_stop_action
12656 print_it_catch_exception (bpstat bs)
12657 {
12658   return print_it_exception (ada_catch_exception, bs);
12659 }
12660
12661 static void
12662 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12663 {
12664   print_one_exception (ada_catch_exception, b, last_loc);
12665 }
12666
12667 static void
12668 print_mention_catch_exception (struct breakpoint *b)
12669 {
12670   print_mention_exception (ada_catch_exception, b);
12671 }
12672
12673 static void
12674 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12675 {
12676   print_recreate_exception (ada_catch_exception, b, fp);
12677 }
12678
12679 static struct breakpoint_ops catch_exception_breakpoint_ops;
12680
12681 /* Virtual table for "catch exception unhandled" breakpoints.  */
12682
12683 static void
12684 dtor_catch_exception_unhandled (struct breakpoint *b)
12685 {
12686   dtor_exception (ada_catch_exception_unhandled, b);
12687 }
12688
12689 static struct bp_location *
12690 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12691 {
12692   return allocate_location_exception (ada_catch_exception_unhandled, self);
12693 }
12694
12695 static void
12696 re_set_catch_exception_unhandled (struct breakpoint *b)
12697 {
12698   re_set_exception (ada_catch_exception_unhandled, b);
12699 }
12700
12701 static void
12702 check_status_catch_exception_unhandled (bpstat bs)
12703 {
12704   check_status_exception (ada_catch_exception_unhandled, bs);
12705 }
12706
12707 static enum print_stop_action
12708 print_it_catch_exception_unhandled (bpstat bs)
12709 {
12710   return print_it_exception (ada_catch_exception_unhandled, bs);
12711 }
12712
12713 static void
12714 print_one_catch_exception_unhandled (struct breakpoint *b,
12715                                      struct bp_location **last_loc)
12716 {
12717   print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12718 }
12719
12720 static void
12721 print_mention_catch_exception_unhandled (struct breakpoint *b)
12722 {
12723   print_mention_exception (ada_catch_exception_unhandled, b);
12724 }
12725
12726 static void
12727 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12728                                           struct ui_file *fp)
12729 {
12730   print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12731 }
12732
12733 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12734
12735 /* Virtual table for "catch assert" breakpoints.  */
12736
12737 static void
12738 dtor_catch_assert (struct breakpoint *b)
12739 {
12740   dtor_exception (ada_catch_assert, b);
12741 }
12742
12743 static struct bp_location *
12744 allocate_location_catch_assert (struct breakpoint *self)
12745 {
12746   return allocate_location_exception (ada_catch_assert, self);
12747 }
12748
12749 static void
12750 re_set_catch_assert (struct breakpoint *b)
12751 {
12752   re_set_exception (ada_catch_assert, b);
12753 }
12754
12755 static void
12756 check_status_catch_assert (bpstat bs)
12757 {
12758   check_status_exception (ada_catch_assert, bs);
12759 }
12760
12761 static enum print_stop_action
12762 print_it_catch_assert (bpstat bs)
12763 {
12764   return print_it_exception (ada_catch_assert, bs);
12765 }
12766
12767 static void
12768 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12769 {
12770   print_one_exception (ada_catch_assert, b, last_loc);
12771 }
12772
12773 static void
12774 print_mention_catch_assert (struct breakpoint *b)
12775 {
12776   print_mention_exception (ada_catch_assert, b);
12777 }
12778
12779 static void
12780 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12781 {
12782   print_recreate_exception (ada_catch_assert, b, fp);
12783 }
12784
12785 static struct breakpoint_ops catch_assert_breakpoint_ops;
12786
12787 /* Return a newly allocated copy of the first space-separated token
12788    in ARGSP, and then adjust ARGSP to point immediately after that
12789    token.
12790
12791    Return NULL if ARGPS does not contain any more tokens.  */
12792
12793 static char *
12794 ada_get_next_arg (const char **argsp)
12795 {
12796   const char *args = *argsp;
12797   const char *end;
12798   char *result;
12799
12800   args = skip_spaces_const (args);
12801   if (args[0] == '\0')
12802     return NULL; /* No more arguments.  */
12803   
12804   /* Find the end of the current argument.  */
12805
12806   end = skip_to_space_const (args);
12807
12808   /* Adjust ARGSP to point to the start of the next argument.  */
12809
12810   *argsp = end;
12811
12812   /* Make a copy of the current argument and return it.  */
12813
12814   result = (char *) xmalloc (end - args + 1);
12815   strncpy (result, args, end - args);
12816   result[end - args] = '\0';
12817   
12818   return result;
12819 }
12820
12821 /* Split the arguments specified in a "catch exception" command.  
12822    Set EX to the appropriate catchpoint type.
12823    Set EXCEP_STRING to the name of the specific exception if
12824    specified by the user.
12825    If a condition is found at the end of the arguments, the condition
12826    expression is stored in COND_STRING (memory must be deallocated
12827    after use).  Otherwise COND_STRING is set to NULL.  */
12828
12829 static void
12830 catch_ada_exception_command_split (const char *args,
12831                                    enum ada_exception_catchpoint_kind *ex,
12832                                    char **excep_string,
12833                                    char **cond_string)
12834 {
12835   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12836   char *exception_name;
12837   char *cond = NULL;
12838
12839   exception_name = ada_get_next_arg (&args);
12840   if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12841     {
12842       /* This is not an exception name; this is the start of a condition
12843          expression for a catchpoint on all exceptions.  So, "un-get"
12844          this token, and set exception_name to NULL.  */
12845       xfree (exception_name);
12846       exception_name = NULL;
12847       args -= 2;
12848     }
12849   make_cleanup (xfree, exception_name);
12850
12851   /* Check to see if we have a condition.  */
12852
12853   args = skip_spaces_const (args);
12854   if (startswith (args, "if")
12855       && (isspace (args[2]) || args[2] == '\0'))
12856     {
12857       args += 2;
12858       args = skip_spaces_const (args);
12859
12860       if (args[0] == '\0')
12861         error (_("Condition missing after `if' keyword"));
12862       cond = xstrdup (args);
12863       make_cleanup (xfree, cond);
12864
12865       args += strlen (args);
12866     }
12867
12868   /* Check that we do not have any more arguments.  Anything else
12869      is unexpected.  */
12870
12871   if (args[0] != '\0')
12872     error (_("Junk at end of expression"));
12873
12874   discard_cleanups (old_chain);
12875
12876   if (exception_name == NULL)
12877     {
12878       /* Catch all exceptions.  */
12879       *ex = ada_catch_exception;
12880       *excep_string = NULL;
12881     }
12882   else if (strcmp (exception_name, "unhandled") == 0)
12883     {
12884       /* Catch unhandled exceptions.  */
12885       *ex = ada_catch_exception_unhandled;
12886       *excep_string = NULL;
12887     }
12888   else
12889     {
12890       /* Catch a specific exception.  */
12891       *ex = ada_catch_exception;
12892       *excep_string = exception_name;
12893     }
12894   *cond_string = cond;
12895 }
12896
12897 /* Return the name of the symbol on which we should break in order to
12898    implement a catchpoint of the EX kind.  */
12899
12900 static const char *
12901 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12902 {
12903   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12904
12905   gdb_assert (data->exception_info != NULL);
12906
12907   switch (ex)
12908     {
12909       case ada_catch_exception:
12910         return (data->exception_info->catch_exception_sym);
12911         break;
12912       case ada_catch_exception_unhandled:
12913         return (data->exception_info->catch_exception_unhandled_sym);
12914         break;
12915       case ada_catch_assert:
12916         return (data->exception_info->catch_assert_sym);
12917         break;
12918       default:
12919         internal_error (__FILE__, __LINE__,
12920                         _("unexpected catchpoint kind (%d)"), ex);
12921     }
12922 }
12923
12924 /* Return the breakpoint ops "virtual table" used for catchpoints
12925    of the EX kind.  */
12926
12927 static const struct breakpoint_ops *
12928 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12929 {
12930   switch (ex)
12931     {
12932       case ada_catch_exception:
12933         return (&catch_exception_breakpoint_ops);
12934         break;
12935       case ada_catch_exception_unhandled:
12936         return (&catch_exception_unhandled_breakpoint_ops);
12937         break;
12938       case ada_catch_assert:
12939         return (&catch_assert_breakpoint_ops);
12940         break;
12941       default:
12942         internal_error (__FILE__, __LINE__,
12943                         _("unexpected catchpoint kind (%d)"), ex);
12944     }
12945 }
12946
12947 /* Return the condition that will be used to match the current exception
12948    being raised with the exception that the user wants to catch.  This
12949    assumes that this condition is used when the inferior just triggered
12950    an exception catchpoint.
12951    
12952    The string returned is a newly allocated string that needs to be
12953    deallocated later.  */
12954
12955 static char *
12956 ada_exception_catchpoint_cond_string (const char *excep_string)
12957 {
12958   int i;
12959
12960   /* The standard exceptions are a special case.  They are defined in
12961      runtime units that have been compiled without debugging info; if
12962      EXCEP_STRING is the not-fully-qualified name of a standard
12963      exception (e.g. "constraint_error") then, during the evaluation
12964      of the condition expression, the symbol lookup on this name would
12965      *not* return this standard exception.  The catchpoint condition
12966      may then be set only on user-defined exceptions which have the
12967      same not-fully-qualified name (e.g. my_package.constraint_error).
12968
12969      To avoid this unexcepted behavior, these standard exceptions are
12970      systematically prefixed by "standard".  This means that "catch
12971      exception constraint_error" is rewritten into "catch exception
12972      standard.constraint_error".
12973
12974      If an exception named contraint_error is defined in another package of
12975      the inferior program, then the only way to specify this exception as a
12976      breakpoint condition is to use its fully-qualified named:
12977      e.g. my_package.constraint_error.  */
12978
12979   for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12980     {
12981       if (strcmp (standard_exc [i], excep_string) == 0)
12982         {
12983           return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12984                              excep_string);
12985         }
12986     }
12987   return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12988 }
12989
12990 /* Return the symtab_and_line that should be used to insert an exception
12991    catchpoint of the TYPE kind.
12992
12993    EXCEP_STRING should contain the name of a specific exception that
12994    the catchpoint should catch, or NULL otherwise.
12995
12996    ADDR_STRING returns the name of the function where the real
12997    breakpoint that implements the catchpoints is set, depending on the
12998    type of catchpoint we need to create.  */
12999
13000 static struct symtab_and_line
13001 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13002                    char **addr_string, const struct breakpoint_ops **ops)
13003 {
13004   const char *sym_name;
13005   struct symbol *sym;
13006
13007   /* First, find out which exception support info to use.  */
13008   ada_exception_support_info_sniffer ();
13009
13010   /* Then lookup the function on which we will break in order to catch
13011      the Ada exceptions requested by the user.  */
13012   sym_name = ada_exception_sym_name (ex);
13013   sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13014
13015   /* We can assume that SYM is not NULL at this stage.  If the symbol
13016      did not exist, ada_exception_support_info_sniffer would have
13017      raised an exception.
13018
13019      Also, ada_exception_support_info_sniffer should have already
13020      verified that SYM is a function symbol.  */
13021   gdb_assert (sym != NULL);
13022   gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13023
13024   /* Set ADDR_STRING.  */
13025   *addr_string = xstrdup (sym_name);
13026
13027   /* Set OPS.  */
13028   *ops = ada_exception_breakpoint_ops (ex);
13029
13030   return find_function_start_sal (sym, 1);
13031 }
13032
13033 /* Create an Ada exception catchpoint.
13034
13035    EX_KIND is the kind of exception catchpoint to be created.
13036
13037    If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13038    for all exceptions.  Otherwise, EXCEPT_STRING indicates the name
13039    of the exception to which this catchpoint applies.  When not NULL,
13040    the string must be allocated on the heap, and its deallocation
13041    is no longer the responsibility of the caller.
13042
13043    COND_STRING, if not NULL, is the catchpoint condition.  This string
13044    must be allocated on the heap, and its deallocation is no longer
13045    the responsibility of the caller.
13046
13047    TEMPFLAG, if nonzero, means that the underlying breakpoint
13048    should be temporary.
13049
13050    FROM_TTY is the usual argument passed to all commands implementations.  */
13051
13052 void
13053 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13054                                  enum ada_exception_catchpoint_kind ex_kind,
13055                                  char *excep_string,
13056                                  char *cond_string,
13057                                  int tempflag,
13058                                  int disabled,
13059                                  int from_tty)
13060 {
13061   struct ada_catchpoint *c;
13062   char *addr_string = NULL;
13063   const struct breakpoint_ops *ops = NULL;
13064   struct symtab_and_line sal
13065     = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13066
13067   c = new ada_catchpoint ();
13068   init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13069                                  ops, tempflag, disabled, from_tty);
13070   c->excep_string = excep_string;
13071   create_excep_cond_exprs (c);
13072   if (cond_string != NULL)
13073     set_breakpoint_condition (&c->base, cond_string, from_tty);
13074   install_breakpoint (0, &c->base, 1);
13075 }
13076
13077 /* Implement the "catch exception" command.  */
13078
13079 static void
13080 catch_ada_exception_command (char *arg_entry, int from_tty,
13081                              struct cmd_list_element *command)
13082 {
13083   const char *arg = arg_entry;
13084   struct gdbarch *gdbarch = get_current_arch ();
13085   int tempflag;
13086   enum ada_exception_catchpoint_kind ex_kind;
13087   char *excep_string = NULL;
13088   char *cond_string = NULL;
13089
13090   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13091
13092   if (!arg)
13093     arg = "";
13094   catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13095                                      &cond_string);
13096   create_ada_exception_catchpoint (gdbarch, ex_kind,
13097                                    excep_string, cond_string,
13098                                    tempflag, 1 /* enabled */,
13099                                    from_tty);
13100 }
13101
13102 /* Split the arguments specified in a "catch assert" command.
13103
13104    ARGS contains the command's arguments (or the empty string if
13105    no arguments were passed).
13106
13107    If ARGS contains a condition, set COND_STRING to that condition
13108    (the memory needs to be deallocated after use).  */
13109
13110 static void
13111 catch_ada_assert_command_split (const char *args, char **cond_string)
13112 {
13113   args = skip_spaces_const (args);
13114
13115   /* Check whether a condition was provided.  */
13116   if (startswith (args, "if")
13117       && (isspace (args[2]) || args[2] == '\0'))
13118     {
13119       args += 2;
13120       args = skip_spaces_const (args);
13121       if (args[0] == '\0')
13122         error (_("condition missing after `if' keyword"));
13123       *cond_string = xstrdup (args);
13124     }
13125
13126   /* Otherwise, there should be no other argument at the end of
13127      the command.  */
13128   else if (args[0] != '\0')
13129     error (_("Junk at end of arguments."));
13130 }
13131
13132 /* Implement the "catch assert" command.  */
13133
13134 static void
13135 catch_assert_command (char *arg_entry, int from_tty,
13136                       struct cmd_list_element *command)
13137 {
13138   const char *arg = arg_entry;
13139   struct gdbarch *gdbarch = get_current_arch ();
13140   int tempflag;
13141   char *cond_string = NULL;
13142
13143   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13144
13145   if (!arg)
13146     arg = "";
13147   catch_ada_assert_command_split (arg, &cond_string);
13148   create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13149                                    NULL, cond_string,
13150                                    tempflag, 1 /* enabled */,
13151                                    from_tty);
13152 }
13153
13154 /* Return non-zero if the symbol SYM is an Ada exception object.  */
13155
13156 static int
13157 ada_is_exception_sym (struct symbol *sym)
13158 {
13159   const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13160
13161   return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13162           && SYMBOL_CLASS (sym) != LOC_BLOCK
13163           && SYMBOL_CLASS (sym) != LOC_CONST
13164           && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13165           && type_name != NULL && strcmp (type_name, "exception") == 0);
13166 }
13167
13168 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13169    Ada exception object.  This matches all exceptions except the ones
13170    defined by the Ada language.  */
13171
13172 static int
13173 ada_is_non_standard_exception_sym (struct symbol *sym)
13174 {
13175   int i;
13176
13177   if (!ada_is_exception_sym (sym))
13178     return 0;
13179
13180   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13181     if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13182       return 0;  /* A standard exception.  */
13183
13184   /* Numeric_Error is also a standard exception, so exclude it.
13185      See the STANDARD_EXC description for more details as to why
13186      this exception is not listed in that array.  */
13187   if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13188     return 0;
13189
13190   return 1;
13191 }
13192
13193 /* A helper function for qsort, comparing two struct ada_exc_info
13194    objects.
13195
13196    The comparison is determined first by exception name, and then
13197    by exception address.  */
13198
13199 static int
13200 compare_ada_exception_info (const void *a, const void *b)
13201 {
13202   const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13203   const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13204   int result;
13205
13206   result = strcmp (exc_a->name, exc_b->name);
13207   if (result != 0)
13208     return result;
13209
13210   if (exc_a->addr < exc_b->addr)
13211     return -1;
13212   if (exc_a->addr > exc_b->addr)
13213     return 1;
13214
13215   return 0;
13216 }
13217
13218 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13219    routine, but keeping the first SKIP elements untouched.
13220
13221    All duplicates are also removed.  */
13222
13223 static void
13224 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13225                                       int skip)
13226 {
13227   struct ada_exc_info *to_sort
13228     = VEC_address (ada_exc_info, *exceptions) + skip;
13229   int to_sort_len
13230     = VEC_length (ada_exc_info, *exceptions) - skip;
13231   int i, j;
13232
13233   qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13234          compare_ada_exception_info);
13235
13236   for (i = 1, j = 1; i < to_sort_len; i++)
13237     if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13238       to_sort[j++] = to_sort[i];
13239   to_sort_len = j;
13240   VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13241 }
13242
13243 /* Add all exceptions defined by the Ada standard whose name match
13244    a regular expression.
13245
13246    If PREG is not NULL, then this regexp_t object is used to
13247    perform the symbol name matching.  Otherwise, no name-based
13248    filtering is performed.
13249
13250    EXCEPTIONS is a vector of exceptions to which matching exceptions
13251    gets pushed.  */
13252
13253 static void
13254 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13255 {
13256   int i;
13257
13258   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13259     {
13260       if (preg == NULL
13261           || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13262         {
13263           struct bound_minimal_symbol msymbol
13264             = ada_lookup_simple_minsym (standard_exc[i]);
13265
13266           if (msymbol.minsym != NULL)
13267             {
13268               struct ada_exc_info info
13269                 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13270
13271               VEC_safe_push (ada_exc_info, *exceptions, &info);
13272             }
13273         }
13274     }
13275 }
13276
13277 /* Add all Ada exceptions defined locally and accessible from the given
13278    FRAME.
13279
13280    If PREG is not NULL, then this regexp_t object is used to
13281    perform the symbol name matching.  Otherwise, no name-based
13282    filtering is performed.
13283
13284    EXCEPTIONS is a vector of exceptions to which matching exceptions
13285    gets pushed.  */
13286
13287 static void
13288 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13289                                VEC(ada_exc_info) **exceptions)
13290 {
13291   const struct block *block = get_frame_block (frame, 0);
13292
13293   while (block != 0)
13294     {
13295       struct block_iterator iter;
13296       struct symbol *sym;
13297
13298       ALL_BLOCK_SYMBOLS (block, iter, sym)
13299         {
13300           switch (SYMBOL_CLASS (sym))
13301             {
13302             case LOC_TYPEDEF:
13303             case LOC_BLOCK:
13304             case LOC_CONST:
13305               break;
13306             default:
13307               if (ada_is_exception_sym (sym))
13308                 {
13309                   struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13310                                               SYMBOL_VALUE_ADDRESS (sym)};
13311
13312                   VEC_safe_push (ada_exc_info, *exceptions, &info);
13313                 }
13314             }
13315         }
13316       if (BLOCK_FUNCTION (block) != NULL)
13317         break;
13318       block = BLOCK_SUPERBLOCK (block);
13319     }
13320 }
13321
13322 /* Return true if NAME matches PREG or if PREG is NULL.  */
13323
13324 static bool
13325 name_matches_regex (const char *name, regex_t *preg)
13326 {
13327   return (preg == NULL
13328           || regexec (preg, ada_decode (name), 0, NULL, 0) == 0);
13329 }
13330
13331 /* Add all exceptions defined globally whose name name match
13332    a regular expression, excluding standard exceptions.
13333
13334    The reason we exclude standard exceptions is that they need
13335    to be handled separately: Standard exceptions are defined inside
13336    a runtime unit which is normally not compiled with debugging info,
13337    and thus usually do not show up in our symbol search.  However,
13338    if the unit was in fact built with debugging info, we need to
13339    exclude them because they would duplicate the entry we found
13340    during the special loop that specifically searches for those
13341    standard exceptions.
13342
13343    If PREG is not NULL, then this regexp_t object is used to
13344    perform the symbol name matching.  Otherwise, no name-based
13345    filtering is performed.
13346
13347    EXCEPTIONS is a vector of exceptions to which matching exceptions
13348    gets pushed.  */
13349
13350 static void
13351 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13352 {
13353   struct objfile *objfile;
13354   struct compunit_symtab *s;
13355
13356   /* In Ada, the symbol "search name" is a linkage name, whereas the
13357      regular expression used to do the matching refers to the natural
13358      name.  So match against the decoded name.  */
13359   expand_symtabs_matching (NULL,
13360                            [&] (const char *search_name)
13361                            {
13362                              const char *decoded = ada_decode (search_name);
13363                              return name_matches_regex (decoded, preg);
13364                            },
13365                            NULL,
13366                            VARIABLES_DOMAIN);
13367
13368   ALL_COMPUNITS (objfile, s)
13369     {
13370       const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13371       int i;
13372
13373       for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13374         {
13375           struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13376           struct block_iterator iter;
13377           struct symbol *sym;
13378
13379           ALL_BLOCK_SYMBOLS (b, iter, sym)
13380             if (ada_is_non_standard_exception_sym (sym)
13381                 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13382               {
13383                 struct ada_exc_info info
13384                   = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13385
13386                 VEC_safe_push (ada_exc_info, *exceptions, &info);
13387               }
13388         }
13389     }
13390 }
13391
13392 /* Implements ada_exceptions_list with the regular expression passed
13393    as a regex_t, rather than a string.
13394
13395    If not NULL, PREG is used to filter out exceptions whose names
13396    do not match.  Otherwise, all exceptions are listed.  */
13397
13398 static VEC(ada_exc_info) *
13399 ada_exceptions_list_1 (regex_t *preg)
13400 {
13401   VEC(ada_exc_info) *result = NULL;
13402   struct cleanup *old_chain
13403     = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13404   int prev_len;
13405
13406   /* First, list the known standard exceptions.  These exceptions
13407      need to be handled separately, as they are usually defined in
13408      runtime units that have been compiled without debugging info.  */
13409
13410   ada_add_standard_exceptions (preg, &result);
13411
13412   /* Next, find all exceptions whose scope is local and accessible
13413      from the currently selected frame.  */
13414
13415   if (has_stack_frames ())
13416     {
13417       prev_len = VEC_length (ada_exc_info, result);
13418       ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13419                                      &result);
13420       if (VEC_length (ada_exc_info, result) > prev_len)
13421         sort_remove_dups_ada_exceptions_list (&result, prev_len);
13422     }
13423
13424   /* Add all exceptions whose scope is global.  */
13425
13426   prev_len = VEC_length (ada_exc_info, result);
13427   ada_add_global_exceptions (preg, &result);
13428   if (VEC_length (ada_exc_info, result) > prev_len)
13429     sort_remove_dups_ada_exceptions_list (&result, prev_len);
13430
13431   discard_cleanups (old_chain);
13432   return result;
13433 }
13434
13435 /* Return a vector of ada_exc_info.
13436
13437    If REGEXP is NULL, all exceptions are included in the result.
13438    Otherwise, it should contain a valid regular expression,
13439    and only the exceptions whose names match that regular expression
13440    are included in the result.
13441
13442    The exceptions are sorted in the following order:
13443      - Standard exceptions (defined by the Ada language), in
13444        alphabetical order;
13445      - Exceptions only visible from the current frame, in
13446        alphabetical order;
13447      - Exceptions whose scope is global, in alphabetical order.  */
13448
13449 VEC(ada_exc_info) *
13450 ada_exceptions_list (const char *regexp)
13451 {
13452   VEC(ada_exc_info) *result = NULL;
13453   struct cleanup *old_chain = NULL;
13454   regex_t reg;
13455
13456   if (regexp != NULL)
13457     old_chain = compile_rx_or_error (&reg, regexp,
13458                                      _("invalid regular expression"));
13459
13460   result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13461
13462   if (old_chain != NULL)
13463     do_cleanups (old_chain);
13464   return result;
13465 }
13466
13467 /* Implement the "info exceptions" command.  */
13468
13469 static void
13470 info_exceptions_command (char *regexp, int from_tty)
13471 {
13472   VEC(ada_exc_info) *exceptions;
13473   struct cleanup *cleanup;
13474   struct gdbarch *gdbarch = get_current_arch ();
13475   int ix;
13476   struct ada_exc_info *info;
13477
13478   exceptions = ada_exceptions_list (regexp);
13479   cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13480
13481   if (regexp != NULL)
13482     printf_filtered
13483       (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13484   else
13485     printf_filtered (_("All defined Ada exceptions:\n"));
13486
13487   for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13488     printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13489
13490   do_cleanups (cleanup);
13491 }
13492
13493                                 /* Operators */
13494 /* Information about operators given special treatment in functions
13495    below.  */
13496 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
13497
13498 #define ADA_OPERATORS \
13499     OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13500     OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13501     OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13502     OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13503     OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13504     OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13505     OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13506     OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13507     OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13508     OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13509     OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13510     OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13511     OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13512     OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13513     OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13514     OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13515     OP_DEFN (OP_OTHERS, 1, 1, 0) \
13516     OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13517     OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13518
13519 static void
13520 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13521                      int *argsp)
13522 {
13523   switch (exp->elts[pc - 1].opcode)
13524     {
13525     default:
13526       operator_length_standard (exp, pc, oplenp, argsp);
13527       break;
13528
13529 #define OP_DEFN(op, len, args, binop) \
13530     case op: *oplenp = len; *argsp = args; break;
13531       ADA_OPERATORS;
13532 #undef OP_DEFN
13533
13534     case OP_AGGREGATE:
13535       *oplenp = 3;
13536       *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13537       break;
13538
13539     case OP_CHOICES:
13540       *oplenp = 3;
13541       *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13542       break;
13543     }
13544 }
13545
13546 /* Implementation of the exp_descriptor method operator_check.  */
13547
13548 static int
13549 ada_operator_check (struct expression *exp, int pos,
13550                     int (*objfile_func) (struct objfile *objfile, void *data),
13551                     void *data)
13552 {
13553   const union exp_element *const elts = exp->elts;
13554   struct type *type = NULL;
13555
13556   switch (elts[pos].opcode)
13557     {
13558       case UNOP_IN_RANGE:
13559       case UNOP_QUAL:
13560         type = elts[pos + 1].type;
13561         break;
13562
13563       default:
13564         return operator_check_standard (exp, pos, objfile_func, data);
13565     }
13566
13567   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
13568
13569   if (type && TYPE_OBJFILE (type)
13570       && (*objfile_func) (TYPE_OBJFILE (type), data))
13571     return 1;
13572
13573   return 0;
13574 }
13575
13576 static const char *
13577 ada_op_name (enum exp_opcode opcode)
13578 {
13579   switch (opcode)
13580     {
13581     default:
13582       return op_name_standard (opcode);
13583
13584 #define OP_DEFN(op, len, args, binop) case op: return #op;
13585       ADA_OPERATORS;
13586 #undef OP_DEFN
13587
13588     case OP_AGGREGATE:
13589       return "OP_AGGREGATE";
13590     case OP_CHOICES:
13591       return "OP_CHOICES";
13592     case OP_NAME:
13593       return "OP_NAME";
13594     }
13595 }
13596
13597 /* As for operator_length, but assumes PC is pointing at the first
13598    element of the operator, and gives meaningful results only for the 
13599    Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
13600
13601 static void
13602 ada_forward_operator_length (struct expression *exp, int pc,
13603                              int *oplenp, int *argsp)
13604 {
13605   switch (exp->elts[pc].opcode)
13606     {
13607     default:
13608       *oplenp = *argsp = 0;
13609       break;
13610
13611 #define OP_DEFN(op, len, args, binop) \
13612     case op: *oplenp = len; *argsp = args; break;
13613       ADA_OPERATORS;
13614 #undef OP_DEFN
13615
13616     case OP_AGGREGATE:
13617       *oplenp = 3;
13618       *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13619       break;
13620
13621     case OP_CHOICES:
13622       *oplenp = 3;
13623       *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13624       break;
13625
13626     case OP_STRING:
13627     case OP_NAME:
13628       {
13629         int len = longest_to_int (exp->elts[pc + 1].longconst);
13630
13631         *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13632         *argsp = 0;
13633         break;
13634       }
13635     }
13636 }
13637
13638 static int
13639 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13640 {
13641   enum exp_opcode op = exp->elts[elt].opcode;
13642   int oplen, nargs;
13643   int pc = elt;
13644   int i;
13645
13646   ada_forward_operator_length (exp, elt, &oplen, &nargs);
13647
13648   switch (op)
13649     {
13650       /* Ada attributes ('Foo).  */
13651     case OP_ATR_FIRST:
13652     case OP_ATR_LAST:
13653     case OP_ATR_LENGTH:
13654     case OP_ATR_IMAGE:
13655     case OP_ATR_MAX:
13656     case OP_ATR_MIN:
13657     case OP_ATR_MODULUS:
13658     case OP_ATR_POS:
13659     case OP_ATR_SIZE:
13660     case OP_ATR_TAG:
13661     case OP_ATR_VAL:
13662       break;
13663
13664     case UNOP_IN_RANGE:
13665     case UNOP_QUAL:
13666       /* XXX: gdb_sprint_host_address, type_sprint */
13667       fprintf_filtered (stream, _("Type @"));
13668       gdb_print_host_address (exp->elts[pc + 1].type, stream);
13669       fprintf_filtered (stream, " (");
13670       type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13671       fprintf_filtered (stream, ")");
13672       break;
13673     case BINOP_IN_BOUNDS:
13674       fprintf_filtered (stream, " (%d)",
13675                         longest_to_int (exp->elts[pc + 2].longconst));
13676       break;
13677     case TERNOP_IN_RANGE:
13678       break;
13679
13680     case OP_AGGREGATE:
13681     case OP_OTHERS:
13682     case OP_DISCRETE_RANGE:
13683     case OP_POSITIONAL:
13684     case OP_CHOICES:
13685       break;
13686
13687     case OP_NAME:
13688     case OP_STRING:
13689       {
13690         char *name = &exp->elts[elt + 2].string;
13691         int len = longest_to_int (exp->elts[elt + 1].longconst);
13692
13693         fprintf_filtered (stream, "Text: `%.*s'", len, name);
13694         break;
13695       }
13696
13697     default:
13698       return dump_subexp_body_standard (exp, stream, elt);
13699     }
13700
13701   elt += oplen;
13702   for (i = 0; i < nargs; i += 1)
13703     elt = dump_subexp (exp, stream, elt);
13704
13705   return elt;
13706 }
13707
13708 /* The Ada extension of print_subexp (q.v.).  */
13709
13710 static void
13711 ada_print_subexp (struct expression *exp, int *pos,
13712                   struct ui_file *stream, enum precedence prec)
13713 {
13714   int oplen, nargs, i;
13715   int pc = *pos;
13716   enum exp_opcode op = exp->elts[pc].opcode;
13717
13718   ada_forward_operator_length (exp, pc, &oplen, &nargs);
13719
13720   *pos += oplen;
13721   switch (op)
13722     {
13723     default:
13724       *pos -= oplen;
13725       print_subexp_standard (exp, pos, stream, prec);
13726       return;
13727
13728     case OP_VAR_VALUE:
13729       fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13730       return;
13731
13732     case BINOP_IN_BOUNDS:
13733       /* XXX: sprint_subexp */
13734       print_subexp (exp, pos, stream, PREC_SUFFIX);
13735       fputs_filtered (" in ", stream);
13736       print_subexp (exp, pos, stream, PREC_SUFFIX);
13737       fputs_filtered ("'range", stream);
13738       if (exp->elts[pc + 1].longconst > 1)
13739         fprintf_filtered (stream, "(%ld)",
13740                           (long) exp->elts[pc + 1].longconst);
13741       return;
13742
13743     case TERNOP_IN_RANGE:
13744       if (prec >= PREC_EQUAL)
13745         fputs_filtered ("(", stream);
13746       /* XXX: sprint_subexp */
13747       print_subexp (exp, pos, stream, PREC_SUFFIX);
13748       fputs_filtered (" in ", stream);
13749       print_subexp (exp, pos, stream, PREC_EQUAL);
13750       fputs_filtered (" .. ", stream);
13751       print_subexp (exp, pos, stream, PREC_EQUAL);
13752       if (prec >= PREC_EQUAL)
13753         fputs_filtered (")", stream);
13754       return;
13755
13756     case OP_ATR_FIRST:
13757     case OP_ATR_LAST:
13758     case OP_ATR_LENGTH:
13759     case OP_ATR_IMAGE:
13760     case OP_ATR_MAX:
13761     case OP_ATR_MIN:
13762     case OP_ATR_MODULUS:
13763     case OP_ATR_POS:
13764     case OP_ATR_SIZE:
13765     case OP_ATR_TAG:
13766     case OP_ATR_VAL:
13767       if (exp->elts[*pos].opcode == OP_TYPE)
13768         {
13769           if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13770             LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13771                            &type_print_raw_options);
13772           *pos += 3;
13773         }
13774       else
13775         print_subexp (exp, pos, stream, PREC_SUFFIX);
13776       fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13777       if (nargs > 1)
13778         {
13779           int tem;
13780
13781           for (tem = 1; tem < nargs; tem += 1)
13782             {
13783               fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13784               print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13785             }
13786           fputs_filtered (")", stream);
13787         }
13788       return;
13789
13790     case UNOP_QUAL:
13791       type_print (exp->elts[pc + 1].type, "", stream, 0);
13792       fputs_filtered ("'(", stream);
13793       print_subexp (exp, pos, stream, PREC_PREFIX);
13794       fputs_filtered (")", stream);
13795       return;
13796
13797     case UNOP_IN_RANGE:
13798       /* XXX: sprint_subexp */
13799       print_subexp (exp, pos, stream, PREC_SUFFIX);
13800       fputs_filtered (" in ", stream);
13801       LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13802                      &type_print_raw_options);
13803       return;
13804
13805     case OP_DISCRETE_RANGE:
13806       print_subexp (exp, pos, stream, PREC_SUFFIX);
13807       fputs_filtered ("..", stream);
13808       print_subexp (exp, pos, stream, PREC_SUFFIX);
13809       return;
13810
13811     case OP_OTHERS:
13812       fputs_filtered ("others => ", stream);
13813       print_subexp (exp, pos, stream, PREC_SUFFIX);
13814       return;
13815
13816     case OP_CHOICES:
13817       for (i = 0; i < nargs-1; i += 1)
13818         {
13819           if (i > 0)
13820             fputs_filtered ("|", stream);
13821           print_subexp (exp, pos, stream, PREC_SUFFIX);
13822         }
13823       fputs_filtered (" => ", stream);
13824       print_subexp (exp, pos, stream, PREC_SUFFIX);
13825       return;
13826       
13827     case OP_POSITIONAL:
13828       print_subexp (exp, pos, stream, PREC_SUFFIX);
13829       return;
13830
13831     case OP_AGGREGATE:
13832       fputs_filtered ("(", stream);
13833       for (i = 0; i < nargs; i += 1)
13834         {
13835           if (i > 0)
13836             fputs_filtered (", ", stream);
13837           print_subexp (exp, pos, stream, PREC_SUFFIX);
13838         }
13839       fputs_filtered (")", stream);
13840       return;
13841     }
13842 }
13843
13844 /* Table mapping opcodes into strings for printing operators
13845    and precedences of the operators.  */
13846
13847 static const struct op_print ada_op_print_tab[] = {
13848   {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13849   {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13850   {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13851   {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13852   {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13853   {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13854   {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13855   {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13856   {"<=", BINOP_LEQ, PREC_ORDER, 0},
13857   {">=", BINOP_GEQ, PREC_ORDER, 0},
13858   {">", BINOP_GTR, PREC_ORDER, 0},
13859   {"<", BINOP_LESS, PREC_ORDER, 0},
13860   {">>", BINOP_RSH, PREC_SHIFT, 0},
13861   {"<<", BINOP_LSH, PREC_SHIFT, 0},
13862   {"+", BINOP_ADD, PREC_ADD, 0},
13863   {"-", BINOP_SUB, PREC_ADD, 0},
13864   {"&", BINOP_CONCAT, PREC_ADD, 0},
13865   {"*", BINOP_MUL, PREC_MUL, 0},
13866   {"/", BINOP_DIV, PREC_MUL, 0},
13867   {"rem", BINOP_REM, PREC_MUL, 0},
13868   {"mod", BINOP_MOD, PREC_MUL, 0},
13869   {"**", BINOP_EXP, PREC_REPEAT, 0},
13870   {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13871   {"-", UNOP_NEG, PREC_PREFIX, 0},
13872   {"+", UNOP_PLUS, PREC_PREFIX, 0},
13873   {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13874   {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13875   {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13876   {".all", UNOP_IND, PREC_SUFFIX, 1},
13877   {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13878   {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13879   {NULL, OP_NULL, PREC_SUFFIX, 0}
13880 };
13881 \f
13882 enum ada_primitive_types {
13883   ada_primitive_type_int,
13884   ada_primitive_type_long,
13885   ada_primitive_type_short,
13886   ada_primitive_type_char,
13887   ada_primitive_type_float,
13888   ada_primitive_type_double,
13889   ada_primitive_type_void,
13890   ada_primitive_type_long_long,
13891   ada_primitive_type_long_double,
13892   ada_primitive_type_natural,
13893   ada_primitive_type_positive,
13894   ada_primitive_type_system_address,
13895   nr_ada_primitive_types
13896 };
13897
13898 static void
13899 ada_language_arch_info (struct gdbarch *gdbarch,
13900                         struct language_arch_info *lai)
13901 {
13902   const struct builtin_type *builtin = builtin_type (gdbarch);
13903
13904   lai->primitive_type_vector
13905     = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13906                               struct type *);
13907
13908   lai->primitive_type_vector [ada_primitive_type_int]
13909     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13910                          0, "integer");
13911   lai->primitive_type_vector [ada_primitive_type_long]
13912     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13913                          0, "long_integer");
13914   lai->primitive_type_vector [ada_primitive_type_short]
13915     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13916                          0, "short_integer");
13917   lai->string_char_type
13918     = lai->primitive_type_vector [ada_primitive_type_char]
13919     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13920   lai->primitive_type_vector [ada_primitive_type_float]
13921     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13922                        "float", gdbarch_float_format (gdbarch));
13923   lai->primitive_type_vector [ada_primitive_type_double]
13924     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13925                        "long_float", gdbarch_double_format (gdbarch));
13926   lai->primitive_type_vector [ada_primitive_type_long_long]
13927     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13928                          0, "long_long_integer");
13929   lai->primitive_type_vector [ada_primitive_type_long_double]
13930     = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13931                        "long_long_float", gdbarch_long_double_format (gdbarch));
13932   lai->primitive_type_vector [ada_primitive_type_natural]
13933     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13934                          0, "natural");
13935   lai->primitive_type_vector [ada_primitive_type_positive]
13936     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13937                          0, "positive");
13938   lai->primitive_type_vector [ada_primitive_type_void]
13939     = builtin->builtin_void;
13940
13941   lai->primitive_type_vector [ada_primitive_type_system_address]
13942     = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13943   TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13944     = "system__address";
13945
13946   lai->bool_type_symbol = NULL;
13947   lai->bool_type_default = builtin->builtin_bool;
13948 }
13949 \f
13950                                 /* Language vector */
13951
13952 /* Not really used, but needed in the ada_language_defn.  */
13953
13954 static void
13955 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13956 {
13957   ada_emit_char (c, type, stream, quoter, 1);
13958 }
13959
13960 static int
13961 parse (struct parser_state *ps)
13962 {
13963   warnings_issued = 0;
13964   return ada_parse (ps);
13965 }
13966
13967 static const struct exp_descriptor ada_exp_descriptor = {
13968   ada_print_subexp,
13969   ada_operator_length,
13970   ada_operator_check,
13971   ada_op_name,
13972   ada_dump_subexp_body,
13973   ada_evaluate_subexp
13974 };
13975
13976 /* Implement the "la_get_symbol_name_cmp" language_defn method
13977    for Ada.  */
13978
13979 static symbol_name_cmp_ftype
13980 ada_get_symbol_name_cmp (const char *lookup_name)
13981 {
13982   if (should_use_wild_match (lookup_name))
13983     return wild_match;
13984   else
13985     return compare_names;
13986 }
13987
13988 /* Implement the "la_read_var_value" language_defn method for Ada.  */
13989
13990 static struct value *
13991 ada_read_var_value (struct symbol *var, const struct block *var_block,
13992                     struct frame_info *frame)
13993 {
13994   const struct block *frame_block = NULL;
13995   struct symbol *renaming_sym = NULL;
13996
13997   /* The only case where default_read_var_value is not sufficient
13998      is when VAR is a renaming...  */
13999   if (frame)
14000     frame_block = get_frame_block (frame, NULL);
14001   if (frame_block)
14002     renaming_sym = ada_find_renaming_symbol (var, frame_block);
14003   if (renaming_sym != NULL)
14004     return ada_read_renaming_var_value (renaming_sym, frame_block);
14005
14006   /* This is a typical case where we expect the default_read_var_value
14007      function to work.  */
14008   return default_read_var_value (var, var_block, frame);
14009 }
14010
14011 static const char *ada_extensions[] =
14012 {
14013   ".adb", ".ads", ".a", ".ada", ".dg", NULL
14014 };
14015
14016 const struct language_defn ada_language_defn = {
14017   "ada",                        /* Language name */
14018   "Ada",
14019   language_ada,
14020   range_check_off,
14021   case_sensitive_on,            /* Yes, Ada is case-insensitive, but
14022                                    that's not quite what this means.  */
14023   array_row_major,
14024   macro_expansion_no,
14025   ada_extensions,
14026   &ada_exp_descriptor,
14027   parse,
14028   ada_yyerror,
14029   resolve,
14030   ada_printchar,                /* Print a character constant */
14031   ada_printstr,                 /* Function to print string constant */
14032   emit_char,                    /* Function to print single char (not used) */
14033   ada_print_type,               /* Print a type using appropriate syntax */
14034   ada_print_typedef,            /* Print a typedef using appropriate syntax */
14035   ada_val_print,                /* Print a value using appropriate syntax */
14036   ada_value_print,              /* Print a top-level value */
14037   ada_read_var_value,           /* la_read_var_value */
14038   NULL,                         /* Language specific skip_trampoline */
14039   NULL,                         /* name_of_this */
14040   ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
14041   basic_lookup_transparent_type,        /* lookup_transparent_type */
14042   ada_la_decode,                /* Language specific symbol demangler */
14043   ada_sniff_from_mangled_name,
14044   NULL,                         /* Language specific
14045                                    class_name_from_physname */
14046   ada_op_print_tab,             /* expression operators for printing */
14047   0,                            /* c-style arrays */
14048   1,                            /* String lower bound */
14049   ada_get_gdb_completer_word_break_characters,
14050   ada_make_symbol_completion_list,
14051   ada_language_arch_info,
14052   ada_print_array_index,
14053   default_pass_by_reference,
14054   c_get_string,
14055   ada_get_symbol_name_cmp,      /* la_get_symbol_name_cmp */
14056   ada_iterate_over_symbols,
14057   &ada_varobj_ops,
14058   NULL,
14059   NULL,
14060   LANG_MAGIC
14061 };
14062
14063 /* Provide a prototype to silence -Wmissing-prototypes.  */
14064 extern initialize_file_ftype _initialize_ada_language;
14065
14066 /* Command-list for the "set/show ada" prefix command.  */
14067 static struct cmd_list_element *set_ada_list;
14068 static struct cmd_list_element *show_ada_list;
14069
14070 /* Implement the "set ada" prefix command.  */
14071
14072 static void
14073 set_ada_command (char *arg, int from_tty)
14074 {
14075   printf_unfiltered (_(\
14076 "\"set ada\" must be followed by the name of a setting.\n"));
14077   help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14078 }
14079
14080 /* Implement the "show ada" prefix command.  */
14081
14082 static void
14083 show_ada_command (char *args, int from_tty)
14084 {
14085   cmd_show_list (show_ada_list, from_tty, "");
14086 }
14087
14088 static void
14089 initialize_ada_catchpoint_ops (void)
14090 {
14091   struct breakpoint_ops *ops;
14092
14093   initialize_breakpoint_ops ();
14094
14095   ops = &catch_exception_breakpoint_ops;
14096   *ops = bkpt_breakpoint_ops;
14097   ops->dtor = dtor_catch_exception;
14098   ops->allocate_location = allocate_location_catch_exception;
14099   ops->re_set = re_set_catch_exception;
14100   ops->check_status = check_status_catch_exception;
14101   ops->print_it = print_it_catch_exception;
14102   ops->print_one = print_one_catch_exception;
14103   ops->print_mention = print_mention_catch_exception;
14104   ops->print_recreate = print_recreate_catch_exception;
14105
14106   ops = &catch_exception_unhandled_breakpoint_ops;
14107   *ops = bkpt_breakpoint_ops;
14108   ops->dtor = dtor_catch_exception_unhandled;
14109   ops->allocate_location = allocate_location_catch_exception_unhandled;
14110   ops->re_set = re_set_catch_exception_unhandled;
14111   ops->check_status = check_status_catch_exception_unhandled;
14112   ops->print_it = print_it_catch_exception_unhandled;
14113   ops->print_one = print_one_catch_exception_unhandled;
14114   ops->print_mention = print_mention_catch_exception_unhandled;
14115   ops->print_recreate = print_recreate_catch_exception_unhandled;
14116
14117   ops = &catch_assert_breakpoint_ops;
14118   *ops = bkpt_breakpoint_ops;
14119   ops->dtor = dtor_catch_assert;
14120   ops->allocate_location = allocate_location_catch_assert;
14121   ops->re_set = re_set_catch_assert;
14122   ops->check_status = check_status_catch_assert;
14123   ops->print_it = print_it_catch_assert;
14124   ops->print_one = print_one_catch_assert;
14125   ops->print_mention = print_mention_catch_assert;
14126   ops->print_recreate = print_recreate_catch_assert;
14127 }
14128
14129 /* This module's 'new_objfile' observer.  */
14130
14131 static void
14132 ada_new_objfile_observer (struct objfile *objfile)
14133 {
14134   ada_clear_symbol_cache ();
14135 }
14136
14137 /* This module's 'free_objfile' observer.  */
14138
14139 static void
14140 ada_free_objfile_observer (struct objfile *objfile)
14141 {
14142   ada_clear_symbol_cache ();
14143 }
14144
14145 void
14146 _initialize_ada_language (void)
14147 {
14148   add_language (&ada_language_defn);
14149
14150   initialize_ada_catchpoint_ops ();
14151
14152   add_prefix_cmd ("ada", no_class, set_ada_command,
14153                   _("Prefix command for changing Ada-specfic settings"),
14154                   &set_ada_list, "set ada ", 0, &setlist);
14155
14156   add_prefix_cmd ("ada", no_class, show_ada_command,
14157                   _("Generic command for showing Ada-specific settings."),
14158                   &show_ada_list, "show ada ", 0, &showlist);
14159
14160   add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14161                            &trust_pad_over_xvs, _("\
14162 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14163 Show whether an optimization trusting PAD types over XVS types is activated"),
14164                            _("\
14165 This is related to the encoding used by the GNAT compiler.  The debugger\n\
14166 should normally trust the contents of PAD types, but certain older versions\n\
14167 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14168 to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
14169 work around this bug.  It is always safe to turn this option \"off\", but\n\
14170 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14171 this option to \"off\" unless necessary."),
14172                             NULL, NULL, &set_ada_list, &show_ada_list);
14173
14174   add_setshow_boolean_cmd ("print-signatures", class_vars,
14175                            &print_signatures, _("\
14176 Enable or disable the output of formal and return types for functions in the \
14177 overloads selection menu"), _("\
14178 Show whether the output of formal and return types for functions in the \
14179 overloads selection menu is activated"),
14180                            NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14181
14182   add_catch_command ("exception", _("\
14183 Catch Ada exceptions, when raised.\n\
14184 With an argument, catch only exceptions with the given name."),
14185                      catch_ada_exception_command,
14186                      NULL,
14187                      CATCH_PERMANENT,
14188                      CATCH_TEMPORARY);
14189   add_catch_command ("assert", _("\
14190 Catch failed Ada assertions, when raised.\n\
14191 With an argument, catch only exceptions with the given name."),
14192                      catch_assert_command,
14193                      NULL,
14194                      CATCH_PERMANENT,
14195                      CATCH_TEMPORARY);
14196
14197   varsize_limit = 65536;
14198
14199   add_info ("exceptions", info_exceptions_command,
14200             _("\
14201 List all Ada exception names.\n\
14202 If a regular expression is passed as an argument, only those matching\n\
14203 the regular expression are listed."));
14204
14205   add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14206                   _("Set Ada maintenance-related variables."),
14207                   &maint_set_ada_cmdlist, "maintenance set ada ",
14208                   0/*allow-unknown*/, &maintenance_set_cmdlist);
14209
14210   add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14211                   _("Show Ada maintenance-related variables"),
14212                   &maint_show_ada_cmdlist, "maintenance show ada ",
14213                   0/*allow-unknown*/, &maintenance_show_cmdlist);
14214
14215   add_setshow_boolean_cmd
14216     ("ignore-descriptive-types", class_maintenance,
14217      &ada_ignore_descriptive_types_p,
14218      _("Set whether descriptive types generated by GNAT should be ignored."),
14219      _("Show whether descriptive types generated by GNAT should be ignored."),
14220      _("\
14221 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14222 DWARF attribute."),
14223      NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14224
14225   obstack_init (&symbol_list_obstack);
14226
14227   decoded_names_store = htab_create_alloc
14228     (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14229      NULL, xcalloc, xfree);
14230
14231   /* The ada-lang observers.  */
14232   observer_attach_new_objfile (ada_new_objfile_observer);
14233   observer_attach_free_objfile (ada_free_objfile_observer);
14234   observer_attach_inferior_exit (ada_inferior_exit);
14235
14236   /* Setup various context-specific data.  */
14237   ada_inferior_data
14238     = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14239   ada_pspace_data_handle
14240     = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14241 }