1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (struct expression **, int *, int,
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static bool wild_match (const char *name, const char *patn);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
235 static int ada_is_direct_array_type (struct type *);
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
240 static struct value *ada_index_struct_field (int, struct value *, int,
243 static struct value *assign_aggregate (struct value *, struct value *,
247 static void aggregate_assign_from_choices (struct value *, struct value *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
252 static void aggregate_assign_positional (struct value *, struct value *,
254 int *, LONGEST *, int *, int,
258 static void aggregate_assign_others (struct value *, struct value *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 static void ada_forward_operator_length (struct expression *, int, int *,
272 static struct type *ada_find_any_type (const char *name);
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
279 /* The result of a symbol lookup to be stored in our symbol cache. */
283 /* The name used to perform the lookup. */
285 /* The namespace used during the lookup. */
287 /* The symbol returned by the lookup, or NULL if no matching symbol
290 /* The block where the symbol was found, or NULL if no matching
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
306 #define HASH_SIZE 1009
308 struct ada_symbol_cache
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
322 static const char ada_completer_word_break_characters[] =
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
348 /* Maintenance-related settings for this module. */
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
353 /* Implement the "maintenance set ada" (prefix) command. */
356 maint_set_ada_cmd (const char *args, int from_tty)
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 /* Implement the "maintenance show ada" (prefix) command. */
365 maint_show_ada_cmd (const char *args, int from_tty)
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372 static int ada_ignore_descriptive_types_p = 0;
374 /* Inferior-specific data. */
376 /* Per-inferior data for this module. */
378 struct ada_inferior_data
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
389 const struct exception_support_info *exception_info;
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
395 /* A cleanup routine for our inferior data. */
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 struct ada_inferior_data *data;
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
406 /* Return our inferior data for the given inferior (INF).
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
417 struct ada_inferior_data *data;
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
433 ada_inferior_exit (struct inferior *inf)
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
440 /* program-space-specific data. */
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
455 This function always returns a valid object. */
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
460 struct ada_pspace_data *data;
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
473 /* The cleanup callback for this module's per-program-space data. */
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
515 ada_typedef_target_type (struct type *type)
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
527 ada_unqualified_name (const char *decoded_name)
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
538 result = strrchr (decoded_name, '.');
540 result++; /* Skip the dot... */
542 result = decoded_name;
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
551 add_angle_brackets (const char *str)
553 static char *result = NULL;
556 result = xstrprintf ("<%s>", str);
561 ada_get_gdb_completer_word_break_characters (void)
563 return ada_completer_word_break_characters;
566 /* Print an array element index using the Ada syntax. */
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 if (*size < min_size)
586 if (*size < min_size)
588 vect = xrealloc (vect, *size * element_size);
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
597 field_name_match (const char *field_name, const char *target)
599 int len = strlen (target);
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
619 ada_get_field_index (const struct type *type, const char *field_name,
623 struct type *struct_type = check_typedef ((struct type *) type);
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
636 /* The length of the prefix of NAME prior to any "___" suffix. */
639 ada_name_prefix_len (const char *name)
645 const char *p = strstr (name, "___");
648 return strlen (name);
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
658 is_suffix (const char *str, const char *suffix)
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
680 struct value *result;
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
708 return valaddr + offset;
712 cond_offset_target (CORE_ADDR address, long offset)
717 return address + offset;
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730 lim_warning (const char *format, ...)
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
747 ada_ensure_varsize_limit (const struct type *type)
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
753 /* Maximum value of a SIZE-byte signed integer type. */
755 max_of_size (int size)
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759 return top_bit | (top_bit - 1);
762 /* Minimum value of a SIZE-byte signed integer type. */
764 min_of_size (int size)
766 return -max_of_size (size) - 1;
769 /* Maximum value of a SIZE-byte unsigned integer type. */
771 umax_of_size (int size)
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775 return top_bit | (top_bit - 1);
778 /* Maximum value of integral type T, as a signed quantity. */
780 max_of_type (struct type *t)
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 return max_of_size (TYPE_LENGTH (t));
788 /* Minimum value of integral type T, as a signed quantity. */
790 min_of_type (struct type *t)
792 if (TYPE_UNSIGNED (t))
795 return min_of_size (TYPE_LENGTH (t));
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 ada_discrete_type_high_bound (struct type *type)
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
813 return max_of_type (type);
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 ada_discrete_type_low_bound (struct type *type)
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
829 return TYPE_FIELD_ENUMVAL (type, 0);
834 return min_of_type (type);
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
844 get_base_type (struct type *type)
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 type = TYPE_TARGET_TYPE (type);
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
861 ada_get_decoded_value (struct value *value)
863 struct type *type = ada_check_typedef (value_type (value));
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
872 value = ada_coerce_to_simple_array (value);
875 value = ada_to_fixed_value (value);
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
886 ada_get_decoded_type (struct type *type)
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
896 /* Language Selection */
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
902 ada_update_initial_language (enum language lang)
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928 if (msym.minsym != NULL)
930 CORE_ADDR main_program_name_addr;
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
943 return main_program_name;
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
986 ada_encode_1 (const char *decoded, bool throw_errors)
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
1000 for (p = decoded; *p != '\0'; p += 1)
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1009 const struct ada_opname_map *mapping;
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1015 if (mapping->encoded == NULL)
1018 error (_("invalid Ada operator name: %s"), p);
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1028 encoding_buffer[k] = *p;
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1041 ada_encode (const char *decoded)
1043 return ada_encode_1 (decoded, true);
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1051 ada_fold_name (const char *name)
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059 if (name[0] == '\'')
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078 is_lower_alphanum (const char c)
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 while (i > 0 && isdigit (encoded[i]))
1104 if (i >= 0 && encoded[i] == '.')
1106 else if (i >= 0 && encoded[i] == '$')
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1115 /* Remove the suffix introduced by the compiler for protected object
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 /* Remove trailing N. */
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 if (encoded[i] != 'X')
1153 if (isalnum (encoded[i-1]))
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1166 ada_decode (const char *encoded)
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1188 len0 = strlen (encoded);
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1226 /* Make decoded big enough for possible expansion by operator name. */
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1241 else if (encoded[i] == '$')
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1264 && !isalnum (encoded[i + op_len]))
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1269 j += strlen (ada_opname_table[k].decoded);
1273 if (ada_opname_table[k].encoded != NULL)
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 /* Remove _E{DIGITS}+[sb] */
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1321 while (k < len0 && isdigit (encoded[k]))
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1332 || (k < len0 && encoded[k] == '_'))
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1372 /* Replace '__' by '.'. */
1380 /* It's a character part of the decoded name, so just copy it
1382 decoded[j] = encoded[i];
1387 decoded[j] = '\000';
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1396 if (strcmp (decoded, encoded) == 0)
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1436 if (!gsymbol->ada_mangled)
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1441 gsymbol->ada_mangled = 1;
1443 if (obstack != NULL)
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 *slot = xstrdup (decoded);
1466 ada_la_decode (const char *encoded, int options)
1468 return xstrdup (ada_decode (encoded));
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1476 const char *demangled = ada_decode (mangled);
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 if (index_desc_type == NULL)
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1576 /* Maximum number of array dimensions we are prepared to handle. */
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1581 /* The desc_* routines return primitive portions of array descriptors
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1587 static struct type *
1588 desc_base_type (struct type *type)
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1607 is_thin_pntr (struct type *type)
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1614 /* The descriptor type for thin pointer type TYPE. */
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1619 struct type *base_type = desc_base_type (type);
1621 if (base_type == NULL)
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1629 if (alt_type == NULL)
1636 /* A pointer to the array data for thin-pointer value VAL. */
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1644 data_type = lookup_pointer_type (data_type);
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1649 return value_from_longest (data_type, value_address (val));
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1655 is_thick_pntr (struct type *type)
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1670 type = desc_base_type (type);
1674 else if (is_thin_pntr (type))
1676 type = thin_descriptor_type (type);
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1681 return ada_check_typedef (r);
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1695 static struct value *
1696 desc_bounds (struct value *arr)
1698 struct type *type = ada_check_typedef (value_type (arr));
1700 if (is_thin_pntr (type))
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1715 addr = value_address (arr);
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1722 else if (is_thick_pntr (type))
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1739 error (_("Bad GNAT array descriptor"));
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1751 fat_pntr_bounds_bitpos (struct type *type)
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1760 fat_pntr_bounds_bitsize (struct type *type)
1762 type = desc_base_type (type);
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1778 type = desc_base_type (type);
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1798 static struct value *
1799 desc_data (struct value *arr)
1801 struct type *type = value_type (arr);
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1817 fat_pntr_data_bitpos (struct type *type)
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1826 fat_pntr_data_bitsize (struct type *type)
1828 type = desc_base_type (type);
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1852 desc_bound_bitpos (struct type *type, int i, int which)
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1862 desc_bound_bitsize (struct type *type, int i, int which)
1864 type = desc_base_type (type);
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1878 type = desc_base_type (type);
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1890 desc_arity (struct type *type)
1892 type = desc_base_type (type);
1895 return TYPE_NFIELDS (type) / 2;
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1904 ada_is_direct_array_type (struct type *type)
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 ada_is_array_type (struct type *type)
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1929 ada_is_simple_array_type (struct type *type)
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1943 ada_is_array_descriptor_type (struct type *type)
1945 struct type *data_type = desc_data_target_type (type);
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1961 ada_is_bogus_array_descriptor (struct type *type)
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1980 ada_type_of_array (struct value *arr, int bounds)
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
2001 struct type *elt_type;
2003 struct value *descriptor;
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2049 return lookup_pointer_type (elt_type);
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2063 struct type *arrType = ada_type_of_array (arr, 1);
2065 if (arrType == NULL)
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2080 ada_coerce_to_simple_array (struct value *arr)
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2102 ada_coerce_to_simple_array_type (struct type *type)
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2116 ada_is_packed_array_type (struct type *type)
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2131 ada_is_constrained_packed_array_type (struct type *type)
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2151 decode_packed_array_bitsize (struct type *type)
2153 const char *raw_name;
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2163 raw_name = ada_type_name (ada_check_typedef (type));
2165 raw_name = ada_type_name (desc_base_type (type));
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2176 (_("could not understand bit size information on packed array"));
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2218 index_type = TYPE_INDEX_TYPE (type);
2220 new_type = alloc_type_copy (type);
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2254 struct type *shadow_type;
2258 raw_name = ada_type_name (desc_base_type (type));
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2272 if (shadow_type == NULL)
2274 lim_warning (_("could not find bounds information on packed array"));
2277 shadow_type = check_typedef (shadow_type);
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2312 type = decode_constrained_packed_array_type (value_type (arr));
2315 error (_("can't unpack array"));
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2329 mod = ada_modulus (value_type (arr)) - 1;
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2344 return coerce_unspec_val_to_type (arr, type);
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2399 /* Non-zero iff TYPE includes negative integer values. */
2402 has_negatives (struct type *type)
2404 switch (TYPE_CODE (type))
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2466 src_idx = src_len - 1;
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 unpacked_idx = unpacked_len - 1;
2482 /* Non-scalar values must be aligned at a byte boundary... */
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2504 while (src_bytes_left > 0)
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2527 src_bytes_left -= 1;
2530 while (unpacked_bytes_left > 0)
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2558 const gdb_byte *src; /* First byte containing data to unpack */
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2564 type = ada_check_typedef (type);
2567 src = valaddr + offset;
2569 src = value_contents (obj) + offset;
2571 if (is_dynamic_type (type))
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2624 long new_offset = offset;
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2634 set_value_offset (v, new_offset);
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2650 if (staging.size () == TYPE_LENGTH (type))
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2681 accum = (unsigned char) *source;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2701 accum_bits -= chunk_size;
2708 accum = (unsigned char) *source >> src_offset;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2753 if (VALUE_LVAL (toval) == lval_memory
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2763 CORE_ADDR to_addr = value_address (toval);
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2788 return value_assign (toval, fromval);
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2804 value_assign_to_component (struct value *container, struct value *component,
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2813 val = value_cast (value_type (component), val);
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2818 bits = value_bitsize (component);
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 struct type *elt_type;
2843 elt = ada_coerce_to_simple_array (arr);
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2850 for (k = 0; k < arity; k += 1)
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2875 struct value *array_ind = ada_value_ind (arr);
2877 = check_typedef (value_enclosing_type (array_ind));
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2883 for (k = 0; k < arity; k += 1)
2886 struct value *lwb_value;
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2898 return value_ind (arr);
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type =
2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2922 warning (_("unable to get positions in slice, use bounds instead"));
2924 base_low_pos = base_low;
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2930 return value_at_lazy (slice_type, base);
2934 static struct value *
2935 ada_value_slice (struct value *array, int low, int high)
2937 struct type *type = ada_check_typedef (value_type (array));
2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2941 struct type *slice_type =
2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2943 LONGEST low_pos, high_pos;
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2948 warning (_("unable to get positions in slice, use bounds instead"));
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2963 ada_array_arity (struct type *type)
2970 type = desc_base_type (type);
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2991 ada_array_element_type (struct type *type, int nindices)
2993 type = desc_base_type (type);
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2998 struct type *p_array_type;
3000 p_array_type = desc_data_target_type (type);
3002 k = ada_array_arity (type);
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3009 while (k > 0 && p_array_type != NULL)
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3014 return p_array_type;
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 type = TYPE_TARGET_TYPE (type);
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3038 struct type *result_type;
3040 type = desc_base_type (type);
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3045 if (ada_is_simple_array_type (type))
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3077 struct type *type, *index_type_desc, *index_type;
3080 gdb_assert (which == 0 || which == 1);
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3093 if (TYPE_FIXED_INSTANCE (type))
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 struct type *elt_type = check_typedef (type);
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3131 ada_array_bound (struct value *arr, int n, int which)
3133 struct type *arr_type;
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3154 ada_array_length (struct value *arr, int n)
3156 struct type *arr_type, *index_type;
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3166 if (ada_is_simple_array_type (arr_type))
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3177 arr_type = check_typedef (arr_type);
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3185 base_type = index_type;
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3190 return high - low + 1;
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 /* Name resolution */
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3215 ada_decoded_op_name (enum exp_opcode op)
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3224 error (_("Could not find operator name for opcode"));
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3238 resolve (struct expression **expp, int void_context_p)
3240 struct type *context_type = NULL;
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3246 resolve_subexp (expp, &pc, 1, context_type);
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3258 static struct value *
3259 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3286 resolve_subexp (expp, pos, 0, NULL);
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3293 resolve_subexp (expp, pos, 0, NULL);
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 case OP_ATR_MODULUS:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3318 case OP_DISCRETE_RANGE:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3331 resolve_subexp (expp, pos, 1, NULL);
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3357 case BINOP_NOTEQUAL:
3364 case BINOP_SUBSCRIPT:
3372 case UNOP_LOGICAL_NOT:
3382 case OP_VAR_MSYM_VALUE:
3389 case OP_INTERNALVAR:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 error (_("Unexpected operator during name resolution"));
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3425 /* Pass two: perform any resolution on principal operator. */
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3434 struct block_symbol *candidates;
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3442 make_cleanup (xfree, candidates);
3444 if (n_candidates > 1)
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3456 case LOC_REGPARM_ADDR:
3464 if (j < n_candidates)
3467 while (j < n_candidates)
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 candidates[j] = candidates[n_candidates - 1];
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
3508 innermost_block = candidates[i].block;
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3527 struct block_symbol *candidates;
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
3535 make_cleanup (xfree, candidates);
3537 if (n_candidates == 1)
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3547 error (_("Could not find a match for %s"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3551 exp->elts[pc + 4].block = candidates[i].block;
3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
3555 innermost_block = candidates[i].block;
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3570 case BINOP_NOTEQUAL:
3578 case UNOP_LOGICAL_NOT:
3580 if (possible_user_operator_p (op, argvec))
3582 struct block_symbol *candidates;
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3589 make_cleanup (xfree, candidates);
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3605 do_cleanups (old_chain);
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3616 return evaluate_subexp_type (exp, pos);
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3622 /* The term "match" here is rather loose. The match is heuristic and
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3636 switch (TYPE_CODE (ftype))
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3672 case TYPE_CODE_UNION:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3687 struct type *func_type = SYMBOL_TYPE (func);
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3698 for (i = 0; i < n_actuals; i += 1)
3700 if (actuals[i] == NULL)
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3708 if (!ada_type_match (ftype, atype, 1))
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3721 return_match (struct type *func_type, struct type *context_type)
3723 struct type *return_type;
3725 if (func_type == NULL)
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3735 context_type = get_base_type (context_type);
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3765 int m; /* Number of hits */
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3773 for (k = 0; k < nsyms; k += 1)
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3792 else if (m > 1 && !parse_completion)
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3808 encoded_ordered_before (const char *N0, const char *N1)
3812 else if (N0 == NULL)
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3836 return (strcmp (N0, N1) < 0);
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3844 sort_choices (struct block_symbol syms[], int nsyms)
3848 for (i = 1; i < nsyms; i += 1)
3850 struct block_symbol sym = syms[i];
3853 for (j = i - 1; j >= 0; j -= 1)
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3858 syms[j + 1] = syms[j];
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3877 struct type *type = SYMBOL_TYPE (sym);
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3885 if (TYPE_NFIELDS (type) > 0)
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3897 fprintf_filtered (stream, ")");
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3919 int *chosen = XALLOCAVEC (int , nsyms);
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3929 if (select_mode == multiple_symbols_cancel)
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3944 sort_choices (syms, nsyms);
3946 for (i = 0; i < nsyms; i += 1)
3948 if (syms[i].symbol == NULL)
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4007 symtab_to_filename_for_display (symtab));
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4036 The user is not allowed to choose more than MAX_RESULTS values.
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4048 int first_choice = is_all_choice ? 2 : 1;
4050 prompt = getenv ("PS2");
4054 args = command_line_input (prompt, 0, annotation_suffix);
4057 error_no_arg (_("one or more choice numbers"));
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4081 error (_("cancelled"));
4083 if (choice < first_choice)
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4090 choice -= first_choice;
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4096 if (j < 0 || choice != choices[j])
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4147 /* Type-class predicates */
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4153 numeric_type_p (struct type *type)
4159 switch (TYPE_CODE (type))
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4176 integer_type_p (struct type *type)
4182 switch (TYPE_CODE (type))
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4198 scalar_type_p (struct type *type)
4204 switch (TYPE_CODE (type))
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4220 discrete_type_p (struct type *type)
4226 switch (TYPE_CODE (type))
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4273 case BINOP_NOTEQUAL:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4288 case UNOP_LOGICAL_NOT:
4290 return (!numeric_type_p (type0));
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4309 /* If SYM encodes a renaming,
4311 <renaming> renames <renamed entity>,
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4333 enum ada_renaming_category kind;
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4342 return ADA_NOT_RENAMING;
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4352 return ADA_NOT_RENAMING;
4356 kind = ADA_OBJECT_RENAMING;
4360 kind = ADA_EXCEPTION_RENAMING;
4364 kind = ADA_PACKAGE_RENAMING;
4368 kind = ADA_SUBPROGRAM_RENAMING;
4372 return ADA_NOT_RENAMING;
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4382 *len = strlen (info) - strlen (suffix);
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4398 enum ada_renaming_category kind;
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4407 name = type_name_no_tag (type);
4409 return ADA_NOT_RENAMING;
4411 name = strstr (name, "___XR");
4413 return ADA_NOT_RENAMING;
4418 kind = ADA_OBJECT_RENAMING;
4421 kind = ADA_EXCEPTION_RENAMING;
4424 kind = ADA_PACKAGE_RENAMING;
4427 kind = ADA_SUBPROGRAM_RENAMING;
4430 return ADA_NOT_RENAMING;
4433 info = TYPE_FIELD_NAME (type, 0);
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4444 *len = suffix - info;
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4456 const char *sym_name;
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4464 /* Evaluation: Function Calls */
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4470 static struct value *
4471 ensure_lval (struct value *val)
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4480 VALUE_LVAL (val) = lval_memory;
4481 set_value_address (val, addr);
4482 write_memory (addr, value_contents (val), len);
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4511 struct value *result;
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4518 if (VALUE_LVAL (actual) != lval_memory)
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4529 result = value_addr (actual);
4533 return value_cast_pointers (formal_type, result, 0);
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4539 /* We need to turn this parameter into an aligner type
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4544 value_assign_to_component (aligner, component, actual);
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4557 value_pointer (struct value *value, struct type *type)
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4599 bounds = ensure_lval (bounds);
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4615 descriptor = ensure_lval (descriptor);
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4623 /* Symbol Cache Module */
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4635 /* Initialize the contents of SYM_CACHE. */
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4644 /* Free the memory used by SYM_CACHE. */
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4649 obstack_free (&sym_cache->cache_space, NULL);
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4661 if (pspace_data->sym_cache == NULL)
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4667 return pspace_data->sym_cache;
4670 /* Clear all entries from the symbol cache. */
4673 ada_clear_symbol_cache (void)
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4711 struct cache_entry **e = find_entry (name, domain);
4718 *block = (*e)->block;
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4733 struct cache_entry *e;
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4766 /* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4772 static symbol_name_match_type
4773 name_match_type_from_name (const char *lookup_name)
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
4780 /* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4783 static struct symbol *
4784 standard_lookup (const char *name, const struct block *block,
4787 /* Initialize it just to avoid a GCC false warning. */
4788 struct block_symbol sym = {NULL, NULL};
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4798 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4802 is_nonfunction (struct block_symbol syms[], int n)
4806 for (i = 0; i < n; i += 1)
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4815 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4816 struct types. Otherwise, they may not. */
4819 equiv_types (struct type *type0, struct type *type1)
4823 if (type0 == NULL || type1 == NULL
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4835 /* True iff SYM0 represents the same entity as SYM1, or one that is
4836 no more defined than that of SYM1. */
4839 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4847 switch (SYMBOL_CLASS (sym0))
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4857 int len0 = strlen (name0);
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4863 && startswith (name1 + len0, "___XV")));
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4873 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4877 add_defn_to_vec (struct obstack *obstackp,
4879 const struct block *block)
4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4899 prevDefns[i].symbol = sym;
4900 prevDefns[i].block = block;
4906 struct block_symbol info;
4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4914 /* Number of block_symbol structures currently collected in current vector in
4918 num_defns_collected (struct obstack *obstackp)
4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4923 /* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4926 static struct block_symbol *
4927 defns_collected (struct obstack *obstackp, int finish)
4930 return (struct block_symbol *) obstack_finish (obstackp);
4932 return (struct block_symbol *) obstack_base (obstackp);
4935 /* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4941 struct bound_minimal_symbol
4942 ada_lookup_simple_minsym (const char *name)
4944 struct bound_minimal_symbol result;
4945 struct objfile *objfile;
4946 struct minimal_symbol *msymbol;
4948 memset (&result, 0, sizeof (result));
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4956 ALL_MSYMBOLS (objfile, msymbol)
4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4970 /* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4977 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4978 const lookup_name_info &lookup_name,
4983 /* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
4987 is_nondebugging_type (struct type *type)
4989 const char *name = ada_type_name (type);
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4994 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5002 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5016 /* All enumerals should also have the same name (modulo any numerical
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5037 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5042 For instance, consider the following code:
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5058 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
5096 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
5104 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5125 for (j = 0; j < nsyms; j++)
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5143 for (j = 0; j < nsyms; j += 1)
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5185 /* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
5191 xget_renaming_scope (struct type *renaming_type)
5193 /* The renaming types adhere to the following convention:
5194 <scope>__<rename>___<XR extension>.
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
5198 const char *name = type_name_no_tag (renaming_type);
5199 const char *suffix = strstr (name, "___XR");
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5211 /* Make a copy of scope and return it. */
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
5222 /* Return nonzero if NAME corresponds to a package name. */
5225 is_package_name (const char *name)
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5248 fun_name = xstrprintf ("_ada_%s", name);
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5260 struct cleanup *old_chain;
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5266 old_chain = make_cleanup (xfree, scope);
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
5271 do_cleanups (old_chain);
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5282 if (startswith (function_name, "_ada_"))
5286 int is_invisible = !startswith (function_name, scope);
5288 do_cleanups (old_chain);
5289 return is_invisible;
5293 /* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5305 Second, GNAT emits a type following a specified encoding for each renaming
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
5331 remove_irrelevant_renamings (struct block_symbol *syms,
5332 int nsyms, const struct block *current_block)
5334 struct symbol *current_function;
5335 const char *current_function_name;
5337 int is_new_style_renaming;
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
5341 First, zero out such symbols, then compress. */
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5345 struct symbol *sym = syms[i].symbol;
5346 const struct block *block = syms[i].block;
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5357 int name_len = suffix - name;
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5365 && block == syms[j].block)
5366 syms[j].symbol = NULL;
5369 if (is_new_style_renaming)
5373 for (j = k = 0; j < nsyms; j += 1)
5374 if (syms[j].symbol != NULL)
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
5385 if (current_block == NULL)
5388 current_function = block_linkage_function (current_block);
5389 if (current_function == NULL)
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5404 == ADA_OBJECT_RENAMING
5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5409 for (j = i + 1; j < nsyms; j += 1)
5410 syms[j - 1] = syms[j];
5420 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5431 ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
5435 int block_depth = 0;
5437 while (block != NULL)
5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5447 block = BLOCK_SUPERBLOCK (block);
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5479 struct match_data *data = (struct match_data *) data0;
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5514 const lookup_name_info &lookup_name,
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5523 for (renaming = block_using (block);
5525 renaming = renaming->next)
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5540 renaming->searched = 1;
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5551 : renaming->declaration);
5552 if (name_match (r_name, lookup_name, NULL))
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5559 renaming->searched = 0;
5561 return num_defns_collected (obstackp) != defns_mark;
5564 /* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5568 compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
5571 while (*string1 != '\0' && *string2 != '\0')
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
5578 if (casing == case_sensitive_off)
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5598 return strcmp_iw_ordered (string1, string2);
5600 if (*string2 == '\0')
5602 if (is_name_suffix (string1))
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5616 return *string1 - *string2;
5621 /* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628 compare_names (STRING1, STRING2) <= 0
5630 (they may differ as to what symbols compare equal). */
5633 compare_names (const char *string1, const char *string2)
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5649 /* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5653 ada_lookup_name (const lookup_name_info &lookup_name)
5655 return lookup_name.ada ().lookup_name ().c_str ();
5658 /* Add to OBSTACKP all non-local symbols whose name and domain match
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
5664 add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
5668 struct objfile *objfile;
5669 struct compunit_symtab *cu;
5670 struct match_data data;
5672 memset (&data, 0, sizeof data);
5673 data.obstackp = obstackp;
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5677 ALL_OBJFILES (objfile)
5679 data.objfile = objfile;
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5684 aux_add_nonlocal_symbols, &data,
5685 symbol_name_match_type::WILD,
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5690 aux_add_nonlocal_symbols, &data,
5691 symbol_name_match_type::FULL,
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5710 ALL_OBJFILES (objfile)
5712 data.objfile = objfile;
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5715 aux_add_nonlocal_symbols,
5717 symbol_name_match_type::FULL,
5723 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
5729 is the one match returned (no other matches in that or
5730 enclosing blocks is returned). If there are any matches in or
5731 surrounding BLOCK, then these alone are returned.
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5741 ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
5743 const lookup_name_info &lookup_name,
5746 int *made_global_lookup_p)
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
5760 if (lookup_name.ada ().standard_p ())
5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
5788 add_defn_to_vec (obstackp, sym, block);
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
5795 /* Search symbols from all global blocks. */
5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5799 /* Now add symbols from all per-file blocks if we've gotten no hits
5800 (not strictly correct, but perhaps better than an error). */
5802 if (num_defns_collected (obstackp) == 0)
5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5806 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5810 indicating the symbols found and the blocks and symbol tables (if
5811 any) in which they were found. This vector should be freed when
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5824 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
5827 struct block_symbol **results,
5830 int syms_from_global_search;
5833 auto_obstack obstack;
5835 ada_add_all_symbols (&obstack, block, lookup_name,
5836 domain, full_search, &syms_from_global_search);
5838 ndefns = num_defns_collected (&obstack);
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
5844 ndefns = remove_extra_symbols (*results, ndefns);
5846 if (ndefns == 0 && full_search && syms_from_global_search)
5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5849 if (ndefns == 1 && full_search && syms_from_global_search)
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5858 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5859 in global scopes, returning the number of matches, and setting *RESULTS
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5863 See ada_lookup_symbol_list_worker for further details. */
5866 ada_lookup_symbol_list (const char *name, const struct block *block,
5867 domain_enum domain, struct block_symbol **results)
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5875 /* Implementation of the la_iterate_over_symbols method. */
5878 ada_iterate_over_symbols
5879 (const struct block *block, const lookup_name_info &name,
5881 gdb::function_view<symbol_found_callback_ftype> callback)
5884 struct block_symbol *results;
5885 struct cleanup *old_chain;
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5888 old_chain = make_cleanup (xfree, results);
5890 for (i = 0; i < ndefs; ++i)
5892 if (!callback (results[i].symbol))
5896 do_cleanups (old_chain);
5899 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
5907 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5909 struct block_symbol *info)
5911 struct block_symbol *candidates;
5913 struct cleanup *old_chain;
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5923 gdb_assert (info != NULL);
5924 memset (info, 0, sizeof (struct block_symbol));
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
5928 old_chain = make_cleanup (xfree, candidates);
5930 if (n_candidates == 0)
5932 do_cleanups (old_chain);
5936 *info = candidates[0];
5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
5939 do_cleanups (old_chain);
5942 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5945 choosing the first symbol if there are multiple choices.
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5949 ada_lookup_symbol (const char *name, const struct block *block0,
5950 domain_enum domain, int *is_a_field_of_this)
5952 struct block_symbol info;
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5958 block0, domain, &info);
5962 static struct block_symbol
5963 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5965 const struct block *block,
5966 const domain_enum domain)
5968 struct block_symbol sym;
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5971 if (sym.symbol != NULL)
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5986 if (domain == VAR_DOMAIN)
5988 struct gdbarch *gdbarch;
5991 gdbarch = target_gdbarch ();
5993 gdbarch = block_gdbarch (block);
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
5999 return (struct block_symbol) {NULL, NULL};
6003 /* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
6006 are given by any of the regular expressions:
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6010 TKB [subprogram suffix for task bodies]
6011 _E[0-9]+[bs]$ [protected object entry suffixes]
6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
6019 is_name_suffix (const char *str)
6022 const char *matching;
6023 const int len = strlen (str);
6025 /* Skip optional leading __[0-9]+. */
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6030 while (isdigit (str[0]))
6036 if (str[0] == '.' || str[0] == '$')
6039 while (isdigit (matching[0]))
6041 if (matching[0] == '\0')
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6050 while (isdigit (matching[0]))
6052 if (matching[0] == '\0')
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6058 if (strcmp (str, "TKB") == 0)
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
6065 all entity names that end with an "N" as a name suffix causes
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
6069 Having a single character like this as a suffix carrying some
6070 information is a bit risky. Perhaps we should change the encoding
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6082 while (isdigit (matching[0]))
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
6097 while (str[0] != '_' && str[0] != '\0')
6099 if (str[0] != 'n' && str[0] != 'b')
6105 if (str[0] == '\000')
6110 if (str[1] != '_' || str[2] == '\000')
6114 if (strcmp (str + 3, "JM") == 0)
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
6121 if (strcmp (str + 3, "LJM") == 0)
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
6128 if (str[4] == 'R' && str[5] != 'T')
6132 if (!isdigit (str[2]))
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6139 if (str[0] == '$' && isdigit (str[1]))
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6149 /* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
6153 is_valid_name_for_wild_match (const char *name0)
6155 const char *decoded_name = ada_decode (name0);
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6171 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
6176 advance_wild_match (const char **namep, const char *name0, int target0)
6178 const char *name = *namep;
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6191 if (name == name0 + 5 && startswith (name0, "_ada"))
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6215 /* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6221 wild_match (const char *name, const char *patn)
6224 const char *name0 = name;
6228 const char *match = name;
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6235 if (*p == '\0' && is_name_suffix (name))
6236 return match == name0 || is_valid_name_for_wild_match (name0);
6238 if (name[-1] == '_')
6241 if (!advance_wild_match (&name, name0, *patn))
6246 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
6252 full_match (const char *sym_name, const char *search_name)
6254 size_t search_name_len = strlen (search_name);
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6268 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
6273 ada_add_block_symbols (struct obstack *obstackp,
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
6278 struct block_iterator iter;
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6289 sym = block_iter_match_next (lookup_name, &iter))
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6296 if (SYMBOL_IS_ARGUMENT (sym))
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6309 /* Handle renamings. */
6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6314 if (!found_sym && arg_sym != NULL)
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
6321 if (!lookup_name.ada ().wild_match_p ())
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6350 if (SYMBOL_IS_ARGUMENT (sym))
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6368 add_defn_to_vec (obstackp,
6369 fixup_symbol_section (arg_sym, objfile),
6376 /* Symbol Completion */
6381 ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
6384 completion_match_result *comp_match_res) const
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
6390 /* First, test against the fully qualified name of the symbol. */
6392 if (strncmp (sym_name, text, text_len) == 0)
6395 if (match && !m_encoded_p)
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
6402 bool has_angle_bracket;
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
6406 match = (has_angle_bracket == m_verbatim_p);
6407 sym_name = sym_name_copy;
6410 if (match && !m_verbatim_p)
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6424 /* Second: Try wild matching... */
6426 if (!match && m_wild_match_p)
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6433 if (strncmp (sym_name, text, text_len) == 0)
6437 /* Finally: If we found a match, prepare the result to return. */
6442 if (comp_match_res != NULL)
6444 std::string &match_str = comp_match_res->match.storage ();
6447 match_str = ada_decode (sym_name);
6451 match_str = add_angle_brackets (sym_name);
6453 match_str = sym_name;
6457 comp_match_res->set_match (match_str.c_str ());
6463 /* Add the list of possible symbol names completing TEXT to TRACKER.
6464 WORD is the entire command on which completion is made. */
6467 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6468 complete_symbol_mode mode,
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
6471 enum type_code code)
6474 struct compunit_symtab *s;
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
6477 const struct block *b, *surrounding_static_block = 0;
6478 struct block_iterator iter;
6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6483 lookup_name_info lookup_name (text, name_match_type, true);
6485 /* First, look at the partial symtab symbols. */
6486 expand_symtabs_matching (NULL,
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6497 ALL_MSYMBOLS (objfile, msymbol)
6501 if (completion_skip_symbol (mode, msymbol))
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
6507 lookup_name, text, word);
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6520 if (completion_skip_symbol (mode, sym))
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6530 /* Go through the symtabs and check the externs and statics for
6531 symbols which match. */
6533 ALL_COMPUNITS (objfile, s)
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6539 if (completion_skip_symbol (mode, sym))
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
6545 lookup_name, text, word);
6549 ALL_COMPUNITS (objfile, s)
6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6558 if (completion_skip_symbol (mode, sym))
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
6564 lookup_name, text, word);
6568 do_cleanups (old_chain);
6573 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6577 ada_is_dispatch_table_ptr_type (struct type *type)
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6591 /* Return non-zero if TYPE is an interface tag. */
6594 ada_is_interface_tag (struct type *type)
6596 const char *name = TYPE_NAME (type);
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6604 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
6608 ada_is_ignored_field (struct type *type, int field_num)
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6613 /* Check the name of that field. */
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
6630 if (name[0] == '_' && !startswith (name, "_parent"))
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6636 if (ada_is_tagged_type (type, 1)
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6641 /* Not a special field, so it should not be ignored. */
6645 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6646 pointer or reference type whose ultimate target has a tag field. */
6649 ada_is_tagged_type (struct type *type, int refok)
6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6654 /* True iff TYPE represents the type of X'Tag */
6657 ada_is_tag_type (struct type *type)
6659 type = ada_check_typedef (type);
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
6672 /* The type of the tag on VAL. */
6675 ada_tag_type (struct value *val)
6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6680 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6684 is_ada95_tag (struct value *tag)
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6689 /* The value of the tag on VAL. */
6692 ada_value_tag (struct value *val)
6694 return ada_value_struct_elt (val, "_tag", 0);
6697 /* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
6701 static struct value *
6702 value_tag_from_contents_and_address (struct type *type,
6703 const gdb_byte *valaddr,
6706 int tag_byte_offset;
6707 struct type *tag_type;
6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
6714 : valaddr + tag_byte_offset);
6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
6722 static struct type *
6723 type_from_tag (struct value *tag)
6725 const char *type_name = ada_tag_name (tag);
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6732 /* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6739 ada_tag_value_at_base_address (struct value *obj)
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6745 CORE_ADDR base_address;
6747 obj_type = value_type (obj);
6749 /* It is the responsability of the caller to deref pointers. */
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6755 tag = ada_value_tag (obj);
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6761 if (is_ada95_tag (tag))
6764 ptr_type = language_lookup_primitive_type
6765 (language_def (language_ada), target_gdbarch(), "storage_offset");
6766 ptr_type = lookup_pointer_type (ptr_type);
6767 val = value_cast (ptr_type, tag);
6771 /* It is perfectly possible that an exception be raised while
6772 trying to determine the base address, just like for the tag;
6773 see ada_tag_name for more details. We do not print the error
6774 message for the same reason. */
6778 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6781 CATCH (e, RETURN_MASK_ERROR)
6787 /* If offset is null, nothing to do. */
6789 if (offset_to_top == 0)
6792 /* -1 is a special case in Ada.Tags; however, what should be done
6793 is not quite clear from the documentation. So do nothing for
6796 if (offset_to_top == -1)
6799 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6800 from the base address. This was however incompatible with
6801 C++ dispatch table: C++ uses a *negative* value to *add*
6802 to the base address. Ada's convention has therefore been
6803 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6804 use the same convention. Here, we support both cases by
6805 checking the sign of OFFSET_TO_TOP. */
6807 if (offset_to_top > 0)
6808 offset_to_top = -offset_to_top;
6810 base_address = value_address (obj) + offset_to_top;
6811 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6813 /* Make sure that we have a proper tag at the new address.
6814 Otherwise, offset_to_top is bogus (which can happen when
6815 the object is not initialized yet). */
6820 obj_type = type_from_tag (tag);
6825 return value_from_contents_and_address (obj_type, NULL, base_address);
6828 /* Return the "ada__tags__type_specific_data" type. */
6830 static struct type *
6831 ada_get_tsd_type (struct inferior *inf)
6833 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6835 if (data->tsd_type == 0)
6836 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6837 return data->tsd_type;
6840 /* Return the TSD (type-specific data) associated to the given TAG.
6841 TAG is assumed to be the tag of a tagged-type entity.
6843 May return NULL if we are unable to get the TSD. */
6845 static struct value *
6846 ada_get_tsd_from_tag (struct value *tag)
6851 /* First option: The TSD is simply stored as a field of our TAG.
6852 Only older versions of GNAT would use this format, but we have
6853 to test it first, because there are no visible markers for
6854 the current approach except the absence of that field. */
6856 val = ada_value_struct_elt (tag, "tsd", 1);
6860 /* Try the second representation for the dispatch table (in which
6861 there is no explicit 'tsd' field in the referent of the tag pointer,
6862 and instead the tsd pointer is stored just before the dispatch
6865 type = ada_get_tsd_type (current_inferior());
6868 type = lookup_pointer_type (lookup_pointer_type (type));
6869 val = value_cast (type, tag);
6872 return value_ind (value_ptradd (val, -1));
6875 /* Given the TSD of a tag (type-specific data), return a string
6876 containing the name of the associated type.
6878 The returned value is good until the next call. May return NULL
6879 if we are unable to determine the tag name. */
6882 ada_tag_name_from_tsd (struct value *tsd)
6884 static char name[1024];
6888 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6891 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6892 for (p = name; *p != '\0'; p += 1)
6898 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6901 Return NULL if the TAG is not an Ada tag, or if we were unable to
6902 determine the name of that tag. The result is good until the next
6906 ada_tag_name (struct value *tag)
6910 if (!ada_is_tag_type (value_type (tag)))
6913 /* It is perfectly possible that an exception be raised while trying
6914 to determine the TAG's name, even under normal circumstances:
6915 The associated variable may be uninitialized or corrupted, for
6916 instance. We do not let any exception propagate past this point.
6917 instead we return NULL.
6919 We also do not print the error message either (which often is very
6920 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6921 the caller print a more meaningful message if necessary. */
6924 struct value *tsd = ada_get_tsd_from_tag (tag);
6927 name = ada_tag_name_from_tsd (tsd);
6929 CATCH (e, RETURN_MASK_ERROR)
6937 /* The parent type of TYPE, or NULL if none. */
6940 ada_parent_type (struct type *type)
6944 type = ada_check_typedef (type);
6946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6950 if (ada_is_parent_field (type, i))
6952 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6954 /* If the _parent field is a pointer, then dereference it. */
6955 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6956 parent_type = TYPE_TARGET_TYPE (parent_type);
6957 /* If there is a parallel XVS type, get the actual base type. */
6958 parent_type = ada_get_base_type (parent_type);
6960 return ada_check_typedef (parent_type);
6966 /* True iff field number FIELD_NUM of structure type TYPE contains the
6967 parent-type (inherited) fields of a derived type. Assumes TYPE is
6968 a structure type with at least FIELD_NUM+1 fields. */
6971 ada_is_parent_field (struct type *type, int field_num)
6973 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6975 return (name != NULL
6976 && (startswith (name, "PARENT")
6977 || startswith (name, "_parent")));
6980 /* True iff field number FIELD_NUM of structure type TYPE is a
6981 transparent wrapper field (which should be silently traversed when doing
6982 field selection and flattened when printing). Assumes TYPE is a
6983 structure type with at least FIELD_NUM+1 fields. Such fields are always
6987 ada_is_wrapper_field (struct type *type, int field_num)
6989 const char *name = TYPE_FIELD_NAME (type, field_num);
6991 if (name != NULL && strcmp (name, "RETVAL") == 0)
6993 /* This happens in functions with "out" or "in out" parameters
6994 which are passed by copy. For such functions, GNAT describes
6995 the function's return type as being a struct where the return
6996 value is in a field called RETVAL, and where the other "out"
6997 or "in out" parameters are fields of that struct. This is not
7002 return (name != NULL
7003 && (startswith (name, "PARENT")
7004 || strcmp (name, "REP") == 0
7005 || startswith (name, "_parent")
7006 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7009 /* True iff field number FIELD_NUM of structure or union type TYPE
7010 is a variant wrapper. Assumes TYPE is a structure type with at least
7011 FIELD_NUM+1 fields. */
7014 ada_is_variant_part (struct type *type, int field_num)
7016 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7018 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7019 || (is_dynamic_field (type, field_num)
7020 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7021 == TYPE_CODE_UNION)));
7024 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7025 whose discriminants are contained in the record type OUTER_TYPE,
7026 returns the type of the controlling discriminant for the variant.
7027 May return NULL if the type could not be found. */
7030 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7032 const char *name = ada_variant_discrim_name (var_type);
7034 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7037 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7038 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7039 represents a 'when others' clause; otherwise 0. */
7042 ada_is_others_clause (struct type *type, int field_num)
7044 const char *name = TYPE_FIELD_NAME (type, field_num);
7046 return (name != NULL && name[0] == 'O');
7049 /* Assuming that TYPE0 is the type of the variant part of a record,
7050 returns the name of the discriminant controlling the variant.
7051 The value is valid until the next call to ada_variant_discrim_name. */
7054 ada_variant_discrim_name (struct type *type0)
7056 static char *result = NULL;
7057 static size_t result_len = 0;
7060 const char *discrim_end;
7061 const char *discrim_start;
7063 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7064 type = TYPE_TARGET_TYPE (type0);
7068 name = ada_type_name (type);
7070 if (name == NULL || name[0] == '\000')
7073 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7076 if (startswith (discrim_end, "___XVN"))
7079 if (discrim_end == name)
7082 for (discrim_start = discrim_end; discrim_start != name + 3;
7085 if (discrim_start == name + 1)
7087 if ((discrim_start > name + 3
7088 && startswith (discrim_start - 3, "___"))
7089 || discrim_start[-1] == '.')
7093 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7094 strncpy (result, discrim_start, discrim_end - discrim_start);
7095 result[discrim_end - discrim_start] = '\0';
7099 /* Scan STR for a subtype-encoded number, beginning at position K.
7100 Put the position of the character just past the number scanned in
7101 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7102 Return 1 if there was a valid number at the given position, and 0
7103 otherwise. A "subtype-encoded" number consists of the absolute value
7104 in decimal, followed by the letter 'm' to indicate a negative number.
7105 Assumes 0m does not occur. */
7108 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7112 if (!isdigit (str[k]))
7115 /* Do it the hard way so as not to make any assumption about
7116 the relationship of unsigned long (%lu scan format code) and
7119 while (isdigit (str[k]))
7121 RU = RU * 10 + (str[k] - '0');
7128 *R = (-(LONGEST) (RU - 1)) - 1;
7134 /* NOTE on the above: Technically, C does not say what the results of
7135 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7136 number representable as a LONGEST (although either would probably work
7137 in most implementations). When RU>0, the locution in the then branch
7138 above is always equivalent to the negative of RU. */
7145 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7146 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7147 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7150 ada_in_variant (LONGEST val, struct type *type, int field_num)
7152 const char *name = TYPE_FIELD_NAME (type, field_num);
7166 if (!ada_scan_number (name, p + 1, &W, &p))
7176 if (!ada_scan_number (name, p + 1, &L, &p)
7177 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7179 if (val >= L && val <= U)
7191 /* FIXME: Lots of redundancy below. Try to consolidate. */
7193 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7194 ARG_TYPE, extract and return the value of one of its (non-static)
7195 fields. FIELDNO says which field. Differs from value_primitive_field
7196 only in that it can handle packed values of arbitrary type. */
7198 static struct value *
7199 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7200 struct type *arg_type)
7204 arg_type = ada_check_typedef (arg_type);
7205 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7207 /* Handle packed fields. */
7209 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7211 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7212 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7214 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7215 offset + bit_pos / 8,
7216 bit_pos % 8, bit_size, type);
7219 return value_primitive_field (arg1, offset, fieldno, arg_type);
7222 /* Find field with name NAME in object of type TYPE. If found,
7223 set the following for each argument that is non-null:
7224 - *FIELD_TYPE_P to the field's type;
7225 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7226 an object of that type;
7227 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7228 - *BIT_SIZE_P to its size in bits if the field is packed, and
7230 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7231 fields up to but not including the desired field, or by the total
7232 number of fields if not found. A NULL value of NAME never
7233 matches; the function just counts visible fields in this case.
7235 Returns 1 if found, 0 otherwise. */
7238 find_struct_field (const char *name, struct type *type, int offset,
7239 struct type **field_type_p,
7240 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7245 type = ada_check_typedef (type);
7247 if (field_type_p != NULL)
7248 *field_type_p = NULL;
7249 if (byte_offset_p != NULL)
7251 if (bit_offset_p != NULL)
7253 if (bit_size_p != NULL)
7256 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7258 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7259 int fld_offset = offset + bit_pos / 8;
7260 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7262 if (t_field_name == NULL)
7265 else if (name != NULL && field_name_match (t_field_name, name))
7267 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7269 if (field_type_p != NULL)
7270 *field_type_p = TYPE_FIELD_TYPE (type, i);
7271 if (byte_offset_p != NULL)
7272 *byte_offset_p = fld_offset;
7273 if (bit_offset_p != NULL)
7274 *bit_offset_p = bit_pos % 8;
7275 if (bit_size_p != NULL)
7276 *bit_size_p = bit_size;
7279 else if (ada_is_wrapper_field (type, i))
7281 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7282 field_type_p, byte_offset_p, bit_offset_p,
7283 bit_size_p, index_p))
7286 else if (ada_is_variant_part (type, i))
7288 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7291 struct type *field_type
7292 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7294 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7296 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7298 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7299 field_type_p, byte_offset_p,
7300 bit_offset_p, bit_size_p, index_p))
7304 else if (index_p != NULL)
7310 /* Number of user-visible fields in record type TYPE. */
7313 num_visible_fields (struct type *type)
7318 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7322 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7323 and search in it assuming it has (class) type TYPE.
7324 If found, return value, else return NULL.
7326 Searches recursively through wrapper fields (e.g., '_parent'). */
7328 static struct value *
7329 ada_search_struct_field (const char *name, struct value *arg, int offset,
7334 type = ada_check_typedef (type);
7335 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7337 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7339 if (t_field_name == NULL)
7342 else if (field_name_match (t_field_name, name))
7343 return ada_value_primitive_field (arg, offset, i, type);
7345 else if (ada_is_wrapper_field (type, i))
7347 struct value *v = /* Do not let indent join lines here. */
7348 ada_search_struct_field (name, arg,
7349 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7350 TYPE_FIELD_TYPE (type, i));
7356 else if (ada_is_variant_part (type, i))
7358 /* PNH: Do we ever get here? See find_struct_field. */
7360 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7362 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7364 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7366 struct value *v = ada_search_struct_field /* Force line
7369 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7370 TYPE_FIELD_TYPE (field_type, j));
7380 static struct value *ada_index_struct_field_1 (int *, struct value *,
7381 int, struct type *);
7384 /* Return field #INDEX in ARG, where the index is that returned by
7385 * find_struct_field through its INDEX_P argument. Adjust the address
7386 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7387 * If found, return value, else return NULL. */
7389 static struct value *
7390 ada_index_struct_field (int index, struct value *arg, int offset,
7393 return ada_index_struct_field_1 (&index, arg, offset, type);
7397 /* Auxiliary function for ada_index_struct_field. Like
7398 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7401 static struct value *
7402 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7406 type = ada_check_typedef (type);
7408 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7410 if (TYPE_FIELD_NAME (type, i) == NULL)
7412 else if (ada_is_wrapper_field (type, i))
7414 struct value *v = /* Do not let indent join lines here. */
7415 ada_index_struct_field_1 (index_p, arg,
7416 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7417 TYPE_FIELD_TYPE (type, i));
7423 else if (ada_is_variant_part (type, i))
7425 /* PNH: Do we ever get here? See ada_search_struct_field,
7426 find_struct_field. */
7427 error (_("Cannot assign this kind of variant record"));
7429 else if (*index_p == 0)
7430 return ada_value_primitive_field (arg, offset, i, type);
7437 /* Given ARG, a value of type (pointer or reference to a)*
7438 structure/union, extract the component named NAME from the ultimate
7439 target structure/union and return it as a value with its
7442 The routine searches for NAME among all members of the structure itself
7443 and (recursively) among all members of any wrapper members
7446 If NO_ERR, then simply return NULL in case of error, rather than
7450 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7452 struct type *t, *t1;
7456 t1 = t = ada_check_typedef (value_type (arg));
7457 if (TYPE_CODE (t) == TYPE_CODE_REF)
7459 t1 = TYPE_TARGET_TYPE (t);
7462 t1 = ada_check_typedef (t1);
7463 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7465 arg = coerce_ref (arg);
7470 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7472 t1 = TYPE_TARGET_TYPE (t);
7475 t1 = ada_check_typedef (t1);
7476 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7478 arg = value_ind (arg);
7485 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7489 v = ada_search_struct_field (name, arg, 0, t);
7492 int bit_offset, bit_size, byte_offset;
7493 struct type *field_type;
7496 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7497 address = value_address (ada_value_ind (arg));
7499 address = value_address (ada_coerce_ref (arg));
7501 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7502 if (find_struct_field (name, t1, 0,
7503 &field_type, &byte_offset, &bit_offset,
7508 if (TYPE_CODE (t) == TYPE_CODE_REF)
7509 arg = ada_coerce_ref (arg);
7511 arg = ada_value_ind (arg);
7512 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7513 bit_offset, bit_size,
7517 v = value_at_lazy (field_type, address + byte_offset);
7521 if (v != NULL || no_err)
7524 error (_("There is no member named %s."), name);
7530 error (_("Attempt to extract a component of "
7531 "a value that is not a record."));
7534 /* Return a string representation of type TYPE. */
7537 type_as_string (struct type *type)
7539 string_file tmp_stream;
7541 type_print (type, "", &tmp_stream, -1);
7543 return std::move (tmp_stream.string ());
7546 /* Given a type TYPE, look up the type of the component of type named NAME.
7547 If DISPP is non-null, add its byte displacement from the beginning of a
7548 structure (pointed to by a value) of type TYPE to *DISPP (does not
7549 work for packed fields).
7551 Matches any field whose name has NAME as a prefix, possibly
7554 TYPE can be either a struct or union. If REFOK, TYPE may also
7555 be a (pointer or reference)+ to a struct or union, and the
7556 ultimate target type will be searched.
7558 Looks recursively into variant clauses and parent types.
7560 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7561 TYPE is not a type of the right kind. */
7563 static struct type *
7564 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7572 if (refok && type != NULL)
7575 type = ada_check_typedef (type);
7576 if (TYPE_CODE (type) != TYPE_CODE_PTR
7577 && TYPE_CODE (type) != TYPE_CODE_REF)
7579 type = TYPE_TARGET_TYPE (type);
7583 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7584 && TYPE_CODE (type) != TYPE_CODE_UNION))
7589 error (_("Type %s is not a structure or union type"),
7590 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7593 type = to_static_fixed_type (type);
7595 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7597 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7600 if (t_field_name == NULL)
7603 else if (field_name_match (t_field_name, name))
7604 return TYPE_FIELD_TYPE (type, i);
7606 else if (ada_is_wrapper_field (type, i))
7608 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7614 else if (ada_is_variant_part (type, i))
7617 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7620 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7622 /* FIXME pnh 2008/01/26: We check for a field that is
7623 NOT wrapped in a struct, since the compiler sometimes
7624 generates these for unchecked variant types. Revisit
7625 if the compiler changes this practice. */
7626 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7628 if (v_field_name != NULL
7629 && field_name_match (v_field_name, name))
7630 t = TYPE_FIELD_TYPE (field_type, j);
7632 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7646 const char *name_str = name != NULL ? name : _("<null>");
7648 error (_("Type %s has no component named %s"),
7649 type_as_string (type).c_str (), name_str);
7655 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7656 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7657 represents an unchecked union (that is, the variant part of a
7658 record that is named in an Unchecked_Union pragma). */
7661 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7663 const char *discrim_name = ada_variant_discrim_name (var_type);
7665 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7669 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7670 within a value of type OUTER_TYPE that is stored in GDB at
7671 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7672 numbering from 0) is applicable. Returns -1 if none are. */
7675 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7676 const gdb_byte *outer_valaddr)
7680 const char *discrim_name = ada_variant_discrim_name (var_type);
7681 struct value *outer;
7682 struct value *discrim;
7683 LONGEST discrim_val;
7685 /* Using plain value_from_contents_and_address here causes problems
7686 because we will end up trying to resolve a type that is currently
7687 being constructed. */
7688 outer = value_from_contents_and_address_unresolved (outer_type,
7690 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7691 if (discrim == NULL)
7693 discrim_val = value_as_long (discrim);
7696 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7698 if (ada_is_others_clause (var_type, i))
7700 else if (ada_in_variant (discrim_val, var_type, i))
7704 return others_clause;
7709 /* Dynamic-Sized Records */
7711 /* Strategy: The type ostensibly attached to a value with dynamic size
7712 (i.e., a size that is not statically recorded in the debugging
7713 data) does not accurately reflect the size or layout of the value.
7714 Our strategy is to convert these values to values with accurate,
7715 conventional types that are constructed on the fly. */
7717 /* There is a subtle and tricky problem here. In general, we cannot
7718 determine the size of dynamic records without its data. However,
7719 the 'struct value' data structure, which GDB uses to represent
7720 quantities in the inferior process (the target), requires the size
7721 of the type at the time of its allocation in order to reserve space
7722 for GDB's internal copy of the data. That's why the
7723 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7724 rather than struct value*s.
7726 However, GDB's internal history variables ($1, $2, etc.) are
7727 struct value*s containing internal copies of the data that are not, in
7728 general, the same as the data at their corresponding addresses in
7729 the target. Fortunately, the types we give to these values are all
7730 conventional, fixed-size types (as per the strategy described
7731 above), so that we don't usually have to perform the
7732 'to_fixed_xxx_type' conversions to look at their values.
7733 Unfortunately, there is one exception: if one of the internal
7734 history variables is an array whose elements are unconstrained
7735 records, then we will need to create distinct fixed types for each
7736 element selected. */
7738 /* The upshot of all of this is that many routines take a (type, host
7739 address, target address) triple as arguments to represent a value.
7740 The host address, if non-null, is supposed to contain an internal
7741 copy of the relevant data; otherwise, the program is to consult the
7742 target at the target address. */
7744 /* Assuming that VAL0 represents a pointer value, the result of
7745 dereferencing it. Differs from value_ind in its treatment of
7746 dynamic-sized types. */
7749 ada_value_ind (struct value *val0)
7751 struct value *val = value_ind (val0);
7753 if (ada_is_tagged_type (value_type (val), 0))
7754 val = ada_tag_value_at_base_address (val);
7756 return ada_to_fixed_value (val);
7759 /* The value resulting from dereferencing any "reference to"
7760 qualifiers on VAL0. */
7762 static struct value *
7763 ada_coerce_ref (struct value *val0)
7765 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7767 struct value *val = val0;
7769 val = coerce_ref (val);
7771 if (ada_is_tagged_type (value_type (val), 0))
7772 val = ada_tag_value_at_base_address (val);
7774 return ada_to_fixed_value (val);
7780 /* Return OFF rounded upward if necessary to a multiple of
7781 ALIGNMENT (a power of 2). */
7784 align_value (unsigned int off, unsigned int alignment)
7786 return (off + alignment - 1) & ~(alignment - 1);
7789 /* Return the bit alignment required for field #F of template type TYPE. */
7792 field_alignment (struct type *type, int f)
7794 const char *name = TYPE_FIELD_NAME (type, f);
7798 /* The field name should never be null, unless the debugging information
7799 is somehow malformed. In this case, we assume the field does not
7800 require any alignment. */
7804 len = strlen (name);
7806 if (!isdigit (name[len - 1]))
7809 if (isdigit (name[len - 2]))
7810 align_offset = len - 2;
7812 align_offset = len - 1;
7814 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7815 return TARGET_CHAR_BIT;
7817 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7820 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7822 static struct symbol *
7823 ada_find_any_type_symbol (const char *name)
7827 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7828 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7831 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7835 /* Find a type named NAME. Ignores ambiguity. This routine will look
7836 solely for types defined by debug info, it will not search the GDB
7839 static struct type *
7840 ada_find_any_type (const char *name)
7842 struct symbol *sym = ada_find_any_type_symbol (name);
7845 return SYMBOL_TYPE (sym);
7850 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7851 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7852 symbol, in which case it is returned. Otherwise, this looks for
7853 symbols whose name is that of NAME_SYM suffixed with "___XR".
7854 Return symbol if found, and NULL otherwise. */
7857 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7859 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7862 if (strstr (name, "___XR") != NULL)
7865 sym = find_old_style_renaming_symbol (name, block);
7870 /* Not right yet. FIXME pnh 7/20/2007. */
7871 sym = ada_find_any_type_symbol (name);
7872 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7878 static struct symbol *
7879 find_old_style_renaming_symbol (const char *name, const struct block *block)
7881 const struct symbol *function_sym = block_linkage_function (block);
7884 if (function_sym != NULL)
7886 /* If the symbol is defined inside a function, NAME is not fully
7887 qualified. This means we need to prepend the function name
7888 as well as adding the ``___XR'' suffix to build the name of
7889 the associated renaming symbol. */
7890 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7891 /* Function names sometimes contain suffixes used
7892 for instance to qualify nested subprograms. When building
7893 the XR type name, we need to make sure that this suffix is
7894 not included. So do not include any suffix in the function
7895 name length below. */
7896 int function_name_len = ada_name_prefix_len (function_name);
7897 const int rename_len = function_name_len + 2 /* "__" */
7898 + strlen (name) + 6 /* "___XR\0" */ ;
7900 /* Strip the suffix if necessary. */
7901 ada_remove_trailing_digits (function_name, &function_name_len);
7902 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7903 ada_remove_Xbn_suffix (function_name, &function_name_len);
7905 /* Library-level functions are a special case, as GNAT adds
7906 a ``_ada_'' prefix to the function name to avoid namespace
7907 pollution. However, the renaming symbols themselves do not
7908 have this prefix, so we need to skip this prefix if present. */
7909 if (function_name_len > 5 /* "_ada_" */
7910 && strstr (function_name, "_ada_") == function_name)
7913 function_name_len -= 5;
7916 rename = (char *) alloca (rename_len * sizeof (char));
7917 strncpy (rename, function_name, function_name_len);
7918 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7923 const int rename_len = strlen (name) + 6;
7925 rename = (char *) alloca (rename_len * sizeof (char));
7926 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7929 return ada_find_any_type_symbol (rename);
7932 /* Because of GNAT encoding conventions, several GDB symbols may match a
7933 given type name. If the type denoted by TYPE0 is to be preferred to
7934 that of TYPE1 for purposes of type printing, return non-zero;
7935 otherwise return 0. */
7938 ada_prefer_type (struct type *type0, struct type *type1)
7942 else if (type0 == NULL)
7944 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7946 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7948 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7950 else if (ada_is_constrained_packed_array_type (type0))
7952 else if (ada_is_array_descriptor_type (type0)
7953 && !ada_is_array_descriptor_type (type1))
7957 const char *type0_name = type_name_no_tag (type0);
7958 const char *type1_name = type_name_no_tag (type1);
7960 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7961 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7967 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7968 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7971 ada_type_name (struct type *type)
7975 else if (TYPE_NAME (type) != NULL)
7976 return TYPE_NAME (type);
7978 return TYPE_TAG_NAME (type);
7981 /* Search the list of "descriptive" types associated to TYPE for a type
7982 whose name is NAME. */
7984 static struct type *
7985 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7987 struct type *result, *tmp;
7989 if (ada_ignore_descriptive_types_p)
7992 /* If there no descriptive-type info, then there is no parallel type
7994 if (!HAVE_GNAT_AUX_INFO (type))
7997 result = TYPE_DESCRIPTIVE_TYPE (type);
7998 while (result != NULL)
8000 const char *result_name = ada_type_name (result);
8002 if (result_name == NULL)
8004 warning (_("unexpected null name on descriptive type"));
8008 /* If the names match, stop. */
8009 if (strcmp (result_name, name) == 0)
8012 /* Otherwise, look at the next item on the list, if any. */
8013 if (HAVE_GNAT_AUX_INFO (result))
8014 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8018 /* If not found either, try after having resolved the typedef. */
8023 result = check_typedef (result);
8024 if (HAVE_GNAT_AUX_INFO (result))
8025 result = TYPE_DESCRIPTIVE_TYPE (result);
8031 /* If we didn't find a match, see whether this is a packed array. With
8032 older compilers, the descriptive type information is either absent or
8033 irrelevant when it comes to packed arrays so the above lookup fails.
8034 Fall back to using a parallel lookup by name in this case. */
8035 if (result == NULL && ada_is_constrained_packed_array_type (type))
8036 return ada_find_any_type (name);
8041 /* Find a parallel type to TYPE with the specified NAME, using the
8042 descriptive type taken from the debugging information, if available,
8043 and otherwise using the (slower) name-based method. */
8045 static struct type *
8046 ada_find_parallel_type_with_name (struct type *type, const char *name)
8048 struct type *result = NULL;
8050 if (HAVE_GNAT_AUX_INFO (type))
8051 result = find_parallel_type_by_descriptive_type (type, name);
8053 result = ada_find_any_type (name);
8058 /* Same as above, but specify the name of the parallel type by appending
8059 SUFFIX to the name of TYPE. */
8062 ada_find_parallel_type (struct type *type, const char *suffix)
8065 const char *type_name = ada_type_name (type);
8068 if (type_name == NULL)
8071 len = strlen (type_name);
8073 name = (char *) alloca (len + strlen (suffix) + 1);
8075 strcpy (name, type_name);
8076 strcpy (name + len, suffix);
8078 return ada_find_parallel_type_with_name (type, name);
8081 /* If TYPE is a variable-size record type, return the corresponding template
8082 type describing its fields. Otherwise, return NULL. */
8084 static struct type *
8085 dynamic_template_type (struct type *type)
8087 type = ada_check_typedef (type);
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8090 || ada_type_name (type) == NULL)
8094 int len = strlen (ada_type_name (type));
8096 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8099 return ada_find_parallel_type (type, "___XVE");
8103 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8104 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8107 is_dynamic_field (struct type *templ_type, int field_num)
8109 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8112 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8113 && strstr (name, "___XVL") != NULL;
8116 /* The index of the variant field of TYPE, or -1 if TYPE does not
8117 represent a variant record type. */
8120 variant_field_index (struct type *type)
8124 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8127 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8129 if (ada_is_variant_part (type, f))
8135 /* A record type with no fields. */
8137 static struct type *
8138 empty_record (struct type *templ)
8140 struct type *type = alloc_type_copy (templ);
8142 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8143 TYPE_NFIELDS (type) = 0;
8144 TYPE_FIELDS (type) = NULL;
8145 INIT_CPLUS_SPECIFIC (type);
8146 TYPE_NAME (type) = "<empty>";
8147 TYPE_TAG_NAME (type) = NULL;
8148 TYPE_LENGTH (type) = 0;
8152 /* An ordinary record type (with fixed-length fields) that describes
8153 the value of type TYPE at VALADDR or ADDRESS (see comments at
8154 the beginning of this section) VAL according to GNAT conventions.
8155 DVAL0 should describe the (portion of a) record that contains any
8156 necessary discriminants. It should be NULL if value_type (VAL) is
8157 an outer-level type (i.e., as opposed to a branch of a variant.) A
8158 variant field (unless unchecked) is replaced by a particular branch
8161 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8162 length are not statically known are discarded. As a consequence,
8163 VALADDR, ADDRESS and DVAL0 are ignored.
8165 NOTE: Limitations: For now, we assume that dynamic fields and
8166 variants occupy whole numbers of bytes. However, they need not be
8170 ada_template_to_fixed_record_type_1 (struct type *type,
8171 const gdb_byte *valaddr,
8172 CORE_ADDR address, struct value *dval0,
8173 int keep_dynamic_fields)
8175 struct value *mark = value_mark ();
8178 int nfields, bit_len;
8184 /* Compute the number of fields in this record type that are going
8185 to be processed: unless keep_dynamic_fields, this includes only
8186 fields whose position and length are static will be processed. */
8187 if (keep_dynamic_fields)
8188 nfields = TYPE_NFIELDS (type);
8192 while (nfields < TYPE_NFIELDS (type)
8193 && !ada_is_variant_part (type, nfields)
8194 && !is_dynamic_field (type, nfields))
8198 rtype = alloc_type_copy (type);
8199 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8200 INIT_CPLUS_SPECIFIC (rtype);
8201 TYPE_NFIELDS (rtype) = nfields;
8202 TYPE_FIELDS (rtype) = (struct field *)
8203 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8204 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8205 TYPE_NAME (rtype) = ada_type_name (type);
8206 TYPE_TAG_NAME (rtype) = NULL;
8207 TYPE_FIXED_INSTANCE (rtype) = 1;
8213 for (f = 0; f < nfields; f += 1)
8215 off = align_value (off, field_alignment (type, f))
8216 + TYPE_FIELD_BITPOS (type, f);
8217 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8218 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8220 if (ada_is_variant_part (type, f))
8225 else if (is_dynamic_field (type, f))
8227 const gdb_byte *field_valaddr = valaddr;
8228 CORE_ADDR field_address = address;
8229 struct type *field_type =
8230 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8234 /* rtype's length is computed based on the run-time
8235 value of discriminants. If the discriminants are not
8236 initialized, the type size may be completely bogus and
8237 GDB may fail to allocate a value for it. So check the
8238 size first before creating the value. */
8239 ada_ensure_varsize_limit (rtype);
8240 /* Using plain value_from_contents_and_address here
8241 causes problems because we will end up trying to
8242 resolve a type that is currently being
8244 dval = value_from_contents_and_address_unresolved (rtype,
8247 rtype = value_type (dval);
8252 /* If the type referenced by this field is an aligner type, we need
8253 to unwrap that aligner type, because its size might not be set.
8254 Keeping the aligner type would cause us to compute the wrong
8255 size for this field, impacting the offset of the all the fields
8256 that follow this one. */
8257 if (ada_is_aligner_type (field_type))
8259 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8261 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8262 field_address = cond_offset_target (field_address, field_offset);
8263 field_type = ada_aligned_type (field_type);
8266 field_valaddr = cond_offset_host (field_valaddr,
8267 off / TARGET_CHAR_BIT);
8268 field_address = cond_offset_target (field_address,
8269 off / TARGET_CHAR_BIT);
8271 /* Get the fixed type of the field. Note that, in this case,
8272 we do not want to get the real type out of the tag: if
8273 the current field is the parent part of a tagged record,
8274 we will get the tag of the object. Clearly wrong: the real
8275 type of the parent is not the real type of the child. We
8276 would end up in an infinite loop. */
8277 field_type = ada_get_base_type (field_type);
8278 field_type = ada_to_fixed_type (field_type, field_valaddr,
8279 field_address, dval, 0);
8280 /* If the field size is already larger than the maximum
8281 object size, then the record itself will necessarily
8282 be larger than the maximum object size. We need to make
8283 this check now, because the size might be so ridiculously
8284 large (due to an uninitialized variable in the inferior)
8285 that it would cause an overflow when adding it to the
8287 ada_ensure_varsize_limit (field_type);
8289 TYPE_FIELD_TYPE (rtype, f) = field_type;
8290 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8291 /* The multiplication can potentially overflow. But because
8292 the field length has been size-checked just above, and
8293 assuming that the maximum size is a reasonable value,
8294 an overflow should not happen in practice. So rather than
8295 adding overflow recovery code to this already complex code,
8296 we just assume that it's not going to happen. */
8298 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8302 /* Note: If this field's type is a typedef, it is important
8303 to preserve the typedef layer.
8305 Otherwise, we might be transforming a typedef to a fat
8306 pointer (encoding a pointer to an unconstrained array),
8307 into a basic fat pointer (encoding an unconstrained
8308 array). As both types are implemented using the same
8309 structure, the typedef is the only clue which allows us
8310 to distinguish between the two options. Stripping it
8311 would prevent us from printing this field appropriately. */
8312 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8313 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8314 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8316 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8319 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8321 /* We need to be careful of typedefs when computing
8322 the length of our field. If this is a typedef,
8323 get the length of the target type, not the length
8325 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8326 field_type = ada_typedef_target_type (field_type);
8329 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8332 if (off + fld_bit_len > bit_len)
8333 bit_len = off + fld_bit_len;
8335 TYPE_LENGTH (rtype) =
8336 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8339 /* We handle the variant part, if any, at the end because of certain
8340 odd cases in which it is re-ordered so as NOT to be the last field of
8341 the record. This can happen in the presence of representation
8343 if (variant_field >= 0)
8345 struct type *branch_type;
8347 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8351 /* Using plain value_from_contents_and_address here causes
8352 problems because we will end up trying to resolve a type
8353 that is currently being constructed. */
8354 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8356 rtype = value_type (dval);
8362 to_fixed_variant_branch_type
8363 (TYPE_FIELD_TYPE (type, variant_field),
8364 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8365 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8366 if (branch_type == NULL)
8368 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8369 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8370 TYPE_NFIELDS (rtype) -= 1;
8374 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8375 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8377 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8379 if (off + fld_bit_len > bit_len)
8380 bit_len = off + fld_bit_len;
8381 TYPE_LENGTH (rtype) =
8382 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8386 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8387 should contain the alignment of that record, which should be a strictly
8388 positive value. If null or negative, then something is wrong, most
8389 probably in the debug info. In that case, we don't round up the size
8390 of the resulting type. If this record is not part of another structure,
8391 the current RTYPE length might be good enough for our purposes. */
8392 if (TYPE_LENGTH (type) <= 0)
8394 if (TYPE_NAME (rtype))
8395 warning (_("Invalid type size for `%s' detected: %d."),
8396 TYPE_NAME (rtype), TYPE_LENGTH (type));
8398 warning (_("Invalid type size for <unnamed> detected: %d."),
8399 TYPE_LENGTH (type));
8403 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8404 TYPE_LENGTH (type));
8407 value_free_to_mark (mark);
8408 if (TYPE_LENGTH (rtype) > varsize_limit)
8409 error (_("record type with dynamic size is larger than varsize-limit"));
8413 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8416 static struct type *
8417 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8418 CORE_ADDR address, struct value *dval0)
8420 return ada_template_to_fixed_record_type_1 (type, valaddr,
8424 /* An ordinary record type in which ___XVL-convention fields and
8425 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8426 static approximations, containing all possible fields. Uses
8427 no runtime values. Useless for use in values, but that's OK,
8428 since the results are used only for type determinations. Works on both
8429 structs and unions. Representation note: to save space, we memorize
8430 the result of this function in the TYPE_TARGET_TYPE of the
8433 static struct type *
8434 template_to_static_fixed_type (struct type *type0)
8440 /* No need no do anything if the input type is already fixed. */
8441 if (TYPE_FIXED_INSTANCE (type0))
8444 /* Likewise if we already have computed the static approximation. */
8445 if (TYPE_TARGET_TYPE (type0) != NULL)
8446 return TYPE_TARGET_TYPE (type0);
8448 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8450 nfields = TYPE_NFIELDS (type0);
8452 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8453 recompute all over next time. */
8454 TYPE_TARGET_TYPE (type0) = type;
8456 for (f = 0; f < nfields; f += 1)
8458 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8459 struct type *new_type;
8461 if (is_dynamic_field (type0, f))
8463 field_type = ada_check_typedef (field_type);
8464 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8467 new_type = static_unwrap_type (field_type);
8469 if (new_type != field_type)
8471 /* Clone TYPE0 only the first time we get a new field type. */
8474 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8475 TYPE_CODE (type) = TYPE_CODE (type0);
8476 INIT_CPLUS_SPECIFIC (type);
8477 TYPE_NFIELDS (type) = nfields;
8478 TYPE_FIELDS (type) = (struct field *)
8479 TYPE_ALLOC (type, nfields * sizeof (struct field));
8480 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8481 sizeof (struct field) * nfields);
8482 TYPE_NAME (type) = ada_type_name (type0);
8483 TYPE_TAG_NAME (type) = NULL;
8484 TYPE_FIXED_INSTANCE (type) = 1;
8485 TYPE_LENGTH (type) = 0;
8487 TYPE_FIELD_TYPE (type, f) = new_type;
8488 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8495 /* Given an object of type TYPE whose contents are at VALADDR and
8496 whose address in memory is ADDRESS, returns a revision of TYPE,
8497 which should be a non-dynamic-sized record, in which the variant
8498 part, if any, is replaced with the appropriate branch. Looks
8499 for discriminant values in DVAL0, which can be NULL if the record
8500 contains the necessary discriminant values. */
8502 static struct type *
8503 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8504 CORE_ADDR address, struct value *dval0)
8506 struct value *mark = value_mark ();
8509 struct type *branch_type;
8510 int nfields = TYPE_NFIELDS (type);
8511 int variant_field = variant_field_index (type);
8513 if (variant_field == -1)
8518 dval = value_from_contents_and_address (type, valaddr, address);
8519 type = value_type (dval);
8524 rtype = alloc_type_copy (type);
8525 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8526 INIT_CPLUS_SPECIFIC (rtype);
8527 TYPE_NFIELDS (rtype) = nfields;
8528 TYPE_FIELDS (rtype) =
8529 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8530 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8531 sizeof (struct field) * nfields);
8532 TYPE_NAME (rtype) = ada_type_name (type);
8533 TYPE_TAG_NAME (rtype) = NULL;
8534 TYPE_FIXED_INSTANCE (rtype) = 1;
8535 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8537 branch_type = to_fixed_variant_branch_type
8538 (TYPE_FIELD_TYPE (type, variant_field),
8539 cond_offset_host (valaddr,
8540 TYPE_FIELD_BITPOS (type, variant_field)
8542 cond_offset_target (address,
8543 TYPE_FIELD_BITPOS (type, variant_field)
8544 / TARGET_CHAR_BIT), dval);
8545 if (branch_type == NULL)
8549 for (f = variant_field + 1; f < nfields; f += 1)
8550 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8551 TYPE_NFIELDS (rtype) -= 1;
8555 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8556 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8557 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8558 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8560 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8562 value_free_to_mark (mark);
8566 /* An ordinary record type (with fixed-length fields) that describes
8567 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8568 beginning of this section]. Any necessary discriminants' values
8569 should be in DVAL, a record value; it may be NULL if the object
8570 at ADDR itself contains any necessary discriminant values.
8571 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8572 values from the record are needed. Except in the case that DVAL,
8573 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8574 unchecked) is replaced by a particular branch of the variant.
8576 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8577 is questionable and may be removed. It can arise during the
8578 processing of an unconstrained-array-of-record type where all the
8579 variant branches have exactly the same size. This is because in
8580 such cases, the compiler does not bother to use the XVS convention
8581 when encoding the record. I am currently dubious of this
8582 shortcut and suspect the compiler should be altered. FIXME. */
8584 static struct type *
8585 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8586 CORE_ADDR address, struct value *dval)
8588 struct type *templ_type;
8590 if (TYPE_FIXED_INSTANCE (type0))
8593 templ_type = dynamic_template_type (type0);
8595 if (templ_type != NULL)
8596 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8597 else if (variant_field_index (type0) >= 0)
8599 if (dval == NULL && valaddr == NULL && address == 0)
8601 return to_record_with_fixed_variant_part (type0, valaddr, address,
8606 TYPE_FIXED_INSTANCE (type0) = 1;
8612 /* An ordinary record type (with fixed-length fields) that describes
8613 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8614 union type. Any necessary discriminants' values should be in DVAL,
8615 a record value. That is, this routine selects the appropriate
8616 branch of the union at ADDR according to the discriminant value
8617 indicated in the union's type name. Returns VAR_TYPE0 itself if
8618 it represents a variant subject to a pragma Unchecked_Union. */
8620 static struct type *
8621 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8622 CORE_ADDR address, struct value *dval)
8625 struct type *templ_type;
8626 struct type *var_type;
8628 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8629 var_type = TYPE_TARGET_TYPE (var_type0);
8631 var_type = var_type0;
8633 templ_type = ada_find_parallel_type (var_type, "___XVU");
8635 if (templ_type != NULL)
8636 var_type = templ_type;
8638 if (is_unchecked_variant (var_type, value_type (dval)))
8641 ada_which_variant_applies (var_type,
8642 value_type (dval), value_contents (dval));
8645 return empty_record (var_type);
8646 else if (is_dynamic_field (var_type, which))
8647 return to_fixed_record_type
8648 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8649 valaddr, address, dval);
8650 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8652 to_fixed_record_type
8653 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8655 return TYPE_FIELD_TYPE (var_type, which);
8658 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8659 ENCODING_TYPE, a type following the GNAT conventions for discrete
8660 type encodings, only carries redundant information. */
8663 ada_is_redundant_range_encoding (struct type *range_type,
8664 struct type *encoding_type)
8666 const char *bounds_str;
8670 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8672 if (TYPE_CODE (get_base_type (range_type))
8673 != TYPE_CODE (get_base_type (encoding_type)))
8675 /* The compiler probably used a simple base type to describe
8676 the range type instead of the range's actual base type,
8677 expecting us to get the real base type from the encoding
8678 anyway. In this situation, the encoding cannot be ignored
8683 if (is_dynamic_type (range_type))
8686 if (TYPE_NAME (encoding_type) == NULL)
8689 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8690 if (bounds_str == NULL)
8693 n = 8; /* Skip "___XDLU_". */
8694 if (!ada_scan_number (bounds_str, n, &lo, &n))
8696 if (TYPE_LOW_BOUND (range_type) != lo)
8699 n += 2; /* Skip the "__" separator between the two bounds. */
8700 if (!ada_scan_number (bounds_str, n, &hi, &n))
8702 if (TYPE_HIGH_BOUND (range_type) != hi)
8708 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8709 a type following the GNAT encoding for describing array type
8710 indices, only carries redundant information. */
8713 ada_is_redundant_index_type_desc (struct type *array_type,
8714 struct type *desc_type)
8716 struct type *this_layer = check_typedef (array_type);
8719 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8721 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8722 TYPE_FIELD_TYPE (desc_type, i)))
8724 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8730 /* Assuming that TYPE0 is an array type describing the type of a value
8731 at ADDR, and that DVAL describes a record containing any
8732 discriminants used in TYPE0, returns a type for the value that
8733 contains no dynamic components (that is, no components whose sizes
8734 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8735 true, gives an error message if the resulting type's size is over
8738 static struct type *
8739 to_fixed_array_type (struct type *type0, struct value *dval,
8742 struct type *index_type_desc;
8743 struct type *result;
8744 int constrained_packed_array_p;
8745 static const char *xa_suffix = "___XA";
8747 type0 = ada_check_typedef (type0);
8748 if (TYPE_FIXED_INSTANCE (type0))
8751 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8752 if (constrained_packed_array_p)
8753 type0 = decode_constrained_packed_array_type (type0);
8755 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8757 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8758 encoding suffixed with 'P' may still be generated. If so,
8759 it should be used to find the XA type. */
8761 if (index_type_desc == NULL)
8763 const char *type_name = ada_type_name (type0);
8765 if (type_name != NULL)
8767 const int len = strlen (type_name);
8768 char *name = (char *) alloca (len + strlen (xa_suffix));
8770 if (type_name[len - 1] == 'P')
8772 strcpy (name, type_name);
8773 strcpy (name + len - 1, xa_suffix);
8774 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8779 ada_fixup_array_indexes_type (index_type_desc);
8780 if (index_type_desc != NULL
8781 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8783 /* Ignore this ___XA parallel type, as it does not bring any
8784 useful information. This allows us to avoid creating fixed
8785 versions of the array's index types, which would be identical
8786 to the original ones. This, in turn, can also help avoid
8787 the creation of fixed versions of the array itself. */
8788 index_type_desc = NULL;
8791 if (index_type_desc == NULL)
8793 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8795 /* NOTE: elt_type---the fixed version of elt_type0---should never
8796 depend on the contents of the array in properly constructed
8798 /* Create a fixed version of the array element type.
8799 We're not providing the address of an element here,
8800 and thus the actual object value cannot be inspected to do
8801 the conversion. This should not be a problem, since arrays of
8802 unconstrained objects are not allowed. In particular, all
8803 the elements of an array of a tagged type should all be of
8804 the same type specified in the debugging info. No need to
8805 consult the object tag. */
8806 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8808 /* Make sure we always create a new array type when dealing with
8809 packed array types, since we're going to fix-up the array
8810 type length and element bitsize a little further down. */
8811 if (elt_type0 == elt_type && !constrained_packed_array_p)
8814 result = create_array_type (alloc_type_copy (type0),
8815 elt_type, TYPE_INDEX_TYPE (type0));
8820 struct type *elt_type0;
8823 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8824 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8826 /* NOTE: result---the fixed version of elt_type0---should never
8827 depend on the contents of the array in properly constructed
8829 /* Create a fixed version of the array element type.
8830 We're not providing the address of an element here,
8831 and thus the actual object value cannot be inspected to do
8832 the conversion. This should not be a problem, since arrays of
8833 unconstrained objects are not allowed. In particular, all
8834 the elements of an array of a tagged type should all be of
8835 the same type specified in the debugging info. No need to
8836 consult the object tag. */
8838 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8841 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8843 struct type *range_type =
8844 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8846 result = create_array_type (alloc_type_copy (elt_type0),
8847 result, range_type);
8848 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8850 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8851 error (_("array type with dynamic size is larger than varsize-limit"));
8854 /* We want to preserve the type name. This can be useful when
8855 trying to get the type name of a value that has already been
8856 printed (for instance, if the user did "print VAR; whatis $". */
8857 TYPE_NAME (result) = TYPE_NAME (type0);
8859 if (constrained_packed_array_p)
8861 /* So far, the resulting type has been created as if the original
8862 type was a regular (non-packed) array type. As a result, the
8863 bitsize of the array elements needs to be set again, and the array
8864 length needs to be recomputed based on that bitsize. */
8865 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8866 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8868 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8869 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8870 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8871 TYPE_LENGTH (result)++;
8874 TYPE_FIXED_INSTANCE (result) = 1;
8879 /* A standard type (containing no dynamically sized components)
8880 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8881 DVAL describes a record containing any discriminants used in TYPE0,
8882 and may be NULL if there are none, or if the object of type TYPE at
8883 ADDRESS or in VALADDR contains these discriminants.
8885 If CHECK_TAG is not null, in the case of tagged types, this function
8886 attempts to locate the object's tag and use it to compute the actual
8887 type. However, when ADDRESS is null, we cannot use it to determine the
8888 location of the tag, and therefore compute the tagged type's actual type.
8889 So we return the tagged type without consulting the tag. */
8891 static struct type *
8892 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8893 CORE_ADDR address, struct value *dval, int check_tag)
8895 type = ada_check_typedef (type);
8896 switch (TYPE_CODE (type))
8900 case TYPE_CODE_STRUCT:
8902 struct type *static_type = to_static_fixed_type (type);
8903 struct type *fixed_record_type =
8904 to_fixed_record_type (type, valaddr, address, NULL);
8906 /* If STATIC_TYPE is a tagged type and we know the object's address,
8907 then we can determine its tag, and compute the object's actual
8908 type from there. Note that we have to use the fixed record
8909 type (the parent part of the record may have dynamic fields
8910 and the way the location of _tag is expressed may depend on
8913 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8916 value_tag_from_contents_and_address
8920 struct type *real_type = type_from_tag (tag);
8922 value_from_contents_and_address (fixed_record_type,
8925 fixed_record_type = value_type (obj);
8926 if (real_type != NULL)
8927 return to_fixed_record_type
8929 value_address (ada_tag_value_at_base_address (obj)), NULL);
8932 /* Check to see if there is a parallel ___XVZ variable.
8933 If there is, then it provides the actual size of our type. */
8934 else if (ada_type_name (fixed_record_type) != NULL)
8936 const char *name = ada_type_name (fixed_record_type);
8938 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8941 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8942 if (get_int_var_value (xvz_name, size)
8943 && TYPE_LENGTH (fixed_record_type) != size)
8945 fixed_record_type = copy_type (fixed_record_type);
8946 TYPE_LENGTH (fixed_record_type) = size;
8948 /* The FIXED_RECORD_TYPE may have be a stub. We have
8949 observed this when the debugging info is STABS, and
8950 apparently it is something that is hard to fix.
8952 In practice, we don't need the actual type definition
8953 at all, because the presence of the XVZ variable allows us
8954 to assume that there must be a XVS type as well, which we
8955 should be able to use later, when we need the actual type
8958 In the meantime, pretend that the "fixed" type we are
8959 returning is NOT a stub, because this can cause trouble
8960 when using this type to create new types targeting it.
8961 Indeed, the associated creation routines often check
8962 whether the target type is a stub and will try to replace
8963 it, thus using a type with the wrong size. This, in turn,
8964 might cause the new type to have the wrong size too.
8965 Consider the case of an array, for instance, where the size
8966 of the array is computed from the number of elements in
8967 our array multiplied by the size of its element. */
8968 TYPE_STUB (fixed_record_type) = 0;
8971 return fixed_record_type;
8973 case TYPE_CODE_ARRAY:
8974 return to_fixed_array_type (type, dval, 1);
8975 case TYPE_CODE_UNION:
8979 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8983 /* The same as ada_to_fixed_type_1, except that it preserves the type
8984 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8986 The typedef layer needs be preserved in order to differentiate between
8987 arrays and array pointers when both types are implemented using the same
8988 fat pointer. In the array pointer case, the pointer is encoded as
8989 a typedef of the pointer type. For instance, considering:
8991 type String_Access is access String;
8992 S1 : String_Access := null;
8994 To the debugger, S1 is defined as a typedef of type String. But
8995 to the user, it is a pointer. So if the user tries to print S1,
8996 we should not dereference the array, but print the array address
8999 If we didn't preserve the typedef layer, we would lose the fact that
9000 the type is to be presented as a pointer (needs de-reference before
9001 being printed). And we would also use the source-level type name. */
9004 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9005 CORE_ADDR address, struct value *dval, int check_tag)
9008 struct type *fixed_type =
9009 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9011 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9012 then preserve the typedef layer.
9014 Implementation note: We can only check the main-type portion of
9015 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9016 from TYPE now returns a type that has the same instance flags
9017 as TYPE. For instance, if TYPE is a "typedef const", and its
9018 target type is a "struct", then the typedef elimination will return
9019 a "const" version of the target type. See check_typedef for more
9020 details about how the typedef layer elimination is done.
9022 brobecker/2010-11-19: It seems to me that the only case where it is
9023 useful to preserve the typedef layer is when dealing with fat pointers.
9024 Perhaps, we could add a check for that and preserve the typedef layer
9025 only in that situation. But this seems unecessary so far, probably
9026 because we call check_typedef/ada_check_typedef pretty much everywhere.
9028 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9029 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9030 == TYPE_MAIN_TYPE (fixed_type)))
9036 /* A standard (static-sized) type corresponding as well as possible to
9037 TYPE0, but based on no runtime data. */
9039 static struct type *
9040 to_static_fixed_type (struct type *type0)
9047 if (TYPE_FIXED_INSTANCE (type0))
9050 type0 = ada_check_typedef (type0);
9052 switch (TYPE_CODE (type0))
9056 case TYPE_CODE_STRUCT:
9057 type = dynamic_template_type (type0);
9059 return template_to_static_fixed_type (type);
9061 return template_to_static_fixed_type (type0);
9062 case TYPE_CODE_UNION:
9063 type = ada_find_parallel_type (type0, "___XVU");
9065 return template_to_static_fixed_type (type);
9067 return template_to_static_fixed_type (type0);
9071 /* A static approximation of TYPE with all type wrappers removed. */
9073 static struct type *
9074 static_unwrap_type (struct type *type)
9076 if (ada_is_aligner_type (type))
9078 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9079 if (ada_type_name (type1) == NULL)
9080 TYPE_NAME (type1) = ada_type_name (type);
9082 return static_unwrap_type (type1);
9086 struct type *raw_real_type = ada_get_base_type (type);
9088 if (raw_real_type == type)
9091 return to_static_fixed_type (raw_real_type);
9095 /* In some cases, incomplete and private types require
9096 cross-references that are not resolved as records (for example,
9098 type FooP is access Foo;
9100 type Foo is array ...;
9101 ). In these cases, since there is no mechanism for producing
9102 cross-references to such types, we instead substitute for FooP a
9103 stub enumeration type that is nowhere resolved, and whose tag is
9104 the name of the actual type. Call these types "non-record stubs". */
9106 /* A type equivalent to TYPE that is not a non-record stub, if one
9107 exists, otherwise TYPE. */
9110 ada_check_typedef (struct type *type)
9115 /* If our type is a typedef type of a fat pointer, then we're done.
9116 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9117 what allows us to distinguish between fat pointers that represent
9118 array types, and fat pointers that represent array access types
9119 (in both cases, the compiler implements them as fat pointers). */
9120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9121 && is_thick_pntr (ada_typedef_target_type (type)))
9124 type = check_typedef (type);
9125 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9126 || !TYPE_STUB (type)
9127 || TYPE_TAG_NAME (type) == NULL)
9131 const char *name = TYPE_TAG_NAME (type);
9132 struct type *type1 = ada_find_any_type (name);
9137 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9138 stubs pointing to arrays, as we don't create symbols for array
9139 types, only for the typedef-to-array types). If that's the case,
9140 strip the typedef layer. */
9141 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9142 type1 = ada_check_typedef (type1);
9148 /* A value representing the data at VALADDR/ADDRESS as described by
9149 type TYPE0, but with a standard (static-sized) type that correctly
9150 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9151 type, then return VAL0 [this feature is simply to avoid redundant
9152 creation of struct values]. */
9154 static struct value *
9155 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9158 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9160 if (type == type0 && val0 != NULL)
9163 return value_from_contents_and_address (type, 0, address);
9166 /* A value representing VAL, but with a standard (static-sized) type
9167 that correctly describes it. Does not necessarily create a new
9171 ada_to_fixed_value (struct value *val)
9173 val = unwrap_value (val);
9174 val = ada_to_fixed_value_create (value_type (val),
9175 value_address (val),
9183 /* Table mapping attribute numbers to names.
9184 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9186 static const char *attribute_names[] = {
9204 ada_attribute_name (enum exp_opcode n)
9206 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9207 return attribute_names[n - OP_ATR_FIRST + 1];
9209 return attribute_names[0];
9212 /* Evaluate the 'POS attribute applied to ARG. */
9215 pos_atr (struct value *arg)
9217 struct value *val = coerce_ref (arg);
9218 struct type *type = value_type (val);
9221 if (!discrete_type_p (type))
9222 error (_("'POS only defined on discrete types"));
9224 if (!discrete_position (type, value_as_long (val), &result))
9225 error (_("enumeration value is invalid: can't find 'POS"));
9230 static struct value *
9231 value_pos_atr (struct type *type, struct value *arg)
9233 return value_from_longest (type, pos_atr (arg));
9236 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9238 static struct value *
9239 value_val_atr (struct type *type, struct value *arg)
9241 if (!discrete_type_p (type))
9242 error (_("'VAL only defined on discrete types"));
9243 if (!integer_type_p (value_type (arg)))
9244 error (_("'VAL requires integral argument"));
9246 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9248 long pos = value_as_long (arg);
9250 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9251 error (_("argument to 'VAL out of range"));
9252 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9255 return value_from_longest (type, value_as_long (arg));
9261 /* True if TYPE appears to be an Ada character type.
9262 [At the moment, this is true only for Character and Wide_Character;
9263 It is a heuristic test that could stand improvement]. */
9266 ada_is_character_type (struct type *type)
9270 /* If the type code says it's a character, then assume it really is,
9271 and don't check any further. */
9272 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9275 /* Otherwise, assume it's a character type iff it is a discrete type
9276 with a known character type name. */
9277 name = ada_type_name (type);
9278 return (name != NULL
9279 && (TYPE_CODE (type) == TYPE_CODE_INT
9280 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9281 && (strcmp (name, "character") == 0
9282 || strcmp (name, "wide_character") == 0
9283 || strcmp (name, "wide_wide_character") == 0
9284 || strcmp (name, "unsigned char") == 0));
9287 /* True if TYPE appears to be an Ada string type. */
9290 ada_is_string_type (struct type *type)
9292 type = ada_check_typedef (type);
9294 && TYPE_CODE (type) != TYPE_CODE_PTR
9295 && (ada_is_simple_array_type (type)
9296 || ada_is_array_descriptor_type (type))
9297 && ada_array_arity (type) == 1)
9299 struct type *elttype = ada_array_element_type (type, 1);
9301 return ada_is_character_type (elttype);
9307 /* The compiler sometimes provides a parallel XVS type for a given
9308 PAD type. Normally, it is safe to follow the PAD type directly,
9309 but older versions of the compiler have a bug that causes the offset
9310 of its "F" field to be wrong. Following that field in that case
9311 would lead to incorrect results, but this can be worked around
9312 by ignoring the PAD type and using the associated XVS type instead.
9314 Set to True if the debugger should trust the contents of PAD types.
9315 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9316 static int trust_pad_over_xvs = 1;
9318 /* True if TYPE is a struct type introduced by the compiler to force the
9319 alignment of a value. Such types have a single field with a
9320 distinctive name. */
9323 ada_is_aligner_type (struct type *type)
9325 type = ada_check_typedef (type);
9327 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9330 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9331 && TYPE_NFIELDS (type) == 1
9332 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9335 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9336 the parallel type. */
9339 ada_get_base_type (struct type *raw_type)
9341 struct type *real_type_namer;
9342 struct type *raw_real_type;
9344 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9347 if (ada_is_aligner_type (raw_type))
9348 /* The encoding specifies that we should always use the aligner type.
9349 So, even if this aligner type has an associated XVS type, we should
9352 According to the compiler gurus, an XVS type parallel to an aligner
9353 type may exist because of a stabs limitation. In stabs, aligner
9354 types are empty because the field has a variable-sized type, and
9355 thus cannot actually be used as an aligner type. As a result,
9356 we need the associated parallel XVS type to decode the type.
9357 Since the policy in the compiler is to not change the internal
9358 representation based on the debugging info format, we sometimes
9359 end up having a redundant XVS type parallel to the aligner type. */
9362 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9363 if (real_type_namer == NULL
9364 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9365 || TYPE_NFIELDS (real_type_namer) != 1)
9368 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9370 /* This is an older encoding form where the base type needs to be
9371 looked up by name. We prefer the newer enconding because it is
9373 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9374 if (raw_real_type == NULL)
9377 return raw_real_type;
9380 /* The field in our XVS type is a reference to the base type. */
9381 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9384 /* The type of value designated by TYPE, with all aligners removed. */
9387 ada_aligned_type (struct type *type)
9389 if (ada_is_aligner_type (type))
9390 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9392 return ada_get_base_type (type);
9396 /* The address of the aligned value in an object at address VALADDR
9397 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9400 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9402 if (ada_is_aligner_type (type))
9403 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9405 TYPE_FIELD_BITPOS (type,
9406 0) / TARGET_CHAR_BIT);
9413 /* The printed representation of an enumeration literal with encoded
9414 name NAME. The value is good to the next call of ada_enum_name. */
9416 ada_enum_name (const char *name)
9418 static char *result;
9419 static size_t result_len = 0;
9422 /* First, unqualify the enumeration name:
9423 1. Search for the last '.' character. If we find one, then skip
9424 all the preceding characters, the unqualified name starts
9425 right after that dot.
9426 2. Otherwise, we may be debugging on a target where the compiler
9427 translates dots into "__". Search forward for double underscores,
9428 but stop searching when we hit an overloading suffix, which is
9429 of the form "__" followed by digits. */
9431 tmp = strrchr (name, '.');
9436 while ((tmp = strstr (name, "__")) != NULL)
9438 if (isdigit (tmp[2]))
9449 if (name[1] == 'U' || name[1] == 'W')
9451 if (sscanf (name + 2, "%x", &v) != 1)
9457 GROW_VECT (result, result_len, 16);
9458 if (isascii (v) && isprint (v))
9459 xsnprintf (result, result_len, "'%c'", v);
9460 else if (name[1] == 'U')
9461 xsnprintf (result, result_len, "[\"%02x\"]", v);
9463 xsnprintf (result, result_len, "[\"%04x\"]", v);
9469 tmp = strstr (name, "__");
9471 tmp = strstr (name, "$");
9474 GROW_VECT (result, result_len, tmp - name + 1);
9475 strncpy (result, name, tmp - name);
9476 result[tmp - name] = '\0';
9484 /* Evaluate the subexpression of EXP starting at *POS as for
9485 evaluate_type, updating *POS to point just past the evaluated
9488 static struct value *
9489 evaluate_subexp_type (struct expression *exp, int *pos)
9491 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9494 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9497 static struct value *
9498 unwrap_value (struct value *val)
9500 struct type *type = ada_check_typedef (value_type (val));
9502 if (ada_is_aligner_type (type))
9504 struct value *v = ada_value_struct_elt (val, "F", 0);
9505 struct type *val_type = ada_check_typedef (value_type (v));
9507 if (ada_type_name (val_type) == NULL)
9508 TYPE_NAME (val_type) = ada_type_name (type);
9510 return unwrap_value (v);
9514 struct type *raw_real_type =
9515 ada_check_typedef (ada_get_base_type (type));
9517 /* If there is no parallel XVS or XVE type, then the value is
9518 already unwrapped. Return it without further modification. */
9519 if ((type == raw_real_type)
9520 && ada_find_parallel_type (type, "___XVE") == NULL)
9524 coerce_unspec_val_to_type
9525 (val, ada_to_fixed_type (raw_real_type, 0,
9526 value_address (val),
9531 static struct value *
9532 cast_from_fixed (struct type *type, struct value *arg)
9534 struct value *scale = ada_scaling_factor (value_type (arg));
9535 arg = value_cast (value_type (scale), arg);
9537 arg = value_binop (arg, scale, BINOP_MUL);
9538 return value_cast (type, arg);
9541 static struct value *
9542 cast_to_fixed (struct type *type, struct value *arg)
9544 if (type == value_type (arg))
9547 struct value *scale = ada_scaling_factor (type);
9548 if (ada_is_fixed_point_type (value_type (arg)))
9549 arg = cast_from_fixed (value_type (scale), arg);
9551 arg = value_cast (value_type (scale), arg);
9553 arg = value_binop (arg, scale, BINOP_DIV);
9554 return value_cast (type, arg);
9557 /* Given two array types T1 and T2, return nonzero iff both arrays
9558 contain the same number of elements. */
9561 ada_same_array_size_p (struct type *t1, struct type *t2)
9563 LONGEST lo1, hi1, lo2, hi2;
9565 /* Get the array bounds in order to verify that the size of
9566 the two arrays match. */
9567 if (!get_array_bounds (t1, &lo1, &hi1)
9568 || !get_array_bounds (t2, &lo2, &hi2))
9569 error (_("unable to determine array bounds"));
9571 /* To make things easier for size comparison, normalize a bit
9572 the case of empty arrays by making sure that the difference
9573 between upper bound and lower bound is always -1. */
9579 return (hi1 - lo1 == hi2 - lo2);
9582 /* Assuming that VAL is an array of integrals, and TYPE represents
9583 an array with the same number of elements, but with wider integral
9584 elements, return an array "casted" to TYPE. In practice, this
9585 means that the returned array is built by casting each element
9586 of the original array into TYPE's (wider) element type. */
9588 static struct value *
9589 ada_promote_array_of_integrals (struct type *type, struct value *val)
9591 struct type *elt_type = TYPE_TARGET_TYPE (type);
9596 /* Verify that both val and type are arrays of scalars, and
9597 that the size of val's elements is smaller than the size
9598 of type's element. */
9599 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9600 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9601 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9602 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9603 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9604 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9606 if (!get_array_bounds (type, &lo, &hi))
9607 error (_("unable to determine array bounds"));
9609 res = allocate_value (type);
9611 /* Promote each array element. */
9612 for (i = 0; i < hi - lo + 1; i++)
9614 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9616 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9617 value_contents_all (elt), TYPE_LENGTH (elt_type));
9623 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9624 return the converted value. */
9626 static struct value *
9627 coerce_for_assign (struct type *type, struct value *val)
9629 struct type *type2 = value_type (val);
9634 type2 = ada_check_typedef (type2);
9635 type = ada_check_typedef (type);
9637 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9638 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9640 val = ada_value_ind (val);
9641 type2 = value_type (val);
9644 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9645 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9647 if (!ada_same_array_size_p (type, type2))
9648 error (_("cannot assign arrays of different length"));
9650 if (is_integral_type (TYPE_TARGET_TYPE (type))
9651 && is_integral_type (TYPE_TARGET_TYPE (type2))
9652 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9653 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9655 /* Allow implicit promotion of the array elements to
9657 return ada_promote_array_of_integrals (type, val);
9660 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9661 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9662 error (_("Incompatible types in assignment"));
9663 deprecated_set_value_type (val, type);
9668 static struct value *
9669 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9672 struct type *type1, *type2;
9675 arg1 = coerce_ref (arg1);
9676 arg2 = coerce_ref (arg2);
9677 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9678 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9680 if (TYPE_CODE (type1) != TYPE_CODE_INT
9681 || TYPE_CODE (type2) != TYPE_CODE_INT)
9682 return value_binop (arg1, arg2, op);
9691 return value_binop (arg1, arg2, op);
9694 v2 = value_as_long (arg2);
9696 error (_("second operand of %s must not be zero."), op_string (op));
9698 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9699 return value_binop (arg1, arg2, op);
9701 v1 = value_as_long (arg1);
9706 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9707 v += v > 0 ? -1 : 1;
9715 /* Should not reach this point. */
9719 val = allocate_value (type1);
9720 store_unsigned_integer (value_contents_raw (val),
9721 TYPE_LENGTH (value_type (val)),
9722 gdbarch_byte_order (get_type_arch (type1)), v);
9727 ada_value_equal (struct value *arg1, struct value *arg2)
9729 if (ada_is_direct_array_type (value_type (arg1))
9730 || ada_is_direct_array_type (value_type (arg2)))
9732 struct type *arg1_type, *arg2_type;
9734 /* Automatically dereference any array reference before
9735 we attempt to perform the comparison. */
9736 arg1 = ada_coerce_ref (arg1);
9737 arg2 = ada_coerce_ref (arg2);
9739 arg1 = ada_coerce_to_simple_array (arg1);
9740 arg2 = ada_coerce_to_simple_array (arg2);
9742 arg1_type = ada_check_typedef (value_type (arg1));
9743 arg2_type = ada_check_typedef (value_type (arg2));
9745 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9746 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9747 error (_("Attempt to compare array with non-array"));
9748 /* FIXME: The following works only for types whose
9749 representations use all bits (no padding or undefined bits)
9750 and do not have user-defined equality. */
9751 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9752 && memcmp (value_contents (arg1), value_contents (arg2),
9753 TYPE_LENGTH (arg1_type)) == 0);
9755 return value_equal (arg1, arg2);
9758 /* Total number of component associations in the aggregate starting at
9759 index PC in EXP. Assumes that index PC is the start of an
9763 num_component_specs (struct expression *exp, int pc)
9767 m = exp->elts[pc + 1].longconst;
9770 for (i = 0; i < m; i += 1)
9772 switch (exp->elts[pc].opcode)
9778 n += exp->elts[pc + 1].longconst;
9781 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9786 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9787 component of LHS (a simple array or a record), updating *POS past
9788 the expression, assuming that LHS is contained in CONTAINER. Does
9789 not modify the inferior's memory, nor does it modify LHS (unless
9790 LHS == CONTAINER). */
9793 assign_component (struct value *container, struct value *lhs, LONGEST index,
9794 struct expression *exp, int *pos)
9796 struct value *mark = value_mark ();
9799 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9801 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9802 struct value *index_val = value_from_longest (index_type, index);
9804 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9808 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9809 elt = ada_to_fixed_value (elt);
9812 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9813 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9815 value_assign_to_component (container, elt,
9816 ada_evaluate_subexp (NULL, exp, pos,
9819 value_free_to_mark (mark);
9822 /* Assuming that LHS represents an lvalue having a record or array
9823 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9824 of that aggregate's value to LHS, advancing *POS past the
9825 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9826 lvalue containing LHS (possibly LHS itself). Does not modify
9827 the inferior's memory, nor does it modify the contents of
9828 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9830 static struct value *
9831 assign_aggregate (struct value *container,
9832 struct value *lhs, struct expression *exp,
9833 int *pos, enum noside noside)
9835 struct type *lhs_type;
9836 int n = exp->elts[*pos+1].longconst;
9837 LONGEST low_index, high_index;
9840 int max_indices, num_indices;
9844 if (noside != EVAL_NORMAL)
9846 for (i = 0; i < n; i += 1)
9847 ada_evaluate_subexp (NULL, exp, pos, noside);
9851 container = ada_coerce_ref (container);
9852 if (ada_is_direct_array_type (value_type (container)))
9853 container = ada_coerce_to_simple_array (container);
9854 lhs = ada_coerce_ref (lhs);
9855 if (!deprecated_value_modifiable (lhs))
9856 error (_("Left operand of assignment is not a modifiable lvalue."));
9858 lhs_type = value_type (lhs);
9859 if (ada_is_direct_array_type (lhs_type))
9861 lhs = ada_coerce_to_simple_array (lhs);
9862 lhs_type = value_type (lhs);
9863 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9864 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9866 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9869 high_index = num_visible_fields (lhs_type) - 1;
9872 error (_("Left-hand side must be array or record."));
9874 num_specs = num_component_specs (exp, *pos - 3);
9875 max_indices = 4 * num_specs + 4;
9876 indices = XALLOCAVEC (LONGEST, max_indices);
9877 indices[0] = indices[1] = low_index - 1;
9878 indices[2] = indices[3] = high_index + 1;
9881 for (i = 0; i < n; i += 1)
9883 switch (exp->elts[*pos].opcode)
9886 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9887 &num_indices, max_indices,
9888 low_index, high_index);
9891 aggregate_assign_positional (container, lhs, exp, pos, indices,
9892 &num_indices, max_indices,
9893 low_index, high_index);
9897 error (_("Misplaced 'others' clause"));
9898 aggregate_assign_others (container, lhs, exp, pos, indices,
9899 num_indices, low_index, high_index);
9902 error (_("Internal error: bad aggregate clause"));
9909 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9910 construct at *POS, updating *POS past the construct, given that
9911 the positions are relative to lower bound LOW, where HIGH is the
9912 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9913 updating *NUM_INDICES as needed. CONTAINER is as for
9914 assign_aggregate. */
9916 aggregate_assign_positional (struct value *container,
9917 struct value *lhs, struct expression *exp,
9918 int *pos, LONGEST *indices, int *num_indices,
9919 int max_indices, LONGEST low, LONGEST high)
9921 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9923 if (ind - 1 == high)
9924 warning (_("Extra components in aggregate ignored."));
9927 add_component_interval (ind, ind, indices, num_indices, max_indices);
9929 assign_component (container, lhs, ind, exp, pos);
9932 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9935 /* Assign into the components of LHS indexed by the OP_CHOICES
9936 construct at *POS, updating *POS past the construct, given that
9937 the allowable indices are LOW..HIGH. Record the indices assigned
9938 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9939 needed. CONTAINER is as for assign_aggregate. */
9941 aggregate_assign_from_choices (struct value *container,
9942 struct value *lhs, struct expression *exp,
9943 int *pos, LONGEST *indices, int *num_indices,
9944 int max_indices, LONGEST low, LONGEST high)
9947 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9948 int choice_pos, expr_pc;
9949 int is_array = ada_is_direct_array_type (value_type (lhs));
9951 choice_pos = *pos += 3;
9953 for (j = 0; j < n_choices; j += 1)
9954 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9958 for (j = 0; j < n_choices; j += 1)
9960 LONGEST lower, upper;
9961 enum exp_opcode op = exp->elts[choice_pos].opcode;
9963 if (op == OP_DISCRETE_RANGE)
9966 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9968 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9973 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9985 name = &exp->elts[choice_pos + 2].string;
9988 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9991 error (_("Invalid record component association."));
9993 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9995 if (! find_struct_field (name, value_type (lhs), 0,
9996 NULL, NULL, NULL, NULL, &ind))
9997 error (_("Unknown component name: %s."), name);
9998 lower = upper = ind;
10001 if (lower <= upper && (lower < low || upper > high))
10002 error (_("Index in component association out of bounds."));
10004 add_component_interval (lower, upper, indices, num_indices,
10006 while (lower <= upper)
10011 assign_component (container, lhs, lower, exp, &pos1);
10017 /* Assign the value of the expression in the OP_OTHERS construct in
10018 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10019 have not been previously assigned. The index intervals already assigned
10020 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10021 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10023 aggregate_assign_others (struct value *container,
10024 struct value *lhs, struct expression *exp,
10025 int *pos, LONGEST *indices, int num_indices,
10026 LONGEST low, LONGEST high)
10029 int expr_pc = *pos + 1;
10031 for (i = 0; i < num_indices - 2; i += 2)
10035 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10039 localpos = expr_pc;
10040 assign_component (container, lhs, ind, exp, &localpos);
10043 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10046 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10047 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10048 modifying *SIZE as needed. It is an error if *SIZE exceeds
10049 MAX_SIZE. The resulting intervals do not overlap. */
10051 add_component_interval (LONGEST low, LONGEST high,
10052 LONGEST* indices, int *size, int max_size)
10056 for (i = 0; i < *size; i += 2) {
10057 if (high >= indices[i] && low <= indices[i + 1])
10061 for (kh = i + 2; kh < *size; kh += 2)
10062 if (high < indices[kh])
10064 if (low < indices[i])
10066 indices[i + 1] = indices[kh - 1];
10067 if (high > indices[i + 1])
10068 indices[i + 1] = high;
10069 memcpy (indices + i + 2, indices + kh, *size - kh);
10070 *size -= kh - i - 2;
10073 else if (high < indices[i])
10077 if (*size == max_size)
10078 error (_("Internal error: miscounted aggregate components."));
10080 for (j = *size-1; j >= i+2; j -= 1)
10081 indices[j] = indices[j - 2];
10083 indices[i + 1] = high;
10086 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10089 static struct value *
10090 ada_value_cast (struct type *type, struct value *arg2)
10092 if (type == ada_check_typedef (value_type (arg2)))
10095 if (ada_is_fixed_point_type (type))
10096 return (cast_to_fixed (type, arg2));
10098 if (ada_is_fixed_point_type (value_type (arg2)))
10099 return cast_from_fixed (type, arg2);
10101 return value_cast (type, arg2);
10104 /* Evaluating Ada expressions, and printing their result.
10105 ------------------------------------------------------
10110 We usually evaluate an Ada expression in order to print its value.
10111 We also evaluate an expression in order to print its type, which
10112 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10113 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10114 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10115 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10118 Evaluating expressions is a little more complicated for Ada entities
10119 than it is for entities in languages such as C. The main reason for
10120 this is that Ada provides types whose definition might be dynamic.
10121 One example of such types is variant records. Or another example
10122 would be an array whose bounds can only be known at run time.
10124 The following description is a general guide as to what should be
10125 done (and what should NOT be done) in order to evaluate an expression
10126 involving such types, and when. This does not cover how the semantic
10127 information is encoded by GNAT as this is covered separatly. For the
10128 document used as the reference for the GNAT encoding, see exp_dbug.ads
10129 in the GNAT sources.
10131 Ideally, we should embed each part of this description next to its
10132 associated code. Unfortunately, the amount of code is so vast right
10133 now that it's hard to see whether the code handling a particular
10134 situation might be duplicated or not. One day, when the code is
10135 cleaned up, this guide might become redundant with the comments
10136 inserted in the code, and we might want to remove it.
10138 2. ``Fixing'' an Entity, the Simple Case:
10139 -----------------------------------------
10141 When evaluating Ada expressions, the tricky issue is that they may
10142 reference entities whose type contents and size are not statically
10143 known. Consider for instance a variant record:
10145 type Rec (Empty : Boolean := True) is record
10148 when False => Value : Integer;
10151 Yes : Rec := (Empty => False, Value => 1);
10152 No : Rec := (empty => True);
10154 The size and contents of that record depends on the value of the
10155 descriminant (Rec.Empty). At this point, neither the debugging
10156 information nor the associated type structure in GDB are able to
10157 express such dynamic types. So what the debugger does is to create
10158 "fixed" versions of the type that applies to the specific object.
10159 We also informally refer to this opperation as "fixing" an object,
10160 which means creating its associated fixed type.
10162 Example: when printing the value of variable "Yes" above, its fixed
10163 type would look like this:
10170 On the other hand, if we printed the value of "No", its fixed type
10177 Things become a little more complicated when trying to fix an entity
10178 with a dynamic type that directly contains another dynamic type,
10179 such as an array of variant records, for instance. There are
10180 two possible cases: Arrays, and records.
10182 3. ``Fixing'' Arrays:
10183 ---------------------
10185 The type structure in GDB describes an array in terms of its bounds,
10186 and the type of its elements. By design, all elements in the array
10187 have the same type and we cannot represent an array of variant elements
10188 using the current type structure in GDB. When fixing an array,
10189 we cannot fix the array element, as we would potentially need one
10190 fixed type per element of the array. As a result, the best we can do
10191 when fixing an array is to produce an array whose bounds and size
10192 are correct (allowing us to read it from memory), but without having
10193 touched its element type. Fixing each element will be done later,
10194 when (if) necessary.
10196 Arrays are a little simpler to handle than records, because the same
10197 amount of memory is allocated for each element of the array, even if
10198 the amount of space actually used by each element differs from element
10199 to element. Consider for instance the following array of type Rec:
10201 type Rec_Array is array (1 .. 2) of Rec;
10203 The actual amount of memory occupied by each element might be different
10204 from element to element, depending on the value of their discriminant.
10205 But the amount of space reserved for each element in the array remains
10206 fixed regardless. So we simply need to compute that size using
10207 the debugging information available, from which we can then determine
10208 the array size (we multiply the number of elements of the array by
10209 the size of each element).
10211 The simplest case is when we have an array of a constrained element
10212 type. For instance, consider the following type declarations:
10214 type Bounded_String (Max_Size : Integer) is
10216 Buffer : String (1 .. Max_Size);
10218 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10220 In this case, the compiler describes the array as an array of
10221 variable-size elements (identified by its XVS suffix) for which
10222 the size can be read in the parallel XVZ variable.
10224 In the case of an array of an unconstrained element type, the compiler
10225 wraps the array element inside a private PAD type. This type should not
10226 be shown to the user, and must be "unwrap"'ed before printing. Note
10227 that we also use the adjective "aligner" in our code to designate
10228 these wrapper types.
10230 In some cases, the size allocated for each element is statically
10231 known. In that case, the PAD type already has the correct size,
10232 and the array element should remain unfixed.
10234 But there are cases when this size is not statically known.
10235 For instance, assuming that "Five" is an integer variable:
10237 type Dynamic is array (1 .. Five) of Integer;
10238 type Wrapper (Has_Length : Boolean := False) is record
10241 when True => Length : Integer;
10242 when False => null;
10245 type Wrapper_Array is array (1 .. 2) of Wrapper;
10247 Hello : Wrapper_Array := (others => (Has_Length => True,
10248 Data => (others => 17),
10252 The debugging info would describe variable Hello as being an
10253 array of a PAD type. The size of that PAD type is not statically
10254 known, but can be determined using a parallel XVZ variable.
10255 In that case, a copy of the PAD type with the correct size should
10256 be used for the fixed array.
10258 3. ``Fixing'' record type objects:
10259 ----------------------------------
10261 Things are slightly different from arrays in the case of dynamic
10262 record types. In this case, in order to compute the associated
10263 fixed type, we need to determine the size and offset of each of
10264 its components. This, in turn, requires us to compute the fixed
10265 type of each of these components.
10267 Consider for instance the example:
10269 type Bounded_String (Max_Size : Natural) is record
10270 Str : String (1 .. Max_Size);
10273 My_String : Bounded_String (Max_Size => 10);
10275 In that case, the position of field "Length" depends on the size
10276 of field Str, which itself depends on the value of the Max_Size
10277 discriminant. In order to fix the type of variable My_String,
10278 we need to fix the type of field Str. Therefore, fixing a variant
10279 record requires us to fix each of its components.
10281 However, if a component does not have a dynamic size, the component
10282 should not be fixed. In particular, fields that use a PAD type
10283 should not fixed. Here is an example where this might happen
10284 (assuming type Rec above):
10286 type Container (Big : Boolean) is record
10290 when True => Another : Integer;
10291 when False => null;
10294 My_Container : Container := (Big => False,
10295 First => (Empty => True),
10298 In that example, the compiler creates a PAD type for component First,
10299 whose size is constant, and then positions the component After just
10300 right after it. The offset of component After is therefore constant
10303 The debugger computes the position of each field based on an algorithm
10304 that uses, among other things, the actual position and size of the field
10305 preceding it. Let's now imagine that the user is trying to print
10306 the value of My_Container. If the type fixing was recursive, we would
10307 end up computing the offset of field After based on the size of the
10308 fixed version of field First. And since in our example First has
10309 only one actual field, the size of the fixed type is actually smaller
10310 than the amount of space allocated to that field, and thus we would
10311 compute the wrong offset of field After.
10313 To make things more complicated, we need to watch out for dynamic
10314 components of variant records (identified by the ___XVL suffix in
10315 the component name). Even if the target type is a PAD type, the size
10316 of that type might not be statically known. So the PAD type needs
10317 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10318 we might end up with the wrong size for our component. This can be
10319 observed with the following type declarations:
10321 type Octal is new Integer range 0 .. 7;
10322 type Octal_Array is array (Positive range <>) of Octal;
10323 pragma Pack (Octal_Array);
10325 type Octal_Buffer (Size : Positive) is record
10326 Buffer : Octal_Array (1 .. Size);
10330 In that case, Buffer is a PAD type whose size is unset and needs
10331 to be computed by fixing the unwrapped type.
10333 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10334 ----------------------------------------------------------
10336 Lastly, when should the sub-elements of an entity that remained unfixed
10337 thus far, be actually fixed?
10339 The answer is: Only when referencing that element. For instance
10340 when selecting one component of a record, this specific component
10341 should be fixed at that point in time. Or when printing the value
10342 of a record, each component should be fixed before its value gets
10343 printed. Similarly for arrays, the element of the array should be
10344 fixed when printing each element of the array, or when extracting
10345 one element out of that array. On the other hand, fixing should
10346 not be performed on the elements when taking a slice of an array!
10348 Note that one of the side effects of miscomputing the offset and
10349 size of each field is that we end up also miscomputing the size
10350 of the containing type. This can have adverse results when computing
10351 the value of an entity. GDB fetches the value of an entity based
10352 on the size of its type, and thus a wrong size causes GDB to fetch
10353 the wrong amount of memory. In the case where the computed size is
10354 too small, GDB fetches too little data to print the value of our
10355 entity. Results in this case are unpredictable, as we usually read
10356 past the buffer containing the data =:-o. */
10358 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10359 for that subexpression cast to TO_TYPE. Advance *POS over the
10363 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10364 enum noside noside, struct type *to_type)
10368 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10369 || exp->elts[pc].opcode == OP_VAR_VALUE)
10374 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10376 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10377 return value_zero (to_type, not_lval);
10379 val = evaluate_var_msym_value (noside,
10380 exp->elts[pc + 1].objfile,
10381 exp->elts[pc + 2].msymbol);
10384 val = evaluate_var_value (noside,
10385 exp->elts[pc + 1].block,
10386 exp->elts[pc + 2].symbol);
10388 if (noside == EVAL_SKIP)
10389 return eval_skip_value (exp);
10391 val = ada_value_cast (to_type, val);
10393 /* Follow the Ada language semantics that do not allow taking
10394 an address of the result of a cast (view conversion in Ada). */
10395 if (VALUE_LVAL (val) == lval_memory)
10397 if (value_lazy (val))
10398 value_fetch_lazy (val);
10399 VALUE_LVAL (val) = not_lval;
10404 value *val = evaluate_subexp (to_type, exp, pos, noside);
10405 if (noside == EVAL_SKIP)
10406 return eval_skip_value (exp);
10407 return ada_value_cast (to_type, val);
10410 /* Implement the evaluate_exp routine in the exp_descriptor structure
10411 for the Ada language. */
10413 static struct value *
10414 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10415 int *pos, enum noside noside)
10417 enum exp_opcode op;
10421 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10424 struct value **argvec;
10428 op = exp->elts[pc].opcode;
10434 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10436 if (noside == EVAL_NORMAL)
10437 arg1 = unwrap_value (arg1);
10439 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10440 then we need to perform the conversion manually, because
10441 evaluate_subexp_standard doesn't do it. This conversion is
10442 necessary in Ada because the different kinds of float/fixed
10443 types in Ada have different representations.
10445 Similarly, we need to perform the conversion from OP_LONG
10447 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10448 arg1 = ada_value_cast (expect_type, arg1);
10454 struct value *result;
10457 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10458 /* The result type will have code OP_STRING, bashed there from
10459 OP_ARRAY. Bash it back. */
10460 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10461 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10467 type = exp->elts[pc + 1].type;
10468 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10472 type = exp->elts[pc + 1].type;
10473 return ada_evaluate_subexp (type, exp, pos, noside);
10476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10477 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10479 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10480 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10482 return ada_value_assign (arg1, arg1);
10484 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10485 except if the lhs of our assignment is a convenience variable.
10486 In the case of assigning to a convenience variable, the lhs
10487 should be exactly the result of the evaluation of the rhs. */
10488 type = value_type (arg1);
10489 if (VALUE_LVAL (arg1) == lval_internalvar)
10491 arg2 = evaluate_subexp (type, exp, pos, noside);
10492 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10494 if (ada_is_fixed_point_type (value_type (arg1)))
10495 arg2 = cast_to_fixed (value_type (arg1), arg2);
10496 else if (ada_is_fixed_point_type (value_type (arg2)))
10498 (_("Fixed-point values must be assigned to fixed-point variables"));
10500 arg2 = coerce_for_assign (value_type (arg1), arg2);
10501 return ada_value_assign (arg1, arg2);
10504 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10505 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10506 if (noside == EVAL_SKIP)
10508 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10509 return (value_from_longest
10510 (value_type (arg1),
10511 value_as_long (arg1) + value_as_long (arg2)));
10512 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10513 return (value_from_longest
10514 (value_type (arg2),
10515 value_as_long (arg1) + value_as_long (arg2)));
10516 if ((ada_is_fixed_point_type (value_type (arg1))
10517 || ada_is_fixed_point_type (value_type (arg2)))
10518 && value_type (arg1) != value_type (arg2))
10519 error (_("Operands of fixed-point addition must have the same type"));
10520 /* Do the addition, and cast the result to the type of the first
10521 argument. We cannot cast the result to a reference type, so if
10522 ARG1 is a reference type, find its underlying type. */
10523 type = value_type (arg1);
10524 while (TYPE_CODE (type) == TYPE_CODE_REF)
10525 type = TYPE_TARGET_TYPE (type);
10526 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10527 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10530 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10531 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10532 if (noside == EVAL_SKIP)
10534 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10535 return (value_from_longest
10536 (value_type (arg1),
10537 value_as_long (arg1) - value_as_long (arg2)));
10538 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10539 return (value_from_longest
10540 (value_type (arg2),
10541 value_as_long (arg1) - value_as_long (arg2)));
10542 if ((ada_is_fixed_point_type (value_type (arg1))
10543 || ada_is_fixed_point_type (value_type (arg2)))
10544 && value_type (arg1) != value_type (arg2))
10545 error (_("Operands of fixed-point subtraction "
10546 "must have the same type"));
10547 /* Do the substraction, and cast the result to the type of the first
10548 argument. We cannot cast the result to a reference type, so if
10549 ARG1 is a reference type, find its underlying type. */
10550 type = value_type (arg1);
10551 while (TYPE_CODE (type) == TYPE_CODE_REF)
10552 type = TYPE_TARGET_TYPE (type);
10553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10554 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 if (noside == EVAL_SKIP)
10564 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10567 return value_zero (value_type (arg1), not_lval);
10571 type = builtin_type (exp->gdbarch)->builtin_double;
10572 if (ada_is_fixed_point_type (value_type (arg1)))
10573 arg1 = cast_from_fixed (type, arg1);
10574 if (ada_is_fixed_point_type (value_type (arg2)))
10575 arg2 = cast_from_fixed (type, arg2);
10576 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10577 return ada_value_binop (arg1, arg2, op);
10581 case BINOP_NOTEQUAL:
10582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10583 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10584 if (noside == EVAL_SKIP)
10586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10590 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10591 tem = ada_value_equal (arg1, arg2);
10593 if (op == BINOP_NOTEQUAL)
10595 type = language_bool_type (exp->language_defn, exp->gdbarch);
10596 return value_from_longest (type, (LONGEST) tem);
10599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10600 if (noside == EVAL_SKIP)
10602 else if (ada_is_fixed_point_type (value_type (arg1)))
10603 return value_cast (value_type (arg1), value_neg (arg1));
10606 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10607 return value_neg (arg1);
10610 case BINOP_LOGICAL_AND:
10611 case BINOP_LOGICAL_OR:
10612 case UNOP_LOGICAL_NOT:
10617 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10618 type = language_bool_type (exp->language_defn, exp->gdbarch);
10619 return value_cast (type, val);
10622 case BINOP_BITWISE_AND:
10623 case BINOP_BITWISE_IOR:
10624 case BINOP_BITWISE_XOR:
10628 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10630 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10632 return value_cast (value_type (arg1), val);
10638 if (noside == EVAL_SKIP)
10644 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10645 /* Only encountered when an unresolved symbol occurs in a
10646 context other than a function call, in which case, it is
10648 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10649 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10651 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10653 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10654 /* Check to see if this is a tagged type. We also need to handle
10655 the case where the type is a reference to a tagged type, but
10656 we have to be careful to exclude pointers to tagged types.
10657 The latter should be shown as usual (as a pointer), whereas
10658 a reference should mostly be transparent to the user. */
10659 if (ada_is_tagged_type (type, 0)
10660 || (TYPE_CODE (type) == TYPE_CODE_REF
10661 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10663 /* Tagged types are a little special in the fact that the real
10664 type is dynamic and can only be determined by inspecting the
10665 object's tag. This means that we need to get the object's
10666 value first (EVAL_NORMAL) and then extract the actual object
10669 Note that we cannot skip the final step where we extract
10670 the object type from its tag, because the EVAL_NORMAL phase
10671 results in dynamic components being resolved into fixed ones.
10672 This can cause problems when trying to print the type
10673 description of tagged types whose parent has a dynamic size:
10674 We use the type name of the "_parent" component in order
10675 to print the name of the ancestor type in the type description.
10676 If that component had a dynamic size, the resolution into
10677 a fixed type would result in the loss of that type name,
10678 thus preventing us from printing the name of the ancestor
10679 type in the type description. */
10680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10682 if (TYPE_CODE (type) != TYPE_CODE_REF)
10684 struct type *actual_type;
10686 actual_type = type_from_tag (ada_value_tag (arg1));
10687 if (actual_type == NULL)
10688 /* If, for some reason, we were unable to determine
10689 the actual type from the tag, then use the static
10690 approximation that we just computed as a fallback.
10691 This can happen if the debugging information is
10692 incomplete, for instance. */
10693 actual_type = type;
10694 return value_zero (actual_type, not_lval);
10698 /* In the case of a ref, ada_coerce_ref takes care
10699 of determining the actual type. But the evaluation
10700 should return a ref as it should be valid to ask
10701 for its address; so rebuild a ref after coerce. */
10702 arg1 = ada_coerce_ref (arg1);
10703 return value_ref (arg1, TYPE_CODE_REF);
10707 /* Records and unions for which GNAT encodings have been
10708 generated need to be statically fixed as well.
10709 Otherwise, non-static fixing produces a type where
10710 all dynamic properties are removed, which prevents "ptype"
10711 from being able to completely describe the type.
10712 For instance, a case statement in a variant record would be
10713 replaced by the relevant components based on the actual
10714 value of the discriminants. */
10715 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10716 && dynamic_template_type (type) != NULL)
10717 || (TYPE_CODE (type) == TYPE_CODE_UNION
10718 && ada_find_parallel_type (type, "___XVU") != NULL))
10721 return value_zero (to_static_fixed_type (type), not_lval);
10725 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10726 return ada_to_fixed_value (arg1);
10731 /* Allocate arg vector, including space for the function to be
10732 called in argvec[0] and a terminating NULL. */
10733 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10734 argvec = XALLOCAVEC (struct value *, nargs + 2);
10736 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10737 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10738 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10739 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10742 for (tem = 0; tem <= nargs; tem += 1)
10743 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10746 if (noside == EVAL_SKIP)
10750 if (ada_is_constrained_packed_array_type
10751 (desc_base_type (value_type (argvec[0]))))
10752 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10753 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10754 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10755 /* This is a packed array that has already been fixed, and
10756 therefore already coerced to a simple array. Nothing further
10759 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10761 /* Make sure we dereference references so that all the code below
10762 feels like it's really handling the referenced value. Wrapping
10763 types (for alignment) may be there, so make sure we strip them as
10765 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10767 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10768 && VALUE_LVAL (argvec[0]) == lval_memory)
10769 argvec[0] = value_addr (argvec[0]);
10771 type = ada_check_typedef (value_type (argvec[0]));
10773 /* Ada allows us to implicitly dereference arrays when subscripting
10774 them. So, if this is an array typedef (encoding use for array
10775 access types encoded as fat pointers), strip it now. */
10776 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10777 type = ada_typedef_target_type (type);
10779 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10781 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10783 case TYPE_CODE_FUNC:
10784 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10786 case TYPE_CODE_ARRAY:
10788 case TYPE_CODE_STRUCT:
10789 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10790 argvec[0] = ada_value_ind (argvec[0]);
10791 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10794 error (_("cannot subscript or call something of type `%s'"),
10795 ada_type_name (value_type (argvec[0])));
10800 switch (TYPE_CODE (type))
10802 case TYPE_CODE_FUNC:
10803 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10805 if (TYPE_TARGET_TYPE (type) == NULL)
10806 error_call_unknown_return_type (NULL);
10807 return allocate_value (TYPE_TARGET_TYPE (type));
10809 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10810 case TYPE_CODE_INTERNAL_FUNCTION:
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 /* We don't know anything about what the internal
10813 function might return, but we have to return
10815 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10818 return call_internal_function (exp->gdbarch, exp->language_defn,
10819 argvec[0], nargs, argvec + 1);
10821 case TYPE_CODE_STRUCT:
10825 arity = ada_array_arity (type);
10826 type = ada_array_element_type (type, nargs);
10828 error (_("cannot subscript or call a record"));
10829 if (arity != nargs)
10830 error (_("wrong number of subscripts; expecting %d"), arity);
10831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10832 return value_zero (ada_aligned_type (type), lval_memory);
10834 unwrap_value (ada_value_subscript
10835 (argvec[0], nargs, argvec + 1));
10837 case TYPE_CODE_ARRAY:
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10840 type = ada_array_element_type (type, nargs);
10842 error (_("element type of array unknown"));
10844 return value_zero (ada_aligned_type (type), lval_memory);
10847 unwrap_value (ada_value_subscript
10848 (ada_coerce_to_simple_array (argvec[0]),
10849 nargs, argvec + 1));
10850 case TYPE_CODE_PTR: /* Pointer to array */
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10853 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10854 type = ada_array_element_type (type, nargs);
10856 error (_("element type of array unknown"));
10858 return value_zero (ada_aligned_type (type), lval_memory);
10861 unwrap_value (ada_value_ptr_subscript (argvec[0],
10862 nargs, argvec + 1));
10865 error (_("Attempt to index or call something other than an "
10866 "array or function"));
10871 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872 struct value *low_bound_val =
10873 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 struct value *high_bound_val =
10875 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 LONGEST high_bound;
10879 low_bound_val = coerce_ref (low_bound_val);
10880 high_bound_val = coerce_ref (high_bound_val);
10881 low_bound = value_as_long (low_bound_val);
10882 high_bound = value_as_long (high_bound_val);
10884 if (noside == EVAL_SKIP)
10887 /* If this is a reference to an aligner type, then remove all
10889 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10890 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10891 TYPE_TARGET_TYPE (value_type (array)) =
10892 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10894 if (ada_is_constrained_packed_array_type (value_type (array)))
10895 error (_("cannot slice a packed array"));
10897 /* If this is a reference to an array or an array lvalue,
10898 convert to a pointer. */
10899 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10900 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10901 && VALUE_LVAL (array) == lval_memory))
10902 array = value_addr (array);
10904 if (noside == EVAL_AVOID_SIDE_EFFECTS
10905 && ada_is_array_descriptor_type (ada_check_typedef
10906 (value_type (array))))
10907 return empty_array (ada_type_of_array (array, 0), low_bound);
10909 array = ada_coerce_to_simple_array_ptr (array);
10911 /* If we have more than one level of pointer indirection,
10912 dereference the value until we get only one level. */
10913 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10914 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10916 array = value_ind (array);
10918 /* Make sure we really do have an array type before going further,
10919 to avoid a SEGV when trying to get the index type or the target
10920 type later down the road if the debug info generated by
10921 the compiler is incorrect or incomplete. */
10922 if (!ada_is_simple_array_type (value_type (array)))
10923 error (_("cannot take slice of non-array"));
10925 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10928 struct type *type0 = ada_check_typedef (value_type (array));
10930 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10931 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10934 struct type *arr_type0 =
10935 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10937 return ada_value_slice_from_ptr (array, arr_type0,
10938 longest_to_int (low_bound),
10939 longest_to_int (high_bound));
10942 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 else if (high_bound < low_bound)
10945 return empty_array (value_type (array), low_bound);
10947 return ada_value_slice (array, longest_to_int (low_bound),
10948 longest_to_int (high_bound));
10951 case UNOP_IN_RANGE:
10953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10954 type = check_typedef (exp->elts[pc + 1].type);
10956 if (noside == EVAL_SKIP)
10959 switch (TYPE_CODE (type))
10962 lim_warning (_("Membership test incompletely implemented; "
10963 "always returns true"));
10964 type = language_bool_type (exp->language_defn, exp->gdbarch);
10965 return value_from_longest (type, (LONGEST) 1);
10967 case TYPE_CODE_RANGE:
10968 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10969 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10972 type = language_bool_type (exp->language_defn, exp->gdbarch);
10974 value_from_longest (type,
10975 (value_less (arg1, arg3)
10976 || value_equal (arg1, arg3))
10977 && (value_less (arg2, arg1)
10978 || value_equal (arg2, arg1)));
10981 case BINOP_IN_BOUNDS:
10983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986 if (noside == EVAL_SKIP)
10989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10991 type = language_bool_type (exp->language_defn, exp->gdbarch);
10992 return value_zero (type, not_lval);
10995 tem = longest_to_int (exp->elts[pc + 1].longconst);
10997 type = ada_index_type (value_type (arg2), tem, "range");
10999 type = value_type (arg1);
11001 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11002 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11006 type = language_bool_type (exp->language_defn, exp->gdbarch);
11008 value_from_longest (type,
11009 (value_less (arg1, arg3)
11010 || value_equal (arg1, arg3))
11011 && (value_less (arg2, arg1)
11012 || value_equal (arg2, arg1)));
11014 case TERNOP_IN_RANGE:
11015 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11017 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11019 if (noside == EVAL_SKIP)
11022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11023 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11024 type = language_bool_type (exp->language_defn, exp->gdbarch);
11026 value_from_longest (type,
11027 (value_less (arg1, arg3)
11028 || value_equal (arg1, arg3))
11029 && (value_less (arg2, arg1)
11030 || value_equal (arg2, arg1)));
11034 case OP_ATR_LENGTH:
11036 struct type *type_arg;
11038 if (exp->elts[*pos].opcode == OP_TYPE)
11040 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11042 type_arg = check_typedef (exp->elts[pc + 2].type);
11046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11050 if (exp->elts[*pos].opcode != OP_LONG)
11051 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11052 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11055 if (noside == EVAL_SKIP)
11058 if (type_arg == NULL)
11060 arg1 = ada_coerce_ref (arg1);
11062 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11063 arg1 = ada_coerce_to_simple_array (arg1);
11065 if (op == OP_ATR_LENGTH)
11066 type = builtin_type (exp->gdbarch)->builtin_int;
11069 type = ada_index_type (value_type (arg1), tem,
11070 ada_attribute_name (op));
11072 type = builtin_type (exp->gdbarch)->builtin_int;
11075 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11076 return allocate_value (type);
11080 default: /* Should never happen. */
11081 error (_("unexpected attribute encountered"));
11083 return value_from_longest
11084 (type, ada_array_bound (arg1, tem, 0));
11086 return value_from_longest
11087 (type, ada_array_bound (arg1, tem, 1));
11088 case OP_ATR_LENGTH:
11089 return value_from_longest
11090 (type, ada_array_length (arg1, tem));
11093 else if (discrete_type_p (type_arg))
11095 struct type *range_type;
11096 const char *name = ada_type_name (type_arg);
11099 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11100 range_type = to_fixed_range_type (type_arg, NULL);
11101 if (range_type == NULL)
11102 range_type = type_arg;
11106 error (_("unexpected attribute encountered"));
11108 return value_from_longest
11109 (range_type, ada_discrete_type_low_bound (range_type));
11111 return value_from_longest
11112 (range_type, ada_discrete_type_high_bound (range_type));
11113 case OP_ATR_LENGTH:
11114 error (_("the 'length attribute applies only to array types"));
11117 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11118 error (_("unimplemented type attribute"));
11123 if (ada_is_constrained_packed_array_type (type_arg))
11124 type_arg = decode_constrained_packed_array_type (type_arg);
11126 if (op == OP_ATR_LENGTH)
11127 type = builtin_type (exp->gdbarch)->builtin_int;
11130 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11132 type = builtin_type (exp->gdbarch)->builtin_int;
11135 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11136 return allocate_value (type);
11141 error (_("unexpected attribute encountered"));
11143 low = ada_array_bound_from_type (type_arg, tem, 0);
11144 return value_from_longest (type, low);
11146 high = ada_array_bound_from_type (type_arg, tem, 1);
11147 return value_from_longest (type, high);
11148 case OP_ATR_LENGTH:
11149 low = ada_array_bound_from_type (type_arg, tem, 0);
11150 high = ada_array_bound_from_type (type_arg, tem, 1);
11151 return value_from_longest (type, high - low + 1);
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 if (noside == EVAL_SKIP)
11161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11162 return value_zero (ada_tag_type (arg1), not_lval);
11164 return ada_value_tag (arg1);
11168 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11170 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11171 if (noside == EVAL_SKIP)
11173 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11174 return value_zero (value_type (arg1), not_lval);
11177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11178 return value_binop (arg1, arg2,
11179 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11182 case OP_ATR_MODULUS:
11184 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11186 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11187 if (noside == EVAL_SKIP)
11190 if (!ada_is_modular_type (type_arg))
11191 error (_("'modulus must be applied to modular type"));
11193 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11194 ada_modulus (type_arg));
11199 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11201 if (noside == EVAL_SKIP)
11203 type = builtin_type (exp->gdbarch)->builtin_int;
11204 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11205 return value_zero (type, not_lval);
11207 return value_pos_atr (type, arg1);
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 type = value_type (arg1);
11213 /* If the argument is a reference, then dereference its type, since
11214 the user is really asking for the size of the actual object,
11215 not the size of the pointer. */
11216 if (TYPE_CODE (type) == TYPE_CODE_REF)
11217 type = TYPE_TARGET_TYPE (type);
11219 if (noside == EVAL_SKIP)
11221 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11222 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11224 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11225 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11228 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 type = exp->elts[pc + 2].type;
11231 if (noside == EVAL_SKIP)
11233 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11234 return value_zero (type, not_lval);
11236 return value_val_atr (type, arg1);
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11241 if (noside == EVAL_SKIP)
11243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11244 return value_zero (value_type (arg1), not_lval);
11247 /* For integer exponentiation operations,
11248 only promote the first argument. */
11249 if (is_integral_type (value_type (arg2)))
11250 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11252 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11254 return value_binop (arg1, arg2, op);
11258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11259 if (noside == EVAL_SKIP)
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11268 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11269 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11270 return value_neg (arg1);
11275 preeval_pos = *pos;
11276 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11277 if (noside == EVAL_SKIP)
11279 type = ada_check_typedef (value_type (arg1));
11280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11282 if (ada_is_array_descriptor_type (type))
11283 /* GDB allows dereferencing GNAT array descriptors. */
11285 struct type *arrType = ada_type_of_array (arg1, 0);
11287 if (arrType == NULL)
11288 error (_("Attempt to dereference null array pointer."));
11289 return value_at_lazy (arrType, 0);
11291 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11292 || TYPE_CODE (type) == TYPE_CODE_REF
11293 /* In C you can dereference an array to get the 1st elt. */
11294 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11296 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11297 only be determined by inspecting the object's tag.
11298 This means that we need to evaluate completely the
11299 expression in order to get its type. */
11301 if ((TYPE_CODE (type) == TYPE_CODE_REF
11302 || TYPE_CODE (type) == TYPE_CODE_PTR)
11303 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11305 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11307 type = value_type (ada_value_ind (arg1));
11311 type = to_static_fixed_type
11313 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11315 ada_ensure_varsize_limit (type);
11316 return value_zero (type, lval_memory);
11318 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11320 /* GDB allows dereferencing an int. */
11321 if (expect_type == NULL)
11322 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11327 to_static_fixed_type (ada_aligned_type (expect_type));
11328 return value_zero (expect_type, lval_memory);
11332 error (_("Attempt to take contents of a non-pointer value."));
11334 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11335 type = ada_check_typedef (value_type (arg1));
11337 if (TYPE_CODE (type) == TYPE_CODE_INT)
11338 /* GDB allows dereferencing an int. If we were given
11339 the expect_type, then use that as the target type.
11340 Otherwise, assume that the target type is an int. */
11342 if (expect_type != NULL)
11343 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11346 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11347 (CORE_ADDR) value_as_address (arg1));
11350 if (ada_is_array_descriptor_type (type))
11351 /* GDB allows dereferencing GNAT array descriptors. */
11352 return ada_coerce_to_simple_array (arg1);
11354 return ada_value_ind (arg1);
11356 case STRUCTOP_STRUCT:
11357 tem = longest_to_int (exp->elts[pc + 1].longconst);
11358 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11359 preeval_pos = *pos;
11360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11361 if (noside == EVAL_SKIP)
11363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11365 struct type *type1 = value_type (arg1);
11367 if (ada_is_tagged_type (type1, 1))
11369 type = ada_lookup_struct_elt_type (type1,
11370 &exp->elts[pc + 2].string,
11373 /* If the field is not found, check if it exists in the
11374 extension of this object's type. This means that we
11375 need to evaluate completely the expression. */
11379 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11381 arg1 = ada_value_struct_elt (arg1,
11382 &exp->elts[pc + 2].string,
11384 arg1 = unwrap_value (arg1);
11385 type = value_type (ada_to_fixed_value (arg1));
11390 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11393 return value_zero (ada_aligned_type (type), lval_memory);
11397 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11398 arg1 = unwrap_value (arg1);
11399 return ada_to_fixed_value (arg1);
11403 /* The value is not supposed to be used. This is here to make it
11404 easier to accommodate expressions that contain types. */
11406 if (noside == EVAL_SKIP)
11408 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11409 return allocate_value (exp->elts[pc + 1].type);
11411 error (_("Attempt to use a type name as an expression"));
11416 case OP_DISCRETE_RANGE:
11417 case OP_POSITIONAL:
11419 if (noside == EVAL_NORMAL)
11423 error (_("Undefined name, ambiguous name, or renaming used in "
11424 "component association: %s."), &exp->elts[pc+2].string);
11426 error (_("Aggregates only allowed on the right of an assignment"));
11428 internal_error (__FILE__, __LINE__,
11429 _("aggregate apparently mangled"));
11432 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11434 for (tem = 0; tem < nargs; tem += 1)
11435 ada_evaluate_subexp (NULL, exp, pos, noside);
11440 return eval_skip_value (exp);
11446 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11447 type name that encodes the 'small and 'delta information.
11448 Otherwise, return NULL. */
11450 static const char *
11451 fixed_type_info (struct type *type)
11453 const char *name = ada_type_name (type);
11454 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11456 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11458 const char *tail = strstr (name, "___XF_");
11465 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11466 return fixed_type_info (TYPE_TARGET_TYPE (type));
11471 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11474 ada_is_fixed_point_type (struct type *type)
11476 return fixed_type_info (type) != NULL;
11479 /* Return non-zero iff TYPE represents a System.Address type. */
11482 ada_is_system_address_type (struct type *type)
11484 return (TYPE_NAME (type)
11485 && strcmp (TYPE_NAME (type), "system__address") == 0);
11488 /* Assuming that TYPE is the representation of an Ada fixed-point
11489 type, return the target floating-point type to be used to represent
11490 of this type during internal computation. */
11492 static struct type *
11493 ada_scaling_type (struct type *type)
11495 return builtin_type (get_type_arch (type))->builtin_long_double;
11498 /* Assuming that TYPE is the representation of an Ada fixed-point
11499 type, return its delta, or NULL if the type is malformed and the
11500 delta cannot be determined. */
11503 ada_delta (struct type *type)
11505 const char *encoding = fixed_type_info (type);
11506 struct type *scale_type = ada_scaling_type (type);
11508 long long num, den;
11510 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11513 return value_binop (value_from_longest (scale_type, num),
11514 value_from_longest (scale_type, den), BINOP_DIV);
11517 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11518 factor ('SMALL value) associated with the type. */
11521 ada_scaling_factor (struct type *type)
11523 const char *encoding = fixed_type_info (type);
11524 struct type *scale_type = ada_scaling_type (type);
11526 long long num0, den0, num1, den1;
11529 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11530 &num0, &den0, &num1, &den1);
11533 return value_from_longest (scale_type, 1);
11535 return value_binop (value_from_longest (scale_type, num1),
11536 value_from_longest (scale_type, den1), BINOP_DIV);
11538 return value_binop (value_from_longest (scale_type, num0),
11539 value_from_longest (scale_type, den0), BINOP_DIV);
11546 /* Scan STR beginning at position K for a discriminant name, and
11547 return the value of that discriminant field of DVAL in *PX. If
11548 PNEW_K is not null, put the position of the character beyond the
11549 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11550 not alter *PX and *PNEW_K if unsuccessful. */
11553 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11556 static char *bound_buffer = NULL;
11557 static size_t bound_buffer_len = 0;
11558 const char *pstart, *pend, *bound;
11559 struct value *bound_val;
11561 if (dval == NULL || str == NULL || str[k] == '\0')
11565 pend = strstr (pstart, "__");
11569 k += strlen (bound);
11573 int len = pend - pstart;
11575 /* Strip __ and beyond. */
11576 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11577 strncpy (bound_buffer, pstart, len);
11578 bound_buffer[len] = '\0';
11580 bound = bound_buffer;
11584 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11585 if (bound_val == NULL)
11588 *px = value_as_long (bound_val);
11589 if (pnew_k != NULL)
11594 /* Value of variable named NAME in the current environment. If
11595 no such variable found, then if ERR_MSG is null, returns 0, and
11596 otherwise causes an error with message ERR_MSG. */
11598 static struct value *
11599 get_var_value (const char *name, const char *err_msg)
11601 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11603 struct block_symbol *syms;
11604 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11605 get_selected_block (0),
11606 VAR_DOMAIN, &syms, 1);
11607 struct cleanup *old_chain = make_cleanup (xfree, syms);
11611 do_cleanups (old_chain);
11612 if (err_msg == NULL)
11615 error (("%s"), err_msg);
11618 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11619 do_cleanups (old_chain);
11623 /* Value of integer variable named NAME in the current environment.
11624 If no such variable is found, returns false. Otherwise, sets VALUE
11625 to the variable's value and returns true. */
11628 get_int_var_value (const char *name, LONGEST &value)
11630 struct value *var_val = get_var_value (name, 0);
11635 value = value_as_long (var_val);
11640 /* Return a range type whose base type is that of the range type named
11641 NAME in the current environment, and whose bounds are calculated
11642 from NAME according to the GNAT range encoding conventions.
11643 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11644 corresponding range type from debug information; fall back to using it
11645 if symbol lookup fails. If a new type must be created, allocate it
11646 like ORIG_TYPE was. The bounds information, in general, is encoded
11647 in NAME, the base type given in the named range type. */
11649 static struct type *
11650 to_fixed_range_type (struct type *raw_type, struct value *dval)
11653 struct type *base_type;
11654 const char *subtype_info;
11656 gdb_assert (raw_type != NULL);
11657 gdb_assert (TYPE_NAME (raw_type) != NULL);
11659 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11660 base_type = TYPE_TARGET_TYPE (raw_type);
11662 base_type = raw_type;
11664 name = TYPE_NAME (raw_type);
11665 subtype_info = strstr (name, "___XD");
11666 if (subtype_info == NULL)
11668 LONGEST L = ada_discrete_type_low_bound (raw_type);
11669 LONGEST U = ada_discrete_type_high_bound (raw_type);
11671 if (L < INT_MIN || U > INT_MAX)
11674 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11679 static char *name_buf = NULL;
11680 static size_t name_len = 0;
11681 int prefix_len = subtype_info - name;
11684 const char *bounds_str;
11687 GROW_VECT (name_buf, name_len, prefix_len + 5);
11688 strncpy (name_buf, name, prefix_len);
11689 name_buf[prefix_len] = '\0';
11692 bounds_str = strchr (subtype_info, '_');
11695 if (*subtype_info == 'L')
11697 if (!ada_scan_number (bounds_str, n, &L, &n)
11698 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11700 if (bounds_str[n] == '_')
11702 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11708 strcpy (name_buf + prefix_len, "___L");
11709 if (!get_int_var_value (name_buf, L))
11711 lim_warning (_("Unknown lower bound, using 1."));
11716 if (*subtype_info == 'U')
11718 if (!ada_scan_number (bounds_str, n, &U, &n)
11719 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11724 strcpy (name_buf + prefix_len, "___U");
11725 if (!get_int_var_value (name_buf, U))
11727 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11732 type = create_static_range_type (alloc_type_copy (raw_type),
11734 /* create_static_range_type alters the resulting type's length
11735 to match the size of the base_type, which is not what we want.
11736 Set it back to the original range type's length. */
11737 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11738 TYPE_NAME (type) = name;
11743 /* True iff NAME is the name of a range type. */
11746 ada_is_range_type_name (const char *name)
11748 return (name != NULL && strstr (name, "___XD"));
11752 /* Modular types */
11754 /* True iff TYPE is an Ada modular type. */
11757 ada_is_modular_type (struct type *type)
11759 struct type *subranged_type = get_base_type (type);
11761 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11762 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11763 && TYPE_UNSIGNED (subranged_type));
11766 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11769 ada_modulus (struct type *type)
11771 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11775 /* Ada exception catchpoint support:
11776 ---------------------------------
11778 We support 3 kinds of exception catchpoints:
11779 . catchpoints on Ada exceptions
11780 . catchpoints on unhandled Ada exceptions
11781 . catchpoints on failed assertions
11783 Exceptions raised during failed assertions, or unhandled exceptions
11784 could perfectly be caught with the general catchpoint on Ada exceptions.
11785 However, we can easily differentiate these two special cases, and having
11786 the option to distinguish these two cases from the rest can be useful
11787 to zero-in on certain situations.
11789 Exception catchpoints are a specialized form of breakpoint,
11790 since they rely on inserting breakpoints inside known routines
11791 of the GNAT runtime. The implementation therefore uses a standard
11792 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11795 Support in the runtime for exception catchpoints have been changed
11796 a few times already, and these changes affect the implementation
11797 of these catchpoints. In order to be able to support several
11798 variants of the runtime, we use a sniffer that will determine
11799 the runtime variant used by the program being debugged. */
11801 /* Ada's standard exceptions.
11803 The Ada 83 standard also defined Numeric_Error. But there so many
11804 situations where it was unclear from the Ada 83 Reference Manual
11805 (RM) whether Constraint_Error or Numeric_Error should be raised,
11806 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11807 Interpretation saying that anytime the RM says that Numeric_Error
11808 should be raised, the implementation may raise Constraint_Error.
11809 Ada 95 went one step further and pretty much removed Numeric_Error
11810 from the list of standard exceptions (it made it a renaming of
11811 Constraint_Error, to help preserve compatibility when compiling
11812 an Ada83 compiler). As such, we do not include Numeric_Error from
11813 this list of standard exceptions. */
11815 static const char *standard_exc[] = {
11816 "constraint_error",
11822 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11824 /* A structure that describes how to support exception catchpoints
11825 for a given executable. */
11827 struct exception_support_info
11829 /* The name of the symbol to break on in order to insert
11830 a catchpoint on exceptions. */
11831 const char *catch_exception_sym;
11833 /* The name of the symbol to break on in order to insert
11834 a catchpoint on unhandled exceptions. */
11835 const char *catch_exception_unhandled_sym;
11837 /* The name of the symbol to break on in order to insert
11838 a catchpoint on failed assertions. */
11839 const char *catch_assert_sym;
11841 /* Assuming that the inferior just triggered an unhandled exception
11842 catchpoint, this function is responsible for returning the address
11843 in inferior memory where the name of that exception is stored.
11844 Return zero if the address could not be computed. */
11845 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11848 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11849 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11851 /* The following exception support info structure describes how to
11852 implement exception catchpoints with the latest version of the
11853 Ada runtime (as of 2007-03-06). */
11855 static const struct exception_support_info default_exception_support_info =
11857 "__gnat_debug_raise_exception", /* catch_exception_sym */
11858 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11859 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11860 ada_unhandled_exception_name_addr
11863 /* The following exception support info structure describes how to
11864 implement exception catchpoints with a slightly older version
11865 of the Ada runtime. */
11867 static const struct exception_support_info exception_support_info_fallback =
11869 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11870 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11871 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11872 ada_unhandled_exception_name_addr_from_raise
11875 /* Return nonzero if we can detect the exception support routines
11876 described in EINFO.
11878 This function errors out if an abnormal situation is detected
11879 (for instance, if we find the exception support routines, but
11880 that support is found to be incomplete). */
11883 ada_has_this_exception_support (const struct exception_support_info *einfo)
11885 struct symbol *sym;
11887 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11888 that should be compiled with debugging information. As a result, we
11889 expect to find that symbol in the symtabs. */
11891 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11894 /* Perhaps we did not find our symbol because the Ada runtime was
11895 compiled without debugging info, or simply stripped of it.
11896 It happens on some GNU/Linux distributions for instance, where
11897 users have to install a separate debug package in order to get
11898 the runtime's debugging info. In that situation, let the user
11899 know why we cannot insert an Ada exception catchpoint.
11901 Note: Just for the purpose of inserting our Ada exception
11902 catchpoint, we could rely purely on the associated minimal symbol.
11903 But we would be operating in degraded mode anyway, since we are
11904 still lacking the debugging info needed later on to extract
11905 the name of the exception being raised (this name is printed in
11906 the catchpoint message, and is also used when trying to catch
11907 a specific exception). We do not handle this case for now. */
11908 struct bound_minimal_symbol msym
11909 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11911 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11912 error (_("Your Ada runtime appears to be missing some debugging "
11913 "information.\nCannot insert Ada exception catchpoint "
11914 "in this configuration."));
11919 /* Make sure that the symbol we found corresponds to a function. */
11921 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11922 error (_("Symbol \"%s\" is not a function (class = %d)"),
11923 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11928 /* Inspect the Ada runtime and determine which exception info structure
11929 should be used to provide support for exception catchpoints.
11931 This function will always set the per-inferior exception_info,
11932 or raise an error. */
11935 ada_exception_support_info_sniffer (void)
11937 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11939 /* If the exception info is already known, then no need to recompute it. */
11940 if (data->exception_info != NULL)
11943 /* Check the latest (default) exception support info. */
11944 if (ada_has_this_exception_support (&default_exception_support_info))
11946 data->exception_info = &default_exception_support_info;
11950 /* Try our fallback exception suport info. */
11951 if (ada_has_this_exception_support (&exception_support_info_fallback))
11953 data->exception_info = &exception_support_info_fallback;
11957 /* Sometimes, it is normal for us to not be able to find the routine
11958 we are looking for. This happens when the program is linked with
11959 the shared version of the GNAT runtime, and the program has not been
11960 started yet. Inform the user of these two possible causes if
11963 if (ada_update_initial_language (language_unknown) != language_ada)
11964 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11966 /* If the symbol does not exist, then check that the program is
11967 already started, to make sure that shared libraries have been
11968 loaded. If it is not started, this may mean that the symbol is
11969 in a shared library. */
11971 if (ptid_get_pid (inferior_ptid) == 0)
11972 error (_("Unable to insert catchpoint. Try to start the program first."));
11974 /* At this point, we know that we are debugging an Ada program and
11975 that the inferior has been started, but we still are not able to
11976 find the run-time symbols. That can mean that we are in
11977 configurable run time mode, or that a-except as been optimized
11978 out by the linker... In any case, at this point it is not worth
11979 supporting this feature. */
11981 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11984 /* True iff FRAME is very likely to be that of a function that is
11985 part of the runtime system. This is all very heuristic, but is
11986 intended to be used as advice as to what frames are uninteresting
11990 is_known_support_routine (struct frame_info *frame)
11992 enum language func_lang;
11994 const char *fullname;
11996 /* If this code does not have any debugging information (no symtab),
11997 This cannot be any user code. */
11999 symtab_and_line sal = find_frame_sal (frame);
12000 if (sal.symtab == NULL)
12003 /* If there is a symtab, but the associated source file cannot be
12004 located, then assume this is not user code: Selecting a frame
12005 for which we cannot display the code would not be very helpful
12006 for the user. This should also take care of case such as VxWorks
12007 where the kernel has some debugging info provided for a few units. */
12009 fullname = symtab_to_fullname (sal.symtab);
12010 if (access (fullname, R_OK) != 0)
12013 /* Check the unit filename againt the Ada runtime file naming.
12014 We also check the name of the objfile against the name of some
12015 known system libraries that sometimes come with debugging info
12018 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12020 re_comp (known_runtime_file_name_patterns[i]);
12021 if (re_exec (lbasename (sal.symtab->filename)))
12023 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12024 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12028 /* Check whether the function is a GNAT-generated entity. */
12030 gdb::unique_xmalloc_ptr<char> func_name
12031 = find_frame_funname (frame, &func_lang, NULL);
12032 if (func_name == NULL)
12035 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12037 re_comp (known_auxiliary_function_name_patterns[i]);
12038 if (re_exec (func_name.get ()))
12045 /* Find the first frame that contains debugging information and that is not
12046 part of the Ada run-time, starting from FI and moving upward. */
12049 ada_find_printable_frame (struct frame_info *fi)
12051 for (; fi != NULL; fi = get_prev_frame (fi))
12053 if (!is_known_support_routine (fi))
12062 /* Assuming that the inferior just triggered an unhandled exception
12063 catchpoint, return the address in inferior memory where the name
12064 of the exception is stored.
12066 Return zero if the address could not be computed. */
12069 ada_unhandled_exception_name_addr (void)
12071 return parse_and_eval_address ("e.full_name");
12074 /* Same as ada_unhandled_exception_name_addr, except that this function
12075 should be used when the inferior uses an older version of the runtime,
12076 where the exception name needs to be extracted from a specific frame
12077 several frames up in the callstack. */
12080 ada_unhandled_exception_name_addr_from_raise (void)
12083 struct frame_info *fi;
12084 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12086 /* To determine the name of this exception, we need to select
12087 the frame corresponding to RAISE_SYM_NAME. This frame is
12088 at least 3 levels up, so we simply skip the first 3 frames
12089 without checking the name of their associated function. */
12090 fi = get_current_frame ();
12091 for (frame_level = 0; frame_level < 3; frame_level += 1)
12093 fi = get_prev_frame (fi);
12097 enum language func_lang;
12099 gdb::unique_xmalloc_ptr<char> func_name
12100 = find_frame_funname (fi, &func_lang, NULL);
12101 if (func_name != NULL)
12103 if (strcmp (func_name.get (),
12104 data->exception_info->catch_exception_sym) == 0)
12105 break; /* We found the frame we were looking for... */
12106 fi = get_prev_frame (fi);
12114 return parse_and_eval_address ("id.full_name");
12117 /* Assuming the inferior just triggered an Ada exception catchpoint
12118 (of any type), return the address in inferior memory where the name
12119 of the exception is stored, if applicable.
12121 Assumes the selected frame is the current frame.
12123 Return zero if the address could not be computed, or if not relevant. */
12126 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12127 struct breakpoint *b)
12129 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12133 case ada_catch_exception:
12134 return (parse_and_eval_address ("e.full_name"));
12137 case ada_catch_exception_unhandled:
12138 return data->exception_info->unhandled_exception_name_addr ();
12141 case ada_catch_assert:
12142 return 0; /* Exception name is not relevant in this case. */
12146 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12150 return 0; /* Should never be reached. */
12153 /* Assuming the inferior is stopped at an exception catchpoint,
12154 return the message which was associated to the exception, if
12155 available. Return NULL if the message could not be retrieved.
12157 The caller must xfree the string after use.
12159 Note: The exception message can be associated to an exception
12160 either through the use of the Raise_Exception function, or
12161 more simply (Ada 2005 and later), via:
12163 raise Exception_Name with "exception message";
12168 ada_exception_message_1 (void)
12170 struct value *e_msg_val;
12171 char *e_msg = NULL;
12173 struct cleanup *cleanups;
12175 /* For runtimes that support this feature, the exception message
12176 is passed as an unbounded string argument called "message". */
12177 e_msg_val = parse_and_eval ("message");
12178 if (e_msg_val == NULL)
12179 return NULL; /* Exception message not supported. */
12181 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12182 gdb_assert (e_msg_val != NULL);
12183 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12185 /* If the message string is empty, then treat it as if there was
12186 no exception message. */
12187 if (e_msg_len <= 0)
12190 e_msg = (char *) xmalloc (e_msg_len + 1);
12191 cleanups = make_cleanup (xfree, e_msg);
12192 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12193 e_msg[e_msg_len] = '\0';
12195 discard_cleanups (cleanups);
12199 /* Same as ada_exception_message_1, except that all exceptions are
12200 contained here (returning NULL instead). */
12203 ada_exception_message (void)
12205 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12209 e_msg = ada_exception_message_1 ();
12211 CATCH (e, RETURN_MASK_ERROR)
12220 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12221 any error that ada_exception_name_addr_1 might cause to be thrown.
12222 When an error is intercepted, a warning with the error message is printed,
12223 and zero is returned. */
12226 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12227 struct breakpoint *b)
12229 CORE_ADDR result = 0;
12233 result = ada_exception_name_addr_1 (ex, b);
12236 CATCH (e, RETURN_MASK_ERROR)
12238 warning (_("failed to get exception name: %s"), e.message);
12246 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12248 /* Ada catchpoints.
12250 In the case of catchpoints on Ada exceptions, the catchpoint will
12251 stop the target on every exception the program throws. When a user
12252 specifies the name of a specific exception, we translate this
12253 request into a condition expression (in text form), and then parse
12254 it into an expression stored in each of the catchpoint's locations.
12255 We then use this condition to check whether the exception that was
12256 raised is the one the user is interested in. If not, then the
12257 target is resumed again. We store the name of the requested
12258 exception, in order to be able to re-set the condition expression
12259 when symbols change. */
12261 /* An instance of this type is used to represent an Ada catchpoint
12262 breakpoint location. */
12264 class ada_catchpoint_location : public bp_location
12267 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12268 : bp_location (ops, owner)
12271 /* The condition that checks whether the exception that was raised
12272 is the specific exception the user specified on catchpoint
12274 expression_up excep_cond_expr;
12277 /* Implement the DTOR method in the bp_location_ops structure for all
12278 Ada exception catchpoint kinds. */
12281 ada_catchpoint_location_dtor (struct bp_location *bl)
12283 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12285 al->excep_cond_expr.reset ();
12288 /* The vtable to be used in Ada catchpoint locations. */
12290 static const struct bp_location_ops ada_catchpoint_location_ops =
12292 ada_catchpoint_location_dtor
12295 /* An instance of this type is used to represent an Ada catchpoint. */
12297 struct ada_catchpoint : public breakpoint
12299 ~ada_catchpoint () override;
12301 /* The name of the specific exception the user specified. */
12302 char *excep_string;
12305 /* Parse the exception condition string in the context of each of the
12306 catchpoint's locations, and store them for later evaluation. */
12309 create_excep_cond_exprs (struct ada_catchpoint *c)
12311 struct cleanup *old_chain;
12312 struct bp_location *bl;
12315 /* Nothing to do if there's no specific exception to catch. */
12316 if (c->excep_string == NULL)
12319 /* Same if there are no locations... */
12320 if (c->loc == NULL)
12323 /* Compute the condition expression in text form, from the specific
12324 expection we want to catch. */
12325 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12326 old_chain = make_cleanup (xfree, cond_string);
12328 /* Iterate over all the catchpoint's locations, and parse an
12329 expression for each. */
12330 for (bl = c->loc; bl != NULL; bl = bl->next)
12332 struct ada_catchpoint_location *ada_loc
12333 = (struct ada_catchpoint_location *) bl;
12336 if (!bl->shlib_disabled)
12343 exp = parse_exp_1 (&s, bl->address,
12344 block_for_pc (bl->address),
12347 CATCH (e, RETURN_MASK_ERROR)
12349 warning (_("failed to reevaluate internal exception condition "
12350 "for catchpoint %d: %s"),
12351 c->number, e.message);
12356 ada_loc->excep_cond_expr = std::move (exp);
12359 do_cleanups (old_chain);
12362 /* ada_catchpoint destructor. */
12364 ada_catchpoint::~ada_catchpoint ()
12366 xfree (this->excep_string);
12369 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12370 structure for all exception catchpoint kinds. */
12372 static struct bp_location *
12373 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12374 struct breakpoint *self)
12376 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12379 /* Implement the RE_SET method in the breakpoint_ops structure for all
12380 exception catchpoint kinds. */
12383 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12385 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12387 /* Call the base class's method. This updates the catchpoint's
12389 bkpt_breakpoint_ops.re_set (b);
12391 /* Reparse the exception conditional expressions. One for each
12393 create_excep_cond_exprs (c);
12396 /* Returns true if we should stop for this breakpoint hit. If the
12397 user specified a specific exception, we only want to cause a stop
12398 if the program thrown that exception. */
12401 should_stop_exception (const struct bp_location *bl)
12403 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12404 const struct ada_catchpoint_location *ada_loc
12405 = (const struct ada_catchpoint_location *) bl;
12408 /* With no specific exception, should always stop. */
12409 if (c->excep_string == NULL)
12412 if (ada_loc->excep_cond_expr == NULL)
12414 /* We will have a NULL expression if back when we were creating
12415 the expressions, this location's had failed to parse. */
12422 struct value *mark;
12424 mark = value_mark ();
12425 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12426 value_free_to_mark (mark);
12428 CATCH (ex, RETURN_MASK_ALL)
12430 exception_fprintf (gdb_stderr, ex,
12431 _("Error in testing exception condition:\n"));
12438 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12439 for all exception catchpoint kinds. */
12442 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12444 bs->stop = should_stop_exception (bs->bp_location_at);
12447 /* Implement the PRINT_IT method in the breakpoint_ops structure
12448 for all exception catchpoint kinds. */
12450 static enum print_stop_action
12451 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12453 struct ui_out *uiout = current_uiout;
12454 struct breakpoint *b = bs->breakpoint_at;
12455 char *exception_message;
12457 annotate_catchpoint (b->number);
12459 if (uiout->is_mi_like_p ())
12461 uiout->field_string ("reason",
12462 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12463 uiout->field_string ("disp", bpdisp_text (b->disposition));
12466 uiout->text (b->disposition == disp_del
12467 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12468 uiout->field_int ("bkptno", b->number);
12469 uiout->text (", ");
12471 /* ada_exception_name_addr relies on the selected frame being the
12472 current frame. Need to do this here because this function may be
12473 called more than once when printing a stop, and below, we'll
12474 select the first frame past the Ada run-time (see
12475 ada_find_printable_frame). */
12476 select_frame (get_current_frame ());
12480 case ada_catch_exception:
12481 case ada_catch_exception_unhandled:
12483 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12484 char exception_name[256];
12488 read_memory (addr, (gdb_byte *) exception_name,
12489 sizeof (exception_name) - 1);
12490 exception_name [sizeof (exception_name) - 1] = '\0';
12494 /* For some reason, we were unable to read the exception
12495 name. This could happen if the Runtime was compiled
12496 without debugging info, for instance. In that case,
12497 just replace the exception name by the generic string
12498 "exception" - it will read as "an exception" in the
12499 notification we are about to print. */
12500 memcpy (exception_name, "exception", sizeof ("exception"));
12502 /* In the case of unhandled exception breakpoints, we print
12503 the exception name as "unhandled EXCEPTION_NAME", to make
12504 it clearer to the user which kind of catchpoint just got
12505 hit. We used ui_out_text to make sure that this extra
12506 info does not pollute the exception name in the MI case. */
12507 if (ex == ada_catch_exception_unhandled)
12508 uiout->text ("unhandled ");
12509 uiout->field_string ("exception-name", exception_name);
12512 case ada_catch_assert:
12513 /* In this case, the name of the exception is not really
12514 important. Just print "failed assertion" to make it clearer
12515 that his program just hit an assertion-failure catchpoint.
12516 We used ui_out_text because this info does not belong in
12518 uiout->text ("failed assertion");
12522 exception_message = ada_exception_message ();
12523 if (exception_message != NULL)
12525 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12527 uiout->text (" (");
12528 uiout->field_string ("exception-message", exception_message);
12531 do_cleanups (cleanups);
12534 uiout->text (" at ");
12535 ada_find_printable_frame (get_current_frame ());
12537 return PRINT_SRC_AND_LOC;
12540 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12541 for all exception catchpoint kinds. */
12544 print_one_exception (enum ada_exception_catchpoint_kind ex,
12545 struct breakpoint *b, struct bp_location **last_loc)
12547 struct ui_out *uiout = current_uiout;
12548 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12549 struct value_print_options opts;
12551 get_user_print_options (&opts);
12552 if (opts.addressprint)
12554 annotate_field (4);
12555 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12558 annotate_field (5);
12559 *last_loc = b->loc;
12562 case ada_catch_exception:
12563 if (c->excep_string != NULL)
12565 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12567 uiout->field_string ("what", msg);
12571 uiout->field_string ("what", "all Ada exceptions");
12575 case ada_catch_exception_unhandled:
12576 uiout->field_string ("what", "unhandled Ada exceptions");
12579 case ada_catch_assert:
12580 uiout->field_string ("what", "failed Ada assertions");
12584 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12589 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12590 for all exception catchpoint kinds. */
12593 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12594 struct breakpoint *b)
12596 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12597 struct ui_out *uiout = current_uiout;
12599 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12600 : _("Catchpoint "));
12601 uiout->field_int ("bkptno", b->number);
12602 uiout->text (": ");
12606 case ada_catch_exception:
12607 if (c->excep_string != NULL)
12609 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12610 struct cleanup *old_chain = make_cleanup (xfree, info);
12612 uiout->text (info);
12613 do_cleanups (old_chain);
12616 uiout->text (_("all Ada exceptions"));
12619 case ada_catch_exception_unhandled:
12620 uiout->text (_("unhandled Ada exceptions"));
12623 case ada_catch_assert:
12624 uiout->text (_("failed Ada assertions"));
12628 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12633 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12637 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12638 struct breakpoint *b, struct ui_file *fp)
12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12644 case ada_catch_exception:
12645 fprintf_filtered (fp, "catch exception");
12646 if (c->excep_string != NULL)
12647 fprintf_filtered (fp, " %s", c->excep_string);
12650 case ada_catch_exception_unhandled:
12651 fprintf_filtered (fp, "catch exception unhandled");
12654 case ada_catch_assert:
12655 fprintf_filtered (fp, "catch assert");
12659 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12661 print_recreate_thread (b, fp);
12664 /* Virtual table for "catch exception" breakpoints. */
12666 static struct bp_location *
12667 allocate_location_catch_exception (struct breakpoint *self)
12669 return allocate_location_exception (ada_catch_exception, self);
12673 re_set_catch_exception (struct breakpoint *b)
12675 re_set_exception (ada_catch_exception, b);
12679 check_status_catch_exception (bpstat bs)
12681 check_status_exception (ada_catch_exception, bs);
12684 static enum print_stop_action
12685 print_it_catch_exception (bpstat bs)
12687 return print_it_exception (ada_catch_exception, bs);
12691 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12693 print_one_exception (ada_catch_exception, b, last_loc);
12697 print_mention_catch_exception (struct breakpoint *b)
12699 print_mention_exception (ada_catch_exception, b);
12703 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12705 print_recreate_exception (ada_catch_exception, b, fp);
12708 static struct breakpoint_ops catch_exception_breakpoint_ops;
12710 /* Virtual table for "catch exception unhandled" breakpoints. */
12712 static struct bp_location *
12713 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12715 return allocate_location_exception (ada_catch_exception_unhandled, self);
12719 re_set_catch_exception_unhandled (struct breakpoint *b)
12721 re_set_exception (ada_catch_exception_unhandled, b);
12725 check_status_catch_exception_unhandled (bpstat bs)
12727 check_status_exception (ada_catch_exception_unhandled, bs);
12730 static enum print_stop_action
12731 print_it_catch_exception_unhandled (bpstat bs)
12733 return print_it_exception (ada_catch_exception_unhandled, bs);
12737 print_one_catch_exception_unhandled (struct breakpoint *b,
12738 struct bp_location **last_loc)
12740 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12744 print_mention_catch_exception_unhandled (struct breakpoint *b)
12746 print_mention_exception (ada_catch_exception_unhandled, b);
12750 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12751 struct ui_file *fp)
12753 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12756 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12758 /* Virtual table for "catch assert" breakpoints. */
12760 static struct bp_location *
12761 allocate_location_catch_assert (struct breakpoint *self)
12763 return allocate_location_exception (ada_catch_assert, self);
12767 re_set_catch_assert (struct breakpoint *b)
12769 re_set_exception (ada_catch_assert, b);
12773 check_status_catch_assert (bpstat bs)
12775 check_status_exception (ada_catch_assert, bs);
12778 static enum print_stop_action
12779 print_it_catch_assert (bpstat bs)
12781 return print_it_exception (ada_catch_assert, bs);
12785 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12787 print_one_exception (ada_catch_assert, b, last_loc);
12791 print_mention_catch_assert (struct breakpoint *b)
12793 print_mention_exception (ada_catch_assert, b);
12797 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12799 print_recreate_exception (ada_catch_assert, b, fp);
12802 static struct breakpoint_ops catch_assert_breakpoint_ops;
12804 /* Return a newly allocated copy of the first space-separated token
12805 in ARGSP, and then adjust ARGSP to point immediately after that
12808 Return NULL if ARGPS does not contain any more tokens. */
12811 ada_get_next_arg (const char **argsp)
12813 const char *args = *argsp;
12817 args = skip_spaces (args);
12818 if (args[0] == '\0')
12819 return NULL; /* No more arguments. */
12821 /* Find the end of the current argument. */
12823 end = skip_to_space (args);
12825 /* Adjust ARGSP to point to the start of the next argument. */
12829 /* Make a copy of the current argument and return it. */
12831 result = (char *) xmalloc (end - args + 1);
12832 strncpy (result, args, end - args);
12833 result[end - args] = '\0';
12838 /* Split the arguments specified in a "catch exception" command.
12839 Set EX to the appropriate catchpoint type.
12840 Set EXCEP_STRING to the name of the specific exception if
12841 specified by the user.
12842 If a condition is found at the end of the arguments, the condition
12843 expression is stored in COND_STRING (memory must be deallocated
12844 after use). Otherwise COND_STRING is set to NULL. */
12847 catch_ada_exception_command_split (const char *args,
12848 enum ada_exception_catchpoint_kind *ex,
12849 char **excep_string,
12850 char **cond_string)
12852 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12853 char *exception_name;
12856 exception_name = ada_get_next_arg (&args);
12857 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12859 /* This is not an exception name; this is the start of a condition
12860 expression for a catchpoint on all exceptions. So, "un-get"
12861 this token, and set exception_name to NULL. */
12862 xfree (exception_name);
12863 exception_name = NULL;
12866 make_cleanup (xfree, exception_name);
12868 /* Check to see if we have a condition. */
12870 args = skip_spaces (args);
12871 if (startswith (args, "if")
12872 && (isspace (args[2]) || args[2] == '\0'))
12875 args = skip_spaces (args);
12877 if (args[0] == '\0')
12878 error (_("Condition missing after `if' keyword"));
12879 cond = xstrdup (args);
12880 make_cleanup (xfree, cond);
12882 args += strlen (args);
12885 /* Check that we do not have any more arguments. Anything else
12888 if (args[0] != '\0')
12889 error (_("Junk at end of expression"));
12891 discard_cleanups (old_chain);
12893 if (exception_name == NULL)
12895 /* Catch all exceptions. */
12896 *ex = ada_catch_exception;
12897 *excep_string = NULL;
12899 else if (strcmp (exception_name, "unhandled") == 0)
12901 /* Catch unhandled exceptions. */
12902 *ex = ada_catch_exception_unhandled;
12903 *excep_string = NULL;
12907 /* Catch a specific exception. */
12908 *ex = ada_catch_exception;
12909 *excep_string = exception_name;
12911 *cond_string = cond;
12914 /* Return the name of the symbol on which we should break in order to
12915 implement a catchpoint of the EX kind. */
12917 static const char *
12918 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12922 gdb_assert (data->exception_info != NULL);
12926 case ada_catch_exception:
12927 return (data->exception_info->catch_exception_sym);
12929 case ada_catch_exception_unhandled:
12930 return (data->exception_info->catch_exception_unhandled_sym);
12932 case ada_catch_assert:
12933 return (data->exception_info->catch_assert_sym);
12936 internal_error (__FILE__, __LINE__,
12937 _("unexpected catchpoint kind (%d)"), ex);
12941 /* Return the breakpoint ops "virtual table" used for catchpoints
12944 static const struct breakpoint_ops *
12945 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12949 case ada_catch_exception:
12950 return (&catch_exception_breakpoint_ops);
12952 case ada_catch_exception_unhandled:
12953 return (&catch_exception_unhandled_breakpoint_ops);
12955 case ada_catch_assert:
12956 return (&catch_assert_breakpoint_ops);
12959 internal_error (__FILE__, __LINE__,
12960 _("unexpected catchpoint kind (%d)"), ex);
12964 /* Return the condition that will be used to match the current exception
12965 being raised with the exception that the user wants to catch. This
12966 assumes that this condition is used when the inferior just triggered
12967 an exception catchpoint.
12969 The string returned is a newly allocated string that needs to be
12970 deallocated later. */
12973 ada_exception_catchpoint_cond_string (const char *excep_string)
12977 /* The standard exceptions are a special case. They are defined in
12978 runtime units that have been compiled without debugging info; if
12979 EXCEP_STRING is the not-fully-qualified name of a standard
12980 exception (e.g. "constraint_error") then, during the evaluation
12981 of the condition expression, the symbol lookup on this name would
12982 *not* return this standard exception. The catchpoint condition
12983 may then be set only on user-defined exceptions which have the
12984 same not-fully-qualified name (e.g. my_package.constraint_error).
12986 To avoid this unexcepted behavior, these standard exceptions are
12987 systematically prefixed by "standard". This means that "catch
12988 exception constraint_error" is rewritten into "catch exception
12989 standard.constraint_error".
12991 If an exception named contraint_error is defined in another package of
12992 the inferior program, then the only way to specify this exception as a
12993 breakpoint condition is to use its fully-qualified named:
12994 e.g. my_package.constraint_error. */
12996 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12998 if (strcmp (standard_exc [i], excep_string) == 0)
13000 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13004 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13007 /* Return the symtab_and_line that should be used to insert an exception
13008 catchpoint of the TYPE kind.
13010 EXCEP_STRING should contain the name of a specific exception that
13011 the catchpoint should catch, or NULL otherwise.
13013 ADDR_STRING returns the name of the function where the real
13014 breakpoint that implements the catchpoints is set, depending on the
13015 type of catchpoint we need to create. */
13017 static struct symtab_and_line
13018 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13019 const char **addr_string, const struct breakpoint_ops **ops)
13021 const char *sym_name;
13022 struct symbol *sym;
13024 /* First, find out which exception support info to use. */
13025 ada_exception_support_info_sniffer ();
13027 /* Then lookup the function on which we will break in order to catch
13028 the Ada exceptions requested by the user. */
13029 sym_name = ada_exception_sym_name (ex);
13030 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13032 /* We can assume that SYM is not NULL at this stage. If the symbol
13033 did not exist, ada_exception_support_info_sniffer would have
13034 raised an exception.
13036 Also, ada_exception_support_info_sniffer should have already
13037 verified that SYM is a function symbol. */
13038 gdb_assert (sym != NULL);
13039 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13041 /* Set ADDR_STRING. */
13042 *addr_string = xstrdup (sym_name);
13045 *ops = ada_exception_breakpoint_ops (ex);
13047 return find_function_start_sal (sym, 1);
13050 /* Create an Ada exception catchpoint.
13052 EX_KIND is the kind of exception catchpoint to be created.
13054 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13055 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13056 of the exception to which this catchpoint applies. When not NULL,
13057 the string must be allocated on the heap, and its deallocation
13058 is no longer the responsibility of the caller.
13060 COND_STRING, if not NULL, is the catchpoint condition. This string
13061 must be allocated on the heap, and its deallocation is no longer
13062 the responsibility of the caller.
13064 TEMPFLAG, if nonzero, means that the underlying breakpoint
13065 should be temporary.
13067 FROM_TTY is the usual argument passed to all commands implementations. */
13070 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13071 enum ada_exception_catchpoint_kind ex_kind,
13072 char *excep_string,
13078 const char *addr_string = NULL;
13079 const struct breakpoint_ops *ops = NULL;
13080 struct symtab_and_line sal
13081 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13083 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13084 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13085 ops, tempflag, disabled, from_tty);
13086 c->excep_string = excep_string;
13087 create_excep_cond_exprs (c.get ());
13088 if (cond_string != NULL)
13089 set_breakpoint_condition (c.get (), cond_string, from_tty);
13090 install_breakpoint (0, std::move (c), 1);
13093 /* Implement the "catch exception" command. */
13096 catch_ada_exception_command (const char *arg_entry, int from_tty,
13097 struct cmd_list_element *command)
13099 const char *arg = arg_entry;
13100 struct gdbarch *gdbarch = get_current_arch ();
13102 enum ada_exception_catchpoint_kind ex_kind;
13103 char *excep_string = NULL;
13104 char *cond_string = NULL;
13106 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13110 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13112 create_ada_exception_catchpoint (gdbarch, ex_kind,
13113 excep_string, cond_string,
13114 tempflag, 1 /* enabled */,
13118 /* Split the arguments specified in a "catch assert" command.
13120 ARGS contains the command's arguments (or the empty string if
13121 no arguments were passed).
13123 If ARGS contains a condition, set COND_STRING to that condition
13124 (the memory needs to be deallocated after use). */
13127 catch_ada_assert_command_split (const char *args, char **cond_string)
13129 args = skip_spaces (args);
13131 /* Check whether a condition was provided. */
13132 if (startswith (args, "if")
13133 && (isspace (args[2]) || args[2] == '\0'))
13136 args = skip_spaces (args);
13137 if (args[0] == '\0')
13138 error (_("condition missing after `if' keyword"));
13139 *cond_string = xstrdup (args);
13142 /* Otherwise, there should be no other argument at the end of
13144 else if (args[0] != '\0')
13145 error (_("Junk at end of arguments."));
13148 /* Implement the "catch assert" command. */
13151 catch_assert_command (const char *arg_entry, int from_tty,
13152 struct cmd_list_element *command)
13154 const char *arg = arg_entry;
13155 struct gdbarch *gdbarch = get_current_arch ();
13157 char *cond_string = NULL;
13159 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13163 catch_ada_assert_command_split (arg, &cond_string);
13164 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13166 tempflag, 1 /* enabled */,
13170 /* Return non-zero if the symbol SYM is an Ada exception object. */
13173 ada_is_exception_sym (struct symbol *sym)
13175 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13177 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13178 && SYMBOL_CLASS (sym) != LOC_BLOCK
13179 && SYMBOL_CLASS (sym) != LOC_CONST
13180 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13181 && type_name != NULL && strcmp (type_name, "exception") == 0);
13184 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13185 Ada exception object. This matches all exceptions except the ones
13186 defined by the Ada language. */
13189 ada_is_non_standard_exception_sym (struct symbol *sym)
13193 if (!ada_is_exception_sym (sym))
13196 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13197 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13198 return 0; /* A standard exception. */
13200 /* Numeric_Error is also a standard exception, so exclude it.
13201 See the STANDARD_EXC description for more details as to why
13202 this exception is not listed in that array. */
13203 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13209 /* A helper function for std::sort, comparing two struct ada_exc_info
13212 The comparison is determined first by exception name, and then
13213 by exception address. */
13216 ada_exc_info::operator< (const ada_exc_info &other) const
13220 result = strcmp (name, other.name);
13223 if (result == 0 && addr < other.addr)
13229 ada_exc_info::operator== (const ada_exc_info &other) const
13231 return addr == other.addr && strcmp (name, other.name) == 0;
13234 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13235 routine, but keeping the first SKIP elements untouched.
13237 All duplicates are also removed. */
13240 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13243 std::sort (exceptions->begin () + skip, exceptions->end ());
13244 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13245 exceptions->end ());
13248 /* Add all exceptions defined by the Ada standard whose name match
13249 a regular expression.
13251 If PREG is not NULL, then this regexp_t object is used to
13252 perform the symbol name matching. Otherwise, no name-based
13253 filtering is performed.
13255 EXCEPTIONS is a vector of exceptions to which matching exceptions
13259 ada_add_standard_exceptions (compiled_regex *preg,
13260 std::vector<ada_exc_info> *exceptions)
13264 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13267 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13269 struct bound_minimal_symbol msymbol
13270 = ada_lookup_simple_minsym (standard_exc[i]);
13272 if (msymbol.minsym != NULL)
13274 struct ada_exc_info info
13275 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13277 exceptions->push_back (info);
13283 /* Add all Ada exceptions defined locally and accessible from the given
13286 If PREG is not NULL, then this regexp_t object is used to
13287 perform the symbol name matching. Otherwise, no name-based
13288 filtering is performed.
13290 EXCEPTIONS is a vector of exceptions to which matching exceptions
13294 ada_add_exceptions_from_frame (compiled_regex *preg,
13295 struct frame_info *frame,
13296 std::vector<ada_exc_info> *exceptions)
13298 const struct block *block = get_frame_block (frame, 0);
13302 struct block_iterator iter;
13303 struct symbol *sym;
13305 ALL_BLOCK_SYMBOLS (block, iter, sym)
13307 switch (SYMBOL_CLASS (sym))
13314 if (ada_is_exception_sym (sym))
13316 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13317 SYMBOL_VALUE_ADDRESS (sym)};
13319 exceptions->push_back (info);
13323 if (BLOCK_FUNCTION (block) != NULL)
13325 block = BLOCK_SUPERBLOCK (block);
13329 /* Return true if NAME matches PREG or if PREG is NULL. */
13332 name_matches_regex (const char *name, compiled_regex *preg)
13334 return (preg == NULL
13335 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13338 /* Add all exceptions defined globally whose name name match
13339 a regular expression, excluding standard exceptions.
13341 The reason we exclude standard exceptions is that they need
13342 to be handled separately: Standard exceptions are defined inside
13343 a runtime unit which is normally not compiled with debugging info,
13344 and thus usually do not show up in our symbol search. However,
13345 if the unit was in fact built with debugging info, we need to
13346 exclude them because they would duplicate the entry we found
13347 during the special loop that specifically searches for those
13348 standard exceptions.
13350 If PREG is not NULL, then this regexp_t object is used to
13351 perform the symbol name matching. Otherwise, no name-based
13352 filtering is performed.
13354 EXCEPTIONS is a vector of exceptions to which matching exceptions
13358 ada_add_global_exceptions (compiled_regex *preg,
13359 std::vector<ada_exc_info> *exceptions)
13361 struct objfile *objfile;
13362 struct compunit_symtab *s;
13364 /* In Ada, the symbol "search name" is a linkage name, whereas the
13365 regular expression used to do the matching refers to the natural
13366 name. So match against the decoded name. */
13367 expand_symtabs_matching (NULL,
13368 lookup_name_info::match_any (),
13369 [&] (const char *search_name)
13371 const char *decoded = ada_decode (search_name);
13372 return name_matches_regex (decoded, preg);
13377 ALL_COMPUNITS (objfile, s)
13379 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13382 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13384 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13385 struct block_iterator iter;
13386 struct symbol *sym;
13388 ALL_BLOCK_SYMBOLS (b, iter, sym)
13389 if (ada_is_non_standard_exception_sym (sym)
13390 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13392 struct ada_exc_info info
13393 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13395 exceptions->push_back (info);
13401 /* Implements ada_exceptions_list with the regular expression passed
13402 as a regex_t, rather than a string.
13404 If not NULL, PREG is used to filter out exceptions whose names
13405 do not match. Otherwise, all exceptions are listed. */
13407 static std::vector<ada_exc_info>
13408 ada_exceptions_list_1 (compiled_regex *preg)
13410 std::vector<ada_exc_info> result;
13413 /* First, list the known standard exceptions. These exceptions
13414 need to be handled separately, as they are usually defined in
13415 runtime units that have been compiled without debugging info. */
13417 ada_add_standard_exceptions (preg, &result);
13419 /* Next, find all exceptions whose scope is local and accessible
13420 from the currently selected frame. */
13422 if (has_stack_frames ())
13424 prev_len = result.size ();
13425 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13427 if (result.size () > prev_len)
13428 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13431 /* Add all exceptions whose scope is global. */
13433 prev_len = result.size ();
13434 ada_add_global_exceptions (preg, &result);
13435 if (result.size () > prev_len)
13436 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13441 /* Return a vector of ada_exc_info.
13443 If REGEXP is NULL, all exceptions are included in the result.
13444 Otherwise, it should contain a valid regular expression,
13445 and only the exceptions whose names match that regular expression
13446 are included in the result.
13448 The exceptions are sorted in the following order:
13449 - Standard exceptions (defined by the Ada language), in
13450 alphabetical order;
13451 - Exceptions only visible from the current frame, in
13452 alphabetical order;
13453 - Exceptions whose scope is global, in alphabetical order. */
13455 std::vector<ada_exc_info>
13456 ada_exceptions_list (const char *regexp)
13458 if (regexp == NULL)
13459 return ada_exceptions_list_1 (NULL);
13461 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13462 return ada_exceptions_list_1 (®);
13465 /* Implement the "info exceptions" command. */
13468 info_exceptions_command (const char *regexp, int from_tty)
13470 struct gdbarch *gdbarch = get_current_arch ();
13472 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13474 if (regexp != NULL)
13476 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13478 printf_filtered (_("All defined Ada exceptions:\n"));
13480 for (const ada_exc_info &info : exceptions)
13481 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13485 /* Information about operators given special treatment in functions
13487 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13489 #define ADA_OPERATORS \
13490 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13491 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13492 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13493 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13494 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13495 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13496 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13497 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13498 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13499 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13500 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13501 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13502 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13503 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13504 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13505 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13506 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13507 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13508 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13511 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13514 switch (exp->elts[pc - 1].opcode)
13517 operator_length_standard (exp, pc, oplenp, argsp);
13520 #define OP_DEFN(op, len, args, binop) \
13521 case op: *oplenp = len; *argsp = args; break;
13527 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13532 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13537 /* Implementation of the exp_descriptor method operator_check. */
13540 ada_operator_check (struct expression *exp, int pos,
13541 int (*objfile_func) (struct objfile *objfile, void *data),
13544 const union exp_element *const elts = exp->elts;
13545 struct type *type = NULL;
13547 switch (elts[pos].opcode)
13549 case UNOP_IN_RANGE:
13551 type = elts[pos + 1].type;
13555 return operator_check_standard (exp, pos, objfile_func, data);
13558 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13560 if (type && TYPE_OBJFILE (type)
13561 && (*objfile_func) (TYPE_OBJFILE (type), data))
13567 static const char *
13568 ada_op_name (enum exp_opcode opcode)
13573 return op_name_standard (opcode);
13575 #define OP_DEFN(op, len, args, binop) case op: return #op;
13580 return "OP_AGGREGATE";
13582 return "OP_CHOICES";
13588 /* As for operator_length, but assumes PC is pointing at the first
13589 element of the operator, and gives meaningful results only for the
13590 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13593 ada_forward_operator_length (struct expression *exp, int pc,
13594 int *oplenp, int *argsp)
13596 switch (exp->elts[pc].opcode)
13599 *oplenp = *argsp = 0;
13602 #define OP_DEFN(op, len, args, binop) \
13603 case op: *oplenp = len; *argsp = args; break;
13609 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13614 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13620 int len = longest_to_int (exp->elts[pc + 1].longconst);
13622 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13630 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13632 enum exp_opcode op = exp->elts[elt].opcode;
13637 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13641 /* Ada attributes ('Foo). */
13644 case OP_ATR_LENGTH:
13648 case OP_ATR_MODULUS:
13655 case UNOP_IN_RANGE:
13657 /* XXX: gdb_sprint_host_address, type_sprint */
13658 fprintf_filtered (stream, _("Type @"));
13659 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13660 fprintf_filtered (stream, " (");
13661 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13662 fprintf_filtered (stream, ")");
13664 case BINOP_IN_BOUNDS:
13665 fprintf_filtered (stream, " (%d)",
13666 longest_to_int (exp->elts[pc + 2].longconst));
13668 case TERNOP_IN_RANGE:
13673 case OP_DISCRETE_RANGE:
13674 case OP_POSITIONAL:
13681 char *name = &exp->elts[elt + 2].string;
13682 int len = longest_to_int (exp->elts[elt + 1].longconst);
13684 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13689 return dump_subexp_body_standard (exp, stream, elt);
13693 for (i = 0; i < nargs; i += 1)
13694 elt = dump_subexp (exp, stream, elt);
13699 /* The Ada extension of print_subexp (q.v.). */
13702 ada_print_subexp (struct expression *exp, int *pos,
13703 struct ui_file *stream, enum precedence prec)
13705 int oplen, nargs, i;
13707 enum exp_opcode op = exp->elts[pc].opcode;
13709 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13716 print_subexp_standard (exp, pos, stream, prec);
13720 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13723 case BINOP_IN_BOUNDS:
13724 /* XXX: sprint_subexp */
13725 print_subexp (exp, pos, stream, PREC_SUFFIX);
13726 fputs_filtered (" in ", stream);
13727 print_subexp (exp, pos, stream, PREC_SUFFIX);
13728 fputs_filtered ("'range", stream);
13729 if (exp->elts[pc + 1].longconst > 1)
13730 fprintf_filtered (stream, "(%ld)",
13731 (long) exp->elts[pc + 1].longconst);
13734 case TERNOP_IN_RANGE:
13735 if (prec >= PREC_EQUAL)
13736 fputs_filtered ("(", stream);
13737 /* XXX: sprint_subexp */
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fputs_filtered (" in ", stream);
13740 print_subexp (exp, pos, stream, PREC_EQUAL);
13741 fputs_filtered (" .. ", stream);
13742 print_subexp (exp, pos, stream, PREC_EQUAL);
13743 if (prec >= PREC_EQUAL)
13744 fputs_filtered (")", stream);
13749 case OP_ATR_LENGTH:
13753 case OP_ATR_MODULUS:
13758 if (exp->elts[*pos].opcode == OP_TYPE)
13760 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13761 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13762 &type_print_raw_options);
13766 print_subexp (exp, pos, stream, PREC_SUFFIX);
13767 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13772 for (tem = 1; tem < nargs; tem += 1)
13774 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13775 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13777 fputs_filtered (")", stream);
13782 type_print (exp->elts[pc + 1].type, "", stream, 0);
13783 fputs_filtered ("'(", stream);
13784 print_subexp (exp, pos, stream, PREC_PREFIX);
13785 fputs_filtered (")", stream);
13788 case UNOP_IN_RANGE:
13789 /* XXX: sprint_subexp */
13790 print_subexp (exp, pos, stream, PREC_SUFFIX);
13791 fputs_filtered (" in ", stream);
13792 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13793 &type_print_raw_options);
13796 case OP_DISCRETE_RANGE:
13797 print_subexp (exp, pos, stream, PREC_SUFFIX);
13798 fputs_filtered ("..", stream);
13799 print_subexp (exp, pos, stream, PREC_SUFFIX);
13803 fputs_filtered ("others => ", stream);
13804 print_subexp (exp, pos, stream, PREC_SUFFIX);
13808 for (i = 0; i < nargs-1; i += 1)
13811 fputs_filtered ("|", stream);
13812 print_subexp (exp, pos, stream, PREC_SUFFIX);
13814 fputs_filtered (" => ", stream);
13815 print_subexp (exp, pos, stream, PREC_SUFFIX);
13818 case OP_POSITIONAL:
13819 print_subexp (exp, pos, stream, PREC_SUFFIX);
13823 fputs_filtered ("(", stream);
13824 for (i = 0; i < nargs; i += 1)
13827 fputs_filtered (", ", stream);
13828 print_subexp (exp, pos, stream, PREC_SUFFIX);
13830 fputs_filtered (")", stream);
13835 /* Table mapping opcodes into strings for printing operators
13836 and precedences of the operators. */
13838 static const struct op_print ada_op_print_tab[] = {
13839 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13840 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13841 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13842 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13843 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13844 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13845 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13846 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13847 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13848 {">=", BINOP_GEQ, PREC_ORDER, 0},
13849 {">", BINOP_GTR, PREC_ORDER, 0},
13850 {"<", BINOP_LESS, PREC_ORDER, 0},
13851 {">>", BINOP_RSH, PREC_SHIFT, 0},
13852 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13853 {"+", BINOP_ADD, PREC_ADD, 0},
13854 {"-", BINOP_SUB, PREC_ADD, 0},
13855 {"&", BINOP_CONCAT, PREC_ADD, 0},
13856 {"*", BINOP_MUL, PREC_MUL, 0},
13857 {"/", BINOP_DIV, PREC_MUL, 0},
13858 {"rem", BINOP_REM, PREC_MUL, 0},
13859 {"mod", BINOP_MOD, PREC_MUL, 0},
13860 {"**", BINOP_EXP, PREC_REPEAT, 0},
13861 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13862 {"-", UNOP_NEG, PREC_PREFIX, 0},
13863 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13864 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13865 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13866 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13867 {".all", UNOP_IND, PREC_SUFFIX, 1},
13868 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13869 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13870 {NULL, OP_NULL, PREC_SUFFIX, 0}
13873 enum ada_primitive_types {
13874 ada_primitive_type_int,
13875 ada_primitive_type_long,
13876 ada_primitive_type_short,
13877 ada_primitive_type_char,
13878 ada_primitive_type_float,
13879 ada_primitive_type_double,
13880 ada_primitive_type_void,
13881 ada_primitive_type_long_long,
13882 ada_primitive_type_long_double,
13883 ada_primitive_type_natural,
13884 ada_primitive_type_positive,
13885 ada_primitive_type_system_address,
13886 ada_primitive_type_storage_offset,
13887 nr_ada_primitive_types
13891 ada_language_arch_info (struct gdbarch *gdbarch,
13892 struct language_arch_info *lai)
13894 const struct builtin_type *builtin = builtin_type (gdbarch);
13896 lai->primitive_type_vector
13897 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13900 lai->primitive_type_vector [ada_primitive_type_int]
13901 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13903 lai->primitive_type_vector [ada_primitive_type_long]
13904 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13905 0, "long_integer");
13906 lai->primitive_type_vector [ada_primitive_type_short]
13907 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13908 0, "short_integer");
13909 lai->string_char_type
13910 = lai->primitive_type_vector [ada_primitive_type_char]
13911 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13912 lai->primitive_type_vector [ada_primitive_type_float]
13913 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13914 "float", gdbarch_float_format (gdbarch));
13915 lai->primitive_type_vector [ada_primitive_type_double]
13916 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13917 "long_float", gdbarch_double_format (gdbarch));
13918 lai->primitive_type_vector [ada_primitive_type_long_long]
13919 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13920 0, "long_long_integer");
13921 lai->primitive_type_vector [ada_primitive_type_long_double]
13922 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13923 "long_long_float", gdbarch_long_double_format (gdbarch));
13924 lai->primitive_type_vector [ada_primitive_type_natural]
13925 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13927 lai->primitive_type_vector [ada_primitive_type_positive]
13928 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13930 lai->primitive_type_vector [ada_primitive_type_void]
13931 = builtin->builtin_void;
13933 lai->primitive_type_vector [ada_primitive_type_system_address]
13934 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13936 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13937 = "system__address";
13939 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13940 type. This is a signed integral type whose size is the same as
13941 the size of addresses. */
13943 unsigned int addr_length = TYPE_LENGTH
13944 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13946 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13947 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13951 lai->bool_type_symbol = NULL;
13952 lai->bool_type_default = builtin->builtin_bool;
13955 /* Language vector */
13957 /* Not really used, but needed in the ada_language_defn. */
13960 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13962 ada_emit_char (c, type, stream, quoter, 1);
13966 parse (struct parser_state *ps)
13968 warnings_issued = 0;
13969 return ada_parse (ps);
13972 static const struct exp_descriptor ada_exp_descriptor = {
13974 ada_operator_length,
13975 ada_operator_check,
13977 ada_dump_subexp_body,
13978 ada_evaluate_subexp
13981 /* symbol_name_matcher_ftype adapter for wild_match. */
13984 do_wild_match (const char *symbol_search_name,
13985 const lookup_name_info &lookup_name,
13986 completion_match_result *comp_match_res)
13988 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13991 /* symbol_name_matcher_ftype adapter for full_match. */
13994 do_full_match (const char *symbol_search_name,
13995 const lookup_name_info &lookup_name,
13996 completion_match_result *comp_match_res)
13998 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14001 /* Build the Ada lookup name for LOOKUP_NAME. */
14003 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14005 const std::string &user_name = lookup_name.name ();
14007 if (user_name[0] == '<')
14009 if (user_name.back () == '>')
14010 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14012 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14013 m_encoded_p = true;
14014 m_verbatim_p = true;
14015 m_wild_match_p = false;
14016 m_standard_p = false;
14020 m_verbatim_p = false;
14022 m_encoded_p = user_name.find ("__") != std::string::npos;
14026 const char *folded = ada_fold_name (user_name.c_str ());
14027 const char *encoded = ada_encode_1 (folded, false);
14028 if (encoded != NULL)
14029 m_encoded_name = encoded;
14031 m_encoded_name = user_name;
14034 m_encoded_name = user_name;
14036 /* Handle the 'package Standard' special case. See description
14037 of m_standard_p. */
14038 if (startswith (m_encoded_name.c_str (), "standard__"))
14040 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14041 m_standard_p = true;
14044 m_standard_p = false;
14046 /* If the name contains a ".", then the user is entering a fully
14047 qualified entity name, and the match must not be done in wild
14048 mode. Similarly, if the user wants to complete what looks
14049 like an encoded name, the match must not be done in wild
14050 mode. Also, in the standard__ special case always do
14051 non-wild matching. */
14053 = (lookup_name.match_type () != symbol_name_match_type::FULL
14056 && user_name.find ('.') == std::string::npos);
14060 /* symbol_name_matcher_ftype method for Ada. This only handles
14061 completion mode. */
14064 ada_symbol_name_matches (const char *symbol_search_name,
14065 const lookup_name_info &lookup_name,
14066 completion_match_result *comp_match_res)
14068 return lookup_name.ada ().matches (symbol_search_name,
14069 lookup_name.match_type (),
14073 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14076 static symbol_name_matcher_ftype *
14077 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14079 if (lookup_name.completion_mode ())
14080 return ada_symbol_name_matches;
14083 if (lookup_name.ada ().wild_match_p ())
14084 return do_wild_match;
14086 return do_full_match;
14090 /* Implement the "la_read_var_value" language_defn method for Ada. */
14092 static struct value *
14093 ada_read_var_value (struct symbol *var, const struct block *var_block,
14094 struct frame_info *frame)
14096 const struct block *frame_block = NULL;
14097 struct symbol *renaming_sym = NULL;
14099 /* The only case where default_read_var_value is not sufficient
14100 is when VAR is a renaming... */
14102 frame_block = get_frame_block (frame, NULL);
14104 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14105 if (renaming_sym != NULL)
14106 return ada_read_renaming_var_value (renaming_sym, frame_block);
14108 /* This is a typical case where we expect the default_read_var_value
14109 function to work. */
14110 return default_read_var_value (var, var_block, frame);
14113 static const char *ada_extensions[] =
14115 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14118 extern const struct language_defn ada_language_defn = {
14119 "ada", /* Language name */
14123 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14124 that's not quite what this means. */
14126 macro_expansion_no,
14128 &ada_exp_descriptor,
14132 ada_printchar, /* Print a character constant */
14133 ada_printstr, /* Function to print string constant */
14134 emit_char, /* Function to print single char (not used) */
14135 ada_print_type, /* Print a type using appropriate syntax */
14136 ada_print_typedef, /* Print a typedef using appropriate syntax */
14137 ada_val_print, /* Print a value using appropriate syntax */
14138 ada_value_print, /* Print a top-level value */
14139 ada_read_var_value, /* la_read_var_value */
14140 NULL, /* Language specific skip_trampoline */
14141 NULL, /* name_of_this */
14142 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14143 basic_lookup_transparent_type, /* lookup_transparent_type */
14144 ada_la_decode, /* Language specific symbol demangler */
14145 ada_sniff_from_mangled_name,
14146 NULL, /* Language specific
14147 class_name_from_physname */
14148 ada_op_print_tab, /* expression operators for printing */
14149 0, /* c-style arrays */
14150 1, /* String lower bound */
14151 ada_get_gdb_completer_word_break_characters,
14152 ada_collect_symbol_completion_matches,
14153 ada_language_arch_info,
14154 ada_print_array_index,
14155 default_pass_by_reference,
14157 c_watch_location_expression,
14158 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14159 ada_iterate_over_symbols,
14160 default_search_name_hash,
14167 /* Command-list for the "set/show ada" prefix command. */
14168 static struct cmd_list_element *set_ada_list;
14169 static struct cmd_list_element *show_ada_list;
14171 /* Implement the "set ada" prefix command. */
14174 set_ada_command (const char *arg, int from_tty)
14176 printf_unfiltered (_(\
14177 "\"set ada\" must be followed by the name of a setting.\n"));
14178 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14181 /* Implement the "show ada" prefix command. */
14184 show_ada_command (const char *args, int from_tty)
14186 cmd_show_list (show_ada_list, from_tty, "");
14190 initialize_ada_catchpoint_ops (void)
14192 struct breakpoint_ops *ops;
14194 initialize_breakpoint_ops ();
14196 ops = &catch_exception_breakpoint_ops;
14197 *ops = bkpt_breakpoint_ops;
14198 ops->allocate_location = allocate_location_catch_exception;
14199 ops->re_set = re_set_catch_exception;
14200 ops->check_status = check_status_catch_exception;
14201 ops->print_it = print_it_catch_exception;
14202 ops->print_one = print_one_catch_exception;
14203 ops->print_mention = print_mention_catch_exception;
14204 ops->print_recreate = print_recreate_catch_exception;
14206 ops = &catch_exception_unhandled_breakpoint_ops;
14207 *ops = bkpt_breakpoint_ops;
14208 ops->allocate_location = allocate_location_catch_exception_unhandled;
14209 ops->re_set = re_set_catch_exception_unhandled;
14210 ops->check_status = check_status_catch_exception_unhandled;
14211 ops->print_it = print_it_catch_exception_unhandled;
14212 ops->print_one = print_one_catch_exception_unhandled;
14213 ops->print_mention = print_mention_catch_exception_unhandled;
14214 ops->print_recreate = print_recreate_catch_exception_unhandled;
14216 ops = &catch_assert_breakpoint_ops;
14217 *ops = bkpt_breakpoint_ops;
14218 ops->allocate_location = allocate_location_catch_assert;
14219 ops->re_set = re_set_catch_assert;
14220 ops->check_status = check_status_catch_assert;
14221 ops->print_it = print_it_catch_assert;
14222 ops->print_one = print_one_catch_assert;
14223 ops->print_mention = print_mention_catch_assert;
14224 ops->print_recreate = print_recreate_catch_assert;
14227 /* This module's 'new_objfile' observer. */
14230 ada_new_objfile_observer (struct objfile *objfile)
14232 ada_clear_symbol_cache ();
14235 /* This module's 'free_objfile' observer. */
14238 ada_free_objfile_observer (struct objfile *objfile)
14240 ada_clear_symbol_cache ();
14244 _initialize_ada_language (void)
14246 initialize_ada_catchpoint_ops ();
14248 add_prefix_cmd ("ada", no_class, set_ada_command,
14249 _("Prefix command for changing Ada-specfic settings"),
14250 &set_ada_list, "set ada ", 0, &setlist);
14252 add_prefix_cmd ("ada", no_class, show_ada_command,
14253 _("Generic command for showing Ada-specific settings."),
14254 &show_ada_list, "show ada ", 0, &showlist);
14256 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14257 &trust_pad_over_xvs, _("\
14258 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14259 Show whether an optimization trusting PAD types over XVS types is activated"),
14261 This is related to the encoding used by the GNAT compiler. The debugger\n\
14262 should normally trust the contents of PAD types, but certain older versions\n\
14263 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14264 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14265 work around this bug. It is always safe to turn this option \"off\", but\n\
14266 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14267 this option to \"off\" unless necessary."),
14268 NULL, NULL, &set_ada_list, &show_ada_list);
14270 add_setshow_boolean_cmd ("print-signatures", class_vars,
14271 &print_signatures, _("\
14272 Enable or disable the output of formal and return types for functions in the \
14273 overloads selection menu"), _("\
14274 Show whether the output of formal and return types for functions in the \
14275 overloads selection menu is activated"),
14276 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14278 add_catch_command ("exception", _("\
14279 Catch Ada exceptions, when raised.\n\
14280 With an argument, catch only exceptions with the given name."),
14281 catch_ada_exception_command,
14285 add_catch_command ("assert", _("\
14286 Catch failed Ada assertions, when raised.\n\
14287 With an argument, catch only exceptions with the given name."),
14288 catch_assert_command,
14293 varsize_limit = 65536;
14295 add_info ("exceptions", info_exceptions_command,
14297 List all Ada exception names.\n\
14298 If a regular expression is passed as an argument, only those matching\n\
14299 the regular expression are listed."));
14301 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14302 _("Set Ada maintenance-related variables."),
14303 &maint_set_ada_cmdlist, "maintenance set ada ",
14304 0/*allow-unknown*/, &maintenance_set_cmdlist);
14306 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14307 _("Show Ada maintenance-related variables"),
14308 &maint_show_ada_cmdlist, "maintenance show ada ",
14309 0/*allow-unknown*/, &maintenance_show_cmdlist);
14311 add_setshow_boolean_cmd
14312 ("ignore-descriptive-types", class_maintenance,
14313 &ada_ignore_descriptive_types_p,
14314 _("Set whether descriptive types generated by GNAT should be ignored."),
14315 _("Show whether descriptive types generated by GNAT should be ignored."),
14317 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14318 DWARF attribute."),
14319 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14321 decoded_names_store = htab_create_alloc
14322 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14323 NULL, xcalloc, xfree);
14325 /* The ada-lang observers. */
14326 observer_attach_new_objfile (ada_new_objfile_observer);
14327 observer_attach_free_objfile (ada_free_objfile_observer);
14328 observer_attach_inferior_exit (ada_inferior_exit);
14330 /* Setup various context-specific data. */
14332 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14333 ada_pspace_data_handle
14334 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);