1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static bool wild_match (const char *name, const char *patn);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
232 static int ada_is_direct_array_type (struct type *);
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
237 static struct value *ada_index_struct_field (int, struct value *, int,
240 static struct value *assign_aggregate (struct value *, struct value *,
244 static void aggregate_assign_from_choices (struct value *, struct value *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
249 static void aggregate_assign_positional (struct value *, struct value *,
251 int *, LONGEST *, int *, int,
255 static void aggregate_assign_others (struct value *, struct value *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 static void ada_forward_operator_length (struct expression *, int, int *,
269 static struct type *ada_find_any_type (const char *name);
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
276 /* The result of a symbol lookup to be stored in our symbol cache. */
280 /* The name used to perform the lookup. */
282 /* The namespace used during the lookup. */
284 /* The symbol returned by the lookup, or NULL if no matching symbol
287 /* The block where the symbol was found, or NULL if no matching
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
303 #define HASH_SIZE 1009
305 struct ada_symbol_cache
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
319 static const char ada_completer_word_break_characters[] =
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Maintenance-related settings for this module. */
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
350 /* Implement the "maintenance set ada" (prefix) command. */
353 maint_set_ada_cmd (const char *args, int from_tty)
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 /* Implement the "maintenance show ada" (prefix) command. */
362 maint_show_ada_cmd (const char *args, int from_tty)
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369 static int ada_ignore_descriptive_types_p = 0;
371 /* Inferior-specific data. */
373 /* Per-inferior data for this module. */
375 struct ada_inferior_data
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
386 const struct exception_support_info *exception_info;
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
392 /* A cleanup routine for our inferior data. */
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 struct ada_inferior_data *data;
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
403 /* Return our inferior data for the given inferior (INF).
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
414 struct ada_inferior_data *data;
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
430 ada_inferior_exit (struct inferior *inf)
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
437 /* program-space-specific data. */
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
452 This function always returns a valid object. */
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
457 struct ada_pspace_data *data;
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
470 /* The cleanup callback for this module's per-program-space data. */
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
512 ada_typedef_target_type (struct type *type)
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
524 ada_unqualified_name (const char *decoded_name)
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
535 result = strrchr (decoded_name, '.');
537 result++; /* Skip the dot... */
539 result = decoded_name;
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
548 add_angle_brackets (const char *str)
550 static char *result = NULL;
553 result = xstrprintf ("<%s>", str);
558 ada_get_gdb_completer_word_break_characters (void)
560 return ada_completer_word_break_characters;
563 /* Print an array element index using the Ada syntax. */
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
580 if (*size < min_size)
583 if (*size < min_size)
585 vect = xrealloc (vect, *size * element_size);
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
594 field_name_match (const char *field_name, const char *target)
596 int len = strlen (target);
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
616 ada_get_field_index (const struct type *type, const char *field_name,
620 struct type *struct_type = check_typedef ((struct type *) type);
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
633 /* The length of the prefix of NAME prior to any "___" suffix. */
636 ada_name_prefix_len (const char *name)
642 const char *p = strstr (name, "___");
645 return strlen (name);
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
655 is_suffix (const char *str, const char *suffix)
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
677 struct value *result;
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
705 return valaddr + offset;
709 cond_offset_target (CORE_ADDR address, long offset)
714 return address + offset;
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
727 lim_warning (const char *format, ...)
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
744 ada_ensure_varsize_limit (const struct type *type)
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
750 /* Maximum value of a SIZE-byte signed integer type. */
752 max_of_size (int size)
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
756 return top_bit | (top_bit - 1);
759 /* Minimum value of a SIZE-byte signed integer type. */
761 min_of_size (int size)
763 return -max_of_size (size) - 1;
766 /* Maximum value of a SIZE-byte unsigned integer type. */
768 umax_of_size (int size)
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
772 return top_bit | (top_bit - 1);
775 /* Maximum value of integral type T, as a signed quantity. */
777 max_of_type (struct type *t)
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
782 return max_of_size (TYPE_LENGTH (t));
785 /* Minimum value of integral type T, as a signed quantity. */
787 min_of_type (struct type *t)
789 if (TYPE_UNSIGNED (t))
792 return min_of_size (TYPE_LENGTH (t));
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
797 ada_discrete_type_high_bound (struct type *type)
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 return max_of_type (type);
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
818 ada_discrete_type_low_bound (struct type *type)
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
826 return TYPE_FIELD_ENUMVAL (type, 0);
831 return min_of_type (type);
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
841 get_base_type (struct type *type)
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
847 type = TYPE_TARGET_TYPE (type);
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
858 ada_get_decoded_value (struct value *value)
860 struct type *type = ada_check_typedef (value_type (value));
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
869 value = ada_coerce_to_simple_array (value);
872 value = ada_to_fixed_value (value);
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
883 ada_get_decoded_type (struct type *type)
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
893 /* Language Selection */
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
899 ada_update_initial_language (enum language lang)
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
925 if (msym.minsym != NULL)
927 CORE_ADDR main_program_name_addr;
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
934 target_read_string (main_program_name_addr, &main_program_name,
939 return main_program_name.get ();
942 /* The main procedure doesn't seem to be in Ada. */
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
982 ada_encode_1 (const char *decoded, bool throw_errors)
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
996 for (p = decoded; *p != '\0'; p += 1)
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 const struct ada_opname_map *mapping;
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1011 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1024 encoding_buffer[k] = *p;
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1037 ada_encode (const char *decoded)
1039 return ada_encode_1 (decoded, true);
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1047 ada_fold_name (const char *name)
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1055 if (name[0] == '\'')
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1074 is_lower_alphanum (const char c)
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1098 while (i > 0 && isdigit (encoded[i]))
1100 if (i >= 0 && encoded[i] == '.')
1102 else if (i >= 0 && encoded[i] == '$')
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 /* Remove the suffix introduced by the compiler for protected object
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1117 /* Remove trailing N. */
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1143 if (encoded[i] != 'X')
1149 if (isalnum (encoded[i-1]))
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1162 ada_decode (const char *encoded)
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1184 len0 = strlen (encoded);
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1222 /* Make decoded big enough for possible expansion by operator name. */
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1237 else if (encoded[i] == '$')
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1260 && !isalnum (encoded[i + op_len]))
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1265 j += strlen (ada_opname_table[k].decoded);
1269 if (ada_opname_table[k].encoded != NULL)
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1299 /* Remove _E{DIGITS}+[sb] */
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1317 while (k < len0 && isdigit (encoded[k]))
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1328 || (k < len0 && encoded[k] == '_'))
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1368 /* Replace '__' by '.'. */
1376 /* It's a character part of the decoded name, so just copy it
1378 decoded[j] = encoded[i];
1383 decoded[j] = '\000';
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1392 if (strcmp (decoded, encoded) == 0)
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1432 if (!gsymbol->ada_mangled)
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1437 gsymbol->ada_mangled = 1;
1439 if (obstack != NULL)
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1453 *slot = xstrdup (decoded);
1462 ada_la_decode (const char *encoded, int options)
1464 return xstrdup (ada_decode (encoded));
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1472 const char *demangled = ada_decode (mangled);
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1538 if (index_desc_type == NULL)
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1572 /* Maximum number of array dimensions we are prepared to handle. */
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1577 /* The desc_* routines return primitive portions of array descriptors
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1583 static struct type *
1584 desc_base_type (struct type *type)
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1603 is_thin_pntr (struct type *type)
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1610 /* The descriptor type for thin pointer type TYPE. */
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1615 struct type *base_type = desc_base_type (type);
1617 if (base_type == NULL)
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1625 if (alt_type == NULL)
1632 /* A pointer to the array data for thin-pointer value VAL. */
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1640 data_type = lookup_pointer_type (data_type);
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1645 return value_from_longest (data_type, value_address (val));
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1651 is_thick_pntr (struct type *type)
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1666 type = desc_base_type (type);
1670 else if (is_thin_pntr (type))
1672 type = thin_descriptor_type (type);
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1677 return ada_check_typedef (r);
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1691 static struct value *
1692 desc_bounds (struct value *arr)
1694 struct type *type = ada_check_typedef (value_type (arr));
1696 if (is_thin_pntr (type))
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1711 addr = value_address (arr);
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1718 else if (is_thick_pntr (type))
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1735 error (_("Bad GNAT array descriptor"));
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1747 fat_pntr_bounds_bitpos (struct type *type)
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1756 fat_pntr_bounds_bitsize (struct type *type)
1758 type = desc_base_type (type);
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1774 type = desc_base_type (type);
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1794 static struct value *
1795 desc_data (struct value *arr)
1797 struct type *type = value_type (arr);
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1813 fat_pntr_data_bitpos (struct type *type)
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1822 fat_pntr_data_bitsize (struct type *type)
1824 type = desc_base_type (type);
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1848 desc_bound_bitpos (struct type *type, int i, int which)
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1858 desc_bound_bitsize (struct type *type, int i, int which)
1860 type = desc_base_type (type);
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1874 type = desc_base_type (type);
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1886 desc_arity (struct type *type)
1888 type = desc_base_type (type);
1891 return TYPE_NFIELDS (type) / 2;
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1900 ada_is_direct_array_type (struct type *type)
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1913 ada_is_array_type (struct type *type)
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1925 ada_is_simple_array_type (struct type *type)
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1939 ada_is_array_descriptor_type (struct type *type)
1941 struct type *data_type = desc_data_target_type (type);
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1957 ada_is_bogus_array_descriptor (struct type *type)
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1976 ada_type_of_array (struct value *arr, int bounds)
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1997 struct type *elt_type;
1999 struct value *descriptor;
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 return lookup_pointer_type (elt_type);
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2059 struct type *arrType = ada_type_of_array (arr, 1);
2061 if (arrType == NULL)
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2076 ada_coerce_to_simple_array (struct value *arr)
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2098 ada_coerce_to_simple_array_type (struct type *type)
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2112 ada_is_packed_array_type (struct type *type)
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2127 ada_is_constrained_packed_array_type (struct type *type)
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2147 decode_packed_array_bitsize (struct type *type)
2149 const char *raw_name;
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2159 raw_name = ada_type_name (ada_check_typedef (type));
2161 raw_name = ada_type_name (desc_base_type (type));
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2172 (_("could not understand bit size information on packed array"));
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2214 index_type = TYPE_INDEX_TYPE (type);
2216 new_type = alloc_type_copy (type);
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2250 struct type *shadow_type;
2254 raw_name = ada_type_name (desc_base_type (type));
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2268 if (shadow_type == NULL)
2270 lim_warning (_("could not find bounds information on packed array"));
2273 shadow_type = check_typedef (shadow_type);
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2308 type = decode_constrained_packed_array_type (value_type (arr));
2311 error (_("can't unpack array"));
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2325 mod = ada_modulus (value_type (arr)) - 1;
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2340 return coerce_unspec_val_to_type (arr, type);
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 /* Non-zero iff TYPE includes negative integer values. */
2398 has_negatives (struct type *type)
2400 switch (TYPE_CODE (type))
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2462 src_idx = src_len - 1;
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2474 unpacked_idx = unpacked_len - 1;
2478 /* Non-scalar values must be aligned at a byte boundary... */
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 while (src_bytes_left > 0)
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2523 src_bytes_left -= 1;
2526 while (unpacked_bytes_left > 0)
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2554 const gdb_byte *src; /* First byte containing data to unpack */
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2560 type = ada_check_typedef (type);
2563 src = valaddr + offset;
2565 src = value_contents (obj) + offset;
2567 if (is_dynamic_type (type))
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2620 long new_offset = offset;
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2630 set_value_offset (v, new_offset);
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2646 if (staging.size () == TYPE_LENGTH (type))
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2677 accum = (unsigned char) *source;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2697 accum_bits -= chunk_size;
2704 accum = (unsigned char) *source >> src_offset;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2749 if (VALUE_LVAL (toval) == lval_memory
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2759 CORE_ADDR to_addr = value_address (toval);
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2784 return value_assign (toval, fromval);
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2800 value_assign_to_component (struct value *container, struct value *component,
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2809 val = value_cast (value_type (component), val);
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2814 bits = value_bitsize (component);
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2837 struct type *elt_type;
2839 elt = ada_coerce_to_simple_array (arr);
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2846 for (k = 0; k < arity; k += 1)
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2871 struct value *array_ind = ada_value_ind (arr);
2873 = check_typedef (value_enclosing_type (array_ind));
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2879 for (k = 0; k < arity; k += 1)
2882 struct value *lwb_value;
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2894 return value_ind (arr);
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2920 warning (_("unable to get positions in slice, use bounds instead"));
2922 base_low_pos = base_low;
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2948 warning (_("unable to get positions in slice, use bounds instead"));
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2963 ada_array_arity (struct type *type)
2970 type = desc_base_type (type);
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2991 ada_array_element_type (struct type *type, int nindices)
2993 type = desc_base_type (type);
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2998 struct type *p_array_type;
3000 p_array_type = desc_data_target_type (type);
3002 k = ada_array_arity (type);
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3009 while (k > 0 && p_array_type != NULL)
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3014 return p_array_type;
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 type = TYPE_TARGET_TYPE (type);
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3038 struct type *result_type;
3040 type = desc_base_type (type);
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3045 if (ada_is_simple_array_type (type))
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3077 struct type *type, *index_type_desc, *index_type;
3080 gdb_assert (which == 0 || which == 1);
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3093 if (TYPE_FIXED_INSTANCE (type))
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 struct type *elt_type = check_typedef (type);
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3131 ada_array_bound (struct value *arr, int n, int which)
3133 struct type *arr_type;
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3154 ada_array_length (struct value *arr, int n)
3156 struct type *arr_type, *index_type;
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3166 if (ada_is_simple_array_type (arr_type))
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3185 base_type = index_type;
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3190 return high - low + 1;
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 /* Name resolution */
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3215 ada_decoded_op_name (enum exp_opcode op)
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3224 error (_("Could not find operator name for opcode"));
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3238 resolve (expression_up *expp, int void_context_p)
3240 struct type *context_type = NULL;
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3246 resolve_subexp (expp, &pc, 1, context_type);
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3286 resolve_subexp (expp, pos, 0, NULL);
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3293 resolve_subexp (expp, pos, 0, NULL);
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 case OP_ATR_MODULUS:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3318 case OP_DISCRETE_RANGE:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3331 resolve_subexp (expp, pos, 1, NULL);
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3357 case BINOP_NOTEQUAL:
3364 case BINOP_SUBSCRIPT:
3372 case UNOP_LOGICAL_NOT:
3382 case OP_VAR_MSYM_VALUE:
3389 case OP_INTERNALVAR:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 error (_("Unexpected operator during name resolution"));
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3425 /* Pass two: perform any resolution on principal operator. */
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3434 struct block_symbol *candidates;
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3442 make_cleanup (xfree, candidates);
3444 if (n_candidates > 1)
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3456 case LOC_REGPARM_ADDR:
3464 if (j < n_candidates)
3467 while (j < n_candidates)
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 candidates[j] = candidates[n_candidates - 1];
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 innermost_block.update (candidates[i]);
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3525 struct block_symbol *candidates;
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
3533 make_cleanup (xfree, candidates);
3535 if (n_candidates == 1)
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 error (_("Could not find a match for %s"),
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 exp->elts[pc + 4].block = candidates[i].block;
3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
3551 innermost_block.update (candidates[i]);
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3566 case BINOP_NOTEQUAL:
3574 case UNOP_LOGICAL_NOT:
3576 if (possible_user_operator_p (op, argvec))
3578 struct block_symbol *candidates;
3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
3583 (struct block *) NULL, VAR_DOMAIN,
3585 make_cleanup (xfree, candidates);
3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3588 ada_decoded_op_name (op), NULL);
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
3601 do_cleanups (old_chain);
3606 do_cleanups (old_chain);
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3612 return evaluate_subexp_type (exp, pos);
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3618 /* The term "match" here is rather loose. The match is heuristic and
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3632 switch (TYPE_CODE (ftype))
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3668 case TYPE_CODE_UNION:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3683 struct type *func_type = SYMBOL_TYPE (func);
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3694 for (i = 0; i < n_actuals; i += 1)
3696 if (actuals[i] == NULL)
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3704 if (!ada_type_match (ftype, atype, 1))
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3717 return_match (struct type *func_type, struct type *context_type)
3719 struct type *return_type;
3721 if (func_type == NULL)
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3731 context_type = get_base_type (context_type);
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3761 int m; /* Number of hits */
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3769 for (k = 0; k < nsyms; k += 1)
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3788 else if (m > 1 && !parse_completion)
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3804 encoded_ordered_before (const char *N0, const char *N1)
3808 else if (N0 == NULL)
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3832 return (strcmp (N0, N1) < 0);
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3840 sort_choices (struct block_symbol syms[], int nsyms)
3844 for (i = 1; i < nsyms; i += 1)
3846 struct block_symbol sym = syms[i];
3849 for (j = i - 1; j >= 0; j -= 1)
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3854 syms[j + 1] = syms[j];
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3873 struct type *type = SYMBOL_TYPE (sym);
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3881 if (TYPE_NFIELDS (type) > 0)
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3893 fprintf_filtered (stream, ")");
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3915 int *chosen = XALLOCAVEC (int , nsyms);
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3925 if (select_mode == multiple_symbols_cancel)
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3940 sort_choices (syms, nsyms);
3942 for (i = 0; i < nsyms; i += 1)
3944 if (syms[i].symbol == NULL)
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4003 symtab_to_filename_for_display (symtab));
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4032 The user is not allowed to choose more than MAX_RESULTS values.
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, const char *annotation_suffix)
4044 int first_choice = is_all_choice ? 2 : 1;
4046 prompt = getenv ("PS2");
4050 args = command_line_input (prompt, 0, annotation_suffix);
4053 error_no_arg (_("one or more choice numbers"));
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4077 error (_("cancelled"));
4079 if (choice < first_choice)
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4086 choice -= first_choice;
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4092 if (j < 0 || choice != choices[j])
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4114 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = expp->get ();
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4139 expp->reset (newexp);
4142 /* Type-class predicates */
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4148 numeric_type_p (struct type *type)
4154 switch (TYPE_CODE (type))
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4171 integer_type_p (struct type *type)
4177 switch (TYPE_CODE (type))
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4193 scalar_type_p (struct type *type)
4199 switch (TYPE_CODE (type))
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4215 discrete_type_p (struct type *type)
4221 switch (TYPE_CODE (type))
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4268 case BINOP_NOTEQUAL:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4283 case UNOP_LOGICAL_NOT:
4285 return (!numeric_type_p (type0));
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304 /* If SYM encodes a renaming,
4306 <renaming> renames <renamed entity>,
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4328 enum ada_renaming_category kind;
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4337 return ADA_NOT_RENAMING;
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 return ADA_NOT_RENAMING;
4351 kind = ADA_OBJECT_RENAMING;
4355 kind = ADA_EXCEPTION_RENAMING;
4359 kind = ADA_PACKAGE_RENAMING;
4363 kind = ADA_SUBPROGRAM_RENAMING;
4367 return ADA_NOT_RENAMING;
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4377 *len = strlen (info) - strlen (suffix);
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4393 enum ada_renaming_category kind;
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4402 name = type_name_no_tag (type);
4404 return ADA_NOT_RENAMING;
4406 name = strstr (name, "___XR");
4408 return ADA_NOT_RENAMING;
4413 kind = ADA_OBJECT_RENAMING;
4416 kind = ADA_EXCEPTION_RENAMING;
4419 kind = ADA_PACKAGE_RENAMING;
4422 kind = ADA_SUBPROGRAM_RENAMING;
4425 return ADA_NOT_RENAMING;
4428 info = TYPE_FIELD_NAME (type, 0);
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4439 *len = suffix - info;
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4451 const char *sym_name;
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4459 /* Evaluation: Function Calls */
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4465 static struct value *
4466 ensure_lval (struct value *val)
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4506 struct value *result;
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4513 if (VALUE_LVAL (actual) != lval_memory)
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4524 result = value_addr (actual);
4528 return value_cast_pointers (formal_type, result, 0);
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4534 /* We need to turn this parameter into an aligner type
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539 value_assign_to_component (aligner, component, actual);
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4552 value_pointer (struct value *value, struct type *type)
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4594 bounds = ensure_lval (bounds);
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4610 descriptor = ensure_lval (descriptor);
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4618 /* Symbol Cache Module */
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4630 /* Initialize the contents of SYM_CACHE. */
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4639 /* Free the memory used by SYM_CACHE. */
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4644 obstack_free (&sym_cache->cache_space, NULL);
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4656 if (pspace_data->sym_cache == NULL)
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4662 return pspace_data->sym_cache;
4665 /* Clear all entries from the symbol cache. */
4668 ada_clear_symbol_cache (void)
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4706 struct cache_entry **e = find_entry (name, domain);
4713 *block = (*e)->block;
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4728 struct cache_entry *e;
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4752 strcpy (copy, name);
4760 /* Return the symbol name match type that should be used used when
4761 searching for all symbols matching LOOKUP_NAME.
4763 LOOKUP_NAME is expected to be a symbol name after transformation
4766 static symbol_name_match_type
4767 name_match_type_from_name (const char *lookup_name)
4769 return (strstr (lookup_name, "__") == NULL
4770 ? symbol_name_match_type::WILD
4771 : symbol_name_match_type::FULL);
4774 /* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4777 static struct symbol *
4778 standard_lookup (const char *name, const struct block *block,
4781 /* Initialize it just to avoid a GCC false warning. */
4782 struct block_symbol sym = {NULL, NULL};
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4792 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4796 is_nonfunction (struct block_symbol syms[], int n)
4800 for (i = 0; i < n; i += 1)
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4809 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4810 struct types. Otherwise, they may not. */
4813 equiv_types (struct type *type0, struct type *type1)
4817 if (type0 == NULL || type1 == NULL
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4829 /* True iff SYM0 represents the same entity as SYM1, or one that is
4830 no more defined than that of SYM1. */
4833 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4841 switch (SYMBOL_CLASS (sym0))
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4851 int len0 = strlen (name0);
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4857 && startswith (name1 + len0, "___XV")));
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4867 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4871 add_defn_to_vec (struct obstack *obstackp,
4873 const struct block *block)
4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 prevDefns[i].symbol = sym;
4894 prevDefns[i].block = block;
4900 struct block_symbol info;
4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4908 /* Number of block_symbol structures currently collected in current vector in
4912 num_defns_collected (struct obstack *obstackp)
4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4917 /* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920 static struct block_symbol *
4921 defns_collected (struct obstack *obstackp, int finish)
4924 return (struct block_symbol *) obstack_finish (obstackp);
4926 return (struct block_symbol *) obstack_base (obstackp);
4929 /* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4935 struct bound_minimal_symbol
4936 ada_lookup_simple_minsym (const char *name)
4938 struct bound_minimal_symbol result;
4939 struct objfile *objfile;
4940 struct minimal_symbol *msymbol;
4942 memset (&result, 0, sizeof (result));
4944 symbol_name_match_type match_type = name_match_type_from_name (name);
4945 lookup_name_info lookup_name (name, match_type);
4947 symbol_name_matcher_ftype *match_name
4948 = ada_get_symbol_name_matcher (lookup_name);
4950 ALL_MSYMBOLS (objfile, msymbol)
4952 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4953 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4955 result.minsym = msymbol;
4956 result.objfile = objfile;
4964 /* For all subprograms that statically enclose the subprogram of the
4965 selected frame, add symbols matching identifier NAME in DOMAIN
4966 and their blocks to the list of data in OBSTACKP, as for
4967 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4968 with a wildcard prefix. */
4971 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4972 const lookup_name_info &lookup_name,
4977 /* True if TYPE is definitely an artificial type supplied to a symbol
4978 for which no debugging information was given in the symbol file. */
4981 is_nondebugging_type (struct type *type)
4983 const char *name = ada_type_name (type);
4985 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4988 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4989 that are deemed "identical" for practical purposes.
4991 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4992 types and that their number of enumerals is identical (in other
4993 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4996 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5000 /* The heuristic we use here is fairly conservative. We consider
5001 that 2 enumerate types are identical if they have the same
5002 number of enumerals and that all enumerals have the same
5003 underlying value and name. */
5005 /* All enums in the type should have an identical underlying value. */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5010 /* All enumerals should also have the same name (modulo any numerical
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5015 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5016 int len_1 = strlen (name_1);
5017 int len_2 = strlen (name_2);
5019 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 || strncmp (TYPE_FIELD_NAME (type1, i),
5023 TYPE_FIELD_NAME (type2, i),
5031 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5032 that are deemed "identical" for practical purposes. Sometimes,
5033 enumerals are not strictly identical, but their types are so similar
5034 that they can be considered identical.
5036 For instance, consider the following code:
5038 type Color is (Black, Red, Green, Blue, White);
5039 type RGB_Color is new Color range Red .. Blue;
5041 Type RGB_Color is a subrange of an implicit type which is a copy
5042 of type Color. If we call that implicit type RGB_ColorB ("B" is
5043 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5044 As a result, when an expression references any of the enumeral
5045 by name (Eg. "print green"), the expression is technically
5046 ambiguous and the user should be asked to disambiguate. But
5047 doing so would only hinder the user, since it wouldn't matter
5048 what choice he makes, the outcome would always be the same.
5049 So, for practical purposes, we consider them as the same. */
5052 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5056 /* Before performing a thorough comparison check of each type,
5057 we perform a series of inexpensive checks. We expect that these
5058 checks will quickly fail in the vast majority of cases, and thus
5059 help prevent the unnecessary use of a more expensive comparison.
5060 Said comparison also expects us to make some of these checks
5061 (see ada_identical_enum_types_p). */
5063 /* Quick check: All symbols should have an enum type. */
5064 for (i = 0; i < nsyms; i++)
5065 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5068 /* Quick check: They should all have the same value. */
5069 for (i = 1; i < nsyms; i++)
5070 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5073 /* Quick check: They should all have the same number of enumerals. */
5074 for (i = 1; i < nsyms; i++)
5075 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5076 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5079 /* All the sanity checks passed, so we might have a set of
5080 identical enumeration types. Perform a more complete
5081 comparison of the type of each symbol. */
5082 for (i = 1; i < nsyms; i++)
5083 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5084 SYMBOL_TYPE (syms[0].symbol)))
5090 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5091 duplicate other symbols in the list (The only case I know of where
5092 this happens is when object files containing stabs-in-ecoff are
5093 linked with files containing ordinary ecoff debugging symbols (or no
5094 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5095 Returns the number of items in the modified list. */
5098 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5102 /* We should never be called with less than 2 symbols, as there
5103 cannot be any extra symbol in that case. But it's easy to
5104 handle, since we have nothing to do in that case. */
5113 /* If two symbols have the same name and one of them is a stub type,
5114 the get rid of the stub. */
5116 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5117 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5119 for (j = 0; j < nsyms; j++)
5122 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5124 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5125 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5130 /* Two symbols with the same name, same class and same address
5131 should be identical. */
5133 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5134 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5135 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5137 for (j = 0; j < nsyms; j += 1)
5140 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5141 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5142 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5143 && SYMBOL_CLASS (syms[i].symbol)
5144 == SYMBOL_CLASS (syms[j].symbol)
5145 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5146 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5153 for (j = i + 1; j < nsyms; j += 1)
5154 syms[j - 1] = syms[j];
5161 /* If all the remaining symbols are identical enumerals, then
5162 just keep the first one and discard the rest.
5164 Unlike what we did previously, we do not discard any entry
5165 unless they are ALL identical. This is because the symbol
5166 comparison is not a strict comparison, but rather a practical
5167 comparison. If all symbols are considered identical, then
5168 we can just go ahead and use the first one and discard the rest.
5169 But if we cannot reduce the list to a single element, we have
5170 to ask the user to disambiguate anyways. And if we have to
5171 present a multiple-choice menu, it's less confusing if the list
5172 isn't missing some choices that were identical and yet distinct. */
5173 if (symbols_are_identical_enums (syms, nsyms))
5179 /* Given a type that corresponds to a renaming entity, use the type name
5180 to extract the scope (package name or function name, fully qualified,
5181 and following the GNAT encoding convention) where this renaming has been
5185 xget_renaming_scope (struct type *renaming_type)
5187 /* The renaming types adhere to the following convention:
5188 <scope>__<rename>___<XR extension>.
5189 So, to extract the scope, we search for the "___XR" extension,
5190 and then backtrack until we find the first "__". */
5192 const char *name = type_name_no_tag (renaming_type);
5193 const char *suffix = strstr (name, "___XR");
5196 /* Now, backtrack a bit until we find the first "__". Start looking
5197 at suffix - 3, as the <rename> part is at least one character long. */
5199 for (last = suffix - 3; last > name; last--)
5200 if (last[0] == '_' && last[1] == '_')
5203 /* Make a copy of scope and return it. */
5204 return std::string (name, last);
5207 /* Return nonzero if NAME corresponds to a package name. */
5210 is_package_name (const char *name)
5212 /* Here, We take advantage of the fact that no symbols are generated
5213 for packages, while symbols are generated for each function.
5214 So the condition for NAME represent a package becomes equivalent
5215 to NAME not existing in our list of symbols. There is only one
5216 small complication with library-level functions (see below). */
5220 /* If it is a function that has not been defined at library level,
5221 then we should be able to look it up in the symbols. */
5222 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5225 /* Library-level function names start with "_ada_". See if function
5226 "_ada_" followed by NAME can be found. */
5228 /* Do a quick check that NAME does not contain "__", since library-level
5229 functions names cannot contain "__" in them. */
5230 if (strstr (name, "__") != NULL)
5233 fun_name = xstrprintf ("_ada_%s", name);
5235 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5238 /* Return nonzero if SYM corresponds to a renaming entity that is
5239 not visible from FUNCTION_NAME. */
5242 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5244 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5247 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5249 /* If the rename has been defined in a package, then it is visible. */
5250 if (is_package_name (scope.c_str ()))
5253 /* Check that the rename is in the current function scope by checking
5254 that its name starts with SCOPE. */
5256 /* If the function name starts with "_ada_", it means that it is
5257 a library-level function. Strip this prefix before doing the
5258 comparison, as the encoding for the renaming does not contain
5260 if (startswith (function_name, "_ada_"))
5263 return !startswith (function_name, scope.c_str ());
5266 /* Remove entries from SYMS that corresponds to a renaming entity that
5267 is not visible from the function associated with CURRENT_BLOCK or
5268 that is superfluous due to the presence of more specific renaming
5269 information. Places surviving symbols in the initial entries of
5270 SYMS and returns the number of surviving symbols.
5273 First, in cases where an object renaming is implemented as a
5274 reference variable, GNAT may produce both the actual reference
5275 variable and the renaming encoding. In this case, we discard the
5278 Second, GNAT emits a type following a specified encoding for each renaming
5279 entity. Unfortunately, STABS currently does not support the definition
5280 of types that are local to a given lexical block, so all renamings types
5281 are emitted at library level. As a consequence, if an application
5282 contains two renaming entities using the same name, and a user tries to
5283 print the value of one of these entities, the result of the ada symbol
5284 lookup will also contain the wrong renaming type.
5286 This function partially covers for this limitation by attempting to
5287 remove from the SYMS list renaming symbols that should be visible
5288 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5289 method with the current information available. The implementation
5290 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5292 - When the user tries to print a rename in a function while there
5293 is another rename entity defined in a package: Normally, the
5294 rename in the function has precedence over the rename in the
5295 package, so the latter should be removed from the list. This is
5296 currently not the case.
5298 - This function will incorrectly remove valid renames if
5299 the CURRENT_BLOCK corresponds to a function which symbol name
5300 has been changed by an "Export" pragma. As a consequence,
5301 the user will be unable to print such rename entities. */
5304 remove_irrelevant_renamings (struct block_symbol *syms,
5305 int nsyms, const struct block *current_block)
5307 struct symbol *current_function;
5308 const char *current_function_name;
5310 int is_new_style_renaming;
5312 /* If there is both a renaming foo___XR... encoded as a variable and
5313 a simple variable foo in the same block, discard the latter.
5314 First, zero out such symbols, then compress. */
5315 is_new_style_renaming = 0;
5316 for (i = 0; i < nsyms; i += 1)
5318 struct symbol *sym = syms[i].symbol;
5319 const struct block *block = syms[i].block;
5323 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5325 name = SYMBOL_LINKAGE_NAME (sym);
5326 suffix = strstr (name, "___XR");
5330 int name_len = suffix - name;
5333 is_new_style_renaming = 1;
5334 for (j = 0; j < nsyms; j += 1)
5335 if (i != j && syms[j].symbol != NULL
5336 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5338 && block == syms[j].block)
5339 syms[j].symbol = NULL;
5342 if (is_new_style_renaming)
5346 for (j = k = 0; j < nsyms; j += 1)
5347 if (syms[j].symbol != NULL)
5355 /* Extract the function name associated to CURRENT_BLOCK.
5356 Abort if unable to do so. */
5358 if (current_block == NULL)
5361 current_function = block_linkage_function (current_block);
5362 if (current_function == NULL)
5365 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5366 if (current_function_name == NULL)
5369 /* Check each of the symbols, and remove it from the list if it is
5370 a type corresponding to a renaming that is out of the scope of
5371 the current block. */
5376 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5377 == ADA_OBJECT_RENAMING
5378 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5382 for (j = i + 1; j < nsyms; j += 1)
5383 syms[j - 1] = syms[j];
5393 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5394 whose name and domain match NAME and DOMAIN respectively.
5395 If no match was found, then extend the search to "enclosing"
5396 routines (in other words, if we're inside a nested function,
5397 search the symbols defined inside the enclosing functions).
5398 If WILD_MATCH_P is nonzero, perform the naming matching in
5399 "wild" mode (see function "wild_match" for more info).
5401 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5404 ada_add_local_symbols (struct obstack *obstackp,
5405 const lookup_name_info &lookup_name,
5406 const struct block *block, domain_enum domain)
5408 int block_depth = 0;
5410 while (block != NULL)
5413 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5415 /* If we found a non-function match, assume that's the one. */
5416 if (is_nonfunction (defns_collected (obstackp, 0),
5417 num_defns_collected (obstackp)))
5420 block = BLOCK_SUPERBLOCK (block);
5423 /* If no luck so far, try to find NAME as a local symbol in some lexically
5424 enclosing subprogram. */
5425 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5426 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5429 /* An object of this type is used as the user_data argument when
5430 calling the map_matching_symbols method. */
5434 struct objfile *objfile;
5435 struct obstack *obstackp;
5436 struct symbol *arg_sym;
5440 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5441 to a list of symbols. DATA0 is a pointer to a struct match_data *
5442 containing the obstack that collects the symbol list, the file that SYM
5443 must come from, a flag indicating whether a non-argument symbol has
5444 been found in the current block, and the last argument symbol
5445 passed in SYM within the current block (if any). When SYM is null,
5446 marking the end of a block, the argument symbol is added if no
5447 other has been found. */
5450 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5452 struct match_data *data = (struct match_data *) data0;
5456 if (!data->found_sym && data->arg_sym != NULL)
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (data->arg_sym, data->objfile),
5460 data->found_sym = 0;
5461 data->arg_sym = NULL;
5465 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5467 else if (SYMBOL_IS_ARGUMENT (sym))
5468 data->arg_sym = sym;
5471 data->found_sym = 1;
5472 add_defn_to_vec (data->obstackp,
5473 fixup_symbol_section (sym, data->objfile),
5480 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5481 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5482 symbols to OBSTACKP. Return whether we found such symbols. */
5485 ada_add_block_renamings (struct obstack *obstackp,
5486 const struct block *block,
5487 const lookup_name_info &lookup_name,
5490 struct using_direct *renaming;
5491 int defns_mark = num_defns_collected (obstackp);
5493 symbol_name_matcher_ftype *name_match
5494 = ada_get_symbol_name_matcher (lookup_name);
5496 for (renaming = block_using (block);
5498 renaming = renaming->next)
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5513 renaming->searched = 1;
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5524 : renaming->declaration);
5525 if (name_match (r_name, lookup_name, NULL))
5527 lookup_name_info decl_lookup_name (renaming->declaration,
5528 lookup_name.match_type ());
5529 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5532 renaming->searched = 0;
5534 return num_defns_collected (obstackp) != defns_mark;
5537 /* Implements compare_names, but only applying the comparision using
5538 the given CASING. */
5541 compare_names_with_case (const char *string1, const char *string2,
5542 enum case_sensitivity casing)
5544 while (*string1 != '\0' && *string2 != '\0')
5548 if (isspace (*string1) || isspace (*string2))
5549 return strcmp_iw_ordered (string1, string2);
5551 if (casing == case_sensitive_off)
5553 c1 = tolower (*string1);
5554 c2 = tolower (*string2);
5571 return strcmp_iw_ordered (string1, string2);
5573 if (*string2 == '\0')
5575 if (is_name_suffix (string1))
5582 if (*string2 == '(')
5583 return strcmp_iw_ordered (string1, string2);
5586 if (casing == case_sensitive_off)
5587 return tolower (*string1) - tolower (*string2);
5589 return *string1 - *string2;
5594 /* Compare STRING1 to STRING2, with results as for strcmp.
5595 Compatible with strcmp_iw_ordered in that...
5597 strcmp_iw_ordered (STRING1, STRING2) <= 0
5601 compare_names (STRING1, STRING2) <= 0
5603 (they may differ as to what symbols compare equal). */
5606 compare_names (const char *string1, const char *string2)
5610 /* Similar to what strcmp_iw_ordered does, we need to perform
5611 a case-insensitive comparison first, and only resort to
5612 a second, case-sensitive, comparison if the first one was
5613 not sufficient to differentiate the two strings. */
5615 result = compare_names_with_case (string1, string2, case_sensitive_off);
5617 result = compare_names_with_case (string1, string2, case_sensitive_on);
5622 /* Convenience function to get at the Ada encoded lookup name for
5623 LOOKUP_NAME, as a C string. */
5626 ada_lookup_name (const lookup_name_info &lookup_name)
5628 return lookup_name.ada ().lookup_name ().c_str ();
5631 /* Add to OBSTACKP all non-local symbols whose name and domain match
5632 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5633 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5634 symbols otherwise. */
5637 add_nonlocal_symbols (struct obstack *obstackp,
5638 const lookup_name_info &lookup_name,
5639 domain_enum domain, int global)
5641 struct objfile *objfile;
5642 struct compunit_symtab *cu;
5643 struct match_data data;
5645 memset (&data, 0, sizeof data);
5646 data.obstackp = obstackp;
5648 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5650 ALL_OBJFILES (objfile)
5652 data.objfile = objfile;
5655 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5657 aux_add_nonlocal_symbols, &data,
5658 symbol_name_match_type::WILD,
5661 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5663 aux_add_nonlocal_symbols, &data,
5664 symbol_name_match_type::FULL,
5667 ALL_OBJFILE_COMPUNITS (objfile, cu)
5669 const struct block *global_block
5670 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5672 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5678 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5680 const char *name = ada_lookup_name (lookup_name);
5681 std::string name1 = std::string ("<_ada_") + name + '>';
5683 ALL_OBJFILES (objfile)
5685 data.objfile = objfile;
5686 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5688 aux_add_nonlocal_symbols,
5690 symbol_name_match_type::FULL,
5696 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5697 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5698 returning the number of matches. Add these to OBSTACKP.
5700 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5701 symbol match within the nest of blocks whose innermost member is BLOCK,
5702 is the one match returned (no other matches in that or
5703 enclosing blocks is returned). If there are any matches in or
5704 surrounding BLOCK, then these alone are returned.
5706 Names prefixed with "standard__" are handled specially:
5707 "standard__" is first stripped off (by the lookup_name
5708 constructor), and only static and global symbols are searched.
5710 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5711 to lookup global symbols. */
5714 ada_add_all_symbols (struct obstack *obstackp,
5715 const struct block *block,
5716 const lookup_name_info &lookup_name,
5719 int *made_global_lookup_p)
5723 if (made_global_lookup_p)
5724 *made_global_lookup_p = 0;
5726 /* Special case: If the user specifies a symbol name inside package
5727 Standard, do a non-wild matching of the symbol name without
5728 the "standard__" prefix. This was primarily introduced in order
5729 to allow the user to specifically access the standard exceptions
5730 using, for instance, Standard.Constraint_Error when Constraint_Error
5731 is ambiguous (due to the user defining its own Constraint_Error
5732 entity inside its program). */
5733 if (lookup_name.ada ().standard_p ())
5736 /* Check the non-global symbols. If we have ANY match, then we're done. */
5741 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5744 /* In the !full_search case we're are being called by
5745 ada_iterate_over_symbols, and we don't want to search
5747 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5749 if (num_defns_collected (obstackp) > 0 || !full_search)
5753 /* No non-global symbols found. Check our cache to see if we have
5754 already performed this search before. If we have, then return
5757 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5758 domain, &sym, &block))
5761 add_defn_to_vec (obstackp, sym, block);
5765 if (made_global_lookup_p)
5766 *made_global_lookup_p = 1;
5768 /* Search symbols from all global blocks. */
5770 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5772 /* Now add symbols from all per-file blocks if we've gotten no hits
5773 (not strictly correct, but perhaps better than an error). */
5775 if (num_defns_collected (obstackp) == 0)
5776 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5779 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5780 is non-zero, enclosing scope and in global scopes, returning the number of
5782 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5783 indicating the symbols found and the blocks and symbol tables (if
5784 any) in which they were found. This vector should be freed when
5787 When full_search is non-zero, any non-function/non-enumeral
5788 symbol match within the nest of blocks whose innermost member is BLOCK,
5789 is the one match returned (no other matches in that or
5790 enclosing blocks is returned). If there are any matches in or
5791 surrounding BLOCK, then these alone are returned.
5793 Names prefixed with "standard__" are handled specially: "standard__"
5794 is first stripped off, and only static and global symbols are searched. */
5797 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5798 const struct block *block,
5800 struct block_symbol **results,
5803 int syms_from_global_search;
5806 auto_obstack obstack;
5808 ada_add_all_symbols (&obstack, block, lookup_name,
5809 domain, full_search, &syms_from_global_search);
5811 ndefns = num_defns_collected (&obstack);
5813 results_size = obstack_object_size (&obstack);
5814 *results = (struct block_symbol *) malloc (results_size);
5815 memcpy (*results, defns_collected (&obstack, 1), results_size);
5817 ndefns = remove_extra_symbols (*results, ndefns);
5819 if (ndefns == 0 && full_search && syms_from_global_search)
5820 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5822 if (ndefns == 1 && full_search && syms_from_global_search)
5823 cache_symbol (ada_lookup_name (lookup_name), domain,
5824 (*results)[0].symbol, (*results)[0].block);
5826 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5831 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5832 in global scopes, returning the number of matches, and setting *RESULTS
5833 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5834 vector should be freed when no longer useful.
5836 See ada_lookup_symbol_list_worker for further details. */
5839 ada_lookup_symbol_list (const char *name, const struct block *block,
5840 domain_enum domain, struct block_symbol **results)
5842 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5843 lookup_name_info lookup_name (name, name_match_type);
5845 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5848 /* Implementation of the la_iterate_over_symbols method. */
5851 ada_iterate_over_symbols
5852 (const struct block *block, const lookup_name_info &name,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5857 struct block_symbol *results;
5858 struct cleanup *old_chain;
5860 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5861 old_chain = make_cleanup (xfree, results);
5863 for (i = 0; i < ndefs; ++i)
5865 if (!callback (results[i].symbol))
5869 do_cleanups (old_chain);
5872 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5873 to 1, but choosing the first symbol found if there are multiple
5876 The result is stored in *INFO, which must be non-NULL.
5877 If no match is found, INFO->SYM is set to NULL. */
5880 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5882 struct block_symbol *info)
5884 /* Since we already have an encoded name, wrap it in '<>' to force a
5885 verbatim match. Otherwise, if the name happens to not look like
5886 an encoded name (because it doesn't include a "__"),
5887 ada_lookup_name_info would re-encode/fold it again, and that
5888 would e.g., incorrectly lowercase object renaming names like
5889 "R28b" -> "r28b". */
5890 std::string verbatim = std::string ("<") + name + '>';
5892 gdb_assert (info != NULL);
5893 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5896 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5897 scope and in global scopes, or NULL if none. NAME is folded and
5898 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5899 choosing the first symbol if there are multiple choices.
5900 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5903 ada_lookup_symbol (const char *name, const struct block *block0,
5904 domain_enum domain, int *is_a_field_of_this)
5906 if (is_a_field_of_this != NULL)
5907 *is_a_field_of_this = 0;
5909 struct block_symbol *candidates;
5911 struct cleanup *old_chain;
5913 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5914 old_chain = make_cleanup (xfree, candidates);
5916 if (n_candidates == 0)
5918 do_cleanups (old_chain);
5922 block_symbol info = candidates[0];
5923 info.symbol = fixup_symbol_section (info.symbol, NULL);
5925 do_cleanups (old_chain);
5930 static struct block_symbol
5931 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const struct block *block,
5934 const domain_enum domain)
5936 struct block_symbol sym;
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5939 if (sym.symbol != NULL)
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5954 if (domain == VAR_DOMAIN)
5956 struct gdbarch *gdbarch;
5959 gdbarch = target_gdbarch ();
5961 gdbarch = block_gdbarch (block);
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
5967 return (struct block_symbol) {NULL, NULL};
5971 /* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5974 are given by any of the regular expressions:
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5978 TKB [subprogram suffix for task bodies]
5979 _E[0-9]+[bs]$ [protected object entry suffixes]
5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
5987 is_name_suffix (const char *str)
5990 const char *matching;
5991 const int len = strlen (str);
5993 /* Skip optional leading __[0-9]+. */
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5998 while (isdigit (str[0]))
6004 if (str[0] == '.' || str[0] == '$')
6007 while (isdigit (matching[0]))
6009 if (matching[0] == '\0')
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6018 while (isdigit (matching[0]))
6020 if (matching[0] == '\0')
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026 if (strcmp (str, "TKB") == 0)
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
6033 all entity names that end with an "N" as a name suffix causes
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
6037 Having a single character like this as a suffix carrying some
6038 information is a bit risky. Perhaps we should change the encoding
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6050 while (isdigit (matching[0]))
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
6065 while (str[0] != '_' && str[0] != '\0')
6067 if (str[0] != 'n' && str[0] != 'b')
6073 if (str[0] == '\000')
6078 if (str[1] != '_' || str[2] == '\000')
6082 if (strcmp (str + 3, "JM") == 0)
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
6089 if (strcmp (str + 3, "LJM") == 0)
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
6096 if (str[4] == 'R' && str[5] != 'T')
6100 if (!isdigit (str[2]))
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6107 if (str[0] == '$' && isdigit (str[1]))
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6117 /* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
6121 is_valid_name_for_wild_match (const char *name0)
6123 const char *decoded_name = ada_decode (name0);
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
6144 advance_wild_match (const char **namep, const char *name0, int target0)
6146 const char *name = *namep;
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6159 if (name == name0 + 5 && startswith (name0, "_ada"))
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6183 /* Return true iff NAME encodes a name of the form prefix.PATN.
6184 Ignores any informational suffixes of NAME (i.e., for which
6185 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6189 wild_match (const char *name, const char *patn)
6192 const char *name0 = name;
6196 const char *match = name;
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match == name0 || is_valid_name_for_wild_match (name0);
6206 if (name[-1] == '_')
6209 if (!advance_wild_match (&name, name0, *patn))
6214 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6215 any trailing suffixes that encode debugging information or leading
6216 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6217 information that is ignored). */
6220 full_match (const char *sym_name, const char *search_name)
6222 size_t search_name_len = strlen (search_name);
6224 if (strncmp (sym_name, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len))
6228 if (startswith (sym_name, "_ada_")
6229 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6230 && is_name_suffix (sym_name + search_name_len + 5))
6236 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6237 *defn_symbols, updating the list of symbols in OBSTACKP (if
6238 necessary). OBJFILE is the section containing BLOCK. */
6241 ada_add_block_symbols (struct obstack *obstackp,
6242 const struct block *block,
6243 const lookup_name_info &lookup_name,
6244 domain_enum domain, struct objfile *objfile)
6246 struct block_iterator iter;
6247 /* A matching argument symbol, if any. */
6248 struct symbol *arg_sym;
6249 /* Set true when we find a matching non-argument symbol. */
6255 for (sym = block_iter_match_first (block, lookup_name, &iter);
6257 sym = block_iter_match_next (lookup_name, &iter))
6259 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6260 SYMBOL_DOMAIN (sym), domain))
6262 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6264 if (SYMBOL_IS_ARGUMENT (sym))
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (sym, objfile),
6277 /* Handle renamings. */
6279 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6282 if (!found_sym && arg_sym != NULL)
6284 add_defn_to_vec (obstackp,
6285 fixup_symbol_section (arg_sym, objfile),
6289 if (!lookup_name.ada ().wild_match_p ())
6293 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6294 const char *name = ada_lookup_name.c_str ();
6295 size_t name_len = ada_lookup_name.size ();
6297 ALL_BLOCK_SYMBOLS (block, iter, sym)
6299 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6300 SYMBOL_DOMAIN (sym), domain))
6304 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6307 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6309 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6314 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6316 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6318 if (SYMBOL_IS_ARGUMENT (sym))
6323 add_defn_to_vec (obstackp,
6324 fixup_symbol_section (sym, objfile),
6332 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6333 They aren't parameters, right? */
6334 if (!found_sym && arg_sym != NULL)
6336 add_defn_to_vec (obstackp,
6337 fixup_symbol_section (arg_sym, objfile),
6344 /* Symbol Completion */
6349 ada_lookup_name_info::matches
6350 (const char *sym_name,
6351 symbol_name_match_type match_type,
6352 completion_match_result *comp_match_res) const
6355 const char *text = m_encoded_name.c_str ();
6356 size_t text_len = m_encoded_name.size ();
6358 /* First, test against the fully qualified name of the symbol. */
6360 if (strncmp (sym_name, text, text_len) == 0)
6363 if (match && !m_encoded_p)
6365 /* One needed check before declaring a positive match is to verify
6366 that iff we are doing a verbatim match, the decoded version
6367 of the symbol name starts with '<'. Otherwise, this symbol name
6368 is not a suitable completion. */
6369 const char *sym_name_copy = sym_name;
6370 bool has_angle_bracket;
6372 sym_name = ada_decode (sym_name);
6373 has_angle_bracket = (sym_name[0] == '<');
6374 match = (has_angle_bracket == m_verbatim_p);
6375 sym_name = sym_name_copy;
6378 if (match && !m_verbatim_p)
6380 /* When doing non-verbatim match, another check that needs to
6381 be done is to verify that the potentially matching symbol name
6382 does not include capital letters, because the ada-mode would
6383 not be able to understand these symbol names without the
6384 angle bracket notation. */
6387 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6392 /* Second: Try wild matching... */
6394 if (!match && m_wild_match_p)
6396 /* Since we are doing wild matching, this means that TEXT
6397 may represent an unqualified symbol name. We therefore must
6398 also compare TEXT against the unqualified name of the symbol. */
6399 sym_name = ada_unqualified_name (ada_decode (sym_name));
6401 if (strncmp (sym_name, text, text_len) == 0)
6405 /* Finally: If we found a match, prepare the result to return. */
6410 if (comp_match_res != NULL)
6412 std::string &match_str = comp_match_res->match.storage ();
6415 match_str = ada_decode (sym_name);
6419 match_str = add_angle_brackets (sym_name);
6421 match_str = sym_name;
6425 comp_match_res->set_match (match_str.c_str ());
6431 /* Add the list of possible symbol names completing TEXT to TRACKER.
6432 WORD is the entire command on which completion is made. */
6435 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6436 complete_symbol_mode mode,
6437 symbol_name_match_type name_match_type,
6438 const char *text, const char *word,
6439 enum type_code code)
6442 struct compunit_symtab *s;
6443 struct minimal_symbol *msymbol;
6444 struct objfile *objfile;
6445 const struct block *b, *surrounding_static_block = 0;
6446 struct block_iterator iter;
6447 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6449 gdb_assert (code == TYPE_CODE_UNDEF);
6451 lookup_name_info lookup_name (text, name_match_type, true);
6453 /* First, look at the partial symtab symbols. */
6454 expand_symtabs_matching (NULL,
6460 /* At this point scan through the misc symbol vectors and add each
6461 symbol you find to the list. Eventually we want to ignore
6462 anything that isn't a text symbol (everything else will be
6463 handled by the psymtab code above). */
6465 ALL_MSYMBOLS (objfile, msymbol)
6469 if (completion_skip_symbol (mode, msymbol))
6472 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6474 /* Ada minimal symbols won't have their language set to Ada. If
6475 we let completion_list_add_name compare using the
6476 default/C-like matcher, then when completing e.g., symbols in a
6477 package named "pck", we'd match internal Ada symbols like
6478 "pckS", which are invalid in an Ada expression, unless you wrap
6479 them in '<' '>' to request a verbatim match.
6481 Unfortunately, some Ada encoded names successfully demangle as
6482 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6483 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6484 with the wrong language set. Paper over that issue here. */
6485 if (symbol_language == language_auto
6486 || symbol_language == language_cplus)
6487 symbol_language = language_ada;
6489 completion_list_add_name (tracker,
6491 MSYMBOL_LINKAGE_NAME (msymbol),
6492 lookup_name, text, word);
6495 /* Search upwards from currently selected frame (so that we can
6496 complete on local vars. */
6498 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6500 if (!BLOCK_SUPERBLOCK (b))
6501 surrounding_static_block = b; /* For elmin of dups */
6503 ALL_BLOCK_SYMBOLS (b, iter, sym)
6505 if (completion_skip_symbol (mode, sym))
6508 completion_list_add_name (tracker,
6509 SYMBOL_LANGUAGE (sym),
6510 SYMBOL_LINKAGE_NAME (sym),
6511 lookup_name, text, word);
6515 /* Go through the symtabs and check the externs and statics for
6516 symbols which match. */
6518 ALL_COMPUNITS (objfile, s)
6521 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6522 ALL_BLOCK_SYMBOLS (b, iter, sym)
6524 if (completion_skip_symbol (mode, sym))
6527 completion_list_add_name (tracker,
6528 SYMBOL_LANGUAGE (sym),
6529 SYMBOL_LINKAGE_NAME (sym),
6530 lookup_name, text, word);
6534 ALL_COMPUNITS (objfile, s)
6537 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6538 /* Don't do this block twice. */
6539 if (b == surrounding_static_block)
6541 ALL_BLOCK_SYMBOLS (b, iter, sym)
6543 if (completion_skip_symbol (mode, sym))
6546 completion_list_add_name (tracker,
6547 SYMBOL_LANGUAGE (sym),
6548 SYMBOL_LINKAGE_NAME (sym),
6549 lookup_name, text, word);
6553 do_cleanups (old_chain);
6558 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6559 for tagged types. */
6562 ada_is_dispatch_table_ptr_type (struct type *type)
6566 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6569 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6573 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6576 /* Return non-zero if TYPE is an interface tag. */
6579 ada_is_interface_tag (struct type *type)
6581 const char *name = TYPE_NAME (type);
6586 return (strcmp (name, "ada__tags__interface_tag") == 0);
6589 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6590 to be invisible to users. */
6593 ada_is_ignored_field (struct type *type, int field_num)
6595 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6598 /* Check the name of that field. */
6600 const char *name = TYPE_FIELD_NAME (type, field_num);
6602 /* Anonymous field names should not be printed.
6603 brobecker/2007-02-20: I don't think this can actually happen
6604 but we don't want to print the value of annonymous fields anyway. */
6608 /* Normally, fields whose name start with an underscore ("_")
6609 are fields that have been internally generated by the compiler,
6610 and thus should not be printed. The "_parent" field is special,
6611 however: This is a field internally generated by the compiler
6612 for tagged types, and it contains the components inherited from
6613 the parent type. This field should not be printed as is, but
6614 should not be ignored either. */
6615 if (name[0] == '_' && !startswith (name, "_parent"))
6619 /* If this is the dispatch table of a tagged type or an interface tag,
6621 if (ada_is_tagged_type (type, 1)
6622 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6623 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6626 /* Not a special field, so it should not be ignored. */
6630 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6631 pointer or reference type whose ultimate target has a tag field. */
6634 ada_is_tagged_type (struct type *type, int refok)
6636 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6639 /* True iff TYPE represents the type of X'Tag */
6642 ada_is_tag_type (struct type *type)
6644 type = ada_check_typedef (type);
6646 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6650 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6652 return (name != NULL
6653 && strcmp (name, "ada__tags__dispatch_table") == 0);
6657 /* The type of the tag on VAL. */
6660 ada_tag_type (struct value *val)
6662 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6665 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6666 retired at Ada 05). */
6669 is_ada95_tag (struct value *tag)
6671 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6674 /* The value of the tag on VAL. */
6677 ada_value_tag (struct value *val)
6679 return ada_value_struct_elt (val, "_tag", 0);
6682 /* The value of the tag on the object of type TYPE whose contents are
6683 saved at VALADDR, if it is non-null, or is at memory address
6686 static struct value *
6687 value_tag_from_contents_and_address (struct type *type,
6688 const gdb_byte *valaddr,
6691 int tag_byte_offset;
6692 struct type *tag_type;
6694 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6697 const gdb_byte *valaddr1 = ((valaddr == NULL)
6699 : valaddr + tag_byte_offset);
6700 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6702 return value_from_contents_and_address (tag_type, valaddr1, address1);
6707 static struct type *
6708 type_from_tag (struct value *tag)
6710 const char *type_name = ada_tag_name (tag);
6712 if (type_name != NULL)
6713 return ada_find_any_type (ada_encode (type_name));
6717 /* Given a value OBJ of a tagged type, return a value of this
6718 type at the base address of the object. The base address, as
6719 defined in Ada.Tags, it is the address of the primary tag of
6720 the object, and therefore where the field values of its full
6721 view can be fetched. */
6724 ada_tag_value_at_base_address (struct value *obj)
6727 LONGEST offset_to_top = 0;
6728 struct type *ptr_type, *obj_type;
6730 CORE_ADDR base_address;
6732 obj_type = value_type (obj);
6734 /* It is the responsability of the caller to deref pointers. */
6736 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6737 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6740 tag = ada_value_tag (obj);
6744 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6746 if (is_ada95_tag (tag))
6749 ptr_type = language_lookup_primitive_type
6750 (language_def (language_ada), target_gdbarch(), "storage_offset");
6751 ptr_type = lookup_pointer_type (ptr_type);
6752 val = value_cast (ptr_type, tag);
6756 /* It is perfectly possible that an exception be raised while
6757 trying to determine the base address, just like for the tag;
6758 see ada_tag_name for more details. We do not print the error
6759 message for the same reason. */
6763 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6766 CATCH (e, RETURN_MASK_ERROR)
6772 /* If offset is null, nothing to do. */
6774 if (offset_to_top == 0)
6777 /* -1 is a special case in Ada.Tags; however, what should be done
6778 is not quite clear from the documentation. So do nothing for
6781 if (offset_to_top == -1)
6784 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6785 from the base address. This was however incompatible with
6786 C++ dispatch table: C++ uses a *negative* value to *add*
6787 to the base address. Ada's convention has therefore been
6788 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6789 use the same convention. Here, we support both cases by
6790 checking the sign of OFFSET_TO_TOP. */
6792 if (offset_to_top > 0)
6793 offset_to_top = -offset_to_top;
6795 base_address = value_address (obj) + offset_to_top;
6796 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6798 /* Make sure that we have a proper tag at the new address.
6799 Otherwise, offset_to_top is bogus (which can happen when
6800 the object is not initialized yet). */
6805 obj_type = type_from_tag (tag);
6810 return value_from_contents_and_address (obj_type, NULL, base_address);
6813 /* Return the "ada__tags__type_specific_data" type. */
6815 static struct type *
6816 ada_get_tsd_type (struct inferior *inf)
6818 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6820 if (data->tsd_type == 0)
6821 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6822 return data->tsd_type;
6825 /* Return the TSD (type-specific data) associated to the given TAG.
6826 TAG is assumed to be the tag of a tagged-type entity.
6828 May return NULL if we are unable to get the TSD. */
6830 static struct value *
6831 ada_get_tsd_from_tag (struct value *tag)
6836 /* First option: The TSD is simply stored as a field of our TAG.
6837 Only older versions of GNAT would use this format, but we have
6838 to test it first, because there are no visible markers for
6839 the current approach except the absence of that field. */
6841 val = ada_value_struct_elt (tag, "tsd", 1);
6845 /* Try the second representation for the dispatch table (in which
6846 there is no explicit 'tsd' field in the referent of the tag pointer,
6847 and instead the tsd pointer is stored just before the dispatch
6850 type = ada_get_tsd_type (current_inferior());
6853 type = lookup_pointer_type (lookup_pointer_type (type));
6854 val = value_cast (type, tag);
6857 return value_ind (value_ptradd (val, -1));
6860 /* Given the TSD of a tag (type-specific data), return a string
6861 containing the name of the associated type.
6863 The returned value is good until the next call. May return NULL
6864 if we are unable to determine the tag name. */
6867 ada_tag_name_from_tsd (struct value *tsd)
6869 static char name[1024];
6873 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6876 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6877 for (p = name; *p != '\0'; p += 1)
6883 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6886 Return NULL if the TAG is not an Ada tag, or if we were unable to
6887 determine the name of that tag. The result is good until the next
6891 ada_tag_name (struct value *tag)
6895 if (!ada_is_tag_type (value_type (tag)))
6898 /* It is perfectly possible that an exception be raised while trying
6899 to determine the TAG's name, even under normal circumstances:
6900 The associated variable may be uninitialized or corrupted, for
6901 instance. We do not let any exception propagate past this point.
6902 instead we return NULL.
6904 We also do not print the error message either (which often is very
6905 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6906 the caller print a more meaningful message if necessary. */
6909 struct value *tsd = ada_get_tsd_from_tag (tag);
6912 name = ada_tag_name_from_tsd (tsd);
6914 CATCH (e, RETURN_MASK_ERROR)
6922 /* The parent type of TYPE, or NULL if none. */
6925 ada_parent_type (struct type *type)
6929 type = ada_check_typedef (type);
6931 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6934 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6935 if (ada_is_parent_field (type, i))
6937 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6939 /* If the _parent field is a pointer, then dereference it. */
6940 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6941 parent_type = TYPE_TARGET_TYPE (parent_type);
6942 /* If there is a parallel XVS type, get the actual base type. */
6943 parent_type = ada_get_base_type (parent_type);
6945 return ada_check_typedef (parent_type);
6951 /* True iff field number FIELD_NUM of structure type TYPE contains the
6952 parent-type (inherited) fields of a derived type. Assumes TYPE is
6953 a structure type with at least FIELD_NUM+1 fields. */
6956 ada_is_parent_field (struct type *type, int field_num)
6958 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6960 return (name != NULL
6961 && (startswith (name, "PARENT")
6962 || startswith (name, "_parent")));
6965 /* True iff field number FIELD_NUM of structure type TYPE is a
6966 transparent wrapper field (which should be silently traversed when doing
6967 field selection and flattened when printing). Assumes TYPE is a
6968 structure type with at least FIELD_NUM+1 fields. Such fields are always
6972 ada_is_wrapper_field (struct type *type, int field_num)
6974 const char *name = TYPE_FIELD_NAME (type, field_num);
6976 if (name != NULL && strcmp (name, "RETVAL") == 0)
6978 /* This happens in functions with "out" or "in out" parameters
6979 which are passed by copy. For such functions, GNAT describes
6980 the function's return type as being a struct where the return
6981 value is in a field called RETVAL, and where the other "out"
6982 or "in out" parameters are fields of that struct. This is not
6987 return (name != NULL
6988 && (startswith (name, "PARENT")
6989 || strcmp (name, "REP") == 0
6990 || startswith (name, "_parent")
6991 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6994 /* True iff field number FIELD_NUM of structure or union type TYPE
6995 is a variant wrapper. Assumes TYPE is a structure type with at least
6996 FIELD_NUM+1 fields. */
6999 ada_is_variant_part (struct type *type, int field_num)
7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7004 || (is_dynamic_field (type, field_num)
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
7009 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7010 whose discriminants are contained in the record type OUTER_TYPE,
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
7015 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7017 const char *name = ada_variant_discrim_name (var_type);
7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7022 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7024 represents a 'when others' clause; otherwise 0. */
7027 ada_is_others_clause (struct type *type, int field_num)
7029 const char *name = TYPE_FIELD_NAME (type, field_num);
7031 return (name != NULL && name[0] == 'O');
7034 /* Assuming that TYPE0 is the type of the variant part of a record,
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
7039 ada_variant_discrim_name (struct type *type0)
7041 static char *result = NULL;
7042 static size_t result_len = 0;
7045 const char *discrim_end;
7046 const char *discrim_start;
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7053 name = ada_type_name (type);
7055 if (name == NULL || name[0] == '\000')
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7061 if (startswith (discrim_end, "___XVN"))
7064 if (discrim_end == name)
7067 for (discrim_start = discrim_end; discrim_start != name + 3;
7070 if (discrim_start == name + 1)
7072 if ((discrim_start > name + 3
7073 && startswith (discrim_start - 3, "___"))
7074 || discrim_start[-1] == '.')
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
7080 result[discrim_end - discrim_start] = '\0';
7084 /* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
7093 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7097 if (!isdigit (str[k]))
7100 /* Do it the hard way so as not to make any assumption about
7101 the relationship of unsigned long (%lu scan format code) and
7104 while (isdigit (str[k]))
7106 RU = RU * 10 + (str[k] - '0');
7113 *R = (-(LONGEST) (RU - 1)) - 1;
7119 /* NOTE on the above: Technically, C does not say what the results of
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
7123 above is always equivalent to the negative of RU. */
7130 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7135 ada_in_variant (LONGEST val, struct type *type, int field_num)
7137 const char *name = TYPE_FIELD_NAME (type, field_num);
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7164 if (val >= L && val <= U)
7176 /* FIXME: Lots of redundancy below. Try to consolidate. */
7178 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
7183 static struct value *
7184 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7185 struct type *arg_type)
7189 arg_type = ada_check_typedef (arg_type);
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7192 /* Handle packed fields. */
7194 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7196 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7197 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7199 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7200 offset + bit_pos / 8,
7201 bit_pos % 8, bit_size, type);
7204 return value_primitive_field (arg1, offset, fieldno, arg_type);
7207 /* Find field with name NAME in object of type TYPE. If found,
7208 set the following for each argument that is non-null:
7209 - *FIELD_TYPE_P to the field's type;
7210 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7211 an object of that type;
7212 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7213 - *BIT_SIZE_P to its size in bits if the field is packed, and
7215 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7216 fields up to but not including the desired field, or by the total
7217 number of fields if not found. A NULL value of NAME never
7218 matches; the function just counts visible fields in this case.
7220 Notice that we need to handle when a tagged record hierarchy
7221 has some components with the same name, like in this scenario:
7223 type Top_T is tagged record
7229 type Middle_T is new Top.Top_T with record
7230 N : Character := 'a';
7234 type Bottom_T is new Middle.Middle_T with record
7236 C : Character := '5';
7238 A : Character := 'J';
7241 Let's say we now have a variable declared and initialized as follow:
7243 TC : Top_A := new Bottom_T;
7245 And then we use this variable to call this function
7247 procedure Assign (Obj: in out Top_T; TV : Integer);
7251 Assign (Top_T (B), 12);
7253 Now, we're in the debugger, and we're inside that procedure
7254 then and we want to print the value of obj.c:
7256 Usually, the tagged record or one of the parent type owns the
7257 component to print and there's no issue but in this particular
7258 case, what does it mean to ask for Obj.C? Since the actual
7259 type for object is type Bottom_T, it could mean two things: type
7260 component C from the Middle_T view, but also component C from
7261 Bottom_T. So in that "undefined" case, when the component is
7262 not found in the non-resolved type (which includes all the
7263 components of the parent type), then resolve it and see if we
7264 get better luck once expanded.
7266 In the case of homonyms in the derived tagged type, we don't
7267 guaranty anything, and pick the one that's easiest for us
7270 Returns 1 if found, 0 otherwise. */
7273 find_struct_field (const char *name, struct type *type, int offset,
7274 struct type **field_type_p,
7275 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7279 int parent_offset = -1;
7281 type = ada_check_typedef (type);
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
7287 if (bit_offset_p != NULL)
7289 if (bit_size_p != NULL)
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298 if (t_field_name == NULL)
7301 else if (ada_is_parent_field (type, i))
7303 /* This is a field pointing us to the parent type of a tagged
7304 type. As hinted in this function's documentation, we give
7305 preference to fields in the current record first, so what
7306 we do here is just record the index of this field before
7307 we skip it. If it turns out we couldn't find our field
7308 in the current record, then we'll get back to it and search
7309 inside it whether the field might exist in the parent. */
7315 else if (name != NULL && field_name_match (t_field_name, name))
7317 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7319 if (field_type_p != NULL)
7320 *field_type_p = TYPE_FIELD_TYPE (type, i);
7321 if (byte_offset_p != NULL)
7322 *byte_offset_p = fld_offset;
7323 if (bit_offset_p != NULL)
7324 *bit_offset_p = bit_pos % 8;
7325 if (bit_size_p != NULL)
7326 *bit_size_p = bit_size;
7329 else if (ada_is_wrapper_field (type, i))
7331 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7332 field_type_p, byte_offset_p, bit_offset_p,
7333 bit_size_p, index_p))
7336 else if (ada_is_variant_part (type, i))
7338 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7341 struct type *field_type
7342 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7344 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7348 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7349 field_type_p, byte_offset_p,
7350 bit_offset_p, bit_size_p, index_p))
7354 else if (index_p != NULL)
7358 /* Field not found so far. If this is a tagged type which
7359 has a parent, try finding that field in the parent now. */
7361 if (parent_offset != -1)
7363 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7364 int fld_offset = offset + bit_pos / 8;
7366 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7367 fld_offset, field_type_p, byte_offset_p,
7368 bit_offset_p, bit_size_p, index_p))
7375 /* Number of user-visible fields in record type TYPE. */
7378 num_visible_fields (struct type *type)
7383 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7387 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7388 and search in it assuming it has (class) type TYPE.
7389 If found, return value, else return NULL.
7391 Searches recursively through wrapper fields (e.g., '_parent').
7393 In the case of homonyms in the tagged types, please refer to the
7394 long explanation in find_struct_field's function documentation. */
7396 static struct value *
7397 ada_search_struct_field (const char *name, struct value *arg, int offset,
7401 int parent_offset = -1;
7403 type = ada_check_typedef (type);
7404 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7406 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7408 if (t_field_name == NULL)
7411 else if (ada_is_parent_field (type, i))
7413 /* This is a field pointing us to the parent type of a tagged
7414 type. As hinted in this function's documentation, we give
7415 preference to fields in the current record first, so what
7416 we do here is just record the index of this field before
7417 we skip it. If it turns out we couldn't find our field
7418 in the current record, then we'll get back to it and search
7419 inside it whether the field might exist in the parent. */
7425 else if (field_name_match (t_field_name, name))
7426 return ada_value_primitive_field (arg, offset, i, type);
7428 else if (ada_is_wrapper_field (type, i))
7430 struct value *v = /* Do not let indent join lines here. */
7431 ada_search_struct_field (name, arg,
7432 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7433 TYPE_FIELD_TYPE (type, i));
7439 else if (ada_is_variant_part (type, i))
7441 /* PNH: Do we ever get here? See find_struct_field. */
7443 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7445 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7447 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7449 struct value *v = ada_search_struct_field /* Force line
7452 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7453 TYPE_FIELD_TYPE (field_type, j));
7461 /* Field not found so far. If this is a tagged type which
7462 has a parent, try finding that field in the parent now. */
7464 if (parent_offset != -1)
7466 struct value *v = ada_search_struct_field (
7467 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7468 TYPE_FIELD_TYPE (type, parent_offset));
7477 static struct value *ada_index_struct_field_1 (int *, struct value *,
7478 int, struct type *);
7481 /* Return field #INDEX in ARG, where the index is that returned by
7482 * find_struct_field through its INDEX_P argument. Adjust the address
7483 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7484 * If found, return value, else return NULL. */
7486 static struct value *
7487 ada_index_struct_field (int index, struct value *arg, int offset,
7490 return ada_index_struct_field_1 (&index, arg, offset, type);
7494 /* Auxiliary function for ada_index_struct_field. Like
7495 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7498 static struct value *
7499 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7503 type = ada_check_typedef (type);
7505 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7507 if (TYPE_FIELD_NAME (type, i) == NULL)
7509 else if (ada_is_wrapper_field (type, i))
7511 struct value *v = /* Do not let indent join lines here. */
7512 ada_index_struct_field_1 (index_p, arg,
7513 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7514 TYPE_FIELD_TYPE (type, i));
7520 else if (ada_is_variant_part (type, i))
7522 /* PNH: Do we ever get here? See ada_search_struct_field,
7523 find_struct_field. */
7524 error (_("Cannot assign this kind of variant record"));
7526 else if (*index_p == 0)
7527 return ada_value_primitive_field (arg, offset, i, type);
7534 /* Given ARG, a value of type (pointer or reference to a)*
7535 structure/union, extract the component named NAME from the ultimate
7536 target structure/union and return it as a value with its
7539 The routine searches for NAME among all members of the structure itself
7540 and (recursively) among all members of any wrapper members
7543 If NO_ERR, then simply return NULL in case of error, rather than
7547 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7549 struct type *t, *t1;
7553 t1 = t = ada_check_typedef (value_type (arg));
7554 if (TYPE_CODE (t) == TYPE_CODE_REF)
7556 t1 = TYPE_TARGET_TYPE (t);
7559 t1 = ada_check_typedef (t1);
7560 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7562 arg = coerce_ref (arg);
7567 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7569 t1 = TYPE_TARGET_TYPE (t);
7572 t1 = ada_check_typedef (t1);
7573 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7575 arg = value_ind (arg);
7582 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7586 v = ada_search_struct_field (name, arg, 0, t);
7589 int bit_offset, bit_size, byte_offset;
7590 struct type *field_type;
7593 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7594 address = value_address (ada_value_ind (arg));
7596 address = value_address (ada_coerce_ref (arg));
7598 /* Check to see if this is a tagged type. We also need to handle
7599 the case where the type is a reference to a tagged type, but
7600 we have to be careful to exclude pointers to tagged types.
7601 The latter should be shown as usual (as a pointer), whereas
7602 a reference should mostly be transparent to the user. */
7604 if (ada_is_tagged_type (t1, 0)
7605 || (TYPE_CODE (t1) == TYPE_CODE_REF
7606 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7608 /* We first try to find the searched field in the current type.
7609 If not found then let's look in the fixed type. */
7611 if (!find_struct_field (name, t1, 0,
7612 &field_type, &byte_offset, &bit_offset,
7614 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7618 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7621 if (find_struct_field (name, t1, 0,
7622 &field_type, &byte_offset, &bit_offset,
7627 if (TYPE_CODE (t) == TYPE_CODE_REF)
7628 arg = ada_coerce_ref (arg);
7630 arg = ada_value_ind (arg);
7631 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7632 bit_offset, bit_size,
7636 v = value_at_lazy (field_type, address + byte_offset);
7640 if (v != NULL || no_err)
7643 error (_("There is no member named %s."), name);
7649 error (_("Attempt to extract a component of "
7650 "a value that is not a record."));
7653 /* Return a string representation of type TYPE. */
7656 type_as_string (struct type *type)
7658 string_file tmp_stream;
7660 type_print (type, "", &tmp_stream, -1);
7662 return std::move (tmp_stream.string ());
7665 /* Given a type TYPE, look up the type of the component of type named NAME.
7666 If DISPP is non-null, add its byte displacement from the beginning of a
7667 structure (pointed to by a value) of type TYPE to *DISPP (does not
7668 work for packed fields).
7670 Matches any field whose name has NAME as a prefix, possibly
7673 TYPE can be either a struct or union. If REFOK, TYPE may also
7674 be a (pointer or reference)+ to a struct or union, and the
7675 ultimate target type will be searched.
7677 Looks recursively into variant clauses and parent types.
7679 In the case of homonyms in the tagged types, please refer to the
7680 long explanation in find_struct_field's function documentation.
7682 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7683 TYPE is not a type of the right kind. */
7685 static struct type *
7686 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7690 int parent_offset = -1;
7695 if (refok && type != NULL)
7698 type = ada_check_typedef (type);
7699 if (TYPE_CODE (type) != TYPE_CODE_PTR
7700 && TYPE_CODE (type) != TYPE_CODE_REF)
7702 type = TYPE_TARGET_TYPE (type);
7706 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7707 && TYPE_CODE (type) != TYPE_CODE_UNION))
7712 error (_("Type %s is not a structure or union type"),
7713 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7716 type = to_static_fixed_type (type);
7718 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7723 if (t_field_name == NULL)
7726 else if (ada_is_parent_field (type, i))
7728 /* This is a field pointing us to the parent type of a tagged
7729 type. As hinted in this function's documentation, we give
7730 preference to fields in the current record first, so what
7731 we do here is just record the index of this field before
7732 we skip it. If it turns out we couldn't find our field
7733 in the current record, then we'll get back to it and search
7734 inside it whether the field might exist in the parent. */
7740 else if (field_name_match (t_field_name, name))
7741 return TYPE_FIELD_TYPE (type, i);
7743 else if (ada_is_wrapper_field (type, i))
7745 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7751 else if (ada_is_variant_part (type, i))
7754 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7757 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7759 /* FIXME pnh 2008/01/26: We check for a field that is
7760 NOT wrapped in a struct, since the compiler sometimes
7761 generates these for unchecked variant types. Revisit
7762 if the compiler changes this practice. */
7763 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7765 if (v_field_name != NULL
7766 && field_name_match (v_field_name, name))
7767 t = TYPE_FIELD_TYPE (field_type, j);
7769 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7780 /* Field not found so far. If this is a tagged type which
7781 has a parent, try finding that field in the parent now. */
7783 if (parent_offset != -1)
7787 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7796 const char *name_str = name != NULL ? name : _("<null>");
7798 error (_("Type %s has no component named %s"),
7799 type_as_string (type).c_str (), name_str);
7805 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7806 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7807 represents an unchecked union (that is, the variant part of a
7808 record that is named in an Unchecked_Union pragma). */
7811 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7813 const char *discrim_name = ada_variant_discrim_name (var_type);
7815 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7819 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7820 within a value of type OUTER_TYPE that is stored in GDB at
7821 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7822 numbering from 0) is applicable. Returns -1 if none are. */
7825 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7826 const gdb_byte *outer_valaddr)
7830 const char *discrim_name = ada_variant_discrim_name (var_type);
7831 struct value *outer;
7832 struct value *discrim;
7833 LONGEST discrim_val;
7835 /* Using plain value_from_contents_and_address here causes problems
7836 because we will end up trying to resolve a type that is currently
7837 being constructed. */
7838 outer = value_from_contents_and_address_unresolved (outer_type,
7840 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7841 if (discrim == NULL)
7843 discrim_val = value_as_long (discrim);
7846 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7848 if (ada_is_others_clause (var_type, i))
7850 else if (ada_in_variant (discrim_val, var_type, i))
7854 return others_clause;
7859 /* Dynamic-Sized Records */
7861 /* Strategy: The type ostensibly attached to a value with dynamic size
7862 (i.e., a size that is not statically recorded in the debugging
7863 data) does not accurately reflect the size or layout of the value.
7864 Our strategy is to convert these values to values with accurate,
7865 conventional types that are constructed on the fly. */
7867 /* There is a subtle and tricky problem here. In general, we cannot
7868 determine the size of dynamic records without its data. However,
7869 the 'struct value' data structure, which GDB uses to represent
7870 quantities in the inferior process (the target), requires the size
7871 of the type at the time of its allocation in order to reserve space
7872 for GDB's internal copy of the data. That's why the
7873 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7874 rather than struct value*s.
7876 However, GDB's internal history variables ($1, $2, etc.) are
7877 struct value*s containing internal copies of the data that are not, in
7878 general, the same as the data at their corresponding addresses in
7879 the target. Fortunately, the types we give to these values are all
7880 conventional, fixed-size types (as per the strategy described
7881 above), so that we don't usually have to perform the
7882 'to_fixed_xxx_type' conversions to look at their values.
7883 Unfortunately, there is one exception: if one of the internal
7884 history variables is an array whose elements are unconstrained
7885 records, then we will need to create distinct fixed types for each
7886 element selected. */
7888 /* The upshot of all of this is that many routines take a (type, host
7889 address, target address) triple as arguments to represent a value.
7890 The host address, if non-null, is supposed to contain an internal
7891 copy of the relevant data; otherwise, the program is to consult the
7892 target at the target address. */
7894 /* Assuming that VAL0 represents a pointer value, the result of
7895 dereferencing it. Differs from value_ind in its treatment of
7896 dynamic-sized types. */
7899 ada_value_ind (struct value *val0)
7901 struct value *val = value_ind (val0);
7903 if (ada_is_tagged_type (value_type (val), 0))
7904 val = ada_tag_value_at_base_address (val);
7906 return ada_to_fixed_value (val);
7909 /* The value resulting from dereferencing any "reference to"
7910 qualifiers on VAL0. */
7912 static struct value *
7913 ada_coerce_ref (struct value *val0)
7915 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7917 struct value *val = val0;
7919 val = coerce_ref (val);
7921 if (ada_is_tagged_type (value_type (val), 0))
7922 val = ada_tag_value_at_base_address (val);
7924 return ada_to_fixed_value (val);
7930 /* Return OFF rounded upward if necessary to a multiple of
7931 ALIGNMENT (a power of 2). */
7934 align_value (unsigned int off, unsigned int alignment)
7936 return (off + alignment - 1) & ~(alignment - 1);
7939 /* Return the bit alignment required for field #F of template type TYPE. */
7942 field_alignment (struct type *type, int f)
7944 const char *name = TYPE_FIELD_NAME (type, f);
7948 /* The field name should never be null, unless the debugging information
7949 is somehow malformed. In this case, we assume the field does not
7950 require any alignment. */
7954 len = strlen (name);
7956 if (!isdigit (name[len - 1]))
7959 if (isdigit (name[len - 2]))
7960 align_offset = len - 2;
7962 align_offset = len - 1;
7964 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7965 return TARGET_CHAR_BIT;
7967 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7970 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7972 static struct symbol *
7973 ada_find_any_type_symbol (const char *name)
7977 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7978 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7981 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7985 /* Find a type named NAME. Ignores ambiguity. This routine will look
7986 solely for types defined by debug info, it will not search the GDB
7989 static struct type *
7990 ada_find_any_type (const char *name)
7992 struct symbol *sym = ada_find_any_type_symbol (name);
7995 return SYMBOL_TYPE (sym);
8000 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8001 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8002 symbol, in which case it is returned. Otherwise, this looks for
8003 symbols whose name is that of NAME_SYM suffixed with "___XR".
8004 Return symbol if found, and NULL otherwise. */
8007 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8009 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8012 if (strstr (name, "___XR") != NULL)
8015 sym = find_old_style_renaming_symbol (name, block);
8020 /* Not right yet. FIXME pnh 7/20/2007. */
8021 sym = ada_find_any_type_symbol (name);
8022 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8028 static struct symbol *
8029 find_old_style_renaming_symbol (const char *name, const struct block *block)
8031 const struct symbol *function_sym = block_linkage_function (block);
8034 if (function_sym != NULL)
8036 /* If the symbol is defined inside a function, NAME is not fully
8037 qualified. This means we need to prepend the function name
8038 as well as adding the ``___XR'' suffix to build the name of
8039 the associated renaming symbol. */
8040 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8041 /* Function names sometimes contain suffixes used
8042 for instance to qualify nested subprograms. When building
8043 the XR type name, we need to make sure that this suffix is
8044 not included. So do not include any suffix in the function
8045 name length below. */
8046 int function_name_len = ada_name_prefix_len (function_name);
8047 const int rename_len = function_name_len + 2 /* "__" */
8048 + strlen (name) + 6 /* "___XR\0" */ ;
8050 /* Strip the suffix if necessary. */
8051 ada_remove_trailing_digits (function_name, &function_name_len);
8052 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8053 ada_remove_Xbn_suffix (function_name, &function_name_len);
8055 /* Library-level functions are a special case, as GNAT adds
8056 a ``_ada_'' prefix to the function name to avoid namespace
8057 pollution. However, the renaming symbols themselves do not
8058 have this prefix, so we need to skip this prefix if present. */
8059 if (function_name_len > 5 /* "_ada_" */
8060 && strstr (function_name, "_ada_") == function_name)
8063 function_name_len -= 5;
8066 rename = (char *) alloca (rename_len * sizeof (char));
8067 strncpy (rename, function_name, function_name_len);
8068 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8073 const int rename_len = strlen (name) + 6;
8075 rename = (char *) alloca (rename_len * sizeof (char));
8076 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8079 return ada_find_any_type_symbol (rename);
8082 /* Because of GNAT encoding conventions, several GDB symbols may match a
8083 given type name. If the type denoted by TYPE0 is to be preferred to
8084 that of TYPE1 for purposes of type printing, return non-zero;
8085 otherwise return 0. */
8088 ada_prefer_type (struct type *type0, struct type *type1)
8092 else if (type0 == NULL)
8094 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8096 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8098 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8100 else if (ada_is_constrained_packed_array_type (type0))
8102 else if (ada_is_array_descriptor_type (type0)
8103 && !ada_is_array_descriptor_type (type1))
8107 const char *type0_name = type_name_no_tag (type0);
8108 const char *type1_name = type_name_no_tag (type1);
8110 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8111 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8117 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8118 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8121 ada_type_name (struct type *type)
8125 else if (TYPE_NAME (type) != NULL)
8126 return TYPE_NAME (type);
8128 return TYPE_TAG_NAME (type);
8131 /* Search the list of "descriptive" types associated to TYPE for a type
8132 whose name is NAME. */
8134 static struct type *
8135 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8137 struct type *result, *tmp;
8139 if (ada_ignore_descriptive_types_p)
8142 /* If there no descriptive-type info, then there is no parallel type
8144 if (!HAVE_GNAT_AUX_INFO (type))
8147 result = TYPE_DESCRIPTIVE_TYPE (type);
8148 while (result != NULL)
8150 const char *result_name = ada_type_name (result);
8152 if (result_name == NULL)
8154 warning (_("unexpected null name on descriptive type"));
8158 /* If the names match, stop. */
8159 if (strcmp (result_name, name) == 0)
8162 /* Otherwise, look at the next item on the list, if any. */
8163 if (HAVE_GNAT_AUX_INFO (result))
8164 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8168 /* If not found either, try after having resolved the typedef. */
8173 result = check_typedef (result);
8174 if (HAVE_GNAT_AUX_INFO (result))
8175 result = TYPE_DESCRIPTIVE_TYPE (result);
8181 /* If we didn't find a match, see whether this is a packed array. With
8182 older compilers, the descriptive type information is either absent or
8183 irrelevant when it comes to packed arrays so the above lookup fails.
8184 Fall back to using a parallel lookup by name in this case. */
8185 if (result == NULL && ada_is_constrained_packed_array_type (type))
8186 return ada_find_any_type (name);
8191 /* Find a parallel type to TYPE with the specified NAME, using the
8192 descriptive type taken from the debugging information, if available,
8193 and otherwise using the (slower) name-based method. */
8195 static struct type *
8196 ada_find_parallel_type_with_name (struct type *type, const char *name)
8198 struct type *result = NULL;
8200 if (HAVE_GNAT_AUX_INFO (type))
8201 result = find_parallel_type_by_descriptive_type (type, name);
8203 result = ada_find_any_type (name);
8208 /* Same as above, but specify the name of the parallel type by appending
8209 SUFFIX to the name of TYPE. */
8212 ada_find_parallel_type (struct type *type, const char *suffix)
8215 const char *type_name = ada_type_name (type);
8218 if (type_name == NULL)
8221 len = strlen (type_name);
8223 name = (char *) alloca (len + strlen (suffix) + 1);
8225 strcpy (name, type_name);
8226 strcpy (name + len, suffix);
8228 return ada_find_parallel_type_with_name (type, name);
8231 /* If TYPE is a variable-size record type, return the corresponding template
8232 type describing its fields. Otherwise, return NULL. */
8234 static struct type *
8235 dynamic_template_type (struct type *type)
8237 type = ada_check_typedef (type);
8239 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8240 || ada_type_name (type) == NULL)
8244 int len = strlen (ada_type_name (type));
8246 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8249 return ada_find_parallel_type (type, "___XVE");
8253 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8254 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8257 is_dynamic_field (struct type *templ_type, int field_num)
8259 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8262 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8263 && strstr (name, "___XVL") != NULL;
8266 /* The index of the variant field of TYPE, or -1 if TYPE does not
8267 represent a variant record type. */
8270 variant_field_index (struct type *type)
8274 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8277 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8279 if (ada_is_variant_part (type, f))
8285 /* A record type with no fields. */
8287 static struct type *
8288 empty_record (struct type *templ)
8290 struct type *type = alloc_type_copy (templ);
8292 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8293 TYPE_NFIELDS (type) = 0;
8294 TYPE_FIELDS (type) = NULL;
8295 INIT_CPLUS_SPECIFIC (type);
8296 TYPE_NAME (type) = "<empty>";
8297 TYPE_TAG_NAME (type) = NULL;
8298 TYPE_LENGTH (type) = 0;
8302 /* An ordinary record type (with fixed-length fields) that describes
8303 the value of type TYPE at VALADDR or ADDRESS (see comments at
8304 the beginning of this section) VAL according to GNAT conventions.
8305 DVAL0 should describe the (portion of a) record that contains any
8306 necessary discriminants. It should be NULL if value_type (VAL) is
8307 an outer-level type (i.e., as opposed to a branch of a variant.) A
8308 variant field (unless unchecked) is replaced by a particular branch
8311 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8312 length are not statically known are discarded. As a consequence,
8313 VALADDR, ADDRESS and DVAL0 are ignored.
8315 NOTE: Limitations: For now, we assume that dynamic fields and
8316 variants occupy whole numbers of bytes. However, they need not be
8320 ada_template_to_fixed_record_type_1 (struct type *type,
8321 const gdb_byte *valaddr,
8322 CORE_ADDR address, struct value *dval0,
8323 int keep_dynamic_fields)
8325 struct value *mark = value_mark ();
8328 int nfields, bit_len;
8334 /* Compute the number of fields in this record type that are going
8335 to be processed: unless keep_dynamic_fields, this includes only
8336 fields whose position and length are static will be processed. */
8337 if (keep_dynamic_fields)
8338 nfields = TYPE_NFIELDS (type);
8342 while (nfields < TYPE_NFIELDS (type)
8343 && !ada_is_variant_part (type, nfields)
8344 && !is_dynamic_field (type, nfields))
8348 rtype = alloc_type_copy (type);
8349 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8350 INIT_CPLUS_SPECIFIC (rtype);
8351 TYPE_NFIELDS (rtype) = nfields;
8352 TYPE_FIELDS (rtype) = (struct field *)
8353 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8354 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8355 TYPE_NAME (rtype) = ada_type_name (type);
8356 TYPE_TAG_NAME (rtype) = NULL;
8357 TYPE_FIXED_INSTANCE (rtype) = 1;
8363 for (f = 0; f < nfields; f += 1)
8365 off = align_value (off, field_alignment (type, f))
8366 + TYPE_FIELD_BITPOS (type, f);
8367 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8368 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8370 if (ada_is_variant_part (type, f))
8375 else if (is_dynamic_field (type, f))
8377 const gdb_byte *field_valaddr = valaddr;
8378 CORE_ADDR field_address = address;
8379 struct type *field_type =
8380 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8384 /* rtype's length is computed based on the run-time
8385 value of discriminants. If the discriminants are not
8386 initialized, the type size may be completely bogus and
8387 GDB may fail to allocate a value for it. So check the
8388 size first before creating the value. */
8389 ada_ensure_varsize_limit (rtype);
8390 /* Using plain value_from_contents_and_address here
8391 causes problems because we will end up trying to
8392 resolve a type that is currently being
8394 dval = value_from_contents_and_address_unresolved (rtype,
8397 rtype = value_type (dval);
8402 /* If the type referenced by this field is an aligner type, we need
8403 to unwrap that aligner type, because its size might not be set.
8404 Keeping the aligner type would cause us to compute the wrong
8405 size for this field, impacting the offset of the all the fields
8406 that follow this one. */
8407 if (ada_is_aligner_type (field_type))
8409 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8411 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8412 field_address = cond_offset_target (field_address, field_offset);
8413 field_type = ada_aligned_type (field_type);
8416 field_valaddr = cond_offset_host (field_valaddr,
8417 off / TARGET_CHAR_BIT);
8418 field_address = cond_offset_target (field_address,
8419 off / TARGET_CHAR_BIT);
8421 /* Get the fixed type of the field. Note that, in this case,
8422 we do not want to get the real type out of the tag: if
8423 the current field is the parent part of a tagged record,
8424 we will get the tag of the object. Clearly wrong: the real
8425 type of the parent is not the real type of the child. We
8426 would end up in an infinite loop. */
8427 field_type = ada_get_base_type (field_type);
8428 field_type = ada_to_fixed_type (field_type, field_valaddr,
8429 field_address, dval, 0);
8430 /* If the field size is already larger than the maximum
8431 object size, then the record itself will necessarily
8432 be larger than the maximum object size. We need to make
8433 this check now, because the size might be so ridiculously
8434 large (due to an uninitialized variable in the inferior)
8435 that it would cause an overflow when adding it to the
8437 ada_ensure_varsize_limit (field_type);
8439 TYPE_FIELD_TYPE (rtype, f) = field_type;
8440 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8441 /* The multiplication can potentially overflow. But because
8442 the field length has been size-checked just above, and
8443 assuming that the maximum size is a reasonable value,
8444 an overflow should not happen in practice. So rather than
8445 adding overflow recovery code to this already complex code,
8446 we just assume that it's not going to happen. */
8448 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8452 /* Note: If this field's type is a typedef, it is important
8453 to preserve the typedef layer.
8455 Otherwise, we might be transforming a typedef to a fat
8456 pointer (encoding a pointer to an unconstrained array),
8457 into a basic fat pointer (encoding an unconstrained
8458 array). As both types are implemented using the same
8459 structure, the typedef is the only clue which allows us
8460 to distinguish between the two options. Stripping it
8461 would prevent us from printing this field appropriately. */
8462 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8463 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8464 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8466 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8469 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8471 /* We need to be careful of typedefs when computing
8472 the length of our field. If this is a typedef,
8473 get the length of the target type, not the length
8475 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8476 field_type = ada_typedef_target_type (field_type);
8479 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8482 if (off + fld_bit_len > bit_len)
8483 bit_len = off + fld_bit_len;
8485 TYPE_LENGTH (rtype) =
8486 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8489 /* We handle the variant part, if any, at the end because of certain
8490 odd cases in which it is re-ordered so as NOT to be the last field of
8491 the record. This can happen in the presence of representation
8493 if (variant_field >= 0)
8495 struct type *branch_type;
8497 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8501 /* Using plain value_from_contents_and_address here causes
8502 problems because we will end up trying to resolve a type
8503 that is currently being constructed. */
8504 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8506 rtype = value_type (dval);
8512 to_fixed_variant_branch_type
8513 (TYPE_FIELD_TYPE (type, variant_field),
8514 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8515 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8516 if (branch_type == NULL)
8518 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8519 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8520 TYPE_NFIELDS (rtype) -= 1;
8524 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8525 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8527 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8529 if (off + fld_bit_len > bit_len)
8530 bit_len = off + fld_bit_len;
8531 TYPE_LENGTH (rtype) =
8532 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8536 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8537 should contain the alignment of that record, which should be a strictly
8538 positive value. If null or negative, then something is wrong, most
8539 probably in the debug info. In that case, we don't round up the size
8540 of the resulting type. If this record is not part of another structure,
8541 the current RTYPE length might be good enough for our purposes. */
8542 if (TYPE_LENGTH (type) <= 0)
8544 if (TYPE_NAME (rtype))
8545 warning (_("Invalid type size for `%s' detected: %d."),
8546 TYPE_NAME (rtype), TYPE_LENGTH (type));
8548 warning (_("Invalid type size for <unnamed> detected: %d."),
8549 TYPE_LENGTH (type));
8553 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8554 TYPE_LENGTH (type));
8557 value_free_to_mark (mark);
8558 if (TYPE_LENGTH (rtype) > varsize_limit)
8559 error (_("record type with dynamic size is larger than varsize-limit"));
8563 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8566 static struct type *
8567 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8568 CORE_ADDR address, struct value *dval0)
8570 return ada_template_to_fixed_record_type_1 (type, valaddr,
8574 /* An ordinary record type in which ___XVL-convention fields and
8575 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8576 static approximations, containing all possible fields. Uses
8577 no runtime values. Useless for use in values, but that's OK,
8578 since the results are used only for type determinations. Works on both
8579 structs and unions. Representation note: to save space, we memorize
8580 the result of this function in the TYPE_TARGET_TYPE of the
8583 static struct type *
8584 template_to_static_fixed_type (struct type *type0)
8590 /* No need no do anything if the input type is already fixed. */
8591 if (TYPE_FIXED_INSTANCE (type0))
8594 /* Likewise if we already have computed the static approximation. */
8595 if (TYPE_TARGET_TYPE (type0) != NULL)
8596 return TYPE_TARGET_TYPE (type0);
8598 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8600 nfields = TYPE_NFIELDS (type0);
8602 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8603 recompute all over next time. */
8604 TYPE_TARGET_TYPE (type0) = type;
8606 for (f = 0; f < nfields; f += 1)
8608 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8609 struct type *new_type;
8611 if (is_dynamic_field (type0, f))
8613 field_type = ada_check_typedef (field_type);
8614 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8617 new_type = static_unwrap_type (field_type);
8619 if (new_type != field_type)
8621 /* Clone TYPE0 only the first time we get a new field type. */
8624 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8625 TYPE_CODE (type) = TYPE_CODE (type0);
8626 INIT_CPLUS_SPECIFIC (type);
8627 TYPE_NFIELDS (type) = nfields;
8628 TYPE_FIELDS (type) = (struct field *)
8629 TYPE_ALLOC (type, nfields * sizeof (struct field));
8630 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8631 sizeof (struct field) * nfields);
8632 TYPE_NAME (type) = ada_type_name (type0);
8633 TYPE_TAG_NAME (type) = NULL;
8634 TYPE_FIXED_INSTANCE (type) = 1;
8635 TYPE_LENGTH (type) = 0;
8637 TYPE_FIELD_TYPE (type, f) = new_type;
8638 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8645 /* Given an object of type TYPE whose contents are at VALADDR and
8646 whose address in memory is ADDRESS, returns a revision of TYPE,
8647 which should be a non-dynamic-sized record, in which the variant
8648 part, if any, is replaced with the appropriate branch. Looks
8649 for discriminant values in DVAL0, which can be NULL if the record
8650 contains the necessary discriminant values. */
8652 static struct type *
8653 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8654 CORE_ADDR address, struct value *dval0)
8656 struct value *mark = value_mark ();
8659 struct type *branch_type;
8660 int nfields = TYPE_NFIELDS (type);
8661 int variant_field = variant_field_index (type);
8663 if (variant_field == -1)
8668 dval = value_from_contents_and_address (type, valaddr, address);
8669 type = value_type (dval);
8674 rtype = alloc_type_copy (type);
8675 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8676 INIT_CPLUS_SPECIFIC (rtype);
8677 TYPE_NFIELDS (rtype) = nfields;
8678 TYPE_FIELDS (rtype) =
8679 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8680 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8681 sizeof (struct field) * nfields);
8682 TYPE_NAME (rtype) = ada_type_name (type);
8683 TYPE_TAG_NAME (rtype) = NULL;
8684 TYPE_FIXED_INSTANCE (rtype) = 1;
8685 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8687 branch_type = to_fixed_variant_branch_type
8688 (TYPE_FIELD_TYPE (type, variant_field),
8689 cond_offset_host (valaddr,
8690 TYPE_FIELD_BITPOS (type, variant_field)
8692 cond_offset_target (address,
8693 TYPE_FIELD_BITPOS (type, variant_field)
8694 / TARGET_CHAR_BIT), dval);
8695 if (branch_type == NULL)
8699 for (f = variant_field + 1; f < nfields; f += 1)
8700 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8701 TYPE_NFIELDS (rtype) -= 1;
8705 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8706 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8707 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8708 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8710 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8712 value_free_to_mark (mark);
8716 /* An ordinary record type (with fixed-length fields) that describes
8717 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8718 beginning of this section]. Any necessary discriminants' values
8719 should be in DVAL, a record value; it may be NULL if the object
8720 at ADDR itself contains any necessary discriminant values.
8721 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8722 values from the record are needed. Except in the case that DVAL,
8723 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8724 unchecked) is replaced by a particular branch of the variant.
8726 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8727 is questionable and may be removed. It can arise during the
8728 processing of an unconstrained-array-of-record type where all the
8729 variant branches have exactly the same size. This is because in
8730 such cases, the compiler does not bother to use the XVS convention
8731 when encoding the record. I am currently dubious of this
8732 shortcut and suspect the compiler should be altered. FIXME. */
8734 static struct type *
8735 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8736 CORE_ADDR address, struct value *dval)
8738 struct type *templ_type;
8740 if (TYPE_FIXED_INSTANCE (type0))
8743 templ_type = dynamic_template_type (type0);
8745 if (templ_type != NULL)
8746 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8747 else if (variant_field_index (type0) >= 0)
8749 if (dval == NULL && valaddr == NULL && address == 0)
8751 return to_record_with_fixed_variant_part (type0, valaddr, address,
8756 TYPE_FIXED_INSTANCE (type0) = 1;
8762 /* An ordinary record type (with fixed-length fields) that describes
8763 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8764 union type. Any necessary discriminants' values should be in DVAL,
8765 a record value. That is, this routine selects the appropriate
8766 branch of the union at ADDR according to the discriminant value
8767 indicated in the union's type name. Returns VAR_TYPE0 itself if
8768 it represents a variant subject to a pragma Unchecked_Union. */
8770 static struct type *
8771 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8772 CORE_ADDR address, struct value *dval)
8775 struct type *templ_type;
8776 struct type *var_type;
8778 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8779 var_type = TYPE_TARGET_TYPE (var_type0);
8781 var_type = var_type0;
8783 templ_type = ada_find_parallel_type (var_type, "___XVU");
8785 if (templ_type != NULL)
8786 var_type = templ_type;
8788 if (is_unchecked_variant (var_type, value_type (dval)))
8791 ada_which_variant_applies (var_type,
8792 value_type (dval), value_contents (dval));
8795 return empty_record (var_type);
8796 else if (is_dynamic_field (var_type, which))
8797 return to_fixed_record_type
8798 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8799 valaddr, address, dval);
8800 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8802 to_fixed_record_type
8803 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8805 return TYPE_FIELD_TYPE (var_type, which);
8808 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8809 ENCODING_TYPE, a type following the GNAT conventions for discrete
8810 type encodings, only carries redundant information. */
8813 ada_is_redundant_range_encoding (struct type *range_type,
8814 struct type *encoding_type)
8816 const char *bounds_str;
8820 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8822 if (TYPE_CODE (get_base_type (range_type))
8823 != TYPE_CODE (get_base_type (encoding_type)))
8825 /* The compiler probably used a simple base type to describe
8826 the range type instead of the range's actual base type,
8827 expecting us to get the real base type from the encoding
8828 anyway. In this situation, the encoding cannot be ignored
8833 if (is_dynamic_type (range_type))
8836 if (TYPE_NAME (encoding_type) == NULL)
8839 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8840 if (bounds_str == NULL)
8843 n = 8; /* Skip "___XDLU_". */
8844 if (!ada_scan_number (bounds_str, n, &lo, &n))
8846 if (TYPE_LOW_BOUND (range_type) != lo)
8849 n += 2; /* Skip the "__" separator between the two bounds. */
8850 if (!ada_scan_number (bounds_str, n, &hi, &n))
8852 if (TYPE_HIGH_BOUND (range_type) != hi)
8858 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8859 a type following the GNAT encoding for describing array type
8860 indices, only carries redundant information. */
8863 ada_is_redundant_index_type_desc (struct type *array_type,
8864 struct type *desc_type)
8866 struct type *this_layer = check_typedef (array_type);
8869 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8871 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8872 TYPE_FIELD_TYPE (desc_type, i)))
8874 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8880 /* Assuming that TYPE0 is an array type describing the type of a value
8881 at ADDR, and that DVAL describes a record containing any
8882 discriminants used in TYPE0, returns a type for the value that
8883 contains no dynamic components (that is, no components whose sizes
8884 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8885 true, gives an error message if the resulting type's size is over
8888 static struct type *
8889 to_fixed_array_type (struct type *type0, struct value *dval,
8892 struct type *index_type_desc;
8893 struct type *result;
8894 int constrained_packed_array_p;
8895 static const char *xa_suffix = "___XA";
8897 type0 = ada_check_typedef (type0);
8898 if (TYPE_FIXED_INSTANCE (type0))
8901 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8902 if (constrained_packed_array_p)
8903 type0 = decode_constrained_packed_array_type (type0);
8905 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8907 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8908 encoding suffixed with 'P' may still be generated. If so,
8909 it should be used to find the XA type. */
8911 if (index_type_desc == NULL)
8913 const char *type_name = ada_type_name (type0);
8915 if (type_name != NULL)
8917 const int len = strlen (type_name);
8918 char *name = (char *) alloca (len + strlen (xa_suffix));
8920 if (type_name[len - 1] == 'P')
8922 strcpy (name, type_name);
8923 strcpy (name + len - 1, xa_suffix);
8924 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8929 ada_fixup_array_indexes_type (index_type_desc);
8930 if (index_type_desc != NULL
8931 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8933 /* Ignore this ___XA parallel type, as it does not bring any
8934 useful information. This allows us to avoid creating fixed
8935 versions of the array's index types, which would be identical
8936 to the original ones. This, in turn, can also help avoid
8937 the creation of fixed versions of the array itself. */
8938 index_type_desc = NULL;
8941 if (index_type_desc == NULL)
8943 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8945 /* NOTE: elt_type---the fixed version of elt_type0---should never
8946 depend on the contents of the array in properly constructed
8948 /* Create a fixed version of the array element type.
8949 We're not providing the address of an element here,
8950 and thus the actual object value cannot be inspected to do
8951 the conversion. This should not be a problem, since arrays of
8952 unconstrained objects are not allowed. In particular, all
8953 the elements of an array of a tagged type should all be of
8954 the same type specified in the debugging info. No need to
8955 consult the object tag. */
8956 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8958 /* Make sure we always create a new array type when dealing with
8959 packed array types, since we're going to fix-up the array
8960 type length and element bitsize a little further down. */
8961 if (elt_type0 == elt_type && !constrained_packed_array_p)
8964 result = create_array_type (alloc_type_copy (type0),
8965 elt_type, TYPE_INDEX_TYPE (type0));
8970 struct type *elt_type0;
8973 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8974 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8976 /* NOTE: result---the fixed version of elt_type0---should never
8977 depend on the contents of the array in properly constructed
8979 /* Create a fixed version of the array element type.
8980 We're not providing the address of an element here,
8981 and thus the actual object value cannot be inspected to do
8982 the conversion. This should not be a problem, since arrays of
8983 unconstrained objects are not allowed. In particular, all
8984 the elements of an array of a tagged type should all be of
8985 the same type specified in the debugging info. No need to
8986 consult the object tag. */
8988 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8991 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8993 struct type *range_type =
8994 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8996 result = create_array_type (alloc_type_copy (elt_type0),
8997 result, range_type);
8998 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9000 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9001 error (_("array type with dynamic size is larger than varsize-limit"));
9004 /* We want to preserve the type name. This can be useful when
9005 trying to get the type name of a value that has already been
9006 printed (for instance, if the user did "print VAR; whatis $". */
9007 TYPE_NAME (result) = TYPE_NAME (type0);
9009 if (constrained_packed_array_p)
9011 /* So far, the resulting type has been created as if the original
9012 type was a regular (non-packed) array type. As a result, the
9013 bitsize of the array elements needs to be set again, and the array
9014 length needs to be recomputed based on that bitsize. */
9015 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9016 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9018 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9019 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9020 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9021 TYPE_LENGTH (result)++;
9024 TYPE_FIXED_INSTANCE (result) = 1;
9029 /* A standard type (containing no dynamically sized components)
9030 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9031 DVAL describes a record containing any discriminants used in TYPE0,
9032 and may be NULL if there are none, or if the object of type TYPE at
9033 ADDRESS or in VALADDR contains these discriminants.
9035 If CHECK_TAG is not null, in the case of tagged types, this function
9036 attempts to locate the object's tag and use it to compute the actual
9037 type. However, when ADDRESS is null, we cannot use it to determine the
9038 location of the tag, and therefore compute the tagged type's actual type.
9039 So we return the tagged type without consulting the tag. */
9041 static struct type *
9042 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9043 CORE_ADDR address, struct value *dval, int check_tag)
9045 type = ada_check_typedef (type);
9046 switch (TYPE_CODE (type))
9050 case TYPE_CODE_STRUCT:
9052 struct type *static_type = to_static_fixed_type (type);
9053 struct type *fixed_record_type =
9054 to_fixed_record_type (type, valaddr, address, NULL);
9056 /* If STATIC_TYPE is a tagged type and we know the object's address,
9057 then we can determine its tag, and compute the object's actual
9058 type from there. Note that we have to use the fixed record
9059 type (the parent part of the record may have dynamic fields
9060 and the way the location of _tag is expressed may depend on
9063 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9066 value_tag_from_contents_and_address
9070 struct type *real_type = type_from_tag (tag);
9072 value_from_contents_and_address (fixed_record_type,
9075 fixed_record_type = value_type (obj);
9076 if (real_type != NULL)
9077 return to_fixed_record_type
9079 value_address (ada_tag_value_at_base_address (obj)), NULL);
9082 /* Check to see if there is a parallel ___XVZ variable.
9083 If there is, then it provides the actual size of our type. */
9084 else if (ada_type_name (fixed_record_type) != NULL)
9086 const char *name = ada_type_name (fixed_record_type);
9088 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9089 bool xvz_found = false;
9092 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9095 xvz_found = get_int_var_value (xvz_name, size);
9097 CATCH (except, RETURN_MASK_ERROR)
9099 /* We found the variable, but somehow failed to read
9100 its value. Rethrow the same error, but with a little
9101 bit more information, to help the user understand
9102 what went wrong (Eg: the variable might have been
9104 throw_error (except.error,
9105 _("unable to read value of %s (%s)"),
9106 xvz_name, except.message);
9110 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9112 fixed_record_type = copy_type (fixed_record_type);
9113 TYPE_LENGTH (fixed_record_type) = size;
9115 /* The FIXED_RECORD_TYPE may have be a stub. We have
9116 observed this when the debugging info is STABS, and
9117 apparently it is something that is hard to fix.
9119 In practice, we don't need the actual type definition
9120 at all, because the presence of the XVZ variable allows us
9121 to assume that there must be a XVS type as well, which we
9122 should be able to use later, when we need the actual type
9125 In the meantime, pretend that the "fixed" type we are
9126 returning is NOT a stub, because this can cause trouble
9127 when using this type to create new types targeting it.
9128 Indeed, the associated creation routines often check
9129 whether the target type is a stub and will try to replace
9130 it, thus using a type with the wrong size. This, in turn,
9131 might cause the new type to have the wrong size too.
9132 Consider the case of an array, for instance, where the size
9133 of the array is computed from the number of elements in
9134 our array multiplied by the size of its element. */
9135 TYPE_STUB (fixed_record_type) = 0;
9138 return fixed_record_type;
9140 case TYPE_CODE_ARRAY:
9141 return to_fixed_array_type (type, dval, 1);
9142 case TYPE_CODE_UNION:
9146 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9150 /* The same as ada_to_fixed_type_1, except that it preserves the type
9151 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9153 The typedef layer needs be preserved in order to differentiate between
9154 arrays and array pointers when both types are implemented using the same
9155 fat pointer. In the array pointer case, the pointer is encoded as
9156 a typedef of the pointer type. For instance, considering:
9158 type String_Access is access String;
9159 S1 : String_Access := null;
9161 To the debugger, S1 is defined as a typedef of type String. But
9162 to the user, it is a pointer. So if the user tries to print S1,
9163 we should not dereference the array, but print the array address
9166 If we didn't preserve the typedef layer, we would lose the fact that
9167 the type is to be presented as a pointer (needs de-reference before
9168 being printed). And we would also use the source-level type name. */
9171 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9172 CORE_ADDR address, struct value *dval, int check_tag)
9175 struct type *fixed_type =
9176 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9178 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9179 then preserve the typedef layer.
9181 Implementation note: We can only check the main-type portion of
9182 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9183 from TYPE now returns a type that has the same instance flags
9184 as TYPE. For instance, if TYPE is a "typedef const", and its
9185 target type is a "struct", then the typedef elimination will return
9186 a "const" version of the target type. See check_typedef for more
9187 details about how the typedef layer elimination is done.
9189 brobecker/2010-11-19: It seems to me that the only case where it is
9190 useful to preserve the typedef layer is when dealing with fat pointers.
9191 Perhaps, we could add a check for that and preserve the typedef layer
9192 only in that situation. But this seems unecessary so far, probably
9193 because we call check_typedef/ada_check_typedef pretty much everywhere.
9195 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9196 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9197 == TYPE_MAIN_TYPE (fixed_type)))
9203 /* A standard (static-sized) type corresponding as well as possible to
9204 TYPE0, but based on no runtime data. */
9206 static struct type *
9207 to_static_fixed_type (struct type *type0)
9214 if (TYPE_FIXED_INSTANCE (type0))
9217 type0 = ada_check_typedef (type0);
9219 switch (TYPE_CODE (type0))
9223 case TYPE_CODE_STRUCT:
9224 type = dynamic_template_type (type0);
9226 return template_to_static_fixed_type (type);
9228 return template_to_static_fixed_type (type0);
9229 case TYPE_CODE_UNION:
9230 type = ada_find_parallel_type (type0, "___XVU");
9232 return template_to_static_fixed_type (type);
9234 return template_to_static_fixed_type (type0);
9238 /* A static approximation of TYPE with all type wrappers removed. */
9240 static struct type *
9241 static_unwrap_type (struct type *type)
9243 if (ada_is_aligner_type (type))
9245 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9246 if (ada_type_name (type1) == NULL)
9247 TYPE_NAME (type1) = ada_type_name (type);
9249 return static_unwrap_type (type1);
9253 struct type *raw_real_type = ada_get_base_type (type);
9255 if (raw_real_type == type)
9258 return to_static_fixed_type (raw_real_type);
9262 /* In some cases, incomplete and private types require
9263 cross-references that are not resolved as records (for example,
9265 type FooP is access Foo;
9267 type Foo is array ...;
9268 ). In these cases, since there is no mechanism for producing
9269 cross-references to such types, we instead substitute for FooP a
9270 stub enumeration type that is nowhere resolved, and whose tag is
9271 the name of the actual type. Call these types "non-record stubs". */
9273 /* A type equivalent to TYPE that is not a non-record stub, if one
9274 exists, otherwise TYPE. */
9277 ada_check_typedef (struct type *type)
9282 /* If our type is a typedef type of a fat pointer, then we're done.
9283 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9284 what allows us to distinguish between fat pointers that represent
9285 array types, and fat pointers that represent array access types
9286 (in both cases, the compiler implements them as fat pointers). */
9287 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9288 && is_thick_pntr (ada_typedef_target_type (type)))
9291 type = check_typedef (type);
9292 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9293 || !TYPE_STUB (type)
9294 || TYPE_TAG_NAME (type) == NULL)
9298 const char *name = TYPE_TAG_NAME (type);
9299 struct type *type1 = ada_find_any_type (name);
9304 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9305 stubs pointing to arrays, as we don't create symbols for array
9306 types, only for the typedef-to-array types). If that's the case,
9307 strip the typedef layer. */
9308 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9309 type1 = ada_check_typedef (type1);
9315 /* A value representing the data at VALADDR/ADDRESS as described by
9316 type TYPE0, but with a standard (static-sized) type that correctly
9317 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9318 type, then return VAL0 [this feature is simply to avoid redundant
9319 creation of struct values]. */
9321 static struct value *
9322 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9325 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9327 if (type == type0 && val0 != NULL)
9330 if (VALUE_LVAL (val0) != lval_memory)
9332 /* Our value does not live in memory; it could be a convenience
9333 variable, for instance. Create a not_lval value using val0's
9335 return value_from_contents (type, value_contents (val0));
9338 return value_from_contents_and_address (type, 0, address);
9341 /* A value representing VAL, but with a standard (static-sized) type
9342 that correctly describes it. Does not necessarily create a new
9346 ada_to_fixed_value (struct value *val)
9348 val = unwrap_value (val);
9349 val = ada_to_fixed_value_create (value_type (val),
9350 value_address (val),
9358 /* Table mapping attribute numbers to names.
9359 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9361 static const char *attribute_names[] = {
9379 ada_attribute_name (enum exp_opcode n)
9381 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9382 return attribute_names[n - OP_ATR_FIRST + 1];
9384 return attribute_names[0];
9387 /* Evaluate the 'POS attribute applied to ARG. */
9390 pos_atr (struct value *arg)
9392 struct value *val = coerce_ref (arg);
9393 struct type *type = value_type (val);
9396 if (!discrete_type_p (type))
9397 error (_("'POS only defined on discrete types"));
9399 if (!discrete_position (type, value_as_long (val), &result))
9400 error (_("enumeration value is invalid: can't find 'POS"));
9405 static struct value *
9406 value_pos_atr (struct type *type, struct value *arg)
9408 return value_from_longest (type, pos_atr (arg));
9411 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9413 static struct value *
9414 value_val_atr (struct type *type, struct value *arg)
9416 if (!discrete_type_p (type))
9417 error (_("'VAL only defined on discrete types"));
9418 if (!integer_type_p (value_type (arg)))
9419 error (_("'VAL requires integral argument"));
9421 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9423 long pos = value_as_long (arg);
9425 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9426 error (_("argument to 'VAL out of range"));
9427 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9430 return value_from_longest (type, value_as_long (arg));
9436 /* True if TYPE appears to be an Ada character type.
9437 [At the moment, this is true only for Character and Wide_Character;
9438 It is a heuristic test that could stand improvement]. */
9441 ada_is_character_type (struct type *type)
9445 /* If the type code says it's a character, then assume it really is,
9446 and don't check any further. */
9447 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9450 /* Otherwise, assume it's a character type iff it is a discrete type
9451 with a known character type name. */
9452 name = ada_type_name (type);
9453 return (name != NULL
9454 && (TYPE_CODE (type) == TYPE_CODE_INT
9455 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9456 && (strcmp (name, "character") == 0
9457 || strcmp (name, "wide_character") == 0
9458 || strcmp (name, "wide_wide_character") == 0
9459 || strcmp (name, "unsigned char") == 0));
9462 /* True if TYPE appears to be an Ada string type. */
9465 ada_is_string_type (struct type *type)
9467 type = ada_check_typedef (type);
9469 && TYPE_CODE (type) != TYPE_CODE_PTR
9470 && (ada_is_simple_array_type (type)
9471 || ada_is_array_descriptor_type (type))
9472 && ada_array_arity (type) == 1)
9474 struct type *elttype = ada_array_element_type (type, 1);
9476 return ada_is_character_type (elttype);
9482 /* The compiler sometimes provides a parallel XVS type for a given
9483 PAD type. Normally, it is safe to follow the PAD type directly,
9484 but older versions of the compiler have a bug that causes the offset
9485 of its "F" field to be wrong. Following that field in that case
9486 would lead to incorrect results, but this can be worked around
9487 by ignoring the PAD type and using the associated XVS type instead.
9489 Set to True if the debugger should trust the contents of PAD types.
9490 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9491 static int trust_pad_over_xvs = 1;
9493 /* True if TYPE is a struct type introduced by the compiler to force the
9494 alignment of a value. Such types have a single field with a
9495 distinctive name. */
9498 ada_is_aligner_type (struct type *type)
9500 type = ada_check_typedef (type);
9502 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9505 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9506 && TYPE_NFIELDS (type) == 1
9507 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9510 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9511 the parallel type. */
9514 ada_get_base_type (struct type *raw_type)
9516 struct type *real_type_namer;
9517 struct type *raw_real_type;
9519 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9522 if (ada_is_aligner_type (raw_type))
9523 /* The encoding specifies that we should always use the aligner type.
9524 So, even if this aligner type has an associated XVS type, we should
9527 According to the compiler gurus, an XVS type parallel to an aligner
9528 type may exist because of a stabs limitation. In stabs, aligner
9529 types are empty because the field has a variable-sized type, and
9530 thus cannot actually be used as an aligner type. As a result,
9531 we need the associated parallel XVS type to decode the type.
9532 Since the policy in the compiler is to not change the internal
9533 representation based on the debugging info format, we sometimes
9534 end up having a redundant XVS type parallel to the aligner type. */
9537 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9538 if (real_type_namer == NULL
9539 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9540 || TYPE_NFIELDS (real_type_namer) != 1)
9543 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9545 /* This is an older encoding form where the base type needs to be
9546 looked up by name. We prefer the newer enconding because it is
9548 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9549 if (raw_real_type == NULL)
9552 return raw_real_type;
9555 /* The field in our XVS type is a reference to the base type. */
9556 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9559 /* The type of value designated by TYPE, with all aligners removed. */
9562 ada_aligned_type (struct type *type)
9564 if (ada_is_aligner_type (type))
9565 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9567 return ada_get_base_type (type);
9571 /* The address of the aligned value in an object at address VALADDR
9572 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9575 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9577 if (ada_is_aligner_type (type))
9578 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9580 TYPE_FIELD_BITPOS (type,
9581 0) / TARGET_CHAR_BIT);
9588 /* The printed representation of an enumeration literal with encoded
9589 name NAME. The value is good to the next call of ada_enum_name. */
9591 ada_enum_name (const char *name)
9593 static char *result;
9594 static size_t result_len = 0;
9597 /* First, unqualify the enumeration name:
9598 1. Search for the last '.' character. If we find one, then skip
9599 all the preceding characters, the unqualified name starts
9600 right after that dot.
9601 2. Otherwise, we may be debugging on a target where the compiler
9602 translates dots into "__". Search forward for double underscores,
9603 but stop searching when we hit an overloading suffix, which is
9604 of the form "__" followed by digits. */
9606 tmp = strrchr (name, '.');
9611 while ((tmp = strstr (name, "__")) != NULL)
9613 if (isdigit (tmp[2]))
9624 if (name[1] == 'U' || name[1] == 'W')
9626 if (sscanf (name + 2, "%x", &v) != 1)
9632 GROW_VECT (result, result_len, 16);
9633 if (isascii (v) && isprint (v))
9634 xsnprintf (result, result_len, "'%c'", v);
9635 else if (name[1] == 'U')
9636 xsnprintf (result, result_len, "[\"%02x\"]", v);
9638 xsnprintf (result, result_len, "[\"%04x\"]", v);
9644 tmp = strstr (name, "__");
9646 tmp = strstr (name, "$");
9649 GROW_VECT (result, result_len, tmp - name + 1);
9650 strncpy (result, name, tmp - name);
9651 result[tmp - name] = '\0';
9659 /* Evaluate the subexpression of EXP starting at *POS as for
9660 evaluate_type, updating *POS to point just past the evaluated
9663 static struct value *
9664 evaluate_subexp_type (struct expression *exp, int *pos)
9666 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9669 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9672 static struct value *
9673 unwrap_value (struct value *val)
9675 struct type *type = ada_check_typedef (value_type (val));
9677 if (ada_is_aligner_type (type))
9679 struct value *v = ada_value_struct_elt (val, "F", 0);
9680 struct type *val_type = ada_check_typedef (value_type (v));
9682 if (ada_type_name (val_type) == NULL)
9683 TYPE_NAME (val_type) = ada_type_name (type);
9685 return unwrap_value (v);
9689 struct type *raw_real_type =
9690 ada_check_typedef (ada_get_base_type (type));
9692 /* If there is no parallel XVS or XVE type, then the value is
9693 already unwrapped. Return it without further modification. */
9694 if ((type == raw_real_type)
9695 && ada_find_parallel_type (type, "___XVE") == NULL)
9699 coerce_unspec_val_to_type
9700 (val, ada_to_fixed_type (raw_real_type, 0,
9701 value_address (val),
9706 static struct value *
9707 cast_from_fixed (struct type *type, struct value *arg)
9709 struct value *scale = ada_scaling_factor (value_type (arg));
9710 arg = value_cast (value_type (scale), arg);
9712 arg = value_binop (arg, scale, BINOP_MUL);
9713 return value_cast (type, arg);
9716 static struct value *
9717 cast_to_fixed (struct type *type, struct value *arg)
9719 if (type == value_type (arg))
9722 struct value *scale = ada_scaling_factor (type);
9723 if (ada_is_fixed_point_type (value_type (arg)))
9724 arg = cast_from_fixed (value_type (scale), arg);
9726 arg = value_cast (value_type (scale), arg);
9728 arg = value_binop (arg, scale, BINOP_DIV);
9729 return value_cast (type, arg);
9732 /* Given two array types T1 and T2, return nonzero iff both arrays
9733 contain the same number of elements. */
9736 ada_same_array_size_p (struct type *t1, struct type *t2)
9738 LONGEST lo1, hi1, lo2, hi2;
9740 /* Get the array bounds in order to verify that the size of
9741 the two arrays match. */
9742 if (!get_array_bounds (t1, &lo1, &hi1)
9743 || !get_array_bounds (t2, &lo2, &hi2))
9744 error (_("unable to determine array bounds"));
9746 /* To make things easier for size comparison, normalize a bit
9747 the case of empty arrays by making sure that the difference
9748 between upper bound and lower bound is always -1. */
9754 return (hi1 - lo1 == hi2 - lo2);
9757 /* Assuming that VAL is an array of integrals, and TYPE represents
9758 an array with the same number of elements, but with wider integral
9759 elements, return an array "casted" to TYPE. In practice, this
9760 means that the returned array is built by casting each element
9761 of the original array into TYPE's (wider) element type. */
9763 static struct value *
9764 ada_promote_array_of_integrals (struct type *type, struct value *val)
9766 struct type *elt_type = TYPE_TARGET_TYPE (type);
9771 /* Verify that both val and type are arrays of scalars, and
9772 that the size of val's elements is smaller than the size
9773 of type's element. */
9774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9775 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9776 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9777 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9778 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9779 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9781 if (!get_array_bounds (type, &lo, &hi))
9782 error (_("unable to determine array bounds"));
9784 res = allocate_value (type);
9786 /* Promote each array element. */
9787 for (i = 0; i < hi - lo + 1; i++)
9789 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9791 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9792 value_contents_all (elt), TYPE_LENGTH (elt_type));
9798 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9799 return the converted value. */
9801 static struct value *
9802 coerce_for_assign (struct type *type, struct value *val)
9804 struct type *type2 = value_type (val);
9809 type2 = ada_check_typedef (type2);
9810 type = ada_check_typedef (type);
9812 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9813 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9815 val = ada_value_ind (val);
9816 type2 = value_type (val);
9819 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9820 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9822 if (!ada_same_array_size_p (type, type2))
9823 error (_("cannot assign arrays of different length"));
9825 if (is_integral_type (TYPE_TARGET_TYPE (type))
9826 && is_integral_type (TYPE_TARGET_TYPE (type2))
9827 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9828 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9830 /* Allow implicit promotion of the array elements to
9832 return ada_promote_array_of_integrals (type, val);
9835 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9836 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9837 error (_("Incompatible types in assignment"));
9838 deprecated_set_value_type (val, type);
9843 static struct value *
9844 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9847 struct type *type1, *type2;
9850 arg1 = coerce_ref (arg1);
9851 arg2 = coerce_ref (arg2);
9852 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9853 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9855 if (TYPE_CODE (type1) != TYPE_CODE_INT
9856 || TYPE_CODE (type2) != TYPE_CODE_INT)
9857 return value_binop (arg1, arg2, op);
9866 return value_binop (arg1, arg2, op);
9869 v2 = value_as_long (arg2);
9871 error (_("second operand of %s must not be zero."), op_string (op));
9873 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9874 return value_binop (arg1, arg2, op);
9876 v1 = value_as_long (arg1);
9881 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9882 v += v > 0 ? -1 : 1;
9890 /* Should not reach this point. */
9894 val = allocate_value (type1);
9895 store_unsigned_integer (value_contents_raw (val),
9896 TYPE_LENGTH (value_type (val)),
9897 gdbarch_byte_order (get_type_arch (type1)), v);
9902 ada_value_equal (struct value *arg1, struct value *arg2)
9904 if (ada_is_direct_array_type (value_type (arg1))
9905 || ada_is_direct_array_type (value_type (arg2)))
9907 struct type *arg1_type, *arg2_type;
9909 /* Automatically dereference any array reference before
9910 we attempt to perform the comparison. */
9911 arg1 = ada_coerce_ref (arg1);
9912 arg2 = ada_coerce_ref (arg2);
9914 arg1 = ada_coerce_to_simple_array (arg1);
9915 arg2 = ada_coerce_to_simple_array (arg2);
9917 arg1_type = ada_check_typedef (value_type (arg1));
9918 arg2_type = ada_check_typedef (value_type (arg2));
9920 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9921 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9922 error (_("Attempt to compare array with non-array"));
9923 /* FIXME: The following works only for types whose
9924 representations use all bits (no padding or undefined bits)
9925 and do not have user-defined equality. */
9926 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9927 && memcmp (value_contents (arg1), value_contents (arg2),
9928 TYPE_LENGTH (arg1_type)) == 0);
9930 return value_equal (arg1, arg2);
9933 /* Total number of component associations in the aggregate starting at
9934 index PC in EXP. Assumes that index PC is the start of an
9938 num_component_specs (struct expression *exp, int pc)
9942 m = exp->elts[pc + 1].longconst;
9945 for (i = 0; i < m; i += 1)
9947 switch (exp->elts[pc].opcode)
9953 n += exp->elts[pc + 1].longconst;
9956 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9961 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9962 component of LHS (a simple array or a record), updating *POS past
9963 the expression, assuming that LHS is contained in CONTAINER. Does
9964 not modify the inferior's memory, nor does it modify LHS (unless
9965 LHS == CONTAINER). */
9968 assign_component (struct value *container, struct value *lhs, LONGEST index,
9969 struct expression *exp, int *pos)
9971 struct value *mark = value_mark ();
9973 struct type *lhs_type = check_typedef (value_type (lhs));
9975 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9977 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9978 struct value *index_val = value_from_longest (index_type, index);
9980 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9984 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9985 elt = ada_to_fixed_value (elt);
9988 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9989 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9991 value_assign_to_component (container, elt,
9992 ada_evaluate_subexp (NULL, exp, pos,
9995 value_free_to_mark (mark);
9998 /* Assuming that LHS represents an lvalue having a record or array
9999 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10000 of that aggregate's value to LHS, advancing *POS past the
10001 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10002 lvalue containing LHS (possibly LHS itself). Does not modify
10003 the inferior's memory, nor does it modify the contents of
10004 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10006 static struct value *
10007 assign_aggregate (struct value *container,
10008 struct value *lhs, struct expression *exp,
10009 int *pos, enum noside noside)
10011 struct type *lhs_type;
10012 int n = exp->elts[*pos+1].longconst;
10013 LONGEST low_index, high_index;
10016 int max_indices, num_indices;
10020 if (noside != EVAL_NORMAL)
10022 for (i = 0; i < n; i += 1)
10023 ada_evaluate_subexp (NULL, exp, pos, noside);
10027 container = ada_coerce_ref (container);
10028 if (ada_is_direct_array_type (value_type (container)))
10029 container = ada_coerce_to_simple_array (container);
10030 lhs = ada_coerce_ref (lhs);
10031 if (!deprecated_value_modifiable (lhs))
10032 error (_("Left operand of assignment is not a modifiable lvalue."));
10034 lhs_type = check_typedef (value_type (lhs));
10035 if (ada_is_direct_array_type (lhs_type))
10037 lhs = ada_coerce_to_simple_array (lhs);
10038 lhs_type = check_typedef (value_type (lhs));
10039 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10040 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10042 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10045 high_index = num_visible_fields (lhs_type) - 1;
10048 error (_("Left-hand side must be array or record."));
10050 num_specs = num_component_specs (exp, *pos - 3);
10051 max_indices = 4 * num_specs + 4;
10052 indices = XALLOCAVEC (LONGEST, max_indices);
10053 indices[0] = indices[1] = low_index - 1;
10054 indices[2] = indices[3] = high_index + 1;
10057 for (i = 0; i < n; i += 1)
10059 switch (exp->elts[*pos].opcode)
10062 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10063 &num_indices, max_indices,
10064 low_index, high_index);
10066 case OP_POSITIONAL:
10067 aggregate_assign_positional (container, lhs, exp, pos, indices,
10068 &num_indices, max_indices,
10069 low_index, high_index);
10073 error (_("Misplaced 'others' clause"));
10074 aggregate_assign_others (container, lhs, exp, pos, indices,
10075 num_indices, low_index, high_index);
10078 error (_("Internal error: bad aggregate clause"));
10085 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10086 construct at *POS, updating *POS past the construct, given that
10087 the positions are relative to lower bound LOW, where HIGH is the
10088 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10089 updating *NUM_INDICES as needed. CONTAINER is as for
10090 assign_aggregate. */
10092 aggregate_assign_positional (struct value *container,
10093 struct value *lhs, struct expression *exp,
10094 int *pos, LONGEST *indices, int *num_indices,
10095 int max_indices, LONGEST low, LONGEST high)
10097 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10099 if (ind - 1 == high)
10100 warning (_("Extra components in aggregate ignored."));
10103 add_component_interval (ind, ind, indices, num_indices, max_indices);
10105 assign_component (container, lhs, ind, exp, pos);
10108 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10111 /* Assign into the components of LHS indexed by the OP_CHOICES
10112 construct at *POS, updating *POS past the construct, given that
10113 the allowable indices are LOW..HIGH. Record the indices assigned
10114 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10115 needed. CONTAINER is as for assign_aggregate. */
10117 aggregate_assign_from_choices (struct value *container,
10118 struct value *lhs, struct expression *exp,
10119 int *pos, LONGEST *indices, int *num_indices,
10120 int max_indices, LONGEST low, LONGEST high)
10123 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10124 int choice_pos, expr_pc;
10125 int is_array = ada_is_direct_array_type (value_type (lhs));
10127 choice_pos = *pos += 3;
10129 for (j = 0; j < n_choices; j += 1)
10130 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10134 for (j = 0; j < n_choices; j += 1)
10136 LONGEST lower, upper;
10137 enum exp_opcode op = exp->elts[choice_pos].opcode;
10139 if (op == OP_DISCRETE_RANGE)
10142 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10144 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10149 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10161 name = &exp->elts[choice_pos + 2].string;
10164 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10167 error (_("Invalid record component association."));
10169 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10171 if (! find_struct_field (name, value_type (lhs), 0,
10172 NULL, NULL, NULL, NULL, &ind))
10173 error (_("Unknown component name: %s."), name);
10174 lower = upper = ind;
10177 if (lower <= upper && (lower < low || upper > high))
10178 error (_("Index in component association out of bounds."));
10180 add_component_interval (lower, upper, indices, num_indices,
10182 while (lower <= upper)
10187 assign_component (container, lhs, lower, exp, &pos1);
10193 /* Assign the value of the expression in the OP_OTHERS construct in
10194 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10195 have not been previously assigned. The index intervals already assigned
10196 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10197 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10199 aggregate_assign_others (struct value *container,
10200 struct value *lhs, struct expression *exp,
10201 int *pos, LONGEST *indices, int num_indices,
10202 LONGEST low, LONGEST high)
10205 int expr_pc = *pos + 1;
10207 for (i = 0; i < num_indices - 2; i += 2)
10211 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10215 localpos = expr_pc;
10216 assign_component (container, lhs, ind, exp, &localpos);
10219 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10222 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10223 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10224 modifying *SIZE as needed. It is an error if *SIZE exceeds
10225 MAX_SIZE. The resulting intervals do not overlap. */
10227 add_component_interval (LONGEST low, LONGEST high,
10228 LONGEST* indices, int *size, int max_size)
10232 for (i = 0; i < *size; i += 2) {
10233 if (high >= indices[i] && low <= indices[i + 1])
10237 for (kh = i + 2; kh < *size; kh += 2)
10238 if (high < indices[kh])
10240 if (low < indices[i])
10242 indices[i + 1] = indices[kh - 1];
10243 if (high > indices[i + 1])
10244 indices[i + 1] = high;
10245 memcpy (indices + i + 2, indices + kh, *size - kh);
10246 *size -= kh - i - 2;
10249 else if (high < indices[i])
10253 if (*size == max_size)
10254 error (_("Internal error: miscounted aggregate components."));
10256 for (j = *size-1; j >= i+2; j -= 1)
10257 indices[j] = indices[j - 2];
10259 indices[i + 1] = high;
10262 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10265 static struct value *
10266 ada_value_cast (struct type *type, struct value *arg2)
10268 if (type == ada_check_typedef (value_type (arg2)))
10271 if (ada_is_fixed_point_type (type))
10272 return (cast_to_fixed (type, arg2));
10274 if (ada_is_fixed_point_type (value_type (arg2)))
10275 return cast_from_fixed (type, arg2);
10277 return value_cast (type, arg2);
10280 /* Evaluating Ada expressions, and printing their result.
10281 ------------------------------------------------------
10286 We usually evaluate an Ada expression in order to print its value.
10287 We also evaluate an expression in order to print its type, which
10288 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10289 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10290 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10291 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10294 Evaluating expressions is a little more complicated for Ada entities
10295 than it is for entities in languages such as C. The main reason for
10296 this is that Ada provides types whose definition might be dynamic.
10297 One example of such types is variant records. Or another example
10298 would be an array whose bounds can only be known at run time.
10300 The following description is a general guide as to what should be
10301 done (and what should NOT be done) in order to evaluate an expression
10302 involving such types, and when. This does not cover how the semantic
10303 information is encoded by GNAT as this is covered separatly. For the
10304 document used as the reference for the GNAT encoding, see exp_dbug.ads
10305 in the GNAT sources.
10307 Ideally, we should embed each part of this description next to its
10308 associated code. Unfortunately, the amount of code is so vast right
10309 now that it's hard to see whether the code handling a particular
10310 situation might be duplicated or not. One day, when the code is
10311 cleaned up, this guide might become redundant with the comments
10312 inserted in the code, and we might want to remove it.
10314 2. ``Fixing'' an Entity, the Simple Case:
10315 -----------------------------------------
10317 When evaluating Ada expressions, the tricky issue is that they may
10318 reference entities whose type contents and size are not statically
10319 known. Consider for instance a variant record:
10321 type Rec (Empty : Boolean := True) is record
10324 when False => Value : Integer;
10327 Yes : Rec := (Empty => False, Value => 1);
10328 No : Rec := (empty => True);
10330 The size and contents of that record depends on the value of the
10331 descriminant (Rec.Empty). At this point, neither the debugging
10332 information nor the associated type structure in GDB are able to
10333 express such dynamic types. So what the debugger does is to create
10334 "fixed" versions of the type that applies to the specific object.
10335 We also informally refer to this opperation as "fixing" an object,
10336 which means creating its associated fixed type.
10338 Example: when printing the value of variable "Yes" above, its fixed
10339 type would look like this:
10346 On the other hand, if we printed the value of "No", its fixed type
10353 Things become a little more complicated when trying to fix an entity
10354 with a dynamic type that directly contains another dynamic type,
10355 such as an array of variant records, for instance. There are
10356 two possible cases: Arrays, and records.
10358 3. ``Fixing'' Arrays:
10359 ---------------------
10361 The type structure in GDB describes an array in terms of its bounds,
10362 and the type of its elements. By design, all elements in the array
10363 have the same type and we cannot represent an array of variant elements
10364 using the current type structure in GDB. When fixing an array,
10365 we cannot fix the array element, as we would potentially need one
10366 fixed type per element of the array. As a result, the best we can do
10367 when fixing an array is to produce an array whose bounds and size
10368 are correct (allowing us to read it from memory), but without having
10369 touched its element type. Fixing each element will be done later,
10370 when (if) necessary.
10372 Arrays are a little simpler to handle than records, because the same
10373 amount of memory is allocated for each element of the array, even if
10374 the amount of space actually used by each element differs from element
10375 to element. Consider for instance the following array of type Rec:
10377 type Rec_Array is array (1 .. 2) of Rec;
10379 The actual amount of memory occupied by each element might be different
10380 from element to element, depending on the value of their discriminant.
10381 But the amount of space reserved for each element in the array remains
10382 fixed regardless. So we simply need to compute that size using
10383 the debugging information available, from which we can then determine
10384 the array size (we multiply the number of elements of the array by
10385 the size of each element).
10387 The simplest case is when we have an array of a constrained element
10388 type. For instance, consider the following type declarations:
10390 type Bounded_String (Max_Size : Integer) is
10392 Buffer : String (1 .. Max_Size);
10394 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10396 In this case, the compiler describes the array as an array of
10397 variable-size elements (identified by its XVS suffix) for which
10398 the size can be read in the parallel XVZ variable.
10400 In the case of an array of an unconstrained element type, the compiler
10401 wraps the array element inside a private PAD type. This type should not
10402 be shown to the user, and must be "unwrap"'ed before printing. Note
10403 that we also use the adjective "aligner" in our code to designate
10404 these wrapper types.
10406 In some cases, the size allocated for each element is statically
10407 known. In that case, the PAD type already has the correct size,
10408 and the array element should remain unfixed.
10410 But there are cases when this size is not statically known.
10411 For instance, assuming that "Five" is an integer variable:
10413 type Dynamic is array (1 .. Five) of Integer;
10414 type Wrapper (Has_Length : Boolean := False) is record
10417 when True => Length : Integer;
10418 when False => null;
10421 type Wrapper_Array is array (1 .. 2) of Wrapper;
10423 Hello : Wrapper_Array := (others => (Has_Length => True,
10424 Data => (others => 17),
10428 The debugging info would describe variable Hello as being an
10429 array of a PAD type. The size of that PAD type is not statically
10430 known, but can be determined using a parallel XVZ variable.
10431 In that case, a copy of the PAD type with the correct size should
10432 be used for the fixed array.
10434 3. ``Fixing'' record type objects:
10435 ----------------------------------
10437 Things are slightly different from arrays in the case of dynamic
10438 record types. In this case, in order to compute the associated
10439 fixed type, we need to determine the size and offset of each of
10440 its components. This, in turn, requires us to compute the fixed
10441 type of each of these components.
10443 Consider for instance the example:
10445 type Bounded_String (Max_Size : Natural) is record
10446 Str : String (1 .. Max_Size);
10449 My_String : Bounded_String (Max_Size => 10);
10451 In that case, the position of field "Length" depends on the size
10452 of field Str, which itself depends on the value of the Max_Size
10453 discriminant. In order to fix the type of variable My_String,
10454 we need to fix the type of field Str. Therefore, fixing a variant
10455 record requires us to fix each of its components.
10457 However, if a component does not have a dynamic size, the component
10458 should not be fixed. In particular, fields that use a PAD type
10459 should not fixed. Here is an example where this might happen
10460 (assuming type Rec above):
10462 type Container (Big : Boolean) is record
10466 when True => Another : Integer;
10467 when False => null;
10470 My_Container : Container := (Big => False,
10471 First => (Empty => True),
10474 In that example, the compiler creates a PAD type for component First,
10475 whose size is constant, and then positions the component After just
10476 right after it. The offset of component After is therefore constant
10479 The debugger computes the position of each field based on an algorithm
10480 that uses, among other things, the actual position and size of the field
10481 preceding it. Let's now imagine that the user is trying to print
10482 the value of My_Container. If the type fixing was recursive, we would
10483 end up computing the offset of field After based on the size of the
10484 fixed version of field First. And since in our example First has
10485 only one actual field, the size of the fixed type is actually smaller
10486 than the amount of space allocated to that field, and thus we would
10487 compute the wrong offset of field After.
10489 To make things more complicated, we need to watch out for dynamic
10490 components of variant records (identified by the ___XVL suffix in
10491 the component name). Even if the target type is a PAD type, the size
10492 of that type might not be statically known. So the PAD type needs
10493 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10494 we might end up with the wrong size for our component. This can be
10495 observed with the following type declarations:
10497 type Octal is new Integer range 0 .. 7;
10498 type Octal_Array is array (Positive range <>) of Octal;
10499 pragma Pack (Octal_Array);
10501 type Octal_Buffer (Size : Positive) is record
10502 Buffer : Octal_Array (1 .. Size);
10506 In that case, Buffer is a PAD type whose size is unset and needs
10507 to be computed by fixing the unwrapped type.
10509 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10510 ----------------------------------------------------------
10512 Lastly, when should the sub-elements of an entity that remained unfixed
10513 thus far, be actually fixed?
10515 The answer is: Only when referencing that element. For instance
10516 when selecting one component of a record, this specific component
10517 should be fixed at that point in time. Or when printing the value
10518 of a record, each component should be fixed before its value gets
10519 printed. Similarly for arrays, the element of the array should be
10520 fixed when printing each element of the array, or when extracting
10521 one element out of that array. On the other hand, fixing should
10522 not be performed on the elements when taking a slice of an array!
10524 Note that one of the side effects of miscomputing the offset and
10525 size of each field is that we end up also miscomputing the size
10526 of the containing type. This can have adverse results when computing
10527 the value of an entity. GDB fetches the value of an entity based
10528 on the size of its type, and thus a wrong size causes GDB to fetch
10529 the wrong amount of memory. In the case where the computed size is
10530 too small, GDB fetches too little data to print the value of our
10531 entity. Results in this case are unpredictable, as we usually read
10532 past the buffer containing the data =:-o. */
10534 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10535 for that subexpression cast to TO_TYPE. Advance *POS over the
10539 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10540 enum noside noside, struct type *to_type)
10544 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10545 || exp->elts[pc].opcode == OP_VAR_VALUE)
10550 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10553 return value_zero (to_type, not_lval);
10555 val = evaluate_var_msym_value (noside,
10556 exp->elts[pc + 1].objfile,
10557 exp->elts[pc + 2].msymbol);
10560 val = evaluate_var_value (noside,
10561 exp->elts[pc + 1].block,
10562 exp->elts[pc + 2].symbol);
10564 if (noside == EVAL_SKIP)
10565 return eval_skip_value (exp);
10567 val = ada_value_cast (to_type, val);
10569 /* Follow the Ada language semantics that do not allow taking
10570 an address of the result of a cast (view conversion in Ada). */
10571 if (VALUE_LVAL (val) == lval_memory)
10573 if (value_lazy (val))
10574 value_fetch_lazy (val);
10575 VALUE_LVAL (val) = not_lval;
10580 value *val = evaluate_subexp (to_type, exp, pos, noside);
10581 if (noside == EVAL_SKIP)
10582 return eval_skip_value (exp);
10583 return ada_value_cast (to_type, val);
10586 /* Implement the evaluate_exp routine in the exp_descriptor structure
10587 for the Ada language. */
10589 static struct value *
10590 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10591 int *pos, enum noside noside)
10593 enum exp_opcode op;
10597 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10600 struct value **argvec;
10604 op = exp->elts[pc].opcode;
10610 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10612 if (noside == EVAL_NORMAL)
10613 arg1 = unwrap_value (arg1);
10615 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10616 then we need to perform the conversion manually, because
10617 evaluate_subexp_standard doesn't do it. This conversion is
10618 necessary in Ada because the different kinds of float/fixed
10619 types in Ada have different representations.
10621 Similarly, we need to perform the conversion from OP_LONG
10623 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10624 arg1 = ada_value_cast (expect_type, arg1);
10630 struct value *result;
10633 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10634 /* The result type will have code OP_STRING, bashed there from
10635 OP_ARRAY. Bash it back. */
10636 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10637 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10643 type = exp->elts[pc + 1].type;
10644 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10648 type = exp->elts[pc + 1].type;
10649 return ada_evaluate_subexp (type, exp, pos, noside);
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10655 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10656 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10658 return ada_value_assign (arg1, arg1);
10660 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10661 except if the lhs of our assignment is a convenience variable.
10662 In the case of assigning to a convenience variable, the lhs
10663 should be exactly the result of the evaluation of the rhs. */
10664 type = value_type (arg1);
10665 if (VALUE_LVAL (arg1) == lval_internalvar)
10667 arg2 = evaluate_subexp (type, exp, pos, noside);
10668 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10670 if (ada_is_fixed_point_type (value_type (arg1)))
10671 arg2 = cast_to_fixed (value_type (arg1), arg2);
10672 else if (ada_is_fixed_point_type (value_type (arg2)))
10674 (_("Fixed-point values must be assigned to fixed-point variables"));
10676 arg2 = coerce_for_assign (value_type (arg1), arg2);
10677 return ada_value_assign (arg1, arg2);
10680 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10681 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10682 if (noside == EVAL_SKIP)
10684 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10685 return (value_from_longest
10686 (value_type (arg1),
10687 value_as_long (arg1) + value_as_long (arg2)));
10688 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10689 return (value_from_longest
10690 (value_type (arg2),
10691 value_as_long (arg1) + value_as_long (arg2)));
10692 if ((ada_is_fixed_point_type (value_type (arg1))
10693 || ada_is_fixed_point_type (value_type (arg2)))
10694 && value_type (arg1) != value_type (arg2))
10695 error (_("Operands of fixed-point addition must have the same type"));
10696 /* Do the addition, and cast the result to the type of the first
10697 argument. We cannot cast the result to a reference type, so if
10698 ARG1 is a reference type, find its underlying type. */
10699 type = value_type (arg1);
10700 while (TYPE_CODE (type) == TYPE_CODE_REF)
10701 type = TYPE_TARGET_TYPE (type);
10702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10703 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 if (noside == EVAL_SKIP)
10710 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10711 return (value_from_longest
10712 (value_type (arg1),
10713 value_as_long (arg1) - value_as_long (arg2)));
10714 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10715 return (value_from_longest
10716 (value_type (arg2),
10717 value_as_long (arg1) - value_as_long (arg2)));
10718 if ((ada_is_fixed_point_type (value_type (arg1))
10719 || ada_is_fixed_point_type (value_type (arg2)))
10720 && value_type (arg1) != value_type (arg2))
10721 error (_("Operands of fixed-point subtraction "
10722 "must have the same type"));
10723 /* Do the substraction, and cast the result to the type of the first
10724 argument. We cannot cast the result to a reference type, so if
10725 ARG1 is a reference type, find its underlying type. */
10726 type = value_type (arg1);
10727 while (TYPE_CODE (type) == TYPE_CODE_REF)
10728 type = TYPE_TARGET_TYPE (type);
10729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10730 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10737 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10740 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10743 return value_zero (value_type (arg1), not_lval);
10747 type = builtin_type (exp->gdbarch)->builtin_double;
10748 if (ada_is_fixed_point_type (value_type (arg1)))
10749 arg1 = cast_from_fixed (type, arg1);
10750 if (ada_is_fixed_point_type (value_type (arg2)))
10751 arg2 = cast_from_fixed (type, arg2);
10752 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10753 return ada_value_binop (arg1, arg2, op);
10757 case BINOP_NOTEQUAL:
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10760 if (noside == EVAL_SKIP)
10762 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10766 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10767 tem = ada_value_equal (arg1, arg2);
10769 if (op == BINOP_NOTEQUAL)
10771 type = language_bool_type (exp->language_defn, exp->gdbarch);
10772 return value_from_longest (type, (LONGEST) tem);
10775 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10776 if (noside == EVAL_SKIP)
10778 else if (ada_is_fixed_point_type (value_type (arg1)))
10779 return value_cast (value_type (arg1), value_neg (arg1));
10782 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10783 return value_neg (arg1);
10786 case BINOP_LOGICAL_AND:
10787 case BINOP_LOGICAL_OR:
10788 case UNOP_LOGICAL_NOT:
10793 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10794 type = language_bool_type (exp->language_defn, exp->gdbarch);
10795 return value_cast (type, val);
10798 case BINOP_BITWISE_AND:
10799 case BINOP_BITWISE_IOR:
10800 case BINOP_BITWISE_XOR:
10804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10806 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10808 return value_cast (value_type (arg1), val);
10814 if (noside == EVAL_SKIP)
10820 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10821 /* Only encountered when an unresolved symbol occurs in a
10822 context other than a function call, in which case, it is
10824 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10825 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10829 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10830 /* Check to see if this is a tagged type. We also need to handle
10831 the case where the type is a reference to a tagged type, but
10832 we have to be careful to exclude pointers to tagged types.
10833 The latter should be shown as usual (as a pointer), whereas
10834 a reference should mostly be transparent to the user. */
10835 if (ada_is_tagged_type (type, 0)
10836 || (TYPE_CODE (type) == TYPE_CODE_REF
10837 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10839 /* Tagged types are a little special in the fact that the real
10840 type is dynamic and can only be determined by inspecting the
10841 object's tag. This means that we need to get the object's
10842 value first (EVAL_NORMAL) and then extract the actual object
10845 Note that we cannot skip the final step where we extract
10846 the object type from its tag, because the EVAL_NORMAL phase
10847 results in dynamic components being resolved into fixed ones.
10848 This can cause problems when trying to print the type
10849 description of tagged types whose parent has a dynamic size:
10850 We use the type name of the "_parent" component in order
10851 to print the name of the ancestor type in the type description.
10852 If that component had a dynamic size, the resolution into
10853 a fixed type would result in the loss of that type name,
10854 thus preventing us from printing the name of the ancestor
10855 type in the type description. */
10856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10858 if (TYPE_CODE (type) != TYPE_CODE_REF)
10860 struct type *actual_type;
10862 actual_type = type_from_tag (ada_value_tag (arg1));
10863 if (actual_type == NULL)
10864 /* If, for some reason, we were unable to determine
10865 the actual type from the tag, then use the static
10866 approximation that we just computed as a fallback.
10867 This can happen if the debugging information is
10868 incomplete, for instance. */
10869 actual_type = type;
10870 return value_zero (actual_type, not_lval);
10874 /* In the case of a ref, ada_coerce_ref takes care
10875 of determining the actual type. But the evaluation
10876 should return a ref as it should be valid to ask
10877 for its address; so rebuild a ref after coerce. */
10878 arg1 = ada_coerce_ref (arg1);
10879 return value_ref (arg1, TYPE_CODE_REF);
10883 /* Records and unions for which GNAT encodings have been
10884 generated need to be statically fixed as well.
10885 Otherwise, non-static fixing produces a type where
10886 all dynamic properties are removed, which prevents "ptype"
10887 from being able to completely describe the type.
10888 For instance, a case statement in a variant record would be
10889 replaced by the relevant components based on the actual
10890 value of the discriminants. */
10891 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10892 && dynamic_template_type (type) != NULL)
10893 || (TYPE_CODE (type) == TYPE_CODE_UNION
10894 && ada_find_parallel_type (type, "___XVU") != NULL))
10897 return value_zero (to_static_fixed_type (type), not_lval);
10901 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10902 return ada_to_fixed_value (arg1);
10907 /* Allocate arg vector, including space for the function to be
10908 called in argvec[0] and a terminating NULL. */
10909 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10910 argvec = XALLOCAVEC (struct value *, nargs + 2);
10912 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10913 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10914 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10915 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10918 for (tem = 0; tem <= nargs; tem += 1)
10919 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 if (noside == EVAL_SKIP)
10926 if (ada_is_constrained_packed_array_type
10927 (desc_base_type (value_type (argvec[0]))))
10928 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10929 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10930 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10931 /* This is a packed array that has already been fixed, and
10932 therefore already coerced to a simple array. Nothing further
10935 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10937 /* Make sure we dereference references so that all the code below
10938 feels like it's really handling the referenced value. Wrapping
10939 types (for alignment) may be there, so make sure we strip them as
10941 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10943 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10944 && VALUE_LVAL (argvec[0]) == lval_memory)
10945 argvec[0] = value_addr (argvec[0]);
10947 type = ada_check_typedef (value_type (argvec[0]));
10949 /* Ada allows us to implicitly dereference arrays when subscripting
10950 them. So, if this is an array typedef (encoding use for array
10951 access types encoded as fat pointers), strip it now. */
10952 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10953 type = ada_typedef_target_type (type);
10955 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10957 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10959 case TYPE_CODE_FUNC:
10960 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10962 case TYPE_CODE_ARRAY:
10964 case TYPE_CODE_STRUCT:
10965 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10966 argvec[0] = ada_value_ind (argvec[0]);
10967 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10970 error (_("cannot subscript or call something of type `%s'"),
10971 ada_type_name (value_type (argvec[0])));
10976 switch (TYPE_CODE (type))
10978 case TYPE_CODE_FUNC:
10979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981 if (TYPE_TARGET_TYPE (type) == NULL)
10982 error_call_unknown_return_type (NULL);
10983 return allocate_value (TYPE_TARGET_TYPE (type));
10985 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10986 case TYPE_CODE_INTERNAL_FUNCTION:
10987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10988 /* We don't know anything about what the internal
10989 function might return, but we have to return
10991 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10994 return call_internal_function (exp->gdbarch, exp->language_defn,
10995 argvec[0], nargs, argvec + 1);
10997 case TYPE_CODE_STRUCT:
11001 arity = ada_array_arity (type);
11002 type = ada_array_element_type (type, nargs);
11004 error (_("cannot subscript or call a record"));
11005 if (arity != nargs)
11006 error (_("wrong number of subscripts; expecting %d"), arity);
11007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11008 return value_zero (ada_aligned_type (type), lval_memory);
11010 unwrap_value (ada_value_subscript
11011 (argvec[0], nargs, argvec + 1));
11013 case TYPE_CODE_ARRAY:
11014 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11016 type = ada_array_element_type (type, nargs);
11018 error (_("element type of array unknown"));
11020 return value_zero (ada_aligned_type (type), lval_memory);
11023 unwrap_value (ada_value_subscript
11024 (ada_coerce_to_simple_array (argvec[0]),
11025 nargs, argvec + 1));
11026 case TYPE_CODE_PTR: /* Pointer to array */
11027 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11029 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11030 type = ada_array_element_type (type, nargs);
11032 error (_("element type of array unknown"));
11034 return value_zero (ada_aligned_type (type), lval_memory);
11037 unwrap_value (ada_value_ptr_subscript (argvec[0],
11038 nargs, argvec + 1));
11041 error (_("Attempt to index or call something other than an "
11042 "array or function"));
11047 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11048 struct value *low_bound_val =
11049 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11050 struct value *high_bound_val =
11051 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 LONGEST high_bound;
11055 low_bound_val = coerce_ref (low_bound_val);
11056 high_bound_val = coerce_ref (high_bound_val);
11057 low_bound = value_as_long (low_bound_val);
11058 high_bound = value_as_long (high_bound_val);
11060 if (noside == EVAL_SKIP)
11063 /* If this is a reference to an aligner type, then remove all
11065 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11066 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11067 TYPE_TARGET_TYPE (value_type (array)) =
11068 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11070 if (ada_is_constrained_packed_array_type (value_type (array)))
11071 error (_("cannot slice a packed array"));
11073 /* If this is a reference to an array or an array lvalue,
11074 convert to a pointer. */
11075 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11076 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11077 && VALUE_LVAL (array) == lval_memory))
11078 array = value_addr (array);
11080 if (noside == EVAL_AVOID_SIDE_EFFECTS
11081 && ada_is_array_descriptor_type (ada_check_typedef
11082 (value_type (array))))
11083 return empty_array (ada_type_of_array (array, 0), low_bound);
11085 array = ada_coerce_to_simple_array_ptr (array);
11087 /* If we have more than one level of pointer indirection,
11088 dereference the value until we get only one level. */
11089 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11090 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11092 array = value_ind (array);
11094 /* Make sure we really do have an array type before going further,
11095 to avoid a SEGV when trying to get the index type or the target
11096 type later down the road if the debug info generated by
11097 the compiler is incorrect or incomplete. */
11098 if (!ada_is_simple_array_type (value_type (array)))
11099 error (_("cannot take slice of non-array"));
11101 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11104 struct type *type0 = ada_check_typedef (value_type (array));
11106 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11107 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11110 struct type *arr_type0 =
11111 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11113 return ada_value_slice_from_ptr (array, arr_type0,
11114 longest_to_int (low_bound),
11115 longest_to_int (high_bound));
11118 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11120 else if (high_bound < low_bound)
11121 return empty_array (value_type (array), low_bound);
11123 return ada_value_slice (array, longest_to_int (low_bound),
11124 longest_to_int (high_bound));
11127 case UNOP_IN_RANGE:
11129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11130 type = check_typedef (exp->elts[pc + 1].type);
11132 if (noside == EVAL_SKIP)
11135 switch (TYPE_CODE (type))
11138 lim_warning (_("Membership test incompletely implemented; "
11139 "always returns true"));
11140 type = language_bool_type (exp->language_defn, exp->gdbarch);
11141 return value_from_longest (type, (LONGEST) 1);
11143 case TYPE_CODE_RANGE:
11144 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11145 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11148 type = language_bool_type (exp->language_defn, exp->gdbarch);
11150 value_from_longest (type,
11151 (value_less (arg1, arg3)
11152 || value_equal (arg1, arg3))
11153 && (value_less (arg2, arg1)
11154 || value_equal (arg2, arg1)));
11157 case BINOP_IN_BOUNDS:
11159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11162 if (noside == EVAL_SKIP)
11165 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11167 type = language_bool_type (exp->language_defn, exp->gdbarch);
11168 return value_zero (type, not_lval);
11171 tem = longest_to_int (exp->elts[pc + 1].longconst);
11173 type = ada_index_type (value_type (arg2), tem, "range");
11175 type = value_type (arg1);
11177 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11178 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11180 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11182 type = language_bool_type (exp->language_defn, exp->gdbarch);
11184 value_from_longest (type,
11185 (value_less (arg1, arg3)
11186 || value_equal (arg1, arg3))
11187 && (value_less (arg2, arg1)
11188 || value_equal (arg2, arg1)));
11190 case TERNOP_IN_RANGE:
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 if (noside == EVAL_SKIP)
11198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11200 type = language_bool_type (exp->language_defn, exp->gdbarch);
11202 value_from_longest (type,
11203 (value_less (arg1, arg3)
11204 || value_equal (arg1, arg3))
11205 && (value_less (arg2, arg1)
11206 || value_equal (arg2, arg1)));
11210 case OP_ATR_LENGTH:
11212 struct type *type_arg;
11214 if (exp->elts[*pos].opcode == OP_TYPE)
11216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11218 type_arg = check_typedef (exp->elts[pc + 2].type);
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 if (exp->elts[*pos].opcode != OP_LONG)
11227 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11228 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11231 if (noside == EVAL_SKIP)
11234 if (type_arg == NULL)
11236 arg1 = ada_coerce_ref (arg1);
11238 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11239 arg1 = ada_coerce_to_simple_array (arg1);
11241 if (op == OP_ATR_LENGTH)
11242 type = builtin_type (exp->gdbarch)->builtin_int;
11245 type = ada_index_type (value_type (arg1), tem,
11246 ada_attribute_name (op));
11248 type = builtin_type (exp->gdbarch)->builtin_int;
11251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11252 return allocate_value (type);
11256 default: /* Should never happen. */
11257 error (_("unexpected attribute encountered"));
11259 return value_from_longest
11260 (type, ada_array_bound (arg1, tem, 0));
11262 return value_from_longest
11263 (type, ada_array_bound (arg1, tem, 1));
11264 case OP_ATR_LENGTH:
11265 return value_from_longest
11266 (type, ada_array_length (arg1, tem));
11269 else if (discrete_type_p (type_arg))
11271 struct type *range_type;
11272 const char *name = ada_type_name (type_arg);
11275 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11276 range_type = to_fixed_range_type (type_arg, NULL);
11277 if (range_type == NULL)
11278 range_type = type_arg;
11282 error (_("unexpected attribute encountered"));
11284 return value_from_longest
11285 (range_type, ada_discrete_type_low_bound (range_type));
11287 return value_from_longest
11288 (range_type, ada_discrete_type_high_bound (range_type));
11289 case OP_ATR_LENGTH:
11290 error (_("the 'length attribute applies only to array types"));
11293 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11294 error (_("unimplemented type attribute"));
11299 if (ada_is_constrained_packed_array_type (type_arg))
11300 type_arg = decode_constrained_packed_array_type (type_arg);
11302 if (op == OP_ATR_LENGTH)
11303 type = builtin_type (exp->gdbarch)->builtin_int;
11306 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11308 type = builtin_type (exp->gdbarch)->builtin_int;
11311 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11312 return allocate_value (type);
11317 error (_("unexpected attribute encountered"));
11319 low = ada_array_bound_from_type (type_arg, tem, 0);
11320 return value_from_longest (type, low);
11322 high = ada_array_bound_from_type (type_arg, tem, 1);
11323 return value_from_longest (type, high);
11324 case OP_ATR_LENGTH:
11325 low = ada_array_bound_from_type (type_arg, tem, 0);
11326 high = ada_array_bound_from_type (type_arg, tem, 1);
11327 return value_from_longest (type, high - low + 1);
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11334 if (noside == EVAL_SKIP)
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return value_zero (ada_tag_type (arg1), not_lval);
11340 return ada_value_tag (arg1);
11344 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11346 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11347 if (noside == EVAL_SKIP)
11349 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11350 return value_zero (value_type (arg1), not_lval);
11353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11354 return value_binop (arg1, arg2,
11355 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11358 case OP_ATR_MODULUS:
11360 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11362 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11363 if (noside == EVAL_SKIP)
11366 if (!ada_is_modular_type (type_arg))
11367 error (_("'modulus must be applied to modular type"));
11369 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11370 ada_modulus (type_arg));
11375 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 if (noside == EVAL_SKIP)
11379 type = builtin_type (exp->gdbarch)->builtin_int;
11380 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11381 return value_zero (type, not_lval);
11383 return value_pos_atr (type, arg1);
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 type = value_type (arg1);
11389 /* If the argument is a reference, then dereference its type, since
11390 the user is really asking for the size of the actual object,
11391 not the size of the pointer. */
11392 if (TYPE_CODE (type) == TYPE_CODE_REF)
11393 type = TYPE_TARGET_TYPE (type);
11395 if (noside == EVAL_SKIP)
11397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11398 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11400 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11401 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11404 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 type = exp->elts[pc + 2].type;
11407 if (noside == EVAL_SKIP)
11409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11410 return value_zero (type, not_lval);
11412 return value_val_atr (type, arg1);
11415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11416 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11417 if (noside == EVAL_SKIP)
11419 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11420 return value_zero (value_type (arg1), not_lval);
11423 /* For integer exponentiation operations,
11424 only promote the first argument. */
11425 if (is_integral_type (value_type (arg2)))
11426 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11428 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11430 return value_binop (arg1, arg2, op);
11434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11435 if (noside == EVAL_SKIP)
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 if (noside == EVAL_SKIP)
11444 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11445 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11446 return value_neg (arg1);
11451 preeval_pos = *pos;
11452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11453 if (noside == EVAL_SKIP)
11455 type = ada_check_typedef (value_type (arg1));
11456 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11458 if (ada_is_array_descriptor_type (type))
11459 /* GDB allows dereferencing GNAT array descriptors. */
11461 struct type *arrType = ada_type_of_array (arg1, 0);
11463 if (arrType == NULL)
11464 error (_("Attempt to dereference null array pointer."));
11465 return value_at_lazy (arrType, 0);
11467 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11468 || TYPE_CODE (type) == TYPE_CODE_REF
11469 /* In C you can dereference an array to get the 1st elt. */
11470 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11472 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11473 only be determined by inspecting the object's tag.
11474 This means that we need to evaluate completely the
11475 expression in order to get its type. */
11477 if ((TYPE_CODE (type) == TYPE_CODE_REF
11478 || TYPE_CODE (type) == TYPE_CODE_PTR)
11479 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11481 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11483 type = value_type (ada_value_ind (arg1));
11487 type = to_static_fixed_type
11489 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11491 ada_ensure_varsize_limit (type);
11492 return value_zero (type, lval_memory);
11494 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11496 /* GDB allows dereferencing an int. */
11497 if (expect_type == NULL)
11498 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11503 to_static_fixed_type (ada_aligned_type (expect_type));
11504 return value_zero (expect_type, lval_memory);
11508 error (_("Attempt to take contents of a non-pointer value."));
11510 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11511 type = ada_check_typedef (value_type (arg1));
11513 if (TYPE_CODE (type) == TYPE_CODE_INT)
11514 /* GDB allows dereferencing an int. If we were given
11515 the expect_type, then use that as the target type.
11516 Otherwise, assume that the target type is an int. */
11518 if (expect_type != NULL)
11519 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11522 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11523 (CORE_ADDR) value_as_address (arg1));
11526 if (ada_is_array_descriptor_type (type))
11527 /* GDB allows dereferencing GNAT array descriptors. */
11528 return ada_coerce_to_simple_array (arg1);
11530 return ada_value_ind (arg1);
11532 case STRUCTOP_STRUCT:
11533 tem = longest_to_int (exp->elts[pc + 1].longconst);
11534 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11535 preeval_pos = *pos;
11536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11537 if (noside == EVAL_SKIP)
11539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11541 struct type *type1 = value_type (arg1);
11543 if (ada_is_tagged_type (type1, 1))
11545 type = ada_lookup_struct_elt_type (type1,
11546 &exp->elts[pc + 2].string,
11549 /* If the field is not found, check if it exists in the
11550 extension of this object's type. This means that we
11551 need to evaluate completely the expression. */
11555 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11557 arg1 = ada_value_struct_elt (arg1,
11558 &exp->elts[pc + 2].string,
11560 arg1 = unwrap_value (arg1);
11561 type = value_type (ada_to_fixed_value (arg1));
11566 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11569 return value_zero (ada_aligned_type (type), lval_memory);
11573 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11574 arg1 = unwrap_value (arg1);
11575 return ada_to_fixed_value (arg1);
11579 /* The value is not supposed to be used. This is here to make it
11580 easier to accommodate expressions that contain types. */
11582 if (noside == EVAL_SKIP)
11584 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11585 return allocate_value (exp->elts[pc + 1].type);
11587 error (_("Attempt to use a type name as an expression"));
11592 case OP_DISCRETE_RANGE:
11593 case OP_POSITIONAL:
11595 if (noside == EVAL_NORMAL)
11599 error (_("Undefined name, ambiguous name, or renaming used in "
11600 "component association: %s."), &exp->elts[pc+2].string);
11602 error (_("Aggregates only allowed on the right of an assignment"));
11604 internal_error (__FILE__, __LINE__,
11605 _("aggregate apparently mangled"));
11608 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11610 for (tem = 0; tem < nargs; tem += 1)
11611 ada_evaluate_subexp (NULL, exp, pos, noside);
11616 return eval_skip_value (exp);
11622 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11623 type name that encodes the 'small and 'delta information.
11624 Otherwise, return NULL. */
11626 static const char *
11627 fixed_type_info (struct type *type)
11629 const char *name = ada_type_name (type);
11630 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11632 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11634 const char *tail = strstr (name, "___XF_");
11641 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11642 return fixed_type_info (TYPE_TARGET_TYPE (type));
11647 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11650 ada_is_fixed_point_type (struct type *type)
11652 return fixed_type_info (type) != NULL;
11655 /* Return non-zero iff TYPE represents a System.Address type. */
11658 ada_is_system_address_type (struct type *type)
11660 return (TYPE_NAME (type)
11661 && strcmp (TYPE_NAME (type), "system__address") == 0);
11664 /* Assuming that TYPE is the representation of an Ada fixed-point
11665 type, return the target floating-point type to be used to represent
11666 of this type during internal computation. */
11668 static struct type *
11669 ada_scaling_type (struct type *type)
11671 return builtin_type (get_type_arch (type))->builtin_long_double;
11674 /* Assuming that TYPE is the representation of an Ada fixed-point
11675 type, return its delta, or NULL if the type is malformed and the
11676 delta cannot be determined. */
11679 ada_delta (struct type *type)
11681 const char *encoding = fixed_type_info (type);
11682 struct type *scale_type = ada_scaling_type (type);
11684 long long num, den;
11686 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11689 return value_binop (value_from_longest (scale_type, num),
11690 value_from_longest (scale_type, den), BINOP_DIV);
11693 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11694 factor ('SMALL value) associated with the type. */
11697 ada_scaling_factor (struct type *type)
11699 const char *encoding = fixed_type_info (type);
11700 struct type *scale_type = ada_scaling_type (type);
11702 long long num0, den0, num1, den1;
11705 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11706 &num0, &den0, &num1, &den1);
11709 return value_from_longest (scale_type, 1);
11711 return value_binop (value_from_longest (scale_type, num1),
11712 value_from_longest (scale_type, den1), BINOP_DIV);
11714 return value_binop (value_from_longest (scale_type, num0),
11715 value_from_longest (scale_type, den0), BINOP_DIV);
11722 /* Scan STR beginning at position K for a discriminant name, and
11723 return the value of that discriminant field of DVAL in *PX. If
11724 PNEW_K is not null, put the position of the character beyond the
11725 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11726 not alter *PX and *PNEW_K if unsuccessful. */
11729 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11732 static char *bound_buffer = NULL;
11733 static size_t bound_buffer_len = 0;
11734 const char *pstart, *pend, *bound;
11735 struct value *bound_val;
11737 if (dval == NULL || str == NULL || str[k] == '\0')
11741 pend = strstr (pstart, "__");
11745 k += strlen (bound);
11749 int len = pend - pstart;
11751 /* Strip __ and beyond. */
11752 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11753 strncpy (bound_buffer, pstart, len);
11754 bound_buffer[len] = '\0';
11756 bound = bound_buffer;
11760 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11761 if (bound_val == NULL)
11764 *px = value_as_long (bound_val);
11765 if (pnew_k != NULL)
11770 /* Value of variable named NAME in the current environment. If
11771 no such variable found, then if ERR_MSG is null, returns 0, and
11772 otherwise causes an error with message ERR_MSG. */
11774 static struct value *
11775 get_var_value (const char *name, const char *err_msg)
11777 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11779 struct block_symbol *syms;
11780 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11781 get_selected_block (0),
11782 VAR_DOMAIN, &syms, 1);
11783 struct cleanup *old_chain = make_cleanup (xfree, syms);
11787 do_cleanups (old_chain);
11788 if (err_msg == NULL)
11791 error (("%s"), err_msg);
11794 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11795 do_cleanups (old_chain);
11799 /* Value of integer variable named NAME in the current environment.
11800 If no such variable is found, returns false. Otherwise, sets VALUE
11801 to the variable's value and returns true. */
11804 get_int_var_value (const char *name, LONGEST &value)
11806 struct value *var_val = get_var_value (name, 0);
11811 value = value_as_long (var_val);
11816 /* Return a range type whose base type is that of the range type named
11817 NAME in the current environment, and whose bounds are calculated
11818 from NAME according to the GNAT range encoding conventions.
11819 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11820 corresponding range type from debug information; fall back to using it
11821 if symbol lookup fails. If a new type must be created, allocate it
11822 like ORIG_TYPE was. The bounds information, in general, is encoded
11823 in NAME, the base type given in the named range type. */
11825 static struct type *
11826 to_fixed_range_type (struct type *raw_type, struct value *dval)
11829 struct type *base_type;
11830 const char *subtype_info;
11832 gdb_assert (raw_type != NULL);
11833 gdb_assert (TYPE_NAME (raw_type) != NULL);
11835 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11836 base_type = TYPE_TARGET_TYPE (raw_type);
11838 base_type = raw_type;
11840 name = TYPE_NAME (raw_type);
11841 subtype_info = strstr (name, "___XD");
11842 if (subtype_info == NULL)
11844 LONGEST L = ada_discrete_type_low_bound (raw_type);
11845 LONGEST U = ada_discrete_type_high_bound (raw_type);
11847 if (L < INT_MIN || U > INT_MAX)
11850 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11855 static char *name_buf = NULL;
11856 static size_t name_len = 0;
11857 int prefix_len = subtype_info - name;
11860 const char *bounds_str;
11863 GROW_VECT (name_buf, name_len, prefix_len + 5);
11864 strncpy (name_buf, name, prefix_len);
11865 name_buf[prefix_len] = '\0';
11868 bounds_str = strchr (subtype_info, '_');
11871 if (*subtype_info == 'L')
11873 if (!ada_scan_number (bounds_str, n, &L, &n)
11874 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11876 if (bounds_str[n] == '_')
11878 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11884 strcpy (name_buf + prefix_len, "___L");
11885 if (!get_int_var_value (name_buf, L))
11887 lim_warning (_("Unknown lower bound, using 1."));
11892 if (*subtype_info == 'U')
11894 if (!ada_scan_number (bounds_str, n, &U, &n)
11895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11900 strcpy (name_buf + prefix_len, "___U");
11901 if (!get_int_var_value (name_buf, U))
11903 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11908 type = create_static_range_type (alloc_type_copy (raw_type),
11910 /* create_static_range_type alters the resulting type's length
11911 to match the size of the base_type, which is not what we want.
11912 Set it back to the original range type's length. */
11913 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11914 TYPE_NAME (type) = name;
11919 /* True iff NAME is the name of a range type. */
11922 ada_is_range_type_name (const char *name)
11924 return (name != NULL && strstr (name, "___XD"));
11928 /* Modular types */
11930 /* True iff TYPE is an Ada modular type. */
11933 ada_is_modular_type (struct type *type)
11935 struct type *subranged_type = get_base_type (type);
11937 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11938 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11939 && TYPE_UNSIGNED (subranged_type));
11942 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11945 ada_modulus (struct type *type)
11947 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11951 /* Ada exception catchpoint support:
11952 ---------------------------------
11954 We support 3 kinds of exception catchpoints:
11955 . catchpoints on Ada exceptions
11956 . catchpoints on unhandled Ada exceptions
11957 . catchpoints on failed assertions
11959 Exceptions raised during failed assertions, or unhandled exceptions
11960 could perfectly be caught with the general catchpoint on Ada exceptions.
11961 However, we can easily differentiate these two special cases, and having
11962 the option to distinguish these two cases from the rest can be useful
11963 to zero-in on certain situations.
11965 Exception catchpoints are a specialized form of breakpoint,
11966 since they rely on inserting breakpoints inside known routines
11967 of the GNAT runtime. The implementation therefore uses a standard
11968 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11971 Support in the runtime for exception catchpoints have been changed
11972 a few times already, and these changes affect the implementation
11973 of these catchpoints. In order to be able to support several
11974 variants of the runtime, we use a sniffer that will determine
11975 the runtime variant used by the program being debugged. */
11977 /* Ada's standard exceptions.
11979 The Ada 83 standard also defined Numeric_Error. But there so many
11980 situations where it was unclear from the Ada 83 Reference Manual
11981 (RM) whether Constraint_Error or Numeric_Error should be raised,
11982 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11983 Interpretation saying that anytime the RM says that Numeric_Error
11984 should be raised, the implementation may raise Constraint_Error.
11985 Ada 95 went one step further and pretty much removed Numeric_Error
11986 from the list of standard exceptions (it made it a renaming of
11987 Constraint_Error, to help preserve compatibility when compiling
11988 an Ada83 compiler). As such, we do not include Numeric_Error from
11989 this list of standard exceptions. */
11991 static const char *standard_exc[] = {
11992 "constraint_error",
11998 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12000 /* A structure that describes how to support exception catchpoints
12001 for a given executable. */
12003 struct exception_support_info
12005 /* The name of the symbol to break on in order to insert
12006 a catchpoint on exceptions. */
12007 const char *catch_exception_sym;
12009 /* The name of the symbol to break on in order to insert
12010 a catchpoint on unhandled exceptions. */
12011 const char *catch_exception_unhandled_sym;
12013 /* The name of the symbol to break on in order to insert
12014 a catchpoint on failed assertions. */
12015 const char *catch_assert_sym;
12017 /* The name of the symbol to break on in order to insert
12018 a catchpoint on exception handling. */
12019 const char *catch_handlers_sym;
12021 /* Assuming that the inferior just triggered an unhandled exception
12022 catchpoint, this function is responsible for returning the address
12023 in inferior memory where the name of that exception is stored.
12024 Return zero if the address could not be computed. */
12025 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12028 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12029 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12031 /* The following exception support info structure describes how to
12032 implement exception catchpoints with the latest version of the
12033 Ada runtime (as of 2007-03-06). */
12035 static const struct exception_support_info default_exception_support_info =
12037 "__gnat_debug_raise_exception", /* catch_exception_sym */
12038 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12039 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12040 "__gnat_begin_handler", /* catch_handlers_sym */
12041 ada_unhandled_exception_name_addr
12044 /* The following exception support info structure describes how to
12045 implement exception catchpoints with a slightly older version
12046 of the Ada runtime. */
12048 static const struct exception_support_info exception_support_info_fallback =
12050 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12051 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12052 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12053 "__gnat_begin_handler", /* catch_handlers_sym */
12054 ada_unhandled_exception_name_addr_from_raise
12057 /* Return nonzero if we can detect the exception support routines
12058 described in EINFO.
12060 This function errors out if an abnormal situation is detected
12061 (for instance, if we find the exception support routines, but
12062 that support is found to be incomplete). */
12065 ada_has_this_exception_support (const struct exception_support_info *einfo)
12067 struct symbol *sym;
12069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12070 that should be compiled with debugging information. As a result, we
12071 expect to find that symbol in the symtabs. */
12073 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12076 /* Perhaps we did not find our symbol because the Ada runtime was
12077 compiled without debugging info, or simply stripped of it.
12078 It happens on some GNU/Linux distributions for instance, where
12079 users have to install a separate debug package in order to get
12080 the runtime's debugging info. In that situation, let the user
12081 know why we cannot insert an Ada exception catchpoint.
12083 Note: Just for the purpose of inserting our Ada exception
12084 catchpoint, we could rely purely on the associated minimal symbol.
12085 But we would be operating in degraded mode anyway, since we are
12086 still lacking the debugging info needed later on to extract
12087 the name of the exception being raised (this name is printed in
12088 the catchpoint message, and is also used when trying to catch
12089 a specific exception). We do not handle this case for now. */
12090 struct bound_minimal_symbol msym
12091 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12093 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12094 error (_("Your Ada runtime appears to be missing some debugging "
12095 "information.\nCannot insert Ada exception catchpoint "
12096 "in this configuration."));
12101 /* Make sure that the symbol we found corresponds to a function. */
12103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12104 error (_("Symbol \"%s\" is not a function (class = %d)"),
12105 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12110 /* Inspect the Ada runtime and determine which exception info structure
12111 should be used to provide support for exception catchpoints.
12113 This function will always set the per-inferior exception_info,
12114 or raise an error. */
12117 ada_exception_support_info_sniffer (void)
12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121 /* If the exception info is already known, then no need to recompute it. */
12122 if (data->exception_info != NULL)
12125 /* Check the latest (default) exception support info. */
12126 if (ada_has_this_exception_support (&default_exception_support_info))
12128 data->exception_info = &default_exception_support_info;
12132 /* Try our fallback exception suport info. */
12133 if (ada_has_this_exception_support (&exception_support_info_fallback))
12135 data->exception_info = &exception_support_info_fallback;
12139 /* Sometimes, it is normal for us to not be able to find the routine
12140 we are looking for. This happens when the program is linked with
12141 the shared version of the GNAT runtime, and the program has not been
12142 started yet. Inform the user of these two possible causes if
12145 if (ada_update_initial_language (language_unknown) != language_ada)
12146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12148 /* If the symbol does not exist, then check that the program is
12149 already started, to make sure that shared libraries have been
12150 loaded. If it is not started, this may mean that the symbol is
12151 in a shared library. */
12153 if (ptid_get_pid (inferior_ptid) == 0)
12154 error (_("Unable to insert catchpoint. Try to start the program first."));
12156 /* At this point, we know that we are debugging an Ada program and
12157 that the inferior has been started, but we still are not able to
12158 find the run-time symbols. That can mean that we are in
12159 configurable run time mode, or that a-except as been optimized
12160 out by the linker... In any case, at this point it is not worth
12161 supporting this feature. */
12163 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12166 /* True iff FRAME is very likely to be that of a function that is
12167 part of the runtime system. This is all very heuristic, but is
12168 intended to be used as advice as to what frames are uninteresting
12172 is_known_support_routine (struct frame_info *frame)
12174 enum language func_lang;
12176 const char *fullname;
12178 /* If this code does not have any debugging information (no symtab),
12179 This cannot be any user code. */
12181 symtab_and_line sal = find_frame_sal (frame);
12182 if (sal.symtab == NULL)
12185 /* If there is a symtab, but the associated source file cannot be
12186 located, then assume this is not user code: Selecting a frame
12187 for which we cannot display the code would not be very helpful
12188 for the user. This should also take care of case such as VxWorks
12189 where the kernel has some debugging info provided for a few units. */
12191 fullname = symtab_to_fullname (sal.symtab);
12192 if (access (fullname, R_OK) != 0)
12195 /* Check the unit filename againt the Ada runtime file naming.
12196 We also check the name of the objfile against the name of some
12197 known system libraries that sometimes come with debugging info
12200 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12202 re_comp (known_runtime_file_name_patterns[i]);
12203 if (re_exec (lbasename (sal.symtab->filename)))
12205 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12206 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12210 /* Check whether the function is a GNAT-generated entity. */
12212 gdb::unique_xmalloc_ptr<char> func_name
12213 = find_frame_funname (frame, &func_lang, NULL);
12214 if (func_name == NULL)
12217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12219 re_comp (known_auxiliary_function_name_patterns[i]);
12220 if (re_exec (func_name.get ()))
12227 /* Find the first frame that contains debugging information and that is not
12228 part of the Ada run-time, starting from FI and moving upward. */
12231 ada_find_printable_frame (struct frame_info *fi)
12233 for (; fi != NULL; fi = get_prev_frame (fi))
12235 if (!is_known_support_routine (fi))
12244 /* Assuming that the inferior just triggered an unhandled exception
12245 catchpoint, return the address in inferior memory where the name
12246 of the exception is stored.
12248 Return zero if the address could not be computed. */
12251 ada_unhandled_exception_name_addr (void)
12253 return parse_and_eval_address ("e.full_name");
12256 /* Same as ada_unhandled_exception_name_addr, except that this function
12257 should be used when the inferior uses an older version of the runtime,
12258 where the exception name needs to be extracted from a specific frame
12259 several frames up in the callstack. */
12262 ada_unhandled_exception_name_addr_from_raise (void)
12265 struct frame_info *fi;
12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12268 /* To determine the name of this exception, we need to select
12269 the frame corresponding to RAISE_SYM_NAME. This frame is
12270 at least 3 levels up, so we simply skip the first 3 frames
12271 without checking the name of their associated function. */
12272 fi = get_current_frame ();
12273 for (frame_level = 0; frame_level < 3; frame_level += 1)
12275 fi = get_prev_frame (fi);
12279 enum language func_lang;
12281 gdb::unique_xmalloc_ptr<char> func_name
12282 = find_frame_funname (fi, &func_lang, NULL);
12283 if (func_name != NULL)
12285 if (strcmp (func_name.get (),
12286 data->exception_info->catch_exception_sym) == 0)
12287 break; /* We found the frame we were looking for... */
12288 fi = get_prev_frame (fi);
12296 return parse_and_eval_address ("id.full_name");
12299 /* Assuming the inferior just triggered an Ada exception catchpoint
12300 (of any type), return the address in inferior memory where the name
12301 of the exception is stored, if applicable.
12303 Assumes the selected frame is the current frame.
12305 Return zero if the address could not be computed, or if not relevant. */
12308 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12309 struct breakpoint *b)
12311 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12315 case ada_catch_exception:
12316 return (parse_and_eval_address ("e.full_name"));
12319 case ada_catch_exception_unhandled:
12320 return data->exception_info->unhandled_exception_name_addr ();
12323 case ada_catch_handlers:
12324 return 0; /* The runtimes does not provide access to the exception
12328 case ada_catch_assert:
12329 return 0; /* Exception name is not relevant in this case. */
12333 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12337 return 0; /* Should never be reached. */
12340 /* Assuming the inferior is stopped at an exception catchpoint,
12341 return the message which was associated to the exception, if
12342 available. Return NULL if the message could not be retrieved.
12344 Note: The exception message can be associated to an exception
12345 either through the use of the Raise_Exception function, or
12346 more simply (Ada 2005 and later), via:
12348 raise Exception_Name with "exception message";
12352 static gdb::unique_xmalloc_ptr<char>
12353 ada_exception_message_1 (void)
12355 struct value *e_msg_val;
12358 /* For runtimes that support this feature, the exception message
12359 is passed as an unbounded string argument called "message". */
12360 e_msg_val = parse_and_eval ("message");
12361 if (e_msg_val == NULL)
12362 return NULL; /* Exception message not supported. */
12364 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12365 gdb_assert (e_msg_val != NULL);
12366 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12368 /* If the message string is empty, then treat it as if there was
12369 no exception message. */
12370 if (e_msg_len <= 0)
12373 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12374 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12375 e_msg.get ()[e_msg_len] = '\0';
12380 /* Same as ada_exception_message_1, except that all exceptions are
12381 contained here (returning NULL instead). */
12383 static gdb::unique_xmalloc_ptr<char>
12384 ada_exception_message (void)
12386 gdb::unique_xmalloc_ptr<char> e_msg;
12390 e_msg = ada_exception_message_1 ();
12392 CATCH (e, RETURN_MASK_ERROR)
12394 e_msg.reset (nullptr);
12401 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12402 any error that ada_exception_name_addr_1 might cause to be thrown.
12403 When an error is intercepted, a warning with the error message is printed,
12404 and zero is returned. */
12407 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12408 struct breakpoint *b)
12410 CORE_ADDR result = 0;
12414 result = ada_exception_name_addr_1 (ex, b);
12417 CATCH (e, RETURN_MASK_ERROR)
12419 warning (_("failed to get exception name: %s"), e.message);
12427 static std::string ada_exception_catchpoint_cond_string
12428 (const char *excep_string,
12429 enum ada_exception_catchpoint_kind ex);
12431 /* Ada catchpoints.
12433 In the case of catchpoints on Ada exceptions, the catchpoint will
12434 stop the target on every exception the program throws. When a user
12435 specifies the name of a specific exception, we translate this
12436 request into a condition expression (in text form), and then parse
12437 it into an expression stored in each of the catchpoint's locations.
12438 We then use this condition to check whether the exception that was
12439 raised is the one the user is interested in. If not, then the
12440 target is resumed again. We store the name of the requested
12441 exception, in order to be able to re-set the condition expression
12442 when symbols change. */
12444 /* An instance of this type is used to represent an Ada catchpoint
12445 breakpoint location. */
12447 class ada_catchpoint_location : public bp_location
12450 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12451 : bp_location (ops, owner)
12454 /* The condition that checks whether the exception that was raised
12455 is the specific exception the user specified on catchpoint
12457 expression_up excep_cond_expr;
12460 /* Implement the DTOR method in the bp_location_ops structure for all
12461 Ada exception catchpoint kinds. */
12464 ada_catchpoint_location_dtor (struct bp_location *bl)
12466 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12468 al->excep_cond_expr.reset ();
12471 /* The vtable to be used in Ada catchpoint locations. */
12473 static const struct bp_location_ops ada_catchpoint_location_ops =
12475 ada_catchpoint_location_dtor
12478 /* An instance of this type is used to represent an Ada catchpoint. */
12480 struct ada_catchpoint : public breakpoint
12482 ~ada_catchpoint () override;
12484 /* The name of the specific exception the user specified. */
12485 char *excep_string;
12488 /* Parse the exception condition string in the context of each of the
12489 catchpoint's locations, and store them for later evaluation. */
12492 create_excep_cond_exprs (struct ada_catchpoint *c,
12493 enum ada_exception_catchpoint_kind ex)
12495 struct bp_location *bl;
12497 /* Nothing to do if there's no specific exception to catch. */
12498 if (c->excep_string == NULL)
12501 /* Same if there are no locations... */
12502 if (c->loc == NULL)
12505 /* Compute the condition expression in text form, from the specific
12506 expection we want to catch. */
12507 std::string cond_string
12508 = ada_exception_catchpoint_cond_string (c->excep_string, ex);
12510 /* Iterate over all the catchpoint's locations, and parse an
12511 expression for each. */
12512 for (bl = c->loc; bl != NULL; bl = bl->next)
12514 struct ada_catchpoint_location *ada_loc
12515 = (struct ada_catchpoint_location *) bl;
12518 if (!bl->shlib_disabled)
12522 s = cond_string.c_str ();
12525 exp = parse_exp_1 (&s, bl->address,
12526 block_for_pc (bl->address),
12529 CATCH (e, RETURN_MASK_ERROR)
12531 warning (_("failed to reevaluate internal exception condition "
12532 "for catchpoint %d: %s"),
12533 c->number, e.message);
12538 ada_loc->excep_cond_expr = std::move (exp);
12542 /* ada_catchpoint destructor. */
12544 ada_catchpoint::~ada_catchpoint ()
12546 xfree (this->excep_string);
12549 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12550 structure for all exception catchpoint kinds. */
12552 static struct bp_location *
12553 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12554 struct breakpoint *self)
12556 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12559 /* Implement the RE_SET method in the breakpoint_ops structure for all
12560 exception catchpoint kinds. */
12563 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12565 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12567 /* Call the base class's method. This updates the catchpoint's
12569 bkpt_breakpoint_ops.re_set (b);
12571 /* Reparse the exception conditional expressions. One for each
12573 create_excep_cond_exprs (c, ex);
12576 /* Returns true if we should stop for this breakpoint hit. If the
12577 user specified a specific exception, we only want to cause a stop
12578 if the program thrown that exception. */
12581 should_stop_exception (const struct bp_location *bl)
12583 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12584 const struct ada_catchpoint_location *ada_loc
12585 = (const struct ada_catchpoint_location *) bl;
12588 /* With no specific exception, should always stop. */
12589 if (c->excep_string == NULL)
12592 if (ada_loc->excep_cond_expr == NULL)
12594 /* We will have a NULL expression if back when we were creating
12595 the expressions, this location's had failed to parse. */
12602 struct value *mark;
12604 mark = value_mark ();
12605 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12606 value_free_to_mark (mark);
12608 CATCH (ex, RETURN_MASK_ALL)
12610 exception_fprintf (gdb_stderr, ex,
12611 _("Error in testing exception condition:\n"));
12618 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12619 for all exception catchpoint kinds. */
12622 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12624 bs->stop = should_stop_exception (bs->bp_location_at);
12627 /* Implement the PRINT_IT method in the breakpoint_ops structure
12628 for all exception catchpoint kinds. */
12630 static enum print_stop_action
12631 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12633 struct ui_out *uiout = current_uiout;
12634 struct breakpoint *b = bs->breakpoint_at;
12636 annotate_catchpoint (b->number);
12638 if (uiout->is_mi_like_p ())
12640 uiout->field_string ("reason",
12641 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12642 uiout->field_string ("disp", bpdisp_text (b->disposition));
12645 uiout->text (b->disposition == disp_del
12646 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12647 uiout->field_int ("bkptno", b->number);
12648 uiout->text (", ");
12650 /* ada_exception_name_addr relies on the selected frame being the
12651 current frame. Need to do this here because this function may be
12652 called more than once when printing a stop, and below, we'll
12653 select the first frame past the Ada run-time (see
12654 ada_find_printable_frame). */
12655 select_frame (get_current_frame ());
12659 case ada_catch_exception:
12660 case ada_catch_exception_unhandled:
12661 case ada_catch_handlers:
12663 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12664 char exception_name[256];
12668 read_memory (addr, (gdb_byte *) exception_name,
12669 sizeof (exception_name) - 1);
12670 exception_name [sizeof (exception_name) - 1] = '\0';
12674 /* For some reason, we were unable to read the exception
12675 name. This could happen if the Runtime was compiled
12676 without debugging info, for instance. In that case,
12677 just replace the exception name by the generic string
12678 "exception" - it will read as "an exception" in the
12679 notification we are about to print. */
12680 memcpy (exception_name, "exception", sizeof ("exception"));
12682 /* In the case of unhandled exception breakpoints, we print
12683 the exception name as "unhandled EXCEPTION_NAME", to make
12684 it clearer to the user which kind of catchpoint just got
12685 hit. We used ui_out_text to make sure that this extra
12686 info does not pollute the exception name in the MI case. */
12687 if (ex == ada_catch_exception_unhandled)
12688 uiout->text ("unhandled ");
12689 uiout->field_string ("exception-name", exception_name);
12692 case ada_catch_assert:
12693 /* In this case, the name of the exception is not really
12694 important. Just print "failed assertion" to make it clearer
12695 that his program just hit an assertion-failure catchpoint.
12696 We used ui_out_text because this info does not belong in
12698 uiout->text ("failed assertion");
12702 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12703 if (exception_message != NULL)
12705 uiout->text (" (");
12706 uiout->field_string ("exception-message", exception_message.get ());
12710 uiout->text (" at ");
12711 ada_find_printable_frame (get_current_frame ());
12713 return PRINT_SRC_AND_LOC;
12716 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12717 for all exception catchpoint kinds. */
12720 print_one_exception (enum ada_exception_catchpoint_kind ex,
12721 struct breakpoint *b, struct bp_location **last_loc)
12723 struct ui_out *uiout = current_uiout;
12724 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12725 struct value_print_options opts;
12727 get_user_print_options (&opts);
12728 if (opts.addressprint)
12730 annotate_field (4);
12731 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12734 annotate_field (5);
12735 *last_loc = b->loc;
12738 case ada_catch_exception:
12739 if (c->excep_string != NULL)
12741 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12743 uiout->field_string ("what", msg);
12747 uiout->field_string ("what", "all Ada exceptions");
12751 case ada_catch_exception_unhandled:
12752 uiout->field_string ("what", "unhandled Ada exceptions");
12755 case ada_catch_handlers:
12756 if (c->excep_string != NULL)
12758 uiout->field_fmt ("what",
12759 _("`%s' Ada exception handlers"),
12763 uiout->field_string ("what", "all Ada exceptions handlers");
12766 case ada_catch_assert:
12767 uiout->field_string ("what", "failed Ada assertions");
12771 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12776 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12777 for all exception catchpoint kinds. */
12780 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12781 struct breakpoint *b)
12783 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12784 struct ui_out *uiout = current_uiout;
12786 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12787 : _("Catchpoint "));
12788 uiout->field_int ("bkptno", b->number);
12789 uiout->text (": ");
12793 case ada_catch_exception:
12794 if (c->excep_string != NULL)
12796 std::string info = string_printf (_("`%s' Ada exception"),
12798 uiout->text (info.c_str ());
12801 uiout->text (_("all Ada exceptions"));
12804 case ada_catch_exception_unhandled:
12805 uiout->text (_("unhandled Ada exceptions"));
12808 case ada_catch_handlers:
12809 if (c->excep_string != NULL)
12812 = string_printf (_("`%s' Ada exception handlers"),
12814 uiout->text (info.c_str ());
12817 uiout->text (_("all Ada exceptions handlers"));
12820 case ada_catch_assert:
12821 uiout->text (_("failed Ada assertions"));
12825 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12830 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12831 for all exception catchpoint kinds. */
12834 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12835 struct breakpoint *b, struct ui_file *fp)
12837 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12841 case ada_catch_exception:
12842 fprintf_filtered (fp, "catch exception");
12843 if (c->excep_string != NULL)
12844 fprintf_filtered (fp, " %s", c->excep_string);
12847 case ada_catch_exception_unhandled:
12848 fprintf_filtered (fp, "catch exception unhandled");
12851 case ada_catch_handlers:
12852 fprintf_filtered (fp, "catch handlers");
12855 case ada_catch_assert:
12856 fprintf_filtered (fp, "catch assert");
12860 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12862 print_recreate_thread (b, fp);
12865 /* Virtual table for "catch exception" breakpoints. */
12867 static struct bp_location *
12868 allocate_location_catch_exception (struct breakpoint *self)
12870 return allocate_location_exception (ada_catch_exception, self);
12874 re_set_catch_exception (struct breakpoint *b)
12876 re_set_exception (ada_catch_exception, b);
12880 check_status_catch_exception (bpstat bs)
12882 check_status_exception (ada_catch_exception, bs);
12885 static enum print_stop_action
12886 print_it_catch_exception (bpstat bs)
12888 return print_it_exception (ada_catch_exception, bs);
12892 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12894 print_one_exception (ada_catch_exception, b, last_loc);
12898 print_mention_catch_exception (struct breakpoint *b)
12900 print_mention_exception (ada_catch_exception, b);
12904 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12906 print_recreate_exception (ada_catch_exception, b, fp);
12909 static struct breakpoint_ops catch_exception_breakpoint_ops;
12911 /* Virtual table for "catch exception unhandled" breakpoints. */
12913 static struct bp_location *
12914 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12916 return allocate_location_exception (ada_catch_exception_unhandled, self);
12920 re_set_catch_exception_unhandled (struct breakpoint *b)
12922 re_set_exception (ada_catch_exception_unhandled, b);
12926 check_status_catch_exception_unhandled (bpstat bs)
12928 check_status_exception (ada_catch_exception_unhandled, bs);
12931 static enum print_stop_action
12932 print_it_catch_exception_unhandled (bpstat bs)
12934 return print_it_exception (ada_catch_exception_unhandled, bs);
12938 print_one_catch_exception_unhandled (struct breakpoint *b,
12939 struct bp_location **last_loc)
12941 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12945 print_mention_catch_exception_unhandled (struct breakpoint *b)
12947 print_mention_exception (ada_catch_exception_unhandled, b);
12951 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12952 struct ui_file *fp)
12954 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12957 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12959 /* Virtual table for "catch assert" breakpoints. */
12961 static struct bp_location *
12962 allocate_location_catch_assert (struct breakpoint *self)
12964 return allocate_location_exception (ada_catch_assert, self);
12968 re_set_catch_assert (struct breakpoint *b)
12970 re_set_exception (ada_catch_assert, b);
12974 check_status_catch_assert (bpstat bs)
12976 check_status_exception (ada_catch_assert, bs);
12979 static enum print_stop_action
12980 print_it_catch_assert (bpstat bs)
12982 return print_it_exception (ada_catch_assert, bs);
12986 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12988 print_one_exception (ada_catch_assert, b, last_loc);
12992 print_mention_catch_assert (struct breakpoint *b)
12994 print_mention_exception (ada_catch_assert, b);
12998 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13000 print_recreate_exception (ada_catch_assert, b, fp);
13003 static struct breakpoint_ops catch_assert_breakpoint_ops;
13005 /* Virtual table for "catch handlers" breakpoints. */
13007 static struct bp_location *
13008 allocate_location_catch_handlers (struct breakpoint *self)
13010 return allocate_location_exception (ada_catch_handlers, self);
13014 re_set_catch_handlers (struct breakpoint *b)
13016 re_set_exception (ada_catch_handlers, b);
13020 check_status_catch_handlers (bpstat bs)
13022 check_status_exception (ada_catch_handlers, bs);
13025 static enum print_stop_action
13026 print_it_catch_handlers (bpstat bs)
13028 return print_it_exception (ada_catch_handlers, bs);
13032 print_one_catch_handlers (struct breakpoint *b,
13033 struct bp_location **last_loc)
13035 print_one_exception (ada_catch_handlers, b, last_loc);
13039 print_mention_catch_handlers (struct breakpoint *b)
13041 print_mention_exception (ada_catch_handlers, b);
13045 print_recreate_catch_handlers (struct breakpoint *b,
13046 struct ui_file *fp)
13048 print_recreate_exception (ada_catch_handlers, b, fp);
13051 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13053 /* Return a newly allocated copy of the first space-separated token
13054 in ARGSP, and then adjust ARGSP to point immediately after that
13057 Return NULL if ARGPS does not contain any more tokens. */
13060 ada_get_next_arg (const char **argsp)
13062 const char *args = *argsp;
13066 args = skip_spaces (args);
13067 if (args[0] == '\0')
13068 return NULL; /* No more arguments. */
13070 /* Find the end of the current argument. */
13072 end = skip_to_space (args);
13074 /* Adjust ARGSP to point to the start of the next argument. */
13078 /* Make a copy of the current argument and return it. */
13080 result = (char *) xmalloc (end - args + 1);
13081 strncpy (result, args, end - args);
13082 result[end - args] = '\0';
13087 /* Split the arguments specified in a "catch exception" command.
13088 Set EX to the appropriate catchpoint type.
13089 Set EXCEP_STRING to the name of the specific exception if
13090 specified by the user.
13091 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13092 "catch handlers" command. False otherwise.
13093 If a condition is found at the end of the arguments, the condition
13094 expression is stored in COND_STRING (memory must be deallocated
13095 after use). Otherwise COND_STRING is set to NULL. */
13098 catch_ada_exception_command_split (const char *args,
13099 bool is_catch_handlers_cmd,
13100 enum ada_exception_catchpoint_kind *ex,
13101 char **excep_string,
13102 std::string &cond_string)
13104 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13105 char *exception_name;
13108 exception_name = ada_get_next_arg (&args);
13109 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13111 /* This is not an exception name; this is the start of a condition
13112 expression for a catchpoint on all exceptions. So, "un-get"
13113 this token, and set exception_name to NULL. */
13114 xfree (exception_name);
13115 exception_name = NULL;
13118 make_cleanup (xfree, exception_name);
13120 /* Check to see if we have a condition. */
13122 args = skip_spaces (args);
13123 if (startswith (args, "if")
13124 && (isspace (args[2]) || args[2] == '\0'))
13127 args = skip_spaces (args);
13129 if (args[0] == '\0')
13130 error (_("Condition missing after `if' keyword"));
13131 cond = xstrdup (args);
13132 make_cleanup (xfree, cond);
13134 args += strlen (args);
13137 /* Check that we do not have any more arguments. Anything else
13140 if (args[0] != '\0')
13141 error (_("Junk at end of expression"));
13143 discard_cleanups (old_chain);
13145 if (is_catch_handlers_cmd)
13147 /* Catch handling of exceptions. */
13148 *ex = ada_catch_handlers;
13149 *excep_string = exception_name;
13151 else if (exception_name == NULL)
13153 /* Catch all exceptions. */
13154 *ex = ada_catch_exception;
13155 *excep_string = NULL;
13157 else if (strcmp (exception_name, "unhandled") == 0)
13159 /* Catch unhandled exceptions. */
13160 *ex = ada_catch_exception_unhandled;
13161 *excep_string = NULL;
13165 /* Catch a specific exception. */
13166 *ex = ada_catch_exception;
13167 *excep_string = exception_name;
13170 cond_string.assign (cond);
13173 /* Return the name of the symbol on which we should break in order to
13174 implement a catchpoint of the EX kind. */
13176 static const char *
13177 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13179 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13181 gdb_assert (data->exception_info != NULL);
13185 case ada_catch_exception:
13186 return (data->exception_info->catch_exception_sym);
13188 case ada_catch_exception_unhandled:
13189 return (data->exception_info->catch_exception_unhandled_sym);
13191 case ada_catch_assert:
13192 return (data->exception_info->catch_assert_sym);
13194 case ada_catch_handlers:
13195 return (data->exception_info->catch_handlers_sym);
13198 internal_error (__FILE__, __LINE__,
13199 _("unexpected catchpoint kind (%d)"), ex);
13203 /* Return the breakpoint ops "virtual table" used for catchpoints
13206 static const struct breakpoint_ops *
13207 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13211 case ada_catch_exception:
13212 return (&catch_exception_breakpoint_ops);
13214 case ada_catch_exception_unhandled:
13215 return (&catch_exception_unhandled_breakpoint_ops);
13217 case ada_catch_assert:
13218 return (&catch_assert_breakpoint_ops);
13220 case ada_catch_handlers:
13221 return (&catch_handlers_breakpoint_ops);
13224 internal_error (__FILE__, __LINE__,
13225 _("unexpected catchpoint kind (%d)"), ex);
13229 /* Return the condition that will be used to match the current exception
13230 being raised with the exception that the user wants to catch. This
13231 assumes that this condition is used when the inferior just triggered
13232 an exception catchpoint.
13233 EX: the type of catchpoints used for catching Ada exceptions. */
13236 ada_exception_catchpoint_cond_string (const char *excep_string,
13237 enum ada_exception_catchpoint_kind ex)
13240 bool is_standard_exc = false;
13241 std::string result;
13243 if (ex == ada_catch_handlers)
13245 /* For exception handlers catchpoints, the condition string does
13246 not use the same parameter as for the other exceptions. */
13247 result = ("long_integer (GNAT_GCC_exception_Access"
13248 "(gcc_exception).all.occurrence.id)");
13251 result = "long_integer (e)";
13253 /* The standard exceptions are a special case. They are defined in
13254 runtime units that have been compiled without debugging info; if
13255 EXCEP_STRING is the not-fully-qualified name of a standard
13256 exception (e.g. "constraint_error") then, during the evaluation
13257 of the condition expression, the symbol lookup on this name would
13258 *not* return this standard exception. The catchpoint condition
13259 may then be set only on user-defined exceptions which have the
13260 same not-fully-qualified name (e.g. my_package.constraint_error).
13262 To avoid this unexcepted behavior, these standard exceptions are
13263 systematically prefixed by "standard". This means that "catch
13264 exception constraint_error" is rewritten into "catch exception
13265 standard.constraint_error".
13267 If an exception named contraint_error is defined in another package of
13268 the inferior program, then the only way to specify this exception as a
13269 breakpoint condition is to use its fully-qualified named:
13270 e.g. my_package.constraint_error. */
13272 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13274 if (strcmp (standard_exc [i], excep_string) == 0)
13276 is_standard_exc = true;
13283 if (is_standard_exc)
13284 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13286 string_appendf (result, "long_integer (&%s)", excep_string);
13291 /* Return the symtab_and_line that should be used to insert an exception
13292 catchpoint of the TYPE kind.
13294 EXCEP_STRING should contain the name of a specific exception that
13295 the catchpoint should catch, or NULL otherwise.
13297 ADDR_STRING returns the name of the function where the real
13298 breakpoint that implements the catchpoints is set, depending on the
13299 type of catchpoint we need to create. */
13301 static struct symtab_and_line
13302 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13303 const char **addr_string, const struct breakpoint_ops **ops)
13305 const char *sym_name;
13306 struct symbol *sym;
13308 /* First, find out which exception support info to use. */
13309 ada_exception_support_info_sniffer ();
13311 /* Then lookup the function on which we will break in order to catch
13312 the Ada exceptions requested by the user. */
13313 sym_name = ada_exception_sym_name (ex);
13314 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13316 /* We can assume that SYM is not NULL at this stage. If the symbol
13317 did not exist, ada_exception_support_info_sniffer would have
13318 raised an exception.
13320 Also, ada_exception_support_info_sniffer should have already
13321 verified that SYM is a function symbol. */
13322 gdb_assert (sym != NULL);
13323 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13325 /* Set ADDR_STRING. */
13326 *addr_string = xstrdup (sym_name);
13329 *ops = ada_exception_breakpoint_ops (ex);
13331 return find_function_start_sal (sym, 1);
13334 /* Create an Ada exception catchpoint.
13336 EX_KIND is the kind of exception catchpoint to be created.
13338 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13339 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13340 of the exception to which this catchpoint applies. When not NULL,
13341 the string must be allocated on the heap, and its deallocation
13342 is no longer the responsibility of the caller.
13344 COND_STRING, if not NULL, is the catchpoint condition. This string
13345 must be allocated on the heap, and its deallocation is no longer
13346 the responsibility of the caller.
13348 TEMPFLAG, if nonzero, means that the underlying breakpoint
13349 should be temporary.
13351 FROM_TTY is the usual argument passed to all commands implementations. */
13354 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13355 enum ada_exception_catchpoint_kind ex_kind,
13356 char *excep_string,
13357 const std::string &cond_string,
13362 const char *addr_string = NULL;
13363 const struct breakpoint_ops *ops = NULL;
13364 struct symtab_and_line sal
13365 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13367 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13368 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13369 ops, tempflag, disabled, from_tty);
13370 c->excep_string = excep_string;
13371 create_excep_cond_exprs (c.get (), ex_kind);
13372 if (!cond_string.empty ())
13373 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13374 install_breakpoint (0, std::move (c), 1);
13377 /* Implement the "catch exception" command. */
13380 catch_ada_exception_command (const char *arg_entry, int from_tty,
13381 struct cmd_list_element *command)
13383 const char *arg = arg_entry;
13384 struct gdbarch *gdbarch = get_current_arch ();
13386 enum ada_exception_catchpoint_kind ex_kind;
13387 char *excep_string = NULL;
13388 std::string cond_string;
13390 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13394 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13396 create_ada_exception_catchpoint (gdbarch, ex_kind,
13397 excep_string, cond_string,
13398 tempflag, 1 /* enabled */,
13402 /* Implement the "catch handlers" command. */
13405 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13406 struct cmd_list_element *command)
13408 const char *arg = arg_entry;
13409 struct gdbarch *gdbarch = get_current_arch ();
13411 enum ada_exception_catchpoint_kind ex_kind;
13412 char *excep_string = NULL;
13413 std::string cond_string;
13415 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13419 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13421 create_ada_exception_catchpoint (gdbarch, ex_kind,
13422 excep_string, cond_string,
13423 tempflag, 1 /* enabled */,
13427 /* Split the arguments specified in a "catch assert" command.
13429 ARGS contains the command's arguments (or the empty string if
13430 no arguments were passed).
13432 If ARGS contains a condition, set COND_STRING to that condition
13433 (the memory needs to be deallocated after use). */
13436 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13438 args = skip_spaces (args);
13440 /* Check whether a condition was provided. */
13441 if (startswith (args, "if")
13442 && (isspace (args[2]) || args[2] == '\0'))
13445 args = skip_spaces (args);
13446 if (args[0] == '\0')
13447 error (_("condition missing after `if' keyword"));
13448 cond_string.assign (args);
13451 /* Otherwise, there should be no other argument at the end of
13453 else if (args[0] != '\0')
13454 error (_("Junk at end of arguments."));
13457 /* Implement the "catch assert" command. */
13460 catch_assert_command (const char *arg_entry, int from_tty,
13461 struct cmd_list_element *command)
13463 const char *arg = arg_entry;
13464 struct gdbarch *gdbarch = get_current_arch ();
13466 std::string cond_string;
13468 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13472 catch_ada_assert_command_split (arg, cond_string);
13473 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13475 tempflag, 1 /* enabled */,
13479 /* Return non-zero if the symbol SYM is an Ada exception object. */
13482 ada_is_exception_sym (struct symbol *sym)
13484 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13486 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13487 && SYMBOL_CLASS (sym) != LOC_BLOCK
13488 && SYMBOL_CLASS (sym) != LOC_CONST
13489 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13490 && type_name != NULL && strcmp (type_name, "exception") == 0);
13493 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13494 Ada exception object. This matches all exceptions except the ones
13495 defined by the Ada language. */
13498 ada_is_non_standard_exception_sym (struct symbol *sym)
13502 if (!ada_is_exception_sym (sym))
13505 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13506 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13507 return 0; /* A standard exception. */
13509 /* Numeric_Error is also a standard exception, so exclude it.
13510 See the STANDARD_EXC description for more details as to why
13511 this exception is not listed in that array. */
13512 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13518 /* A helper function for std::sort, comparing two struct ada_exc_info
13521 The comparison is determined first by exception name, and then
13522 by exception address. */
13525 ada_exc_info::operator< (const ada_exc_info &other) const
13529 result = strcmp (name, other.name);
13532 if (result == 0 && addr < other.addr)
13538 ada_exc_info::operator== (const ada_exc_info &other) const
13540 return addr == other.addr && strcmp (name, other.name) == 0;
13543 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13544 routine, but keeping the first SKIP elements untouched.
13546 All duplicates are also removed. */
13549 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13552 std::sort (exceptions->begin () + skip, exceptions->end ());
13553 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13554 exceptions->end ());
13557 /* Add all exceptions defined by the Ada standard whose name match
13558 a regular expression.
13560 If PREG is not NULL, then this regexp_t object is used to
13561 perform the symbol name matching. Otherwise, no name-based
13562 filtering is performed.
13564 EXCEPTIONS is a vector of exceptions to which matching exceptions
13568 ada_add_standard_exceptions (compiled_regex *preg,
13569 std::vector<ada_exc_info> *exceptions)
13573 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13576 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13578 struct bound_minimal_symbol msymbol
13579 = ada_lookup_simple_minsym (standard_exc[i]);
13581 if (msymbol.minsym != NULL)
13583 struct ada_exc_info info
13584 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13586 exceptions->push_back (info);
13592 /* Add all Ada exceptions defined locally and accessible from the given
13595 If PREG is not NULL, then this regexp_t object is used to
13596 perform the symbol name matching. Otherwise, no name-based
13597 filtering is performed.
13599 EXCEPTIONS is a vector of exceptions to which matching exceptions
13603 ada_add_exceptions_from_frame (compiled_regex *preg,
13604 struct frame_info *frame,
13605 std::vector<ada_exc_info> *exceptions)
13607 const struct block *block = get_frame_block (frame, 0);
13611 struct block_iterator iter;
13612 struct symbol *sym;
13614 ALL_BLOCK_SYMBOLS (block, iter, sym)
13616 switch (SYMBOL_CLASS (sym))
13623 if (ada_is_exception_sym (sym))
13625 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13626 SYMBOL_VALUE_ADDRESS (sym)};
13628 exceptions->push_back (info);
13632 if (BLOCK_FUNCTION (block) != NULL)
13634 block = BLOCK_SUPERBLOCK (block);
13638 /* Return true if NAME matches PREG or if PREG is NULL. */
13641 name_matches_regex (const char *name, compiled_regex *preg)
13643 return (preg == NULL
13644 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13647 /* Add all exceptions defined globally whose name name match
13648 a regular expression, excluding standard exceptions.
13650 The reason we exclude standard exceptions is that they need
13651 to be handled separately: Standard exceptions are defined inside
13652 a runtime unit which is normally not compiled with debugging info,
13653 and thus usually do not show up in our symbol search. However,
13654 if the unit was in fact built with debugging info, we need to
13655 exclude them because they would duplicate the entry we found
13656 during the special loop that specifically searches for those
13657 standard exceptions.
13659 If PREG is not NULL, then this regexp_t object is used to
13660 perform the symbol name matching. Otherwise, no name-based
13661 filtering is performed.
13663 EXCEPTIONS is a vector of exceptions to which matching exceptions
13667 ada_add_global_exceptions (compiled_regex *preg,
13668 std::vector<ada_exc_info> *exceptions)
13670 struct objfile *objfile;
13671 struct compunit_symtab *s;
13673 /* In Ada, the symbol "search name" is a linkage name, whereas the
13674 regular expression used to do the matching refers to the natural
13675 name. So match against the decoded name. */
13676 expand_symtabs_matching (NULL,
13677 lookup_name_info::match_any (),
13678 [&] (const char *search_name)
13680 const char *decoded = ada_decode (search_name);
13681 return name_matches_regex (decoded, preg);
13686 ALL_COMPUNITS (objfile, s)
13688 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13691 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13693 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13694 struct block_iterator iter;
13695 struct symbol *sym;
13697 ALL_BLOCK_SYMBOLS (b, iter, sym)
13698 if (ada_is_non_standard_exception_sym (sym)
13699 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13701 struct ada_exc_info info
13702 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13704 exceptions->push_back (info);
13710 /* Implements ada_exceptions_list with the regular expression passed
13711 as a regex_t, rather than a string.
13713 If not NULL, PREG is used to filter out exceptions whose names
13714 do not match. Otherwise, all exceptions are listed. */
13716 static std::vector<ada_exc_info>
13717 ada_exceptions_list_1 (compiled_regex *preg)
13719 std::vector<ada_exc_info> result;
13722 /* First, list the known standard exceptions. These exceptions
13723 need to be handled separately, as they are usually defined in
13724 runtime units that have been compiled without debugging info. */
13726 ada_add_standard_exceptions (preg, &result);
13728 /* Next, find all exceptions whose scope is local and accessible
13729 from the currently selected frame. */
13731 if (has_stack_frames ())
13733 prev_len = result.size ();
13734 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13736 if (result.size () > prev_len)
13737 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13740 /* Add all exceptions whose scope is global. */
13742 prev_len = result.size ();
13743 ada_add_global_exceptions (preg, &result);
13744 if (result.size () > prev_len)
13745 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13750 /* Return a vector of ada_exc_info.
13752 If REGEXP is NULL, all exceptions are included in the result.
13753 Otherwise, it should contain a valid regular expression,
13754 and only the exceptions whose names match that regular expression
13755 are included in the result.
13757 The exceptions are sorted in the following order:
13758 - Standard exceptions (defined by the Ada language), in
13759 alphabetical order;
13760 - Exceptions only visible from the current frame, in
13761 alphabetical order;
13762 - Exceptions whose scope is global, in alphabetical order. */
13764 std::vector<ada_exc_info>
13765 ada_exceptions_list (const char *regexp)
13767 if (regexp == NULL)
13768 return ada_exceptions_list_1 (NULL);
13770 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13771 return ada_exceptions_list_1 (®);
13774 /* Implement the "info exceptions" command. */
13777 info_exceptions_command (const char *regexp, int from_tty)
13779 struct gdbarch *gdbarch = get_current_arch ();
13781 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13783 if (regexp != NULL)
13785 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13787 printf_filtered (_("All defined Ada exceptions:\n"));
13789 for (const ada_exc_info &info : exceptions)
13790 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13794 /* Information about operators given special treatment in functions
13796 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13798 #define ADA_OPERATORS \
13799 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13800 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13801 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13802 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13803 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13804 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13805 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13806 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13807 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13808 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13809 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13810 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13811 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13812 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13813 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13814 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13815 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13816 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13817 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13820 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13823 switch (exp->elts[pc - 1].opcode)
13826 operator_length_standard (exp, pc, oplenp, argsp);
13829 #define OP_DEFN(op, len, args, binop) \
13830 case op: *oplenp = len; *argsp = args; break;
13836 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13841 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13846 /* Implementation of the exp_descriptor method operator_check. */
13849 ada_operator_check (struct expression *exp, int pos,
13850 int (*objfile_func) (struct objfile *objfile, void *data),
13853 const union exp_element *const elts = exp->elts;
13854 struct type *type = NULL;
13856 switch (elts[pos].opcode)
13858 case UNOP_IN_RANGE:
13860 type = elts[pos + 1].type;
13864 return operator_check_standard (exp, pos, objfile_func, data);
13867 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13869 if (type && TYPE_OBJFILE (type)
13870 && (*objfile_func) (TYPE_OBJFILE (type), data))
13876 static const char *
13877 ada_op_name (enum exp_opcode opcode)
13882 return op_name_standard (opcode);
13884 #define OP_DEFN(op, len, args, binop) case op: return #op;
13889 return "OP_AGGREGATE";
13891 return "OP_CHOICES";
13897 /* As for operator_length, but assumes PC is pointing at the first
13898 element of the operator, and gives meaningful results only for the
13899 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13902 ada_forward_operator_length (struct expression *exp, int pc,
13903 int *oplenp, int *argsp)
13905 switch (exp->elts[pc].opcode)
13908 *oplenp = *argsp = 0;
13911 #define OP_DEFN(op, len, args, binop) \
13912 case op: *oplenp = len; *argsp = args; break;
13918 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13923 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13929 int len = longest_to_int (exp->elts[pc + 1].longconst);
13931 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13939 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13941 enum exp_opcode op = exp->elts[elt].opcode;
13946 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13950 /* Ada attributes ('Foo). */
13953 case OP_ATR_LENGTH:
13957 case OP_ATR_MODULUS:
13964 case UNOP_IN_RANGE:
13966 /* XXX: gdb_sprint_host_address, type_sprint */
13967 fprintf_filtered (stream, _("Type @"));
13968 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13969 fprintf_filtered (stream, " (");
13970 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13971 fprintf_filtered (stream, ")");
13973 case BINOP_IN_BOUNDS:
13974 fprintf_filtered (stream, " (%d)",
13975 longest_to_int (exp->elts[pc + 2].longconst));
13977 case TERNOP_IN_RANGE:
13982 case OP_DISCRETE_RANGE:
13983 case OP_POSITIONAL:
13990 char *name = &exp->elts[elt + 2].string;
13991 int len = longest_to_int (exp->elts[elt + 1].longconst);
13993 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13998 return dump_subexp_body_standard (exp, stream, elt);
14002 for (i = 0; i < nargs; i += 1)
14003 elt = dump_subexp (exp, stream, elt);
14008 /* The Ada extension of print_subexp (q.v.). */
14011 ada_print_subexp (struct expression *exp, int *pos,
14012 struct ui_file *stream, enum precedence prec)
14014 int oplen, nargs, i;
14016 enum exp_opcode op = exp->elts[pc].opcode;
14018 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14025 print_subexp_standard (exp, pos, stream, prec);
14029 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14032 case BINOP_IN_BOUNDS:
14033 /* XXX: sprint_subexp */
14034 print_subexp (exp, pos, stream, PREC_SUFFIX);
14035 fputs_filtered (" in ", stream);
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered ("'range", stream);
14038 if (exp->elts[pc + 1].longconst > 1)
14039 fprintf_filtered (stream, "(%ld)",
14040 (long) exp->elts[pc + 1].longconst);
14043 case TERNOP_IN_RANGE:
14044 if (prec >= PREC_EQUAL)
14045 fputs_filtered ("(", stream);
14046 /* XXX: sprint_subexp */
14047 print_subexp (exp, pos, stream, PREC_SUFFIX);
14048 fputs_filtered (" in ", stream);
14049 print_subexp (exp, pos, stream, PREC_EQUAL);
14050 fputs_filtered (" .. ", stream);
14051 print_subexp (exp, pos, stream, PREC_EQUAL);
14052 if (prec >= PREC_EQUAL)
14053 fputs_filtered (")", stream);
14058 case OP_ATR_LENGTH:
14062 case OP_ATR_MODULUS:
14067 if (exp->elts[*pos].opcode == OP_TYPE)
14069 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14070 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14071 &type_print_raw_options);
14075 print_subexp (exp, pos, stream, PREC_SUFFIX);
14076 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14081 for (tem = 1; tem < nargs; tem += 1)
14083 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14084 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14086 fputs_filtered (")", stream);
14091 type_print (exp->elts[pc + 1].type, "", stream, 0);
14092 fputs_filtered ("'(", stream);
14093 print_subexp (exp, pos, stream, PREC_PREFIX);
14094 fputs_filtered (")", stream);
14097 case UNOP_IN_RANGE:
14098 /* XXX: sprint_subexp */
14099 print_subexp (exp, pos, stream, PREC_SUFFIX);
14100 fputs_filtered (" in ", stream);
14101 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14102 &type_print_raw_options);
14105 case OP_DISCRETE_RANGE:
14106 print_subexp (exp, pos, stream, PREC_SUFFIX);
14107 fputs_filtered ("..", stream);
14108 print_subexp (exp, pos, stream, PREC_SUFFIX);
14112 fputs_filtered ("others => ", stream);
14113 print_subexp (exp, pos, stream, PREC_SUFFIX);
14117 for (i = 0; i < nargs-1; i += 1)
14120 fputs_filtered ("|", stream);
14121 print_subexp (exp, pos, stream, PREC_SUFFIX);
14123 fputs_filtered (" => ", stream);
14124 print_subexp (exp, pos, stream, PREC_SUFFIX);
14127 case OP_POSITIONAL:
14128 print_subexp (exp, pos, stream, PREC_SUFFIX);
14132 fputs_filtered ("(", stream);
14133 for (i = 0; i < nargs; i += 1)
14136 fputs_filtered (", ", stream);
14137 print_subexp (exp, pos, stream, PREC_SUFFIX);
14139 fputs_filtered (")", stream);
14144 /* Table mapping opcodes into strings for printing operators
14145 and precedences of the operators. */
14147 static const struct op_print ada_op_print_tab[] = {
14148 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14149 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14150 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14151 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14152 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14153 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14154 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14155 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14156 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14157 {">=", BINOP_GEQ, PREC_ORDER, 0},
14158 {">", BINOP_GTR, PREC_ORDER, 0},
14159 {"<", BINOP_LESS, PREC_ORDER, 0},
14160 {">>", BINOP_RSH, PREC_SHIFT, 0},
14161 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14162 {"+", BINOP_ADD, PREC_ADD, 0},
14163 {"-", BINOP_SUB, PREC_ADD, 0},
14164 {"&", BINOP_CONCAT, PREC_ADD, 0},
14165 {"*", BINOP_MUL, PREC_MUL, 0},
14166 {"/", BINOP_DIV, PREC_MUL, 0},
14167 {"rem", BINOP_REM, PREC_MUL, 0},
14168 {"mod", BINOP_MOD, PREC_MUL, 0},
14169 {"**", BINOP_EXP, PREC_REPEAT, 0},
14170 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14171 {"-", UNOP_NEG, PREC_PREFIX, 0},
14172 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14173 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14174 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14175 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14176 {".all", UNOP_IND, PREC_SUFFIX, 1},
14177 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14178 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14179 {NULL, OP_NULL, PREC_SUFFIX, 0}
14182 enum ada_primitive_types {
14183 ada_primitive_type_int,
14184 ada_primitive_type_long,
14185 ada_primitive_type_short,
14186 ada_primitive_type_char,
14187 ada_primitive_type_float,
14188 ada_primitive_type_double,
14189 ada_primitive_type_void,
14190 ada_primitive_type_long_long,
14191 ada_primitive_type_long_double,
14192 ada_primitive_type_natural,
14193 ada_primitive_type_positive,
14194 ada_primitive_type_system_address,
14195 ada_primitive_type_storage_offset,
14196 nr_ada_primitive_types
14200 ada_language_arch_info (struct gdbarch *gdbarch,
14201 struct language_arch_info *lai)
14203 const struct builtin_type *builtin = builtin_type (gdbarch);
14205 lai->primitive_type_vector
14206 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14209 lai->primitive_type_vector [ada_primitive_type_int]
14210 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14212 lai->primitive_type_vector [ada_primitive_type_long]
14213 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14214 0, "long_integer");
14215 lai->primitive_type_vector [ada_primitive_type_short]
14216 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14217 0, "short_integer");
14218 lai->string_char_type
14219 = lai->primitive_type_vector [ada_primitive_type_char]
14220 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14221 lai->primitive_type_vector [ada_primitive_type_float]
14222 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14223 "float", gdbarch_float_format (gdbarch));
14224 lai->primitive_type_vector [ada_primitive_type_double]
14225 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14226 "long_float", gdbarch_double_format (gdbarch));
14227 lai->primitive_type_vector [ada_primitive_type_long_long]
14228 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14229 0, "long_long_integer");
14230 lai->primitive_type_vector [ada_primitive_type_long_double]
14231 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14232 "long_long_float", gdbarch_long_double_format (gdbarch));
14233 lai->primitive_type_vector [ada_primitive_type_natural]
14234 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14236 lai->primitive_type_vector [ada_primitive_type_positive]
14237 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14239 lai->primitive_type_vector [ada_primitive_type_void]
14240 = builtin->builtin_void;
14242 lai->primitive_type_vector [ada_primitive_type_system_address]
14243 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14245 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14246 = "system__address";
14248 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14249 type. This is a signed integral type whose size is the same as
14250 the size of addresses. */
14252 unsigned int addr_length = TYPE_LENGTH
14253 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14255 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14256 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14260 lai->bool_type_symbol = NULL;
14261 lai->bool_type_default = builtin->builtin_bool;
14264 /* Language vector */
14266 /* Not really used, but needed in the ada_language_defn. */
14269 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14271 ada_emit_char (c, type, stream, quoter, 1);
14275 parse (struct parser_state *ps)
14277 warnings_issued = 0;
14278 return ada_parse (ps);
14281 static const struct exp_descriptor ada_exp_descriptor = {
14283 ada_operator_length,
14284 ada_operator_check,
14286 ada_dump_subexp_body,
14287 ada_evaluate_subexp
14290 /* symbol_name_matcher_ftype adapter for wild_match. */
14293 do_wild_match (const char *symbol_search_name,
14294 const lookup_name_info &lookup_name,
14295 completion_match_result *comp_match_res)
14297 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14300 /* symbol_name_matcher_ftype adapter for full_match. */
14303 do_full_match (const char *symbol_search_name,
14304 const lookup_name_info &lookup_name,
14305 completion_match_result *comp_match_res)
14307 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14310 /* Build the Ada lookup name for LOOKUP_NAME. */
14312 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14314 const std::string &user_name = lookup_name.name ();
14316 if (user_name[0] == '<')
14318 if (user_name.back () == '>')
14319 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14321 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14322 m_encoded_p = true;
14323 m_verbatim_p = true;
14324 m_wild_match_p = false;
14325 m_standard_p = false;
14329 m_verbatim_p = false;
14331 m_encoded_p = user_name.find ("__") != std::string::npos;
14335 const char *folded = ada_fold_name (user_name.c_str ());
14336 const char *encoded = ada_encode_1 (folded, false);
14337 if (encoded != NULL)
14338 m_encoded_name = encoded;
14340 m_encoded_name = user_name;
14343 m_encoded_name = user_name;
14345 /* Handle the 'package Standard' special case. See description
14346 of m_standard_p. */
14347 if (startswith (m_encoded_name.c_str (), "standard__"))
14349 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14350 m_standard_p = true;
14353 m_standard_p = false;
14355 /* If the name contains a ".", then the user is entering a fully
14356 qualified entity name, and the match must not be done in wild
14357 mode. Similarly, if the user wants to complete what looks
14358 like an encoded name, the match must not be done in wild
14359 mode. Also, in the standard__ special case always do
14360 non-wild matching. */
14362 = (lookup_name.match_type () != symbol_name_match_type::FULL
14365 && user_name.find ('.') == std::string::npos);
14369 /* symbol_name_matcher_ftype method for Ada. This only handles
14370 completion mode. */
14373 ada_symbol_name_matches (const char *symbol_search_name,
14374 const lookup_name_info &lookup_name,
14375 completion_match_result *comp_match_res)
14377 return lookup_name.ada ().matches (symbol_search_name,
14378 lookup_name.match_type (),
14382 /* A name matcher that matches the symbol name exactly, with
14386 literal_symbol_name_matcher (const char *symbol_search_name,
14387 const lookup_name_info &lookup_name,
14388 completion_match_result *comp_match_res)
14390 const std::string &name = lookup_name.name ();
14392 int cmp = (lookup_name.completion_mode ()
14393 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14394 : strcmp (symbol_search_name, name.c_str ()));
14397 if (comp_match_res != NULL)
14398 comp_match_res->set_match (symbol_search_name);
14405 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14408 static symbol_name_matcher_ftype *
14409 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14411 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14412 return literal_symbol_name_matcher;
14414 if (lookup_name.completion_mode ())
14415 return ada_symbol_name_matches;
14418 if (lookup_name.ada ().wild_match_p ())
14419 return do_wild_match;
14421 return do_full_match;
14425 /* Implement the "la_read_var_value" language_defn method for Ada. */
14427 static struct value *
14428 ada_read_var_value (struct symbol *var, const struct block *var_block,
14429 struct frame_info *frame)
14431 const struct block *frame_block = NULL;
14432 struct symbol *renaming_sym = NULL;
14434 /* The only case where default_read_var_value is not sufficient
14435 is when VAR is a renaming... */
14437 frame_block = get_frame_block (frame, NULL);
14439 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14440 if (renaming_sym != NULL)
14441 return ada_read_renaming_var_value (renaming_sym, frame_block);
14443 /* This is a typical case where we expect the default_read_var_value
14444 function to work. */
14445 return default_read_var_value (var, var_block, frame);
14448 static const char *ada_extensions[] =
14450 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14453 extern const struct language_defn ada_language_defn = {
14454 "ada", /* Language name */
14458 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14459 that's not quite what this means. */
14461 macro_expansion_no,
14463 &ada_exp_descriptor,
14467 ada_printchar, /* Print a character constant */
14468 ada_printstr, /* Function to print string constant */
14469 emit_char, /* Function to print single char (not used) */
14470 ada_print_type, /* Print a type using appropriate syntax */
14471 ada_print_typedef, /* Print a typedef using appropriate syntax */
14472 ada_val_print, /* Print a value using appropriate syntax */
14473 ada_value_print, /* Print a top-level value */
14474 ada_read_var_value, /* la_read_var_value */
14475 NULL, /* Language specific skip_trampoline */
14476 NULL, /* name_of_this */
14477 true, /* la_store_sym_names_in_linkage_form_p */
14478 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14479 basic_lookup_transparent_type, /* lookup_transparent_type */
14480 ada_la_decode, /* Language specific symbol demangler */
14481 ada_sniff_from_mangled_name,
14482 NULL, /* Language specific
14483 class_name_from_physname */
14484 ada_op_print_tab, /* expression operators for printing */
14485 0, /* c-style arrays */
14486 1, /* String lower bound */
14487 ada_get_gdb_completer_word_break_characters,
14488 ada_collect_symbol_completion_matches,
14489 ada_language_arch_info,
14490 ada_print_array_index,
14491 default_pass_by_reference,
14493 c_watch_location_expression,
14494 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14495 ada_iterate_over_symbols,
14496 default_search_name_hash,
14503 /* Command-list for the "set/show ada" prefix command. */
14504 static struct cmd_list_element *set_ada_list;
14505 static struct cmd_list_element *show_ada_list;
14507 /* Implement the "set ada" prefix command. */
14510 set_ada_command (const char *arg, int from_tty)
14512 printf_unfiltered (_(\
14513 "\"set ada\" must be followed by the name of a setting.\n"));
14514 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14517 /* Implement the "show ada" prefix command. */
14520 show_ada_command (const char *args, int from_tty)
14522 cmd_show_list (show_ada_list, from_tty, "");
14526 initialize_ada_catchpoint_ops (void)
14528 struct breakpoint_ops *ops;
14530 initialize_breakpoint_ops ();
14532 ops = &catch_exception_breakpoint_ops;
14533 *ops = bkpt_breakpoint_ops;
14534 ops->allocate_location = allocate_location_catch_exception;
14535 ops->re_set = re_set_catch_exception;
14536 ops->check_status = check_status_catch_exception;
14537 ops->print_it = print_it_catch_exception;
14538 ops->print_one = print_one_catch_exception;
14539 ops->print_mention = print_mention_catch_exception;
14540 ops->print_recreate = print_recreate_catch_exception;
14542 ops = &catch_exception_unhandled_breakpoint_ops;
14543 *ops = bkpt_breakpoint_ops;
14544 ops->allocate_location = allocate_location_catch_exception_unhandled;
14545 ops->re_set = re_set_catch_exception_unhandled;
14546 ops->check_status = check_status_catch_exception_unhandled;
14547 ops->print_it = print_it_catch_exception_unhandled;
14548 ops->print_one = print_one_catch_exception_unhandled;
14549 ops->print_mention = print_mention_catch_exception_unhandled;
14550 ops->print_recreate = print_recreate_catch_exception_unhandled;
14552 ops = &catch_assert_breakpoint_ops;
14553 *ops = bkpt_breakpoint_ops;
14554 ops->allocate_location = allocate_location_catch_assert;
14555 ops->re_set = re_set_catch_assert;
14556 ops->check_status = check_status_catch_assert;
14557 ops->print_it = print_it_catch_assert;
14558 ops->print_one = print_one_catch_assert;
14559 ops->print_mention = print_mention_catch_assert;
14560 ops->print_recreate = print_recreate_catch_assert;
14562 ops = &catch_handlers_breakpoint_ops;
14563 *ops = bkpt_breakpoint_ops;
14564 ops->allocate_location = allocate_location_catch_handlers;
14565 ops->re_set = re_set_catch_handlers;
14566 ops->check_status = check_status_catch_handlers;
14567 ops->print_it = print_it_catch_handlers;
14568 ops->print_one = print_one_catch_handlers;
14569 ops->print_mention = print_mention_catch_handlers;
14570 ops->print_recreate = print_recreate_catch_handlers;
14573 /* This module's 'new_objfile' observer. */
14576 ada_new_objfile_observer (struct objfile *objfile)
14578 ada_clear_symbol_cache ();
14581 /* This module's 'free_objfile' observer. */
14584 ada_free_objfile_observer (struct objfile *objfile)
14586 ada_clear_symbol_cache ();
14590 _initialize_ada_language (void)
14592 initialize_ada_catchpoint_ops ();
14594 add_prefix_cmd ("ada", no_class, set_ada_command,
14595 _("Prefix command for changing Ada-specfic settings"),
14596 &set_ada_list, "set ada ", 0, &setlist);
14598 add_prefix_cmd ("ada", no_class, show_ada_command,
14599 _("Generic command for showing Ada-specific settings."),
14600 &show_ada_list, "show ada ", 0, &showlist);
14602 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14603 &trust_pad_over_xvs, _("\
14604 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14605 Show whether an optimization trusting PAD types over XVS types is activated"),
14607 This is related to the encoding used by the GNAT compiler. The debugger\n\
14608 should normally trust the contents of PAD types, but certain older versions\n\
14609 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14610 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14611 work around this bug. It is always safe to turn this option \"off\", but\n\
14612 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14613 this option to \"off\" unless necessary."),
14614 NULL, NULL, &set_ada_list, &show_ada_list);
14616 add_setshow_boolean_cmd ("print-signatures", class_vars,
14617 &print_signatures, _("\
14618 Enable or disable the output of formal and return types for functions in the \
14619 overloads selection menu"), _("\
14620 Show whether the output of formal and return types for functions in the \
14621 overloads selection menu is activated"),
14622 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14624 add_catch_command ("exception", _("\
14625 Catch Ada exceptions, when raised.\n\
14626 With an argument, catch only exceptions with the given name."),
14627 catch_ada_exception_command,
14632 add_catch_command ("handlers", _("\
14633 Catch Ada exceptions, when handled.\n\
14634 With an argument, catch only exceptions with the given name."),
14635 catch_ada_handlers_command,
14639 add_catch_command ("assert", _("\
14640 Catch failed Ada assertions, when raised.\n\
14641 With an argument, catch only exceptions with the given name."),
14642 catch_assert_command,
14647 varsize_limit = 65536;
14648 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14649 &varsize_limit, _("\
14650 Set the maximum number of bytes allowed in a variable-size object."), _("\
14651 Show the maximum number of bytes allowed in a variable-size object."), _("\
14652 Attempts to access an object whose size is not a compile-time constant\n\
14653 and exceeds this limit will cause an error."),
14654 NULL, NULL, &setlist, &showlist);
14656 add_info ("exceptions", info_exceptions_command,
14658 List all Ada exception names.\n\
14659 If a regular expression is passed as an argument, only those matching\n\
14660 the regular expression are listed."));
14662 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14663 _("Set Ada maintenance-related variables."),
14664 &maint_set_ada_cmdlist, "maintenance set ada ",
14665 0/*allow-unknown*/, &maintenance_set_cmdlist);
14667 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14668 _("Show Ada maintenance-related variables"),
14669 &maint_show_ada_cmdlist, "maintenance show ada ",
14670 0/*allow-unknown*/, &maintenance_show_cmdlist);
14672 add_setshow_boolean_cmd
14673 ("ignore-descriptive-types", class_maintenance,
14674 &ada_ignore_descriptive_types_p,
14675 _("Set whether descriptive types generated by GNAT should be ignored."),
14676 _("Show whether descriptive types generated by GNAT should be ignored."),
14678 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14679 DWARF attribute."),
14680 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14682 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14683 NULL, xcalloc, xfree);
14685 /* The ada-lang observers. */
14686 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14687 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14688 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14690 /* Setup various context-specific data. */
14692 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14693 ada_pspace_data_handle
14694 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);