[Ada] improve message when cannot insert Ada exception catchpoint.
[external/binutils.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.  Copyright (C)
2
3    1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4    2009 Free Software Foundation, Inc.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "exceptions.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68    differently signed operands (truncation direction is undefined in C).
69    Copied from valarith.c.  */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112                                    struct block *, const char *,
113                                    domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118                              struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125                                      struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128                                         struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145                                                             const char **,
146                                                             int *,
147                                                             const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150                                                       struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153                                                 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158                                                       const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163                                                   const gdb_byte *,
164                                                   CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type  (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188                                              struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193                                                 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216                                        domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219                                               struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222                                                 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225                               struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228                                                 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231                                  struct value **, int, const char *,
232                                  struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237                                     struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242                                              struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *, 
245                                        struct expression *,
246                                        int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *, 
249                                            struct expression *,
250                                            int *, LONGEST *, int *,
251                                            int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254                                          struct expression *,
255                                          int *, LONGEST *, int *, int,
256                                          LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260                                      struct expression *,
261                                      int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268                                           int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271                                          int *);
272 \f
273
274
275 /* Maximum-sized dynamic type.  */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279    returned by a function that does not return a const char *.  */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282   " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284   " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram.  */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289   = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation.  */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295    expression evaluation.  */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299   ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303   ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list.  */
307 static struct obstack symbol_list_obstack;
308
309                         /* Inferior-specific data.  */
310
311 /* Per-inferior data for this module.  */
312
313 struct ada_inferior_data
314 {
315   /* The ada__tags__type_specific_data type, which is used when decoding
316      tagged types.  With older versions of GNAT, this type was directly
317      accessible through a component ("tsd") in the object tag.  But this
318      is no longer the case, so we cache it for each inferior.  */
319   struct type *tsd_type;
320
321   /* The exception_support_info data.  This data is used to determine
322      how to implement support for Ada exception catchpoints in a given
323      inferior.  */
324   const struct exception_support_info *exception_info;
325 };
326
327 /* Our key to this module's inferior data.  */
328 static const struct inferior_data *ada_inferior_data;
329
330 /* A cleanup routine for our inferior data.  */
331 static void
332 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
333 {
334   struct ada_inferior_data *data;
335
336   data = inferior_data (inf, ada_inferior_data);
337   if (data != NULL)
338     xfree (data);
339 }
340
341 /* Return our inferior data for the given inferior (INF).
342
343    This function always returns a valid pointer to an allocated
344    ada_inferior_data structure.  If INF's inferior data has not
345    been previously set, this functions creates a new one with all
346    fields set to zero, sets INF's inferior to it, and then returns
347    a pointer to that newly allocated ada_inferior_data.  */
348
349 static struct ada_inferior_data *
350 get_ada_inferior_data (struct inferior *inf)
351 {
352   struct ada_inferior_data *data;
353
354   data = inferior_data (inf, ada_inferior_data);
355   if (data == NULL)
356     {
357       data = XZALLOC (struct ada_inferior_data);
358       set_inferior_data (inf, ada_inferior_data, data);
359     }
360
361   return data;
362 }
363
364 /* Perform all necessary cleanups regarding our module's inferior data
365    that is required after the inferior INF just exited.  */
366
367 static void
368 ada_inferior_exit (struct inferior *inf)
369 {
370   ada_inferior_data_cleanup (inf, NULL);
371   set_inferior_data (inf, ada_inferior_data, NULL);
372 }
373
374                         /* Utilities */
375
376 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
377    all typedef layers have been peeled.  Otherwise, return TYPE.
378
379    Normally, we really expect a typedef type to only have 1 typedef layer.
380    In other words, we really expect the target type of a typedef type to be
381    a non-typedef type.  This is particularly true for Ada units, because
382    the language does not have a typedef vs not-typedef distinction.
383    In that respect, the Ada compiler has been trying to eliminate as many
384    typedef definitions in the debugging information, since they generally
385    do not bring any extra information (we still use typedef under certain
386    circumstances related mostly to the GNAT encoding).
387
388    Unfortunately, we have seen situations where the debugging information
389    generated by the compiler leads to such multiple typedef layers.  For
390    instance, consider the following example with stabs:
391
392      .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
393      .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
394
395    This is an error in the debugging information which causes type
396    pck__float_array___XUP to be defined twice, and the second time,
397    it is defined as a typedef of a typedef.
398
399    This is on the fringe of legality as far as debugging information is
400    concerned, and certainly unexpected.  But it is easy to handle these
401    situations correctly, so we can afford to be lenient in this case.  */
402
403 static struct type *
404 ada_typedef_target_type (struct type *type)
405 {
406   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
407     type = TYPE_TARGET_TYPE (type);
408   return type;
409 }
410
411 /* Given DECODED_NAME a string holding a symbol name in its
412    decoded form (ie using the Ada dotted notation), returns
413    its unqualified name.  */
414
415 static const char *
416 ada_unqualified_name (const char *decoded_name)
417 {
418   const char *result = strrchr (decoded_name, '.');
419
420   if (result != NULL)
421     result++;                   /* Skip the dot...  */
422   else
423     result = decoded_name;
424
425   return result;
426 }
427
428 /* Return a string starting with '<', followed by STR, and '>'.
429    The result is good until the next call.  */
430
431 static char *
432 add_angle_brackets (const char *str)
433 {
434   static char *result = NULL;
435
436   xfree (result);
437   result = xstrprintf ("<%s>", str);
438   return result;
439 }
440
441 static char *
442 ada_get_gdb_completer_word_break_characters (void)
443 {
444   return ada_completer_word_break_characters;
445 }
446
447 /* Print an array element index using the Ada syntax.  */
448
449 static void
450 ada_print_array_index (struct value *index_value, struct ui_file *stream,
451                        const struct value_print_options *options)
452 {
453   LA_VALUE_PRINT (index_value, stream, options);
454   fprintf_filtered (stream, " => ");
455 }
456
457 /* Assuming VECT points to an array of *SIZE objects of size
458    ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
459    updating *SIZE as necessary and returning the (new) array.  */
460
461 void *
462 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
463 {
464   if (*size < min_size)
465     {
466       *size *= 2;
467       if (*size < min_size)
468         *size = min_size;
469       vect = xrealloc (vect, *size * element_size);
470     }
471   return vect;
472 }
473
474 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
475    suffix of FIELD_NAME beginning "___".  */
476
477 static int
478 field_name_match (const char *field_name, const char *target)
479 {
480   int len = strlen (target);
481
482   return
483     (strncmp (field_name, target, len) == 0
484      && (field_name[len] == '\0'
485          || (strncmp (field_name + len, "___", 3) == 0
486              && strcmp (field_name + strlen (field_name) - 6,
487                         "___XVN") != 0)));
488 }
489
490
491 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
492    a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
493    and return its index.  This function also handles fields whose name
494    have ___ suffixes because the compiler sometimes alters their name
495    by adding such a suffix to represent fields with certain constraints.
496    If the field could not be found, return a negative number if
497    MAYBE_MISSING is set.  Otherwise raise an error.  */
498
499 int
500 ada_get_field_index (const struct type *type, const char *field_name,
501                      int maybe_missing)
502 {
503   int fieldno;
504   struct type *struct_type = check_typedef ((struct type *) type);
505
506   for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
507     if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
508       return fieldno;
509
510   if (!maybe_missing)
511     error (_("Unable to find field %s in struct %s.  Aborting"),
512            field_name, TYPE_NAME (struct_type));
513
514   return -1;
515 }
516
517 /* The length of the prefix of NAME prior to any "___" suffix.  */
518
519 int
520 ada_name_prefix_len (const char *name)
521 {
522   if (name == NULL)
523     return 0;
524   else
525     {
526       const char *p = strstr (name, "___");
527
528       if (p == NULL)
529         return strlen (name);
530       else
531         return p - name;
532     }
533 }
534
535 /* Return non-zero if SUFFIX is a suffix of STR.
536    Return zero if STR is null.  */
537
538 static int
539 is_suffix (const char *str, const char *suffix)
540 {
541   int len1, len2;
542
543   if (str == NULL)
544     return 0;
545   len1 = strlen (str);
546   len2 = strlen (suffix);
547   return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
548 }
549
550 /* The contents of value VAL, treated as a value of type TYPE.  The
551    result is an lval in memory if VAL is.  */
552
553 static struct value *
554 coerce_unspec_val_to_type (struct value *val, struct type *type)
555 {
556   type = ada_check_typedef (type);
557   if (value_type (val) == type)
558     return val;
559   else
560     {
561       struct value *result;
562
563       /* Make sure that the object size is not unreasonable before
564          trying to allocate some memory for it.  */
565       check_size (type);
566
567       if (value_lazy (val)
568           || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
569         result = allocate_value_lazy (type);
570       else
571         {
572           result = allocate_value (type);
573           memcpy (value_contents_raw (result), value_contents (val),
574                   TYPE_LENGTH (type));
575         }
576       set_value_component_location (result, val);
577       set_value_bitsize (result, value_bitsize (val));
578       set_value_bitpos (result, value_bitpos (val));
579       set_value_address (result, value_address (val));
580       return result;
581     }
582 }
583
584 static const gdb_byte *
585 cond_offset_host (const gdb_byte *valaddr, long offset)
586 {
587   if (valaddr == NULL)
588     return NULL;
589   else
590     return valaddr + offset;
591 }
592
593 static CORE_ADDR
594 cond_offset_target (CORE_ADDR address, long offset)
595 {
596   if (address == 0)
597     return 0;
598   else
599     return address + offset;
600 }
601
602 /* Issue a warning (as for the definition of warning in utils.c, but
603    with exactly one argument rather than ...), unless the limit on the
604    number of warnings has passed during the evaluation of the current
605    expression.  */
606
607 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
608    provided by "complaint".  */
609 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
610
611 static void
612 lim_warning (const char *format, ...)
613 {
614   va_list args;
615
616   va_start (args, format);
617   warnings_issued += 1;
618   if (warnings_issued <= warning_limit)
619     vwarning (format, args);
620
621   va_end (args);
622 }
623
624 /* Issue an error if the size of an object of type T is unreasonable,
625    i.e. if it would be a bad idea to allocate a value of this type in
626    GDB.  */
627
628 static void
629 check_size (const struct type *type)
630 {
631   if (TYPE_LENGTH (type) > varsize_limit)
632     error (_("object size is larger than varsize-limit"));
633 }
634
635 /* Maximum value of a SIZE-byte signed integer type.  */
636 static LONGEST
637 max_of_size (int size)
638 {
639   LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
640
641   return top_bit | (top_bit - 1);
642 }
643
644 /* Minimum value of a SIZE-byte signed integer type.  */
645 static LONGEST
646 min_of_size (int size)
647 {
648   return -max_of_size (size) - 1;
649 }
650
651 /* Maximum value of a SIZE-byte unsigned integer type.  */
652 static ULONGEST
653 umax_of_size (int size)
654 {
655   ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
656
657   return top_bit | (top_bit - 1);
658 }
659
660 /* Maximum value of integral type T, as a signed quantity.  */
661 static LONGEST
662 max_of_type (struct type *t)
663 {
664   if (TYPE_UNSIGNED (t))
665     return (LONGEST) umax_of_size (TYPE_LENGTH (t));
666   else
667     return max_of_size (TYPE_LENGTH (t));
668 }
669
670 /* Minimum value of integral type T, as a signed quantity.  */
671 static LONGEST
672 min_of_type (struct type *t)
673 {
674   if (TYPE_UNSIGNED (t)) 
675     return 0;
676   else
677     return min_of_size (TYPE_LENGTH (t));
678 }
679
680 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
681 LONGEST
682 ada_discrete_type_high_bound (struct type *type)
683 {
684   switch (TYPE_CODE (type))
685     {
686     case TYPE_CODE_RANGE:
687       return TYPE_HIGH_BOUND (type);
688     case TYPE_CODE_ENUM:
689       return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
690     case TYPE_CODE_BOOL:
691       return 1;
692     case TYPE_CODE_CHAR:
693     case TYPE_CODE_INT:
694       return max_of_type (type);
695     default:
696       error (_("Unexpected type in ada_discrete_type_high_bound."));
697     }
698 }
699
700 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
701 LONGEST
702 ada_discrete_type_low_bound (struct type *type)
703 {
704   switch (TYPE_CODE (type))
705     {
706     case TYPE_CODE_RANGE:
707       return TYPE_LOW_BOUND (type);
708     case TYPE_CODE_ENUM:
709       return TYPE_FIELD_BITPOS (type, 0);
710     case TYPE_CODE_BOOL:
711       return 0;
712     case TYPE_CODE_CHAR:
713     case TYPE_CODE_INT:
714       return min_of_type (type);
715     default:
716       error (_("Unexpected type in ada_discrete_type_low_bound."));
717     }
718 }
719
720 /* The identity on non-range types.  For range types, the underlying
721    non-range scalar type.  */
722
723 static struct type *
724 get_base_type (struct type *type)
725 {
726   while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
727     {
728       if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
729         return type;
730       type = TYPE_TARGET_TYPE (type);
731     }
732   return type;
733 }
734 \f
735
736                                 /* Language Selection */
737
738 /* If the main program is in Ada, return language_ada, otherwise return LANG
739    (the main program is in Ada iif the adainit symbol is found).  */
740
741 enum language
742 ada_update_initial_language (enum language lang)
743 {
744   if (lookup_minimal_symbol ("adainit", (const char *) NULL,
745                              (struct objfile *) NULL) != NULL)
746     return language_ada;
747
748   return lang;
749 }
750
751 /* If the main procedure is written in Ada, then return its name.
752    The result is good until the next call.  Return NULL if the main
753    procedure doesn't appear to be in Ada.  */
754
755 char *
756 ada_main_name (void)
757 {
758   struct minimal_symbol *msym;
759   static char *main_program_name = NULL;
760
761   /* For Ada, the name of the main procedure is stored in a specific
762      string constant, generated by the binder.  Look for that symbol,
763      extract its address, and then read that string.  If we didn't find
764      that string, then most probably the main procedure is not written
765      in Ada.  */
766   msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
767
768   if (msym != NULL)
769     {
770       CORE_ADDR main_program_name_addr;
771       int err_code;
772
773       main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
774       if (main_program_name_addr == 0)
775         error (_("Invalid address for Ada main program name."));
776
777       xfree (main_program_name);
778       target_read_string (main_program_name_addr, &main_program_name,
779                           1024, &err_code);
780
781       if (err_code != 0)
782         return NULL;
783       return main_program_name;
784     }
785
786   /* The main procedure doesn't seem to be in Ada.  */
787   return NULL;
788 }
789 \f
790                                 /* Symbols */
791
792 /* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
793    of NULLs.  */
794
795 const struct ada_opname_map ada_opname_table[] = {
796   {"Oadd", "\"+\"", BINOP_ADD},
797   {"Osubtract", "\"-\"", BINOP_SUB},
798   {"Omultiply", "\"*\"", BINOP_MUL},
799   {"Odivide", "\"/\"", BINOP_DIV},
800   {"Omod", "\"mod\"", BINOP_MOD},
801   {"Orem", "\"rem\"", BINOP_REM},
802   {"Oexpon", "\"**\"", BINOP_EXP},
803   {"Olt", "\"<\"", BINOP_LESS},
804   {"Ole", "\"<=\"", BINOP_LEQ},
805   {"Ogt", "\">\"", BINOP_GTR},
806   {"Oge", "\">=\"", BINOP_GEQ},
807   {"Oeq", "\"=\"", BINOP_EQUAL},
808   {"One", "\"/=\"", BINOP_NOTEQUAL},
809   {"Oand", "\"and\"", BINOP_BITWISE_AND},
810   {"Oor", "\"or\"", BINOP_BITWISE_IOR},
811   {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
812   {"Oconcat", "\"&\"", BINOP_CONCAT},
813   {"Oabs", "\"abs\"", UNOP_ABS},
814   {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
815   {"Oadd", "\"+\"", UNOP_PLUS},
816   {"Osubtract", "\"-\"", UNOP_NEG},
817   {NULL, NULL}
818 };
819
820 /* The "encoded" form of DECODED, according to GNAT conventions.
821    The result is valid until the next call to ada_encode.  */
822
823 char *
824 ada_encode (const char *decoded)
825 {
826   static char *encoding_buffer = NULL;
827   static size_t encoding_buffer_size = 0;
828   const char *p;
829   int k;
830
831   if (decoded == NULL)
832     return NULL;
833
834   GROW_VECT (encoding_buffer, encoding_buffer_size,
835              2 * strlen (decoded) + 10);
836
837   k = 0;
838   for (p = decoded; *p != '\0'; p += 1)
839     {
840       if (*p == '.')
841         {
842           encoding_buffer[k] = encoding_buffer[k + 1] = '_';
843           k += 2;
844         }
845       else if (*p == '"')
846         {
847           const struct ada_opname_map *mapping;
848
849           for (mapping = ada_opname_table;
850                mapping->encoded != NULL
851                && strncmp (mapping->decoded, p,
852                            strlen (mapping->decoded)) != 0; mapping += 1)
853             ;
854           if (mapping->encoded == NULL)
855             error (_("invalid Ada operator name: %s"), p);
856           strcpy (encoding_buffer + k, mapping->encoded);
857           k += strlen (mapping->encoded);
858           break;
859         }
860       else
861         {
862           encoding_buffer[k] = *p;
863           k += 1;
864         }
865     }
866
867   encoding_buffer[k] = '\0';
868   return encoding_buffer;
869 }
870
871 /* Return NAME folded to lower case, or, if surrounded by single
872    quotes, unfolded, but with the quotes stripped away.  Result good
873    to next call.  */
874
875 char *
876 ada_fold_name (const char *name)
877 {
878   static char *fold_buffer = NULL;
879   static size_t fold_buffer_size = 0;
880
881   int len = strlen (name);
882   GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
883
884   if (name[0] == '\'')
885     {
886       strncpy (fold_buffer, name + 1, len - 2);
887       fold_buffer[len - 2] = '\000';
888     }
889   else
890     {
891       int i;
892
893       for (i = 0; i <= len; i += 1)
894         fold_buffer[i] = tolower (name[i]);
895     }
896
897   return fold_buffer;
898 }
899
900 /* Return nonzero if C is either a digit or a lowercase alphabet character.  */
901
902 static int
903 is_lower_alphanum (const char c)
904 {
905   return (isdigit (c) || (isalpha (c) && islower (c)));
906 }
907
908 /* ENCODED is the linkage name of a symbol and LEN contains its length.
909    This function saves in LEN the length of that same symbol name but
910    without either of these suffixes:
911      . .{DIGIT}+
912      . ${DIGIT}+
913      . ___{DIGIT}+
914      . __{DIGIT}+.
915
916    These are suffixes introduced by the compiler for entities such as
917    nested subprogram for instance, in order to avoid name clashes.
918    They do not serve any purpose for the debugger.  */
919
920 static void
921 ada_remove_trailing_digits (const char *encoded, int *len)
922 {
923   if (*len > 1 && isdigit (encoded[*len - 1]))
924     {
925       int i = *len - 2;
926
927       while (i > 0 && isdigit (encoded[i]))
928         i--;
929       if (i >= 0 && encoded[i] == '.')
930         *len = i;
931       else if (i >= 0 && encoded[i] == '$')
932         *len = i;
933       else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
934         *len = i - 2;
935       else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
936         *len = i - 1;
937     }
938 }
939
940 /* Remove the suffix introduced by the compiler for protected object
941    subprograms.  */
942
943 static void
944 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
945 {
946   /* Remove trailing N.  */
947
948   /* Protected entry subprograms are broken into two
949      separate subprograms: The first one is unprotected, and has
950      a 'N' suffix; the second is the protected version, and has
951      the 'P' suffix.  The second calls the first one after handling
952      the protection.  Since the P subprograms are internally generated,
953      we leave these names undecoded, giving the user a clue that this
954      entity is internal.  */
955
956   if (*len > 1
957       && encoded[*len - 1] == 'N'
958       && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
959     *len = *len - 1;
960 }
961
962 /* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
963
964 static void
965 ada_remove_Xbn_suffix (const char *encoded, int *len)
966 {
967   int i = *len - 1;
968
969   while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
970     i--;
971
972   if (encoded[i] != 'X')
973     return;
974
975   if (i == 0)
976     return;
977
978   if (isalnum (encoded[i-1]))
979     *len = i;
980 }
981
982 /* If ENCODED follows the GNAT entity encoding conventions, then return
983    the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
984    replaced by ENCODED.
985
986    The resulting string is valid until the next call of ada_decode.
987    If the string is unchanged by decoding, the original string pointer
988    is returned.  */
989
990 const char *
991 ada_decode (const char *encoded)
992 {
993   int i, j;
994   int len0;
995   const char *p;
996   char *decoded;
997   int at_start_name;
998   static char *decoding_buffer = NULL;
999   static size_t decoding_buffer_size = 0;
1000
1001   /* The name of the Ada main procedure starts with "_ada_".
1002      This prefix is not part of the decoded name, so skip this part
1003      if we see this prefix.  */
1004   if (strncmp (encoded, "_ada_", 5) == 0)
1005     encoded += 5;
1006
1007   /* If the name starts with '_', then it is not a properly encoded
1008      name, so do not attempt to decode it.  Similarly, if the name
1009      starts with '<', the name should not be decoded.  */
1010   if (encoded[0] == '_' || encoded[0] == '<')
1011     goto Suppress;
1012
1013   len0 = strlen (encoded);
1014
1015   ada_remove_trailing_digits (encoded, &len0);
1016   ada_remove_po_subprogram_suffix (encoded, &len0);
1017
1018   /* Remove the ___X.* suffix if present.  Do not forget to verify that
1019      the suffix is located before the current "end" of ENCODED.  We want
1020      to avoid re-matching parts of ENCODED that have previously been
1021      marked as discarded (by decrementing LEN0).  */
1022   p = strstr (encoded, "___");
1023   if (p != NULL && p - encoded < len0 - 3)
1024     {
1025       if (p[3] == 'X')
1026         len0 = p - encoded;
1027       else
1028         goto Suppress;
1029     }
1030
1031   /* Remove any trailing TKB suffix.  It tells us that this symbol
1032      is for the body of a task, but that information does not actually
1033      appear in the decoded name.  */
1034
1035   if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1036     len0 -= 3;
1037
1038   /* Remove any trailing TB suffix.  The TB suffix is slightly different
1039      from the TKB suffix because it is used for non-anonymous task
1040      bodies.  */
1041
1042   if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1043     len0 -= 2;
1044
1045   /* Remove trailing "B" suffixes.  */
1046   /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1047
1048   if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1049     len0 -= 1;
1050
1051   /* Make decoded big enough for possible expansion by operator name.  */
1052
1053   GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1054   decoded = decoding_buffer;
1055
1056   /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1057
1058   if (len0 > 1 && isdigit (encoded[len0 - 1]))
1059     {
1060       i = len0 - 2;
1061       while ((i >= 0 && isdigit (encoded[i]))
1062              || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1063         i -= 1;
1064       if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1065         len0 = i - 1;
1066       else if (encoded[i] == '$')
1067         len0 = i;
1068     }
1069
1070   /* The first few characters that are not alphabetic are not part
1071      of any encoding we use, so we can copy them over verbatim.  */
1072
1073   for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1074     decoded[j] = encoded[i];
1075
1076   at_start_name = 1;
1077   while (i < len0)
1078     {
1079       /* Is this a symbol function?  */
1080       if (at_start_name && encoded[i] == 'O')
1081         {
1082           int k;
1083
1084           for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1085             {
1086               int op_len = strlen (ada_opname_table[k].encoded);
1087               if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1088                             op_len - 1) == 0)
1089                   && !isalnum (encoded[i + op_len]))
1090                 {
1091                   strcpy (decoded + j, ada_opname_table[k].decoded);
1092                   at_start_name = 0;
1093                   i += op_len;
1094                   j += strlen (ada_opname_table[k].decoded);
1095                   break;
1096                 }
1097             }
1098           if (ada_opname_table[k].encoded != NULL)
1099             continue;
1100         }
1101       at_start_name = 0;
1102
1103       /* Replace "TK__" with "__", which will eventually be translated
1104          into "." (just below).  */
1105
1106       if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1107         i += 2;
1108
1109       /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1110          be translated into "." (just below).  These are internal names
1111          generated for anonymous blocks inside which our symbol is nested.  */
1112
1113       if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1114           && encoded [i+2] == 'B' && encoded [i+3] == '_'
1115           && isdigit (encoded [i+4]))
1116         {
1117           int k = i + 5;
1118           
1119           while (k < len0 && isdigit (encoded[k]))
1120             k++;  /* Skip any extra digit.  */
1121
1122           /* Double-check that the "__B_{DIGITS}+" sequence we found
1123              is indeed followed by "__".  */
1124           if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1125             i = k;
1126         }
1127
1128       /* Remove _E{DIGITS}+[sb] */
1129
1130       /* Just as for protected object subprograms, there are 2 categories
1131          of subprograms created by the compiler for each entry.  The first
1132          one implements the actual entry code, and has a suffix following
1133          the convention above; the second one implements the barrier and
1134          uses the same convention as above, except that the 'E' is replaced
1135          by a 'B'.
1136
1137          Just as above, we do not decode the name of barrier functions
1138          to give the user a clue that the code he is debugging has been
1139          internally generated.  */
1140
1141       if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1142           && isdigit (encoded[i+2]))
1143         {
1144           int k = i + 3;
1145
1146           while (k < len0 && isdigit (encoded[k]))
1147             k++;
1148
1149           if (k < len0
1150               && (encoded[k] == 'b' || encoded[k] == 's'))
1151             {
1152               k++;
1153               /* Just as an extra precaution, make sure that if this
1154                  suffix is followed by anything else, it is a '_'.
1155                  Otherwise, we matched this sequence by accident.  */
1156               if (k == len0
1157                   || (k < len0 && encoded[k] == '_'))
1158                 i = k;
1159             }
1160         }
1161
1162       /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1163          the GNAT front-end in protected object subprograms.  */
1164
1165       if (i < len0 + 3
1166           && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1167         {
1168           /* Backtrack a bit up until we reach either the begining of
1169              the encoded name, or "__".  Make sure that we only find
1170              digits or lowercase characters.  */
1171           const char *ptr = encoded + i - 1;
1172
1173           while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1174             ptr--;
1175           if (ptr < encoded
1176               || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1177             i++;
1178         }
1179
1180       if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1181         {
1182           /* This is a X[bn]* sequence not separated from the previous
1183              part of the name with a non-alpha-numeric character (in other
1184              words, immediately following an alpha-numeric character), then
1185              verify that it is placed at the end of the encoded name.  If
1186              not, then the encoding is not valid and we should abort the
1187              decoding.  Otherwise, just skip it, it is used in body-nested
1188              package names.  */
1189           do
1190             i += 1;
1191           while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1192           if (i < len0)
1193             goto Suppress;
1194         }
1195       else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1196         {
1197          /* Replace '__' by '.'.  */
1198           decoded[j] = '.';
1199           at_start_name = 1;
1200           i += 2;
1201           j += 1;
1202         }
1203       else
1204         {
1205           /* It's a character part of the decoded name, so just copy it
1206              over.  */
1207           decoded[j] = encoded[i];
1208           i += 1;
1209           j += 1;
1210         }
1211     }
1212   decoded[j] = '\000';
1213
1214   /* Decoded names should never contain any uppercase character.
1215      Double-check this, and abort the decoding if we find one.  */
1216
1217   for (i = 0; decoded[i] != '\0'; i += 1)
1218     if (isupper (decoded[i]) || decoded[i] == ' ')
1219       goto Suppress;
1220
1221   if (strcmp (decoded, encoded) == 0)
1222     return encoded;
1223   else
1224     return decoded;
1225
1226 Suppress:
1227   GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1228   decoded = decoding_buffer;
1229   if (encoded[0] == '<')
1230     strcpy (decoded, encoded);
1231   else
1232     xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1233   return decoded;
1234
1235 }
1236
1237 /* Table for keeping permanent unique copies of decoded names.  Once
1238    allocated, names in this table are never released.  While this is a
1239    storage leak, it should not be significant unless there are massive
1240    changes in the set of decoded names in successive versions of a 
1241    symbol table loaded during a single session.  */
1242 static struct htab *decoded_names_store;
1243
1244 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1245    in the language-specific part of GSYMBOL, if it has not been
1246    previously computed.  Tries to save the decoded name in the same
1247    obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1248    in any case, the decoded symbol has a lifetime at least that of
1249    GSYMBOL).
1250    The GSYMBOL parameter is "mutable" in the C++ sense: logically
1251    const, but nevertheless modified to a semantically equivalent form
1252    when a decoded name is cached in it.  */
1253
1254 char *
1255 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1256 {
1257   char **resultp =
1258     (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1259
1260   if (*resultp == NULL)
1261     {
1262       const char *decoded = ada_decode (gsymbol->name);
1263
1264       if (gsymbol->obj_section != NULL)
1265         {
1266           struct objfile *objf = gsymbol->obj_section->objfile;
1267
1268           *resultp = obsavestring (decoded, strlen (decoded),
1269                                    &objf->objfile_obstack);
1270         }
1271       /* Sometimes, we can't find a corresponding objfile, in which
1272          case, we put the result on the heap.  Since we only decode
1273          when needed, we hope this usually does not cause a
1274          significant memory leak (FIXME).  */
1275       if (*resultp == NULL)
1276         {
1277           char **slot = (char **) htab_find_slot (decoded_names_store,
1278                                                   decoded, INSERT);
1279
1280           if (*slot == NULL)
1281             *slot = xstrdup (decoded);
1282           *resultp = *slot;
1283         }
1284     }
1285
1286   return *resultp;
1287 }
1288
1289 static char *
1290 ada_la_decode (const char *encoded, int options)
1291 {
1292   return xstrdup (ada_decode (encoded));
1293 }
1294
1295 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1296    suffixes that encode debugging information or leading _ada_ on
1297    SYM_NAME (see is_name_suffix commentary for the debugging
1298    information that is ignored).  If WILD, then NAME need only match a
1299    suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1300    either argument is NULL.  */
1301
1302 static int
1303 match_name (const char *sym_name, const char *name, int wild)
1304 {
1305   if (sym_name == NULL || name == NULL)
1306     return 0;
1307   else if (wild)
1308     return wild_match (sym_name, name) == 0;
1309   else
1310     {
1311       int len_name = strlen (name);
1312
1313       return (strncmp (sym_name, name, len_name) == 0
1314               && is_name_suffix (sym_name + len_name))
1315         || (strncmp (sym_name, "_ada_", 5) == 0
1316             && strncmp (sym_name + 5, name, len_name) == 0
1317             && is_name_suffix (sym_name + len_name + 5));
1318     }
1319 }
1320 \f
1321
1322                                 /* Arrays */
1323
1324 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1325    generated by the GNAT compiler to describe the index type used
1326    for each dimension of an array, check whether it follows the latest
1327    known encoding.  If not, fix it up to conform to the latest encoding.
1328    Otherwise, do nothing.  This function also does nothing if
1329    INDEX_DESC_TYPE is NULL.
1330
1331    The GNAT encoding used to describle the array index type evolved a bit.
1332    Initially, the information would be provided through the name of each
1333    field of the structure type only, while the type of these fields was
1334    described as unspecified and irrelevant.  The debugger was then expected
1335    to perform a global type lookup using the name of that field in order
1336    to get access to the full index type description.  Because these global
1337    lookups can be very expensive, the encoding was later enhanced to make
1338    the global lookup unnecessary by defining the field type as being
1339    the full index type description.
1340
1341    The purpose of this routine is to allow us to support older versions
1342    of the compiler by detecting the use of the older encoding, and by
1343    fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1344    we essentially replace each field's meaningless type by the associated
1345    index subtype).  */
1346
1347 void
1348 ada_fixup_array_indexes_type (struct type *index_desc_type)
1349 {
1350   int i;
1351
1352   if (index_desc_type == NULL)
1353     return;
1354   gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1355
1356   /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1357      to check one field only, no need to check them all).  If not, return
1358      now.
1359
1360      If our INDEX_DESC_TYPE was generated using the older encoding,
1361      the field type should be a meaningless integer type whose name
1362      is not equal to the field name.  */
1363   if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1364       && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1365                  TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1366     return;
1367
1368   /* Fixup each field of INDEX_DESC_TYPE.  */
1369   for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1370    {
1371      char *name = TYPE_FIELD_NAME (index_desc_type, i);
1372      struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1373
1374      if (raw_type)
1375        TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1376    }
1377 }
1378
1379 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1380
1381 static char *bound_name[] = {
1382   "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1383   "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1384 };
1385
1386 /* Maximum number of array dimensions we are prepared to handle.  */
1387
1388 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1389
1390
1391 /* The desc_* routines return primitive portions of array descriptors
1392    (fat pointers).  */
1393
1394 /* The descriptor or array type, if any, indicated by TYPE; removes
1395    level of indirection, if needed.  */
1396
1397 static struct type *
1398 desc_base_type (struct type *type)
1399 {
1400   if (type == NULL)
1401     return NULL;
1402   type = ada_check_typedef (type);
1403   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1404     type = ada_typedef_target_type (type);
1405
1406   if (type != NULL
1407       && (TYPE_CODE (type) == TYPE_CODE_PTR
1408           || TYPE_CODE (type) == TYPE_CODE_REF))
1409     return ada_check_typedef (TYPE_TARGET_TYPE (type));
1410   else
1411     return type;
1412 }
1413
1414 /* True iff TYPE indicates a "thin" array pointer type.  */
1415
1416 static int
1417 is_thin_pntr (struct type *type)
1418 {
1419   return
1420     is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1421     || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1422 }
1423
1424 /* The descriptor type for thin pointer type TYPE.  */
1425
1426 static struct type *
1427 thin_descriptor_type (struct type *type)
1428 {
1429   struct type *base_type = desc_base_type (type);
1430
1431   if (base_type == NULL)
1432     return NULL;
1433   if (is_suffix (ada_type_name (base_type), "___XVE"))
1434     return base_type;
1435   else
1436     {
1437       struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1438
1439       if (alt_type == NULL)
1440         return base_type;
1441       else
1442         return alt_type;
1443     }
1444 }
1445
1446 /* A pointer to the array data for thin-pointer value VAL.  */
1447
1448 static struct value *
1449 thin_data_pntr (struct value *val)
1450 {
1451   struct type *type = ada_check_typedef (value_type (val));
1452   struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1453
1454   data_type = lookup_pointer_type (data_type);
1455
1456   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1457     return value_cast (data_type, value_copy (val));
1458   else
1459     return value_from_longest (data_type, value_address (val));
1460 }
1461
1462 /* True iff TYPE indicates a "thick" array pointer type.  */
1463
1464 static int
1465 is_thick_pntr (struct type *type)
1466 {
1467   type = desc_base_type (type);
1468   return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1469           && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1470 }
1471
1472 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1473    pointer to one, the type of its bounds data; otherwise, NULL.  */
1474
1475 static struct type *
1476 desc_bounds_type (struct type *type)
1477 {
1478   struct type *r;
1479
1480   type = desc_base_type (type);
1481
1482   if (type == NULL)
1483     return NULL;
1484   else if (is_thin_pntr (type))
1485     {
1486       type = thin_descriptor_type (type);
1487       if (type == NULL)
1488         return NULL;
1489       r = lookup_struct_elt_type (type, "BOUNDS", 1);
1490       if (r != NULL)
1491         return ada_check_typedef (r);
1492     }
1493   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1494     {
1495       r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1496       if (r != NULL)
1497         return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1498     }
1499   return NULL;
1500 }
1501
1502 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1503    one, a pointer to its bounds data.   Otherwise NULL.  */
1504
1505 static struct value *
1506 desc_bounds (struct value *arr)
1507 {
1508   struct type *type = ada_check_typedef (value_type (arr));
1509
1510   if (is_thin_pntr (type))
1511     {
1512       struct type *bounds_type =
1513         desc_bounds_type (thin_descriptor_type (type));
1514       LONGEST addr;
1515
1516       if (bounds_type == NULL)
1517         error (_("Bad GNAT array descriptor"));
1518
1519       /* NOTE: The following calculation is not really kosher, but
1520          since desc_type is an XVE-encoded type (and shouldn't be),
1521          the correct calculation is a real pain.  FIXME (and fix GCC).  */
1522       if (TYPE_CODE (type) == TYPE_CODE_PTR)
1523         addr = value_as_long (arr);
1524       else
1525         addr = value_address (arr);
1526
1527       return
1528         value_from_longest (lookup_pointer_type (bounds_type),
1529                             addr - TYPE_LENGTH (bounds_type));
1530     }
1531
1532   else if (is_thick_pntr (type))
1533     {
1534       struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1535                                                _("Bad GNAT array descriptor"));
1536       struct type *p_bounds_type = value_type (p_bounds);
1537
1538       if (p_bounds_type
1539           && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1540         {
1541           struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1542
1543           if (TYPE_STUB (target_type))
1544             p_bounds = value_cast (lookup_pointer_type
1545                                    (ada_check_typedef (target_type)),
1546                                    p_bounds);
1547         }
1548       else
1549         error (_("Bad GNAT array descriptor"));
1550
1551       return p_bounds;
1552     }
1553   else
1554     return NULL;
1555 }
1556
1557 /* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1558    position of the field containing the address of the bounds data.  */
1559
1560 static int
1561 fat_pntr_bounds_bitpos (struct type *type)
1562 {
1563   return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1564 }
1565
1566 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1567    size of the field containing the address of the bounds data.  */
1568
1569 static int
1570 fat_pntr_bounds_bitsize (struct type *type)
1571 {
1572   type = desc_base_type (type);
1573
1574   if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1575     return TYPE_FIELD_BITSIZE (type, 1);
1576   else
1577     return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1578 }
1579
1580 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1581    pointer to one, the type of its array data (a array-with-no-bounds type);
1582    otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1583    data.  */
1584
1585 static struct type *
1586 desc_data_target_type (struct type *type)
1587 {
1588   type = desc_base_type (type);
1589
1590   /* NOTE: The following is bogus; see comment in desc_bounds.  */
1591   if (is_thin_pntr (type))
1592     return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1593   else if (is_thick_pntr (type))
1594     {
1595       struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1596
1597       if (data_type
1598           && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1599         return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1600     }
1601
1602   return NULL;
1603 }
1604
1605 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1606    its array data.  */
1607
1608 static struct value *
1609 desc_data (struct value *arr)
1610 {
1611   struct type *type = value_type (arr);
1612
1613   if (is_thin_pntr (type))
1614     return thin_data_pntr (arr);
1615   else if (is_thick_pntr (type))
1616     return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1617                              _("Bad GNAT array descriptor"));
1618   else
1619     return NULL;
1620 }
1621
1622
1623 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1624    position of the field containing the address of the data.  */
1625
1626 static int
1627 fat_pntr_data_bitpos (struct type *type)
1628 {
1629   return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1630 }
1631
1632 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1633    size of the field containing the address of the data.  */
1634
1635 static int
1636 fat_pntr_data_bitsize (struct type *type)
1637 {
1638   type = desc_base_type (type);
1639
1640   if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1641     return TYPE_FIELD_BITSIZE (type, 0);
1642   else
1643     return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1644 }
1645
1646 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1647    the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1648    bound, if WHICH is 1.  The first bound is I=1.  */
1649
1650 static struct value *
1651 desc_one_bound (struct value *bounds, int i, int which)
1652 {
1653   return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1654                            _("Bad GNAT array descriptor bounds"));
1655 }
1656
1657 /* If BOUNDS is an array-bounds structure type, return the bit position
1658    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1659    bound, if WHICH is 1.  The first bound is I=1.  */
1660
1661 static int
1662 desc_bound_bitpos (struct type *type, int i, int which)
1663 {
1664   return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1665 }
1666
1667 /* If BOUNDS is an array-bounds structure type, return the bit field size
1668    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1669    bound, if WHICH is 1.  The first bound is I=1.  */
1670
1671 static int
1672 desc_bound_bitsize (struct type *type, int i, int which)
1673 {
1674   type = desc_base_type (type);
1675
1676   if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1677     return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1678   else
1679     return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1680 }
1681
1682 /* If TYPE is the type of an array-bounds structure, the type of its
1683    Ith bound (numbering from 1).  Otherwise, NULL.  */
1684
1685 static struct type *
1686 desc_index_type (struct type *type, int i)
1687 {
1688   type = desc_base_type (type);
1689
1690   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1691     return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1692   else
1693     return NULL;
1694 }
1695
1696 /* The number of index positions in the array-bounds type TYPE.
1697    Return 0 if TYPE is NULL.  */
1698
1699 static int
1700 desc_arity (struct type *type)
1701 {
1702   type = desc_base_type (type);
1703
1704   if (type != NULL)
1705     return TYPE_NFIELDS (type) / 2;
1706   return 0;
1707 }
1708
1709 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or 
1710    an array descriptor type (representing an unconstrained array
1711    type).  */
1712
1713 static int
1714 ada_is_direct_array_type (struct type *type)
1715 {
1716   if (type == NULL)
1717     return 0;
1718   type = ada_check_typedef (type);
1719   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1720           || ada_is_array_descriptor_type (type));
1721 }
1722
1723 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1724  * to one.  */
1725
1726 static int
1727 ada_is_array_type (struct type *type)
1728 {
1729   while (type != NULL 
1730          && (TYPE_CODE (type) == TYPE_CODE_PTR 
1731              || TYPE_CODE (type) == TYPE_CODE_REF))
1732     type = TYPE_TARGET_TYPE (type);
1733   return ada_is_direct_array_type (type);
1734 }
1735
1736 /* Non-zero iff TYPE is a simple array type or pointer to one.  */
1737
1738 int
1739 ada_is_simple_array_type (struct type *type)
1740 {
1741   if (type == NULL)
1742     return 0;
1743   type = ada_check_typedef (type);
1744   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1745           || (TYPE_CODE (type) == TYPE_CODE_PTR
1746               && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1747                  == TYPE_CODE_ARRAY));
1748 }
1749
1750 /* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1751
1752 int
1753 ada_is_array_descriptor_type (struct type *type)
1754 {
1755   struct type *data_type = desc_data_target_type (type);
1756
1757   if (type == NULL)
1758     return 0;
1759   type = ada_check_typedef (type);
1760   return (data_type != NULL
1761           && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1762           && desc_arity (desc_bounds_type (type)) > 0);
1763 }
1764
1765 /* Non-zero iff type is a partially mal-formed GNAT array
1766    descriptor.  FIXME: This is to compensate for some problems with
1767    debugging output from GNAT.  Re-examine periodically to see if it
1768    is still needed.  */
1769
1770 int
1771 ada_is_bogus_array_descriptor (struct type *type)
1772 {
1773   return
1774     type != NULL
1775     && TYPE_CODE (type) == TYPE_CODE_STRUCT
1776     && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1777         || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1778     && !ada_is_array_descriptor_type (type);
1779 }
1780
1781
1782 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1783    (fat pointer) returns the type of the array data described---specifically,
1784    a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1785    in from the descriptor; otherwise, they are left unspecified.  If
1786    the ARR denotes a null array descriptor and BOUNDS is non-zero,
1787    returns NULL.  The result is simply the type of ARR if ARR is not
1788    a descriptor.  */
1789 struct type *
1790 ada_type_of_array (struct value *arr, int bounds)
1791 {
1792   if (ada_is_constrained_packed_array_type (value_type (arr)))
1793     return decode_constrained_packed_array_type (value_type (arr));
1794
1795   if (!ada_is_array_descriptor_type (value_type (arr)))
1796     return value_type (arr);
1797
1798   if (!bounds)
1799     {
1800       struct type *array_type =
1801         ada_check_typedef (desc_data_target_type (value_type (arr)));
1802
1803       if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1804         TYPE_FIELD_BITSIZE (array_type, 0) =
1805           decode_packed_array_bitsize (value_type (arr));
1806       
1807       return array_type;
1808     }
1809   else
1810     {
1811       struct type *elt_type;
1812       int arity;
1813       struct value *descriptor;
1814
1815       elt_type = ada_array_element_type (value_type (arr), -1);
1816       arity = ada_array_arity (value_type (arr));
1817
1818       if (elt_type == NULL || arity == 0)
1819         return ada_check_typedef (value_type (arr));
1820
1821       descriptor = desc_bounds (arr);
1822       if (value_as_long (descriptor) == 0)
1823         return NULL;
1824       while (arity > 0)
1825         {
1826           struct type *range_type = alloc_type_copy (value_type (arr));
1827           struct type *array_type = alloc_type_copy (value_type (arr));
1828           struct value *low = desc_one_bound (descriptor, arity, 0);
1829           struct value *high = desc_one_bound (descriptor, arity, 1);
1830
1831           arity -= 1;
1832           create_range_type (range_type, value_type (low),
1833                              longest_to_int (value_as_long (low)),
1834                              longest_to_int (value_as_long (high)));
1835           elt_type = create_array_type (array_type, elt_type, range_type);
1836
1837           if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1838             {
1839               /* We need to store the element packed bitsize, as well as
1840                  recompute the array size, because it was previously
1841                  computed based on the unpacked element size.  */
1842               LONGEST lo = value_as_long (low);
1843               LONGEST hi = value_as_long (high);
1844
1845               TYPE_FIELD_BITSIZE (elt_type, 0) =
1846                 decode_packed_array_bitsize (value_type (arr));
1847               /* If the array has no element, then the size is already
1848                  zero, and does not need to be recomputed.  */
1849               if (lo < hi)
1850                 {
1851                   int array_bitsize =
1852                         (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1853
1854                   TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1855                 }
1856             }
1857         }
1858
1859       return lookup_pointer_type (elt_type);
1860     }
1861 }
1862
1863 /* If ARR does not represent an array, returns ARR unchanged.
1864    Otherwise, returns either a standard GDB array with bounds set
1865    appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1866    GDB array.  Returns NULL if ARR is a null fat pointer.  */
1867
1868 struct value *
1869 ada_coerce_to_simple_array_ptr (struct value *arr)
1870 {
1871   if (ada_is_array_descriptor_type (value_type (arr)))
1872     {
1873       struct type *arrType = ada_type_of_array (arr, 1);
1874
1875       if (arrType == NULL)
1876         return NULL;
1877       return value_cast (arrType, value_copy (desc_data (arr)));
1878     }
1879   else if (ada_is_constrained_packed_array_type (value_type (arr)))
1880     return decode_constrained_packed_array (arr);
1881   else
1882     return arr;
1883 }
1884
1885 /* If ARR does not represent an array, returns ARR unchanged.
1886    Otherwise, returns a standard GDB array describing ARR (which may
1887    be ARR itself if it already is in the proper form).  */
1888
1889 struct value *
1890 ada_coerce_to_simple_array (struct value *arr)
1891 {
1892   if (ada_is_array_descriptor_type (value_type (arr)))
1893     {
1894       struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1895
1896       if (arrVal == NULL)
1897         error (_("Bounds unavailable for null array pointer."));
1898       check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1899       return value_ind (arrVal);
1900     }
1901   else if (ada_is_constrained_packed_array_type (value_type (arr)))
1902     return decode_constrained_packed_array (arr);
1903   else
1904     return arr;
1905 }
1906
1907 /* If TYPE represents a GNAT array type, return it translated to an
1908    ordinary GDB array type (possibly with BITSIZE fields indicating
1909    packing).  For other types, is the identity.  */
1910
1911 struct type *
1912 ada_coerce_to_simple_array_type (struct type *type)
1913 {
1914   if (ada_is_constrained_packed_array_type (type))
1915     return decode_constrained_packed_array_type (type);
1916
1917   if (ada_is_array_descriptor_type (type))
1918     return ada_check_typedef (desc_data_target_type (type));
1919
1920   return type;
1921 }
1922
1923 /* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
1924
1925 static int
1926 ada_is_packed_array_type  (struct type *type)
1927 {
1928   if (type == NULL)
1929     return 0;
1930   type = desc_base_type (type);
1931   type = ada_check_typedef (type);
1932   return
1933     ada_type_name (type) != NULL
1934     && strstr (ada_type_name (type), "___XP") != NULL;
1935 }
1936
1937 /* Non-zero iff TYPE represents a standard GNAT constrained
1938    packed-array type.  */
1939
1940 int
1941 ada_is_constrained_packed_array_type (struct type *type)
1942 {
1943   return ada_is_packed_array_type (type)
1944     && !ada_is_array_descriptor_type (type);
1945 }
1946
1947 /* Non-zero iff TYPE represents an array descriptor for a
1948    unconstrained packed-array type.  */
1949
1950 static int
1951 ada_is_unconstrained_packed_array_type (struct type *type)
1952 {
1953   return ada_is_packed_array_type (type)
1954     && ada_is_array_descriptor_type (type);
1955 }
1956
1957 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1958    return the size of its elements in bits.  */
1959
1960 static long
1961 decode_packed_array_bitsize (struct type *type)
1962 {
1963   char *raw_name;
1964   char *tail;
1965   long bits;
1966
1967   /* Access to arrays implemented as fat pointers are encoded as a typedef
1968      of the fat pointer type.  We need the name of the fat pointer type
1969      to do the decoding, so strip the typedef layer.  */
1970   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1971     type = ada_typedef_target_type (type);
1972
1973   raw_name = ada_type_name (ada_check_typedef (type));
1974   if (!raw_name)
1975     raw_name = ada_type_name (desc_base_type (type));
1976
1977   if (!raw_name)
1978     return 0;
1979
1980   tail = strstr (raw_name, "___XP");
1981   gdb_assert (tail != NULL);
1982
1983   if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984     {
1985       lim_warning
1986         (_("could not understand bit size information on packed array"));
1987       return 0;
1988     }
1989
1990   return bits;
1991 }
1992
1993 /* Given that TYPE is a standard GDB array type with all bounds filled
1994    in, and that the element size of its ultimate scalar constituents
1995    (that is, either its elements, or, if it is an array of arrays, its
1996    elements' elements, etc.) is *ELT_BITS, return an identical type,
1997    but with the bit sizes of its elements (and those of any
1998    constituent arrays) recorded in the BITSIZE components of its
1999    TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000    in bits.  */
2001
2002 static struct type *
2003 constrained_packed_array_type (struct type *type, long *elt_bits)
2004 {
2005   struct type *new_elt_type;
2006   struct type *new_type;
2007   LONGEST low_bound, high_bound;
2008
2009   type = ada_check_typedef (type);
2010   if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2011     return type;
2012
2013   new_type = alloc_type_copy (type);
2014   new_elt_type =
2015     constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2016                                    elt_bits);
2017   create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2018   TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2019   TYPE_NAME (new_type) = ada_type_name (type);
2020
2021   if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2022                            &low_bound, &high_bound) < 0)
2023     low_bound = high_bound = 0;
2024   if (high_bound < low_bound)
2025     *elt_bits = TYPE_LENGTH (new_type) = 0;
2026   else
2027     {
2028       *elt_bits *= (high_bound - low_bound + 1);
2029       TYPE_LENGTH (new_type) =
2030         (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2031     }
2032
2033   TYPE_FIXED_INSTANCE (new_type) = 1;
2034   return new_type;
2035 }
2036
2037 /* The array type encoded by TYPE, where
2038    ada_is_constrained_packed_array_type (TYPE).  */
2039
2040 static struct type *
2041 decode_constrained_packed_array_type (struct type *type)
2042 {
2043   char *raw_name = ada_type_name (ada_check_typedef (type));
2044   char *name;
2045   char *tail;
2046   struct type *shadow_type;
2047   long bits;
2048
2049   if (!raw_name)
2050     raw_name = ada_type_name (desc_base_type (type));
2051
2052   if (!raw_name)
2053     return NULL;
2054
2055   name = (char *) alloca (strlen (raw_name) + 1);
2056   tail = strstr (raw_name, "___XP");
2057   type = desc_base_type (type);
2058
2059   memcpy (name, raw_name, tail - raw_name);
2060   name[tail - raw_name] = '\000';
2061
2062   shadow_type = ada_find_parallel_type_with_name (type, name);
2063
2064   if (shadow_type == NULL)
2065     {
2066       lim_warning (_("could not find bounds information on packed array"));
2067       return NULL;
2068     }
2069   CHECK_TYPEDEF (shadow_type);
2070
2071   if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2072     {
2073       lim_warning (_("could not understand bounds "
2074                      "information on packed array"));
2075       return NULL;
2076     }
2077
2078   bits = decode_packed_array_bitsize (type);
2079   return constrained_packed_array_type (shadow_type, &bits);
2080 }
2081
2082 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2083    array, returns a simple array that denotes that array.  Its type is a
2084    standard GDB array type except that the BITSIZEs of the array
2085    target types are set to the number of bits in each element, and the
2086    type length is set appropriately.  */
2087
2088 static struct value *
2089 decode_constrained_packed_array (struct value *arr)
2090 {
2091   struct type *type;
2092
2093   arr = ada_coerce_ref (arr);
2094
2095   /* If our value is a pointer, then dererence it.  Make sure that
2096      this operation does not cause the target type to be fixed, as
2097      this would indirectly cause this array to be decoded.  The rest
2098      of the routine assumes that the array hasn't been decoded yet,
2099      so we use the basic "value_ind" routine to perform the dereferencing,
2100      as opposed to using "ada_value_ind".  */
2101   if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2102     arr = value_ind (arr);
2103
2104   type = decode_constrained_packed_array_type (value_type (arr));
2105   if (type == NULL)
2106     {
2107       error (_("can't unpack array"));
2108       return NULL;
2109     }
2110
2111   if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2112       && ada_is_modular_type (value_type (arr)))
2113     {
2114        /* This is a (right-justified) modular type representing a packed
2115          array with no wrapper.  In order to interpret the value through
2116          the (left-justified) packed array type we just built, we must
2117          first left-justify it.  */
2118       int bit_size, bit_pos;
2119       ULONGEST mod;
2120
2121       mod = ada_modulus (value_type (arr)) - 1;
2122       bit_size = 0;
2123       while (mod > 0)
2124         {
2125           bit_size += 1;
2126           mod >>= 1;
2127         }
2128       bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2129       arr = ada_value_primitive_packed_val (arr, NULL,
2130                                             bit_pos / HOST_CHAR_BIT,
2131                                             bit_pos % HOST_CHAR_BIT,
2132                                             bit_size,
2133                                             type);
2134     }
2135
2136   return coerce_unspec_val_to_type (arr, type);
2137 }
2138
2139
2140 /* The value of the element of packed array ARR at the ARITY indices
2141    given in IND.   ARR must be a simple array.  */
2142
2143 static struct value *
2144 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2145 {
2146   int i;
2147   int bits, elt_off, bit_off;
2148   long elt_total_bit_offset;
2149   struct type *elt_type;
2150   struct value *v;
2151
2152   bits = 0;
2153   elt_total_bit_offset = 0;
2154   elt_type = ada_check_typedef (value_type (arr));
2155   for (i = 0; i < arity; i += 1)
2156     {
2157       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2158           || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2159         error
2160           (_("attempt to do packed indexing of "
2161              "something other than a packed array"));
2162       else
2163         {
2164           struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2165           LONGEST lowerbound, upperbound;
2166           LONGEST idx;
2167
2168           if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2169             {
2170               lim_warning (_("don't know bounds of array"));
2171               lowerbound = upperbound = 0;
2172             }
2173
2174           idx = pos_atr (ind[i]);
2175           if (idx < lowerbound || idx > upperbound)
2176             lim_warning (_("packed array index %ld out of bounds"),
2177                          (long) idx);
2178           bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2179           elt_total_bit_offset += (idx - lowerbound) * bits;
2180           elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2181         }
2182     }
2183   elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2184   bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2185
2186   v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2187                                       bits, elt_type);
2188   return v;
2189 }
2190
2191 /* Non-zero iff TYPE includes negative integer values.  */
2192
2193 static int
2194 has_negatives (struct type *type)
2195 {
2196   switch (TYPE_CODE (type))
2197     {
2198     default:
2199       return 0;
2200     case TYPE_CODE_INT:
2201       return !TYPE_UNSIGNED (type);
2202     case TYPE_CODE_RANGE:
2203       return TYPE_LOW_BOUND (type) < 0;
2204     }
2205 }
2206
2207
2208 /* Create a new value of type TYPE from the contents of OBJ starting
2209    at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2210    proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2211    assigning through the result will set the field fetched from.
2212    VALADDR is ignored unless OBJ is NULL, in which case,
2213    VALADDR+OFFSET must address the start of storage containing the 
2214    packed value.  The value returned  in this case is never an lval.
2215    Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2216
2217 struct value *
2218 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2219                                 long offset, int bit_offset, int bit_size,
2220                                 struct type *type)
2221 {
2222   struct value *v;
2223   int src,                      /* Index into the source area */
2224     targ,                       /* Index into the target area */
2225     srcBitsLeft,                /* Number of source bits left to move */
2226     nsrc, ntarg,                /* Number of source and target bytes */
2227     unusedLS,                   /* Number of bits in next significant
2228                                    byte of source that are unused */
2229     accumSize;                  /* Number of meaningful bits in accum */
2230   unsigned char *bytes;         /* First byte containing data to unpack */
2231   unsigned char *unpacked;
2232   unsigned long accum;          /* Staging area for bits being transferred */
2233   unsigned char sign;
2234   int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2235   /* Transmit bytes from least to most significant; delta is the direction
2236      the indices move.  */
2237   int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2238
2239   type = ada_check_typedef (type);
2240
2241   if (obj == NULL)
2242     {
2243       v = allocate_value (type);
2244       bytes = (unsigned char *) (valaddr + offset);
2245     }
2246   else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2247     {
2248       v = value_at (type,
2249                     value_address (obj) + offset);
2250       bytes = (unsigned char *) alloca (len);
2251       read_memory (value_address (v), bytes, len);
2252     }
2253   else
2254     {
2255       v = allocate_value (type);
2256       bytes = (unsigned char *) value_contents (obj) + offset;
2257     }
2258
2259   if (obj != NULL)
2260     {
2261       CORE_ADDR new_addr;
2262
2263       set_value_component_location (v, obj);
2264       new_addr = value_address (obj) + offset;
2265       set_value_bitpos (v, bit_offset + value_bitpos (obj));
2266       set_value_bitsize (v, bit_size);
2267       if (value_bitpos (v) >= HOST_CHAR_BIT)
2268         {
2269           ++new_addr;
2270           set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2271         }
2272       set_value_address (v, new_addr);
2273     }
2274   else
2275     set_value_bitsize (v, bit_size);
2276   unpacked = (unsigned char *) value_contents (v);
2277
2278   srcBitsLeft = bit_size;
2279   nsrc = len;
2280   ntarg = TYPE_LENGTH (type);
2281   sign = 0;
2282   if (bit_size == 0)
2283     {
2284       memset (unpacked, 0, TYPE_LENGTH (type));
2285       return v;
2286     }
2287   else if (gdbarch_bits_big_endian (get_type_arch (type)))
2288     {
2289       src = len - 1;
2290       if (has_negatives (type)
2291           && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2292         sign = ~0;
2293
2294       unusedLS =
2295         (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2296         % HOST_CHAR_BIT;
2297
2298       switch (TYPE_CODE (type))
2299         {
2300         case TYPE_CODE_ARRAY:
2301         case TYPE_CODE_UNION:
2302         case TYPE_CODE_STRUCT:
2303           /* Non-scalar values must be aligned at a byte boundary...  */
2304           accumSize =
2305             (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2306           /* ... And are placed at the beginning (most-significant) bytes
2307              of the target.  */
2308           targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2309           ntarg = targ + 1;
2310           break;
2311         default:
2312           accumSize = 0;
2313           targ = TYPE_LENGTH (type) - 1;
2314           break;
2315         }
2316     }
2317   else
2318     {
2319       int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2320
2321       src = targ = 0;
2322       unusedLS = bit_offset;
2323       accumSize = 0;
2324
2325       if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2326         sign = ~0;
2327     }
2328
2329   accum = 0;
2330   while (nsrc > 0)
2331     {
2332       /* Mask for removing bits of the next source byte that are not
2333          part of the value.  */
2334       unsigned int unusedMSMask =
2335         (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2336         1;
2337       /* Sign-extend bits for this byte.  */
2338       unsigned int signMask = sign & ~unusedMSMask;
2339
2340       accum |=
2341         (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2342       accumSize += HOST_CHAR_BIT - unusedLS;
2343       if (accumSize >= HOST_CHAR_BIT)
2344         {
2345           unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2346           accumSize -= HOST_CHAR_BIT;
2347           accum >>= HOST_CHAR_BIT;
2348           ntarg -= 1;
2349           targ += delta;
2350         }
2351       srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2352       unusedLS = 0;
2353       nsrc -= 1;
2354       src += delta;
2355     }
2356   while (ntarg > 0)
2357     {
2358       accum |= sign << accumSize;
2359       unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2360       accumSize -= HOST_CHAR_BIT;
2361       accum >>= HOST_CHAR_BIT;
2362       ntarg -= 1;
2363       targ += delta;
2364     }
2365
2366   return v;
2367 }
2368
2369 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2370    TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2371    not overlap.  */
2372 static void
2373 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2374            int src_offset, int n, int bits_big_endian_p)
2375 {
2376   unsigned int accum, mask;
2377   int accum_bits, chunk_size;
2378
2379   target += targ_offset / HOST_CHAR_BIT;
2380   targ_offset %= HOST_CHAR_BIT;
2381   source += src_offset / HOST_CHAR_BIT;
2382   src_offset %= HOST_CHAR_BIT;
2383   if (bits_big_endian_p)
2384     {
2385       accum = (unsigned char) *source;
2386       source += 1;
2387       accum_bits = HOST_CHAR_BIT - src_offset;
2388
2389       while (n > 0)
2390         {
2391           int unused_right;
2392
2393           accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2394           accum_bits += HOST_CHAR_BIT;
2395           source += 1;
2396           chunk_size = HOST_CHAR_BIT - targ_offset;
2397           if (chunk_size > n)
2398             chunk_size = n;
2399           unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2400           mask = ((1 << chunk_size) - 1) << unused_right;
2401           *target =
2402             (*target & ~mask)
2403             | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2404           n -= chunk_size;
2405           accum_bits -= chunk_size;
2406           target += 1;
2407           targ_offset = 0;
2408         }
2409     }
2410   else
2411     {
2412       accum = (unsigned char) *source >> src_offset;
2413       source += 1;
2414       accum_bits = HOST_CHAR_BIT - src_offset;
2415
2416       while (n > 0)
2417         {
2418           accum = accum + ((unsigned char) *source << accum_bits);
2419           accum_bits += HOST_CHAR_BIT;
2420           source += 1;
2421           chunk_size = HOST_CHAR_BIT - targ_offset;
2422           if (chunk_size > n)
2423             chunk_size = n;
2424           mask = ((1 << chunk_size) - 1) << targ_offset;
2425           *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2426           n -= chunk_size;
2427           accum_bits -= chunk_size;
2428           accum >>= chunk_size;
2429           target += 1;
2430           targ_offset = 0;
2431         }
2432     }
2433 }
2434
2435 /* Store the contents of FROMVAL into the location of TOVAL.
2436    Return a new value with the location of TOVAL and contents of
2437    FROMVAL.   Handles assignment into packed fields that have
2438    floating-point or non-scalar types.  */
2439
2440 static struct value *
2441 ada_value_assign (struct value *toval, struct value *fromval)
2442 {
2443   struct type *type = value_type (toval);
2444   int bits = value_bitsize (toval);
2445
2446   toval = ada_coerce_ref (toval);
2447   fromval = ada_coerce_ref (fromval);
2448
2449   if (ada_is_direct_array_type (value_type (toval)))
2450     toval = ada_coerce_to_simple_array (toval);
2451   if (ada_is_direct_array_type (value_type (fromval)))
2452     fromval = ada_coerce_to_simple_array (fromval);
2453
2454   if (!deprecated_value_modifiable (toval))
2455     error (_("Left operand of assignment is not a modifiable lvalue."));
2456
2457   if (VALUE_LVAL (toval) == lval_memory
2458       && bits > 0
2459       && (TYPE_CODE (type) == TYPE_CODE_FLT
2460           || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2461     {
2462       int len = (value_bitpos (toval)
2463                  + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2464       int from_size;
2465       char *buffer = (char *) alloca (len);
2466       struct value *val;
2467       CORE_ADDR to_addr = value_address (toval);
2468
2469       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2470         fromval = value_cast (type, fromval);
2471
2472       read_memory (to_addr, buffer, len);
2473       from_size = value_bitsize (fromval);
2474       if (from_size == 0)
2475         from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2476       if (gdbarch_bits_big_endian (get_type_arch (type)))
2477         move_bits (buffer, value_bitpos (toval),
2478                    value_contents (fromval), from_size - bits, bits, 1);
2479       else
2480         move_bits (buffer, value_bitpos (toval),
2481                    value_contents (fromval), 0, bits, 0);
2482       write_memory (to_addr, buffer, len);
2483       observer_notify_memory_changed (to_addr, len, buffer);
2484
2485       val = value_copy (toval);
2486       memcpy (value_contents_raw (val), value_contents (fromval),
2487               TYPE_LENGTH (type));
2488       deprecated_set_value_type (val, type);
2489
2490       return val;
2491     }
2492
2493   return value_assign (toval, fromval);
2494 }
2495
2496
2497 /* Given that COMPONENT is a memory lvalue that is part of the lvalue 
2498  * CONTAINER, assign the contents of VAL to COMPONENTS's place in 
2499  * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not 
2500  * COMPONENT, and not the inferior's memory.  The current contents 
2501  * of COMPONENT are ignored.  */
2502 static void
2503 value_assign_to_component (struct value *container, struct value *component,
2504                            struct value *val)
2505 {
2506   LONGEST offset_in_container =
2507     (LONGEST)  (value_address (component) - value_address (container));
2508   int bit_offset_in_container = 
2509     value_bitpos (component) - value_bitpos (container);
2510   int bits;
2511   
2512   val = value_cast (value_type (component), val);
2513
2514   if (value_bitsize (component) == 0)
2515     bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2516   else
2517     bits = value_bitsize (component);
2518
2519   if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2520     move_bits (value_contents_writeable (container) + offset_in_container, 
2521                value_bitpos (container) + bit_offset_in_container,
2522                value_contents (val),
2523                TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2524                bits, 1);
2525   else
2526     move_bits (value_contents_writeable (container) + offset_in_container, 
2527                value_bitpos (container) + bit_offset_in_container,
2528                value_contents (val), 0, bits, 0);
2529 }              
2530                         
2531 /* The value of the element of array ARR at the ARITY indices given in IND.
2532    ARR may be either a simple array, GNAT array descriptor, or pointer
2533    thereto.  */
2534
2535 struct value *
2536 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2537 {
2538   int k;
2539   struct value *elt;
2540   struct type *elt_type;
2541
2542   elt = ada_coerce_to_simple_array (arr);
2543
2544   elt_type = ada_check_typedef (value_type (elt));
2545   if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2546       && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2547     return value_subscript_packed (elt, arity, ind);
2548
2549   for (k = 0; k < arity; k += 1)
2550     {
2551       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2552         error (_("too many subscripts (%d expected)"), k);
2553       elt = value_subscript (elt, pos_atr (ind[k]));
2554     }
2555   return elt;
2556 }
2557
2558 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2559    value of the element of *ARR at the ARITY indices given in
2560    IND.  Does not read the entire array into memory.  */
2561
2562 static struct value *
2563 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2564                          struct value **ind)
2565 {
2566   int k;
2567
2568   for (k = 0; k < arity; k += 1)
2569     {
2570       LONGEST lwb, upb;
2571
2572       if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2573         error (_("too many subscripts (%d expected)"), k);
2574       arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2575                         value_copy (arr));
2576       get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2577       arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2578       type = TYPE_TARGET_TYPE (type);
2579     }
2580
2581   return value_ind (arr);
2582 }
2583
2584 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2585    actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2586    elements starting at index LOW.  The lower bound of this array is LOW, as
2587    per Ada rules.  */
2588 static struct value *
2589 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2590                           int low, int high)
2591 {
2592   struct type *type0 = ada_check_typedef (type);
2593   CORE_ADDR base = value_as_address (array_ptr)
2594     + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2595        * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2596   struct type *index_type =
2597     create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2598                        low, high);
2599   struct type *slice_type =
2600     create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2601
2602   return value_at_lazy (slice_type, base);
2603 }
2604
2605
2606 static struct value *
2607 ada_value_slice (struct value *array, int low, int high)
2608 {
2609   struct type *type = ada_check_typedef (value_type (array));
2610   struct type *index_type =
2611     create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2612   struct type *slice_type =
2613     create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2614
2615   return value_cast (slice_type, value_slice (array, low, high - low + 1));
2616 }
2617
2618 /* If type is a record type in the form of a standard GNAT array
2619    descriptor, returns the number of dimensions for type.  If arr is a
2620    simple array, returns the number of "array of"s that prefix its
2621    type designation.  Otherwise, returns 0.  */
2622
2623 int
2624 ada_array_arity (struct type *type)
2625 {
2626   int arity;
2627
2628   if (type == NULL)
2629     return 0;
2630
2631   type = desc_base_type (type);
2632
2633   arity = 0;
2634   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2635     return desc_arity (desc_bounds_type (type));
2636   else
2637     while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2638       {
2639         arity += 1;
2640         type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2641       }
2642
2643   return arity;
2644 }
2645
2646 /* If TYPE is a record type in the form of a standard GNAT array
2647    descriptor or a simple array type, returns the element type for
2648    TYPE after indexing by NINDICES indices, or by all indices if
2649    NINDICES is -1.  Otherwise, returns NULL.  */
2650
2651 struct type *
2652 ada_array_element_type (struct type *type, int nindices)
2653 {
2654   type = desc_base_type (type);
2655
2656   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2657     {
2658       int k;
2659       struct type *p_array_type;
2660
2661       p_array_type = desc_data_target_type (type);
2662
2663       k = ada_array_arity (type);
2664       if (k == 0)
2665         return NULL;
2666
2667       /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
2668       if (nindices >= 0 && k > nindices)
2669         k = nindices;
2670       while (k > 0 && p_array_type != NULL)
2671         {
2672           p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2673           k -= 1;
2674         }
2675       return p_array_type;
2676     }
2677   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2678     {
2679       while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2680         {
2681           type = TYPE_TARGET_TYPE (type);
2682           nindices -= 1;
2683         }
2684       return type;
2685     }
2686
2687   return NULL;
2688 }
2689
2690 /* The type of nth index in arrays of given type (n numbering from 1).
2691    Does not examine memory.  Throws an error if N is invalid or TYPE
2692    is not an array type.  NAME is the name of the Ada attribute being
2693    evaluated ('range, 'first, 'last, or 'length); it is used in building
2694    the error message.  */
2695
2696 static struct type *
2697 ada_index_type (struct type *type, int n, const char *name)
2698 {
2699   struct type *result_type;
2700
2701   type = desc_base_type (type);
2702
2703   if (n < 0 || n > ada_array_arity (type))
2704     error (_("invalid dimension number to '%s"), name);
2705
2706   if (ada_is_simple_array_type (type))
2707     {
2708       int i;
2709
2710       for (i = 1; i < n; i += 1)
2711         type = TYPE_TARGET_TYPE (type);
2712       result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2713       /* FIXME: The stabs type r(0,0);bound;bound in an array type
2714          has a target type of TYPE_CODE_UNDEF.  We compensate here, but
2715          perhaps stabsread.c would make more sense.  */
2716       if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2717         result_type = NULL;
2718     }
2719   else
2720     {
2721       result_type = desc_index_type (desc_bounds_type (type), n);
2722       if (result_type == NULL)
2723         error (_("attempt to take bound of something that is not an array"));
2724     }
2725
2726   return result_type;
2727 }
2728
2729 /* Given that arr is an array type, returns the lower bound of the
2730    Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2731    WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
2732    array-descriptor type.  It works for other arrays with bounds supplied
2733    by run-time quantities other than discriminants.  */
2734
2735 static LONGEST
2736 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2737 {
2738   struct type *type, *elt_type, *index_type_desc, *index_type;
2739   int i;
2740
2741   gdb_assert (which == 0 || which == 1);
2742
2743   if (ada_is_constrained_packed_array_type (arr_type))
2744     arr_type = decode_constrained_packed_array_type (arr_type);
2745
2746   if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2747     return (LONGEST) - which;
2748
2749   if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2750     type = TYPE_TARGET_TYPE (arr_type);
2751   else
2752     type = arr_type;
2753
2754   elt_type = type;
2755   for (i = n; i > 1; i--)
2756     elt_type = TYPE_TARGET_TYPE (type);
2757
2758   index_type_desc = ada_find_parallel_type (type, "___XA");
2759   ada_fixup_array_indexes_type (index_type_desc);
2760   if (index_type_desc != NULL)
2761     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2762                                       NULL);
2763   else
2764     index_type = TYPE_INDEX_TYPE (elt_type);
2765
2766   return
2767     (LONGEST) (which == 0
2768                ? ada_discrete_type_low_bound (index_type)
2769                : ada_discrete_type_high_bound (index_type));
2770 }
2771
2772 /* Given that arr is an array value, returns the lower bound of the
2773    nth index (numbering from 1) if WHICH is 0, and the upper bound if
2774    WHICH is 1.  This routine will also work for arrays with bounds
2775    supplied by run-time quantities other than discriminants.  */
2776
2777 static LONGEST
2778 ada_array_bound (struct value *arr, int n, int which)
2779 {
2780   struct type *arr_type = value_type (arr);
2781
2782   if (ada_is_constrained_packed_array_type (arr_type))
2783     return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2784   else if (ada_is_simple_array_type (arr_type))
2785     return ada_array_bound_from_type (arr_type, n, which);
2786   else
2787     return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2788 }
2789
2790 /* Given that arr is an array value, returns the length of the
2791    nth index.  This routine will also work for arrays with bounds
2792    supplied by run-time quantities other than discriminants.
2793    Does not work for arrays indexed by enumeration types with representation
2794    clauses at the moment.  */
2795
2796 static LONGEST
2797 ada_array_length (struct value *arr, int n)
2798 {
2799   struct type *arr_type = ada_check_typedef (value_type (arr));
2800
2801   if (ada_is_constrained_packed_array_type (arr_type))
2802     return ada_array_length (decode_constrained_packed_array (arr), n);
2803
2804   if (ada_is_simple_array_type (arr_type))
2805     return (ada_array_bound_from_type (arr_type, n, 1)
2806             - ada_array_bound_from_type (arr_type, n, 0) + 1);
2807   else
2808     return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2809             - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2810 }
2811
2812 /* An empty array whose type is that of ARR_TYPE (an array type),
2813    with bounds LOW to LOW-1.  */
2814
2815 static struct value *
2816 empty_array (struct type *arr_type, int low)
2817 {
2818   struct type *arr_type0 = ada_check_typedef (arr_type);
2819   struct type *index_type =
2820     create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2821                        low, low - 1);
2822   struct type *elt_type = ada_array_element_type (arr_type0, 1);
2823
2824   return allocate_value (create_array_type (NULL, elt_type, index_type));
2825 }
2826 \f
2827
2828                                 /* Name resolution */
2829
2830 /* The "decoded" name for the user-definable Ada operator corresponding
2831    to OP.  */
2832
2833 static const char *
2834 ada_decoded_op_name (enum exp_opcode op)
2835 {
2836   int i;
2837
2838   for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2839     {
2840       if (ada_opname_table[i].op == op)
2841         return ada_opname_table[i].decoded;
2842     }
2843   error (_("Could not find operator name for opcode"));
2844 }
2845
2846
2847 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2848    references (marked by OP_VAR_VALUE nodes in which the symbol has an
2849    undefined namespace) and converts operators that are
2850    user-defined into appropriate function calls.  If CONTEXT_TYPE is
2851    non-null, it provides a preferred result type [at the moment, only
2852    type void has any effect---causing procedures to be preferred over
2853    functions in calls].  A null CONTEXT_TYPE indicates that a non-void
2854    return type is preferred.  May change (expand) *EXP.  */
2855
2856 static void
2857 resolve (struct expression **expp, int void_context_p)
2858 {
2859   struct type *context_type = NULL;
2860   int pc = 0;
2861
2862   if (void_context_p)
2863     context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2864
2865   resolve_subexp (expp, &pc, 1, context_type);
2866 }
2867
2868 /* Resolve the operator of the subexpression beginning at
2869    position *POS of *EXPP.  "Resolving" consists of replacing
2870    the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2871    with their resolutions, replacing built-in operators with
2872    function calls to user-defined operators, where appropriate, and,
2873    when DEPROCEDURE_P is non-zero, converting function-valued variables
2874    into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
2875    are as in ada_resolve, above.  */
2876
2877 static struct value *
2878 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2879                 struct type *context_type)
2880 {
2881   int pc = *pos;
2882   int i;
2883   struct expression *exp;       /* Convenience: == *expp.  */
2884   enum exp_opcode op = (*expp)->elts[pc].opcode;
2885   struct value **argvec;        /* Vector of operand types (alloca'ed).  */
2886   int nargs;                    /* Number of operands.  */
2887   int oplen;
2888
2889   argvec = NULL;
2890   nargs = 0;
2891   exp = *expp;
2892
2893   /* Pass one: resolve operands, saving their types and updating *pos,
2894      if needed.  */
2895   switch (op)
2896     {
2897     case OP_FUNCALL:
2898       if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2899           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2900         *pos += 7;
2901       else
2902         {
2903           *pos += 3;
2904           resolve_subexp (expp, pos, 0, NULL);
2905         }
2906       nargs = longest_to_int (exp->elts[pc + 1].longconst);
2907       break;
2908
2909     case UNOP_ADDR:
2910       *pos += 1;
2911       resolve_subexp (expp, pos, 0, NULL);
2912       break;
2913
2914     case UNOP_QUAL:
2915       *pos += 3;
2916       resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2917       break;
2918
2919     case OP_ATR_MODULUS:
2920     case OP_ATR_SIZE:
2921     case OP_ATR_TAG:
2922     case OP_ATR_FIRST:
2923     case OP_ATR_LAST:
2924     case OP_ATR_LENGTH:
2925     case OP_ATR_POS:
2926     case OP_ATR_VAL:
2927     case OP_ATR_MIN:
2928     case OP_ATR_MAX:
2929     case TERNOP_IN_RANGE:
2930     case BINOP_IN_BOUNDS:
2931     case UNOP_IN_RANGE:
2932     case OP_AGGREGATE:
2933     case OP_OTHERS:
2934     case OP_CHOICES:
2935     case OP_POSITIONAL:
2936     case OP_DISCRETE_RANGE:
2937     case OP_NAME:
2938       ada_forward_operator_length (exp, pc, &oplen, &nargs);
2939       *pos += oplen;
2940       break;
2941
2942     case BINOP_ASSIGN:
2943       {
2944         struct value *arg1;
2945
2946         *pos += 1;
2947         arg1 = resolve_subexp (expp, pos, 0, NULL);
2948         if (arg1 == NULL)
2949           resolve_subexp (expp, pos, 1, NULL);
2950         else
2951           resolve_subexp (expp, pos, 1, value_type (arg1));
2952         break;
2953       }
2954
2955     case UNOP_CAST:
2956       *pos += 3;
2957       nargs = 1;
2958       break;
2959
2960     case BINOP_ADD:
2961     case BINOP_SUB:
2962     case BINOP_MUL:
2963     case BINOP_DIV:
2964     case BINOP_REM:
2965     case BINOP_MOD:
2966     case BINOP_EXP:
2967     case BINOP_CONCAT:
2968     case BINOP_LOGICAL_AND:
2969     case BINOP_LOGICAL_OR:
2970     case BINOP_BITWISE_AND:
2971     case BINOP_BITWISE_IOR:
2972     case BINOP_BITWISE_XOR:
2973
2974     case BINOP_EQUAL:
2975     case BINOP_NOTEQUAL:
2976     case BINOP_LESS:
2977     case BINOP_GTR:
2978     case BINOP_LEQ:
2979     case BINOP_GEQ:
2980
2981     case BINOP_REPEAT:
2982     case BINOP_SUBSCRIPT:
2983     case BINOP_COMMA:
2984       *pos += 1;
2985       nargs = 2;
2986       break;
2987
2988     case UNOP_NEG:
2989     case UNOP_PLUS:
2990     case UNOP_LOGICAL_NOT:
2991     case UNOP_ABS:
2992     case UNOP_IND:
2993       *pos += 1;
2994       nargs = 1;
2995       break;
2996
2997     case OP_LONG:
2998     case OP_DOUBLE:
2999     case OP_VAR_VALUE:
3000       *pos += 4;
3001       break;
3002
3003     case OP_TYPE:
3004     case OP_BOOL:
3005     case OP_LAST:
3006     case OP_INTERNALVAR:
3007       *pos += 3;
3008       break;
3009
3010     case UNOP_MEMVAL:
3011       *pos += 3;
3012       nargs = 1;
3013       break;
3014
3015     case OP_REGISTER:
3016       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3017       break;
3018
3019     case STRUCTOP_STRUCT:
3020       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3021       nargs = 1;
3022       break;
3023
3024     case TERNOP_SLICE:
3025       *pos += 1;
3026       nargs = 3;
3027       break;
3028
3029     case OP_STRING:
3030       break;
3031
3032     default:
3033       error (_("Unexpected operator during name resolution"));
3034     }
3035
3036   argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3037   for (i = 0; i < nargs; i += 1)
3038     argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3039   argvec[i] = NULL;
3040   exp = *expp;
3041
3042   /* Pass two: perform any resolution on principal operator.  */
3043   switch (op)
3044     {
3045     default:
3046       break;
3047
3048     case OP_VAR_VALUE:
3049       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3050         {
3051           struct ada_symbol_info *candidates;
3052           int n_candidates;
3053
3054           n_candidates =
3055             ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3056                                     (exp->elts[pc + 2].symbol),
3057                                     exp->elts[pc + 1].block, VAR_DOMAIN,
3058                                     &candidates);
3059
3060           if (n_candidates > 1)
3061             {
3062               /* Types tend to get re-introduced locally, so if there
3063                  are any local symbols that are not types, first filter
3064                  out all types.  */
3065               int j;
3066               for (j = 0; j < n_candidates; j += 1)
3067                 switch (SYMBOL_CLASS (candidates[j].sym))
3068                   {
3069                   case LOC_REGISTER:
3070                   case LOC_ARG:
3071                   case LOC_REF_ARG:
3072                   case LOC_REGPARM_ADDR:
3073                   case LOC_LOCAL:
3074                   case LOC_COMPUTED:
3075                     goto FoundNonType;
3076                   default:
3077                     break;
3078                   }
3079             FoundNonType:
3080               if (j < n_candidates)
3081                 {
3082                   j = 0;
3083                   while (j < n_candidates)
3084                     {
3085                       if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3086                         {
3087                           candidates[j] = candidates[n_candidates - 1];
3088                           n_candidates -= 1;
3089                         }
3090                       else
3091                         j += 1;
3092                     }
3093                 }
3094             }
3095
3096           if (n_candidates == 0)
3097             error (_("No definition found for %s"),
3098                    SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3099           else if (n_candidates == 1)
3100             i = 0;
3101           else if (deprocedure_p
3102                    && !is_nonfunction (candidates, n_candidates))
3103             {
3104               i = ada_resolve_function
3105                 (candidates, n_candidates, NULL, 0,
3106                  SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3107                  context_type);
3108               if (i < 0)
3109                 error (_("Could not find a match for %s"),
3110                        SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111             }
3112           else
3113             {
3114               printf_filtered (_("Multiple matches for %s\n"),
3115                                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3116               user_select_syms (candidates, n_candidates, 1);
3117               i = 0;
3118             }
3119
3120           exp->elts[pc + 1].block = candidates[i].block;
3121           exp->elts[pc + 2].symbol = candidates[i].sym;
3122           if (innermost_block == NULL
3123               || contained_in (candidates[i].block, innermost_block))
3124             innermost_block = candidates[i].block;
3125         }
3126
3127       if (deprocedure_p
3128           && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3129               == TYPE_CODE_FUNC))
3130         {
3131           replace_operator_with_call (expp, pc, 0, 0,
3132                                       exp->elts[pc + 2].symbol,
3133                                       exp->elts[pc + 1].block);
3134           exp = *expp;
3135         }
3136       break;
3137
3138     case OP_FUNCALL:
3139       {
3140         if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3141             && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3142           {
3143             struct ada_symbol_info *candidates;
3144             int n_candidates;
3145
3146             n_candidates =
3147               ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3148                                       (exp->elts[pc + 5].symbol),
3149                                       exp->elts[pc + 4].block, VAR_DOMAIN,
3150                                       &candidates);
3151             if (n_candidates == 1)
3152               i = 0;
3153             else
3154               {
3155                 i = ada_resolve_function
3156                   (candidates, n_candidates,
3157                    argvec, nargs,
3158                    SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3159                    context_type);
3160                 if (i < 0)
3161                   error (_("Could not find a match for %s"),
3162                          SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3163               }
3164
3165             exp->elts[pc + 4].block = candidates[i].block;
3166             exp->elts[pc + 5].symbol = candidates[i].sym;
3167             if (innermost_block == NULL
3168                 || contained_in (candidates[i].block, innermost_block))
3169               innermost_block = candidates[i].block;
3170           }
3171       }
3172       break;
3173     case BINOP_ADD:
3174     case BINOP_SUB:
3175     case BINOP_MUL:
3176     case BINOP_DIV:
3177     case BINOP_REM:
3178     case BINOP_MOD:
3179     case BINOP_CONCAT:
3180     case BINOP_BITWISE_AND:
3181     case BINOP_BITWISE_IOR:
3182     case BINOP_BITWISE_XOR:
3183     case BINOP_EQUAL:
3184     case BINOP_NOTEQUAL:
3185     case BINOP_LESS:
3186     case BINOP_GTR:
3187     case BINOP_LEQ:
3188     case BINOP_GEQ:
3189     case BINOP_EXP:
3190     case UNOP_NEG:
3191     case UNOP_PLUS:
3192     case UNOP_LOGICAL_NOT:
3193     case UNOP_ABS:
3194       if (possible_user_operator_p (op, argvec))
3195         {
3196           struct ada_symbol_info *candidates;
3197           int n_candidates;
3198
3199           n_candidates =
3200             ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3201                                     (struct block *) NULL, VAR_DOMAIN,
3202                                     &candidates);
3203           i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3204                                     ada_decoded_op_name (op), NULL);
3205           if (i < 0)
3206             break;
3207
3208           replace_operator_with_call (expp, pc, nargs, 1,
3209                                       candidates[i].sym, candidates[i].block);
3210           exp = *expp;
3211         }
3212       break;
3213
3214     case OP_TYPE:
3215     case OP_REGISTER:
3216       return NULL;
3217     }
3218
3219   *pos = pc;
3220   return evaluate_subexp_type (exp, pos);
3221 }
3222
3223 /* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3224    MAY_DEREF is non-zero, the formal may be a pointer and the actual
3225    a non-pointer.  */
3226 /* The term "match" here is rather loose.  The match is heuristic and
3227    liberal.  */
3228
3229 static int
3230 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3231 {
3232   ftype = ada_check_typedef (ftype);
3233   atype = ada_check_typedef (atype);
3234
3235   if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3236     ftype = TYPE_TARGET_TYPE (ftype);
3237   if (TYPE_CODE (atype) == TYPE_CODE_REF)
3238     atype = TYPE_TARGET_TYPE (atype);
3239
3240   switch (TYPE_CODE (ftype))
3241     {
3242     default:
3243       return TYPE_CODE (ftype) == TYPE_CODE (atype);
3244     case TYPE_CODE_PTR:
3245       if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3246         return ada_type_match (TYPE_TARGET_TYPE (ftype),
3247                                TYPE_TARGET_TYPE (atype), 0);
3248       else
3249         return (may_deref
3250                 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3251     case TYPE_CODE_INT:
3252     case TYPE_CODE_ENUM:
3253     case TYPE_CODE_RANGE:
3254       switch (TYPE_CODE (atype))
3255         {
3256         case TYPE_CODE_INT:
3257         case TYPE_CODE_ENUM:
3258         case TYPE_CODE_RANGE:
3259           return 1;
3260         default:
3261           return 0;
3262         }
3263
3264     case TYPE_CODE_ARRAY:
3265       return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3266               || ada_is_array_descriptor_type (atype));
3267
3268     case TYPE_CODE_STRUCT:
3269       if (ada_is_array_descriptor_type (ftype))
3270         return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3271                 || ada_is_array_descriptor_type (atype));
3272       else
3273         return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3274                 && !ada_is_array_descriptor_type (atype));
3275
3276     case TYPE_CODE_UNION:
3277     case TYPE_CODE_FLT:
3278       return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3279     }
3280 }
3281
3282 /* Return non-zero if the formals of FUNC "sufficiently match" the
3283    vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3284    may also be an enumeral, in which case it is treated as a 0-
3285    argument function.  */
3286
3287 static int
3288 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3289 {
3290   int i;
3291   struct type *func_type = SYMBOL_TYPE (func);
3292
3293   if (SYMBOL_CLASS (func) == LOC_CONST
3294       && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3295     return (n_actuals == 0);
3296   else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3297     return 0;
3298
3299   if (TYPE_NFIELDS (func_type) != n_actuals)
3300     return 0;
3301
3302   for (i = 0; i < n_actuals; i += 1)
3303     {
3304       if (actuals[i] == NULL)
3305         return 0;
3306       else
3307         {
3308           struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3309                                                                    i));
3310           struct type *atype = ada_check_typedef (value_type (actuals[i]));
3311
3312           if (!ada_type_match (ftype, atype, 1))
3313             return 0;
3314         }
3315     }
3316   return 1;
3317 }
3318
3319 /* False iff function type FUNC_TYPE definitely does not produce a value
3320    compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3321    FUNC_TYPE is not a valid function type with a non-null return type
3322    or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3323
3324 static int
3325 return_match (struct type *func_type, struct type *context_type)
3326 {
3327   struct type *return_type;
3328
3329   if (func_type == NULL)
3330     return 1;
3331
3332   if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3333     return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3334   else
3335     return_type = get_base_type (func_type);
3336   if (return_type == NULL)
3337     return 1;
3338
3339   context_type = get_base_type (context_type);
3340
3341   if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3342     return context_type == NULL || return_type == context_type;
3343   else if (context_type == NULL)
3344     return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3345   else
3346     return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3347 }
3348
3349
3350 /* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3351    function (if any) that matches the types of the NARGS arguments in
3352    ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3353    that returns that type, then eliminate matches that don't.  If
3354    CONTEXT_TYPE is void and there is at least one match that does not
3355    return void, eliminate all matches that do.
3356
3357    Asks the user if there is more than one match remaining.  Returns -1
3358    if there is no such symbol or none is selected.  NAME is used
3359    solely for messages.  May re-arrange and modify SYMS in
3360    the process; the index returned is for the modified vector.  */
3361
3362 static int
3363 ada_resolve_function (struct ada_symbol_info syms[],
3364                       int nsyms, struct value **args, int nargs,
3365                       const char *name, struct type *context_type)
3366 {
3367   int fallback;
3368   int k;
3369   int m;                        /* Number of hits */
3370
3371   m = 0;
3372   /* In the first pass of the loop, we only accept functions matching
3373      context_type.  If none are found, we add a second pass of the loop
3374      where every function is accepted.  */
3375   for (fallback = 0; m == 0 && fallback < 2; fallback++)
3376     {
3377       for (k = 0; k < nsyms; k += 1)
3378         {
3379           struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3380
3381           if (ada_args_match (syms[k].sym, args, nargs)
3382               && (fallback || return_match (type, context_type)))
3383             {
3384               syms[m] = syms[k];
3385               m += 1;
3386             }
3387         }
3388     }
3389
3390   if (m == 0)
3391     return -1;
3392   else if (m > 1)
3393     {
3394       printf_filtered (_("Multiple matches for %s\n"), name);
3395       user_select_syms (syms, m, 1);
3396       return 0;
3397     }
3398   return 0;
3399 }
3400
3401 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3402    in a listing of choices during disambiguation (see sort_choices, below).
3403    The idea is that overloadings of a subprogram name from the
3404    same package should sort in their source order.  We settle for ordering
3405    such symbols by their trailing number (__N  or $N).  */
3406
3407 static int
3408 encoded_ordered_before (char *N0, char *N1)
3409 {
3410   if (N1 == NULL)
3411     return 0;
3412   else if (N0 == NULL)
3413     return 1;
3414   else
3415     {
3416       int k0, k1;
3417
3418       for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3419         ;
3420       for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3421         ;
3422       if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3423           && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3424         {
3425           int n0, n1;
3426
3427           n0 = k0;
3428           while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3429             n0 -= 1;
3430           n1 = k1;
3431           while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3432             n1 -= 1;
3433           if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3434             return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3435         }
3436       return (strcmp (N0, N1) < 0);
3437     }
3438 }
3439
3440 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3441    encoded names.  */
3442
3443 static void
3444 sort_choices (struct ada_symbol_info syms[], int nsyms)
3445 {
3446   int i;
3447
3448   for (i = 1; i < nsyms; i += 1)
3449     {
3450       struct ada_symbol_info sym = syms[i];
3451       int j;
3452
3453       for (j = i - 1; j >= 0; j -= 1)
3454         {
3455           if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3456                                       SYMBOL_LINKAGE_NAME (sym.sym)))
3457             break;
3458           syms[j + 1] = syms[j];
3459         }
3460       syms[j + 1] = sym;
3461     }
3462 }
3463
3464 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 
3465    by asking the user (if necessary), returning the number selected, 
3466    and setting the first elements of SYMS items.  Error if no symbols
3467    selected.  */
3468
3469 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3470    to be re-integrated one of these days.  */
3471
3472 int
3473 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3474 {
3475   int i;
3476   int *chosen = (int *) alloca (sizeof (int) * nsyms);
3477   int n_chosen;
3478   int first_choice = (max_results == 1) ? 1 : 2;
3479   const char *select_mode = multiple_symbols_select_mode ();
3480
3481   if (max_results < 1)
3482     error (_("Request to select 0 symbols!"));
3483   if (nsyms <= 1)
3484     return nsyms;
3485
3486   if (select_mode == multiple_symbols_cancel)
3487     error (_("\
3488 canceled because the command is ambiguous\n\
3489 See set/show multiple-symbol."));
3490   
3491   /* If select_mode is "all", then return all possible symbols.
3492      Only do that if more than one symbol can be selected, of course.
3493      Otherwise, display the menu as usual.  */
3494   if (select_mode == multiple_symbols_all && max_results > 1)
3495     return nsyms;
3496
3497   printf_unfiltered (_("[0] cancel\n"));
3498   if (max_results > 1)
3499     printf_unfiltered (_("[1] all\n"));
3500
3501   sort_choices (syms, nsyms);
3502
3503   for (i = 0; i < nsyms; i += 1)
3504     {
3505       if (syms[i].sym == NULL)
3506         continue;
3507
3508       if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3509         {
3510           struct symtab_and_line sal =
3511             find_function_start_sal (syms[i].sym, 1);
3512
3513           if (sal.symtab == NULL)
3514             printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3515                                i + first_choice,
3516                                SYMBOL_PRINT_NAME (syms[i].sym),
3517                                sal.line);
3518           else
3519             printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3520                                SYMBOL_PRINT_NAME (syms[i].sym),
3521                                sal.symtab->filename, sal.line);
3522           continue;
3523         }
3524       else
3525         {
3526           int is_enumeral =
3527             (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3528              && SYMBOL_TYPE (syms[i].sym) != NULL
3529              && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3530           struct symtab *symtab = syms[i].sym->symtab;
3531
3532           if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3533             printf_unfiltered (_("[%d] %s at %s:%d\n"),
3534                                i + first_choice,
3535                                SYMBOL_PRINT_NAME (syms[i].sym),
3536                                symtab->filename, SYMBOL_LINE (syms[i].sym));
3537           else if (is_enumeral
3538                    && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3539             {
3540               printf_unfiltered (("[%d] "), i + first_choice);
3541               ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3542                               gdb_stdout, -1, 0);
3543               printf_unfiltered (_("'(%s) (enumeral)\n"),
3544                                  SYMBOL_PRINT_NAME (syms[i].sym));
3545             }
3546           else if (symtab != NULL)
3547             printf_unfiltered (is_enumeral
3548                                ? _("[%d] %s in %s (enumeral)\n")
3549                                : _("[%d] %s at %s:?\n"),
3550                                i + first_choice,
3551                                SYMBOL_PRINT_NAME (syms[i].sym),
3552                                symtab->filename);
3553           else
3554             printf_unfiltered (is_enumeral
3555                                ? _("[%d] %s (enumeral)\n")
3556                                : _("[%d] %s at ?\n"),
3557                                i + first_choice,
3558                                SYMBOL_PRINT_NAME (syms[i].sym));
3559         }
3560     }
3561
3562   n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3563                              "overload-choice");
3564
3565   for (i = 0; i < n_chosen; i += 1)
3566     syms[i] = syms[chosen[i]];
3567
3568   return n_chosen;
3569 }
3570
3571 /* Read and validate a set of numeric choices from the user in the
3572    range 0 .. N_CHOICES-1.  Place the results in increasing
3573    order in CHOICES[0 .. N-1], and return N.
3574
3575    The user types choices as a sequence of numbers on one line
3576    separated by blanks, encoding them as follows:
3577
3578      + A choice of 0 means to cancel the selection, throwing an error.
3579      + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3580      + The user chooses k by typing k+IS_ALL_CHOICE+1.
3581
3582    The user is not allowed to choose more than MAX_RESULTS values.
3583
3584    ANNOTATION_SUFFIX, if present, is used to annotate the input
3585    prompts (for use with the -f switch).  */
3586
3587 int
3588 get_selections (int *choices, int n_choices, int max_results,
3589                 int is_all_choice, char *annotation_suffix)
3590 {
3591   char *args;
3592   char *prompt;
3593   int n_chosen;
3594   int first_choice = is_all_choice ? 2 : 1;
3595
3596   prompt = getenv ("PS2");
3597   if (prompt == NULL)
3598     prompt = "> ";
3599
3600   args = command_line_input (prompt, 0, annotation_suffix);
3601
3602   if (args == NULL)
3603     error_no_arg (_("one or more choice numbers"));
3604
3605   n_chosen = 0;
3606
3607   /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3608      order, as given in args.  Choices are validated.  */
3609   while (1)
3610     {
3611       char *args2;
3612       int choice, j;
3613
3614       while (isspace (*args))
3615         args += 1;
3616       if (*args == '\0' && n_chosen == 0)
3617         error_no_arg (_("one or more choice numbers"));
3618       else if (*args == '\0')
3619         break;
3620
3621       choice = strtol (args, &args2, 10);
3622       if (args == args2 || choice < 0
3623           || choice > n_choices + first_choice - 1)
3624         error (_("Argument must be choice number"));
3625       args = args2;
3626
3627       if (choice == 0)
3628         error (_("cancelled"));
3629
3630       if (choice < first_choice)
3631         {
3632           n_chosen = n_choices;
3633           for (j = 0; j < n_choices; j += 1)
3634             choices[j] = j;
3635           break;
3636         }
3637       choice -= first_choice;
3638
3639       for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3640         {
3641         }
3642
3643       if (j < 0 || choice != choices[j])
3644         {
3645           int k;
3646
3647           for (k = n_chosen - 1; k > j; k -= 1)
3648             choices[k + 1] = choices[k];
3649           choices[j + 1] = choice;
3650           n_chosen += 1;
3651         }
3652     }
3653
3654   if (n_chosen > max_results)
3655     error (_("Select no more than %d of the above"), max_results);
3656
3657   return n_chosen;
3658 }
3659
3660 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3661    on the function identified by SYM and BLOCK, and taking NARGS
3662    arguments.  Update *EXPP as needed to hold more space.  */
3663
3664 static void
3665 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3666                             int oplen, struct symbol *sym,
3667                             struct block *block)
3668 {
3669   /* A new expression, with 6 more elements (3 for funcall, 4 for function
3670      symbol, -oplen for operator being replaced).  */
3671   struct expression *newexp = (struct expression *)
3672     xzalloc (sizeof (struct expression)
3673              + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3674   struct expression *exp = *expp;
3675
3676   newexp->nelts = exp->nelts + 7 - oplen;
3677   newexp->language_defn = exp->language_defn;
3678   newexp->gdbarch = exp->gdbarch;
3679   memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3680   memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3681           EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3682
3683   newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3684   newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3685
3686   newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3687   newexp->elts[pc + 4].block = block;
3688   newexp->elts[pc + 5].symbol = sym;
3689
3690   *expp = newexp;
3691   xfree (exp);
3692 }
3693
3694 /* Type-class predicates */
3695
3696 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3697    or FLOAT).  */
3698
3699 static int
3700 numeric_type_p (struct type *type)
3701 {
3702   if (type == NULL)
3703     return 0;
3704   else
3705     {
3706       switch (TYPE_CODE (type))
3707         {
3708         case TYPE_CODE_INT:
3709         case TYPE_CODE_FLT:
3710           return 1;
3711         case TYPE_CODE_RANGE:
3712           return (type == TYPE_TARGET_TYPE (type)
3713                   || numeric_type_p (TYPE_TARGET_TYPE (type)));
3714         default:
3715           return 0;
3716         }
3717     }
3718 }
3719
3720 /* True iff TYPE is integral (an INT or RANGE of INTs).  */
3721
3722 static int
3723 integer_type_p (struct type *type)
3724 {
3725   if (type == NULL)
3726     return 0;
3727   else
3728     {
3729       switch (TYPE_CODE (type))
3730         {
3731         case TYPE_CODE_INT:
3732           return 1;
3733         case TYPE_CODE_RANGE:
3734           return (type == TYPE_TARGET_TYPE (type)
3735                   || integer_type_p (TYPE_TARGET_TYPE (type)));
3736         default:
3737           return 0;
3738         }
3739     }
3740 }
3741
3742 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
3743
3744 static int
3745 scalar_type_p (struct type *type)
3746 {
3747   if (type == NULL)
3748     return 0;
3749   else
3750     {
3751       switch (TYPE_CODE (type))
3752         {
3753         case TYPE_CODE_INT:
3754         case TYPE_CODE_RANGE:
3755         case TYPE_CODE_ENUM:
3756         case TYPE_CODE_FLT:
3757           return 1;
3758         default:
3759           return 0;
3760         }
3761     }
3762 }
3763
3764 /* True iff TYPE is discrete (INT, RANGE, ENUM).  */
3765
3766 static int
3767 discrete_type_p (struct type *type)
3768 {
3769   if (type == NULL)
3770     return 0;
3771   else
3772     {
3773       switch (TYPE_CODE (type))
3774         {
3775         case TYPE_CODE_INT:
3776         case TYPE_CODE_RANGE:
3777         case TYPE_CODE_ENUM:
3778         case TYPE_CODE_BOOL:
3779           return 1;
3780         default:
3781           return 0;
3782         }
3783     }
3784 }
3785
3786 /* Returns non-zero if OP with operands in the vector ARGS could be
3787    a user-defined function.  Errs on the side of pre-defined operators
3788    (i.e., result 0).  */
3789
3790 static int
3791 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3792 {
3793   struct type *type0 =
3794     (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3795   struct type *type1 =
3796     (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3797
3798   if (type0 == NULL)
3799     return 0;
3800
3801   switch (op)
3802     {
3803     default:
3804       return 0;
3805
3806     case BINOP_ADD:
3807     case BINOP_SUB:
3808     case BINOP_MUL:
3809     case BINOP_DIV:
3810       return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3811
3812     case BINOP_REM:
3813     case BINOP_MOD:
3814     case BINOP_BITWISE_AND:
3815     case BINOP_BITWISE_IOR:
3816     case BINOP_BITWISE_XOR:
3817       return (!(integer_type_p (type0) && integer_type_p (type1)));
3818
3819     case BINOP_EQUAL:
3820     case BINOP_NOTEQUAL:
3821     case BINOP_LESS:
3822     case BINOP_GTR:
3823     case BINOP_LEQ:
3824     case BINOP_GEQ:
3825       return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3826
3827     case BINOP_CONCAT:
3828       return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3829
3830     case BINOP_EXP:
3831       return (!(numeric_type_p (type0) && integer_type_p (type1)));
3832
3833     case UNOP_NEG:
3834     case UNOP_PLUS:
3835     case UNOP_LOGICAL_NOT:
3836     case UNOP_ABS:
3837       return (!numeric_type_p (type0));
3838
3839     }
3840 }
3841 \f
3842                                 /* Renaming */
3843
3844 /* NOTES: 
3845
3846    1. In the following, we assume that a renaming type's name may
3847       have an ___XD suffix.  It would be nice if this went away at some
3848       point.
3849    2. We handle both the (old) purely type-based representation of 
3850       renamings and the (new) variable-based encoding.  At some point,
3851       it is devoutly to be hoped that the former goes away 
3852       (FIXME: hilfinger-2007-07-09).
3853    3. Subprogram renamings are not implemented, although the XRS
3854       suffix is recognized (FIXME: hilfinger-2007-07-09).  */
3855
3856 /* If SYM encodes a renaming, 
3857
3858        <renaming> renames <renamed entity>,
3859
3860    sets *LEN to the length of the renamed entity's name,
3861    *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3862    the string describing the subcomponent selected from the renamed
3863    entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3864    (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3865    are undefined).  Otherwise, returns a value indicating the category
3866    of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3867    (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3868    subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
3869    strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3870    deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3871    may be NULL, in which case they are not assigned.
3872
3873    [Currently, however, GCC does not generate subprogram renamings.]  */
3874
3875 enum ada_renaming_category
3876 ada_parse_renaming (struct symbol *sym,
3877                     const char **renamed_entity, int *len, 
3878                     const char **renaming_expr)
3879 {
3880   enum ada_renaming_category kind;
3881   const char *info;
3882   const char *suffix;
3883
3884   if (sym == NULL)
3885     return ADA_NOT_RENAMING;
3886   switch (SYMBOL_CLASS (sym)) 
3887     {
3888     default:
3889       return ADA_NOT_RENAMING;
3890     case LOC_TYPEDEF:
3891       return parse_old_style_renaming (SYMBOL_TYPE (sym), 
3892                                        renamed_entity, len, renaming_expr);
3893     case LOC_LOCAL:
3894     case LOC_STATIC:
3895     case LOC_COMPUTED:
3896     case LOC_OPTIMIZED_OUT:
3897       info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3898       if (info == NULL)
3899         return ADA_NOT_RENAMING;
3900       switch (info[5])
3901         {
3902         case '_':
3903           kind = ADA_OBJECT_RENAMING;
3904           info += 6;
3905           break;
3906         case 'E':
3907           kind = ADA_EXCEPTION_RENAMING;
3908           info += 7;
3909           break;
3910         case 'P':
3911           kind = ADA_PACKAGE_RENAMING;
3912           info += 7;
3913           break;
3914         case 'S':
3915           kind = ADA_SUBPROGRAM_RENAMING;
3916           info += 7;
3917           break;
3918         default:
3919           return ADA_NOT_RENAMING;
3920         }
3921     }
3922
3923   if (renamed_entity != NULL)
3924     *renamed_entity = info;
3925   suffix = strstr (info, "___XE");
3926   if (suffix == NULL || suffix == info)
3927     return ADA_NOT_RENAMING;
3928   if (len != NULL)
3929     *len = strlen (info) - strlen (suffix);
3930   suffix += 5;
3931   if (renaming_expr != NULL)
3932     *renaming_expr = suffix;
3933   return kind;
3934 }
3935
3936 /* Assuming TYPE encodes a renaming according to the old encoding in
3937    exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3938    *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
3939    ADA_NOT_RENAMING otherwise.  */
3940 static enum ada_renaming_category
3941 parse_old_style_renaming (struct type *type,
3942                           const char **renamed_entity, int *len, 
3943                           const char **renaming_expr)
3944 {
3945   enum ada_renaming_category kind;
3946   const char *name;
3947   const char *info;
3948   const char *suffix;
3949
3950   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 
3951       || TYPE_NFIELDS (type) != 1)
3952     return ADA_NOT_RENAMING;
3953
3954   name = type_name_no_tag (type);
3955   if (name == NULL)
3956     return ADA_NOT_RENAMING;
3957   
3958   name = strstr (name, "___XR");
3959   if (name == NULL)
3960     return ADA_NOT_RENAMING;
3961   switch (name[5])
3962     {
3963     case '\0':
3964     case '_':
3965       kind = ADA_OBJECT_RENAMING;
3966       break;
3967     case 'E':
3968       kind = ADA_EXCEPTION_RENAMING;
3969       break;
3970     case 'P':
3971       kind = ADA_PACKAGE_RENAMING;
3972       break;
3973     case 'S':
3974       kind = ADA_SUBPROGRAM_RENAMING;
3975       break;
3976     default:
3977       return ADA_NOT_RENAMING;
3978     }
3979
3980   info = TYPE_FIELD_NAME (type, 0);
3981   if (info == NULL)
3982     return ADA_NOT_RENAMING;
3983   if (renamed_entity != NULL)
3984     *renamed_entity = info;
3985   suffix = strstr (info, "___XE");
3986   if (renaming_expr != NULL)
3987     *renaming_expr = suffix + 5;
3988   if (suffix == NULL || suffix == info)
3989     return ADA_NOT_RENAMING;
3990   if (len != NULL)
3991     *len = suffix - info;
3992   return kind;
3993 }  
3994
3995 \f
3996
3997                                 /* Evaluation: Function Calls */
3998
3999 /* Return an lvalue containing the value VAL.  This is the identity on
4000    lvalues, and otherwise has the side-effect of allocating memory
4001    in the inferior where a copy of the value contents is copied.  */
4002
4003 static struct value *
4004 ensure_lval (struct value *val)
4005 {
4006   if (VALUE_LVAL (val) == not_lval
4007       || VALUE_LVAL (val) == lval_internalvar)
4008     {
4009       int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4010       const CORE_ADDR addr =
4011         value_as_long (value_allocate_space_in_inferior (len));
4012
4013       set_value_address (val, addr);
4014       VALUE_LVAL (val) = lval_memory;
4015       write_memory (addr, value_contents (val), len);
4016     }
4017
4018   return val;
4019 }
4020
4021 /* Return the value ACTUAL, converted to be an appropriate value for a
4022    formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4023    allocating any necessary descriptors (fat pointers), or copies of
4024    values not residing in memory, updating it as needed.  */
4025
4026 struct value *
4027 ada_convert_actual (struct value *actual, struct type *formal_type0)
4028 {
4029   struct type *actual_type = ada_check_typedef (value_type (actual));
4030   struct type *formal_type = ada_check_typedef (formal_type0);
4031   struct type *formal_target =
4032     TYPE_CODE (formal_type) == TYPE_CODE_PTR
4033     ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4034   struct type *actual_target =
4035     TYPE_CODE (actual_type) == TYPE_CODE_PTR
4036     ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4037
4038   if (ada_is_array_descriptor_type (formal_target)
4039       && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4040     return make_array_descriptor (formal_type, actual);
4041   else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4042            || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4043     {
4044       struct value *result;
4045
4046       if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4047           && ada_is_array_descriptor_type (actual_target))
4048         result = desc_data (actual);
4049       else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4050         {
4051           if (VALUE_LVAL (actual) != lval_memory)
4052             {
4053               struct value *val;
4054
4055               actual_type = ada_check_typedef (value_type (actual));
4056               val = allocate_value (actual_type);
4057               memcpy ((char *) value_contents_raw (val),
4058                       (char *) value_contents (actual),
4059                       TYPE_LENGTH (actual_type));
4060               actual = ensure_lval (val);
4061             }
4062           result = value_addr (actual);
4063         }
4064       else
4065         return actual;
4066       return value_cast_pointers (formal_type, result);
4067     }
4068   else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4069     return ada_value_ind (actual);
4070
4071   return actual;
4072 }
4073
4074 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4075    type TYPE.  This is usually an inefficient no-op except on some targets
4076    (such as AVR) where the representation of a pointer and an address
4077    differs.  */
4078
4079 static CORE_ADDR
4080 value_pointer (struct value *value, struct type *type)
4081 {
4082   struct gdbarch *gdbarch = get_type_arch (type);
4083   unsigned len = TYPE_LENGTH (type);
4084   gdb_byte *buf = alloca (len);
4085   CORE_ADDR addr;
4086
4087   addr = value_address (value);
4088   gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4089   addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4090   return addr;
4091 }
4092
4093
4094 /* Push a descriptor of type TYPE for array value ARR on the stack at
4095    *SP, updating *SP to reflect the new descriptor.  Return either
4096    an lvalue representing the new descriptor, or (if TYPE is a pointer-
4097    to-descriptor type rather than a descriptor type), a struct value *
4098    representing a pointer to this descriptor.  */
4099
4100 static struct value *
4101 make_array_descriptor (struct type *type, struct value *arr)
4102 {
4103   struct type *bounds_type = desc_bounds_type (type);
4104   struct type *desc_type = desc_base_type (type);
4105   struct value *descriptor = allocate_value (desc_type);
4106   struct value *bounds = allocate_value (bounds_type);
4107   int i;
4108
4109   for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4110        i > 0; i -= 1)
4111     {
4112       modify_field (value_type (bounds), value_contents_writeable (bounds),
4113                     ada_array_bound (arr, i, 0),
4114                     desc_bound_bitpos (bounds_type, i, 0),
4115                     desc_bound_bitsize (bounds_type, i, 0));
4116       modify_field (value_type (bounds), value_contents_writeable (bounds),
4117                     ada_array_bound (arr, i, 1),
4118                     desc_bound_bitpos (bounds_type, i, 1),
4119                     desc_bound_bitsize (bounds_type, i, 1));
4120     }
4121
4122   bounds = ensure_lval (bounds);
4123
4124   modify_field (value_type (descriptor),
4125                 value_contents_writeable (descriptor),
4126                 value_pointer (ensure_lval (arr),
4127                                TYPE_FIELD_TYPE (desc_type, 0)),
4128                 fat_pntr_data_bitpos (desc_type),
4129                 fat_pntr_data_bitsize (desc_type));
4130
4131   modify_field (value_type (descriptor),
4132                 value_contents_writeable (descriptor),
4133                 value_pointer (bounds,
4134                                TYPE_FIELD_TYPE (desc_type, 1)),
4135                 fat_pntr_bounds_bitpos (desc_type),
4136                 fat_pntr_bounds_bitsize (desc_type));
4137
4138   descriptor = ensure_lval (descriptor);
4139
4140   if (TYPE_CODE (type) == TYPE_CODE_PTR)
4141     return value_addr (descriptor);
4142   else
4143     return descriptor;
4144 }
4145 \f
4146 /* Dummy definitions for an experimental caching module that is not
4147  * used in the public sources.  */
4148
4149 static int
4150 lookup_cached_symbol (const char *name, domain_enum namespace,
4151                       struct symbol **sym, struct block **block)
4152 {
4153   return 0;
4154 }
4155
4156 static void
4157 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4158               struct block *block)
4159 {
4160 }
4161 \f
4162                                 /* Symbol Lookup */
4163
4164 /* Return the result of a standard (literal, C-like) lookup of NAME in
4165    given DOMAIN, visible from lexical block BLOCK.  */
4166
4167 static struct symbol *
4168 standard_lookup (const char *name, const struct block *block,
4169                  domain_enum domain)
4170 {
4171   struct symbol *sym;
4172
4173   if (lookup_cached_symbol (name, domain, &sym, NULL))
4174     return sym;
4175   sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4176   cache_symbol (name, domain, sym, block_found);
4177   return sym;
4178 }
4179
4180
4181 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4182    in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions, 
4183    since they contend in overloading in the same way.  */
4184 static int
4185 is_nonfunction (struct ada_symbol_info syms[], int n)
4186 {
4187   int i;
4188
4189   for (i = 0; i < n; i += 1)
4190     if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4191         && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4192             || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4193       return 1;
4194
4195   return 0;
4196 }
4197
4198 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4199    struct types.  Otherwise, they may not.  */
4200
4201 static int
4202 equiv_types (struct type *type0, struct type *type1)
4203 {
4204   if (type0 == type1)
4205     return 1;
4206   if (type0 == NULL || type1 == NULL
4207       || TYPE_CODE (type0) != TYPE_CODE (type1))
4208     return 0;
4209   if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4210        || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4211       && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4212       && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4213     return 1;
4214
4215   return 0;
4216 }
4217
4218 /* True iff SYM0 represents the same entity as SYM1, or one that is
4219    no more defined than that of SYM1.  */
4220
4221 static int
4222 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4223 {
4224   if (sym0 == sym1)
4225     return 1;
4226   if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4227       || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4228     return 0;
4229
4230   switch (SYMBOL_CLASS (sym0))
4231     {
4232     case LOC_UNDEF:
4233       return 1;
4234     case LOC_TYPEDEF:
4235       {
4236         struct type *type0 = SYMBOL_TYPE (sym0);
4237         struct type *type1 = SYMBOL_TYPE (sym1);
4238         char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4239         char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4240         int len0 = strlen (name0);
4241
4242         return
4243           TYPE_CODE (type0) == TYPE_CODE (type1)
4244           && (equiv_types (type0, type1)
4245               || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4246                   && strncmp (name1 + len0, "___XV", 5) == 0));
4247       }
4248     case LOC_CONST:
4249       return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4250         && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4251     default:
4252       return 0;
4253     }
4254 }
4255
4256 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4257    records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4258
4259 static void
4260 add_defn_to_vec (struct obstack *obstackp,
4261                  struct symbol *sym,
4262                  struct block *block)
4263 {
4264   int i;
4265   struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4266
4267   /* Do not try to complete stub types, as the debugger is probably
4268      already scanning all symbols matching a certain name at the
4269      time when this function is called.  Trying to replace the stub
4270      type by its associated full type will cause us to restart a scan
4271      which may lead to an infinite recursion.  Instead, the client
4272      collecting the matching symbols will end up collecting several
4273      matches, with at least one of them complete.  It can then filter
4274      out the stub ones if needed.  */
4275
4276   for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4277     {
4278       if (lesseq_defined_than (sym, prevDefns[i].sym))
4279         return;
4280       else if (lesseq_defined_than (prevDefns[i].sym, sym))
4281         {
4282           prevDefns[i].sym = sym;
4283           prevDefns[i].block = block;
4284           return;
4285         }
4286     }
4287
4288   {
4289     struct ada_symbol_info info;
4290
4291     info.sym = sym;
4292     info.block = block;
4293     obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4294   }
4295 }
4296
4297 /* Number of ada_symbol_info structures currently collected in 
4298    current vector in *OBSTACKP.  */
4299
4300 static int
4301 num_defns_collected (struct obstack *obstackp)
4302 {
4303   return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4304 }
4305
4306 /* Vector of ada_symbol_info structures currently collected in current 
4307    vector in *OBSTACKP.  If FINISH, close off the vector and return
4308    its final address.  */
4309
4310 static struct ada_symbol_info *
4311 defns_collected (struct obstack *obstackp, int finish)
4312 {
4313   if (finish)
4314     return obstack_finish (obstackp);
4315   else
4316     return (struct ada_symbol_info *) obstack_base (obstackp);
4317 }
4318
4319 /* Return a minimal symbol matching NAME according to Ada decoding
4320    rules.  Returns NULL if there is no such minimal symbol.  Names 
4321    prefixed with "standard__" are handled specially: "standard__" is 
4322    first stripped off, and only static and global symbols are searched.  */
4323
4324 struct minimal_symbol *
4325 ada_lookup_simple_minsym (const char *name)
4326 {
4327   struct objfile *objfile;
4328   struct minimal_symbol *msymbol;
4329   int wild_match;
4330
4331   if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4332     {
4333       name += sizeof ("standard__") - 1;
4334       wild_match = 0;
4335     }
4336   else
4337     wild_match = (strstr (name, "__") == NULL);
4338
4339   ALL_MSYMBOLS (objfile, msymbol)
4340   {
4341     if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4342         && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4343       return msymbol;
4344   }
4345
4346   return NULL;
4347 }
4348
4349 /* For all subprograms that statically enclose the subprogram of the
4350    selected frame, add symbols matching identifier NAME in DOMAIN
4351    and their blocks to the list of data in OBSTACKP, as for
4352    ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
4353    wildcard prefix.  */
4354
4355 static void
4356 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4357                                   const char *name, domain_enum namespace,
4358                                   int wild_match)
4359 {
4360 }
4361
4362 /* True if TYPE is definitely an artificial type supplied to a symbol
4363    for which no debugging information was given in the symbol file.  */
4364
4365 static int
4366 is_nondebugging_type (struct type *type)
4367 {
4368   char *name = ada_type_name (type);
4369
4370   return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4371 }
4372
4373 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4374    that are deemed "identical" for practical purposes.
4375
4376    This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4377    types and that their number of enumerals is identical (in other
4378    words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)).  */
4379
4380 static int
4381 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4382 {
4383   int i;
4384
4385   /* The heuristic we use here is fairly conservative.  We consider
4386      that 2 enumerate types are identical if they have the same
4387      number of enumerals and that all enumerals have the same
4388      underlying value and name.  */
4389
4390   /* All enums in the type should have an identical underlying value.  */
4391   for (i = 0; i < TYPE_NFIELDS (type1); i++)
4392     if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4393       return 0;
4394
4395   /* All enumerals should also have the same name (modulo any numerical
4396      suffix).  */
4397   for (i = 0; i < TYPE_NFIELDS (type1); i++)
4398     {
4399       char *name_1 = TYPE_FIELD_NAME (type1, i);
4400       char *name_2 = TYPE_FIELD_NAME (type2, i);
4401       int len_1 = strlen (name_1);
4402       int len_2 = strlen (name_2);
4403
4404       ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4405       ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4406       if (len_1 != len_2
4407           || strncmp (TYPE_FIELD_NAME (type1, i),
4408                       TYPE_FIELD_NAME (type2, i),
4409                       len_1) != 0)
4410         return 0;
4411     }
4412
4413   return 1;
4414 }
4415
4416 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4417    that are deemed "identical" for practical purposes.  Sometimes,
4418    enumerals are not strictly identical, but their types are so similar
4419    that they can be considered identical.
4420
4421    For instance, consider the following code:
4422
4423       type Color is (Black, Red, Green, Blue, White);
4424       type RGB_Color is new Color range Red .. Blue;
4425
4426    Type RGB_Color is a subrange of an implicit type which is a copy
4427    of type Color. If we call that implicit type RGB_ColorB ("B" is
4428    for "Base Type"), then type RGB_ColorB is a copy of type Color.
4429    As a result, when an expression references any of the enumeral
4430    by name (Eg. "print green"), the expression is technically
4431    ambiguous and the user should be asked to disambiguate. But
4432    doing so would only hinder the user, since it wouldn't matter
4433    what choice he makes, the outcome would always be the same.
4434    So, for practical purposes, we consider them as the same.  */
4435
4436 static int
4437 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4438 {
4439   int i;
4440
4441   /* Before performing a thorough comparison check of each type,
4442      we perform a series of inexpensive checks.  We expect that these
4443      checks will quickly fail in the vast majority of cases, and thus
4444      help prevent the unnecessary use of a more expensive comparison.
4445      Said comparison also expects us to make some of these checks
4446      (see ada_identical_enum_types_p).  */
4447
4448   /* Quick check: All symbols should have an enum type.  */
4449   for (i = 0; i < nsyms; i++)
4450     if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4451       return 0;
4452
4453   /* Quick check: They should all have the same value.  */
4454   for (i = 1; i < nsyms; i++)
4455     if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4456       return 0;
4457
4458   /* Quick check: They should all have the same number of enumerals.  */
4459   for (i = 1; i < nsyms; i++)
4460     if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4461         != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4462       return 0;
4463
4464   /* All the sanity checks passed, so we might have a set of
4465      identical enumeration types.  Perform a more complete
4466      comparison of the type of each symbol.  */
4467   for (i = 1; i < nsyms; i++)
4468     if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4469                                      SYMBOL_TYPE (syms[0].sym)))
4470       return 0;
4471
4472   return 1;
4473 }
4474
4475 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4476    duplicate other symbols in the list (The only case I know of where
4477    this happens is when object files containing stabs-in-ecoff are
4478    linked with files containing ordinary ecoff debugging symbols (or no
4479    debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
4480    Returns the number of items in the modified list.  */
4481
4482 static int
4483 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4484 {
4485   int i, j;
4486
4487   /* We should never be called with less than 2 symbols, as there
4488      cannot be any extra symbol in that case.  But it's easy to
4489      handle, since we have nothing to do in that case.  */
4490   if (nsyms < 2)
4491     return nsyms;
4492
4493   i = 0;
4494   while (i < nsyms)
4495     {
4496       int remove_p = 0;
4497
4498       /* If two symbols have the same name and one of them is a stub type,
4499          the get rid of the stub.  */
4500
4501       if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4502           && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4503         {
4504           for (j = 0; j < nsyms; j++)
4505             {
4506               if (j != i
4507                   && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4508                   && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4509                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4510                              SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4511                 remove_p = 1;
4512             }
4513         }
4514
4515       /* Two symbols with the same name, same class and same address
4516          should be identical.  */
4517
4518       else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4519           && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4520           && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4521         {
4522           for (j = 0; j < nsyms; j += 1)
4523             {
4524               if (i != j
4525                   && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4526                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4527                              SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4528                   && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4529                   && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4530                   == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4531                 remove_p = 1;
4532             }
4533         }
4534       
4535       if (remove_p)
4536         {
4537           for (j = i + 1; j < nsyms; j += 1)
4538             syms[j - 1] = syms[j];
4539           nsyms -= 1;
4540         }
4541
4542       i += 1;
4543     }
4544
4545   /* If all the remaining symbols are identical enumerals, then
4546      just keep the first one and discard the rest.
4547
4548      Unlike what we did previously, we do not discard any entry
4549      unless they are ALL identical.  This is because the symbol
4550      comparison is not a strict comparison, but rather a practical
4551      comparison.  If all symbols are considered identical, then
4552      we can just go ahead and use the first one and discard the rest.
4553      But if we cannot reduce the list to a single element, we have
4554      to ask the user to disambiguate anyways.  And if we have to
4555      present a multiple-choice menu, it's less confusing if the list
4556      isn't missing some choices that were identical and yet distinct.  */
4557   if (symbols_are_identical_enums (syms, nsyms))
4558     nsyms = 1;
4559
4560   return nsyms;
4561 }
4562
4563 /* Given a type that corresponds to a renaming entity, use the type name
4564    to extract the scope (package name or function name, fully qualified,
4565    and following the GNAT encoding convention) where this renaming has been
4566    defined.  The string returned needs to be deallocated after use.  */
4567
4568 static char *
4569 xget_renaming_scope (struct type *renaming_type)
4570 {
4571   /* The renaming types adhere to the following convention:
4572      <scope>__<rename>___<XR extension>.
4573      So, to extract the scope, we search for the "___XR" extension,
4574      and then backtrack until we find the first "__".  */
4575
4576   const char *name = type_name_no_tag (renaming_type);
4577   char *suffix = strstr (name, "___XR");
4578   char *last;
4579   int scope_len;
4580   char *scope;
4581
4582   /* Now, backtrack a bit until we find the first "__".  Start looking
4583      at suffix - 3, as the <rename> part is at least one character long.  */
4584
4585   for (last = suffix - 3; last > name; last--)
4586     if (last[0] == '_' && last[1] == '_')
4587       break;
4588
4589   /* Make a copy of scope and return it.  */
4590
4591   scope_len = last - name;
4592   scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4593
4594   strncpy (scope, name, scope_len);
4595   scope[scope_len] = '\0';
4596
4597   return scope;
4598 }
4599
4600 /* Return nonzero if NAME corresponds to a package name.  */
4601
4602 static int
4603 is_package_name (const char *name)
4604 {
4605   /* Here, We take advantage of the fact that no symbols are generated
4606      for packages, while symbols are generated for each function.
4607      So the condition for NAME represent a package becomes equivalent
4608      to NAME not existing in our list of symbols.  There is only one
4609      small complication with library-level functions (see below).  */
4610
4611   char *fun_name;
4612
4613   /* If it is a function that has not been defined at library level,
4614      then we should be able to look it up in the symbols.  */
4615   if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4616     return 0;
4617
4618   /* Library-level function names start with "_ada_".  See if function
4619      "_ada_" followed by NAME can be found.  */
4620
4621   /* Do a quick check that NAME does not contain "__", since library-level
4622      functions names cannot contain "__" in them.  */
4623   if (strstr (name, "__") != NULL)
4624     return 0;
4625
4626   fun_name = xstrprintf ("_ada_%s", name);
4627
4628   return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4629 }
4630
4631 /* Return nonzero if SYM corresponds to a renaming entity that is
4632    not visible from FUNCTION_NAME.  */
4633
4634 static int
4635 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4636 {
4637   char *scope;
4638
4639   if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4640     return 0;
4641
4642   scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4643
4644   make_cleanup (xfree, scope);
4645
4646   /* If the rename has been defined in a package, then it is visible.  */
4647   if (is_package_name (scope))
4648     return 0;
4649
4650   /* Check that the rename is in the current function scope by checking
4651      that its name starts with SCOPE.  */
4652
4653   /* If the function name starts with "_ada_", it means that it is
4654      a library-level function.  Strip this prefix before doing the
4655      comparison, as the encoding for the renaming does not contain
4656      this prefix.  */
4657   if (strncmp (function_name, "_ada_", 5) == 0)
4658     function_name += 5;
4659
4660   return (strncmp (function_name, scope, strlen (scope)) != 0);
4661 }
4662
4663 /* Remove entries from SYMS that corresponds to a renaming entity that
4664    is not visible from the function associated with CURRENT_BLOCK or
4665    that is superfluous due to the presence of more specific renaming
4666    information.  Places surviving symbols in the initial entries of
4667    SYMS and returns the number of surviving symbols.
4668    
4669    Rationale:
4670    First, in cases where an object renaming is implemented as a
4671    reference variable, GNAT may produce both the actual reference
4672    variable and the renaming encoding.  In this case, we discard the
4673    latter.
4674
4675    Second, GNAT emits a type following a specified encoding for each renaming
4676    entity.  Unfortunately, STABS currently does not support the definition
4677    of types that are local to a given lexical block, so all renamings types
4678    are emitted at library level.  As a consequence, if an application
4679    contains two renaming entities using the same name, and a user tries to
4680    print the value of one of these entities, the result of the ada symbol
4681    lookup will also contain the wrong renaming type.
4682
4683    This function partially covers for this limitation by attempting to
4684    remove from the SYMS list renaming symbols that should be visible
4685    from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
4686    method with the current information available.  The implementation
4687    below has a couple of limitations (FIXME: brobecker-2003-05-12):  
4688    
4689       - When the user tries to print a rename in a function while there
4690         is another rename entity defined in a package:  Normally, the
4691         rename in the function has precedence over the rename in the
4692         package, so the latter should be removed from the list.  This is
4693         currently not the case.
4694         
4695       - This function will incorrectly remove valid renames if
4696         the CURRENT_BLOCK corresponds to a function which symbol name
4697         has been changed by an "Export" pragma.  As a consequence,
4698         the user will be unable to print such rename entities.  */
4699
4700 static int
4701 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4702                              int nsyms, const struct block *current_block)
4703 {
4704   struct symbol *current_function;
4705   char *current_function_name;
4706   int i;
4707   int is_new_style_renaming;
4708
4709   /* If there is both a renaming foo___XR... encoded as a variable and
4710      a simple variable foo in the same block, discard the latter.
4711      First, zero out such symbols, then compress.  */
4712   is_new_style_renaming = 0;
4713   for (i = 0; i < nsyms; i += 1)
4714     {
4715       struct symbol *sym = syms[i].sym;
4716       struct block *block = syms[i].block;
4717       const char *name;
4718       const char *suffix;
4719
4720       if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4721         continue;
4722       name = SYMBOL_LINKAGE_NAME (sym);
4723       suffix = strstr (name, "___XR");
4724
4725       if (suffix != NULL)
4726         {
4727           int name_len = suffix - name;
4728           int j;
4729
4730           is_new_style_renaming = 1;
4731           for (j = 0; j < nsyms; j += 1)
4732             if (i != j && syms[j].sym != NULL
4733                 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4734                             name_len) == 0
4735                 && block == syms[j].block)
4736               syms[j].sym = NULL;
4737         }
4738     }
4739   if (is_new_style_renaming)
4740     {
4741       int j, k;
4742
4743       for (j = k = 0; j < nsyms; j += 1)
4744         if (syms[j].sym != NULL)
4745             {
4746               syms[k] = syms[j];
4747               k += 1;
4748             }
4749       return k;
4750     }
4751
4752   /* Extract the function name associated to CURRENT_BLOCK.
4753      Abort if unable to do so.  */
4754
4755   if (current_block == NULL)
4756     return nsyms;
4757
4758   current_function = block_linkage_function (current_block);
4759   if (current_function == NULL)
4760     return nsyms;
4761
4762   current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4763   if (current_function_name == NULL)
4764     return nsyms;
4765
4766   /* Check each of the symbols, and remove it from the list if it is
4767      a type corresponding to a renaming that is out of the scope of
4768      the current block.  */
4769
4770   i = 0;
4771   while (i < nsyms)
4772     {
4773       if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4774           == ADA_OBJECT_RENAMING
4775           && old_renaming_is_invisible (syms[i].sym, current_function_name))
4776         {
4777           int j;
4778
4779           for (j = i + 1; j < nsyms; j += 1)
4780             syms[j - 1] = syms[j];
4781           nsyms -= 1;
4782         }
4783       else
4784         i += 1;
4785     }
4786
4787   return nsyms;
4788 }
4789
4790 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4791    whose name and domain match NAME and DOMAIN respectively.
4792    If no match was found, then extend the search to "enclosing"
4793    routines (in other words, if we're inside a nested function,
4794    search the symbols defined inside the enclosing functions).
4795
4796    Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
4797
4798 static void
4799 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4800                        struct block *block, domain_enum domain,
4801                        int wild_match)
4802 {
4803   int block_depth = 0;
4804
4805   while (block != NULL)
4806     {
4807       block_depth += 1;
4808       ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4809
4810       /* If we found a non-function match, assume that's the one.  */
4811       if (is_nonfunction (defns_collected (obstackp, 0),
4812                           num_defns_collected (obstackp)))
4813         return;
4814
4815       block = BLOCK_SUPERBLOCK (block);
4816     }
4817
4818   /* If no luck so far, try to find NAME as a local symbol in some lexically
4819      enclosing subprogram.  */
4820   if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4821     add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4822 }
4823
4824 /* An object of this type is used as the user_data argument when
4825    calling the map_matching_symbols method.  */
4826
4827 struct match_data
4828 {
4829   struct objfile *objfile;
4830   struct obstack *obstackp;
4831   struct symbol *arg_sym;
4832   int found_sym;
4833 };
4834
4835 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4836    to a list of symbols.  DATA0 is a pointer to a struct match_data *
4837    containing the obstack that collects the symbol list, the file that SYM
4838    must come from, a flag indicating whether a non-argument symbol has
4839    been found in the current block, and the last argument symbol
4840    passed in SYM within the current block (if any).  When SYM is null,
4841    marking the end of a block, the argument symbol is added if no
4842    other has been found.  */
4843
4844 static int
4845 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4846 {
4847   struct match_data *data = (struct match_data *) data0;
4848   
4849   if (sym == NULL)
4850     {
4851       if (!data->found_sym && data->arg_sym != NULL) 
4852         add_defn_to_vec (data->obstackp,
4853                          fixup_symbol_section (data->arg_sym, data->objfile),
4854                          block);
4855       data->found_sym = 0;
4856       data->arg_sym = NULL;
4857     }
4858   else 
4859     {
4860       if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4861         return 0;
4862       else if (SYMBOL_IS_ARGUMENT (sym))
4863         data->arg_sym = sym;
4864       else
4865         {
4866           data->found_sym = 1;
4867           add_defn_to_vec (data->obstackp,
4868                            fixup_symbol_section (sym, data->objfile),
4869                            block);
4870         }
4871     }
4872   return 0;
4873 }
4874
4875 /* Compare STRING1 to STRING2, with results as for strcmp.
4876    Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4877    implies compare_names (STRING1, STRING2) (they may differ as to
4878    what symbols compare equal).  */
4879
4880 static int
4881 compare_names (const char *string1, const char *string2)
4882 {
4883   while (*string1 != '\0' && *string2 != '\0')
4884     {
4885       if (isspace (*string1) || isspace (*string2))
4886         return strcmp_iw_ordered (string1, string2);
4887       if (*string1 != *string2)
4888         break;
4889       string1 += 1;
4890       string2 += 1;
4891     }
4892   switch (*string1)
4893     {
4894     case '(':
4895       return strcmp_iw_ordered (string1, string2);
4896     case '_':
4897       if (*string2 == '\0')
4898         {
4899           if (is_name_suffix (string1))
4900             return 0;
4901           else
4902             return 1;
4903         }
4904       /* FALLTHROUGH */
4905     default:
4906       if (*string2 == '(')
4907         return strcmp_iw_ordered (string1, string2);
4908       else
4909         return *string1 - *string2;
4910     }
4911 }
4912
4913 /* Add to OBSTACKP all non-local symbols whose name and domain match
4914    NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
4915    symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
4916
4917 static void
4918 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4919                       domain_enum domain, int global,
4920                       int is_wild_match)
4921 {
4922   struct objfile *objfile;
4923   struct match_data data;
4924
4925   data.obstackp = obstackp;
4926   data.arg_sym = NULL;
4927
4928   ALL_OBJFILES (objfile)
4929     {
4930       data.objfile = objfile;
4931
4932       if (is_wild_match)
4933         objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4934                                                aux_add_nonlocal_symbols, &data,
4935                                                wild_match, NULL);
4936       else
4937         objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4938                                                aux_add_nonlocal_symbols, &data,
4939                                                full_match, compare_names);
4940     }
4941
4942   if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4943     {
4944       ALL_OBJFILES (objfile)
4945         {
4946           char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4947           strcpy (name1, "_ada_");
4948           strcpy (name1 + sizeof ("_ada_") - 1, name);
4949           data.objfile = objfile;
4950           objfile->sf->qf->map_matching_symbols (name1, domain,
4951                                                  objfile, global,
4952                                                  aux_add_nonlocal_symbols,
4953                                                  &data,
4954                                                  full_match, compare_names);
4955         }
4956     }           
4957 }
4958
4959 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4960    scope and in global scopes, returning the number of matches.  Sets
4961    *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4962    indicating the symbols found and the blocks and symbol tables (if
4963    any) in which they were found.  This vector are transient---good only to 
4964    the next call of ada_lookup_symbol_list.  Any non-function/non-enumeral 
4965    symbol match within the nest of blocks whose innermost member is BLOCK0,
4966    is the one match returned (no other matches in that or
4967      enclosing blocks is returned).  If there are any matches in or
4968    surrounding BLOCK0, then these alone are returned.  Otherwise, the
4969    search extends to global and file-scope (static) symbol tables.
4970    Names prefixed with "standard__" are handled specially: "standard__" 
4971    is first stripped off, and only static and global symbols are searched.  */
4972
4973 int
4974 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4975                         domain_enum namespace,
4976                         struct ada_symbol_info **results)
4977 {
4978   struct symbol *sym;
4979   struct block *block;
4980   const char *name;
4981   int wild_match;
4982   int cacheIfUnique;
4983   int ndefns;
4984
4985   obstack_free (&symbol_list_obstack, NULL);
4986   obstack_init (&symbol_list_obstack);
4987
4988   cacheIfUnique = 0;
4989
4990   /* Search specified block and its superiors.  */
4991
4992   wild_match = (strstr (name0, "__") == NULL);
4993   name = name0;
4994   block = (struct block *) block0;      /* FIXME: No cast ought to be
4995                                            needed, but adding const will
4996                                            have a cascade effect.  */
4997
4998   /* Special case: If the user specifies a symbol name inside package
4999      Standard, do a non-wild matching of the symbol name without
5000      the "standard__" prefix.  This was primarily introduced in order
5001      to allow the user to specifically access the standard exceptions
5002      using, for instance, Standard.Constraint_Error when Constraint_Error
5003      is ambiguous (due to the user defining its own Constraint_Error
5004      entity inside its program).  */
5005   if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5006     {
5007       wild_match = 0;
5008       block = NULL;
5009       name = name0 + sizeof ("standard__") - 1;
5010     }
5011
5012   /* Check the non-global symbols.  If we have ANY match, then we're done.  */
5013
5014   ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5015                          wild_match);
5016   if (num_defns_collected (&symbol_list_obstack) > 0)
5017     goto done;
5018
5019   /* No non-global symbols found.  Check our cache to see if we have
5020      already performed this search before.  If we have, then return
5021      the same result.  */
5022
5023   cacheIfUnique = 1;
5024   if (lookup_cached_symbol (name0, namespace, &sym, &block))
5025     {
5026       if (sym != NULL)
5027         add_defn_to_vec (&symbol_list_obstack, sym, block);
5028       goto done;
5029     }
5030
5031   /* Search symbols from all global blocks.  */
5032  
5033   add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5034                         wild_match);
5035
5036   /* Now add symbols from all per-file blocks if we've gotten no hits
5037      (not strictly correct, but perhaps better than an error).  */
5038
5039   if (num_defns_collected (&symbol_list_obstack) == 0)
5040     add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5041                           wild_match);
5042
5043 done:
5044   ndefns = num_defns_collected (&symbol_list_obstack);
5045   *results = defns_collected (&symbol_list_obstack, 1);
5046
5047   ndefns = remove_extra_symbols (*results, ndefns);
5048
5049   if (ndefns == 0)
5050     cache_symbol (name0, namespace, NULL, NULL);
5051
5052   if (ndefns == 1 && cacheIfUnique)
5053     cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5054
5055   ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5056
5057   return ndefns;
5058 }
5059
5060 /* If NAME is the name of an entity, return a string that should
5061    be used to look that entity up in Ada units.  This string should
5062    be deallocated after use using xfree.
5063
5064    NAME can have any form that the "break" or "print" commands might
5065    recognize.  In other words, it does not have to be the "natural"
5066    name, or the "encoded" name.  */
5067
5068 char *
5069 ada_name_for_lookup (const char *name)
5070 {
5071   char *canon;
5072   int nlen = strlen (name);
5073
5074   if (name[0] == '<' && name[nlen - 1] == '>')
5075     {
5076       canon = xmalloc (nlen - 1);
5077       memcpy (canon, name + 1, nlen - 2);
5078       canon[nlen - 2] = '\0';
5079     }
5080   else
5081     canon = xstrdup (ada_encode (ada_fold_name (name)));
5082   return canon;
5083 }
5084
5085 /* Implementation of the la_iterate_over_symbols method.  */
5086
5087 static void
5088 ada_iterate_over_symbols (const struct block *block,
5089                           const char *name, domain_enum domain,
5090                           int (*callback) (struct symbol *, void *),
5091                           void *data)
5092 {
5093   int ndefs, i;
5094   struct ada_symbol_info *results;
5095
5096   ndefs = ada_lookup_symbol_list (name, block, domain, &results);
5097   for (i = 0; i < ndefs; ++i)
5098     {
5099       if (! (*callback) (results[i].sym, data))
5100         break;
5101     }
5102 }
5103
5104 struct symbol *
5105 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5106                            domain_enum namespace, struct block **block_found)
5107 {
5108   struct ada_symbol_info *candidates;
5109   int n_candidates;
5110
5111   n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
5112
5113   if (n_candidates == 0)
5114     return NULL;
5115
5116   if (block_found != NULL)
5117     *block_found = candidates[0].block;
5118
5119   return fixup_symbol_section (candidates[0].sym, NULL);
5120 }  
5121
5122 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5123    scope and in global scopes, or NULL if none.  NAME is folded and
5124    encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
5125    choosing the first symbol if there are multiple choices.
5126    *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5127    table in which the symbol was found (in both cases, these
5128    assignments occur only if the pointers are non-null).  */
5129 struct symbol *
5130 ada_lookup_symbol (const char *name, const struct block *block0,
5131                    domain_enum namespace, int *is_a_field_of_this)
5132 {
5133   if (is_a_field_of_this != NULL)
5134     *is_a_field_of_this = 0;
5135
5136   return
5137     ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5138                                block0, namespace, NULL);
5139 }
5140
5141 static struct symbol *
5142 ada_lookup_symbol_nonlocal (const char *name,
5143                             const struct block *block,
5144                             const domain_enum domain)
5145 {
5146   return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5147 }
5148
5149
5150 /* True iff STR is a possible encoded suffix of a normal Ada name
5151    that is to be ignored for matching purposes.  Suffixes of parallel
5152    names (e.g., XVE) are not included here.  Currently, the possible suffixes
5153    are given by any of the regular expressions:
5154
5155    [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
5156    ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
5157    _E[0-9]+[bs]$    [protected object entry suffixes]
5158    (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5159
5160    Also, any leading "__[0-9]+" sequence is skipped before the suffix
5161    match is performed.  This sequence is used to differentiate homonyms,
5162    is an optional part of a valid name suffix.  */
5163
5164 static int
5165 is_name_suffix (const char *str)
5166 {
5167   int k;
5168   const char *matching;
5169   const int len = strlen (str);
5170
5171   /* Skip optional leading __[0-9]+.  */
5172
5173   if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5174     {
5175       str += 3;
5176       while (isdigit (str[0]))
5177         str += 1;
5178     }
5179   
5180   /* [.$][0-9]+ */
5181
5182   if (str[0] == '.' || str[0] == '$')
5183     {
5184       matching = str + 1;
5185       while (isdigit (matching[0]))
5186         matching += 1;
5187       if (matching[0] == '\0')
5188         return 1;
5189     }
5190
5191   /* ___[0-9]+ */
5192
5193   if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5194     {
5195       matching = str + 3;
5196       while (isdigit (matching[0]))
5197         matching += 1;
5198       if (matching[0] == '\0')
5199         return 1;
5200     }
5201
5202 #if 0
5203   /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5204      with a N at the end.  Unfortunately, the compiler uses the same
5205      convention for other internal types it creates.  So treating
5206      all entity names that end with an "N" as a name suffix causes
5207      some regressions.  For instance, consider the case of an enumerated
5208      type.  To support the 'Image attribute, it creates an array whose
5209      name ends with N.
5210      Having a single character like this as a suffix carrying some
5211      information is a bit risky.  Perhaps we should change the encoding
5212      to be something like "_N" instead.  In the meantime, do not do
5213      the following check.  */
5214   /* Protected Object Subprograms */
5215   if (len == 1 && str [0] == 'N')
5216     return 1;
5217 #endif
5218
5219   /* _E[0-9]+[bs]$ */
5220   if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5221     {
5222       matching = str + 3;
5223       while (isdigit (matching[0]))
5224         matching += 1;
5225       if ((matching[0] == 'b' || matching[0] == 's')
5226           && matching [1] == '\0')
5227         return 1;
5228     }
5229
5230   /* ??? We should not modify STR directly, as we are doing below.  This
5231      is fine in this case, but may become problematic later if we find
5232      that this alternative did not work, and want to try matching
5233      another one from the begining of STR.  Since we modified it, we
5234      won't be able to find the begining of the string anymore!  */
5235   if (str[0] == 'X')
5236     {
5237       str += 1;
5238       while (str[0] != '_' && str[0] != '\0')
5239         {
5240           if (str[0] != 'n' && str[0] != 'b')
5241             return 0;
5242           str += 1;
5243         }
5244     }
5245
5246   if (str[0] == '\000')
5247     return 1;
5248
5249   if (str[0] == '_')
5250     {
5251       if (str[1] != '_' || str[2] == '\000')
5252         return 0;
5253       if (str[2] == '_')
5254         {
5255           if (strcmp (str + 3, "JM") == 0)
5256             return 1;
5257           /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5258              the LJM suffix in favor of the JM one.  But we will
5259              still accept LJM as a valid suffix for a reasonable
5260              amount of time, just to allow ourselves to debug programs
5261              compiled using an older version of GNAT.  */
5262           if (strcmp (str + 3, "LJM") == 0)
5263             return 1;
5264           if (str[3] != 'X')
5265             return 0;
5266           if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5267               || str[4] == 'U' || str[4] == 'P')
5268             return 1;
5269           if (str[4] == 'R' && str[5] != 'T')
5270             return 1;
5271           return 0;
5272         }
5273       if (!isdigit (str[2]))
5274         return 0;
5275       for (k = 3; str[k] != '\0'; k += 1)
5276         if (!isdigit (str[k]) && str[k] != '_')
5277           return 0;
5278       return 1;
5279     }
5280   if (str[0] == '$' && isdigit (str[1]))
5281     {
5282       for (k = 2; str[k] != '\0'; k += 1)
5283         if (!isdigit (str[k]) && str[k] != '_')
5284           return 0;
5285       return 1;
5286     }
5287   return 0;
5288 }
5289
5290 /* Return non-zero if the string starting at NAME and ending before
5291    NAME_END contains no capital letters.  */
5292
5293 static int
5294 is_valid_name_for_wild_match (const char *name0)
5295 {
5296   const char *decoded_name = ada_decode (name0);
5297   int i;
5298
5299   /* If the decoded name starts with an angle bracket, it means that
5300      NAME0 does not follow the GNAT encoding format.  It should then
5301      not be allowed as a possible wild match.  */
5302   if (decoded_name[0] == '<')
5303     return 0;
5304
5305   for (i=0; decoded_name[i] != '\0'; i++)
5306     if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5307       return 0;
5308
5309   return 1;
5310 }
5311
5312 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5313    that could start a simple name.  Assumes that *NAMEP points into
5314    the string beginning at NAME0.  */
5315
5316 static int
5317 advance_wild_match (const char **namep, const char *name0, int target0)
5318 {
5319   const char *name = *namep;
5320
5321   while (1)
5322     {
5323       int t0, t1;
5324
5325       t0 = *name;
5326       if (t0 == '_')
5327         {
5328           t1 = name[1];
5329           if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5330             {
5331               name += 1;
5332               if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5333                 break;
5334               else
5335                 name += 1;
5336             }
5337           else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5338                                  || name[2] == target0))
5339             {
5340               name += 2;
5341               break;
5342             }
5343           else
5344             return 0;
5345         }
5346       else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5347         name += 1;
5348       else
5349         return 0;
5350     }
5351
5352   *namep = name;
5353   return 1;
5354 }
5355
5356 /* Return 0 iff NAME encodes a name of the form prefix.PATN.  Ignores any
5357    informational suffixes of NAME (i.e., for which is_name_suffix is
5358    true).  Assumes that PATN is a lower-cased Ada simple name.  */
5359
5360 static int
5361 wild_match (const char *name, const char *patn)
5362 {
5363   const char *p, *n;
5364   const char *name0 = name;
5365
5366   while (1)
5367     {
5368       const char *match = name;
5369
5370       if (*name == *patn)
5371         {
5372           for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5373             if (*p != *name)
5374               break;
5375           if (*p == '\0' && is_name_suffix (name))
5376             return match != name0 && !is_valid_name_for_wild_match (name0);
5377
5378           if (name[-1] == '_')
5379             name -= 1;
5380         }
5381       if (!advance_wild_match (&name, name0, *patn))
5382         return 1;
5383     }
5384 }
5385
5386 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5387    informational suffix.  */
5388
5389 static int
5390 full_match (const char *sym_name, const char *search_name)
5391 {
5392   return !match_name (sym_name, search_name, 0);
5393 }
5394
5395
5396 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5397    vector *defn_symbols, updating the list of symbols in OBSTACKP 
5398    (if necessary).  If WILD, treat as NAME with a wildcard prefix.
5399    OBJFILE is the section containing BLOCK.
5400    SYMTAB is recorded with each symbol added.  */
5401
5402 static void
5403 ada_add_block_symbols (struct obstack *obstackp,
5404                        struct block *block, const char *name,
5405                        domain_enum domain, struct objfile *objfile,
5406                        int wild)
5407 {
5408   struct dict_iterator iter;
5409   int name_len = strlen (name);
5410   /* A matching argument symbol, if any.  */
5411   struct symbol *arg_sym;
5412   /* Set true when we find a matching non-argument symbol.  */
5413   int found_sym;
5414   struct symbol *sym;
5415
5416   arg_sym = NULL;
5417   found_sym = 0;
5418   if (wild)
5419     {
5420       for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5421                                         wild_match, &iter);
5422            sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5423       {
5424         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5425                                    SYMBOL_DOMAIN (sym), domain)
5426             && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5427           {
5428             if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5429               continue;
5430             else if (SYMBOL_IS_ARGUMENT (sym))
5431               arg_sym = sym;
5432             else
5433               {
5434                 found_sym = 1;
5435                 add_defn_to_vec (obstackp,
5436                                  fixup_symbol_section (sym, objfile),
5437                                  block);
5438               }
5439           }
5440       }
5441     }
5442   else
5443     {
5444      for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5445                                        full_match, &iter);
5446            sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5447       {
5448         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5449                                    SYMBOL_DOMAIN (sym), domain))
5450           {
5451             if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5452               {
5453                 if (SYMBOL_IS_ARGUMENT (sym))
5454                   arg_sym = sym;
5455                 else
5456                   {
5457                     found_sym = 1;
5458                     add_defn_to_vec (obstackp,
5459                                      fixup_symbol_section (sym, objfile),
5460                                      block);
5461                   }
5462               }
5463           }
5464       }
5465     }
5466
5467   if (!found_sym && arg_sym != NULL)
5468     {
5469       add_defn_to_vec (obstackp,
5470                        fixup_symbol_section (arg_sym, objfile),
5471                        block);
5472     }
5473
5474   if (!wild)
5475     {
5476       arg_sym = NULL;
5477       found_sym = 0;
5478
5479       ALL_BLOCK_SYMBOLS (block, iter, sym)
5480       {
5481         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5482                                    SYMBOL_DOMAIN (sym), domain))
5483           {
5484             int cmp;
5485
5486             cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5487             if (cmp == 0)
5488               {
5489                 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5490                 if (cmp == 0)
5491                   cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5492                                  name_len);
5493               }
5494
5495             if (cmp == 0
5496                 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5497               {
5498                 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5499                   {
5500                     if (SYMBOL_IS_ARGUMENT (sym))
5501                       arg_sym = sym;
5502                     else
5503                       {
5504                         found_sym = 1;
5505                         add_defn_to_vec (obstackp,
5506                                          fixup_symbol_section (sym, objfile),
5507                                          block);
5508                       }
5509                   }
5510               }
5511           }
5512       }
5513
5514       /* NOTE: This really shouldn't be needed for _ada_ symbols.
5515          They aren't parameters, right?  */
5516       if (!found_sym && arg_sym != NULL)
5517         {
5518           add_defn_to_vec (obstackp,
5519                            fixup_symbol_section (arg_sym, objfile),
5520                            block);
5521         }
5522     }
5523 }
5524 \f
5525
5526                                 /* Symbol Completion */
5527
5528 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5529    name in a form that's appropriate for the completion.  The result
5530    does not need to be deallocated, but is only good until the next call.
5531
5532    TEXT_LEN is equal to the length of TEXT.
5533    Perform a wild match if WILD_MATCH is set.
5534    ENCODED should be set if TEXT represents the start of a symbol name
5535    in its encoded form.  */
5536
5537 static const char *
5538 symbol_completion_match (const char *sym_name,
5539                          const char *text, int text_len,
5540                          int wild_match, int encoded)
5541 {
5542   const int verbatim_match = (text[0] == '<');
5543   int match = 0;
5544
5545   if (verbatim_match)
5546     {
5547       /* Strip the leading angle bracket.  */
5548       text = text + 1;
5549       text_len--;
5550     }
5551
5552   /* First, test against the fully qualified name of the symbol.  */
5553
5554   if (strncmp (sym_name, text, text_len) == 0)
5555     match = 1;
5556
5557   if (match && !encoded)
5558     {
5559       /* One needed check before declaring a positive match is to verify
5560          that iff we are doing a verbatim match, the decoded version
5561          of the symbol name starts with '<'.  Otherwise, this symbol name
5562          is not a suitable completion.  */
5563       const char *sym_name_copy = sym_name;
5564       int has_angle_bracket;
5565
5566       sym_name = ada_decode (sym_name);
5567       has_angle_bracket = (sym_name[0] == '<');
5568       match = (has_angle_bracket == verbatim_match);
5569       sym_name = sym_name_copy;
5570     }
5571
5572   if (match && !verbatim_match)
5573     {
5574       /* When doing non-verbatim match, another check that needs to
5575          be done is to verify that the potentially matching symbol name
5576          does not include capital letters, because the ada-mode would
5577          not be able to understand these symbol names without the
5578          angle bracket notation.  */
5579       const char *tmp;
5580
5581       for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5582       if (*tmp != '\0')
5583         match = 0;
5584     }
5585
5586   /* Second: Try wild matching...  */
5587
5588   if (!match && wild_match)
5589     {
5590       /* Since we are doing wild matching, this means that TEXT
5591          may represent an unqualified symbol name.  We therefore must
5592          also compare TEXT against the unqualified name of the symbol.  */
5593       sym_name = ada_unqualified_name (ada_decode (sym_name));
5594
5595       if (strncmp (sym_name, text, text_len) == 0)
5596         match = 1;
5597     }
5598
5599   /* Finally: If we found a mach, prepare the result to return.  */
5600
5601   if (!match)
5602     return NULL;
5603
5604   if (verbatim_match)
5605     sym_name = add_angle_brackets (sym_name);
5606
5607   if (!encoded)
5608     sym_name = ada_decode (sym_name);
5609
5610   return sym_name;
5611 }
5612
5613 DEF_VEC_P (char_ptr);
5614
5615 /* A companion function to ada_make_symbol_completion_list().
5616    Check if SYM_NAME represents a symbol which name would be suitable
5617    to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5618    it is appended at the end of the given string vector SV.
5619
5620    ORIG_TEXT is the string original string from the user command
5621    that needs to be completed.  WORD is the entire command on which
5622    completion should be performed.  These two parameters are used to
5623    determine which part of the symbol name should be added to the
5624    completion vector.
5625    if WILD_MATCH is set, then wild matching is performed.
5626    ENCODED should be set if TEXT represents a symbol name in its
5627    encoded formed (in which case the completion should also be
5628    encoded).  */
5629
5630 static void
5631 symbol_completion_add (VEC(char_ptr) **sv,
5632                        const char *sym_name,
5633                        const char *text, int text_len,
5634                        const char *orig_text, const char *word,
5635                        int wild_match, int encoded)
5636 {
5637   const char *match = symbol_completion_match (sym_name, text, text_len,
5638                                                wild_match, encoded);
5639   char *completion;
5640
5641   if (match == NULL)
5642     return;
5643
5644   /* We found a match, so add the appropriate completion to the given
5645      string vector.  */
5646
5647   if (word == orig_text)
5648     {
5649       completion = xmalloc (strlen (match) + 5);
5650       strcpy (completion, match);
5651     }
5652   else if (word > orig_text)
5653     {
5654       /* Return some portion of sym_name.  */
5655       completion = xmalloc (strlen (match) + 5);
5656       strcpy (completion, match + (word - orig_text));
5657     }
5658   else
5659     {
5660       /* Return some of ORIG_TEXT plus sym_name.  */
5661       completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5662       strncpy (completion, word, orig_text - word);
5663       completion[orig_text - word] = '\0';
5664       strcat (completion, match);
5665     }
5666
5667   VEC_safe_push (char_ptr, *sv, completion);
5668 }
5669
5670 /* An object of this type is passed as the user_data argument to the
5671    expand_partial_symbol_names method.  */
5672 struct add_partial_datum
5673 {
5674   VEC(char_ptr) **completions;
5675   char *text;
5676   int text_len;
5677   char *text0;
5678   char *word;
5679   int wild_match;
5680   int encoded;
5681 };
5682
5683 /* A callback for expand_partial_symbol_names.  */
5684 static int
5685 ada_expand_partial_symbol_name (const struct language_defn *language,
5686                                 const char *name, void *user_data)
5687 {
5688   struct add_partial_datum *data = user_data;
5689   
5690   return symbol_completion_match (name, data->text, data->text_len,
5691                                   data->wild_match, data->encoded) != NULL;
5692 }
5693
5694 /* Return a list of possible symbol names completing TEXT0.  The list
5695    is NULL terminated.  WORD is the entire command on which completion
5696    is made.  */
5697
5698 static char **
5699 ada_make_symbol_completion_list (char *text0, char *word)
5700 {
5701   char *text;
5702   int text_len;
5703   int wild_match;
5704   int encoded;
5705   VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5706   struct symbol *sym;
5707   struct symtab *s;
5708   struct minimal_symbol *msymbol;
5709   struct objfile *objfile;
5710   struct block *b, *surrounding_static_block = 0;
5711   int i;
5712   struct dict_iterator iter;
5713
5714   if (text0[0] == '<')
5715     {
5716       text = xstrdup (text0);
5717       make_cleanup (xfree, text);
5718       text_len = strlen (text);
5719       wild_match = 0;
5720       encoded = 1;
5721     }
5722   else
5723     {
5724       text = xstrdup (ada_encode (text0));
5725       make_cleanup (xfree, text);
5726       text_len = strlen (text);
5727       for (i = 0; i < text_len; i++)
5728         text[i] = tolower (text[i]);
5729
5730       encoded = (strstr (text0, "__") != NULL);
5731       /* If the name contains a ".", then the user is entering a fully
5732          qualified entity name, and the match must not be done in wild
5733          mode.  Similarly, if the user wants to complete what looks like
5734          an encoded name, the match must not be done in wild mode.  */
5735       wild_match = (strchr (text0, '.') == NULL && !encoded);
5736     }
5737
5738   /* First, look at the partial symtab symbols.  */
5739   {
5740     struct add_partial_datum data;
5741
5742     data.completions = &completions;
5743     data.text = text;
5744     data.text_len = text_len;
5745     data.text0 = text0;
5746     data.word = word;
5747     data.wild_match = wild_match;
5748     data.encoded = encoded;
5749     expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5750   }
5751
5752   /* At this point scan through the misc symbol vectors and add each
5753      symbol you find to the list.  Eventually we want to ignore
5754      anything that isn't a text symbol (everything else will be
5755      handled by the psymtab code above).  */
5756
5757   ALL_MSYMBOLS (objfile, msymbol)
5758   {
5759     QUIT;
5760     symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5761                            text, text_len, text0, word, wild_match, encoded);
5762   }
5763
5764   /* Search upwards from currently selected frame (so that we can
5765      complete on local vars.  */
5766
5767   for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5768     {
5769       if (!BLOCK_SUPERBLOCK (b))
5770         surrounding_static_block = b;   /* For elmin of dups */
5771
5772       ALL_BLOCK_SYMBOLS (b, iter, sym)
5773       {
5774         symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5775                                text, text_len, text0, word,
5776                                wild_match, encoded);
5777       }
5778     }
5779
5780   /* Go through the symtabs and check the externs and statics for
5781      symbols which match.  */
5782
5783   ALL_SYMTABS (objfile, s)
5784   {
5785     QUIT;
5786     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5787     ALL_BLOCK_SYMBOLS (b, iter, sym)
5788     {
5789       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5790                              text, text_len, text0, word,
5791                              wild_match, encoded);
5792     }
5793   }
5794
5795   ALL_SYMTABS (objfile, s)
5796   {
5797     QUIT;
5798     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5799     /* Don't do this block twice.  */
5800     if (b == surrounding_static_block)
5801       continue;
5802     ALL_BLOCK_SYMBOLS (b, iter, sym)
5803     {
5804       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5805                              text, text_len, text0, word,
5806                              wild_match, encoded);
5807     }
5808   }
5809
5810   /* Append the closing NULL entry.  */
5811   VEC_safe_push (char_ptr, completions, NULL);
5812
5813   /* Make a copy of the COMPLETIONS VEC before we free it, and then
5814      return the copy.  It's unfortunate that we have to make a copy
5815      of an array that we're about to destroy, but there is nothing much
5816      we can do about it.  Fortunately, it's typically not a very large
5817      array.  */
5818   {
5819     const size_t completions_size = 
5820       VEC_length (char_ptr, completions) * sizeof (char *);
5821     char **result = xmalloc (completions_size);
5822     
5823     memcpy (result, VEC_address (char_ptr, completions), completions_size);
5824
5825     VEC_free (char_ptr, completions);
5826     return result;
5827   }
5828 }
5829
5830                                 /* Field Access */
5831
5832 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5833    for tagged types.  */
5834
5835 static int
5836 ada_is_dispatch_table_ptr_type (struct type *type)
5837 {
5838   char *name;
5839
5840   if (TYPE_CODE (type) != TYPE_CODE_PTR)
5841     return 0;
5842
5843   name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5844   if (name == NULL)
5845     return 0;
5846
5847   return (strcmp (name, "ada__tags__dispatch_table") == 0);
5848 }
5849
5850 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5851    to be invisible to users.  */
5852
5853 int
5854 ada_is_ignored_field (struct type *type, int field_num)
5855 {
5856   if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5857     return 1;
5858    
5859   /* Check the name of that field.  */
5860   {
5861     const char *name = TYPE_FIELD_NAME (type, field_num);
5862
5863     /* Anonymous field names should not be printed.
5864        brobecker/2007-02-20: I don't think this can actually happen
5865        but we don't want to print the value of annonymous fields anyway.  */
5866     if (name == NULL)
5867       return 1;
5868
5869     /* A field named "_parent" is internally generated by GNAT for
5870        tagged types, and should not be printed either.  */
5871     if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5872       return 1;
5873   }
5874
5875   /* If this is the dispatch table of a tagged type, then ignore.  */
5876   if (ada_is_tagged_type (type, 1)
5877       && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5878     return 1;
5879
5880   /* Not a special field, so it should not be ignored.  */
5881   return 0;
5882 }
5883
5884 /* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
5885    pointer or reference type whose ultimate target has a tag field.  */
5886
5887 int
5888 ada_is_tagged_type (struct type *type, int refok)
5889 {
5890   return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5891 }
5892
5893 /* True iff TYPE represents the type of X'Tag */
5894
5895 int
5896 ada_is_tag_type (struct type *type)
5897 {
5898   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5899     return 0;
5900   else
5901     {
5902       const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5903
5904       return (name != NULL
5905               && strcmp (name, "ada__tags__dispatch_table") == 0);
5906     }
5907 }
5908
5909 /* The type of the tag on VAL.  */
5910
5911 struct type *
5912 ada_tag_type (struct value *val)
5913 {
5914   return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5915 }
5916
5917 /* The value of the tag on VAL.  */
5918
5919 struct value *
5920 ada_value_tag (struct value *val)
5921 {
5922   return ada_value_struct_elt (val, "_tag", 0);
5923 }
5924
5925 /* The value of the tag on the object of type TYPE whose contents are
5926    saved at VALADDR, if it is non-null, or is at memory address
5927    ADDRESS.  */
5928
5929 static struct value *
5930 value_tag_from_contents_and_address (struct type *type,
5931                                      const gdb_byte *valaddr,
5932                                      CORE_ADDR address)
5933 {
5934   int tag_byte_offset;
5935   struct type *tag_type;
5936
5937   if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5938                          NULL, NULL, NULL))
5939     {
5940       const gdb_byte *valaddr1 = ((valaddr == NULL)
5941                                   ? NULL
5942                                   : valaddr + tag_byte_offset);
5943       CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5944
5945       return value_from_contents_and_address (tag_type, valaddr1, address1);
5946     }
5947   return NULL;
5948 }
5949
5950 static struct type *
5951 type_from_tag (struct value *tag)
5952 {
5953   const char *type_name = ada_tag_name (tag);
5954
5955   if (type_name != NULL)
5956     return ada_find_any_type (ada_encode (type_name));
5957   return NULL;
5958 }
5959
5960 struct tag_args
5961 {
5962   struct value *tag;
5963   char *name;
5964 };
5965
5966
5967 static int ada_tag_name_1 (void *);
5968 static int ada_tag_name_2 (struct tag_args *);
5969
5970 /* Wrapper function used by ada_tag_name.  Given a struct tag_args*
5971    value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5972    The value stored in ARGS->name is valid until the next call to 
5973    ada_tag_name_1.  */
5974
5975 static int
5976 ada_tag_name_1 (void *args0)
5977 {
5978   struct tag_args *args = (struct tag_args *) args0;
5979   static char name[1024];
5980   char *p;
5981   struct value *val;
5982
5983   args->name = NULL;
5984   val = ada_value_struct_elt (args->tag, "tsd", 1);
5985   if (val == NULL)
5986     return ada_tag_name_2 (args);
5987   val = ada_value_struct_elt (val, "expanded_name", 1);
5988   if (val == NULL)
5989     return 0;
5990   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5991   for (p = name; *p != '\0'; p += 1)
5992     if (isalpha (*p))
5993       *p = tolower (*p);
5994   args->name = name;
5995   return 0;
5996 }
5997
5998 /* Return the "ada__tags__type_specific_data" type.  */
5999
6000 static struct type *
6001 ada_get_tsd_type (struct inferior *inf)
6002 {
6003   struct ada_inferior_data *data = get_ada_inferior_data (inf);
6004
6005   if (data->tsd_type == 0)
6006     data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6007   return data->tsd_type;
6008 }
6009
6010 /* Utility function for ada_tag_name_1 that tries the second
6011    representation for the dispatch table (in which there is no
6012    explicit 'tsd' field in the referent of the tag pointer, and instead
6013    the tsd pointer is stored just before the dispatch table.  */
6014    
6015 static int
6016 ada_tag_name_2 (struct tag_args *args)
6017 {
6018   struct type *info_type;
6019   static char name[1024];
6020   char *p;
6021   struct value *val, *valp;
6022
6023   args->name = NULL;
6024   info_type = ada_get_tsd_type (current_inferior());
6025   if (info_type == NULL)
6026     return 0;
6027   info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6028   valp = value_cast (info_type, args->tag);
6029   if (valp == NULL)
6030     return 0;
6031   val = value_ind (value_ptradd (valp, -1));
6032   if (val == NULL)
6033     return 0;
6034   val = ada_value_struct_elt (val, "expanded_name", 1);
6035   if (val == NULL)
6036     return 0;
6037   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6038   for (p = name; *p != '\0'; p += 1)
6039     if (isalpha (*p))
6040       *p = tolower (*p);
6041   args->name = name;
6042   return 0;
6043 }
6044
6045 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6046    a C string.  */
6047
6048 const char *
6049 ada_tag_name (struct value *tag)
6050 {
6051   struct tag_args args;
6052
6053   if (!ada_is_tag_type (value_type (tag)))
6054     return NULL;
6055   args.tag = tag;
6056   args.name = NULL;
6057   catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6058   return args.name;
6059 }
6060
6061 /* The parent type of TYPE, or NULL if none.  */
6062
6063 struct type *
6064 ada_parent_type (struct type *type)
6065 {
6066   int i;
6067
6068   type = ada_check_typedef (type);
6069
6070   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6071     return NULL;
6072
6073   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6074     if (ada_is_parent_field (type, i))
6075       {
6076         struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6077
6078         /* If the _parent field is a pointer, then dereference it.  */
6079         if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6080           parent_type = TYPE_TARGET_TYPE (parent_type);
6081         /* If there is a parallel XVS type, get the actual base type.  */
6082         parent_type = ada_get_base_type (parent_type);
6083
6084         return ada_check_typedef (parent_type);
6085       }
6086
6087   return NULL;
6088 }
6089
6090 /* True iff field number FIELD_NUM of structure type TYPE contains the
6091    parent-type (inherited) fields of a derived type.  Assumes TYPE is
6092    a structure type with at least FIELD_NUM+1 fields.  */
6093
6094 int
6095 ada_is_parent_field (struct type *type, int field_num)
6096 {
6097   const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6098
6099   return (name != NULL
6100           && (strncmp (name, "PARENT", 6) == 0
6101               || strncmp (name, "_parent", 7) == 0));
6102 }
6103
6104 /* True iff field number FIELD_NUM of structure type TYPE is a
6105    transparent wrapper field (which should be silently traversed when doing
6106    field selection and flattened when printing).  Assumes TYPE is a
6107    structure type with at least FIELD_NUM+1 fields.  Such fields are always
6108    structures.  */
6109
6110 int
6111 ada_is_wrapper_field (struct type *type, int field_num)
6112 {
6113   const char *name = TYPE_FIELD_NAME (type, field_num);
6114
6115   return (name != NULL
6116           && (strncmp (name, "PARENT", 6) == 0
6117               || strcmp (name, "REP") == 0
6118               || strncmp (name, "_parent", 7) == 0
6119               || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6120 }
6121
6122 /* True iff field number FIELD_NUM of structure or union type TYPE
6123    is a variant wrapper.  Assumes TYPE is a structure type with at least
6124    FIELD_NUM+1 fields.  */
6125
6126 int
6127 ada_is_variant_part (struct type *type, int field_num)
6128 {
6129   struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6130
6131   return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6132           || (is_dynamic_field (type, field_num)
6133               && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 
6134                   == TYPE_CODE_UNION)));
6135 }
6136
6137 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6138    whose discriminants are contained in the record type OUTER_TYPE,
6139    returns the type of the controlling discriminant for the variant.
6140    May return NULL if the type could not be found.  */
6141
6142 struct type *
6143 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6144 {
6145   char *name = ada_variant_discrim_name (var_type);
6146
6147   return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6148 }
6149
6150 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6151    valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6152    represents a 'when others' clause; otherwise 0.  */
6153
6154 int
6155 ada_is_others_clause (struct type *type, int field_num)
6156 {
6157   const char *name = TYPE_FIELD_NAME (type, field_num);
6158
6159   return (name != NULL && name[0] == 'O');
6160 }
6161
6162 /* Assuming that TYPE0 is the type of the variant part of a record,
6163    returns the name of the discriminant controlling the variant.
6164    The value is valid until the next call to ada_variant_discrim_name.  */
6165
6166 char *
6167 ada_variant_discrim_name (struct type *type0)
6168 {
6169   static char *result = NULL;
6170   static size_t result_len = 0;
6171   struct type *type;
6172   const char *name;
6173   const char *discrim_end;
6174   const char *discrim_start;
6175
6176   if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6177     type = TYPE_TARGET_TYPE (type0);
6178   else
6179     type = type0;
6180
6181   name = ada_type_name (type);
6182
6183   if (name == NULL || name[0] == '\000')
6184     return "";
6185
6186   for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6187        discrim_end -= 1)
6188     {
6189       if (strncmp (discrim_end, "___XVN", 6) == 0)
6190         break;
6191     }
6192   if (discrim_end == name)
6193     return "";
6194
6195   for (discrim_start = discrim_end; discrim_start != name + 3;
6196        discrim_start -= 1)
6197     {
6198       if (discrim_start == name + 1)
6199         return "";
6200       if ((discrim_start > name + 3
6201            && strncmp (discrim_start - 3, "___", 3) == 0)
6202           || discrim_start[-1] == '.')
6203         break;
6204     }
6205
6206   GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6207   strncpy (result, discrim_start, discrim_end - discrim_start);
6208   result[discrim_end - discrim_start] = '\0';
6209   return result;
6210 }
6211
6212 /* Scan STR for a subtype-encoded number, beginning at position K.
6213    Put the position of the character just past the number scanned in
6214    *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
6215    Return 1 if there was a valid number at the given position, and 0
6216    otherwise.  A "subtype-encoded" number consists of the absolute value
6217    in decimal, followed by the letter 'm' to indicate a negative number.
6218    Assumes 0m does not occur.  */
6219
6220 int
6221 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6222 {
6223   ULONGEST RU;
6224
6225   if (!isdigit (str[k]))
6226     return 0;
6227
6228   /* Do it the hard way so as not to make any assumption about
6229      the relationship of unsigned long (%lu scan format code) and
6230      LONGEST.  */
6231   RU = 0;
6232   while (isdigit (str[k]))
6233     {
6234       RU = RU * 10 + (str[k] - '0');
6235       k += 1;
6236     }
6237
6238   if (str[k] == 'm')
6239     {
6240       if (R != NULL)
6241         *R = (-(LONGEST) (RU - 1)) - 1;
6242       k += 1;
6243     }
6244   else if (R != NULL)
6245     *R = (LONGEST) RU;
6246
6247   /* NOTE on the above: Technically, C does not say what the results of
6248      - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6249      number representable as a LONGEST (although either would probably work
6250      in most implementations).  When RU>0, the locution in the then branch
6251      above is always equivalent to the negative of RU.  */
6252
6253   if (new_k != NULL)
6254     *new_k = k;
6255   return 1;
6256 }
6257
6258 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6259    and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6260    in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
6261
6262 int
6263 ada_in_variant (LONGEST val, struct type *type, int field_num)
6264 {
6265   const char *name = TYPE_FIELD_NAME (type, field_num);
6266   int p;
6267
6268   p = 0;
6269   while (1)
6270     {
6271       switch (name[p])
6272         {
6273         case '\0':
6274           return 0;
6275         case 'S':
6276           {
6277             LONGEST W;
6278
6279             if (!ada_scan_number (name, p + 1, &W, &p))
6280               return 0;
6281             if (val == W)
6282               return 1;
6283             break;
6284           }
6285         case 'R':
6286           {
6287             LONGEST L, U;
6288
6289             if (!ada_scan_number (name, p + 1, &L, &p)
6290                 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6291               return 0;
6292             if (val >= L && val <= U)
6293               return 1;
6294             break;
6295           }
6296         case 'O':
6297           return 1;
6298         default:
6299           return 0;
6300         }
6301     }
6302 }
6303
6304 /* FIXME: Lots of redundancy below.  Try to consolidate.  */
6305
6306 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6307    ARG_TYPE, extract and return the value of one of its (non-static)
6308    fields.  FIELDNO says which field.   Differs from value_primitive_field
6309    only in that it can handle packed values of arbitrary type.  */
6310
6311 static struct value *
6312 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6313                            struct type *arg_type)
6314 {
6315   struct type *type;
6316
6317   arg_type = ada_check_typedef (arg_type);
6318   type = TYPE_FIELD_TYPE (arg_type, fieldno);
6319
6320   /* Handle packed fields.  */
6321
6322   if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6323     {
6324       int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6325       int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6326
6327       return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6328                                              offset + bit_pos / 8,
6329                                              bit_pos % 8, bit_size, type);
6330     }
6331   else
6332     return value_primitive_field (arg1, offset, fieldno, arg_type);
6333 }
6334
6335 /* Find field with name NAME in object of type TYPE.  If found, 
6336    set the following for each argument that is non-null:
6337     - *FIELD_TYPE_P to the field's type; 
6338     - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 
6339       an object of that type;
6340     - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 
6341     - *BIT_SIZE_P to its size in bits if the field is packed, and 
6342       0 otherwise;
6343    If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6344    fields up to but not including the desired field, or by the total
6345    number of fields if not found.   A NULL value of NAME never
6346    matches; the function just counts visible fields in this case.
6347    
6348    Returns 1 if found, 0 otherwise.  */
6349
6350 static int
6351 find_struct_field (char *name, struct type *type, int offset,
6352                    struct type **field_type_p,
6353                    int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6354                    int *index_p)
6355 {
6356   int i;
6357
6358   type = ada_check_typedef (type);
6359
6360   if (field_type_p != NULL)
6361     *field_type_p = NULL;
6362   if (byte_offset_p != NULL)
6363     *byte_offset_p = 0;
6364   if (bit_offset_p != NULL)
6365     *bit_offset_p = 0;
6366   if (bit_size_p != NULL)
6367     *bit_size_p = 0;
6368
6369   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6370     {
6371       int bit_pos = TYPE_FIELD_BITPOS (type, i);
6372       int fld_offset = offset + bit_pos / 8;
6373       char *t_field_name = TYPE_FIELD_NAME (type, i);
6374
6375       if (t_field_name == NULL)
6376         continue;
6377
6378       else if (name != NULL && field_name_match (t_field_name, name))
6379         {
6380           int bit_size = TYPE_FIELD_BITSIZE (type, i);
6381
6382           if (field_type_p != NULL)
6383             *field_type_p = TYPE_FIELD_TYPE (type, i);
6384           if (byte_offset_p != NULL)
6385             *byte_offset_p = fld_offset;
6386           if (bit_offset_p != NULL)
6387             *bit_offset_p = bit_pos % 8;
6388           if (bit_size_p != NULL)
6389             *bit_size_p = bit_size;
6390           return 1;
6391         }
6392       else if (ada_is_wrapper_field (type, i))
6393         {
6394           if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6395                                  field_type_p, byte_offset_p, bit_offset_p,
6396                                  bit_size_p, index_p))
6397             return 1;
6398         }
6399       else if (ada_is_variant_part (type, i))
6400         {
6401           /* PNH: Wait.  Do we ever execute this section, or is ARG always of 
6402              fixed type?? */
6403           int j;
6404           struct type *field_type
6405             = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6406
6407           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6408             {
6409               if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6410                                      fld_offset
6411                                      + TYPE_FIELD_BITPOS (field_type, j) / 8,
6412                                      field_type_p, byte_offset_p,
6413                                      bit_offset_p, bit_size_p, index_p))
6414                 return 1;
6415             }
6416         }
6417       else if (index_p != NULL)
6418         *index_p += 1;
6419     }
6420   return 0;
6421 }
6422
6423 /* Number of user-visible fields in record type TYPE.  */
6424
6425 static int
6426 num_visible_fields (struct type *type)
6427 {
6428   int n;
6429
6430   n = 0;
6431   find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6432   return n;
6433 }
6434
6435 /* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
6436    and search in it assuming it has (class) type TYPE.
6437    If found, return value, else return NULL.
6438
6439    Searches recursively through wrapper fields (e.g., '_parent').  */
6440
6441 static struct value *
6442 ada_search_struct_field (char *name, struct value *arg, int offset,
6443                          struct type *type)
6444 {
6445   int i;
6446
6447   type = ada_check_typedef (type);
6448   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6449     {
6450       char *t_field_name = TYPE_FIELD_NAME (type, i);
6451
6452       if (t_field_name == NULL)
6453         continue;
6454
6455       else if (field_name_match (t_field_name, name))
6456         return ada_value_primitive_field (arg, offset, i, type);
6457
6458       else if (ada_is_wrapper_field (type, i))
6459         {
6460           struct value *v =     /* Do not let indent join lines here.  */
6461             ada_search_struct_field (name, arg,
6462                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6463                                      TYPE_FIELD_TYPE (type, i));
6464
6465           if (v != NULL)
6466             return v;
6467         }
6468
6469       else if (ada_is_variant_part (type, i))
6470         {
6471           /* PNH: Do we ever get here?  See find_struct_field.  */
6472           int j;
6473           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6474                                                                         i));
6475           int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6476
6477           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6478             {
6479               struct value *v = ada_search_struct_field /* Force line
6480                                                            break.  */
6481                 (name, arg,
6482                  var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6483                  TYPE_FIELD_TYPE (field_type, j));
6484
6485               if (v != NULL)
6486                 return v;
6487             }
6488         }
6489     }
6490   return NULL;
6491 }
6492
6493 static struct value *ada_index_struct_field_1 (int *, struct value *,
6494                                                int, struct type *);
6495
6496
6497 /* Return field #INDEX in ARG, where the index is that returned by
6498  * find_struct_field through its INDEX_P argument.  Adjust the address
6499  * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6500  * If found, return value, else return NULL.  */
6501
6502 static struct value *
6503 ada_index_struct_field (int index, struct value *arg, int offset,
6504                         struct type *type)
6505 {
6506   return ada_index_struct_field_1 (&index, arg, offset, type);
6507 }
6508
6509
6510 /* Auxiliary function for ada_index_struct_field.  Like
6511  * ada_index_struct_field, but takes index from *INDEX_P and modifies
6512  * *INDEX_P.  */
6513
6514 static struct value *
6515 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6516                           struct type *type)
6517 {
6518   int i;
6519   type = ada_check_typedef (type);
6520
6521   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6522     {
6523       if (TYPE_FIELD_NAME (type, i) == NULL)
6524         continue;
6525       else if (ada_is_wrapper_field (type, i))
6526         {
6527           struct value *v =     /* Do not let indent join lines here.  */
6528             ada_index_struct_field_1 (index_p, arg,
6529                                       offset + TYPE_FIELD_BITPOS (type, i) / 8,
6530                                       TYPE_FIELD_TYPE (type, i));
6531
6532           if (v != NULL)
6533             return v;
6534         }
6535
6536       else if (ada_is_variant_part (type, i))
6537         {
6538           /* PNH: Do we ever get here?  See ada_search_struct_field,
6539              find_struct_field.  */
6540           error (_("Cannot assign this kind of variant record"));
6541         }
6542       else if (*index_p == 0)
6543         return ada_value_primitive_field (arg, offset, i, type);
6544       else
6545         *index_p -= 1;
6546     }
6547   return NULL;
6548 }
6549
6550 /* Given ARG, a value of type (pointer or reference to a)*
6551    structure/union, extract the component named NAME from the ultimate
6552    target structure/union and return it as a value with its
6553    appropriate type.
6554
6555    The routine searches for NAME among all members of the structure itself
6556    and (recursively) among all members of any wrapper members
6557    (e.g., '_parent').
6558
6559    If NO_ERR, then simply return NULL in case of error, rather than 
6560    calling error.  */
6561
6562 struct value *
6563 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6564 {
6565   struct type *t, *t1;
6566   struct value *v;
6567
6568   v = NULL;
6569   t1 = t = ada_check_typedef (value_type (arg));
6570   if (TYPE_CODE (t) == TYPE_CODE_REF)
6571     {
6572       t1 = TYPE_TARGET_TYPE (t);
6573       if (t1 == NULL)
6574         goto BadValue;
6575       t1 = ada_check_typedef (t1);
6576       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6577         {
6578           arg = coerce_ref (arg);
6579           t = t1;
6580         }
6581     }
6582
6583   while (TYPE_CODE (t) == TYPE_CODE_PTR)
6584     {
6585       t1 = TYPE_TARGET_TYPE (t);
6586       if (t1 == NULL)
6587         goto BadValue;
6588       t1 = ada_check_typedef (t1);
6589       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6590         {
6591           arg = value_ind (arg);
6592           t = t1;
6593         }
6594       else
6595         break;
6596     }
6597
6598   if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6599     goto BadValue;
6600
6601   if (t1 == t)
6602     v = ada_search_struct_field (name, arg, 0, t);
6603   else
6604     {
6605       int bit_offset, bit_size, byte_offset;
6606       struct type *field_type;
6607       CORE_ADDR address;
6608
6609       if (TYPE_CODE (t) == TYPE_CODE_PTR)
6610         address = value_as_address (arg);
6611       else
6612         address = unpack_pointer (t, value_contents (arg));
6613
6614       t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6615       if (find_struct_field (name, t1, 0,
6616                              &field_type, &byte_offset, &bit_offset,
6617                              &bit_size, NULL))
6618         {
6619           if (bit_size != 0)
6620             {
6621               if (TYPE_CODE (t) == TYPE_CODE_REF)
6622                 arg = ada_coerce_ref (arg);
6623               else
6624                 arg = ada_value_ind (arg);
6625               v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6626                                                   bit_offset, bit_size,
6627                                                   field_type);
6628             }
6629           else
6630             v = value_at_lazy (field_type, address + byte_offset);
6631         }
6632     }
6633
6634   if (v != NULL || no_err)
6635     return v;
6636   else
6637     error (_("There is no member named %s."), name);
6638
6639  BadValue:
6640   if (no_err)
6641     return NULL;
6642   else
6643     error (_("Attempt to extract a component of "
6644              "a value that is not a record."));
6645 }
6646
6647 /* Given a type TYPE, look up the type of the component of type named NAME.
6648    If DISPP is non-null, add its byte displacement from the beginning of a
6649    structure (pointed to by a value) of type TYPE to *DISPP (does not
6650    work for packed fields).
6651
6652    Matches any field whose name has NAME as a prefix, possibly
6653    followed by "___".
6654
6655    TYPE can be either a struct or union.  If REFOK, TYPE may also 
6656    be a (pointer or reference)+ to a struct or union, and the
6657    ultimate target type will be searched.
6658
6659    Looks recursively into variant clauses and parent types.
6660
6661    If NOERR is nonzero, return NULL if NAME is not suitably defined or
6662    TYPE is not a type of the right kind.  */
6663
6664 static struct type *
6665 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6666                             int noerr, int *dispp)
6667 {
6668   int i;
6669
6670   if (name == NULL)
6671     goto BadName;
6672
6673   if (refok && type != NULL)
6674     while (1)
6675       {
6676         type = ada_check_typedef (type);
6677         if (TYPE_CODE (type) != TYPE_CODE_PTR
6678             && TYPE_CODE (type) != TYPE_CODE_REF)
6679           break;
6680         type = TYPE_TARGET_TYPE (type);
6681       }
6682
6683   if (type == NULL
6684       || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6685           && TYPE_CODE (type) != TYPE_CODE_UNION))
6686     {
6687       if (noerr)
6688         return NULL;
6689       else
6690         {
6691           target_terminal_ours ();
6692           gdb_flush (gdb_stdout);
6693           if (type == NULL)
6694             error (_("Type (null) is not a structure or union type"));
6695           else
6696             {
6697               /* XXX: type_sprint */
6698               fprintf_unfiltered (gdb_stderr, _("Type "));
6699               type_print (type, "", gdb_stderr, -1);
6700               error (_(" is not a structure or union type"));
6701             }
6702         }
6703     }
6704
6705   type = to_static_fixed_type (type);
6706
6707   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6708     {
6709       char *t_field_name = TYPE_FIELD_NAME (type, i);
6710       struct type *t;
6711       int disp;
6712
6713       if (t_field_name == NULL)
6714         continue;
6715
6716       else if (field_name_match (t_field_name, name))
6717         {
6718           if (dispp != NULL)
6719             *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6720           return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6721         }
6722
6723       else if (ada_is_wrapper_field (type, i))
6724         {
6725           disp = 0;
6726           t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6727                                           0, 1, &disp);
6728           if (t != NULL)
6729             {
6730               if (dispp != NULL)
6731                 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6732               return t;
6733             }
6734         }
6735
6736       else if (ada_is_variant_part (type, i))
6737         {
6738           int j;
6739           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6740                                                                         i));
6741
6742           for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6743             {
6744               /* FIXME pnh 2008/01/26: We check for a field that is
6745                  NOT wrapped in a struct, since the compiler sometimes
6746                  generates these for unchecked variant types.  Revisit
6747                  if the compiler changes this practice.  */
6748               char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6749               disp = 0;
6750               if (v_field_name != NULL 
6751                   && field_name_match (v_field_name, name))
6752                 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6753               else
6754                 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6755                                                                  j),
6756                                                 name, 0, 1, &disp);
6757
6758               if (t != NULL)
6759                 {
6760                   if (dispp != NULL)
6761                     *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6762                   return t;
6763                 }
6764             }
6765         }
6766
6767     }
6768
6769 BadName:
6770   if (!noerr)
6771     {
6772       target_terminal_ours ();
6773       gdb_flush (gdb_stdout);
6774       if (name == NULL)
6775         {
6776           /* XXX: type_sprint */
6777           fprintf_unfiltered (gdb_stderr, _("Type "));
6778           type_print (type, "", gdb_stderr, -1);
6779           error (_(" has no component named <null>"));
6780         }
6781       else
6782         {
6783           /* XXX: type_sprint */
6784           fprintf_unfiltered (gdb_stderr, _("Type "));
6785           type_print (type, "", gdb_stderr, -1);
6786           error (_(" has no component named %s"), name);
6787         }
6788     }
6789
6790   return NULL;
6791 }
6792
6793 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6794    within a value of type OUTER_TYPE, return true iff VAR_TYPE
6795    represents an unchecked union (that is, the variant part of a
6796    record that is named in an Unchecked_Union pragma).  */
6797
6798 static int
6799 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6800 {
6801   char *discrim_name = ada_variant_discrim_name (var_type);
6802
6803   return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) 
6804           == NULL);
6805 }
6806
6807
6808 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6809    within a value of type OUTER_TYPE that is stored in GDB at
6810    OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6811    numbering from 0) is applicable.  Returns -1 if none are.  */
6812
6813 int
6814 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6815                            const gdb_byte *outer_valaddr)
6816 {
6817   int others_clause;
6818   int i;
6819   char *discrim_name = ada_variant_discrim_name (var_type);
6820   struct value *outer;
6821   struct value *discrim;
6822   LONGEST discrim_val;
6823
6824   outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6825   discrim = ada_value_struct_elt (outer, discrim_name, 1);
6826   if (discrim == NULL)
6827     return -1;
6828   discrim_val = value_as_long (discrim);
6829
6830   others_clause = -1;
6831   for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6832     {
6833       if (ada_is_others_clause (var_type, i))
6834         others_clause = i;
6835       else if (ada_in_variant (discrim_val, var_type, i))
6836         return i;
6837     }
6838
6839   return others_clause;
6840 }
6841 \f
6842
6843
6844                                 /* Dynamic-Sized Records */
6845
6846 /* Strategy: The type ostensibly attached to a value with dynamic size
6847    (i.e., a size that is not statically recorded in the debugging
6848    data) does not accurately reflect the size or layout of the value.
6849    Our strategy is to convert these values to values with accurate,
6850    conventional types that are constructed on the fly.  */
6851
6852 /* There is a subtle and tricky problem here.  In general, we cannot
6853    determine the size of dynamic records without its data.  However,
6854    the 'struct value' data structure, which GDB uses to represent
6855    quantities in the inferior process (the target), requires the size
6856    of the type at the time of its allocation in order to reserve space
6857    for GDB's internal copy of the data.  That's why the
6858    'to_fixed_xxx_type' routines take (target) addresses as parameters,
6859    rather than struct value*s.
6860
6861    However, GDB's internal history variables ($1, $2, etc.) are
6862    struct value*s containing internal copies of the data that are not, in
6863    general, the same as the data at their corresponding addresses in
6864    the target.  Fortunately, the types we give to these values are all
6865    conventional, fixed-size types (as per the strategy described
6866    above), so that we don't usually have to perform the
6867    'to_fixed_xxx_type' conversions to look at their values.
6868    Unfortunately, there is one exception: if one of the internal
6869    history variables is an array whose elements are unconstrained
6870    records, then we will need to create distinct fixed types for each
6871    element selected.  */
6872
6873 /* The upshot of all of this is that many routines take a (type, host
6874    address, target address) triple as arguments to represent a value.
6875    The host address, if non-null, is supposed to contain an internal
6876    copy of the relevant data; otherwise, the program is to consult the
6877    target at the target address.  */
6878
6879 /* Assuming that VAL0 represents a pointer value, the result of
6880    dereferencing it.  Differs from value_ind in its treatment of
6881    dynamic-sized types.  */
6882
6883 struct value *
6884 ada_value_ind (struct value *val0)
6885 {
6886   struct value *val = unwrap_value (value_ind (val0));
6887
6888   return ada_to_fixed_value (val);
6889 }
6890
6891 /* The value resulting from dereferencing any "reference to"
6892    qualifiers on VAL0.  */
6893
6894 static struct value *
6895 ada_coerce_ref (struct value *val0)
6896 {
6897   if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6898     {
6899       struct value *val = val0;
6900
6901       val = coerce_ref (val);
6902       val = unwrap_value (val);
6903       return ada_to_fixed_value (val);
6904     }
6905   else
6906     return val0;
6907 }
6908
6909 /* Return OFF rounded upward if necessary to a multiple of
6910    ALIGNMENT (a power of 2).  */
6911
6912 static unsigned int
6913 align_value (unsigned int off, unsigned int alignment)
6914 {
6915   return (off + alignment - 1) & ~(alignment - 1);
6916 }
6917
6918 /* Return the bit alignment required for field #F of template type TYPE.  */
6919
6920 static unsigned int
6921 field_alignment (struct type *type, int f)
6922 {
6923   const char *name = TYPE_FIELD_NAME (type, f);
6924   int len;
6925   int align_offset;
6926
6927   /* The field name should never be null, unless the debugging information
6928      is somehow malformed.  In this case, we assume the field does not
6929      require any alignment.  */
6930   if (name == NULL)
6931     return 1;
6932
6933   len = strlen (name);
6934
6935   if (!isdigit (name[len - 1]))
6936     return 1;
6937
6938   if (isdigit (name[len - 2]))
6939     align_offset = len - 2;
6940   else
6941     align_offset = len - 1;
6942
6943   if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6944     return TARGET_CHAR_BIT;
6945
6946   return atoi (name + align_offset) * TARGET_CHAR_BIT;
6947 }
6948
6949 /* Find a symbol named NAME.  Ignores ambiguity.  */
6950
6951 struct symbol *
6952 ada_find_any_symbol (const char *name)
6953 {
6954   struct symbol *sym;
6955
6956   sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6957   if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6958     return sym;
6959
6960   sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6961   return sym;
6962 }
6963
6964 /* Find a type named NAME.  Ignores ambiguity.  This routine will look
6965    solely for types defined by debug info, it will not search the GDB
6966    primitive types.  */
6967
6968 struct type *
6969 ada_find_any_type (const char *name)
6970 {
6971   struct symbol *sym = ada_find_any_symbol (name);
6972
6973   if (sym != NULL)
6974     return SYMBOL_TYPE (sym);
6975
6976   return NULL;
6977 }
6978
6979 /* Given NAME and an associated BLOCK, search all symbols for
6980    NAME suffixed with  "___XR", which is the ``renaming'' symbol
6981    associated to NAME.  Return this symbol if found, return
6982    NULL otherwise.  */
6983
6984 struct symbol *
6985 ada_find_renaming_symbol (const char *name, struct block *block)
6986 {
6987   struct symbol *sym;
6988
6989   sym = find_old_style_renaming_symbol (name, block);
6990
6991   if (sym != NULL)
6992     return sym;
6993
6994   /* Not right yet.  FIXME pnh 7/20/2007.  */
6995   sym = ada_find_any_symbol (name);
6996   if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6997     return sym;
6998   else
6999     return NULL;
7000 }
7001
7002 static struct symbol *
7003 find_old_style_renaming_symbol (const char *name, struct block *block)
7004 {
7005   const struct symbol *function_sym = block_linkage_function (block);
7006   char *rename;
7007
7008   if (function_sym != NULL)
7009     {
7010       /* If the symbol is defined inside a function, NAME is not fully
7011          qualified.  This means we need to prepend the function name
7012          as well as adding the ``___XR'' suffix to build the name of
7013          the associated renaming symbol.  */
7014       char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7015       /* Function names sometimes contain suffixes used
7016          for instance to qualify nested subprograms.  When building
7017          the XR type name, we need to make sure that this suffix is
7018          not included.  So do not include any suffix in the function
7019          name length below.  */
7020       int function_name_len = ada_name_prefix_len (function_name);
7021       const int rename_len = function_name_len + 2      /*  "__" */
7022         + strlen (name) + 6 /* "___XR\0" */ ;
7023
7024       /* Strip the suffix if necessary.  */
7025       ada_remove_trailing_digits (function_name, &function_name_len);
7026       ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7027       ada_remove_Xbn_suffix (function_name, &function_name_len);
7028
7029       /* Library-level functions are a special case, as GNAT adds
7030          a ``_ada_'' prefix to the function name to avoid namespace
7031          pollution.  However, the renaming symbols themselves do not
7032          have this prefix, so we need to skip this prefix if present.  */
7033       if (function_name_len > 5 /* "_ada_" */
7034           && strstr (function_name, "_ada_") == function_name)
7035         {
7036           function_name += 5;
7037           function_name_len -= 5;
7038         }
7039
7040       rename = (char *) alloca (rename_len * sizeof (char));
7041       strncpy (rename, function_name, function_name_len);
7042       xsnprintf (rename + function_name_len, rename_len - function_name_len,
7043                  "__%s___XR", name);
7044     }
7045   else
7046     {
7047       const int rename_len = strlen (name) + 6;
7048
7049       rename = (char *) alloca (rename_len * sizeof (char));
7050       xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7051     }
7052
7053   return ada_find_any_symbol (rename);
7054 }
7055
7056 /* Because of GNAT encoding conventions, several GDB symbols may match a
7057    given type name.  If the type denoted by TYPE0 is to be preferred to
7058    that of TYPE1 for purposes of type printing, return non-zero;
7059    otherwise return 0.  */
7060
7061 int
7062 ada_prefer_type (struct type *type0, struct type *type1)
7063 {
7064   if (type1 == NULL)
7065     return 1;
7066   else if (type0 == NULL)
7067     return 0;
7068   else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7069     return 1;
7070   else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7071     return 0;
7072   else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7073     return 1;
7074   else if (ada_is_constrained_packed_array_type (type0))
7075     return 1;
7076   else if (ada_is_array_descriptor_type (type0)
7077            && !ada_is_array_descriptor_type (type1))
7078     return 1;
7079   else
7080     {
7081       const char *type0_name = type_name_no_tag (type0);
7082       const char *type1_name = type_name_no_tag (type1);
7083
7084       if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7085           && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7086         return 1;
7087     }
7088   return 0;
7089 }
7090
7091 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7092    null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
7093
7094 char *
7095 ada_type_name (struct type *type)
7096 {
7097   if (type == NULL)
7098     return NULL;
7099   else if (TYPE_NAME (type) != NULL)
7100     return TYPE_NAME (type);
7101   else
7102     return TYPE_TAG_NAME (type);
7103 }
7104
7105 /* Search the list of "descriptive" types associated to TYPE for a type
7106    whose name is NAME.  */
7107
7108 static struct type *
7109 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7110 {
7111   struct type *result;
7112
7113   /* If there no descriptive-type info, then there is no parallel type
7114      to be found.  */
7115   if (!HAVE_GNAT_AUX_INFO (type))
7116     return NULL;
7117
7118   result = TYPE_DESCRIPTIVE_TYPE (type);
7119   while (result != NULL)
7120     {
7121       char *result_name = ada_type_name (result);
7122
7123       if (result_name == NULL)
7124         {
7125           warning (_("unexpected null name on descriptive type"));
7126           return NULL;
7127         }
7128
7129       /* If the names match, stop.  */
7130       if (strcmp (result_name, name) == 0)
7131         break;
7132
7133       /* Otherwise, look at the next item on the list, if any.  */
7134       if (HAVE_GNAT_AUX_INFO (result))
7135         result = TYPE_DESCRIPTIVE_TYPE (result);
7136       else
7137         result = NULL;
7138     }
7139
7140   /* If we didn't find a match, see whether this is a packed array.  With
7141      older compilers, the descriptive type information is either absent or
7142      irrelevant when it comes to packed arrays so the above lookup fails.
7143      Fall back to using a parallel lookup by name in this case.  */
7144   if (result == NULL && ada_is_constrained_packed_array_type (type))
7145     return ada_find_any_type (name);
7146
7147   return result;
7148 }
7149
7150 /* Find a parallel type to TYPE with the specified NAME, using the
7151    descriptive type taken from the debugging information, if available,
7152    and otherwise using the (slower) name-based method.  */
7153
7154 static struct type *
7155 ada_find_parallel_type_with_name (struct type *type, const char *name)
7156 {
7157   struct type *result = NULL;
7158
7159   if (HAVE_GNAT_AUX_INFO (type))
7160     result = find_parallel_type_by_descriptive_type (type, name);
7161   else
7162     result = ada_find_any_type (name);
7163
7164   return result;
7165 }
7166
7167 /* Same as above, but specify the name of the parallel type by appending
7168    SUFFIX to the name of TYPE.  */
7169
7170 struct type *
7171 ada_find_parallel_type (struct type *type, const char *suffix)
7172 {
7173   char *name, *typename = ada_type_name (type);
7174   int len;
7175
7176   if (typename == NULL)
7177     return NULL;
7178
7179   len = strlen (typename);
7180
7181   name = (char *) alloca (len + strlen (suffix) + 1);
7182
7183   strcpy (name, typename);
7184   strcpy (name + len, suffix);
7185
7186   return ada_find_parallel_type_with_name (type, name);
7187 }
7188
7189 /* If TYPE is a variable-size record type, return the corresponding template
7190    type describing its fields.  Otherwise, return NULL.  */
7191
7192 static struct type *
7193 dynamic_template_type (struct type *type)
7194 {
7195   type = ada_check_typedef (type);
7196
7197   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7198       || ada_type_name (type) == NULL)
7199     return NULL;
7200   else
7201     {
7202       int len = strlen (ada_type_name (type));
7203
7204       if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7205         return type;
7206       else
7207         return ada_find_parallel_type (type, "___XVE");
7208     }
7209 }
7210
7211 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7212    non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
7213
7214 static int
7215 is_dynamic_field (struct type *templ_type, int field_num)
7216 {
7217   const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7218
7219   return name != NULL
7220     && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7221     && strstr (name, "___XVL") != NULL;
7222 }
7223
7224 /* The index of the variant field of TYPE, or -1 if TYPE does not
7225    represent a variant record type.  */
7226
7227 static int
7228 variant_field_index (struct type *type)
7229 {
7230   int f;
7231
7232   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7233     return -1;
7234
7235   for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7236     {
7237       if (ada_is_variant_part (type, f))
7238         return f;
7239     }
7240   return -1;
7241 }
7242
7243 /* A record type with no fields.  */
7244
7245 static struct type *
7246 empty_record (struct type *template)
7247 {
7248   struct type *type = alloc_type_copy (template);
7249
7250   TYPE_CODE (type) = TYPE_CODE_STRUCT;
7251   TYPE_NFIELDS (type) = 0;
7252   TYPE_FIELDS (type) = NULL;
7253   INIT_CPLUS_SPECIFIC (type);
7254   TYPE_NAME (type) = "<empty>";
7255   TYPE_TAG_NAME (type) = NULL;
7256   TYPE_LENGTH (type) = 0;
7257   return type;
7258 }
7259
7260 /* An ordinary record type (with fixed-length fields) that describes
7261    the value of type TYPE at VALADDR or ADDRESS (see comments at
7262    the beginning of this section) VAL according to GNAT conventions.
7263    DVAL0 should describe the (portion of a) record that contains any
7264    necessary discriminants.  It should be NULL if value_type (VAL) is
7265    an outer-level type (i.e., as opposed to a branch of a variant.)  A
7266    variant field (unless unchecked) is replaced by a particular branch
7267    of the variant.
7268
7269    If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7270    length are not statically known are discarded.  As a consequence,
7271    VALADDR, ADDRESS and DVAL0 are ignored.
7272
7273    NOTE: Limitations: For now, we assume that dynamic fields and
7274    variants occupy whole numbers of bytes.  However, they need not be
7275    byte-aligned.  */
7276
7277 struct type *
7278 ada_template_to_fixed_record_type_1 (struct type *type,
7279                                      const gdb_byte *valaddr,
7280                                      CORE_ADDR address, struct value *dval0,
7281                                      int keep_dynamic_fields)
7282 {
7283   struct value *mark = value_mark ();
7284   struct value *dval;
7285   struct type *rtype;
7286   int nfields, bit_len;
7287   int variant_field;
7288   long off;
7289   int fld_bit_len;
7290   int f;
7291
7292   /* Compute the number of fields in this record type that are going
7293      to be processed: unless keep_dynamic_fields, this includes only
7294      fields whose position and length are static will be processed.  */
7295   if (keep_dynamic_fields)
7296     nfields = TYPE_NFIELDS (type);
7297   else
7298     {
7299       nfields = 0;
7300       while (nfields < TYPE_NFIELDS (type)
7301              && !ada_is_variant_part (type, nfields)
7302              && !is_dynamic_field (type, nfields))
7303         nfields++;
7304     }
7305
7306   rtype = alloc_type_copy (type);
7307   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7308   INIT_CPLUS_SPECIFIC (rtype);
7309   TYPE_NFIELDS (rtype) = nfields;
7310   TYPE_FIELDS (rtype) = (struct field *)
7311     TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7312   memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7313   TYPE_NAME (rtype) = ada_type_name (type);
7314   TYPE_TAG_NAME (rtype) = NULL;
7315   TYPE_FIXED_INSTANCE (rtype) = 1;
7316
7317   off = 0;
7318   bit_len = 0;
7319   variant_field = -1;
7320
7321   for (f = 0; f < nfields; f += 1)
7322     {
7323       off = align_value (off, field_alignment (type, f))
7324         + TYPE_FIELD_BITPOS (type, f);
7325       TYPE_FIELD_BITPOS (rtype, f) = off;
7326       TYPE_FIELD_BITSIZE (rtype, f) = 0;
7327
7328       if (ada_is_variant_part (type, f))
7329         {
7330           variant_field = f;
7331           fld_bit_len = 0;
7332         }
7333       else if (is_dynamic_field (type, f))
7334         {
7335           const gdb_byte *field_valaddr = valaddr;
7336           CORE_ADDR field_address = address;
7337           struct type *field_type =
7338             TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7339
7340           if (dval0 == NULL)
7341             {
7342               /* rtype's length is computed based on the run-time
7343                  value of discriminants.  If the discriminants are not
7344                  initialized, the type size may be completely bogus and
7345                  GDB may fail to allocate a value for it.  So check the
7346                  size first before creating the value.  */
7347               check_size (rtype);
7348               dval = value_from_contents_and_address (rtype, valaddr, address);
7349             }
7350           else
7351             dval = dval0;
7352
7353           /* If the type referenced by this field is an aligner type, we need
7354              to unwrap that aligner type, because its size might not be set.
7355              Keeping the aligner type would cause us to compute the wrong
7356              size for this field, impacting the offset of the all the fields
7357              that follow this one.  */
7358           if (ada_is_aligner_type (field_type))
7359             {
7360               long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7361
7362               field_valaddr = cond_offset_host (field_valaddr, field_offset);
7363               field_address = cond_offset_target (field_address, field_offset);
7364               field_type = ada_aligned_type (field_type);
7365             }
7366
7367           field_valaddr = cond_offset_host (field_valaddr,
7368                                             off / TARGET_CHAR_BIT);
7369           field_address = cond_offset_target (field_address,
7370                                               off / TARGET_CHAR_BIT);
7371
7372           /* Get the fixed type of the field.  Note that, in this case,
7373              we do not want to get the real type out of the tag: if
7374              the current field is the parent part of a tagged record,
7375              we will get the tag of the object.  Clearly wrong: the real
7376              type of the parent is not the real type of the child.  We
7377              would end up in an infinite loop.  */
7378           field_type = ada_get_base_type (field_type);
7379           field_type = ada_to_fixed_type (field_type, field_valaddr,
7380                                           field_address, dval, 0);
7381           /* If the field size is already larger than the maximum
7382              object size, then the record itself will necessarily
7383              be larger than the maximum object size.  We need to make
7384              this check now, because the size might be so ridiculously
7385              large (due to an uninitialized variable in the inferior)
7386              that it would cause an overflow when adding it to the
7387              record size.  */
7388           check_size (field_type);
7389
7390           TYPE_FIELD_TYPE (rtype, f) = field_type;
7391           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7392           /* The multiplication can potentially overflow.  But because
7393              the field length has been size-checked just above, and
7394              assuming that the maximum size is a reasonable value,
7395              an overflow should not happen in practice.  So rather than
7396              adding overflow recovery code to this already complex code,
7397              we just assume that it's not going to happen.  */
7398           fld_bit_len =
7399             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7400         }
7401       else
7402         {
7403           struct type *field_type = TYPE_FIELD_TYPE (type, f);
7404
7405           /* If our field is a typedef type (most likely a typedef of
7406              a fat pointer, encoding an array access), then we need to
7407              look at its target type to determine its characteristics.
7408              In particular, we would miscompute the field size if we took
7409              the size of the typedef (zero), instead of the size of
7410              the target type.  */
7411           if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7412             field_type = ada_typedef_target_type (field_type);
7413
7414           TYPE_FIELD_TYPE (rtype, f) = field_type;
7415           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7416           if (TYPE_FIELD_BITSIZE (type, f) > 0)
7417             fld_bit_len =
7418               TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7419           else
7420             fld_bit_len =
7421               TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7422         }
7423       if (off + fld_bit_len > bit_len)
7424         bit_len = off + fld_bit_len;
7425       off += fld_bit_len;
7426       TYPE_LENGTH (rtype) =
7427         align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7428     }
7429
7430   /* We handle the variant part, if any, at the end because of certain
7431      odd cases in which it is re-ordered so as NOT to be the last field of
7432      the record.  This can happen in the presence of representation
7433      clauses.  */
7434   if (variant_field >= 0)
7435     {
7436       struct type *branch_type;
7437
7438       off = TYPE_FIELD_BITPOS (rtype, variant_field);
7439
7440       if (dval0 == NULL)
7441         dval = value_from_contents_and_address (rtype, valaddr, address);
7442       else
7443         dval = dval0;
7444
7445       branch_type =
7446         to_fixed_variant_branch_type
7447         (TYPE_FIELD_TYPE (type, variant_field),
7448          cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7449          cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7450       if (branch_type == NULL)
7451         {
7452           for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7453             TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7454           TYPE_NFIELDS (rtype) -= 1;
7455         }
7456       else
7457         {
7458           TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7459           TYPE_FIELD_NAME (rtype, variant_field) = "S";
7460           fld_bit_len =
7461             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7462             TARGET_CHAR_BIT;
7463           if (off + fld_bit_len > bit_len)
7464             bit_len = off + fld_bit_len;
7465           TYPE_LENGTH (rtype) =
7466             align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7467         }
7468     }
7469
7470   /* According to exp_dbug.ads, the size of TYPE for variable-size records
7471      should contain the alignment of that record, which should be a strictly
7472      positive value.  If null or negative, then something is wrong, most
7473      probably in the debug info.  In that case, we don't round up the size
7474      of the resulting type.  If this record is not part of another structure,
7475      the current RTYPE length might be good enough for our purposes.  */
7476   if (TYPE_LENGTH (type) <= 0)
7477     {
7478       if (TYPE_NAME (rtype))
7479         warning (_("Invalid type size for `%s' detected: %d."),
7480                  TYPE_NAME (rtype), TYPE_LENGTH (type));
7481       else
7482         warning (_("Invalid type size for <unnamed> detected: %d."),
7483                  TYPE_LENGTH (type));
7484     }
7485   else
7486     {
7487       TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7488                                          TYPE_LENGTH (type));
7489     }
7490
7491   value_free_to_mark (mark);
7492   if (TYPE_LENGTH (rtype) > varsize_limit)
7493     error (_("record type with dynamic size is larger than varsize-limit"));
7494   return rtype;
7495 }
7496
7497 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7498    of 1.  */
7499
7500 static struct type *
7501 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7502                                CORE_ADDR address, struct value *dval0)
7503 {
7504   return ada_template_to_fixed_record_type_1 (type, valaddr,
7505                                               address, dval0, 1);
7506 }
7507
7508 /* An ordinary record type in which ___XVL-convention fields and
7509    ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7510    static approximations, containing all possible fields.  Uses
7511    no runtime values.  Useless for use in values, but that's OK,
7512    since the results are used only for type determinations.   Works on both
7513    structs and unions.  Representation note: to save space, we memorize
7514    the result of this function in the TYPE_TARGET_TYPE of the
7515    template type.  */
7516
7517 static struct type *
7518 template_to_static_fixed_type (struct type *type0)
7519 {
7520   struct type *type;
7521   int nfields;
7522   int f;
7523
7524   if (TYPE_TARGET_TYPE (type0) != NULL)
7525     return TYPE_TARGET_TYPE (type0);
7526
7527   nfields = TYPE_NFIELDS (type0);
7528   type = type0;
7529
7530   for (f = 0; f < nfields; f += 1)
7531     {
7532       struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7533       struct type *new_type;
7534
7535       if (is_dynamic_field (type0, f))
7536         new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7537       else
7538         new_type = static_unwrap_type (field_type);
7539       if (type == type0 && new_type != field_type)
7540         {
7541           TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7542           TYPE_CODE (type) = TYPE_CODE (type0);
7543           INIT_CPLUS_SPECIFIC (type);
7544           TYPE_NFIELDS (type) = nfields;
7545           TYPE_FIELDS (type) = (struct field *)
7546             TYPE_ALLOC (type, nfields * sizeof (struct field));
7547           memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7548                   sizeof (struct field) * nfields);
7549           TYPE_NAME (type) = ada_type_name (type0);
7550           TYPE_TAG_NAME (type) = NULL;
7551           TYPE_FIXED_INSTANCE (type) = 1;
7552           TYPE_LENGTH (type) = 0;
7553         }
7554       TYPE_FIELD_TYPE (type, f) = new_type;
7555       TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7556     }
7557   return type;
7558 }
7559
7560 /* Given an object of type TYPE whose contents are at VALADDR and
7561    whose address in memory is ADDRESS, returns a revision of TYPE,
7562    which should be a non-dynamic-sized record, in which the variant
7563    part, if any, is replaced with the appropriate branch.  Looks
7564    for discriminant values in DVAL0, which can be NULL if the record
7565    contains the necessary discriminant values.  */
7566
7567 static struct type *
7568 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7569                                    CORE_ADDR address, struct value *dval0)
7570 {
7571   struct value *mark = value_mark ();
7572   struct value *dval;
7573   struct type *rtype;
7574   struct type *branch_type;
7575   int nfields = TYPE_NFIELDS (type);
7576   int variant_field = variant_field_index (type);
7577
7578   if (variant_field == -1)
7579     return type;
7580
7581   if (dval0 == NULL)
7582     dval = value_from_contents_and_address (type, valaddr, address);
7583   else
7584     dval = dval0;
7585
7586   rtype = alloc_type_copy (type);
7587   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7588   INIT_CPLUS_SPECIFIC (rtype);
7589   TYPE_NFIELDS (rtype) = nfields;
7590   TYPE_FIELDS (rtype) =
7591     (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7592   memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7593           sizeof (struct field) * nfields);
7594   TYPE_NAME (rtype) = ada_type_name (type);
7595   TYPE_TAG_NAME (rtype) = NULL;
7596   TYPE_FIXED_INSTANCE (rtype) = 1;
7597   TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7598
7599   branch_type = to_fixed_variant_branch_type
7600     (TYPE_FIELD_TYPE (type, variant_field),
7601      cond_offset_host (valaddr,
7602                        TYPE_FIELD_BITPOS (type, variant_field)
7603                        / TARGET_CHAR_BIT),
7604      cond_offset_target (address,
7605                          TYPE_FIELD_BITPOS (type, variant_field)
7606                          / TARGET_CHAR_BIT), dval);
7607   if (branch_type == NULL)
7608     {
7609       int f;
7610
7611       for (f = variant_field + 1; f < nfields; f += 1)
7612         TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7613       TYPE_NFIELDS (rtype) -= 1;
7614     }
7615   else
7616     {
7617       TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7618       TYPE_FIELD_NAME (rtype, variant_field) = "S";
7619       TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7620       TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7621     }
7622   TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7623
7624   value_free_to_mark (mark);
7625   return rtype;
7626 }
7627
7628 /* An ordinary record type (with fixed-length fields) that describes
7629    the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7630    beginning of this section].   Any necessary discriminants' values
7631    should be in DVAL, a record value; it may be NULL if the object
7632    at ADDR itself contains any necessary discriminant values.
7633    Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7634    values from the record are needed.  Except in the case that DVAL,
7635    VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7636    unchecked) is replaced by a particular branch of the variant.
7637
7638    NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7639    is questionable and may be removed.  It can arise during the
7640    processing of an unconstrained-array-of-record type where all the
7641    variant branches have exactly the same size.  This is because in
7642    such cases, the compiler does not bother to use the XVS convention
7643    when encoding the record.  I am currently dubious of this
7644    shortcut and suspect the compiler should be altered.  FIXME.  */
7645
7646 static struct type *
7647 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7648                       CORE_ADDR address, struct value *dval)
7649 {
7650   struct type *templ_type;
7651
7652   if (TYPE_FIXED_INSTANCE (type0))
7653     return type0;
7654
7655   templ_type = dynamic_template_type (type0);
7656
7657   if (templ_type != NULL)
7658     return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7659   else if (variant_field_index (type0) >= 0)
7660     {
7661       if (dval == NULL && valaddr == NULL && address == 0)
7662         return type0;
7663       return to_record_with_fixed_variant_part (type0, valaddr, address,
7664                                                 dval);
7665     }
7666   else
7667     {
7668       TYPE_FIXED_INSTANCE (type0) = 1;
7669       return type0;
7670     }
7671
7672 }
7673
7674 /* An ordinary record type (with fixed-length fields) that describes
7675    the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7676    union type.  Any necessary discriminants' values should be in DVAL,
7677    a record value.  That is, this routine selects the appropriate
7678    branch of the union at ADDR according to the discriminant value
7679    indicated in the union's type name.  Returns VAR_TYPE0 itself if
7680    it represents a variant subject to a pragma Unchecked_Union.  */
7681
7682 static struct type *
7683 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7684                               CORE_ADDR address, struct value *dval)
7685 {
7686   int which;
7687   struct type *templ_type;
7688   struct type *var_type;
7689
7690   if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7691     var_type = TYPE_TARGET_TYPE (var_type0);
7692   else
7693     var_type = var_type0;
7694
7695   templ_type = ada_find_parallel_type (var_type, "___XVU");
7696
7697   if (templ_type != NULL)
7698     var_type = templ_type;
7699
7700   if (is_unchecked_variant (var_type, value_type (dval)))
7701       return var_type0;
7702   which =
7703     ada_which_variant_applies (var_type,
7704                                value_type (dval), value_contents (dval));
7705
7706   if (which < 0)
7707     return empty_record (var_type);
7708   else if (is_dynamic_field (var_type, which))
7709     return to_fixed_record_type
7710       (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7711        valaddr, address, dval);
7712   else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7713     return
7714       to_fixed_record_type
7715       (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7716   else
7717     return TYPE_FIELD_TYPE (var_type, which);
7718 }
7719
7720 /* Assuming that TYPE0 is an array type describing the type of a value
7721    at ADDR, and that DVAL describes a record containing any
7722    discriminants used in TYPE0, returns a type for the value that
7723    contains no dynamic components (that is, no components whose sizes
7724    are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
7725    true, gives an error message if the resulting type's size is over
7726    varsize_limit.  */
7727
7728 static struct type *
7729 to_fixed_array_type (struct type *type0, struct value *dval,
7730                      int ignore_too_big)
7731 {
7732   struct type *index_type_desc;
7733   struct type *result;
7734   int constrained_packed_array_p;
7735
7736   type0 = ada_check_typedef (type0);
7737   if (TYPE_FIXED_INSTANCE (type0))
7738     return type0;
7739
7740   constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7741   if (constrained_packed_array_p)
7742     type0 = decode_constrained_packed_array_type (type0);
7743
7744   index_type_desc = ada_find_parallel_type (type0, "___XA");
7745   ada_fixup_array_indexes_type (index_type_desc);
7746   if (index_type_desc == NULL)
7747     {
7748       struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7749
7750       /* NOTE: elt_type---the fixed version of elt_type0---should never
7751          depend on the contents of the array in properly constructed
7752          debugging data.  */
7753       /* Create a fixed version of the array element type.
7754          We're not providing the address of an element here,
7755          and thus the actual object value cannot be inspected to do
7756          the conversion.  This should not be a problem, since arrays of
7757          unconstrained objects are not allowed.  In particular, all
7758          the elements of an array of a tagged type should all be of
7759          the same type specified in the debugging info.  No need to
7760          consult the object tag.  */
7761       struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7762
7763       /* Make sure we always create a new array type when dealing with
7764          packed array types, since we're going to fix-up the array
7765          type length and element bitsize a little further down.  */
7766       if (elt_type0 == elt_type && !constrained_packed_array_p)
7767         result = type0;
7768       else
7769         result = create_array_type (alloc_type_copy (type0),
7770                                     elt_type, TYPE_INDEX_TYPE (type0));
7771     }
7772   else
7773     {
7774       int i;
7775       struct type *elt_type0;
7776
7777       elt_type0 = type0;
7778       for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7779         elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7780
7781       /* NOTE: result---the fixed version of elt_type0---should never
7782          depend on the contents of the array in properly constructed
7783          debugging data.  */
7784       /* Create a fixed version of the array element type.
7785          We're not providing the address of an element here,
7786          and thus the actual object value cannot be inspected to do
7787          the conversion.  This should not be a problem, since arrays of
7788          unconstrained objects are not allowed.  In particular, all
7789          the elements of an array of a tagged type should all be of
7790          the same type specified in the debugging info.  No need to
7791          consult the object tag.  */
7792       result =
7793         ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7794
7795       elt_type0 = type0;
7796       for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7797         {
7798           struct type *range_type =
7799             to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7800
7801           result = create_array_type (alloc_type_copy (elt_type0),
7802                                       result, range_type);
7803           elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7804         }
7805       if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7806         error (_("array type with dynamic size is larger than varsize-limit"));
7807     }
7808
7809   if (constrained_packed_array_p)
7810     {
7811       /* So far, the resulting type has been created as if the original
7812          type was a regular (non-packed) array type.  As a result, the
7813          bitsize of the array elements needs to be set again, and the array
7814          length needs to be recomputed based on that bitsize.  */
7815       int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7816       int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7817
7818       TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7819       TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7820       if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7821         TYPE_LENGTH (result)++;
7822     }
7823
7824   TYPE_FIXED_INSTANCE (result) = 1;
7825   return result;
7826 }
7827
7828
7829 /* A standard type (containing no dynamically sized components)
7830    corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7831    DVAL describes a record containing any discriminants used in TYPE0,
7832    and may be NULL if there are none, or if the object of type TYPE at
7833    ADDRESS or in VALADDR contains these discriminants.
7834    
7835    If CHECK_TAG is not null, in the case of tagged types, this function
7836    attempts to locate the object's tag and use it to compute the actual
7837    type.  However, when ADDRESS is null, we cannot use it to determine the
7838    location of the tag, and therefore compute the tagged type's actual type.
7839    So we return the tagged type without consulting the tag.  */
7840    
7841 static struct type *
7842 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7843                    CORE_ADDR address, struct value *dval, int check_tag)
7844 {
7845   type = ada_check_typedef (type);
7846   switch (TYPE_CODE (type))
7847     {
7848     default:
7849       return type;
7850     case TYPE_CODE_STRUCT:
7851       {
7852         struct type *static_type = to_static_fixed_type (type);
7853         struct type *fixed_record_type =
7854           to_fixed_record_type (type, valaddr, address, NULL);
7855
7856         /* If STATIC_TYPE is a tagged type and we know the object's address,
7857            then we can determine its tag, and compute the object's actual
7858            type from there.  Note that we have to use the fixed record
7859            type (the parent part of the record may have dynamic fields
7860            and the way the location of _tag is expressed may depend on
7861            them).  */
7862
7863         if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7864           {
7865             struct type *real_type =
7866               type_from_tag (value_tag_from_contents_and_address
7867                              (fixed_record_type,
7868                               valaddr,
7869                               address));
7870
7871             if (real_type != NULL)
7872               return to_fixed_record_type (real_type, valaddr, address, NULL);
7873           }
7874
7875         /* Check to see if there is a parallel ___XVZ variable.
7876            If there is, then it provides the actual size of our type.  */
7877         else if (ada_type_name (fixed_record_type) != NULL)
7878           {
7879             char *name = ada_type_name (fixed_record_type);
7880             char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7881             int xvz_found = 0;
7882             LONGEST size;
7883
7884             xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7885             size = get_int_var_value (xvz_name, &xvz_found);
7886             if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7887               {
7888                 fixed_record_type = copy_type (fixed_record_type);
7889                 TYPE_LENGTH (fixed_record_type) = size;
7890
7891                 /* The FIXED_RECORD_TYPE may have be a stub.  We have
7892                    observed this when the debugging info is STABS, and
7893                    apparently it is something that is hard to fix.
7894
7895                    In practice, we don't need the actual type definition
7896                    at all, because the presence of the XVZ variable allows us
7897                    to assume that there must be a XVS type as well, which we
7898                    should be able to use later, when we need the actual type
7899                    definition.
7900
7901                    In the meantime, pretend that the "fixed" type we are
7902                    returning is NOT a stub, because this can cause trouble
7903                    when using this type to create new types targeting it.
7904                    Indeed, the associated creation routines often check
7905                    whether the target type is a stub and will try to replace
7906                    it, thus using a type with the wrong size.  This, in turn,
7907                    might cause the new type to have the wrong size too.
7908                    Consider the case of an array, for instance, where the size
7909                    of the array is computed from the number of elements in
7910                    our array multiplied by the size of its element.  */
7911                 TYPE_STUB (fixed_record_type) = 0;
7912               }
7913           }
7914         return fixed_record_type;
7915       }
7916     case TYPE_CODE_ARRAY:
7917       return to_fixed_array_type (type, dval, 1);
7918     case TYPE_CODE_UNION:
7919       if (dval == NULL)
7920         return type;
7921       else
7922         return to_fixed_variant_branch_type (type, valaddr, address, dval);
7923     }
7924 }
7925
7926 /* The same as ada_to_fixed_type_1, except that it preserves the type
7927    if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7928
7929    The typedef layer needs be preserved in order to differentiate between
7930    arrays and array pointers when both types are implemented using the same
7931    fat pointer.  In the array pointer case, the pointer is encoded as
7932    a typedef of the pointer type.  For instance, considering:
7933
7934           type String_Access is access String;
7935           S1 : String_Access := null;
7936
7937    To the debugger, S1 is defined as a typedef of type String.  But
7938    to the user, it is a pointer.  So if the user tries to print S1,
7939    we should not dereference the array, but print the array address
7940    instead.
7941
7942    If we didn't preserve the typedef layer, we would lose the fact that
7943    the type is to be presented as a pointer (needs de-reference before
7944    being printed).  And we would also use the source-level type name.  */
7945
7946 struct type *
7947 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7948                    CORE_ADDR address, struct value *dval, int check_tag)
7949
7950 {
7951   struct type *fixed_type =
7952     ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7953
7954   /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7955       then preserve the typedef layer.
7956
7957       Implementation note: We can only check the main-type portion of
7958       the TYPE and FIXED_TYPE, because eliminating the typedef layer
7959       from TYPE now returns a type that has the same instance flags
7960       as TYPE.  For instance, if TYPE is a "typedef const", and its
7961       target type is a "struct", then the typedef elimination will return
7962       a "const" version of the target type.  See check_typedef for more
7963       details about how the typedef layer elimination is done.
7964
7965       brobecker/2010-11-19: It seems to me that the only case where it is
7966       useful to preserve the typedef layer is when dealing with fat pointers.
7967       Perhaps, we could add a check for that and preserve the typedef layer
7968       only in that situation.  But this seems unecessary so far, probably
7969       because we call check_typedef/ada_check_typedef pretty much everywhere.
7970       */
7971   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7972       && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7973           == TYPE_MAIN_TYPE (fixed_type)))
7974     return type;
7975
7976   return fixed_type;
7977 }
7978
7979 /* A standard (static-sized) type corresponding as well as possible to
7980    TYPE0, but based on no runtime data.  */
7981
7982 static struct type *
7983 to_static_fixed_type (struct type *type0)
7984 {
7985   struct type *type;
7986
7987   if (type0 == NULL)
7988     return NULL;
7989
7990   if (TYPE_FIXED_INSTANCE (type0))
7991     return type0;
7992
7993   type0 = ada_check_typedef (type0);
7994
7995   switch (TYPE_CODE (type0))
7996     {
7997     default:
7998       return type0;
7999     case TYPE_CODE_STRUCT:
8000       type = dynamic_template_type (type0);
8001       if (type != NULL)
8002         return template_to_static_fixed_type (type);
8003       else
8004         return template_to_static_fixed_type (type0);
8005     case TYPE_CODE_UNION:
8006       type = ada_find_parallel_type (type0, "___XVU");
8007       if (type != NULL)
8008         return template_to_static_fixed_type (type);
8009       else
8010         return template_to_static_fixed_type (type0);
8011     }
8012 }
8013
8014 /* A static approximation of TYPE with all type wrappers removed.  */
8015
8016 static struct type *
8017 static_unwrap_type (struct type *type)
8018 {
8019   if (ada_is_aligner_type (type))
8020     {
8021       struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8022       if (ada_type_name (type1) == NULL)
8023         TYPE_NAME (type1) = ada_type_name (type);
8024
8025       return static_unwrap_type (type1);
8026     }
8027   else
8028     {
8029       struct type *raw_real_type = ada_get_base_type (type);
8030
8031       if (raw_real_type == type)
8032         return type;
8033       else
8034         return to_static_fixed_type (raw_real_type);
8035     }
8036 }
8037
8038 /* In some cases, incomplete and private types require
8039    cross-references that are not resolved as records (for example,
8040       type Foo;
8041       type FooP is access Foo;
8042       V: FooP;
8043       type Foo is array ...;
8044    ).  In these cases, since there is no mechanism for producing
8045    cross-references to such types, we instead substitute for FooP a
8046    stub enumeration type that is nowhere resolved, and whose tag is
8047    the name of the actual type.  Call these types "non-record stubs".  */
8048
8049 /* A type equivalent to TYPE that is not a non-record stub, if one
8050    exists, otherwise TYPE.  */
8051
8052 struct type *
8053 ada_check_typedef (struct type *type)
8054 {
8055   if (type == NULL)
8056     return NULL;
8057
8058   /* If our type is a typedef type of a fat pointer, then we're done.
8059      We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8060      what allows us to distinguish between fat pointers that represent
8061      array types, and fat pointers that represent array access types
8062      (in both cases, the compiler implements them as fat pointers).  */
8063   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8064       && is_thick_pntr (ada_typedef_target_type (type)))
8065     return type;
8066
8067   CHECK_TYPEDEF (type);
8068   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8069       || !TYPE_STUB (type)
8070       || TYPE_TAG_NAME (type) == NULL)
8071     return type;
8072   else
8073     {
8074       char *name = TYPE_TAG_NAME (type);
8075       struct type *type1 = ada_find_any_type (name);
8076
8077       if (type1 == NULL)
8078         return type;
8079
8080       /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8081          stubs pointing to arrays, as we don't create symbols for array
8082          types, only for the typedef-to-array types).  If that's the case,
8083          strip the typedef layer.  */
8084       if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8085         type1 = ada_check_typedef (type1);
8086
8087       return type1;
8088     }
8089 }
8090
8091 /* A value representing the data at VALADDR/ADDRESS as described by
8092    type TYPE0, but with a standard (static-sized) type that correctly
8093    describes it.  If VAL0 is not NULL and TYPE0 already is a standard
8094    type, then return VAL0 [this feature is simply to avoid redundant
8095    creation of struct values].  */
8096
8097 static struct value *
8098 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8099                            struct value *val0)
8100 {
8101   struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8102
8103   if (type == type0 && val0 != NULL)
8104     return val0;
8105   else
8106     return value_from_contents_and_address (type, 0, address);
8107 }
8108
8109 /* A value representing VAL, but with a standard (static-sized) type
8110    that correctly describes it.  Does not necessarily create a new
8111    value.  */
8112
8113 struct value *
8114 ada_to_fixed_value (struct value *val)
8115 {
8116   return ada_to_fixed_value_create (value_type (val),
8117                                     value_address (val),
8118                                     val);
8119 }
8120 \f
8121
8122 /* Attributes */
8123
8124 /* Table mapping attribute numbers to names.
8125    NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
8126
8127 static const char *attribute_names[] = {
8128   "<?>",
8129
8130   "first",
8131   "last",
8132   "length",
8133   "image",
8134   "max",
8135   "min",
8136   "modulus",
8137   "pos",
8138   "size",
8139   "tag",
8140   "val",
8141   0
8142 };
8143
8144 const char *
8145 ada_attribute_name (enum exp_opcode n)
8146 {
8147   if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8148     return attribute_names[n - OP_ATR_FIRST + 1];
8149   else
8150     return attribute_names[0];
8151 }
8152
8153 /* Evaluate the 'POS attribute applied to ARG.  */
8154
8155 static LONGEST
8156 pos_atr (struct value *arg)
8157 {
8158   struct value *val = coerce_ref (arg);
8159   struct type *type = value_type (val);
8160
8161   if (!discrete_type_p (type))
8162     error (_("'POS only defined on discrete types"));
8163
8164   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8165     {
8166       int i;
8167       LONGEST v = value_as_long (val);
8168
8169       for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8170         {
8171           if (v == TYPE_FIELD_BITPOS (type, i))
8172             return i;
8173         }
8174       error (_("enumeration value is invalid: can't find 'POS"));
8175     }
8176   else
8177     return value_as_long (val);
8178 }
8179
8180 static struct value *
8181 value_pos_atr (struct type *type, struct value *arg)
8182 {
8183   return value_from_longest (type, pos_atr (arg));
8184 }
8185
8186 /* Evaluate the TYPE'VAL attribute applied to ARG.  */
8187
8188 static struct value *
8189 value_val_atr (struct type *type, struct value *arg)
8190 {
8191   if (!discrete_type_p (type))
8192     error (_("'VAL only defined on discrete types"));
8193   if (!integer_type_p (value_type (arg)))
8194     error (_("'VAL requires integral argument"));
8195
8196   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8197     {
8198       long pos = value_as_long (arg);
8199
8200       if (pos < 0 || pos >= TYPE_NFIELDS (type))
8201         error (_("argument to 'VAL out of range"));
8202       return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8203     }
8204   else
8205     return value_from_longest (type, value_as_long (arg));
8206 }
8207 \f
8208
8209                                 /* Evaluation */
8210
8211 /* True if TYPE appears to be an Ada character type.
8212    [At the moment, this is true only for Character and Wide_Character;
8213    It is a heuristic test that could stand improvement].  */
8214
8215 int
8216 ada_is_character_type (struct type *type)
8217 {
8218   const char *name;
8219
8220   /* If the type code says it's a character, then assume it really is,
8221      and don't check any further.  */
8222   if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8223     return 1;
8224   
8225   /* Otherwise, assume it's a character type iff it is a discrete type
8226      with a known character type name.  */
8227   name = ada_type_name (type);
8228   return (name != NULL
8229           && (TYPE_CODE (type) == TYPE_CODE_INT
8230               || TYPE_CODE (type) == TYPE_CODE_RANGE)
8231           && (strcmp (name, "character") == 0
8232               || strcmp (name, "wide_character") == 0
8233               || strcmp (name, "wide_wide_character") == 0
8234               || strcmp (name, "unsigned char") == 0));
8235 }
8236
8237 /* True if TYPE appears to be an Ada string type.  */
8238
8239 int
8240 ada_is_string_type (struct type *type)
8241 {
8242   type = ada_check_typedef (type);
8243   if (type != NULL
8244       && TYPE_CODE (type) != TYPE_CODE_PTR
8245       && (ada_is_simple_array_type (type)
8246           || ada_is_array_descriptor_type (type))
8247       && ada_array_arity (type) == 1)
8248     {
8249       struct type *elttype = ada_array_element_type (type, 1);
8250
8251       return ada_is_character_type (elttype);
8252     }
8253   else
8254     return 0;
8255 }
8256
8257 /* The compiler sometimes provides a parallel XVS type for a given
8258    PAD type.  Normally, it is safe to follow the PAD type directly,
8259    but older versions of the compiler have a bug that causes the offset
8260    of its "F" field to be wrong.  Following that field in that case
8261    would lead to incorrect results, but this can be worked around
8262    by ignoring the PAD type and using the associated XVS type instead.
8263
8264    Set to True if the debugger should trust the contents of PAD types.
8265    Otherwise, ignore the PAD type if there is a parallel XVS type.  */
8266 static int trust_pad_over_xvs = 1;
8267
8268 /* True if TYPE is a struct type introduced by the compiler to force the
8269    alignment of a value.  Such types have a single field with a
8270    distinctive name.  */
8271
8272 int
8273 ada_is_aligner_type (struct type *type)
8274 {
8275   type = ada_check_typedef (type);
8276
8277   if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8278     return 0;
8279
8280   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8281           && TYPE_NFIELDS (type) == 1
8282           && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8283 }
8284
8285 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8286    the parallel type.  */
8287
8288 struct type *
8289 ada_get_base_type (struct type *raw_type)
8290 {
8291   struct type *real_type_namer;
8292   struct type *raw_real_type;
8293
8294   if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8295     return raw_type;
8296
8297   if (ada_is_aligner_type (raw_type))
8298     /* The encoding specifies that we should always use the aligner type.
8299        So, even if this aligner type has an associated XVS type, we should
8300        simply ignore it.
8301
8302        According to the compiler gurus, an XVS type parallel to an aligner
8303        type may exist because of a stabs limitation.  In stabs, aligner
8304        types are empty because the field has a variable-sized type, and
8305        thus cannot actually be used as an aligner type.  As a result,
8306        we need the associated parallel XVS type to decode the type.
8307        Since the policy in the compiler is to not change the internal
8308        representation based on the debugging info format, we sometimes
8309        end up having a redundant XVS type parallel to the aligner type.  */
8310     return raw_type;
8311
8312   real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8313   if (real_type_namer == NULL
8314       || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8315       || TYPE_NFIELDS (real_type_namer) != 1)
8316     return raw_type;
8317
8318   if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8319     {
8320       /* This is an older encoding form where the base type needs to be
8321          looked up by name.  We prefer the newer enconding because it is
8322          more efficient.  */
8323       raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8324       if (raw_real_type == NULL)
8325         return raw_type;
8326       else
8327         return raw_real_type;
8328     }
8329
8330   /* The field in our XVS type is a reference to the base type.  */
8331   return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8332 }
8333
8334 /* The type of value designated by TYPE, with all aligners removed.  */
8335
8336 struct type *
8337 ada_aligned_type (struct type *type)
8338 {
8339   if (ada_is_aligner_type (type))
8340     return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8341   else
8342     return ada_get_base_type (type);
8343 }
8344
8345
8346 /* The address of the aligned value in an object at address VALADDR
8347    having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
8348
8349 const gdb_byte *
8350 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8351 {
8352   if (ada_is_aligner_type (type))
8353     return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8354                                    valaddr +
8355                                    TYPE_FIELD_BITPOS (type,
8356                                                       0) / TARGET_CHAR_BIT);
8357   else
8358     return valaddr;
8359 }
8360
8361
8362
8363 /* The printed representation of an enumeration literal with encoded
8364    name NAME.  The value is good to the next call of ada_enum_name.  */
8365 const char *
8366 ada_enum_name (const char *name)
8367 {
8368   static char *result;
8369   static size_t result_len = 0;
8370   char *tmp;
8371
8372   /* First, unqualify the enumeration name:
8373      1. Search for the last '.' character.  If we find one, then skip
8374      all the preceding characters, the unqualified name starts
8375      right after that dot.
8376      2. Otherwise, we may be debugging on a target where the compiler
8377      translates dots into "__".  Search forward for double underscores,
8378      but stop searching when we hit an overloading suffix, which is
8379      of the form "__" followed by digits.  */
8380
8381   tmp = strrchr (name, '.');
8382   if (tmp != NULL)
8383     name = tmp + 1;
8384   else
8385     {
8386       while ((tmp = strstr (name, "__")) != NULL)
8387         {
8388           if (isdigit (tmp[2]))
8389             break;
8390           else
8391             name = tmp + 2;
8392         }
8393     }
8394
8395   if (name[0] == 'Q')
8396     {
8397       int v;
8398
8399       if (name[1] == 'U' || name[1] == 'W')
8400         {
8401           if (sscanf (name + 2, "%x", &v) != 1)
8402             return name;
8403         }
8404       else
8405         return name;
8406
8407       GROW_VECT (result, result_len, 16);
8408       if (isascii (v) && isprint (v))
8409         xsnprintf (result, result_len, "'%c'", v);
8410       else if (name[1] == 'U')
8411         xsnprintf (result, result_len, "[\"%02x\"]", v);
8412       else
8413         xsnprintf (result, result_len, "[\"%04x\"]", v);
8414
8415       return result;
8416     }
8417   else
8418     {
8419       tmp = strstr (name, "__");
8420       if (tmp == NULL)
8421         tmp = strstr (name, "$");
8422       if (tmp != NULL)
8423         {
8424           GROW_VECT (result, result_len, tmp - name + 1);
8425           strncpy (result, name, tmp - name);
8426           result[tmp - name] = '\0';
8427           return result;
8428         }
8429
8430       return name;
8431     }
8432 }
8433
8434 /* Evaluate the subexpression of EXP starting at *POS as for
8435    evaluate_type, updating *POS to point just past the evaluated
8436    expression.  */
8437
8438 static struct value *
8439 evaluate_subexp_type (struct expression *exp, int *pos)
8440 {
8441   return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8442 }
8443
8444 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8445    value it wraps.  */
8446
8447 static struct value *
8448 unwrap_value (struct value *val)
8449 {
8450   struct type *type = ada_check_typedef (value_type (val));
8451
8452   if (ada_is_aligner_type (type))
8453     {
8454       struct value *v = ada_value_struct_elt (val, "F", 0);
8455       struct type *val_type = ada_check_typedef (value_type (v));
8456
8457       if (ada_type_name (val_type) == NULL)
8458         TYPE_NAME (val_type) = ada_type_name (type);
8459
8460       return unwrap_value (v);
8461     }
8462   else
8463     {
8464       struct type *raw_real_type =
8465         ada_check_typedef (ada_get_base_type (type));
8466
8467       /* If there is no parallel XVS or XVE type, then the value is
8468          already unwrapped.  Return it without further modification.  */
8469       if ((type == raw_real_type)
8470           && ada_find_parallel_type (type, "___XVE") == NULL)
8471         return val;
8472
8473       return
8474         coerce_unspec_val_to_type
8475         (val, ada_to_fixed_type (raw_real_type, 0,
8476                                  value_address (val),
8477                                  NULL, 1));
8478     }
8479 }
8480
8481 static struct value *
8482 cast_to_fixed (struct type *type, struct value *arg)
8483 {
8484   LONGEST val;
8485
8486   if (type == value_type (arg))
8487     return arg;
8488   else if (ada_is_fixed_point_type (value_type (arg)))
8489     val = ada_float_to_fixed (type,
8490                               ada_fixed_to_float (value_type (arg),
8491                                                   value_as_long (arg)));
8492   else
8493     {
8494       DOUBLEST argd = value_as_double (arg);
8495
8496       val = ada_float_to_fixed (type, argd);
8497     }
8498
8499   return value_from_longest (type, val);
8500 }
8501
8502 static struct value *
8503 cast_from_fixed (struct type *type, struct value *arg)
8504 {
8505   DOUBLEST val = ada_fixed_to_float (value_type (arg),
8506                                      value_as_long (arg));
8507
8508   return value_from_double (type, val);
8509 }
8510
8511 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8512    return the converted value.  */
8513
8514 static struct value *
8515 coerce_for_assign (struct type *type, struct value *val)
8516 {
8517   struct type *type2 = value_type (val);
8518
8519   if (type == type2)
8520     return val;
8521
8522   type2 = ada_check_typedef (type2);
8523   type = ada_check_typedef (type);
8524
8525   if (TYPE_CODE (type2) == TYPE_CODE_PTR
8526       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8527     {
8528       val = ada_value_ind (val);
8529       type2 = value_type (val);
8530     }
8531
8532   if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8533       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8534     {
8535       if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8536           || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8537           != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8538         error (_("Incompatible types in assignment"));
8539       deprecated_set_value_type (val, type);
8540     }
8541   return val;
8542 }
8543
8544 static struct value *
8545 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8546 {
8547   struct value *val;
8548   struct type *type1, *type2;
8549   LONGEST v, v1, v2;
8550
8551   arg1 = coerce_ref (arg1);
8552   arg2 = coerce_ref (arg2);
8553   type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8554   type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8555
8556   if (TYPE_CODE (type1) != TYPE_CODE_INT
8557       || TYPE_CODE (type2) != TYPE_CODE_INT)
8558     return value_binop (arg1, arg2, op);
8559
8560   switch (op)
8561     {
8562     case BINOP_MOD:
8563     case BINOP_DIV:
8564     case BINOP_REM:
8565       break;
8566     default:
8567       return value_binop (arg1, arg2, op);
8568     }
8569
8570   v2 = value_as_long (arg2);
8571   if (v2 == 0)
8572     error (_("second operand of %s must not be zero."), op_string (op));
8573
8574   if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8575     return value_binop (arg1, arg2, op);
8576
8577   v1 = value_as_long (arg1);
8578   switch (op)
8579     {
8580     case BINOP_DIV:
8581       v = v1 / v2;
8582       if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8583         v += v > 0 ? -1 : 1;
8584       break;
8585     case BINOP_REM:
8586       v = v1 % v2;
8587       if (v * v1 < 0)
8588         v -= v2;
8589       break;
8590     default:
8591       /* Should not reach this point.  */
8592       v = 0;
8593     }
8594
8595   val = allocate_value (type1);
8596   store_unsigned_integer (value_contents_raw (val),
8597                           TYPE_LENGTH (value_type (val)),
8598                           gdbarch_byte_order (get_type_arch (type1)), v);
8599   return val;
8600 }
8601
8602 static int
8603 ada_value_equal (struct value *arg1, struct value *arg2)
8604 {
8605   if (ada_is_direct_array_type (value_type (arg1))
8606       || ada_is_direct_array_type (value_type (arg2)))
8607     {
8608       /* Automatically dereference any array reference before
8609          we attempt to perform the comparison.  */
8610       arg1 = ada_coerce_ref (arg1);
8611       arg2 = ada_coerce_ref (arg2);
8612       
8613       arg1 = ada_coerce_to_simple_array (arg1);
8614       arg2 = ada_coerce_to_simple_array (arg2);
8615       if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8616           || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8617         error (_("Attempt to compare array with non-array"));
8618       /* FIXME: The following works only for types whose
8619          representations use all bits (no padding or undefined bits)
8620          and do not have user-defined equality.  */
8621       return
8622         TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8623         && memcmp (value_contents (arg1), value_contents (arg2),
8624                    TYPE_LENGTH (value_type (arg1))) == 0;
8625     }
8626   return value_equal (arg1, arg2);
8627 }
8628
8629 /* Total number of component associations in the aggregate starting at
8630    index PC in EXP.  Assumes that index PC is the start of an
8631    OP_AGGREGATE.  */
8632
8633 static int
8634 num_component_specs (struct expression *exp, int pc)
8635 {
8636   int n, m, i;
8637
8638   m = exp->elts[pc + 1].longconst;
8639   pc += 3;
8640   n = 0;
8641   for (i = 0; i < m; i += 1)
8642     {
8643       switch (exp->elts[pc].opcode) 
8644         {
8645         default:
8646           n += 1;
8647           break;
8648         case OP_CHOICES:
8649           n += exp->elts[pc + 1].longconst;
8650           break;
8651         }
8652       ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8653     }
8654   return n;
8655 }
8656
8657 /* Assign the result of evaluating EXP starting at *POS to the INDEXth 
8658    component of LHS (a simple array or a record), updating *POS past
8659    the expression, assuming that LHS is contained in CONTAINER.  Does
8660    not modify the inferior's memory, nor does it modify LHS (unless
8661    LHS == CONTAINER).  */
8662
8663 static void
8664 assign_component (struct value *container, struct value *lhs, LONGEST index,
8665                   struct expression *exp, int *pos)
8666 {
8667   struct value *mark = value_mark ();
8668   struct value *elt;
8669
8670   if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8671     {
8672       struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8673       struct value *index_val = value_from_longest (index_type, index);
8674
8675       elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8676     }
8677   else
8678     {
8679       elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8680       elt = ada_to_fixed_value (unwrap_value (elt));
8681     }
8682
8683   if (exp->elts[*pos].opcode == OP_AGGREGATE)
8684     assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8685   else
8686     value_assign_to_component (container, elt, 
8687                                ada_evaluate_subexp (NULL, exp, pos, 
8688                                                     EVAL_NORMAL));
8689
8690   value_free_to_mark (mark);
8691 }
8692
8693 /* Assuming that LHS represents an lvalue having a record or array
8694    type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8695    of that aggregate's value to LHS, advancing *POS past the
8696    aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
8697    lvalue containing LHS (possibly LHS itself).  Does not modify
8698    the inferior's memory, nor does it modify the contents of 
8699    LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
8700
8701 static struct value *
8702 assign_aggregate (struct value *container, 
8703                   struct value *lhs, struct expression *exp, 
8704                   int *pos, enum noside noside)
8705 {
8706   struct type *lhs_type;
8707   int n = exp->elts[*pos+1].longconst;
8708   LONGEST low_index, high_index;
8709   int num_specs;
8710   LONGEST *indices;
8711   int max_indices, num_indices;
8712   int is_array_aggregate;
8713   int i;
8714
8715   *pos += 3;
8716   if (noside != EVAL_NORMAL)
8717     {
8718       for (i = 0; i < n; i += 1)
8719         ada_evaluate_subexp (NULL, exp, pos, noside);
8720       return container;
8721     }
8722
8723   container = ada_coerce_ref (container);
8724   if (ada_is_direct_array_type (value_type (container)))
8725     container = ada_coerce_to_simple_array (container);
8726   lhs = ada_coerce_ref (lhs);
8727   if (!deprecated_value_modifiable (lhs))
8728     error (_("Left operand of assignment is not a modifiable lvalue."));
8729
8730   lhs_type = value_type (lhs);
8731   if (ada_is_direct_array_type (lhs_type))
8732     {
8733       lhs = ada_coerce_to_simple_array (lhs);
8734       lhs_type = value_type (lhs);
8735       low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8736       high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8737       is_array_aggregate = 1;
8738     }
8739   else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8740     {
8741       low_index = 0;
8742       high_index = num_visible_fields (lhs_type) - 1;
8743       is_array_aggregate = 0;
8744     }
8745   else
8746     error (_("Left-hand side must be array or record."));
8747
8748   num_specs = num_component_specs (exp, *pos - 3);
8749   max_indices = 4 * num_specs + 4;
8750   indices = alloca (max_indices * sizeof (indices[0]));
8751   indices[0] = indices[1] = low_index - 1;
8752   indices[2] = indices[3] = high_index + 1;
8753   num_indices = 4;
8754
8755   for (i = 0; i < n; i += 1)
8756     {
8757       switch (exp->elts[*pos].opcode)
8758         {
8759           case OP_CHOICES:
8760             aggregate_assign_from_choices (container, lhs, exp, pos, indices, 
8761                                            &num_indices, max_indices,
8762                                            low_index, high_index);
8763             break;
8764           case OP_POSITIONAL:
8765             aggregate_assign_positional (container, lhs, exp, pos, indices,
8766                                          &num_indices, max_indices,
8767                                          low_index, high_index);
8768             break;
8769           case OP_OTHERS:
8770             if (i != n-1)
8771               error (_("Misplaced 'others' clause"));
8772             aggregate_assign_others (container, lhs, exp, pos, indices, 
8773                                      num_indices, low_index, high_index);
8774             break;
8775           default:
8776             error (_("Internal error: bad aggregate clause"));
8777         }
8778     }
8779
8780   return container;
8781 }
8782               
8783 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8784    construct at *POS, updating *POS past the construct, given that
8785    the positions are relative to lower bound LOW, where HIGH is the 
8786    upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
8787    updating *NUM_INDICES as needed.  CONTAINER is as for
8788    assign_aggregate.  */
8789 static void
8790 aggregate_assign_positional (struct value *container,
8791                              struct value *lhs, struct expression *exp,
8792                              int *pos, LONGEST *indices, int *num_indices,
8793                              int max_indices, LONGEST low, LONGEST high) 
8794 {
8795   LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8796   
8797   if (ind - 1 == high)
8798     warning (_("Extra components in aggregate ignored."));
8799   if (ind <= high)
8800     {
8801       add_component_interval (ind, ind, indices, num_indices, max_indices);
8802       *pos += 3;
8803       assign_component (container, lhs, ind, exp, pos);
8804     }
8805   else
8806     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8807 }
8808
8809 /* Assign into the components of LHS indexed by the OP_CHOICES
8810    construct at *POS, updating *POS past the construct, given that
8811    the allowable indices are LOW..HIGH.  Record the indices assigned
8812    to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8813    needed.  CONTAINER is as for assign_aggregate.  */
8814 static void
8815 aggregate_assign_from_choices (struct value *container,
8816                                struct value *lhs, struct expression *exp,
8817                                int *pos, LONGEST *indices, int *num_indices,
8818                                int max_indices, LONGEST low, LONGEST high) 
8819 {
8820   int j;
8821   int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8822   int choice_pos, expr_pc;
8823   int is_array = ada_is_direct_array_type (value_type (lhs));
8824
8825   choice_pos = *pos += 3;
8826
8827   for (j = 0; j < n_choices; j += 1)
8828     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8829   expr_pc = *pos;
8830   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8831   
8832   for (j = 0; j < n_choices; j += 1)
8833     {
8834       LONGEST lower, upper;
8835       enum exp_opcode op = exp->elts[choice_pos].opcode;
8836
8837       if (op == OP_DISCRETE_RANGE)
8838         {
8839           choice_pos += 1;
8840           lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8841                                                       EVAL_NORMAL));
8842           upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 
8843                                                       EVAL_NORMAL));
8844         }
8845       else if (is_array)
8846         {
8847           lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 
8848                                                       EVAL_NORMAL));
8849           upper = lower;
8850         }
8851       else
8852         {
8853           int ind;
8854           char *name;
8855
8856           switch (op)
8857             {
8858             case OP_NAME:
8859               name = &exp->elts[choice_pos + 2].string;
8860               break;
8861             case OP_VAR_VALUE:
8862               name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8863               break;
8864             default:
8865               error (_("Invalid record component association."));
8866             }
8867           ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8868           ind = 0;
8869           if (! find_struct_field (name, value_type (lhs), 0, 
8870                                    NULL, NULL, NULL, NULL, &ind))
8871             error (_("Unknown component name: %s."), name);
8872           lower = upper = ind;
8873         }
8874
8875       if (lower <= upper && (lower < low || upper > high))
8876         error (_("Index in component association out of bounds."));
8877
8878       add_component_interval (lower, upper, indices, num_indices,
8879                               max_indices);
8880       while (lower <= upper)
8881         {
8882           int pos1;
8883
8884           pos1 = expr_pc;
8885           assign_component (container, lhs, lower, exp, &pos1);
8886           lower += 1;
8887         }
8888     }
8889 }
8890
8891 /* Assign the value of the expression in the OP_OTHERS construct in
8892    EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8893    have not been previously assigned.  The index intervals already assigned
8894    are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the 
8895    OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
8896 static void
8897 aggregate_assign_others (struct value *container,
8898                          struct value *lhs, struct expression *exp,
8899                          int *pos, LONGEST *indices, int num_indices,
8900                          LONGEST low, LONGEST high) 
8901 {
8902   int i;
8903   int expr_pc = *pos + 1;
8904   
8905   for (i = 0; i < num_indices - 2; i += 2)
8906     {
8907       LONGEST ind;
8908
8909       for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8910         {
8911           int localpos;
8912
8913           localpos = expr_pc;
8914           assign_component (container, lhs, ind, exp, &localpos);
8915         }
8916     }
8917   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8918 }
8919
8920 /* Add the interval [LOW .. HIGH] to the sorted set of intervals 
8921    [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8922    modifying *SIZE as needed.  It is an error if *SIZE exceeds
8923    MAX_SIZE.  The resulting intervals do not overlap.  */
8924 static void
8925 add_component_interval (LONGEST low, LONGEST high, 
8926                         LONGEST* indices, int *size, int max_size)
8927 {
8928   int i, j;
8929
8930   for (i = 0; i < *size; i += 2) {
8931     if (high >= indices[i] && low <= indices[i + 1])
8932       {
8933         int kh;
8934
8935         for (kh = i + 2; kh < *size; kh += 2)
8936           if (high < indices[kh])
8937             break;
8938         if (low < indices[i])
8939           indices[i] = low;
8940         indices[i + 1] = indices[kh - 1];
8941         if (high > indices[i + 1])
8942           indices[i + 1] = high;
8943         memcpy (indices + i + 2, indices + kh, *size - kh);
8944         *size -= kh - i - 2;
8945         return;
8946       }
8947     else if (high < indices[i])
8948       break;
8949   }
8950         
8951   if (*size == max_size)
8952     error (_("Internal error: miscounted aggregate components."));
8953   *size += 2;
8954   for (j = *size-1; j >= i+2; j -= 1)
8955     indices[j] = indices[j - 2];
8956   indices[i] = low;
8957   indices[i + 1] = high;
8958 }
8959
8960 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8961    is different.  */
8962
8963 static struct value *
8964 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8965 {
8966   if (type == ada_check_typedef (value_type (arg2)))
8967     return arg2;
8968
8969   if (ada_is_fixed_point_type (type))
8970     return (cast_to_fixed (type, arg2));
8971
8972   if (ada_is_fixed_point_type (value_type (arg2)))
8973     return cast_from_fixed (type, arg2);
8974
8975   return value_cast (type, arg2);
8976 }
8977
8978 /*  Evaluating Ada expressions, and printing their result.
8979     ------------------------------------------------------
8980
8981     1. Introduction:
8982     ----------------
8983
8984     We usually evaluate an Ada expression in order to print its value.
8985     We also evaluate an expression in order to print its type, which
8986     happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8987     but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
8988     EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8989     the evaluation compared to the EVAL_NORMAL, but is otherwise very
8990     similar.
8991
8992     Evaluating expressions is a little more complicated for Ada entities
8993     than it is for entities in languages such as C.  The main reason for
8994     this is that Ada provides types whose definition might be dynamic.
8995     One example of such types is variant records.  Or another example
8996     would be an array whose bounds can only be known at run time.
8997
8998     The following description is a general guide as to what should be
8999     done (and what should NOT be done) in order to evaluate an expression
9000     involving such types, and when.  This does not cover how the semantic
9001     information is encoded by GNAT as this is covered separatly.  For the
9002     document used as the reference for the GNAT encoding, see exp_dbug.ads
9003     in the GNAT sources.
9004
9005     Ideally, we should embed each part of this description next to its
9006     associated code.  Unfortunately, the amount of code is so vast right
9007     now that it's hard to see whether the code handling a particular
9008     situation might be duplicated or not.  One day, when the code is
9009     cleaned up, this guide might become redundant with the comments
9010     inserted in the code, and we might want to remove it.
9011
9012     2. ``Fixing'' an Entity, the Simple Case:
9013     -----------------------------------------
9014
9015     When evaluating Ada expressions, the tricky issue is that they may
9016     reference entities whose type contents and size are not statically
9017     known.  Consider for instance a variant record:
9018
9019        type Rec (Empty : Boolean := True) is record
9020           case Empty is
9021              when True => null;
9022              when False => Value : Integer;
9023           end case;
9024        end record;
9025        Yes : Rec := (Empty => False, Value => 1);
9026        No  : Rec := (empty => True);
9027
9028     The size and contents of that record depends on the value of the
9029     descriminant (Rec.Empty).  At this point, neither the debugging
9030     information nor the associated type structure in GDB are able to
9031     express such dynamic types.  So what the debugger does is to create
9032     "fixed" versions of the type that applies to the specific object.
9033     We also informally refer to this opperation as "fixing" an object,
9034     which means creating its associated fixed type.
9035
9036     Example: when printing the value of variable "Yes" above, its fixed
9037     type would look like this:
9038
9039        type Rec is record
9040           Empty : Boolean;
9041           Value : Integer;
9042        end record;
9043
9044     On the other hand, if we printed the value of "No", its fixed type
9045     would become:
9046
9047        type Rec is record
9048           Empty : Boolean;
9049        end record;
9050
9051     Things become a little more complicated when trying to fix an entity
9052     with a dynamic type that directly contains another dynamic type,
9053     such as an array of variant records, for instance.  There are
9054     two possible cases: Arrays, and records.
9055
9056     3. ``Fixing'' Arrays:
9057     ---------------------
9058
9059     The type structure in GDB describes an array in terms of its bounds,
9060     and the type of its elements.  By design, all elements in the array
9061     have the same type and we cannot represent an array of variant elements
9062     using the current type structure in GDB.  When fixing an array,
9063     we cannot fix the array element, as we would potentially need one
9064     fixed type per element of the array.  As a result, the best we can do
9065     when fixing an array is to produce an array whose bounds and size
9066     are correct (allowing us to read it from memory), but without having
9067     touched its element type.  Fixing each element will be done later,
9068     when (if) necessary.
9069
9070     Arrays are a little simpler to handle than records, because the same
9071     amount of memory is allocated for each element of the array, even if
9072     the amount of space actually used by each element differs from element
9073     to element.  Consider for instance the following array of type Rec:
9074
9075        type Rec_Array is array (1 .. 2) of Rec;
9076
9077     The actual amount of memory occupied by each element might be different
9078     from element to element, depending on the value of their discriminant.
9079     But the amount of space reserved for each element in the array remains
9080     fixed regardless.  So we simply need to compute that size using
9081     the debugging information available, from which we can then determine
9082     the array size (we multiply the number of elements of the array by
9083     the size of each element).
9084
9085     The simplest case is when we have an array of a constrained element
9086     type. For instance, consider the following type declarations:
9087
9088         type Bounded_String (Max_Size : Integer) is
9089            Length : Integer;
9090            Buffer : String (1 .. Max_Size);
9091         end record;
9092         type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9093
9094     In this case, the compiler describes the array as an array of
9095     variable-size elements (identified by its XVS suffix) for which
9096     the size can be read in the parallel XVZ variable.
9097
9098     In the case of an array of an unconstrained element type, the compiler
9099     wraps the array element inside a private PAD type.  This type should not
9100     be shown to the user, and must be "unwrap"'ed before printing.  Note
9101     that we also use the adjective "aligner" in our code to designate
9102     these wrapper types.
9103
9104     In some cases, the size allocated for each element is statically
9105     known.  In that case, the PAD type already has the correct size,
9106     and the array element should remain unfixed.
9107
9108     But there are cases when this size is not statically known.
9109     For instance, assuming that "Five" is an integer variable:
9110
9111         type Dynamic is array (1 .. Five) of Integer;
9112         type Wrapper (Has_Length : Boolean := False) is record
9113            Data : Dynamic;
9114            case Has_Length is
9115               when True => Length : Integer;
9116               when False => null;
9117            end case;
9118         end record;
9119         type Wrapper_Array is array (1 .. 2) of Wrapper;
9120
9121         Hello : Wrapper_Array := (others => (Has_Length => True,
9122                                              Data => (others => 17),
9123                                              Length => 1));
9124
9125
9126     The debugging info would describe variable Hello as being an
9127     array of a PAD type.  The size of that PAD type is not statically
9128     known, but can be determined using a parallel XVZ variable.
9129     In that case, a copy of the PAD type with the correct size should
9130     be used for the fixed array.
9131
9132     3. ``Fixing'' record type objects:
9133     ----------------------------------
9134
9135     Things are slightly different from arrays in the case of dynamic
9136     record types.  In this case, in order to compute the associated
9137     fixed type, we need to determine the size and offset of each of
9138     its components.  This, in turn, requires us to compute the fixed
9139     type of each of these components.
9140
9141     Consider for instance the example:
9142
9143         type Bounded_String (Max_Size : Natural) is record
9144            Str : String (1 .. Max_Size);
9145            Length : Natural;
9146         end record;
9147         My_String : Bounded_String (Max_Size => 10);
9148
9149     In that case, the position of field "Length" depends on the size
9150     of field Str, which itself depends on the value of the Max_Size
9151     discriminant.  In order to fix the type of variable My_String,
9152     we need to fix the type of field Str.  Therefore, fixing a variant
9153     record requires us to fix each of its components.
9154
9155     However, if a component does not have a dynamic size, the component
9156     should not be fixed.  In particular, fields that use a PAD type
9157     should not fixed.  Here is an example where this might happen
9158     (assuming type Rec above):
9159
9160        type Container (Big : Boolean) is record
9161           First : Rec;
9162           After : Integer;
9163           case Big is
9164              when True => Another : Integer;
9165              when False => null;
9166           end case;
9167        end record;
9168        My_Container : Container := (Big => False,
9169                                     First => (Empty => True),
9170                                     After => 42);
9171
9172     In that example, the compiler creates a PAD type for component First,
9173     whose size is constant, and then positions the component After just
9174     right after it.  The offset of component After is therefore constant
9175     in this case.
9176
9177     The debugger computes the position of each field based on an algorithm
9178     that uses, among other things, the actual position and size of the field
9179     preceding it.  Let's now imagine that the user is trying to print
9180     the value of My_Container.  If the type fixing was recursive, we would
9181     end up computing the offset of field After based on the size of the
9182     fixed version of field First.  And since in our example First has
9183     only one actual field, the size of the fixed type is actually smaller
9184     than the amount of space allocated to that field, and thus we would
9185     compute the wrong offset of field After.
9186
9187     To make things more complicated, we need to watch out for dynamic
9188     components of variant records (identified by the ___XVL suffix in
9189     the component name).  Even if the target type is a PAD type, the size
9190     of that type might not be statically known.  So the PAD type needs
9191     to be unwrapped and the resulting type needs to be fixed.  Otherwise,
9192     we might end up with the wrong size for our component.  This can be
9193     observed with the following type declarations:
9194
9195         type Octal is new Integer range 0 .. 7;
9196         type Octal_Array is array (Positive range <>) of Octal;
9197         pragma Pack (Octal_Array);
9198
9199         type Octal_Buffer (Size : Positive) is record
9200            Buffer : Octal_Array (1 .. Size);
9201            Length : Integer;
9202         end record;
9203
9204     In that case, Buffer is a PAD type whose size is unset and needs
9205     to be computed by fixing the unwrapped type.
9206
9207     4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9208     ----------------------------------------------------------
9209
9210     Lastly, when should the sub-elements of an entity that remained unfixed
9211     thus far, be actually fixed?
9212
9213     The answer is: Only when referencing that element.  For instance
9214     when selecting one component of a record, this specific component
9215     should be fixed at that point in time.  Or when printing the value
9216     of a record, each component should be fixed before its value gets
9217     printed.  Similarly for arrays, the element of the array should be
9218     fixed when printing each element of the array, or when extracting
9219     one element out of that array.  On the other hand, fixing should
9220     not be performed on the elements when taking a slice of an array!
9221
9222     Note that one of the side-effects of miscomputing the offset and
9223     size of each field is that we end up also miscomputing the size
9224     of the containing type.  This can have adverse results when computing
9225     the value of an entity.  GDB fetches the value of an entity based
9226     on the size of its type, and thus a wrong size causes GDB to fetch
9227     the wrong amount of memory.  In the case where the computed size is
9228     too small, GDB fetches too little data to print the value of our
9229     entiry.  Results in this case as unpredicatble, as we usually read
9230     past the buffer containing the data =:-o.  */
9231
9232 /* Implement the evaluate_exp routine in the exp_descriptor structure
9233    for the Ada language.  */
9234
9235 static struct value *
9236 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9237                      int *pos, enum noside noside)
9238 {
9239   enum exp_opcode op;
9240   int tem;
9241   int pc;
9242   struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9243   struct type *type;
9244   int nargs, oplen;
9245   struct value **argvec;
9246
9247   pc = *pos;
9248   *pos += 1;
9249   op = exp->elts[pc].opcode;
9250
9251   switch (op)
9252     {
9253     default:
9254       *pos -= 1;
9255       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9256       arg1 = unwrap_value (arg1);
9257
9258       /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9259          then we need to perform the conversion manually, because
9260          evaluate_subexp_standard doesn't do it.  This conversion is
9261          necessary in Ada because the different kinds of float/fixed
9262          types in Ada have different representations.
9263
9264          Similarly, we need to perform the conversion from OP_LONG
9265          ourselves.  */
9266       if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9267         arg1 = ada_value_cast (expect_type, arg1, noside);
9268
9269       return arg1;
9270
9271     case OP_STRING:
9272       {
9273         struct value *result;
9274
9275         *pos -= 1;
9276         result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9277         /* The result type will have code OP_STRING, bashed there from 
9278            OP_ARRAY.  Bash it back.  */
9279         if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9280           TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9281         return result;
9282       }
9283
9284     case UNOP_CAST:
9285       (*pos) += 2;
9286       type = exp->elts[pc + 1].type;
9287       arg1 = evaluate_subexp (type, exp, pos, noside);
9288       if (noside == EVAL_SKIP)
9289         goto nosideret;
9290       arg1 = ada_value_cast (type, arg1, noside);
9291       return arg1;
9292
9293     case UNOP_QUAL:
9294       (*pos) += 2;
9295       type = exp->elts[pc + 1].type;
9296       return ada_evaluate_subexp (type, exp, pos, noside);
9297
9298     case BINOP_ASSIGN:
9299       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9300       if (exp->elts[*pos].opcode == OP_AGGREGATE)
9301         {
9302           arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9303           if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9304             return arg1;
9305           return ada_value_assign (arg1, arg1);
9306         }
9307       /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9308          except if the lhs of our assignment is a convenience variable.
9309          In the case of assigning to a convenience variable, the lhs
9310          should be exactly the result of the evaluation of the rhs.  */
9311       type = value_type (arg1);
9312       if (VALUE_LVAL (arg1) == lval_internalvar)
9313          type = NULL;
9314       arg2 = evaluate_subexp (type, exp, pos, noside);
9315       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9316         return arg1;
9317       if (ada_is_fixed_point_type (value_type (arg1)))
9318         arg2 = cast_to_fixed (value_type (arg1), arg2);
9319       else if (ada_is_fixed_point_type (value_type (arg2)))
9320         error
9321           (_("Fixed-point values must be assigned to fixed-point variables"));
9322       else
9323         arg2 = coerce_for_assign (value_type (arg1), arg2);
9324       return ada_value_assign (arg1, arg2);
9325
9326     case BINOP_ADD:
9327       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9328       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9329       if (noside == EVAL_SKIP)
9330         goto nosideret;
9331       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9332         return (value_from_longest
9333                  (value_type (arg1),
9334                   value_as_long (arg1) + value_as_long (arg2)));
9335       if ((ada_is_fixed_point_type (value_type (arg1))
9336            || ada_is_fixed_point_type (value_type (arg2)))
9337           && value_type (arg1) != value_type (arg2))
9338         error (_("Operands of fixed-point addition must have the same type"));
9339       /* Do the addition, and cast the result to the type of the first
9340          argument.  We cannot cast the result to a reference type, so if
9341          ARG1 is a reference type, find its underlying type.  */
9342       type = value_type (arg1);
9343       while (TYPE_CODE (type) == TYPE_CODE_REF)
9344         type = TYPE_TARGET_TYPE (type);
9345       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9346       return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9347
9348     case BINOP_SUB:
9349       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9350       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9351       if (noside == EVAL_SKIP)
9352         goto nosideret;
9353       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9354         return (value_from_longest
9355                  (value_type (arg1),
9356                   value_as_long (arg1) - value_as_long (arg2)));
9357       if ((ada_is_fixed_point_type (value_type (arg1))
9358            || ada_is_fixed_point_type (value_type (arg2)))
9359           && value_type (arg1) != value_type (arg2))
9360         error (_("Operands of fixed-point subtraction "
9361                  "must have the same type"));
9362       /* Do the substraction, and cast the result to the type of the first
9363          argument.  We cannot cast the result to a reference type, so if
9364          ARG1 is a reference type, find its underlying type.  */
9365       type = value_type (arg1);
9366       while (TYPE_CODE (type) == TYPE_CODE_REF)
9367         type = TYPE_TARGET_TYPE (type);
9368       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9369       return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9370
9371     case BINOP_MUL:
9372     case BINOP_DIV:
9373     case BINOP_REM:
9374     case BINOP_MOD:
9375       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9376       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9377       if (noside == EVAL_SKIP)
9378         goto nosideret;
9379       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9380         {
9381           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9382           return value_zero (value_type (arg1), not_lval);
9383         }
9384       else
9385         {
9386           type = builtin_type (exp->gdbarch)->builtin_double;
9387           if (ada_is_fixed_point_type (value_type (arg1)))
9388             arg1 = cast_from_fixed (type, arg1);
9389           if (ada_is_fixed_point_type (value_type (arg2)))
9390             arg2 = cast_from_fixed (type, arg2);
9391           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9392           return ada_value_binop (arg1, arg2, op);
9393         }
9394
9395     case BINOP_EQUAL:
9396     case BINOP_NOTEQUAL:
9397       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9398       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9399       if (noside == EVAL_SKIP)
9400         goto nosideret;
9401       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9402         tem = 0;
9403       else
9404         {
9405           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9406           tem = ada_value_equal (arg1, arg2);
9407         }
9408       if (op == BINOP_NOTEQUAL)
9409         tem = !tem;
9410       type = language_bool_type (exp->language_defn, exp->gdbarch);
9411       return value_from_longest (type, (LONGEST) tem);
9412
9413     case UNOP_NEG:
9414       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415       if (noside == EVAL_SKIP)
9416         goto nosideret;
9417       else if (ada_is_fixed_point_type (value_type (arg1)))
9418         return value_cast (value_type (arg1), value_neg (arg1));
9419       else
9420         {
9421           unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9422           return value_neg (arg1);
9423         }
9424
9425     case BINOP_LOGICAL_AND:
9426     case BINOP_LOGICAL_OR:
9427     case UNOP_LOGICAL_NOT:
9428       {
9429         struct value *val;
9430
9431         *pos -= 1;
9432         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9433         type = language_bool_type (exp->language_defn, exp->gdbarch);
9434         return value_cast (type, val);
9435       }
9436
9437     case BINOP_BITWISE_AND:
9438     case BINOP_BITWISE_IOR:
9439     case BINOP_BITWISE_XOR:
9440       {
9441         struct value *val;
9442
9443         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9444         *pos = pc;
9445         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9446
9447         return value_cast (value_type (arg1), val);
9448       }
9449
9450     case OP_VAR_VALUE:
9451       *pos -= 1;
9452
9453       if (noside == EVAL_SKIP)
9454         {
9455           *pos += 4;
9456           goto nosideret;
9457         }
9458       else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9459         /* Only encountered when an unresolved symbol occurs in a
9460            context other than a function call, in which case, it is
9461            invalid.  */
9462         error (_("Unexpected unresolved symbol, %s, during evaluation"),
9463                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9464       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9465         {
9466           type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9467           /* Check to see if this is a tagged type.  We also need to handle
9468              the case where the type is a reference to a tagged type, but
9469              we have to be careful to exclude pointers to tagged types.
9470              The latter should be shown as usual (as a pointer), whereas
9471              a reference should mostly be transparent to the user.  */
9472           if (ada_is_tagged_type (type, 0)
9473               || (TYPE_CODE(type) == TYPE_CODE_REF
9474                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9475           {
9476             /* Tagged types are a little special in the fact that the real
9477                type is dynamic and can only be determined by inspecting the
9478                object's tag.  This means that we need to get the object's
9479                value first (EVAL_NORMAL) and then extract the actual object
9480                type from its tag.
9481
9482                Note that we cannot skip the final step where we extract
9483                the object type from its tag, because the EVAL_NORMAL phase
9484                results in dynamic components being resolved into fixed ones.
9485                This can cause problems when trying to print the type
9486                description of tagged types whose parent has a dynamic size:
9487                We use the type name of the "_parent" component in order
9488                to print the name of the ancestor type in the type description.
9489                If that component had a dynamic size, the resolution into
9490                a fixed type would result in the loss of that type name,
9491                thus preventing us from printing the name of the ancestor
9492                type in the type description.  */
9493             struct type *actual_type;
9494
9495             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9496             actual_type = type_from_tag (ada_value_tag (arg1));
9497             if (actual_type == NULL)
9498               /* If, for some reason, we were unable to determine
9499                  the actual type from the tag, then use the static
9500                  approximation that we just computed as a fallback.
9501                  This can happen if the debugging information is
9502                  incomplete, for instance.  */
9503               actual_type = type;
9504
9505             return value_zero (actual_type, not_lval);
9506           }
9507
9508           *pos += 4;
9509           return value_zero
9510             (to_static_fixed_type
9511              (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9512              not_lval);
9513         }
9514       else
9515         {
9516           arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9517           arg1 = unwrap_value (arg1);
9518           return ada_to_fixed_value (arg1);
9519         }
9520
9521     case OP_FUNCALL:
9522       (*pos) += 2;
9523
9524       /* Allocate arg vector, including space for the function to be
9525          called in argvec[0] and a terminating NULL.  */
9526       nargs = longest_to_int (exp->elts[pc + 1].longconst);
9527       argvec =
9528         (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9529
9530       if (exp->elts[*pos].opcode == OP_VAR_VALUE
9531           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9532         error (_("Unexpected unresolved symbol, %s, during evaluation"),
9533                SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9534       else
9535         {
9536           for (tem = 0; tem <= nargs; tem += 1)
9537             argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9538           argvec[tem] = 0;
9539
9540           if (noside == EVAL_SKIP)
9541             goto nosideret;
9542         }
9543
9544       if (ada_is_constrained_packed_array_type
9545           (desc_base_type (value_type (argvec[0]))))
9546         argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9547       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9548                && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9549         /* This is a packed array that has already been fixed, and
9550            therefore already coerced to a simple array.  Nothing further
9551            to do.  */
9552         ;
9553       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9554                || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9555                    && VALUE_LVAL (argvec[0]) == lval_memory))
9556         argvec[0] = value_addr (argvec[0]);
9557
9558       type = ada_check_typedef (value_type (argvec[0]));
9559
9560       /* Ada allows us to implicitly dereference arrays when subscripting
9561          them.  So, if this is an array typedef (encoding use for array
9562          access types encoded as fat pointers), strip it now.  */
9563       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9564         type = ada_typedef_target_type (type);
9565
9566       if (TYPE_CODE (type) == TYPE_CODE_PTR)
9567         {
9568           switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9569             {
9570             case TYPE_CODE_FUNC:
9571               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9572               break;
9573             case TYPE_CODE_ARRAY:
9574               break;
9575             case TYPE_CODE_STRUCT:
9576               if (noside != EVAL_AVOID_SIDE_EFFECTS)
9577                 argvec[0] = ada_value_ind (argvec[0]);
9578               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9579               break;
9580             default:
9581               error (_("cannot subscript or call something of type `%s'"),
9582                      ada_type_name (value_type (argvec[0])));
9583               break;
9584             }
9585         }
9586
9587       switch (TYPE_CODE (type))
9588         {
9589         case TYPE_CODE_FUNC:
9590           if (noside == EVAL_AVOID_SIDE_EFFECTS)
9591             return allocate_value (TYPE_TARGET_TYPE (type));
9592           return call_function_by_hand (argvec[0], nargs, argvec + 1);
9593         case TYPE_CODE_STRUCT:
9594           {
9595             int arity;
9596
9597             arity = ada_array_arity (type);
9598             type = ada_array_element_type (type, nargs);
9599             if (type == NULL)
9600               error (_("cannot subscript or call a record"));
9601             if (arity != nargs)
9602               error (_("wrong number of subscripts; expecting %d"), arity);
9603             if (noside == EVAL_AVOID_SIDE_EFFECTS)
9604               return value_zero (ada_aligned_type (type), lval_memory);
9605             return
9606               unwrap_value (ada_value_subscript
9607                             (argvec[0], nargs, argvec + 1));
9608           }
9609         case TYPE_CODE_ARRAY:
9610           if (noside == EVAL_AVOID_SIDE_EFFECTS)
9611             {
9612               type = ada_array_element_type (type, nargs);
9613               if (type == NULL)
9614                 error (_("element type of array unknown"));
9615               else
9616                 return value_zero (ada_aligned_type (type), lval_memory);
9617             }
9618           return
9619             unwrap_value (ada_value_subscript
9620                           (ada_coerce_to_simple_array (argvec[0]),
9621                            nargs, argvec + 1));
9622         case TYPE_CODE_PTR:     /* Pointer to array */
9623           type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9624           if (noside == EVAL_AVOID_SIDE_EFFECTS)
9625             {
9626               type = ada_array_element_type (type, nargs);
9627               if (type == NULL)
9628                 error (_("element type of array unknown"));
9629               else
9630                 return value_zero (ada_aligned_type (type), lval_memory);
9631             }
9632           return
9633             unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9634                                                    nargs, argvec + 1));
9635
9636         default:
9637           error (_("Attempt to index or call something other than an "
9638                    "array or function"));
9639         }
9640
9641     case TERNOP_SLICE:
9642       {
9643         struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9644         struct value *low_bound_val =
9645           evaluate_subexp (NULL_TYPE, exp, pos, noside);
9646         struct value *high_bound_val =
9647           evaluate_subexp (NULL_TYPE, exp, pos, noside);
9648         LONGEST low_bound;
9649         LONGEST high_bound;
9650
9651         low_bound_val = coerce_ref (low_bound_val);
9652         high_bound_val = coerce_ref (high_bound_val);
9653         low_bound = pos_atr (low_bound_val);
9654         high_bound = pos_atr (high_bound_val);
9655
9656         if (noside == EVAL_SKIP)
9657           goto nosideret;
9658
9659         /* If this is a reference to an aligner type, then remove all
9660            the aligners.  */
9661         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9662             && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9663           TYPE_TARGET_TYPE (value_type (array)) =
9664             ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9665
9666         if (ada_is_constrained_packed_array_type (value_type (array)))
9667           error (_("cannot slice a packed array"));
9668
9669         /* If this is a reference to an array or an array lvalue,
9670            convert to a pointer.  */
9671         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9672             || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9673                 && VALUE_LVAL (array) == lval_memory))
9674           array = value_addr (array);
9675
9676         if (noside == EVAL_AVOID_SIDE_EFFECTS
9677             && ada_is_array_descriptor_type (ada_check_typedef
9678                                              (value_type (array))))
9679           return empty_array (ada_type_of_array (array, 0), low_bound);
9680
9681         array = ada_coerce_to_simple_array_ptr (array);
9682
9683         /* If we have more than one level of pointer indirection,
9684            dereference the value until we get only one level.  */
9685         while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9686                && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9687                      == TYPE_CODE_PTR))
9688           array = value_ind (array);
9689
9690         /* Make sure we really do have an array type before going further,
9691            to avoid a SEGV when trying to get the index type or the target
9692            type later down the road if the debug info generated by
9693            the compiler is incorrect or incomplete.  */
9694         if (!ada_is_simple_array_type (value_type (array)))
9695           error (_("cannot take slice of non-array"));
9696
9697         if (TYPE_CODE (ada_check_typedef (value_type (array)))
9698             == TYPE_CODE_PTR)
9699           {
9700             struct type *type0 = ada_check_typedef (value_type (array));
9701
9702             if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9703               return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9704             else
9705               {
9706                 struct type *arr_type0 =
9707                   to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9708
9709                 return ada_value_slice_from_ptr (array, arr_type0,
9710                                                  longest_to_int (low_bound),
9711                                                  longest_to_int (high_bound));
9712               }
9713           }
9714         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9715           return array;
9716         else if (high_bound < low_bound)
9717           return empty_array (value_type (array), low_bound);
9718         else
9719           return ada_value_slice (array, longest_to_int (low_bound),
9720                                   longest_to_int (high_bound));
9721       }
9722
9723     case UNOP_IN_RANGE:
9724       (*pos) += 2;
9725       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9726       type = check_typedef (exp->elts[pc + 1].type);
9727
9728       if (noside == EVAL_SKIP)
9729         goto nosideret;
9730
9731       switch (TYPE_CODE (type))
9732         {
9733         default:
9734           lim_warning (_("Membership test incompletely implemented; "
9735                          "always returns true"));
9736           type = language_bool_type (exp->language_defn, exp->gdbarch);
9737           return value_from_longest (type, (LONGEST) 1);
9738
9739         case TYPE_CODE_RANGE:
9740           arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9741           arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9742           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9743           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9744           type = language_bool_type (exp->language_defn, exp->gdbarch);
9745           return
9746             value_from_longest (type,
9747                                 (value_less (arg1, arg3)
9748                                  || value_equal (arg1, arg3))
9749                                 && (value_less (arg2, arg1)
9750                                     || value_equal (arg2, arg1)));
9751         }
9752
9753     case BINOP_IN_BOUNDS:
9754       (*pos) += 2;
9755       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9757
9758       if (noside == EVAL_SKIP)
9759         goto nosideret;
9760
9761       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9762         {
9763           type = language_bool_type (exp->language_defn, exp->gdbarch);
9764           return value_zero (type, not_lval);
9765         }
9766
9767       tem = longest_to_int (exp->elts[pc + 1].longconst);
9768
9769       type = ada_index_type (value_type (arg2), tem, "range");
9770       if (!type)
9771         type = value_type (arg1);
9772
9773       arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9774       arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9775
9776       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9777       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9778       type = language_bool_type (exp->language_defn, exp->gdbarch);
9779       return
9780         value_from_longest (type,
9781                             (value_less (arg1, arg3)
9782                              || value_equal (arg1, arg3))
9783                             && (value_less (arg2, arg1)
9784                                 || value_equal (arg2, arg1)));
9785
9786     case TERNOP_IN_RANGE:
9787       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9788       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789       arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790
9791       if (noside == EVAL_SKIP)
9792         goto nosideret;
9793
9794       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9795       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9796       type = language_bool_type (exp->language_defn, exp->gdbarch);
9797       return
9798         value_from_longest (type,
9799                             (value_less (arg1, arg3)
9800                              || value_equal (arg1, arg3))
9801                             && (value_less (arg2, arg1)
9802                                 || value_equal (arg2, arg1)));
9803
9804     case OP_ATR_FIRST:
9805     case OP_ATR_LAST:
9806     case OP_ATR_LENGTH:
9807       {
9808         struct type *type_arg;
9809
9810         if (exp->elts[*pos].opcode == OP_TYPE)
9811           {
9812             evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9813             arg1 = NULL;
9814             type_arg = check_typedef (exp->elts[pc + 2].type);
9815           }
9816         else
9817           {
9818             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9819             type_arg = NULL;
9820           }
9821
9822         if (exp->elts[*pos].opcode != OP_LONG)
9823           error (_("Invalid operand to '%s"), ada_attribute_name (op));
9824         tem = longest_to_int (exp->elts[*pos + 2].longconst);
9825         *pos += 4;
9826
9827         if (noside == EVAL_SKIP)
9828           goto nosideret;
9829
9830         if (type_arg == NULL)
9831           {
9832             arg1 = ada_coerce_ref (arg1);
9833
9834             if (ada_is_constrained_packed_array_type (value_type (arg1)))
9835               arg1 = ada_coerce_to_simple_array (arg1);
9836
9837             type = ada_index_type (value_type (arg1), tem,
9838                                    ada_attribute_name (op));
9839             if (type == NULL)
9840               type = builtin_type (exp->gdbarch)->builtin_int;
9841
9842             if (noside == EVAL_AVOID_SIDE_EFFECTS)
9843               return allocate_value (type);
9844
9845             switch (op)
9846               {
9847               default:          /* Should never happen.  */
9848                 error (_("unexpected attribute encountered"));
9849               case OP_ATR_FIRST:
9850                 return value_from_longest
9851                         (type, ada_array_bound (arg1, tem, 0));
9852               case OP_ATR_LAST:
9853                 return value_from_longest
9854                         (type, ada_array_bound (arg1, tem, 1));
9855               case OP_ATR_LENGTH:
9856                 return value_from_longest
9857                         (type, ada_array_length (arg1, tem));
9858               }
9859           }
9860         else if (discrete_type_p (type_arg))
9861           {
9862             struct type *range_type;
9863             char *name = ada_type_name (type_arg);
9864
9865             range_type = NULL;
9866             if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9867               range_type = to_fixed_range_type (type_arg, NULL);
9868             if (range_type == NULL)
9869               range_type = type_arg;
9870             switch (op)
9871               {
9872               default:
9873                 error (_("unexpected attribute encountered"));
9874               case OP_ATR_FIRST:
9875                 return value_from_longest 
9876                   (range_type, ada_discrete_type_low_bound (range_type));
9877               case OP_ATR_LAST:
9878                 return value_from_longest
9879                   (range_type, ada_discrete_type_high_bound (range_type));
9880               case OP_ATR_LENGTH:
9881                 error (_("the 'length attribute applies only to array types"));
9882               }
9883           }
9884         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9885           error (_("unimplemented type attribute"));
9886         else
9887           {
9888             LONGEST low, high;
9889
9890             if (ada_is_constrained_packed_array_type (type_arg))
9891               type_arg = decode_constrained_packed_array_type (type_arg);
9892
9893             type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9894             if (type == NULL)
9895               type = builtin_type (exp->gdbarch)->builtin_int;
9896
9897             if (noside == EVAL_AVOID_SIDE_EFFECTS)
9898               return allocate_value (type);
9899
9900             switch (op)
9901               {
9902               default:
9903                 error (_("unexpected attribute encountered"));
9904               case OP_ATR_FIRST:
9905                 low = ada_array_bound_from_type (type_arg, tem, 0);
9906                 return value_from_longest (type, low);
9907               case OP_ATR_LAST:
9908                 high = ada_array_bound_from_type (type_arg, tem, 1);
9909                 return value_from_longest (type, high);
9910               case OP_ATR_LENGTH:
9911                 low = ada_array_bound_from_type (type_arg, tem, 0);
9912                 high = ada_array_bound_from_type (type_arg, tem, 1);
9913                 return value_from_longest (type, high - low + 1);
9914               }
9915           }
9916       }
9917
9918     case OP_ATR_TAG:
9919       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9920       if (noside == EVAL_SKIP)
9921         goto nosideret;
9922
9923       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9924         return value_zero (ada_tag_type (arg1), not_lval);
9925
9926       return ada_value_tag (arg1);
9927
9928     case OP_ATR_MIN:
9929     case OP_ATR_MAX:
9930       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9931       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9932       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9933       if (noside == EVAL_SKIP)
9934         goto nosideret;
9935       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9936         return value_zero (value_type (arg1), not_lval);
9937       else
9938         {
9939           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9940           return value_binop (arg1, arg2,
9941                               op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9942         }
9943
9944     case OP_ATR_MODULUS:
9945       {
9946         struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9947
9948         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9949         if (noside == EVAL_SKIP)
9950           goto nosideret;
9951
9952         if (!ada_is_modular_type (type_arg))
9953           error (_("'modulus must be applied to modular type"));
9954
9955         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9956                                    ada_modulus (type_arg));
9957       }
9958
9959
9960     case OP_ATR_POS:
9961       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9962       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963       if (noside == EVAL_SKIP)
9964         goto nosideret;
9965       type = builtin_type (exp->gdbarch)->builtin_int;
9966       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9967         return value_zero (type, not_lval);
9968       else
9969         return value_pos_atr (type, arg1);
9970
9971     case OP_ATR_SIZE:
9972       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9973       type = value_type (arg1);
9974
9975       /* If the argument is a reference, then dereference its type, since
9976          the user is really asking for the size of the actual object,
9977          not the size of the pointer.  */
9978       if (TYPE_CODE (type) == TYPE_CODE_REF)
9979         type = TYPE_TARGET_TYPE (type);
9980
9981       if (noside == EVAL_SKIP)
9982         goto nosideret;
9983       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9984         return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9985       else
9986         return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9987                                    TARGET_CHAR_BIT * TYPE_LENGTH (type));
9988
9989     case OP_ATR_VAL:
9990       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9991       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9992       type = exp->elts[pc + 2].type;
9993       if (noside == EVAL_SKIP)
9994         goto nosideret;
9995       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9996         return value_zero (type, not_lval);
9997       else
9998         return value_val_atr (type, arg1);
9999
10000     case BINOP_EXP:
10001       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10002       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10003       if (noside == EVAL_SKIP)
10004         goto nosideret;
10005       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10006         return value_zero (value_type (arg1), not_lval);
10007       else
10008         {
10009           /* For integer exponentiation operations,
10010              only promote the first argument.  */
10011           if (is_integral_type (value_type (arg2)))
10012             unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10013           else
10014             binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10015
10016           return value_binop (arg1, arg2, op);
10017         }
10018
10019     case UNOP_PLUS:
10020       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021       if (noside == EVAL_SKIP)
10022         goto nosideret;
10023       else
10024         return arg1;
10025
10026     case UNOP_ABS:
10027       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10028       if (noside == EVAL_SKIP)
10029         goto nosideret;
10030       unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10031       if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10032         return value_neg (arg1);
10033       else
10034         return arg1;
10035
10036     case UNOP_IND:
10037       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10038       if (noside == EVAL_SKIP)
10039         goto nosideret;
10040       type = ada_check_typedef (value_type (arg1));
10041       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10042         {
10043           if (ada_is_array_descriptor_type (type))
10044             /* GDB allows dereferencing GNAT array descriptors.  */
10045             {
10046               struct type *arrType = ada_type_of_array (arg1, 0);
10047
10048               if (arrType == NULL)
10049                 error (_("Attempt to dereference null array pointer."));
10050               return value_at_lazy (arrType, 0);
10051             }
10052           else if (TYPE_CODE (type) == TYPE_CODE_PTR
10053                    || TYPE_CODE (type) == TYPE_CODE_REF
10054                    /* In C you can dereference an array to get the 1st elt.  */
10055                    || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10056             {
10057               type = to_static_fixed_type
10058                 (ada_aligned_type
10059                  (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10060               check_size (type);
10061               return value_zero (type, lval_memory);
10062             }
10063           else if (TYPE_CODE (type) == TYPE_CODE_INT)
10064             {
10065               /* GDB allows dereferencing an int.  */
10066               if (expect_type == NULL)
10067                 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10068                                    lval_memory);
10069               else
10070                 {
10071                   expect_type = 
10072                     to_static_fixed_type (ada_aligned_type (expect_type));
10073                   return value_zero (expect_type, lval_memory);
10074                 }
10075             }
10076           else
10077             error (_("Attempt to take contents of a non-pointer value."));
10078         }
10079       arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
10080       type = ada_check_typedef (value_type (arg1));
10081
10082       if (TYPE_CODE (type) == TYPE_CODE_INT)
10083           /* GDB allows dereferencing an int.  If we were given
10084              the expect_type, then use that as the target type.
10085              Otherwise, assume that the target type is an int.  */
10086         {
10087           if (expect_type != NULL)
10088             return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10089                                               arg1));
10090           else
10091             return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10092                                   (CORE_ADDR) value_as_address (arg1));
10093         }
10094
10095       if (ada_is_array_descriptor_type (type))
10096         /* GDB allows dereferencing GNAT array descriptors.  */
10097         return ada_coerce_to_simple_array (arg1);
10098       else
10099         return ada_value_ind (arg1);
10100
10101     case STRUCTOP_STRUCT:
10102       tem = longest_to_int (exp->elts[pc + 1].longconst);
10103       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10104       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10105       if (noside == EVAL_SKIP)
10106         goto nosideret;
10107       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108         {
10109           struct type *type1 = value_type (arg1);
10110
10111           if (ada_is_tagged_type (type1, 1))
10112             {
10113               type = ada_lookup_struct_elt_type (type1,
10114                                                  &exp->elts[pc + 2].string,
10115                                                  1, 1, NULL);
10116               if (type == NULL)
10117                 /* In this case, we assume that the field COULD exist
10118                    in some extension of the type.  Return an object of 
10119                    "type" void, which will match any formal 
10120                    (see ada_type_match).  */
10121                 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10122                                    lval_memory);
10123             }
10124           else
10125             type =
10126               ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10127                                           0, NULL);
10128
10129           return value_zero (ada_aligned_type (type), lval_memory);
10130         }
10131       else
10132         arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10133         arg1 = unwrap_value (arg1);
10134         return ada_to_fixed_value (arg1);
10135
10136     case OP_TYPE:
10137       /* The value is not supposed to be used.  This is here to make it
10138          easier to accommodate expressions that contain types.  */
10139       (*pos) += 2;
10140       if (noside == EVAL_SKIP)
10141         goto nosideret;
10142       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10143         return allocate_value (exp->elts[pc + 1].type);
10144       else
10145         error (_("Attempt to use a type name as an expression"));
10146
10147     case OP_AGGREGATE:
10148     case OP_CHOICES:
10149     case OP_OTHERS:
10150     case OP_DISCRETE_RANGE:
10151     case OP_POSITIONAL:
10152     case OP_NAME:
10153       if (noside == EVAL_NORMAL)
10154         switch (op) 
10155           {
10156           case OP_NAME:
10157             error (_("Undefined name, ambiguous name, or renaming used in "
10158                      "component association: %s."), &exp->elts[pc+2].string);
10159           case OP_AGGREGATE:
10160             error (_("Aggregates only allowed on the right of an assignment"));
10161           default:
10162             internal_error (__FILE__, __LINE__,
10163                             _("aggregate apparently mangled"));
10164           }
10165
10166       ada_forward_operator_length (exp, pc, &oplen, &nargs);
10167       *pos += oplen - 1;
10168       for (tem = 0; tem < nargs; tem += 1) 
10169         ada_evaluate_subexp (NULL, exp, pos, noside);
10170       goto nosideret;
10171     }
10172
10173 nosideret:
10174   return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10175 }
10176 \f
10177
10178                                 /* Fixed point */
10179
10180 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10181    type name that encodes the 'small and 'delta information.
10182    Otherwise, return NULL.  */
10183
10184 static const char *
10185 fixed_type_info (struct type *type)
10186 {
10187   const char *name = ada_type_name (type);
10188   enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10189
10190   if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10191     {
10192       const char *tail = strstr (name, "___XF_");
10193
10194       if (tail == NULL)
10195         return NULL;
10196       else
10197         return tail + 5;
10198     }
10199   else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10200     return fixed_type_info (TYPE_TARGET_TYPE (type));
10201   else
10202     return NULL;
10203 }
10204
10205 /* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
10206
10207 int
10208 ada_is_fixed_point_type (struct type *type)
10209 {
10210   return fixed_type_info (type) != NULL;
10211 }
10212
10213 /* Return non-zero iff TYPE represents a System.Address type.  */
10214
10215 int
10216 ada_is_system_address_type (struct type *type)
10217 {
10218   return (TYPE_NAME (type)
10219           && strcmp (TYPE_NAME (type), "system__address") == 0);
10220 }
10221
10222 /* Assuming that TYPE is the representation of an Ada fixed-point
10223    type, return its delta, or -1 if the type is malformed and the
10224    delta cannot be determined.  */
10225
10226 DOUBLEST
10227 ada_delta (struct type *type)
10228 {
10229   const char *encoding = fixed_type_info (type);
10230   DOUBLEST num, den;
10231
10232   /* Strictly speaking, num and den are encoded as integer.  However,
10233      they may not fit into a long, and they will have to be converted
10234      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10235   if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10236               &num, &den) < 2)
10237     return -1.0;
10238   else
10239     return num / den;
10240 }
10241
10242 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10243    factor ('SMALL value) associated with the type.  */
10244
10245 static DOUBLEST
10246 scaling_factor (struct type *type)
10247 {
10248   const char *encoding = fixed_type_info (type);
10249   DOUBLEST num0, den0, num1, den1;
10250   int n;
10251
10252   /* Strictly speaking, num's and den's are encoded as integer.  However,
10253      they may not fit into a long, and they will have to be converted
10254      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10255   n = sscanf (encoding,
10256               "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10257               "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10258               &num0, &den0, &num1, &den1);
10259
10260   if (n < 2)
10261     return 1.0;
10262   else if (n == 4)
10263     return num1 / den1;
10264   else
10265     return num0 / den0;
10266 }
10267
10268
10269 /* Assuming that X is the representation of a value of fixed-point
10270    type TYPE, return its floating-point equivalent.  */
10271
10272 DOUBLEST
10273 ada_fixed_to_float (struct type *type, LONGEST x)
10274 {
10275   return (DOUBLEST) x *scaling_factor (type);
10276 }
10277
10278 /* The representation of a fixed-point value of type TYPE
10279    corresponding to the value X.  */
10280
10281 LONGEST
10282 ada_float_to_fixed (struct type *type, DOUBLEST x)
10283 {
10284   return (LONGEST) (x / scaling_factor (type) + 0.5);
10285 }
10286
10287 \f
10288
10289                                 /* Range types */
10290
10291 /* Scan STR beginning at position K for a discriminant name, and
10292    return the value of that discriminant field of DVAL in *PX.  If
10293    PNEW_K is not null, put the position of the character beyond the
10294    name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
10295    not alter *PX and *PNEW_K if unsuccessful.  */
10296
10297 static int
10298 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10299                     int *pnew_k)
10300 {
10301   static char *bound_buffer = NULL;
10302   static size_t bound_buffer_len = 0;
10303   char *bound;
10304   char *pend;
10305   struct value *bound_val;
10306
10307   if (dval == NULL || str == NULL || str[k] == '\0')
10308     return 0;
10309
10310   pend = strstr (str + k, "__");
10311   if (pend == NULL)
10312     {
10313       bound = str + k;
10314       k += strlen (bound);
10315     }
10316   else
10317     {
10318       GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10319       bound = bound_buffer;
10320       strncpy (bound_buffer, str + k, pend - (str + k));
10321       bound[pend - (str + k)] = '\0';
10322       k = pend - str;
10323     }
10324
10325   bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10326   if (bound_val == NULL)
10327     return 0;
10328
10329   *px = value_as_long (bound_val);
10330   if (pnew_k != NULL)
10331     *pnew_k = k;
10332   return 1;
10333 }
10334
10335 /* Value of variable named NAME in the current environment.  If
10336    no such variable found, then if ERR_MSG is null, returns 0, and
10337    otherwise causes an error with message ERR_MSG.  */
10338
10339 static struct value *
10340 get_var_value (char *name, char *err_msg)
10341 {
10342   struct ada_symbol_info *syms;
10343   int nsyms;
10344
10345   nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10346                                   &syms);
10347
10348   if (nsyms != 1)
10349     {
10350       if (err_msg == NULL)
10351         return 0;
10352       else
10353         error (("%s"), err_msg);
10354     }
10355
10356   return value_of_variable (syms[0].sym, syms[0].block);
10357 }
10358
10359 /* Value of integer variable named NAME in the current environment.  If
10360    no such variable found, returns 0, and sets *FLAG to 0.  If
10361    successful, sets *FLAG to 1.  */
10362
10363 LONGEST
10364 get_int_var_value (char *name, int *flag)
10365 {
10366   struct value *var_val = get_var_value (name, 0);
10367
10368   if (var_val == 0)
10369     {
10370       if (flag != NULL)
10371         *flag = 0;
10372       return 0;
10373     }
10374   else
10375     {
10376       if (flag != NULL)
10377         *flag = 1;
10378       return value_as_long (var_val);
10379     }
10380 }
10381
10382
10383 /* Return a range type whose base type is that of the range type named
10384    NAME in the current environment, and whose bounds are calculated
10385    from NAME according to the GNAT range encoding conventions.
10386    Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
10387    corresponding range type from debug information; fall back to using it
10388    if symbol lookup fails.  If a new type must be created, allocate it
10389    like ORIG_TYPE was.  The bounds information, in general, is encoded
10390    in NAME, the base type given in the named range type.  */
10391
10392 static struct type *
10393 to_fixed_range_type (struct type *raw_type, struct value *dval)
10394 {
10395   char *name;
10396   struct type *base_type;
10397   char *subtype_info;
10398
10399   gdb_assert (raw_type != NULL);
10400   gdb_assert (TYPE_NAME (raw_type) != NULL);
10401
10402   if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10403     base_type = TYPE_TARGET_TYPE (raw_type);
10404   else
10405     base_type = raw_type;
10406
10407   name = TYPE_NAME (raw_type);
10408   subtype_info = strstr (name, "___XD");
10409   if (subtype_info == NULL)
10410     {
10411       LONGEST L = ada_discrete_type_low_bound (raw_type);
10412       LONGEST U = ada_discrete_type_high_bound (raw_type);
10413
10414       if (L < INT_MIN || U > INT_MAX)
10415         return raw_type;
10416       else
10417         return create_range_type (alloc_type_copy (raw_type), raw_type,
10418                                   ada_discrete_type_low_bound (raw_type),
10419                                   ada_discrete_type_high_bound (raw_type));
10420     }
10421   else
10422     {
10423       static char *name_buf = NULL;
10424       static size_t name_len = 0;
10425       int prefix_len = subtype_info - name;
10426       LONGEST L, U;
10427       struct type *type;
10428       char *bounds_str;
10429       int n;
10430
10431       GROW_VECT (name_buf, name_len, prefix_len + 5);
10432       strncpy (name_buf, name, prefix_len);
10433       name_buf[prefix_len] = '\0';
10434
10435       subtype_info += 5;
10436       bounds_str = strchr (subtype_info, '_');
10437       n = 1;
10438
10439       if (*subtype_info == 'L')
10440         {
10441           if (!ada_scan_number (bounds_str, n, &L, &n)
10442               && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10443             return raw_type;
10444           if (bounds_str[n] == '_')
10445             n += 2;
10446           else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
10447             n += 1;
10448           subtype_info += 1;
10449         }
10450       else
10451         {
10452           int ok;
10453
10454           strcpy (name_buf + prefix_len, "___L");
10455           L = get_int_var_value (name_buf, &ok);
10456           if (!ok)
10457             {
10458               lim_warning (_("Unknown lower bound, using 1."));
10459               L = 1;
10460             }
10461         }
10462
10463       if (*subtype_info == 'U')
10464         {
10465           if (!ada_scan_number (bounds_str, n, &U, &n)
10466               && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10467             return raw_type;
10468         }
10469       else
10470         {
10471           int ok;
10472
10473           strcpy (name_buf + prefix_len, "___U");
10474           U = get_int_var_value (name_buf, &ok);
10475           if (!ok)
10476             {
10477               lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10478               U = L;
10479             }
10480         }
10481
10482       type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10483       TYPE_NAME (type) = name;
10484       return type;
10485     }
10486 }
10487
10488 /* True iff NAME is the name of a range type.  */
10489
10490 int
10491 ada_is_range_type_name (const char *name)
10492 {
10493   return (name != NULL && strstr (name, "___XD"));
10494 }
10495 \f
10496
10497                                 /* Modular types */
10498
10499 /* True iff TYPE is an Ada modular type.  */
10500
10501 int
10502 ada_is_modular_type (struct type *type)
10503 {
10504   struct type *subranged_type = get_base_type (type);
10505
10506   return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10507           && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10508           && TYPE_UNSIGNED (subranged_type));
10509 }
10510
10511 /* Try to determine the lower and upper bounds of the given modular type
10512    using the type name only.  Return non-zero and set L and U as the lower
10513    and upper bounds (respectively) if successful.  */
10514
10515 int
10516 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10517 {
10518   char *name = ada_type_name (type);
10519   char *suffix;
10520   int k;
10521   LONGEST U;
10522
10523   if (name == NULL)
10524     return 0;
10525
10526   /* Discrete type bounds are encoded using an __XD suffix.  In our case,
10527      we are looking for static bounds, which means an __XDLU suffix.
10528      Moreover, we know that the lower bound of modular types is always
10529      zero, so the actual suffix should start with "__XDLU_0__", and
10530      then be followed by the upper bound value.  */
10531   suffix = strstr (name, "__XDLU_0__");
10532   if (suffix == NULL)
10533     return 0;
10534   k = 10;
10535   if (!ada_scan_number (suffix, k, &U, NULL))
10536     return 0;
10537
10538   *modulus = (ULONGEST) U + 1;
10539   return 1;
10540 }
10541
10542 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
10543
10544 ULONGEST
10545 ada_modulus (struct type *type)
10546 {
10547   return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10548 }
10549 \f
10550
10551 /* Ada exception catchpoint support:
10552    ---------------------------------
10553
10554    We support 3 kinds of exception catchpoints:
10555      . catchpoints on Ada exceptions
10556      . catchpoints on unhandled Ada exceptions
10557      . catchpoints on failed assertions
10558
10559    Exceptions raised during failed assertions, or unhandled exceptions
10560    could perfectly be caught with the general catchpoint on Ada exceptions.
10561    However, we can easily differentiate these two special cases, and having
10562    the option to distinguish these two cases from the rest can be useful
10563    to zero-in on certain situations.
10564
10565    Exception catchpoints are a specialized form of breakpoint,
10566    since they rely on inserting breakpoints inside known routines
10567    of the GNAT runtime.  The implementation therefore uses a standard
10568    breakpoint structure of the BP_BREAKPOINT type, but with its own set
10569    of breakpoint_ops.
10570
10571    Support in the runtime for exception catchpoints have been changed
10572    a few times already, and these changes affect the implementation
10573    of these catchpoints.  In order to be able to support several
10574    variants of the runtime, we use a sniffer that will determine
10575    the runtime variant used by the program being debugged.  */
10576
10577 /* The different types of catchpoints that we introduced for catching
10578    Ada exceptions.  */
10579
10580 enum exception_catchpoint_kind
10581 {
10582   ex_catch_exception,
10583   ex_catch_exception_unhandled,
10584   ex_catch_assert
10585 };
10586
10587 /* Ada's standard exceptions.  */
10588
10589 static char *standard_exc[] = {
10590   "constraint_error",
10591   "program_error",
10592   "storage_error",
10593   "tasking_error"
10594 };
10595
10596 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10597
10598 /* A structure that describes how to support exception catchpoints
10599    for a given executable.  */
10600
10601 struct exception_support_info
10602 {
10603    /* The name of the symbol to break on in order to insert
10604       a catchpoint on exceptions.  */
10605    const char *catch_exception_sym;
10606
10607    /* The name of the symbol to break on in order to insert
10608       a catchpoint on unhandled exceptions.  */
10609    const char *catch_exception_unhandled_sym;
10610
10611    /* The name of the symbol to break on in order to insert
10612       a catchpoint on failed assertions.  */
10613    const char *catch_assert_sym;
10614
10615    /* Assuming that the inferior just triggered an unhandled exception
10616       catchpoint, this function is responsible for returning the address
10617       in inferior memory where the name of that exception is stored.
10618       Return zero if the address could not be computed.  */
10619    ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10620 };
10621
10622 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10623 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10624
10625 /* The following exception support info structure describes how to
10626    implement exception catchpoints with the latest version of the
10627    Ada runtime (as of 2007-03-06).  */
10628
10629 static const struct exception_support_info default_exception_support_info =
10630 {
10631   "__gnat_debug_raise_exception", /* catch_exception_sym */
10632   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10633   "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10634   ada_unhandled_exception_name_addr
10635 };
10636
10637 /* The following exception support info structure describes how to
10638    implement exception catchpoints with a slightly older version
10639    of the Ada runtime.  */
10640
10641 static const struct exception_support_info exception_support_info_fallback =
10642 {
10643   "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10644   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10645   "system__assertions__raise_assert_failure",  /* catch_assert_sym */
10646   ada_unhandled_exception_name_addr_from_raise
10647 };
10648
10649 /* Return nonzero if we can detect the exception support routines
10650    described in EINFO.
10651
10652    This function errors out if an abnormal situation is detected
10653    (for instance, if we find the exception support routines, but
10654    that support is found to be incomplete).  */
10655
10656 static int
10657 ada_has_this_exception_support (const struct exception_support_info *einfo)
10658 {
10659   struct symbol *sym;
10660
10661   /* The symbol we're looking up is provided by a unit in the GNAT runtime
10662      that should be compiled with debugging information.  As a result, we
10663      expect to find that symbol in the symtabs.  */
10664
10665   sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10666   if (sym == NULL)
10667     {
10668       /* Perhaps we did not find our symbol because the Ada runtime was
10669          compiled without debugging info, or simply stripped of it.
10670          It happens on some GNU/Linux distributions for instance, where
10671          users have to install a separate debug package in order to get
10672          the runtime's debugging info.  In that situation, let the user
10673          know why we cannot insert an Ada exception catchpoint.
10674
10675          Note: Just for the purpose of inserting our Ada exception
10676          catchpoint, we could rely purely on the associated minimal symbol.
10677          But we would be operating in degraded mode anyway, since we are
10678          still lacking the debugging info needed later on to extract
10679          the name of the exception being raised (this name is printed in
10680          the catchpoint message, and is also used when trying to catch
10681          a specific exception).  We do not handle this case for now.  */
10682       if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10683         error (_("Your Ada runtime appears to be missing some debugging "
10684                  "information.\nCannot insert Ada exception catchpoint "
10685                  "in this configuration."));
10686
10687       return 0;
10688     }
10689
10690   /* Make sure that the symbol we found corresponds to a function.  */
10691
10692   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10693     error (_("Symbol \"%s\" is not a function (class = %d)"),
10694            SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10695
10696   return 1;
10697 }
10698
10699 /* Inspect the Ada runtime and determine which exception info structure
10700    should be used to provide support for exception catchpoints.
10701
10702    This function will always set the per-inferior exception_info,
10703    or raise an error.  */
10704
10705 static void
10706 ada_exception_support_info_sniffer (void)
10707 {
10708   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10709   struct symbol *sym;
10710
10711   /* If the exception info is already known, then no need to recompute it.  */
10712   if (data->exception_info != NULL)
10713     return;
10714
10715   /* Check the latest (default) exception support info.  */
10716   if (ada_has_this_exception_support (&default_exception_support_info))
10717     {
10718       data->exception_info = &default_exception_support_info;
10719       return;
10720     }
10721
10722   /* Try our fallback exception suport info.  */
10723   if (ada_has_this_exception_support (&exception_support_info_fallback))
10724     {
10725       data->exception_info = &exception_support_info_fallback;
10726       return;
10727     }
10728
10729   /* Sometimes, it is normal for us to not be able to find the routine
10730      we are looking for.  This happens when the program is linked with
10731      the shared version of the GNAT runtime, and the program has not been
10732      started yet.  Inform the user of these two possible causes if
10733      applicable.  */
10734
10735   if (ada_update_initial_language (language_unknown) != language_ada)
10736     error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
10737
10738   /* If the symbol does not exist, then check that the program is
10739      already started, to make sure that shared libraries have been
10740      loaded.  If it is not started, this may mean that the symbol is
10741      in a shared library.  */
10742
10743   if (ptid_get_pid (inferior_ptid) == 0)
10744     error (_("Unable to insert catchpoint. Try to start the program first."));
10745
10746   /* At this point, we know that we are debugging an Ada program and
10747      that the inferior has been started, but we still are not able to
10748      find the run-time symbols.  That can mean that we are in
10749      configurable run time mode, or that a-except as been optimized
10750      out by the linker...  In any case, at this point it is not worth
10751      supporting this feature.  */
10752
10753   error (_("Cannot insert Ada exception catchpoints in this configuration."));
10754 }
10755
10756 /* True iff FRAME is very likely to be that of a function that is
10757    part of the runtime system.  This is all very heuristic, but is
10758    intended to be used as advice as to what frames are uninteresting
10759    to most users.  */
10760
10761 static int
10762 is_known_support_routine (struct frame_info *frame)
10763 {
10764   struct symtab_and_line sal;
10765   char *func_name;
10766   enum language func_lang;
10767   int i;
10768
10769   /* If this code does not have any debugging information (no symtab),
10770      This cannot be any user code.  */
10771
10772   find_frame_sal (frame, &sal);
10773   if (sal.symtab == NULL)
10774     return 1;
10775
10776   /* If there is a symtab, but the associated source file cannot be
10777      located, then assume this is not user code:  Selecting a frame
10778      for which we cannot display the code would not be very helpful
10779      for the user.  This should also take care of case such as VxWorks
10780      where the kernel has some debugging info provided for a few units.  */
10781
10782   if (symtab_to_fullname (sal.symtab) == NULL)
10783     return 1;
10784
10785   /* Check the unit filename againt the Ada runtime file naming.
10786      We also check the name of the objfile against the name of some
10787      known system libraries that sometimes come with debugging info
10788      too.  */
10789
10790   for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10791     {
10792       re_comp (known_runtime_file_name_patterns[i]);
10793       if (re_exec (sal.symtab->filename))
10794         return 1;
10795       if (sal.symtab->objfile != NULL
10796           && re_exec (sal.symtab->objfile->name))
10797         return 1;
10798     }
10799
10800   /* Check whether the function is a GNAT-generated entity.  */
10801
10802   find_frame_funname (frame, &func_name, &func_lang, NULL);
10803   if (func_name == NULL)
10804     return 1;
10805
10806   for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10807     {
10808       re_comp (known_auxiliary_function_name_patterns[i]);
10809       if (re_exec (func_name))
10810         return 1;
10811     }
10812
10813   return 0;
10814 }
10815
10816 /* Find the first frame that contains debugging information and that is not
10817    part of the Ada run-time, starting from FI and moving upward.  */
10818
10819 void
10820 ada_find_printable_frame (struct frame_info *fi)
10821 {
10822   for (; fi != NULL; fi = get_prev_frame (fi))
10823     {
10824       if (!is_known_support_routine (fi))
10825         {
10826           select_frame (fi);
10827           break;
10828         }
10829     }
10830
10831 }
10832
10833 /* Assuming that the inferior just triggered an unhandled exception
10834    catchpoint, return the address in inferior memory where the name
10835    of the exception is stored.
10836    
10837    Return zero if the address could not be computed.  */
10838
10839 static CORE_ADDR
10840 ada_unhandled_exception_name_addr (void)
10841 {
10842   return parse_and_eval_address ("e.full_name");
10843 }
10844
10845 /* Same as ada_unhandled_exception_name_addr, except that this function
10846    should be used when the inferior uses an older version of the runtime,
10847    where the exception name needs to be extracted from a specific frame
10848    several frames up in the callstack.  */
10849
10850 static CORE_ADDR
10851 ada_unhandled_exception_name_addr_from_raise (void)
10852 {
10853   int frame_level;
10854   struct frame_info *fi;
10855   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10856
10857   /* To determine the name of this exception, we need to select
10858      the frame corresponding to RAISE_SYM_NAME.  This frame is
10859      at least 3 levels up, so we simply skip the first 3 frames
10860      without checking the name of their associated function.  */
10861   fi = get_current_frame ();
10862   for (frame_level = 0; frame_level < 3; frame_level += 1)
10863     if (fi != NULL)
10864       fi = get_prev_frame (fi); 
10865
10866   while (fi != NULL)
10867     {
10868       char *func_name;
10869       enum language func_lang;
10870
10871       find_frame_funname (fi, &func_name, &func_lang, NULL);
10872       if (func_name != NULL
10873           && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10874         break; /* We found the frame we were looking for...  */
10875       fi = get_prev_frame (fi);
10876     }
10877
10878   if (fi == NULL)
10879     return 0;
10880
10881   select_frame (fi);
10882   return parse_and_eval_address ("id.full_name");
10883 }
10884
10885 /* Assuming the inferior just triggered an Ada exception catchpoint
10886    (of any type), return the address in inferior memory where the name
10887    of the exception is stored, if applicable.
10888
10889    Return zero if the address could not be computed, or if not relevant.  */
10890
10891 static CORE_ADDR
10892 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10893                            struct breakpoint *b)
10894 {
10895   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10896
10897   switch (ex)
10898     {
10899       case ex_catch_exception:
10900         return (parse_and_eval_address ("e.full_name"));
10901         break;
10902
10903       case ex_catch_exception_unhandled:
10904         return data->exception_info->unhandled_exception_name_addr ();
10905         break;
10906       
10907       case ex_catch_assert:
10908         return 0;  /* Exception name is not relevant in this case.  */
10909         break;
10910
10911       default:
10912         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10913         break;
10914     }
10915
10916   return 0; /* Should never be reached.  */
10917 }
10918
10919 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10920    any error that ada_exception_name_addr_1 might cause to be thrown.
10921    When an error is intercepted, a warning with the error message is printed,
10922    and zero is returned.  */
10923
10924 static CORE_ADDR
10925 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10926                          struct breakpoint *b)
10927 {
10928   struct gdb_exception e;
10929   CORE_ADDR result = 0;
10930
10931   TRY_CATCH (e, RETURN_MASK_ERROR)
10932     {
10933       result = ada_exception_name_addr_1 (ex, b);
10934     }
10935
10936   if (e.reason < 0)
10937     {
10938       warning (_("failed to get exception name: %s"), e.message);
10939       return 0;
10940     }
10941
10942   return result;
10943 }
10944
10945 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10946                                                  char *, char **,
10947                                                  const struct breakpoint_ops **);
10948 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10949
10950 /* Ada catchpoints.
10951
10952    In the case of catchpoints on Ada exceptions, the catchpoint will
10953    stop the target on every exception the program throws.  When a user
10954    specifies the name of a specific exception, we translate this
10955    request into a condition expression (in text form), and then parse
10956    it into an expression stored in each of the catchpoint's locations.
10957    We then use this condition to check whether the exception that was
10958    raised is the one the user is interested in.  If not, then the
10959    target is resumed again.  We store the name of the requested
10960    exception, in order to be able to re-set the condition expression
10961    when symbols change.  */
10962
10963 /* An instance of this type is used to represent an Ada catchpoint
10964    breakpoint location.  It includes a "struct bp_location" as a kind
10965    of base class; users downcast to "struct bp_location *" when
10966    needed.  */
10967
10968 struct ada_catchpoint_location
10969 {
10970   /* The base class.  */
10971   struct bp_location base;
10972
10973   /* The condition that checks whether the exception that was raised
10974      is the specific exception the user specified on catchpoint
10975      creation.  */
10976   struct expression *excep_cond_expr;
10977 };
10978
10979 /* Implement the DTOR method in the bp_location_ops structure for all
10980    Ada exception catchpoint kinds.  */
10981
10982 static void
10983 ada_catchpoint_location_dtor (struct bp_location *bl)
10984 {
10985   struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10986
10987   xfree (al->excep_cond_expr);
10988 }
10989
10990 /* The vtable to be used in Ada catchpoint locations.  */
10991
10992 static const struct bp_location_ops ada_catchpoint_location_ops =
10993 {
10994   ada_catchpoint_location_dtor
10995 };
10996
10997 /* An instance of this type is used to represent an Ada catchpoint.
10998    It includes a "struct breakpoint" as a kind of base class; users
10999    downcast to "struct breakpoint *" when needed.  */
11000
11001 struct ada_catchpoint
11002 {
11003   /* The base class.  */
11004   struct breakpoint base;
11005
11006   /* The name of the specific exception the user specified.  */
11007   char *excep_string;
11008 };
11009
11010 /* Parse the exception condition string in the context of each of the
11011    catchpoint's locations, and store them for later evaluation.  */
11012
11013 static void
11014 create_excep_cond_exprs (struct ada_catchpoint *c)
11015 {
11016   struct cleanup *old_chain;
11017   struct bp_location *bl;
11018   char *cond_string;
11019
11020   /* Nothing to do if there's no specific exception to catch.  */
11021   if (c->excep_string == NULL)
11022     return;
11023
11024   /* Same if there are no locations... */
11025   if (c->base.loc == NULL)
11026     return;
11027
11028   /* Compute the condition expression in text form, from the specific
11029      expection we want to catch.  */
11030   cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11031   old_chain = make_cleanup (xfree, cond_string);
11032
11033   /* Iterate over all the catchpoint's locations, and parse an
11034      expression for each.  */
11035   for (bl = c->base.loc; bl != NULL; bl = bl->next)
11036     {
11037       struct ada_catchpoint_location *ada_loc
11038         = (struct ada_catchpoint_location *) bl;
11039       struct expression *exp = NULL;
11040
11041       if (!bl->shlib_disabled)
11042         {
11043           volatile struct gdb_exception e;
11044           char *s;
11045
11046           s = cond_string;
11047           TRY_CATCH (e, RETURN_MASK_ERROR)
11048             {
11049               exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11050             }
11051           if (e.reason < 0)
11052             warning (_("failed to reevaluate internal exception condition "
11053                        "for catchpoint %d: %s"),
11054                      c->base.number, e.message);
11055         }
11056
11057       ada_loc->excep_cond_expr = exp;
11058     }
11059
11060   do_cleanups (old_chain);
11061 }
11062
11063 /* Implement the DTOR method in the breakpoint_ops structure for all
11064    exception catchpoint kinds.  */
11065
11066 static void
11067 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11068 {
11069   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11070
11071   xfree (c->excep_string);
11072
11073   bkpt_breakpoint_ops.dtor (b);
11074 }
11075
11076 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11077    structure for all exception catchpoint kinds.  */
11078
11079 static struct bp_location *
11080 allocate_location_exception (enum exception_catchpoint_kind ex,
11081                              struct breakpoint *self)
11082 {
11083   struct ada_catchpoint_location *loc;
11084
11085   loc = XNEW (struct ada_catchpoint_location);
11086   init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11087   loc->excep_cond_expr = NULL;
11088   return &loc->base;
11089 }
11090
11091 /* Implement the RE_SET method in the breakpoint_ops structure for all
11092    exception catchpoint kinds.  */
11093
11094 static void
11095 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11096 {
11097   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11098
11099   /* Call the base class's method.  This updates the catchpoint's
11100      locations.  */
11101   bkpt_breakpoint_ops.re_set (b);
11102
11103   /* Reparse the exception conditional expressions.  One for each
11104      location.  */
11105   create_excep_cond_exprs (c);
11106 }
11107
11108 /* Returns true if we should stop for this breakpoint hit.  If the
11109    user specified a specific exception, we only want to cause a stop
11110    if the program thrown that exception.  */
11111
11112 static int
11113 should_stop_exception (const struct bp_location *bl)
11114 {
11115   struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11116   const struct ada_catchpoint_location *ada_loc
11117     = (const struct ada_catchpoint_location *) bl;
11118   volatile struct gdb_exception ex;
11119   int stop;
11120
11121   /* With no specific exception, should always stop.  */
11122   if (c->excep_string == NULL)
11123     return 1;
11124
11125   if (ada_loc->excep_cond_expr == NULL)
11126     {
11127       /* We will have a NULL expression if back when we were creating
11128          the expressions, this location's had failed to parse.  */
11129       return 1;
11130     }
11131
11132   stop = 1;
11133   TRY_CATCH (ex, RETURN_MASK_ALL)
11134     {
11135       struct value *mark;
11136
11137       mark = value_mark ();
11138       stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11139       value_free_to_mark (mark);
11140     }
11141   if (ex.reason < 0)
11142     exception_fprintf (gdb_stderr, ex,
11143                        _("Error in testing exception condition:\n"));
11144   return stop;
11145 }
11146
11147 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11148    for all exception catchpoint kinds.  */
11149
11150 static void
11151 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11152 {
11153   bs->stop = should_stop_exception (bs->bp_location_at);
11154 }
11155
11156 /* Implement the PRINT_IT method in the breakpoint_ops structure
11157    for all exception catchpoint kinds.  */
11158
11159 static enum print_stop_action
11160 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11161 {
11162   struct ui_out *uiout = current_uiout;
11163   struct breakpoint *b = bs->breakpoint_at;
11164
11165   annotate_catchpoint (b->number);
11166
11167   if (ui_out_is_mi_like_p (uiout))
11168     {
11169       ui_out_field_string (uiout, "reason",
11170                            async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11171       ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11172     }
11173
11174   ui_out_text (uiout,
11175                b->disposition == disp_del ? "\nTemporary catchpoint "
11176                                           : "\nCatchpoint ");
11177   ui_out_field_int (uiout, "bkptno", b->number);
11178   ui_out_text (uiout, ", ");
11179
11180   switch (ex)
11181     {
11182       case ex_catch_exception:
11183       case ex_catch_exception_unhandled:
11184         {
11185           const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11186           char exception_name[256];
11187
11188           if (addr != 0)
11189             {
11190               read_memory (addr, exception_name, sizeof (exception_name) - 1);
11191               exception_name [sizeof (exception_name) - 1] = '\0';
11192             }
11193           else
11194             {
11195               /* For some reason, we were unable to read the exception
11196                  name.  This could happen if the Runtime was compiled
11197                  without debugging info, for instance.  In that case,
11198                  just replace the exception name by the generic string
11199                  "exception" - it will read as "an exception" in the
11200                  notification we are about to print.  */
11201               memcpy (exception_name, "exception", sizeof ("exception"));
11202             }
11203           /* In the case of unhandled exception breakpoints, we print
11204              the exception name as "unhandled EXCEPTION_NAME", to make
11205              it clearer to the user which kind of catchpoint just got
11206              hit.  We used ui_out_text to make sure that this extra
11207              info does not pollute the exception name in the MI case.  */
11208           if (ex == ex_catch_exception_unhandled)
11209             ui_out_text (uiout, "unhandled ");
11210           ui_out_field_string (uiout, "exception-name", exception_name);
11211         }
11212         break;
11213       case ex_catch_assert:
11214         /* In this case, the name of the exception is not really
11215            important.  Just print "failed assertion" to make it clearer
11216            that his program just hit an assertion-failure catchpoint.
11217            We used ui_out_text because this info does not belong in
11218            the MI output.  */
11219         ui_out_text (uiout, "failed assertion");
11220         break;
11221     }
11222   ui_out_text (uiout, " at ");
11223   ada_find_printable_frame (get_current_frame ());
11224
11225   return PRINT_SRC_AND_LOC;
11226 }
11227
11228 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11229    for all exception catchpoint kinds.  */
11230
11231 static void
11232 print_one_exception (enum exception_catchpoint_kind ex,
11233                      struct breakpoint *b, struct bp_location **last_loc)
11234
11235   struct ui_out *uiout = current_uiout;
11236   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11237   struct value_print_options opts;
11238
11239   get_user_print_options (&opts);
11240   if (opts.addressprint)
11241     {
11242       annotate_field (4);
11243       ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11244     }
11245
11246   annotate_field (5);
11247   *last_loc = b->loc;
11248   switch (ex)
11249     {
11250       case ex_catch_exception:
11251         if (c->excep_string != NULL)
11252           {
11253             char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11254
11255             ui_out_field_string (uiout, "what", msg);
11256             xfree (msg);
11257           }
11258         else
11259           ui_out_field_string (uiout, "what", "all Ada exceptions");
11260         
11261         break;
11262
11263       case ex_catch_exception_unhandled:
11264         ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11265         break;
11266       
11267       case ex_catch_assert:
11268         ui_out_field_string (uiout, "what", "failed Ada assertions");
11269         break;
11270
11271       default:
11272         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11273         break;
11274     }
11275 }
11276
11277 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11278    for all exception catchpoint kinds.  */
11279
11280 static void
11281 print_mention_exception (enum exception_catchpoint_kind ex,
11282                          struct breakpoint *b)
11283 {
11284   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11285   struct ui_out *uiout = current_uiout;
11286
11287   ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11288                                                  : _("Catchpoint "));
11289   ui_out_field_int (uiout, "bkptno", b->number);
11290   ui_out_text (uiout, ": ");
11291
11292   switch (ex)
11293     {
11294       case ex_catch_exception:
11295         if (c->excep_string != NULL)
11296           {
11297             char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11298             struct cleanup *old_chain = make_cleanup (xfree, info);
11299
11300             ui_out_text (uiout, info);
11301             do_cleanups (old_chain);
11302           }
11303         else
11304           ui_out_text (uiout, _("all Ada exceptions"));
11305         break;
11306
11307       case ex_catch_exception_unhandled:
11308         ui_out_text (uiout, _("unhandled Ada exceptions"));
11309         break;
11310       
11311       case ex_catch_assert:
11312         ui_out_text (uiout, _("failed Ada assertions"));
11313         break;
11314
11315       default:
11316         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11317         break;
11318     }
11319 }
11320
11321 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11322    for all exception catchpoint kinds.  */
11323
11324 static void
11325 print_recreate_exception (enum exception_catchpoint_kind ex,
11326                           struct breakpoint *b, struct ui_file *fp)
11327 {
11328   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11329
11330   switch (ex)
11331     {
11332       case ex_catch_exception:
11333         fprintf_filtered (fp, "catch exception");
11334         if (c->excep_string != NULL)
11335           fprintf_filtered (fp, " %s", c->excep_string);
11336         break;
11337
11338       case ex_catch_exception_unhandled:
11339         fprintf_filtered (fp, "catch exception unhandled");
11340         break;
11341
11342       case ex_catch_assert:
11343         fprintf_filtered (fp, "catch assert");
11344         break;
11345
11346       default:
11347         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11348     }
11349   print_recreate_thread (b, fp);
11350 }
11351
11352 /* Virtual table for "catch exception" breakpoints.  */
11353
11354 static void
11355 dtor_catch_exception (struct breakpoint *b)
11356 {
11357   dtor_exception (ex_catch_exception, b);
11358 }
11359
11360 static struct bp_location *
11361 allocate_location_catch_exception (struct breakpoint *self)
11362 {
11363   return allocate_location_exception (ex_catch_exception, self);
11364 }
11365
11366 static void
11367 re_set_catch_exception (struct breakpoint *b)
11368 {
11369   re_set_exception (ex_catch_exception, b);
11370 }
11371
11372 static void
11373 check_status_catch_exception (bpstat bs)
11374 {
11375   check_status_exception (ex_catch_exception, bs);
11376 }
11377
11378 static enum print_stop_action
11379 print_it_catch_exception (bpstat bs)
11380 {
11381   return print_it_exception (ex_catch_exception, bs);
11382 }
11383
11384 static void
11385 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11386 {
11387   print_one_exception (ex_catch_exception, b, last_loc);
11388 }
11389
11390 static void
11391 print_mention_catch_exception (struct breakpoint *b)
11392 {
11393   print_mention_exception (ex_catch_exception, b);
11394 }
11395
11396 static void
11397 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11398 {
11399   print_recreate_exception (ex_catch_exception, b, fp);
11400 }
11401
11402 static struct breakpoint_ops catch_exception_breakpoint_ops;
11403
11404 /* Virtual table for "catch exception unhandled" breakpoints.  */
11405
11406 static void
11407 dtor_catch_exception_unhandled (struct breakpoint *b)
11408 {
11409   dtor_exception (ex_catch_exception_unhandled, b);
11410 }
11411
11412 static struct bp_location *
11413 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11414 {
11415   return allocate_location_exception (ex_catch_exception_unhandled, self);
11416 }
11417
11418 static void
11419 re_set_catch_exception_unhandled (struct breakpoint *b)
11420 {
11421   re_set_exception (ex_catch_exception_unhandled, b);
11422 }
11423
11424 static void
11425 check_status_catch_exception_unhandled (bpstat bs)
11426 {
11427   check_status_exception (ex_catch_exception_unhandled, bs);
11428 }
11429
11430 static enum print_stop_action
11431 print_it_catch_exception_unhandled (bpstat bs)
11432 {
11433   return print_it_exception (ex_catch_exception_unhandled, bs);
11434 }
11435
11436 static void
11437 print_one_catch_exception_unhandled (struct breakpoint *b,
11438                                      struct bp_location **last_loc)
11439 {
11440   print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11441 }
11442
11443 static void
11444 print_mention_catch_exception_unhandled (struct breakpoint *b)
11445 {
11446   print_mention_exception (ex_catch_exception_unhandled, b);
11447 }
11448
11449 static void
11450 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11451                                           struct ui_file *fp)
11452 {
11453   print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11454 }
11455
11456 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11457
11458 /* Virtual table for "catch assert" breakpoints.  */
11459
11460 static void
11461 dtor_catch_assert (struct breakpoint *b)
11462 {
11463   dtor_exception (ex_catch_assert, b);
11464 }
11465
11466 static struct bp_location *
11467 allocate_location_catch_assert (struct breakpoint *self)
11468 {
11469   return allocate_location_exception (ex_catch_assert, self);
11470 }
11471
11472 static void
11473 re_set_catch_assert (struct breakpoint *b)
11474 {
11475   return re_set_exception (ex_catch_assert, b);
11476 }
11477
11478 static void
11479 check_status_catch_assert (bpstat bs)
11480 {
11481   check_status_exception (ex_catch_assert, bs);
11482 }
11483
11484 static enum print_stop_action
11485 print_it_catch_assert (bpstat bs)
11486 {
11487   return print_it_exception (ex_catch_assert, bs);
11488 }
11489
11490 static void
11491 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11492 {
11493   print_one_exception (ex_catch_assert, b, last_loc);
11494 }
11495
11496 static void
11497 print_mention_catch_assert (struct breakpoint *b)
11498 {
11499   print_mention_exception (ex_catch_assert, b);
11500 }
11501
11502 static void
11503 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11504 {
11505   print_recreate_exception (ex_catch_assert, b, fp);
11506 }
11507
11508 static struct breakpoint_ops catch_assert_breakpoint_ops;
11509
11510 /* Return a newly allocated copy of the first space-separated token
11511    in ARGSP, and then adjust ARGSP to point immediately after that
11512    token.
11513
11514    Return NULL if ARGPS does not contain any more tokens.  */
11515
11516 static char *
11517 ada_get_next_arg (char **argsp)
11518 {
11519   char *args = *argsp;
11520   char *end;
11521   char *result;
11522
11523   /* Skip any leading white space.  */
11524
11525   while (isspace (*args))
11526     args++;
11527
11528   if (args[0] == '\0')
11529     return NULL; /* No more arguments.  */
11530   
11531   /* Find the end of the current argument.  */
11532
11533   end = args;
11534   while (*end != '\0' && !isspace (*end))
11535     end++;
11536
11537   /* Adjust ARGSP to point to the start of the next argument.  */
11538
11539   *argsp = end;
11540
11541   /* Make a copy of the current argument and return it.  */
11542
11543   result = xmalloc (end - args + 1);
11544   strncpy (result, args, end - args);
11545   result[end - args] = '\0';
11546   
11547   return result;
11548 }
11549
11550 /* Split the arguments specified in a "catch exception" command.  
11551    Set EX to the appropriate catchpoint type.
11552    Set EXCEP_STRING to the name of the specific exception if
11553    specified by the user.  */
11554
11555 static void
11556 catch_ada_exception_command_split (char *args,
11557                                    enum exception_catchpoint_kind *ex,
11558                                    char **excep_string)
11559 {
11560   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11561   char *exception_name;
11562
11563   exception_name = ada_get_next_arg (&args);
11564   make_cleanup (xfree, exception_name);
11565
11566   /* Check that we do not have any more arguments.  Anything else
11567      is unexpected.  */
11568
11569   while (isspace (*args))
11570     args++;
11571
11572   if (args[0] != '\0')
11573     error (_("Junk at end of expression"));
11574
11575   discard_cleanups (old_chain);
11576
11577   if (exception_name == NULL)
11578     {
11579       /* Catch all exceptions.  */
11580       *ex = ex_catch_exception;
11581       *excep_string = NULL;
11582     }
11583   else if (strcmp (exception_name, "unhandled") == 0)
11584     {
11585       /* Catch unhandled exceptions.  */
11586       *ex = ex_catch_exception_unhandled;
11587       *excep_string = NULL;
11588     }
11589   else
11590     {
11591       /* Catch a specific exception.  */
11592       *ex = ex_catch_exception;
11593       *excep_string = exception_name;
11594     }
11595 }
11596
11597 /* Return the name of the symbol on which we should break in order to
11598    implement a catchpoint of the EX kind.  */
11599
11600 static const char *
11601 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11602 {
11603   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11604
11605   gdb_assert (data->exception_info != NULL);
11606
11607   switch (ex)
11608     {
11609       case ex_catch_exception:
11610         return (data->exception_info->catch_exception_sym);
11611         break;
11612       case ex_catch_exception_unhandled:
11613         return (data->exception_info->catch_exception_unhandled_sym);
11614         break;
11615       case ex_catch_assert:
11616         return (data->exception_info->catch_assert_sym);
11617         break;
11618       default:
11619         internal_error (__FILE__, __LINE__,
11620                         _("unexpected catchpoint kind (%d)"), ex);
11621     }
11622 }
11623
11624 /* Return the breakpoint ops "virtual table" used for catchpoints
11625    of the EX kind.  */
11626
11627 static const struct breakpoint_ops *
11628 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11629 {
11630   switch (ex)
11631     {
11632       case ex_catch_exception:
11633         return (&catch_exception_breakpoint_ops);
11634         break;
11635       case ex_catch_exception_unhandled:
11636         return (&catch_exception_unhandled_breakpoint_ops);
11637         break;
11638       case ex_catch_assert:
11639         return (&catch_assert_breakpoint_ops);
11640         break;
11641       default:
11642         internal_error (__FILE__, __LINE__,
11643                         _("unexpected catchpoint kind (%d)"), ex);
11644     }
11645 }
11646
11647 /* Return the condition that will be used to match the current exception
11648    being raised with the exception that the user wants to catch.  This
11649    assumes that this condition is used when the inferior just triggered
11650    an exception catchpoint.
11651    
11652    The string returned is a newly allocated string that needs to be
11653    deallocated later.  */
11654
11655 static char *
11656 ada_exception_catchpoint_cond_string (const char *excep_string)
11657 {
11658   int i;
11659
11660   /* The standard exceptions are a special case.  They are defined in
11661      runtime units that have been compiled without debugging info; if
11662      EXCEP_STRING is the not-fully-qualified name of a standard
11663      exception (e.g. "constraint_error") then, during the evaluation
11664      of the condition expression, the symbol lookup on this name would
11665      *not* return this standard exception.  The catchpoint condition
11666      may then be set only on user-defined exceptions which have the
11667      same not-fully-qualified name (e.g. my_package.constraint_error).
11668
11669      To avoid this unexcepted behavior, these standard exceptions are
11670      systematically prefixed by "standard".  This means that "catch
11671      exception constraint_error" is rewritten into "catch exception
11672      standard.constraint_error".
11673
11674      If an exception named contraint_error is defined in another package of
11675      the inferior program, then the only way to specify this exception as a
11676      breakpoint condition is to use its fully-qualified named:
11677      e.g. my_package.constraint_error.  */
11678
11679   for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11680     {
11681       if (strcmp (standard_exc [i], excep_string) == 0)
11682         {
11683           return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11684                              excep_string);
11685         }
11686     }
11687   return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11688 }
11689
11690 /* Return the symtab_and_line that should be used to insert an exception
11691    catchpoint of the TYPE kind.
11692
11693    EXCEP_STRING should contain the name of a specific exception that
11694    the catchpoint should catch, or NULL otherwise.
11695
11696    ADDR_STRING returns the name of the function where the real
11697    breakpoint that implements the catchpoints is set, depending on the
11698    type of catchpoint we need to create.  */
11699
11700 static struct symtab_and_line
11701 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11702                    char **addr_string, const struct breakpoint_ops **ops)
11703 {
11704   const char *sym_name;
11705   struct symbol *sym;
11706
11707   /* First, find out which exception support info to use.  */
11708   ada_exception_support_info_sniffer ();
11709
11710   /* Then lookup the function on which we will break in order to catch
11711      the Ada exceptions requested by the user.  */
11712   sym_name = ada_exception_sym_name (ex);
11713   sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11714
11715   /* We can assume that SYM is not NULL at this stage.  If the symbol
11716      did not exist, ada_exception_support_info_sniffer would have
11717      raised an exception.
11718
11719      Also, ada_exception_support_info_sniffer should have already
11720      verified that SYM is a function symbol.  */
11721   gdb_assert (sym != NULL);
11722   gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11723
11724   /* Set ADDR_STRING.  */
11725   *addr_string = xstrdup (sym_name);
11726
11727   /* Set OPS.  */
11728   *ops = ada_exception_breakpoint_ops (ex);
11729
11730   return find_function_start_sal (sym, 1);
11731 }
11732
11733 /* Parse the arguments (ARGS) of the "catch exception" command.
11734  
11735    If the user asked the catchpoint to catch only a specific
11736    exception, then save the exception name in ADDR_STRING.
11737
11738    See ada_exception_sal for a description of all the remaining
11739    function arguments of this function.  */
11740
11741 static struct symtab_and_line
11742 ada_decode_exception_location (char *args, char **addr_string,
11743                                char **excep_string,
11744                                const struct breakpoint_ops **ops)
11745 {
11746   enum exception_catchpoint_kind ex;
11747
11748   catch_ada_exception_command_split (args, &ex, excep_string);
11749   return ada_exception_sal (ex, *excep_string, addr_string, ops);
11750 }
11751
11752 /* Create an Ada exception catchpoint.  */
11753
11754 static void
11755 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11756                                  struct symtab_and_line sal,
11757                                  char *addr_string,
11758                                  char *excep_string,
11759                                  const struct breakpoint_ops *ops,
11760                                  int tempflag,
11761                                  int from_tty)
11762 {
11763   struct ada_catchpoint *c;
11764
11765   c = XNEW (struct ada_catchpoint);
11766   init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11767                                  ops, tempflag, from_tty);
11768   c->excep_string = excep_string;
11769   create_excep_cond_exprs (c);
11770   install_breakpoint (0, &c->base, 1);
11771 }
11772
11773 /* Implement the "catch exception" command.  */
11774
11775 static void
11776 catch_ada_exception_command (char *arg, int from_tty,
11777                              struct cmd_list_element *command)
11778 {
11779   struct gdbarch *gdbarch = get_current_arch ();
11780   int tempflag;
11781   struct symtab_and_line sal;
11782   char *addr_string = NULL;
11783   char *excep_string = NULL;
11784   const struct breakpoint_ops *ops = NULL;
11785
11786   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11787
11788   if (!arg)
11789     arg = "";
11790   sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11791   create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11792                                    excep_string, ops, tempflag, from_tty);
11793 }
11794
11795 static struct symtab_and_line
11796 ada_decode_assert_location (char *args, char **addr_string,
11797                             const struct breakpoint_ops **ops)
11798 {
11799   /* Check that no argument where provided at the end of the command.  */
11800
11801   if (args != NULL)
11802     {
11803       while (isspace (*args))
11804         args++;
11805       if (*args != '\0')
11806         error (_("Junk at end of arguments."));
11807     }
11808
11809   return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11810 }
11811
11812 /* Implement the "catch assert" command.  */
11813
11814 static void
11815 catch_assert_command (char *arg, int from_tty,
11816                       struct cmd_list_element *command)
11817 {
11818   struct gdbarch *gdbarch = get_current_arch ();
11819   int tempflag;
11820   struct symtab_and_line sal;
11821   char *addr_string = NULL;
11822   const struct breakpoint_ops *ops = NULL;
11823
11824   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11825
11826   if (!arg)
11827     arg = "";
11828   sal = ada_decode_assert_location (arg, &addr_string, &ops);
11829   create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11830                                    NULL, ops, tempflag, from_tty);
11831 }
11832                                 /* Operators */
11833 /* Information about operators given special treatment in functions
11834    below.  */
11835 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
11836
11837 #define ADA_OPERATORS \
11838     OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11839     OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11840     OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11841     OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11842     OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11843     OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11844     OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11845     OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11846     OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11847     OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11848     OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11849     OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11850     OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11851     OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11852     OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11853     OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11854     OP_DEFN (OP_OTHERS, 1, 1, 0) \
11855     OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11856     OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11857
11858 static void
11859 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11860                      int *argsp)
11861 {
11862   switch (exp->elts[pc - 1].opcode)
11863     {
11864     default:
11865       operator_length_standard (exp, pc, oplenp, argsp);
11866       break;
11867
11868 #define OP_DEFN(op, len, args, binop) \
11869     case op: *oplenp = len; *argsp = args; break;
11870       ADA_OPERATORS;
11871 #undef OP_DEFN
11872
11873     case OP_AGGREGATE:
11874       *oplenp = 3;
11875       *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11876       break;
11877
11878     case OP_CHOICES:
11879       *oplenp = 3;
11880       *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11881       break;
11882     }
11883 }
11884
11885 /* Implementation of the exp_descriptor method operator_check.  */
11886
11887 static int
11888 ada_operator_check (struct expression *exp, int pos,
11889                     int (*objfile_func) (struct objfile *objfile, void *data),
11890                     void *data)
11891 {
11892   const union exp_element *const elts = exp->elts;
11893   struct type *type = NULL;
11894
11895   switch (elts[pos].opcode)
11896     {
11897       case UNOP_IN_RANGE:
11898       case UNOP_QUAL:
11899         type = elts[pos + 1].type;
11900         break;
11901
11902       default:
11903         return operator_check_standard (exp, pos, objfile_func, data);
11904     }
11905
11906   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
11907
11908   if (type && TYPE_OBJFILE (type)
11909       && (*objfile_func) (TYPE_OBJFILE (type), data))
11910     return 1;
11911
11912   return 0;
11913 }
11914
11915 static char *
11916 ada_op_name (enum exp_opcode opcode)
11917 {
11918   switch (opcode)
11919     {
11920     default:
11921       return op_name_standard (opcode);
11922
11923 #define OP_DEFN(op, len, args, binop) case op: return #op;
11924       ADA_OPERATORS;
11925 #undef OP_DEFN
11926
11927     case OP_AGGREGATE:
11928       return "OP_AGGREGATE";
11929     case OP_CHOICES:
11930       return "OP_CHOICES";
11931     case OP_NAME:
11932       return "OP_NAME";
11933     }
11934 }
11935
11936 /* As for operator_length, but assumes PC is pointing at the first
11937    element of the operator, and gives meaningful results only for the 
11938    Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
11939
11940 static void
11941 ada_forward_operator_length (struct expression *exp, int pc,
11942                              int *oplenp, int *argsp)
11943 {
11944   switch (exp->elts[pc].opcode)
11945     {
11946     default:
11947       *oplenp = *argsp = 0;
11948       break;
11949
11950 #define OP_DEFN(op, len, args, binop) \
11951     case op: *oplenp = len; *argsp = args; break;
11952       ADA_OPERATORS;
11953 #undef OP_DEFN
11954
11955     case OP_AGGREGATE:
11956       *oplenp = 3;
11957       *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11958       break;
11959
11960     case OP_CHOICES:
11961       *oplenp = 3;
11962       *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11963       break;
11964
11965     case OP_STRING:
11966     case OP_NAME:
11967       {
11968         int len = longest_to_int (exp->elts[pc + 1].longconst);
11969
11970         *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11971         *argsp = 0;
11972         break;
11973       }
11974     }
11975 }
11976
11977 static int
11978 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11979 {
11980   enum exp_opcode op = exp->elts[elt].opcode;
11981   int oplen, nargs;
11982   int pc = elt;
11983   int i;
11984
11985   ada_forward_operator_length (exp, elt, &oplen, &nargs);
11986
11987   switch (op)
11988     {
11989       /* Ada attributes ('Foo).  */
11990     case OP_ATR_FIRST:
11991     case OP_ATR_LAST:
11992     case OP_ATR_LENGTH:
11993     case OP_ATR_IMAGE:
11994     case OP_ATR_MAX:
11995     case OP_ATR_MIN:
11996     case OP_ATR_MODULUS:
11997     case OP_ATR_POS:
11998     case OP_ATR_SIZE:
11999     case OP_ATR_TAG:
12000     case OP_ATR_VAL:
12001       break;
12002
12003     case UNOP_IN_RANGE:
12004     case UNOP_QUAL:
12005       /* XXX: gdb_sprint_host_address, type_sprint */
12006       fprintf_filtered (stream, _("Type @"));
12007       gdb_print_host_address (exp->elts[pc + 1].type, stream);
12008       fprintf_filtered (stream, " (");
12009       type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12010       fprintf_filtered (stream, ")");
12011       break;
12012     case BINOP_IN_BOUNDS:
12013       fprintf_filtered (stream, " (%d)",
12014                         longest_to_int (exp->elts[pc + 2].longconst));
12015       break;
12016     case TERNOP_IN_RANGE:
12017       break;
12018
12019     case OP_AGGREGATE:
12020     case OP_OTHERS:
12021     case OP_DISCRETE_RANGE:
12022     case OP_POSITIONAL:
12023     case OP_CHOICES:
12024       break;
12025
12026     case OP_NAME:
12027     case OP_STRING:
12028       {
12029         char *name = &exp->elts[elt + 2].string;
12030         int len = longest_to_int (exp->elts[elt + 1].longconst);
12031
12032         fprintf_filtered (stream, "Text: `%.*s'", len, name);
12033         break;
12034       }
12035
12036     default:
12037       return dump_subexp_body_standard (exp, stream, elt);
12038     }
12039
12040   elt += oplen;
12041   for (i = 0; i < nargs; i += 1)
12042     elt = dump_subexp (exp, stream, elt);
12043
12044   return elt;
12045 }
12046
12047 /* The Ada extension of print_subexp (q.v.).  */
12048
12049 static void
12050 ada_print_subexp (struct expression *exp, int *pos,
12051                   struct ui_file *stream, enum precedence prec)
12052 {
12053   int oplen, nargs, i;
12054   int pc = *pos;
12055   enum exp_opcode op = exp->elts[pc].opcode;
12056
12057   ada_forward_operator_length (exp, pc, &oplen, &nargs);
12058
12059   *pos += oplen;
12060   switch (op)
12061     {
12062     default:
12063       *pos -= oplen;
12064       print_subexp_standard (exp, pos, stream, prec);
12065       return;
12066
12067     case OP_VAR_VALUE:
12068       fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12069       return;
12070
12071     case BINOP_IN_BOUNDS:
12072       /* XXX: sprint_subexp */
12073       print_subexp (exp, pos, stream, PREC_SUFFIX);
12074       fputs_filtered (" in ", stream);
12075       print_subexp (exp, pos, stream, PREC_SUFFIX);
12076       fputs_filtered ("'range", stream);
12077       if (exp->elts[pc + 1].longconst > 1)
12078         fprintf_filtered (stream, "(%ld)",
12079                           (long) exp->elts[pc + 1].longconst);
12080       return;
12081
12082     case TERNOP_IN_RANGE:
12083       if (prec >= PREC_EQUAL)
12084         fputs_filtered ("(", stream);
12085       /* XXX: sprint_subexp */
12086       print_subexp (exp, pos, stream, PREC_SUFFIX);
12087       fputs_filtered (" in ", stream);
12088       print_subexp (exp, pos, stream, PREC_EQUAL);
12089       fputs_filtered (" .. ", stream);
12090       print_subexp (exp, pos, stream, PREC_EQUAL);
12091       if (prec >= PREC_EQUAL)
12092         fputs_filtered (")", stream);
12093       return;
12094
12095     case OP_ATR_FIRST:
12096     case OP_ATR_LAST:
12097     case OP_ATR_LENGTH:
12098     case OP_ATR_IMAGE:
12099     case OP_ATR_MAX:
12100     case OP_ATR_MIN:
12101     case OP_ATR_MODULUS:
12102     case OP_ATR_POS:
12103     case OP_ATR_SIZE:
12104     case OP_ATR_TAG:
12105     case OP_ATR_VAL:
12106       if (exp->elts[*pos].opcode == OP_TYPE)
12107         {
12108           if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12109             LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12110           *pos += 3;
12111         }
12112       else
12113         print_subexp (exp, pos, stream, PREC_SUFFIX);
12114       fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12115       if (nargs > 1)
12116         {
12117           int tem;
12118
12119           for (tem = 1; tem < nargs; tem += 1)
12120             {
12121               fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12122               print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12123             }
12124           fputs_filtered (")", stream);
12125         }
12126       return;
12127
12128     case UNOP_QUAL:
12129       type_print (exp->elts[pc + 1].type, "", stream, 0);
12130       fputs_filtered ("'(", stream);
12131       print_subexp (exp, pos, stream, PREC_PREFIX);
12132       fputs_filtered (")", stream);
12133       return;
12134
12135     case UNOP_IN_RANGE:
12136       /* XXX: sprint_subexp */
12137       print_subexp (exp, pos, stream, PREC_SUFFIX);
12138       fputs_filtered (" in ", stream);
12139       LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12140       return;
12141
12142     case OP_DISCRETE_RANGE:
12143       print_subexp (exp, pos, stream, PREC_SUFFIX);
12144       fputs_filtered ("..", stream);
12145       print_subexp (exp, pos, stream, PREC_SUFFIX);
12146       return;
12147
12148     case OP_OTHERS:
12149       fputs_filtered ("others => ", stream);
12150       print_subexp (exp, pos, stream, PREC_SUFFIX);
12151       return;
12152
12153     case OP_CHOICES:
12154       for (i = 0; i < nargs-1; i += 1)
12155         {
12156           if (i > 0)
12157             fputs_filtered ("|", stream);
12158           print_subexp (exp, pos, stream, PREC_SUFFIX);
12159         }
12160       fputs_filtered (" => ", stream);
12161       print_subexp (exp, pos, stream, PREC_SUFFIX);
12162       return;
12163       
12164     case OP_POSITIONAL:
12165       print_subexp (exp, pos, stream, PREC_SUFFIX);
12166       return;
12167
12168     case OP_AGGREGATE:
12169       fputs_filtered ("(", stream);
12170       for (i = 0; i < nargs; i += 1)
12171         {
12172           if (i > 0)
12173             fputs_filtered (", ", stream);
12174           print_subexp (exp, pos, stream, PREC_SUFFIX);
12175         }
12176       fputs_filtered (")", stream);
12177       return;
12178     }
12179 }
12180
12181 /* Table mapping opcodes into strings for printing operators
12182    and precedences of the operators.  */
12183
12184 static const struct op_print ada_op_print_tab[] = {
12185   {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12186   {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12187   {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12188   {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12189   {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12190   {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12191   {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12192   {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12193   {"<=", BINOP_LEQ, PREC_ORDER, 0},
12194   {">=", BINOP_GEQ, PREC_ORDER, 0},
12195   {">", BINOP_GTR, PREC_ORDER, 0},
12196   {"<", BINOP_LESS, PREC_ORDER, 0},
12197   {">>", BINOP_RSH, PREC_SHIFT, 0},
12198   {"<<", BINOP_LSH, PREC_SHIFT, 0},
12199   {"+", BINOP_ADD, PREC_ADD, 0},
12200   {"-", BINOP_SUB, PREC_ADD, 0},
12201   {"&", BINOP_CONCAT, PREC_ADD, 0},
12202   {"*", BINOP_MUL, PREC_MUL, 0},
12203   {"/", BINOP_DIV, PREC_MUL, 0},
12204   {"rem", BINOP_REM, PREC_MUL, 0},
12205   {"mod", BINOP_MOD, PREC_MUL, 0},
12206   {"**", BINOP_EXP, PREC_REPEAT, 0},
12207   {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12208   {"-", UNOP_NEG, PREC_PREFIX, 0},
12209   {"+", UNOP_PLUS, PREC_PREFIX, 0},
12210   {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12211   {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12212   {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12213   {".all", UNOP_IND, PREC_SUFFIX, 1},
12214   {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12215   {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12216   {NULL, 0, 0, 0}
12217 };
12218 \f
12219 enum ada_primitive_types {
12220   ada_primitive_type_int,
12221   ada_primitive_type_long,
12222   ada_primitive_type_short,
12223   ada_primitive_type_char,
12224   ada_primitive_type_float,
12225   ada_primitive_type_double,
12226   ada_primitive_type_void,
12227   ada_primitive_type_long_long,
12228   ada_primitive_type_long_double,
12229   ada_primitive_type_natural,
12230   ada_primitive_type_positive,
12231   ada_primitive_type_system_address,
12232   nr_ada_primitive_types
12233 };
12234
12235 static void
12236 ada_language_arch_info (struct gdbarch *gdbarch,
12237                         struct language_arch_info *lai)
12238 {
12239   const struct builtin_type *builtin = builtin_type (gdbarch);
12240
12241   lai->primitive_type_vector
12242     = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12243                               struct type *);
12244
12245   lai->primitive_type_vector [ada_primitive_type_int]
12246     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12247                          0, "integer");
12248   lai->primitive_type_vector [ada_primitive_type_long]
12249     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12250                          0, "long_integer");
12251   lai->primitive_type_vector [ada_primitive_type_short]
12252     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12253                          0, "short_integer");
12254   lai->string_char_type
12255     = lai->primitive_type_vector [ada_primitive_type_char]
12256     = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12257   lai->primitive_type_vector [ada_primitive_type_float]
12258     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12259                        "float", NULL);
12260   lai->primitive_type_vector [ada_primitive_type_double]
12261     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12262                        "long_float", NULL);
12263   lai->primitive_type_vector [ada_primitive_type_long_long]
12264     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12265                          0, "long_long_integer");
12266   lai->primitive_type_vector [ada_primitive_type_long_double]
12267     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12268                        "long_long_float", NULL);
12269   lai->primitive_type_vector [ada_primitive_type_natural]
12270     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12271                          0, "natural");
12272   lai->primitive_type_vector [ada_primitive_type_positive]
12273     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12274                          0, "positive");
12275   lai->primitive_type_vector [ada_primitive_type_void]
12276     = builtin->builtin_void;
12277
12278   lai->primitive_type_vector [ada_primitive_type_system_address]
12279     = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12280   TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12281     = "system__address";
12282
12283   lai->bool_type_symbol = NULL;
12284   lai->bool_type_default = builtin->builtin_bool;
12285 }
12286 \f
12287                                 /* Language vector */
12288
12289 /* Not really used, but needed in the ada_language_defn.  */
12290
12291 static void
12292 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12293 {
12294   ada_emit_char (c, type, stream, quoter, 1);
12295 }
12296
12297 static int
12298 parse (void)
12299 {
12300   warnings_issued = 0;
12301   return ada_parse ();
12302 }
12303
12304 static const struct exp_descriptor ada_exp_descriptor = {
12305   ada_print_subexp,
12306   ada_operator_length,
12307   ada_operator_check,
12308   ada_op_name,
12309   ada_dump_subexp_body,
12310   ada_evaluate_subexp
12311 };
12312
12313 const struct language_defn ada_language_defn = {
12314   "ada",                        /* Language name */
12315   language_ada,
12316   range_check_off,
12317   type_check_off,
12318   case_sensitive_on,            /* Yes, Ada is case-insensitive, but
12319                                    that's not quite what this means.  */
12320   array_row_major,
12321   macro_expansion_no,
12322   &ada_exp_descriptor,
12323   parse,
12324   ada_error,
12325   resolve,
12326   ada_printchar,                /* Print a character constant */
12327   ada_printstr,                 /* Function to print string constant */
12328   emit_char,                    /* Function to print single char (not used) */
12329   ada_print_type,               /* Print a type using appropriate syntax */
12330   ada_print_typedef,            /* Print a typedef using appropriate syntax */
12331   ada_val_print,                /* Print a value using appropriate syntax */
12332   ada_value_print,              /* Print a top-level value */
12333   NULL,                         /* Language specific skip_trampoline */
12334   NULL,                         /* name_of_this */
12335   ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
12336   basic_lookup_transparent_type,        /* lookup_transparent_type */
12337   ada_la_decode,                /* Language specific symbol demangler */
12338   NULL,                         /* Language specific
12339                                    class_name_from_physname */
12340   ada_op_print_tab,             /* expression operators for printing */
12341   0,                            /* c-style arrays */
12342   1,                            /* String lower bound */
12343   ada_get_gdb_completer_word_break_characters,
12344   ada_make_symbol_completion_list,
12345   ada_language_arch_info,
12346   ada_print_array_index,
12347   default_pass_by_reference,
12348   c_get_string,
12349   compare_names,
12350   ada_iterate_over_symbols,
12351   LANG_MAGIC
12352 };
12353
12354 /* Provide a prototype to silence -Wmissing-prototypes.  */
12355 extern initialize_file_ftype _initialize_ada_language;
12356
12357 /* Command-list for the "set/show ada" prefix command.  */
12358 static struct cmd_list_element *set_ada_list;
12359 static struct cmd_list_element *show_ada_list;
12360
12361 /* Implement the "set ada" prefix command.  */
12362
12363 static void
12364 set_ada_command (char *arg, int from_tty)
12365 {
12366   printf_unfiltered (_(\
12367 "\"set ada\" must be followed by the name of a setting.\n"));
12368   help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12369 }
12370
12371 /* Implement the "show ada" prefix command.  */
12372
12373 static void
12374 show_ada_command (char *args, int from_tty)
12375 {
12376   cmd_show_list (show_ada_list, from_tty, "");
12377 }
12378
12379 static void
12380 initialize_ada_catchpoint_ops (void)
12381 {
12382   struct breakpoint_ops *ops;
12383
12384   initialize_breakpoint_ops ();
12385
12386   ops = &catch_exception_breakpoint_ops;
12387   *ops = bkpt_breakpoint_ops;
12388   ops->dtor = dtor_catch_exception;
12389   ops->allocate_location = allocate_location_catch_exception;
12390   ops->re_set = re_set_catch_exception;
12391   ops->check_status = check_status_catch_exception;
12392   ops->print_it = print_it_catch_exception;
12393   ops->print_one = print_one_catch_exception;
12394   ops->print_mention = print_mention_catch_exception;
12395   ops->print_recreate = print_recreate_catch_exception;
12396
12397   ops = &catch_exception_unhandled_breakpoint_ops;
12398   *ops = bkpt_breakpoint_ops;
12399   ops->dtor = dtor_catch_exception_unhandled;
12400   ops->allocate_location = allocate_location_catch_exception_unhandled;
12401   ops->re_set = re_set_catch_exception_unhandled;
12402   ops->check_status = check_status_catch_exception_unhandled;
12403   ops->print_it = print_it_catch_exception_unhandled;
12404   ops->print_one = print_one_catch_exception_unhandled;
12405   ops->print_mention = print_mention_catch_exception_unhandled;
12406   ops->print_recreate = print_recreate_catch_exception_unhandled;
12407
12408   ops = &catch_assert_breakpoint_ops;
12409   *ops = bkpt_breakpoint_ops;
12410   ops->dtor = dtor_catch_assert;
12411   ops->allocate_location = allocate_location_catch_assert;
12412   ops->re_set = re_set_catch_assert;
12413   ops->check_status = check_status_catch_assert;
12414   ops->print_it = print_it_catch_assert;
12415   ops->print_one = print_one_catch_assert;
12416   ops->print_mention = print_mention_catch_assert;
12417   ops->print_recreate = print_recreate_catch_assert;
12418 }
12419
12420 void
12421 _initialize_ada_language (void)
12422 {
12423   add_language (&ada_language_defn);
12424
12425   initialize_ada_catchpoint_ops ();
12426
12427   add_prefix_cmd ("ada", no_class, set_ada_command,
12428                   _("Prefix command for changing Ada-specfic settings"),
12429                   &set_ada_list, "set ada ", 0, &setlist);
12430
12431   add_prefix_cmd ("ada", no_class, show_ada_command,
12432                   _("Generic command for showing Ada-specific settings."),
12433                   &show_ada_list, "show ada ", 0, &showlist);
12434
12435   add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12436                            &trust_pad_over_xvs, _("\
12437 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12438 Show whether an optimization trusting PAD types over XVS types is activated"),
12439                            _("\
12440 This is related to the encoding used by the GNAT compiler.  The debugger\n\
12441 should normally trust the contents of PAD types, but certain older versions\n\
12442 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12443 to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
12444 work around this bug.  It is always safe to turn this option \"off\", but\n\
12445 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12446 this option to \"off\" unless necessary."),
12447                             NULL, NULL, &set_ada_list, &show_ada_list);
12448
12449   add_catch_command ("exception", _("\
12450 Catch Ada exceptions, when raised.\n\
12451 With an argument, catch only exceptions with the given name."),
12452                      catch_ada_exception_command,
12453                      NULL,
12454                      CATCH_PERMANENT,
12455                      CATCH_TEMPORARY);
12456   add_catch_command ("assert", _("\
12457 Catch failed Ada assertions, when raised.\n\
12458 With an argument, catch only exceptions with the given name."),
12459                      catch_assert_command,
12460                      NULL,
12461                      CATCH_PERMANENT,
12462                      CATCH_TEMPORARY);
12463
12464   varsize_limit = 65536;
12465
12466   obstack_init (&symbol_list_obstack);
12467
12468   decoded_names_store = htab_create_alloc
12469     (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12470      NULL, xcalloc, xfree);
12471
12472   /* Setup per-inferior data.  */
12473   observer_attach_inferior_exit (ada_inferior_exit);
12474   ada_inferior_data
12475     = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12476 }