1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static bool wild_match (const char *name, const char *patn);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
235 static int ada_is_direct_array_type (struct type *);
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
240 static struct value *ada_index_struct_field (int, struct value *, int,
243 static struct value *assign_aggregate (struct value *, struct value *,
247 static void aggregate_assign_from_choices (struct value *, struct value *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
252 static void aggregate_assign_positional (struct value *, struct value *,
254 int *, LONGEST *, int *, int,
258 static void aggregate_assign_others (struct value *, struct value *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 static void ada_forward_operator_length (struct expression *, int, int *,
272 static struct type *ada_find_any_type (const char *name);
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
279 /* The result of a symbol lookup to be stored in our symbol cache. */
283 /* The name used to perform the lookup. */
285 /* The namespace used during the lookup. */
287 /* The symbol returned by the lookup, or NULL if no matching symbol
290 /* The block where the symbol was found, or NULL if no matching
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
306 #define HASH_SIZE 1009
308 struct ada_symbol_cache
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
322 static const char ada_completer_word_break_characters[] =
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
348 /* Maintenance-related settings for this module. */
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
353 /* Implement the "maintenance set ada" (prefix) command. */
356 maint_set_ada_cmd (const char *args, int from_tty)
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 /* Implement the "maintenance show ada" (prefix) command. */
365 maint_show_ada_cmd (const char *args, int from_tty)
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372 static int ada_ignore_descriptive_types_p = 0;
374 /* Inferior-specific data. */
376 /* Per-inferior data for this module. */
378 struct ada_inferior_data
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
389 const struct exception_support_info *exception_info;
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
395 /* A cleanup routine for our inferior data. */
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 struct ada_inferior_data *data;
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
406 /* Return our inferior data for the given inferior (INF).
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
417 struct ada_inferior_data *data;
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
433 ada_inferior_exit (struct inferior *inf)
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
440 /* program-space-specific data. */
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
455 This function always returns a valid object. */
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
460 struct ada_pspace_data *data;
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
473 /* The cleanup callback for this module's per-program-space data. */
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
515 ada_typedef_target_type (struct type *type)
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
527 ada_unqualified_name (const char *decoded_name)
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
538 result = strrchr (decoded_name, '.');
540 result++; /* Skip the dot... */
542 result = decoded_name;
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
551 add_angle_brackets (const char *str)
553 static char *result = NULL;
556 result = xstrprintf ("<%s>", str);
561 ada_get_gdb_completer_word_break_characters (void)
563 return ada_completer_word_break_characters;
566 /* Print an array element index using the Ada syntax. */
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 if (*size < min_size)
586 if (*size < min_size)
588 vect = xrealloc (vect, *size * element_size);
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
597 field_name_match (const char *field_name, const char *target)
599 int len = strlen (target);
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
619 ada_get_field_index (const struct type *type, const char *field_name,
623 struct type *struct_type = check_typedef ((struct type *) type);
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
636 /* The length of the prefix of NAME prior to any "___" suffix. */
639 ada_name_prefix_len (const char *name)
645 const char *p = strstr (name, "___");
648 return strlen (name);
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
658 is_suffix (const char *str, const char *suffix)
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
680 struct value *result;
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
708 return valaddr + offset;
712 cond_offset_target (CORE_ADDR address, long offset)
717 return address + offset;
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730 lim_warning (const char *format, ...)
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
747 ada_ensure_varsize_limit (const struct type *type)
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
753 /* Maximum value of a SIZE-byte signed integer type. */
755 max_of_size (int size)
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759 return top_bit | (top_bit - 1);
762 /* Minimum value of a SIZE-byte signed integer type. */
764 min_of_size (int size)
766 return -max_of_size (size) - 1;
769 /* Maximum value of a SIZE-byte unsigned integer type. */
771 umax_of_size (int size)
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775 return top_bit | (top_bit - 1);
778 /* Maximum value of integral type T, as a signed quantity. */
780 max_of_type (struct type *t)
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 return max_of_size (TYPE_LENGTH (t));
788 /* Minimum value of integral type T, as a signed quantity. */
790 min_of_type (struct type *t)
792 if (TYPE_UNSIGNED (t))
795 return min_of_size (TYPE_LENGTH (t));
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 ada_discrete_type_high_bound (struct type *type)
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
813 return max_of_type (type);
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 ada_discrete_type_low_bound (struct type *type)
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
829 return TYPE_FIELD_ENUMVAL (type, 0);
834 return min_of_type (type);
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
844 get_base_type (struct type *type)
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 type = TYPE_TARGET_TYPE (type);
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
861 ada_get_decoded_value (struct value *value)
863 struct type *type = ada_check_typedef (value_type (value));
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
872 value = ada_coerce_to_simple_array (value);
875 value = ada_to_fixed_value (value);
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
886 ada_get_decoded_type (struct type *type)
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
896 /* Language Selection */
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
902 ada_update_initial_language (enum language lang)
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928 if (msym.minsym != NULL)
930 CORE_ADDR main_program_name_addr;
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
943 return main_program_name;
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
986 ada_encode_1 (const char *decoded, bool throw_errors)
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
1000 for (p = decoded; *p != '\0'; p += 1)
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1009 const struct ada_opname_map *mapping;
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1015 if (mapping->encoded == NULL)
1018 error (_("invalid Ada operator name: %s"), p);
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1028 encoding_buffer[k] = *p;
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1041 ada_encode (const char *decoded)
1043 return ada_encode_1 (decoded, true);
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1051 ada_fold_name (const char *name)
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059 if (name[0] == '\'')
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078 is_lower_alphanum (const char c)
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 while (i > 0 && isdigit (encoded[i]))
1104 if (i >= 0 && encoded[i] == '.')
1106 else if (i >= 0 && encoded[i] == '$')
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1115 /* Remove the suffix introduced by the compiler for protected object
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 /* Remove trailing N. */
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 if (encoded[i] != 'X')
1153 if (isalnum (encoded[i-1]))
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1166 ada_decode (const char *encoded)
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1188 len0 = strlen (encoded);
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1226 /* Make decoded big enough for possible expansion by operator name. */
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1241 else if (encoded[i] == '$')
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1264 && !isalnum (encoded[i + op_len]))
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1269 j += strlen (ada_opname_table[k].decoded);
1273 if (ada_opname_table[k].encoded != NULL)
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 /* Remove _E{DIGITS}+[sb] */
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1321 while (k < len0 && isdigit (encoded[k]))
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1332 || (k < len0 && encoded[k] == '_'))
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1372 /* Replace '__' by '.'. */
1380 /* It's a character part of the decoded name, so just copy it
1382 decoded[j] = encoded[i];
1387 decoded[j] = '\000';
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1396 if (strcmp (decoded, encoded) == 0)
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1436 if (!gsymbol->ada_mangled)
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1441 gsymbol->ada_mangled = 1;
1443 if (obstack != NULL)
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 *slot = xstrdup (decoded);
1466 ada_la_decode (const char *encoded, int options)
1468 return xstrdup (ada_decode (encoded));
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1476 const char *demangled = ada_decode (mangled);
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 if (index_desc_type == NULL)
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1576 /* Maximum number of array dimensions we are prepared to handle. */
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1581 /* The desc_* routines return primitive portions of array descriptors
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1587 static struct type *
1588 desc_base_type (struct type *type)
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1607 is_thin_pntr (struct type *type)
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1614 /* The descriptor type for thin pointer type TYPE. */
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1619 struct type *base_type = desc_base_type (type);
1621 if (base_type == NULL)
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1629 if (alt_type == NULL)
1636 /* A pointer to the array data for thin-pointer value VAL. */
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1644 data_type = lookup_pointer_type (data_type);
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1649 return value_from_longest (data_type, value_address (val));
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1655 is_thick_pntr (struct type *type)
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1670 type = desc_base_type (type);
1674 else if (is_thin_pntr (type))
1676 type = thin_descriptor_type (type);
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1681 return ada_check_typedef (r);
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1695 static struct value *
1696 desc_bounds (struct value *arr)
1698 struct type *type = ada_check_typedef (value_type (arr));
1700 if (is_thin_pntr (type))
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1715 addr = value_address (arr);
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1722 else if (is_thick_pntr (type))
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1739 error (_("Bad GNAT array descriptor"));
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1751 fat_pntr_bounds_bitpos (struct type *type)
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1760 fat_pntr_bounds_bitsize (struct type *type)
1762 type = desc_base_type (type);
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1778 type = desc_base_type (type);
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1798 static struct value *
1799 desc_data (struct value *arr)
1801 struct type *type = value_type (arr);
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1817 fat_pntr_data_bitpos (struct type *type)
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1826 fat_pntr_data_bitsize (struct type *type)
1828 type = desc_base_type (type);
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1852 desc_bound_bitpos (struct type *type, int i, int which)
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1862 desc_bound_bitsize (struct type *type, int i, int which)
1864 type = desc_base_type (type);
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1878 type = desc_base_type (type);
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1890 desc_arity (struct type *type)
1892 type = desc_base_type (type);
1895 return TYPE_NFIELDS (type) / 2;
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1904 ada_is_direct_array_type (struct type *type)
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 ada_is_array_type (struct type *type)
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1929 ada_is_simple_array_type (struct type *type)
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1943 ada_is_array_descriptor_type (struct type *type)
1945 struct type *data_type = desc_data_target_type (type);
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1961 ada_is_bogus_array_descriptor (struct type *type)
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1980 ada_type_of_array (struct value *arr, int bounds)
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
2001 struct type *elt_type;
2003 struct value *descriptor;
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2049 return lookup_pointer_type (elt_type);
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2063 struct type *arrType = ada_type_of_array (arr, 1);
2065 if (arrType == NULL)
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2080 ada_coerce_to_simple_array (struct value *arr)
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2102 ada_coerce_to_simple_array_type (struct type *type)
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2116 ada_is_packed_array_type (struct type *type)
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2131 ada_is_constrained_packed_array_type (struct type *type)
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2151 decode_packed_array_bitsize (struct type *type)
2153 const char *raw_name;
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2163 raw_name = ada_type_name (ada_check_typedef (type));
2165 raw_name = ada_type_name (desc_base_type (type));
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2176 (_("could not understand bit size information on packed array"));
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2218 index_type = TYPE_INDEX_TYPE (type);
2220 new_type = alloc_type_copy (type);
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2254 struct type *shadow_type;
2258 raw_name = ada_type_name (desc_base_type (type));
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2272 if (shadow_type == NULL)
2274 lim_warning (_("could not find bounds information on packed array"));
2277 shadow_type = check_typedef (shadow_type);
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2312 type = decode_constrained_packed_array_type (value_type (arr));
2315 error (_("can't unpack array"));
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2329 mod = ada_modulus (value_type (arr)) - 1;
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2344 return coerce_unspec_val_to_type (arr, type);
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2399 /* Non-zero iff TYPE includes negative integer values. */
2402 has_negatives (struct type *type)
2404 switch (TYPE_CODE (type))
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2466 src_idx = src_len - 1;
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 unpacked_idx = unpacked_len - 1;
2482 /* Non-scalar values must be aligned at a byte boundary... */
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2504 while (src_bytes_left > 0)
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2527 src_bytes_left -= 1;
2530 while (unpacked_bytes_left > 0)
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2558 const gdb_byte *src; /* First byte containing data to unpack */
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2564 type = ada_check_typedef (type);
2567 src = valaddr + offset;
2569 src = value_contents (obj) + offset;
2571 if (is_dynamic_type (type))
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2624 long new_offset = offset;
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2634 set_value_offset (v, new_offset);
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2650 if (staging.size () == TYPE_LENGTH (type))
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2681 accum = (unsigned char) *source;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2701 accum_bits -= chunk_size;
2708 accum = (unsigned char) *source >> src_offset;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2753 if (VALUE_LVAL (toval) == lval_memory
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2763 CORE_ADDR to_addr = value_address (toval);
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2788 return value_assign (toval, fromval);
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2804 value_assign_to_component (struct value *container, struct value *component,
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2813 val = value_cast (value_type (component), val);
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2818 bits = value_bitsize (component);
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 struct type *elt_type;
2843 elt = ada_coerce_to_simple_array (arr);
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2850 for (k = 0; k < arity; k += 1)
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2875 struct value *array_ind = ada_value_ind (arr);
2877 = check_typedef (value_enclosing_type (array_ind));
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2883 for (k = 0; k < arity; k += 1)
2886 struct value *lwb_value;
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2898 return value_ind (arr);
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type = create_array_type_with_stride
2914 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2915 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2916 TYPE_FIELD_BITSIZE (type0, 0));
2917 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2918 LONGEST base_low_pos, low_pos;
2921 if (!discrete_position (base_index_type, low, &low_pos)
2922 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 warning (_("unable to get positions in slice, use bounds instead"));
2926 base_low_pos = base_low;
2929 base = value_as_address (array_ptr)
2930 + ((low_pos - base_low_pos)
2931 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2932 return value_at_lazy (slice_type, base);
2936 static struct value *
2937 ada_value_slice (struct value *array, int low, int high)
2939 struct type *type = ada_check_typedef (value_type (array));
2940 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2941 struct type *index_type
2942 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2943 struct type *slice_type = create_array_type_with_stride
2944 (NULL, TYPE_TARGET_TYPE (type), index_type,
2945 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2946 TYPE_FIELD_BITSIZE (type, 0));
2947 LONGEST low_pos, high_pos;
2949 if (!discrete_position (base_index_type, low, &low_pos)
2950 || !discrete_position (base_index_type, high, &high_pos))
2952 warning (_("unable to get positions in slice, use bounds instead"));
2957 return value_cast (slice_type,
2958 value_slice (array, low, high_pos - low_pos + 1));
2961 /* If type is a record type in the form of a standard GNAT array
2962 descriptor, returns the number of dimensions for type. If arr is a
2963 simple array, returns the number of "array of"s that prefix its
2964 type designation. Otherwise, returns 0. */
2967 ada_array_arity (struct type *type)
2974 type = desc_base_type (type);
2977 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2978 return desc_arity (desc_bounds_type (type));
2980 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2983 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2989 /* If TYPE is a record type in the form of a standard GNAT array
2990 descriptor or a simple array type, returns the element type for
2991 TYPE after indexing by NINDICES indices, or by all indices if
2992 NINDICES is -1. Otherwise, returns NULL. */
2995 ada_array_element_type (struct type *type, int nindices)
2997 type = desc_base_type (type);
2999 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3002 struct type *p_array_type;
3004 p_array_type = desc_data_target_type (type);
3006 k = ada_array_arity (type);
3010 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3011 if (nindices >= 0 && k > nindices)
3013 while (k > 0 && p_array_type != NULL)
3015 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3018 return p_array_type;
3020 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3022 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3024 type = TYPE_TARGET_TYPE (type);
3033 /* The type of nth index in arrays of given type (n numbering from 1).
3034 Does not examine memory. Throws an error if N is invalid or TYPE
3035 is not an array type. NAME is the name of the Ada attribute being
3036 evaluated ('range, 'first, 'last, or 'length); it is used in building
3037 the error message. */
3039 static struct type *
3040 ada_index_type (struct type *type, int n, const char *name)
3042 struct type *result_type;
3044 type = desc_base_type (type);
3046 if (n < 0 || n > ada_array_arity (type))
3047 error (_("invalid dimension number to '%s"), name);
3049 if (ada_is_simple_array_type (type))
3053 for (i = 1; i < n; i += 1)
3054 type = TYPE_TARGET_TYPE (type);
3055 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3056 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3057 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3058 perhaps stabsread.c would make more sense. */
3059 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3064 result_type = desc_index_type (desc_bounds_type (type), n);
3065 if (result_type == NULL)
3066 error (_("attempt to take bound of something that is not an array"));
3072 /* Given that arr is an array type, returns the lower bound of the
3073 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3074 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3075 array-descriptor type. It works for other arrays with bounds supplied
3076 by run-time quantities other than discriminants. */
3079 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3081 struct type *type, *index_type_desc, *index_type;
3084 gdb_assert (which == 0 || which == 1);
3086 if (ada_is_constrained_packed_array_type (arr_type))
3087 arr_type = decode_constrained_packed_array_type (arr_type);
3089 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3090 return (LONGEST) - which;
3092 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3093 type = TYPE_TARGET_TYPE (arr_type);
3097 if (TYPE_FIXED_INSTANCE (type))
3099 /* The array has already been fixed, so we do not need to
3100 check the parallel ___XA type again. That encoding has
3101 already been applied, so ignore it now. */
3102 index_type_desc = NULL;
3106 index_type_desc = ada_find_parallel_type (type, "___XA");
3107 ada_fixup_array_indexes_type (index_type_desc);
3110 if (index_type_desc != NULL)
3111 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3115 struct type *elt_type = check_typedef (type);
3117 for (i = 1; i < n; i++)
3118 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3120 index_type = TYPE_INDEX_TYPE (elt_type);
3124 (LONGEST) (which == 0
3125 ? ada_discrete_type_low_bound (index_type)
3126 : ada_discrete_type_high_bound (index_type));
3129 /* Given that arr is an array value, returns the lower bound of the
3130 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3131 WHICH is 1. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants. */
3135 ada_array_bound (struct value *arr, int n, int which)
3137 struct type *arr_type;
3139 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3140 arr = value_ind (arr);
3141 arr_type = value_enclosing_type (arr);
3143 if (ada_is_constrained_packed_array_type (arr_type))
3144 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3145 else if (ada_is_simple_array_type (arr_type))
3146 return ada_array_bound_from_type (arr_type, n, which);
3148 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3151 /* Given that arr is an array value, returns the length of the
3152 nth index. This routine will also work for arrays with bounds
3153 supplied by run-time quantities other than discriminants.
3154 Does not work for arrays indexed by enumeration types with representation
3155 clauses at the moment. */
3158 ada_array_length (struct value *arr, int n)
3160 struct type *arr_type, *index_type;
3163 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3164 arr = value_ind (arr);
3165 arr_type = value_enclosing_type (arr);
3167 if (ada_is_constrained_packed_array_type (arr_type))
3168 return ada_array_length (decode_constrained_packed_array (arr), n);
3170 if (ada_is_simple_array_type (arr_type))
3172 low = ada_array_bound_from_type (arr_type, n, 0);
3173 high = ada_array_bound_from_type (arr_type, n, 1);
3177 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3178 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3181 arr_type = check_typedef (arr_type);
3182 index_type = ada_index_type (arr_type, n, "length");
3183 if (index_type != NULL)
3185 struct type *base_type;
3186 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3187 base_type = TYPE_TARGET_TYPE (index_type);
3189 base_type = index_type;
3191 low = pos_atr (value_from_longest (base_type, low));
3192 high = pos_atr (value_from_longest (base_type, high));
3194 return high - low + 1;
3197 /* An empty array whose type is that of ARR_TYPE (an array type),
3198 with bounds LOW to LOW-1. */
3200 static struct value *
3201 empty_array (struct type *arr_type, int low)
3203 struct type *arr_type0 = ada_check_typedef (arr_type);
3204 struct type *index_type
3205 = create_static_range_type
3206 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3207 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3209 return allocate_value (create_array_type (NULL, elt_type, index_type));
3213 /* Name resolution */
3215 /* The "decoded" name for the user-definable Ada operator corresponding
3219 ada_decoded_op_name (enum exp_opcode op)
3223 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3225 if (ada_opname_table[i].op == op)
3226 return ada_opname_table[i].decoded;
3228 error (_("Could not find operator name for opcode"));
3232 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3233 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3234 undefined namespace) and converts operators that are
3235 user-defined into appropriate function calls. If CONTEXT_TYPE is
3236 non-null, it provides a preferred result type [at the moment, only
3237 type void has any effect---causing procedures to be preferred over
3238 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3239 return type is preferred. May change (expand) *EXP. */
3242 resolve (expression_up *expp, int void_context_p)
3244 struct type *context_type = NULL;
3248 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3250 resolve_subexp (expp, &pc, 1, context_type);
3253 /* Resolve the operator of the subexpression beginning at
3254 position *POS of *EXPP. "Resolving" consists of replacing
3255 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3256 with their resolutions, replacing built-in operators with
3257 function calls to user-defined operators, where appropriate, and,
3258 when DEPROCEDURE_P is non-zero, converting function-valued variables
3259 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3260 are as in ada_resolve, above. */
3262 static struct value *
3263 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3264 struct type *context_type)
3268 struct expression *exp; /* Convenience: == *expp. */
3269 enum exp_opcode op = (*expp)->elts[pc].opcode;
3270 struct value **argvec; /* Vector of operand types (alloca'ed). */
3271 int nargs; /* Number of operands. */
3273 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3279 /* Pass one: resolve operands, saving their types and updating *pos,
3284 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3285 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3290 resolve_subexp (expp, pos, 0, NULL);
3292 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3297 resolve_subexp (expp, pos, 0, NULL);
3302 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3305 case OP_ATR_MODULUS:
3315 case TERNOP_IN_RANGE:
3316 case BINOP_IN_BOUNDS:
3322 case OP_DISCRETE_RANGE:
3324 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3333 arg1 = resolve_subexp (expp, pos, 0, NULL);
3335 resolve_subexp (expp, pos, 1, NULL);
3337 resolve_subexp (expp, pos, 1, value_type (arg1));
3354 case BINOP_LOGICAL_AND:
3355 case BINOP_LOGICAL_OR:
3356 case BINOP_BITWISE_AND:
3357 case BINOP_BITWISE_IOR:
3358 case BINOP_BITWISE_XOR:
3361 case BINOP_NOTEQUAL:
3368 case BINOP_SUBSCRIPT:
3376 case UNOP_LOGICAL_NOT:
3386 case OP_VAR_MSYM_VALUE:
3393 case OP_INTERNALVAR:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 case STRUCTOP_STRUCT:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3420 error (_("Unexpected operator during name resolution"));
3423 argvec = XALLOCAVEC (struct value *, nargs + 1);
3424 for (i = 0; i < nargs; i += 1)
3425 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429 /* Pass two: perform any resolution on principal operator. */
3436 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3438 struct block_symbol *candidates;
3442 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3443 (exp->elts[pc + 2].symbol),
3444 exp->elts[pc + 1].block, VAR_DOMAIN,
3446 make_cleanup (xfree, candidates);
3448 if (n_candidates > 1)
3450 /* Types tend to get re-introduced locally, so if there
3451 are any local symbols that are not types, first filter
3454 for (j = 0; j < n_candidates; j += 1)
3455 switch (SYMBOL_CLASS (candidates[j].symbol))
3460 case LOC_REGPARM_ADDR:
3468 if (j < n_candidates)
3471 while (j < n_candidates)
3473 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3475 candidates[j] = candidates[n_candidates - 1];
3484 if (n_candidates == 0)
3485 error (_("No definition found for %s"),
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 else if (n_candidates == 1)
3489 else if (deprocedure_p
3490 && !is_nonfunction (candidates, n_candidates))
3492 i = ada_resolve_function
3493 (candidates, n_candidates, NULL, 0,
3494 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497 error (_("Could not find a match for %s"),
3498 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3502 printf_filtered (_("Multiple matches for %s\n"),
3503 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 user_select_syms (candidates, n_candidates, 1);
3508 exp->elts[pc + 1].block = candidates[i].block;
3509 exp->elts[pc + 2].symbol = candidates[i].symbol;
3510 innermost_block.update (candidates[i]);
3514 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3517 replace_operator_with_call (expp, pc, 0, 0,
3518 exp->elts[pc + 2].symbol,
3519 exp->elts[pc + 1].block);
3526 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3527 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3529 struct block_symbol *candidates;
3533 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3534 (exp->elts[pc + 5].symbol),
3535 exp->elts[pc + 4].block, VAR_DOMAIN,
3537 make_cleanup (xfree, candidates);
3539 if (n_candidates == 1)
3543 i = ada_resolve_function
3544 (candidates, n_candidates,
3546 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 error (_("Could not find a match for %s"),
3550 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 exp->elts[pc + 4].block = candidates[i].block;
3554 exp->elts[pc + 5].symbol = candidates[i].symbol;
3555 innermost_block.update (candidates[i]);
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3570 case BINOP_NOTEQUAL:
3578 case UNOP_LOGICAL_NOT:
3580 if (possible_user_operator_p (op, argvec))
3582 struct block_symbol *candidates;
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3589 make_cleanup (xfree, candidates);
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3605 do_cleanups (old_chain);
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3616 return evaluate_subexp_type (exp, pos);
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3622 /* The term "match" here is rather loose. The match is heuristic and
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3636 switch (TYPE_CODE (ftype))
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3672 case TYPE_CODE_UNION:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3687 struct type *func_type = SYMBOL_TYPE (func);
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3698 for (i = 0; i < n_actuals; i += 1)
3700 if (actuals[i] == NULL)
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3708 if (!ada_type_match (ftype, atype, 1))
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3721 return_match (struct type *func_type, struct type *context_type)
3723 struct type *return_type;
3725 if (func_type == NULL)
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3735 context_type = get_base_type (context_type);
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3765 int m; /* Number of hits */
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3773 for (k = 0; k < nsyms; k += 1)
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3792 else if (m > 1 && !parse_completion)
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3808 encoded_ordered_before (const char *N0, const char *N1)
3812 else if (N0 == NULL)
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3836 return (strcmp (N0, N1) < 0);
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3844 sort_choices (struct block_symbol syms[], int nsyms)
3848 for (i = 1; i < nsyms; i += 1)
3850 struct block_symbol sym = syms[i];
3853 for (j = i - 1; j >= 0; j -= 1)
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3858 syms[j + 1] = syms[j];
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3877 struct type *type = SYMBOL_TYPE (sym);
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3885 if (TYPE_NFIELDS (type) > 0)
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3897 fprintf_filtered (stream, ")");
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3919 int *chosen = XALLOCAVEC (int , nsyms);
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3929 if (select_mode == multiple_symbols_cancel)
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3944 sort_choices (syms, nsyms);
3946 for (i = 0; i < nsyms; i += 1)
3948 if (syms[i].symbol == NULL)
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4007 symtab_to_filename_for_display (symtab));
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4036 The user is not allowed to choose more than MAX_RESULTS values.
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4048 int first_choice = is_all_choice ? 2 : 1;
4050 prompt = getenv ("PS2");
4054 args = command_line_input (prompt, 0, annotation_suffix);
4057 error_no_arg (_("one or more choice numbers"));
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4081 error (_("cancelled"));
4083 if (choice < first_choice)
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4090 choice -= first_choice;
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4096 if (j < 0 || choice != choices[j])
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4118 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = expp->get ();
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4143 expp->reset (newexp);
4146 /* Type-class predicates */
4148 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4152 numeric_type_p (struct type *type)
4158 switch (TYPE_CODE (type))
4163 case TYPE_CODE_RANGE:
4164 return (type == TYPE_TARGET_TYPE (type)
4165 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4172 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4175 integer_type_p (struct type *type)
4181 switch (TYPE_CODE (type))
4185 case TYPE_CODE_RANGE:
4186 return (type == TYPE_TARGET_TYPE (type)
4187 || integer_type_p (TYPE_TARGET_TYPE (type)));
4194 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4197 scalar_type_p (struct type *type)
4203 switch (TYPE_CODE (type))
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_ENUM:
4216 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4219 discrete_type_p (struct type *type)
4225 switch (TYPE_CODE (type))
4228 case TYPE_CODE_RANGE:
4229 case TYPE_CODE_ENUM:
4230 case TYPE_CODE_BOOL:
4238 /* Returns non-zero if OP with operands in the vector ARGS could be
4239 a user-defined function. Errs on the side of pre-defined operators
4240 (i.e., result 0). */
4243 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 struct type *type0 =
4246 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4247 struct type *type1 =
4248 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4262 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4266 case BINOP_BITWISE_AND:
4267 case BINOP_BITWISE_IOR:
4268 case BINOP_BITWISE_XOR:
4269 return (!(integer_type_p (type0) && integer_type_p (type1)));
4272 case BINOP_NOTEQUAL:
4277 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4280 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4283 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4287 case UNOP_LOGICAL_NOT:
4289 return (!numeric_type_p (type0));
4298 1. In the following, we assume that a renaming type's name may
4299 have an ___XD suffix. It would be nice if this went away at some
4301 2. We handle both the (old) purely type-based representation of
4302 renamings and the (new) variable-based encoding. At some point,
4303 it is devoutly to be hoped that the former goes away
4304 (FIXME: hilfinger-2007-07-09).
4305 3. Subprogram renamings are not implemented, although the XRS
4306 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308 /* If SYM encodes a renaming,
4310 <renaming> renames <renamed entity>,
4312 sets *LEN to the length of the renamed entity's name,
4313 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4314 the string describing the subcomponent selected from the renamed
4315 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4316 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4317 are undefined). Otherwise, returns a value indicating the category
4318 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4319 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4320 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4321 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4322 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4323 may be NULL, in which case they are not assigned.
4325 [Currently, however, GCC does not generate subprogram renamings.] */
4327 enum ada_renaming_category
4328 ada_parse_renaming (struct symbol *sym,
4329 const char **renamed_entity, int *len,
4330 const char **renaming_expr)
4332 enum ada_renaming_category kind;
4337 return ADA_NOT_RENAMING;
4338 switch (SYMBOL_CLASS (sym))
4341 return ADA_NOT_RENAMING;
4343 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4344 renamed_entity, len, renaming_expr);
4348 case LOC_OPTIMIZED_OUT:
4349 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 return ADA_NOT_RENAMING;
4355 kind = ADA_OBJECT_RENAMING;
4359 kind = ADA_EXCEPTION_RENAMING;
4363 kind = ADA_PACKAGE_RENAMING;
4367 kind = ADA_SUBPROGRAM_RENAMING;
4371 return ADA_NOT_RENAMING;
4375 if (renamed_entity != NULL)
4376 *renamed_entity = info;
4377 suffix = strstr (info, "___XE");
4378 if (suffix == NULL || suffix == info)
4379 return ADA_NOT_RENAMING;
4381 *len = strlen (info) - strlen (suffix);
4383 if (renaming_expr != NULL)
4384 *renaming_expr = suffix;
4388 /* Assuming TYPE encodes a renaming according to the old encoding in
4389 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4390 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4391 ADA_NOT_RENAMING otherwise. */
4392 static enum ada_renaming_category
4393 parse_old_style_renaming (struct type *type,
4394 const char **renamed_entity, int *len,
4395 const char **renaming_expr)
4397 enum ada_renaming_category kind;
4402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4403 || TYPE_NFIELDS (type) != 1)
4404 return ADA_NOT_RENAMING;
4406 name = type_name_no_tag (type);
4408 return ADA_NOT_RENAMING;
4410 name = strstr (name, "___XR");
4412 return ADA_NOT_RENAMING;
4417 kind = ADA_OBJECT_RENAMING;
4420 kind = ADA_EXCEPTION_RENAMING;
4423 kind = ADA_PACKAGE_RENAMING;
4426 kind = ADA_SUBPROGRAM_RENAMING;
4429 return ADA_NOT_RENAMING;
4432 info = TYPE_FIELD_NAME (type, 0);
4434 return ADA_NOT_RENAMING;
4435 if (renamed_entity != NULL)
4436 *renamed_entity = info;
4437 suffix = strstr (info, "___XE");
4438 if (renaming_expr != NULL)
4439 *renaming_expr = suffix + 5;
4440 if (suffix == NULL || suffix == info)
4441 return ADA_NOT_RENAMING;
4443 *len = suffix - info;
4447 /* Compute the value of the given RENAMING_SYM, which is expected to
4448 be a symbol encoding a renaming expression. BLOCK is the block
4449 used to evaluate the renaming. */
4451 static struct value *
4452 ada_read_renaming_var_value (struct symbol *renaming_sym,
4453 const struct block *block)
4455 const char *sym_name;
4457 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4458 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4459 return evaluate_expression (expr.get ());
4463 /* Evaluation: Function Calls */
4465 /* Return an lvalue containing the value VAL. This is the identity on
4466 lvalues, and otherwise has the side-effect of allocating memory
4467 in the inferior where a copy of the value contents is copied. */
4469 static struct value *
4470 ensure_lval (struct value *val)
4472 if (VALUE_LVAL (val) == not_lval
4473 || VALUE_LVAL (val) == lval_internalvar)
4475 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4476 const CORE_ADDR addr =
4477 value_as_long (value_allocate_space_in_inferior (len));
4479 VALUE_LVAL (val) = lval_memory;
4480 set_value_address (val, addr);
4481 write_memory (addr, value_contents (val), len);
4487 /* Return the value ACTUAL, converted to be an appropriate value for a
4488 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4489 allocating any necessary descriptors (fat pointers), or copies of
4490 values not residing in memory, updating it as needed. */
4493 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 struct type *actual_type = ada_check_typedef (value_type (actual));
4496 struct type *formal_type = ada_check_typedef (formal_type0);
4497 struct type *formal_target =
4498 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4500 struct type *actual_target =
4501 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4502 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504 if (ada_is_array_descriptor_type (formal_target)
4505 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4506 return make_array_descriptor (formal_type, actual);
4507 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4508 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 struct value *result;
4512 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4513 && ada_is_array_descriptor_type (actual_target))
4514 result = desc_data (actual);
4515 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4517 if (VALUE_LVAL (actual) != lval_memory)
4521 actual_type = ada_check_typedef (value_type (actual));
4522 val = allocate_value (actual_type);
4523 memcpy ((char *) value_contents_raw (val),
4524 (char *) value_contents (actual),
4525 TYPE_LENGTH (actual_type));
4526 actual = ensure_lval (val);
4528 result = value_addr (actual);
4532 return value_cast_pointers (formal_type, result, 0);
4534 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4535 return ada_value_ind (actual);
4536 else if (ada_is_aligner_type (formal_type))
4538 /* We need to turn this parameter into an aligner type
4540 struct value *aligner = allocate_value (formal_type);
4541 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543 value_assign_to_component (aligner, component, actual);
4550 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4551 type TYPE. This is usually an inefficient no-op except on some targets
4552 (such as AVR) where the representation of a pointer and an address
4556 value_pointer (struct value *value, struct type *type)
4558 struct gdbarch *gdbarch = get_type_arch (type);
4559 unsigned len = TYPE_LENGTH (type);
4560 gdb_byte *buf = (gdb_byte *) alloca (len);
4563 addr = value_address (value);
4564 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4565 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4570 /* Push a descriptor of type TYPE for array value ARR on the stack at
4571 *SP, updating *SP to reflect the new descriptor. Return either
4572 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4573 to-descriptor type rather than a descriptor type), a struct value *
4574 representing a pointer to this descriptor. */
4576 static struct value *
4577 make_array_descriptor (struct type *type, struct value *arr)
4579 struct type *bounds_type = desc_bounds_type (type);
4580 struct type *desc_type = desc_base_type (type);
4581 struct value *descriptor = allocate_value (desc_type);
4582 struct value *bounds = allocate_value (bounds_type);
4585 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 0),
4590 desc_bound_bitpos (bounds_type, i, 0),
4591 desc_bound_bitsize (bounds_type, i, 0));
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 1),
4594 desc_bound_bitpos (bounds_type, i, 1),
4595 desc_bound_bitsize (bounds_type, i, 1));
4598 bounds = ensure_lval (bounds);
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor),
4602 value_pointer (ensure_lval (arr),
4603 TYPE_FIELD_TYPE (desc_type, 0)),
4604 fat_pntr_data_bitpos (desc_type),
4605 fat_pntr_data_bitsize (desc_type));
4607 modify_field (value_type (descriptor),
4608 value_contents_writeable (descriptor),
4609 value_pointer (bounds,
4610 TYPE_FIELD_TYPE (desc_type, 1)),
4611 fat_pntr_bounds_bitpos (desc_type),
4612 fat_pntr_bounds_bitsize (desc_type));
4614 descriptor = ensure_lval (descriptor);
4616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4617 return value_addr (descriptor);
4622 /* Symbol Cache Module */
4624 /* Performance measurements made as of 2010-01-15 indicate that
4625 this cache does bring some noticeable improvements. Depending
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4634 /* Initialize the contents of SYM_CACHE. */
4637 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 obstack_init (&sym_cache->cache_space);
4640 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4643 /* Free the memory used by SYM_CACHE. */
4646 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 obstack_free (&sym_cache->cache_space, NULL);
4652 /* Return the symbol cache associated to the given program space PSPACE.
4653 If not allocated for this PSPACE yet, allocate and initialize one. */
4655 static struct ada_symbol_cache *
4656 ada_get_symbol_cache (struct program_space *pspace)
4658 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660 if (pspace_data->sym_cache == NULL)
4662 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4663 ada_init_symbol_cache (pspace_data->sym_cache);
4666 return pspace_data->sym_cache;
4669 /* Clear all entries from the symbol cache. */
4672 ada_clear_symbol_cache (void)
4674 struct ada_symbol_cache *sym_cache
4675 = ada_get_symbol_cache (current_program_space);
4677 obstack_free (&sym_cache->cache_space, NULL);
4678 ada_init_symbol_cache (sym_cache);
4681 /* Search our cache for an entry matching NAME and DOMAIN.
4682 Return it if found, or NULL otherwise. */
4684 static struct cache_entry **
4685 find_entry (const char *name, domain_enum domain)
4687 struct ada_symbol_cache *sym_cache
4688 = ada_get_symbol_cache (current_program_space);
4689 int h = msymbol_hash (name) % HASH_SIZE;
4690 struct cache_entry **e;
4692 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4700 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4701 Return 1 if found, 0 otherwise.
4703 If an entry was found and SYM is not NULL, set *SYM to the entry's
4704 SYM. Same principle for BLOCK if not NULL. */
4707 lookup_cached_symbol (const char *name, domain_enum domain,
4708 struct symbol **sym, const struct block **block)
4710 struct cache_entry **e = find_entry (name, domain);
4717 *block = (*e)->block;
4721 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4722 in domain DOMAIN, save this result in our symbol cache. */
4725 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4726 const struct block *block)
4728 struct ada_symbol_cache *sym_cache
4729 = ada_get_symbol_cache (current_program_space);
4732 struct cache_entry *e;
4734 /* Symbols for builtin types don't have a block.
4735 For now don't cache such symbols. */
4736 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4739 /* If the symbol is a local symbol, then do not cache it, as a search
4740 for that symbol depends on the context. To determine whether
4741 the symbol is local or not, we check the block where we found it
4742 against the global and static blocks of its associated symtab. */
4744 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4745 GLOBAL_BLOCK) != block
4746 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4747 STATIC_BLOCK) != block)
4750 h = msymbol_hash (name) % HASH_SIZE;
4751 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 e->next = sym_cache->root[h];
4754 sym_cache->root[h] = e;
4756 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4757 strcpy (copy, name);
4765 /* Return the symbol name match type that should be used used when
4766 searching for all symbols matching LOOKUP_NAME.
4768 LOOKUP_NAME is expected to be a symbol name after transformation
4769 for Ada lookups (see ada_name_for_lookup). */
4771 static symbol_name_match_type
4772 name_match_type_from_name (const char *lookup_name)
4774 return (strstr (lookup_name, "__") == NULL
4775 ? symbol_name_match_type::WILD
4776 : symbol_name_match_type::FULL);
4779 /* Return the result of a standard (literal, C-like) lookup of NAME in
4780 given DOMAIN, visible from lexical block BLOCK. */
4782 static struct symbol *
4783 standard_lookup (const char *name, const struct block *block,
4786 /* Initialize it just to avoid a GCC false warning. */
4787 struct block_symbol sym = {NULL, NULL};
4789 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4792 cache_symbol (name, domain, sym.symbol, sym.block);
4797 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4798 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4799 since they contend in overloading in the same way. */
4801 is_nonfunction (struct block_symbol syms[], int n)
4805 for (i = 0; i < n; i += 1)
4806 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4807 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4808 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4814 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4815 struct types. Otherwise, they may not. */
4818 equiv_types (struct type *type0, struct type *type1)
4822 if (type0 == NULL || type1 == NULL
4823 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4826 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4827 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4828 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4834 /* True iff SYM0 represents the same entity as SYM1, or one that is
4835 no more defined than that of SYM1. */
4838 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4842 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4843 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4846 switch (SYMBOL_CLASS (sym0))
4852 struct type *type0 = SYMBOL_TYPE (sym0);
4853 struct type *type1 = SYMBOL_TYPE (sym1);
4854 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4855 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4856 int len0 = strlen (name0);
4859 TYPE_CODE (type0) == TYPE_CODE (type1)
4860 && (equiv_types (type0, type1)
4861 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4862 && startswith (name1 + len0, "___XV")));
4865 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4866 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4872 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4873 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4876 add_defn_to_vec (struct obstack *obstackp,
4878 const struct block *block)
4881 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4883 /* Do not try to complete stub types, as the debugger is probably
4884 already scanning all symbols matching a certain name at the
4885 time when this function is called. Trying to replace the stub
4886 type by its associated full type will cause us to restart a scan
4887 which may lead to an infinite recursion. Instead, the client
4888 collecting the matching symbols will end up collecting several
4889 matches, with at least one of them complete. It can then filter
4890 out the stub ones if needed. */
4892 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4896 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4898 prevDefns[i].symbol = sym;
4899 prevDefns[i].block = block;
4905 struct block_symbol info;
4909 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4913 /* Number of block_symbol structures currently collected in current vector in
4917 num_defns_collected (struct obstack *obstackp)
4919 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4922 /* Vector of block_symbol structures currently collected in current vector in
4923 OBSTACKP. If FINISH, close off the vector and return its final address. */
4925 static struct block_symbol *
4926 defns_collected (struct obstack *obstackp, int finish)
4929 return (struct block_symbol *) obstack_finish (obstackp);
4931 return (struct block_symbol *) obstack_base (obstackp);
4934 /* Return a bound minimal symbol matching NAME according to Ada
4935 decoding rules. Returns an invalid symbol if there is no such
4936 minimal symbol. Names prefixed with "standard__" are handled
4937 specially: "standard__" is first stripped off, and only static and
4938 global symbols are searched. */
4940 struct bound_minimal_symbol
4941 ada_lookup_simple_minsym (const char *name)
4943 struct bound_minimal_symbol result;
4944 struct objfile *objfile;
4945 struct minimal_symbol *msymbol;
4947 memset (&result, 0, sizeof (result));
4949 symbol_name_match_type match_type = name_match_type_from_name (name);
4950 lookup_name_info lookup_name (name, match_type);
4952 symbol_name_matcher_ftype *match_name
4953 = ada_get_symbol_name_matcher (lookup_name);
4955 ALL_MSYMBOLS (objfile, msymbol)
4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4969 /* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4976 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4977 const lookup_name_info &lookup_name,
4982 /* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
4986 is_nondebugging_type (struct type *type)
4988 const char *name = ada_type_name (type);
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4993 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5001 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5015 /* All enumerals should also have the same name (modulo any numerical
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5036 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5041 For instance, consider the following code:
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5057 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
5095 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
5103 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5124 for (j = 0; j < nsyms; j++)
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5142 for (j = 0; j < nsyms; j += 1)
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5184 /* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
5190 xget_renaming_scope (struct type *renaming_type)
5192 /* The renaming types adhere to the following convention:
5193 <scope>__<rename>___<XR extension>.
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
5197 const char *name = type_name_no_tag (renaming_type);
5198 const char *suffix = strstr (name, "___XR");
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5210 /* Make a copy of scope and return it. */
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
5221 /* Return nonzero if NAME corresponds to a package name. */
5224 is_package_name (const char *name)
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
5242 /* Do a quick check that NAME does not contain "__", since library-level
5243 functions names cannot contain "__" in them. */
5244 if (strstr (name, "__") != NULL)
5247 fun_name = xstrprintf ("_ada_%s", name);
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5252 /* Return nonzero if SYM corresponds to a renaming entity that is
5253 not visible from FUNCTION_NAME. */
5256 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5259 struct cleanup *old_chain;
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5265 old_chain = make_cleanup (xfree, scope);
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
5270 do_cleanups (old_chain);
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5281 if (startswith (function_name, "_ada_"))
5285 int is_invisible = !startswith (function_name, scope);
5287 do_cleanups (old_chain);
5288 return is_invisible;
5292 /* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5304 Second, GNAT emits a type following a specified encoding for each renaming
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
5330 remove_irrelevant_renamings (struct block_symbol *syms,
5331 int nsyms, const struct block *current_block)
5333 struct symbol *current_function;
5334 const char *current_function_name;
5336 int is_new_style_renaming;
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
5340 First, zero out such symbols, then compress. */
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5344 struct symbol *sym = syms[i].symbol;
5345 const struct block *block = syms[i].block;
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5356 int name_len = suffix - name;
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5364 && block == syms[j].block)
5365 syms[j].symbol = NULL;
5368 if (is_new_style_renaming)
5372 for (j = k = 0; j < nsyms; j += 1)
5373 if (syms[j].symbol != NULL)
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
5384 if (current_block == NULL)
5387 current_function = block_linkage_function (current_block);
5388 if (current_function == NULL)
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5403 == ADA_OBJECT_RENAMING
5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5408 for (j = i + 1; j < nsyms; j += 1)
5409 syms[j - 1] = syms[j];
5419 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5430 ada_add_local_symbols (struct obstack *obstackp,
5431 const lookup_name_info &lookup_name,
5432 const struct block *block, domain_enum domain)
5434 int block_depth = 0;
5436 while (block != NULL)
5439 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5446 block = BLOCK_SUPERBLOCK (block);
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 struct match_data *data = (struct match_data *) data0;
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5507 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5508 symbols to OBSTACKP. Return whether we found such symbols. */
5511 ada_add_block_renamings (struct obstack *obstackp,
5512 const struct block *block,
5513 const lookup_name_info &lookup_name,
5516 struct using_direct *renaming;
5517 int defns_mark = num_defns_collected (obstackp);
5519 symbol_name_matcher_ftype *name_match
5520 = ada_get_symbol_name_matcher (lookup_name);
5522 for (renaming = block_using (block);
5524 renaming = renaming->next)
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5539 renaming->searched = 1;
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5550 : renaming->declaration);
5551 if (name_match (r_name, lookup_name, NULL))
5553 lookup_name_info decl_lookup_name (renaming->declaration,
5554 lookup_name.match_type ());
5555 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5558 renaming->searched = 0;
5560 return num_defns_collected (obstackp) != defns_mark;
5563 /* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5567 compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
5570 while (*string1 != '\0' && *string2 != '\0')
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
5577 if (casing == case_sensitive_off)
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5597 return strcmp_iw_ordered (string1, string2);
5599 if (*string2 == '\0')
5601 if (is_name_suffix (string1))
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5615 return *string1 - *string2;
5620 /* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5627 compare_names (STRING1, STRING2) <= 0
5629 (they may differ as to what symbols compare equal). */
5632 compare_names (const char *string1, const char *string2)
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648 /* Convenience function to get at the Ada encoded lookup name for
5649 LOOKUP_NAME, as a C string. */
5652 ada_lookup_name (const lookup_name_info &lookup_name)
5654 return lookup_name.ada ().lookup_name ().c_str ();
5657 /* Add to OBSTACKP all non-local symbols whose name and domain match
5658 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5659 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5660 symbols otherwise. */
5663 add_nonlocal_symbols (struct obstack *obstackp,
5664 const lookup_name_info &lookup_name,
5665 domain_enum domain, int global)
5667 struct objfile *objfile;
5668 struct compunit_symtab *cu;
5669 struct match_data data;
5671 memset (&data, 0, sizeof data);
5672 data.obstackp = obstackp;
5674 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676 ALL_OBJFILES (objfile)
5678 data.objfile = objfile;
5681 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 aux_add_nonlocal_symbols, &data,
5684 symbol_name_match_type::WILD,
5687 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 aux_add_nonlocal_symbols, &data,
5690 symbol_name_match_type::FULL,
5693 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 const struct block *global_block
5696 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5704 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 const char *name = ada_lookup_name (lookup_name);
5707 std::string name1 = std::string ("<_ada_") + name + '>';
5709 ALL_OBJFILES (objfile)
5711 data.objfile = objfile;
5712 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 aux_add_nonlocal_symbols,
5716 symbol_name_match_type::FULL,
5722 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5723 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5724 returning the number of matches. Add these to OBSTACKP.
5726 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5727 symbol match within the nest of blocks whose innermost member is BLOCK,
5728 is the one match returned (no other matches in that or
5729 enclosing blocks is returned). If there are any matches in or
5730 surrounding BLOCK, then these alone are returned.
5732 Names prefixed with "standard__" are handled specially:
5733 "standard__" is first stripped off (by the lookup_name
5734 constructor), and only static and global symbols are searched.
5736 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5737 to lookup global symbols. */
5740 ada_add_all_symbols (struct obstack *obstackp,
5741 const struct block *block,
5742 const lookup_name_info &lookup_name,
5745 int *made_global_lookup_p)
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 0;
5752 /* Special case: If the user specifies a symbol name inside package
5753 Standard, do a non-wild matching of the symbol name without
5754 the "standard__" prefix. This was primarily introduced in order
5755 to allow the user to specifically access the standard exceptions
5756 using, for instance, Standard.Constraint_Error when Constraint_Error
5757 is ambiguous (due to the user defining its own Constraint_Error
5758 entity inside its program). */
5759 if (lookup_name.ada ().standard_p ())
5762 /* Check the non-global symbols. If we have ANY match, then we're done. */
5767 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5770 /* In the !full_search case we're are being called by
5771 ada_iterate_over_symbols, and we don't want to search
5773 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5775 if (num_defns_collected (obstackp) > 0 || !full_search)
5779 /* No non-global symbols found. Check our cache to see if we have
5780 already performed this search before. If we have, then return
5783 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5784 domain, &sym, &block))
5787 add_defn_to_vec (obstackp, sym, block);
5791 if (made_global_lookup_p)
5792 *made_global_lookup_p = 1;
5794 /* Search symbols from all global blocks. */
5796 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5798 /* Now add symbols from all per-file blocks if we've gotten no hits
5799 (not strictly correct, but perhaps better than an error). */
5801 if (num_defns_collected (obstackp) == 0)
5802 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5805 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5806 is non-zero, enclosing scope and in global scopes, returning the number of
5808 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5809 indicating the symbols found and the blocks and symbol tables (if
5810 any) in which they were found. This vector should be freed when
5813 When full_search is non-zero, any non-function/non-enumeral
5814 symbol match within the nest of blocks whose innermost member is BLOCK,
5815 is the one match returned (no other matches in that or
5816 enclosing blocks is returned). If there are any matches in or
5817 surrounding BLOCK, then these alone are returned.
5819 Names prefixed with "standard__" are handled specially: "standard__"
5820 is first stripped off, and only static and global symbols are searched. */
5823 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5824 const struct block *block,
5826 struct block_symbol **results,
5829 int syms_from_global_search;
5832 auto_obstack obstack;
5834 ada_add_all_symbols (&obstack, block, lookup_name,
5835 domain, full_search, &syms_from_global_search);
5837 ndefns = num_defns_collected (&obstack);
5839 results_size = obstack_object_size (&obstack);
5840 *results = (struct block_symbol *) malloc (results_size);
5841 memcpy (*results, defns_collected (&obstack, 1), results_size);
5843 ndefns = remove_extra_symbols (*results, ndefns);
5845 if (ndefns == 0 && full_search && syms_from_global_search)
5846 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5848 if (ndefns == 1 && full_search && syms_from_global_search)
5849 cache_symbol (ada_lookup_name (lookup_name), domain,
5850 (*results)[0].symbol, (*results)[0].block);
5852 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5857 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5858 in global scopes, returning the number of matches, and setting *RESULTS
5859 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5860 vector should be freed when no longer useful.
5862 See ada_lookup_symbol_list_worker for further details. */
5865 ada_lookup_symbol_list (const char *name, const struct block *block,
5866 domain_enum domain, struct block_symbol **results)
5868 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5869 lookup_name_info lookup_name (name, name_match_type);
5871 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5874 /* Implementation of the la_iterate_over_symbols method. */
5877 ada_iterate_over_symbols
5878 (const struct block *block, const lookup_name_info &name,
5880 gdb::function_view<symbol_found_callback_ftype> callback)
5883 struct block_symbol *results;
5884 struct cleanup *old_chain;
5886 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5887 old_chain = make_cleanup (xfree, results);
5889 for (i = 0; i < ndefs; ++i)
5891 if (!callback (results[i].symbol))
5895 do_cleanups (old_chain);
5898 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
5906 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5908 struct block_symbol *info)
5910 /* Since we already have an encoded name, wrap it in '<>' to force a
5911 verbatim match. Otherwise, if the name happens to not look like
5912 an encoded name (because it doesn't include a "__"),
5913 ada_lookup_name_info would re-encode/fold it again, and that
5914 would e.g., incorrectly lowercase object renaming names like
5915 "R28b" -> "r28b". */
5916 std::string verbatim = std::string ("<") + name + '>';
5918 gdb_assert (info != NULL);
5919 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5922 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5923 scope and in global scopes, or NULL if none. NAME is folded and
5924 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5925 choosing the first symbol if there are multiple choices.
5926 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5929 ada_lookup_symbol (const char *name, const struct block *block0,
5930 domain_enum domain, int *is_a_field_of_this)
5932 if (is_a_field_of_this != NULL)
5933 *is_a_field_of_this = 0;
5935 struct block_symbol *candidates;
5937 struct cleanup *old_chain;
5939 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5940 old_chain = make_cleanup (xfree, candidates);
5942 if (n_candidates == 0)
5944 do_cleanups (old_chain);
5948 block_symbol info = candidates[0];
5949 info.symbol = fixup_symbol_section (info.symbol, NULL);
5951 do_cleanups (old_chain);
5956 static struct block_symbol
5957 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5959 const struct block *block,
5960 const domain_enum domain)
5962 struct block_symbol sym;
5964 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5965 if (sym.symbol != NULL)
5968 /* If we haven't found a match at this point, try the primitive
5969 types. In other languages, this search is performed before
5970 searching for global symbols in order to short-circuit that
5971 global-symbol search if it happens that the name corresponds
5972 to a primitive type. But we cannot do the same in Ada, because
5973 it is perfectly legitimate for a program to declare a type which
5974 has the same name as a standard type. If looking up a type in
5975 that situation, we have traditionally ignored the primitive type
5976 in favor of user-defined types. This is why, unlike most other
5977 languages, we search the primitive types this late and only after
5978 having searched the global symbols without success. */
5980 if (domain == VAR_DOMAIN)
5982 struct gdbarch *gdbarch;
5985 gdbarch = target_gdbarch ();
5987 gdbarch = block_gdbarch (block);
5988 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5989 if (sym.symbol != NULL)
5993 return (struct block_symbol) {NULL, NULL};
5997 /* True iff STR is a possible encoded suffix of a normal Ada name
5998 that is to be ignored for matching purposes. Suffixes of parallel
5999 names (e.g., XVE) are not included here. Currently, the possible suffixes
6000 are given by any of the regular expressions:
6002 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6003 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6004 TKB [subprogram suffix for task bodies]
6005 _E[0-9]+[bs]$ [protected object entry suffixes]
6006 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6008 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6009 match is performed. This sequence is used to differentiate homonyms,
6010 is an optional part of a valid name suffix. */
6013 is_name_suffix (const char *str)
6016 const char *matching;
6017 const int len = strlen (str);
6019 /* Skip optional leading __[0-9]+. */
6021 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6024 while (isdigit (str[0]))
6030 if (str[0] == '.' || str[0] == '$')
6033 while (isdigit (matching[0]))
6035 if (matching[0] == '\0')
6041 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6044 while (isdigit (matching[0]))
6046 if (matching[0] == '\0')
6050 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6052 if (strcmp (str, "TKB") == 0)
6056 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6057 with a N at the end. Unfortunately, the compiler uses the same
6058 convention for other internal types it creates. So treating
6059 all entity names that end with an "N" as a name suffix causes
6060 some regressions. For instance, consider the case of an enumerated
6061 type. To support the 'Image attribute, it creates an array whose
6063 Having a single character like this as a suffix carrying some
6064 information is a bit risky. Perhaps we should change the encoding
6065 to be something like "_N" instead. In the meantime, do not do
6066 the following check. */
6067 /* Protected Object Subprograms */
6068 if (len == 1 && str [0] == 'N')
6073 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6076 while (isdigit (matching[0]))
6078 if ((matching[0] == 'b' || matching[0] == 's')
6079 && matching [1] == '\0')
6083 /* ??? We should not modify STR directly, as we are doing below. This
6084 is fine in this case, but may become problematic later if we find
6085 that this alternative did not work, and want to try matching
6086 another one from the begining of STR. Since we modified it, we
6087 won't be able to find the begining of the string anymore! */
6091 while (str[0] != '_' && str[0] != '\0')
6093 if (str[0] != 'n' && str[0] != 'b')
6099 if (str[0] == '\000')
6104 if (str[1] != '_' || str[2] == '\000')
6108 if (strcmp (str + 3, "JM") == 0)
6110 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6111 the LJM suffix in favor of the JM one. But we will
6112 still accept LJM as a valid suffix for a reasonable
6113 amount of time, just to allow ourselves to debug programs
6114 compiled using an older version of GNAT. */
6115 if (strcmp (str + 3, "LJM") == 0)
6119 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6120 || str[4] == 'U' || str[4] == 'P')
6122 if (str[4] == 'R' && str[5] != 'T')
6126 if (!isdigit (str[2]))
6128 for (k = 3; str[k] != '\0'; k += 1)
6129 if (!isdigit (str[k]) && str[k] != '_')
6133 if (str[0] == '$' && isdigit (str[1]))
6135 for (k = 2; str[k] != '\0'; k += 1)
6136 if (!isdigit (str[k]) && str[k] != '_')
6143 /* Return non-zero if the string starting at NAME and ending before
6144 NAME_END contains no capital letters. */
6147 is_valid_name_for_wild_match (const char *name0)
6149 const char *decoded_name = ada_decode (name0);
6152 /* If the decoded name starts with an angle bracket, it means that
6153 NAME0 does not follow the GNAT encoding format. It should then
6154 not be allowed as a possible wild match. */
6155 if (decoded_name[0] == '<')
6158 for (i=0; decoded_name[i] != '\0'; i++)
6159 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6165 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6166 that could start a simple name. Assumes that *NAMEP points into
6167 the string beginning at NAME0. */
6170 advance_wild_match (const char **namep, const char *name0, int target0)
6172 const char *name = *namep;
6182 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6185 if (name == name0 + 5 && startswith (name0, "_ada"))
6190 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6191 || name[2] == target0))
6199 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6209 /* Return true iff NAME encodes a name of the form prefix.PATN.
6210 Ignores any informational suffixes of NAME (i.e., for which
6211 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6215 wild_match (const char *name, const char *patn)
6218 const char *name0 = name;
6222 const char *match = name;
6226 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6229 if (*p == '\0' && is_name_suffix (name))
6230 return match == name0 || is_valid_name_for_wild_match (name0);
6232 if (name[-1] == '_')
6235 if (!advance_wild_match (&name, name0, *patn))
6240 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6241 any trailing suffixes that encode debugging information or leading
6242 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6243 information that is ignored). */
6246 full_match (const char *sym_name, const char *search_name)
6248 size_t search_name_len = strlen (search_name);
6250 if (strncmp (sym_name, search_name, search_name_len) == 0
6251 && is_name_suffix (sym_name + search_name_len))
6254 if (startswith (sym_name, "_ada_")
6255 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6256 && is_name_suffix (sym_name + search_name_len + 5))
6262 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6263 *defn_symbols, updating the list of symbols in OBSTACKP (if
6264 necessary). OBJFILE is the section containing BLOCK. */
6267 ada_add_block_symbols (struct obstack *obstackp,
6268 const struct block *block,
6269 const lookup_name_info &lookup_name,
6270 domain_enum domain, struct objfile *objfile)
6272 struct block_iterator iter;
6273 /* A matching argument symbol, if any. */
6274 struct symbol *arg_sym;
6275 /* Set true when we find a matching non-argument symbol. */
6281 for (sym = block_iter_match_first (block, lookup_name, &iter);
6283 sym = block_iter_match_next (lookup_name, &iter))
6285 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6286 SYMBOL_DOMAIN (sym), domain))
6288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6290 if (SYMBOL_IS_ARGUMENT (sym))
6295 add_defn_to_vec (obstackp,
6296 fixup_symbol_section (sym, objfile),
6303 /* Handle renamings. */
6305 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6308 if (!found_sym && arg_sym != NULL)
6310 add_defn_to_vec (obstackp,
6311 fixup_symbol_section (arg_sym, objfile),
6315 if (!lookup_name.ada ().wild_match_p ())
6319 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6320 const char *name = ada_lookup_name.c_str ();
6321 size_t name_len = ada_lookup_name.size ();
6323 ALL_BLOCK_SYMBOLS (block, iter, sym)
6325 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6326 SYMBOL_DOMAIN (sym), domain))
6330 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6333 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6335 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6340 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6342 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6344 if (SYMBOL_IS_ARGUMENT (sym))
6349 add_defn_to_vec (obstackp,
6350 fixup_symbol_section (sym, objfile),
6358 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6359 They aren't parameters, right? */
6360 if (!found_sym && arg_sym != NULL)
6362 add_defn_to_vec (obstackp,
6363 fixup_symbol_section (arg_sym, objfile),
6370 /* Symbol Completion */
6375 ada_lookup_name_info::matches
6376 (const char *sym_name,
6377 symbol_name_match_type match_type,
6378 completion_match_result *comp_match_res) const
6381 const char *text = m_encoded_name.c_str ();
6382 size_t text_len = m_encoded_name.size ();
6384 /* First, test against the fully qualified name of the symbol. */
6386 if (strncmp (sym_name, text, text_len) == 0)
6389 if (match && !m_encoded_p)
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 bool has_angle_bracket;
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == m_verbatim_p);
6401 sym_name = sym_name_copy;
6404 if (match && !m_verbatim_p)
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6418 /* Second: Try wild matching... */
6420 if (!match && m_wild_match_p)
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6427 if (strncmp (sym_name, text, text_len) == 0)
6431 /* Finally: If we found a match, prepare the result to return. */
6436 if (comp_match_res != NULL)
6438 std::string &match_str = comp_match_res->match.storage ();
6441 match_str = ada_decode (sym_name);
6445 match_str = add_angle_brackets (sym_name);
6447 match_str = sym_name;
6451 comp_match_res->set_match (match_str.c_str ());
6457 /* Add the list of possible symbol names completing TEXT to TRACKER.
6458 WORD is the entire command on which completion is made. */
6461 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6462 complete_symbol_mode mode,
6463 symbol_name_match_type name_match_type,
6464 const char *text, const char *word,
6465 enum type_code code)
6468 struct compunit_symtab *s;
6469 struct minimal_symbol *msymbol;
6470 struct objfile *objfile;
6471 const struct block *b, *surrounding_static_block = 0;
6472 struct block_iterator iter;
6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6477 lookup_name_info lookup_name (text, name_match_type, true);
6479 /* First, look at the partial symtab symbols. */
6480 expand_symtabs_matching (NULL,
6486 /* At this point scan through the misc symbol vectors and add each
6487 symbol you find to the list. Eventually we want to ignore
6488 anything that isn't a text symbol (everything else will be
6489 handled by the psymtab code above). */
6491 ALL_MSYMBOLS (objfile, msymbol)
6495 if (completion_skip_symbol (mode, msymbol))
6498 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6500 /* Ada minimal symbols won't have their language set to Ada. If
6501 we let completion_list_add_name compare using the
6502 default/C-like matcher, then when completing e.g., symbols in a
6503 package named "pck", we'd match internal Ada symbols like
6504 "pckS", which are invalid in an Ada expression, unless you wrap
6505 them in '<' '>' to request a verbatim match.
6507 Unfortunately, some Ada encoded names successfully demangle as
6508 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6509 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6510 with the wrong language set. Paper over that issue here. */
6511 if (symbol_language == language_auto
6512 || symbol_language == language_cplus)
6513 symbol_language = language_ada;
6515 completion_list_add_name (tracker,
6517 MSYMBOL_LINKAGE_NAME (msymbol),
6518 lookup_name, text, word);
6521 /* Search upwards from currently selected frame (so that we can
6522 complete on local vars. */
6524 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6526 if (!BLOCK_SUPERBLOCK (b))
6527 surrounding_static_block = b; /* For elmin of dups */
6529 ALL_BLOCK_SYMBOLS (b, iter, sym)
6531 if (completion_skip_symbol (mode, sym))
6534 completion_list_add_name (tracker,
6535 SYMBOL_LANGUAGE (sym),
6536 SYMBOL_LINKAGE_NAME (sym),
6537 lookup_name, text, word);
6541 /* Go through the symtabs and check the externs and statics for
6542 symbols which match. */
6544 ALL_COMPUNITS (objfile, s)
6547 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6548 ALL_BLOCK_SYMBOLS (b, iter, sym)
6550 if (completion_skip_symbol (mode, sym))
6553 completion_list_add_name (tracker,
6554 SYMBOL_LANGUAGE (sym),
6555 SYMBOL_LINKAGE_NAME (sym),
6556 lookup_name, text, word);
6560 ALL_COMPUNITS (objfile, s)
6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6569 if (completion_skip_symbol (mode, sym))
6572 completion_list_add_name (tracker,
6573 SYMBOL_LANGUAGE (sym),
6574 SYMBOL_LINKAGE_NAME (sym),
6575 lookup_name, text, word);
6579 do_cleanups (old_chain);
6584 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6585 for tagged types. */
6588 ada_is_dispatch_table_ptr_type (struct type *type)
6592 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6595 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6599 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6602 /* Return non-zero if TYPE is an interface tag. */
6605 ada_is_interface_tag (struct type *type)
6607 const char *name = TYPE_NAME (type);
6612 return (strcmp (name, "ada__tags__interface_tag") == 0);
6615 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6616 to be invisible to users. */
6619 ada_is_ignored_field (struct type *type, int field_num)
6621 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6624 /* Check the name of that field. */
6626 const char *name = TYPE_FIELD_NAME (type, field_num);
6628 /* Anonymous field names should not be printed.
6629 brobecker/2007-02-20: I don't think this can actually happen
6630 but we don't want to print the value of annonymous fields anyway. */
6634 /* Normally, fields whose name start with an underscore ("_")
6635 are fields that have been internally generated by the compiler,
6636 and thus should not be printed. The "_parent" field is special,
6637 however: This is a field internally generated by the compiler
6638 for tagged types, and it contains the components inherited from
6639 the parent type. This field should not be printed as is, but
6640 should not be ignored either. */
6641 if (name[0] == '_' && !startswith (name, "_parent"))
6645 /* If this is the dispatch table of a tagged type or an interface tag,
6647 if (ada_is_tagged_type (type, 1)
6648 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6649 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6652 /* Not a special field, so it should not be ignored. */
6656 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6657 pointer or reference type whose ultimate target has a tag field. */
6660 ada_is_tagged_type (struct type *type, int refok)
6662 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6665 /* True iff TYPE represents the type of X'Tag */
6668 ada_is_tag_type (struct type *type)
6670 type = ada_check_typedef (type);
6672 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6676 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6678 return (name != NULL
6679 && strcmp (name, "ada__tags__dispatch_table") == 0);
6683 /* The type of the tag on VAL. */
6686 ada_tag_type (struct value *val)
6688 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6691 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6692 retired at Ada 05). */
6695 is_ada95_tag (struct value *tag)
6697 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6700 /* The value of the tag on VAL. */
6703 ada_value_tag (struct value *val)
6705 return ada_value_struct_elt (val, "_tag", 0);
6708 /* The value of the tag on the object of type TYPE whose contents are
6709 saved at VALADDR, if it is non-null, or is at memory address
6712 static struct value *
6713 value_tag_from_contents_and_address (struct type *type,
6714 const gdb_byte *valaddr,
6717 int tag_byte_offset;
6718 struct type *tag_type;
6720 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6723 const gdb_byte *valaddr1 = ((valaddr == NULL)
6725 : valaddr + tag_byte_offset);
6726 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6728 return value_from_contents_and_address (tag_type, valaddr1, address1);
6733 static struct type *
6734 type_from_tag (struct value *tag)
6736 const char *type_name = ada_tag_name (tag);
6738 if (type_name != NULL)
6739 return ada_find_any_type (ada_encode (type_name));
6743 /* Given a value OBJ of a tagged type, return a value of this
6744 type at the base address of the object. The base address, as
6745 defined in Ada.Tags, it is the address of the primary tag of
6746 the object, and therefore where the field values of its full
6747 view can be fetched. */
6750 ada_tag_value_at_base_address (struct value *obj)
6753 LONGEST offset_to_top = 0;
6754 struct type *ptr_type, *obj_type;
6756 CORE_ADDR base_address;
6758 obj_type = value_type (obj);
6760 /* It is the responsability of the caller to deref pointers. */
6762 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6763 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6766 tag = ada_value_tag (obj);
6770 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6772 if (is_ada95_tag (tag))
6775 ptr_type = language_lookup_primitive_type
6776 (language_def (language_ada), target_gdbarch(), "storage_offset");
6777 ptr_type = lookup_pointer_type (ptr_type);
6778 val = value_cast (ptr_type, tag);
6782 /* It is perfectly possible that an exception be raised while
6783 trying to determine the base address, just like for the tag;
6784 see ada_tag_name for more details. We do not print the error
6785 message for the same reason. */
6789 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6792 CATCH (e, RETURN_MASK_ERROR)
6798 /* If offset is null, nothing to do. */
6800 if (offset_to_top == 0)
6803 /* -1 is a special case in Ada.Tags; however, what should be done
6804 is not quite clear from the documentation. So do nothing for
6807 if (offset_to_top == -1)
6810 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6811 from the base address. This was however incompatible with
6812 C++ dispatch table: C++ uses a *negative* value to *add*
6813 to the base address. Ada's convention has therefore been
6814 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6815 use the same convention. Here, we support both cases by
6816 checking the sign of OFFSET_TO_TOP. */
6818 if (offset_to_top > 0)
6819 offset_to_top = -offset_to_top;
6821 base_address = value_address (obj) + offset_to_top;
6822 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6824 /* Make sure that we have a proper tag at the new address.
6825 Otherwise, offset_to_top is bogus (which can happen when
6826 the object is not initialized yet). */
6831 obj_type = type_from_tag (tag);
6836 return value_from_contents_and_address (obj_type, NULL, base_address);
6839 /* Return the "ada__tags__type_specific_data" type. */
6841 static struct type *
6842 ada_get_tsd_type (struct inferior *inf)
6844 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6846 if (data->tsd_type == 0)
6847 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6848 return data->tsd_type;
6851 /* Return the TSD (type-specific data) associated to the given TAG.
6852 TAG is assumed to be the tag of a tagged-type entity.
6854 May return NULL if we are unable to get the TSD. */
6856 static struct value *
6857 ada_get_tsd_from_tag (struct value *tag)
6862 /* First option: The TSD is simply stored as a field of our TAG.
6863 Only older versions of GNAT would use this format, but we have
6864 to test it first, because there are no visible markers for
6865 the current approach except the absence of that field. */
6867 val = ada_value_struct_elt (tag, "tsd", 1);
6871 /* Try the second representation for the dispatch table (in which
6872 there is no explicit 'tsd' field in the referent of the tag pointer,
6873 and instead the tsd pointer is stored just before the dispatch
6876 type = ada_get_tsd_type (current_inferior());
6879 type = lookup_pointer_type (lookup_pointer_type (type));
6880 val = value_cast (type, tag);
6883 return value_ind (value_ptradd (val, -1));
6886 /* Given the TSD of a tag (type-specific data), return a string
6887 containing the name of the associated type.
6889 The returned value is good until the next call. May return NULL
6890 if we are unable to determine the tag name. */
6893 ada_tag_name_from_tsd (struct value *tsd)
6895 static char name[1024];
6899 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6902 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6903 for (p = name; *p != '\0'; p += 1)
6909 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6912 Return NULL if the TAG is not an Ada tag, or if we were unable to
6913 determine the name of that tag. The result is good until the next
6917 ada_tag_name (struct value *tag)
6921 if (!ada_is_tag_type (value_type (tag)))
6924 /* It is perfectly possible that an exception be raised while trying
6925 to determine the TAG's name, even under normal circumstances:
6926 The associated variable may be uninitialized or corrupted, for
6927 instance. We do not let any exception propagate past this point.
6928 instead we return NULL.
6930 We also do not print the error message either (which often is very
6931 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6932 the caller print a more meaningful message if necessary. */
6935 struct value *tsd = ada_get_tsd_from_tag (tag);
6938 name = ada_tag_name_from_tsd (tsd);
6940 CATCH (e, RETURN_MASK_ERROR)
6948 /* The parent type of TYPE, or NULL if none. */
6951 ada_parent_type (struct type *type)
6955 type = ada_check_typedef (type);
6957 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6960 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6961 if (ada_is_parent_field (type, i))
6963 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6965 /* If the _parent field is a pointer, then dereference it. */
6966 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6967 parent_type = TYPE_TARGET_TYPE (parent_type);
6968 /* If there is a parallel XVS type, get the actual base type. */
6969 parent_type = ada_get_base_type (parent_type);
6971 return ada_check_typedef (parent_type);
6977 /* True iff field number FIELD_NUM of structure type TYPE contains the
6978 parent-type (inherited) fields of a derived type. Assumes TYPE is
6979 a structure type with at least FIELD_NUM+1 fields. */
6982 ada_is_parent_field (struct type *type, int field_num)
6984 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6986 return (name != NULL
6987 && (startswith (name, "PARENT")
6988 || startswith (name, "_parent")));
6991 /* True iff field number FIELD_NUM of structure type TYPE is a
6992 transparent wrapper field (which should be silently traversed when doing
6993 field selection and flattened when printing). Assumes TYPE is a
6994 structure type with at least FIELD_NUM+1 fields. Such fields are always
6998 ada_is_wrapper_field (struct type *type, int field_num)
7000 const char *name = TYPE_FIELD_NAME (type, field_num);
7002 if (name != NULL && strcmp (name, "RETVAL") == 0)
7004 /* This happens in functions with "out" or "in out" parameters
7005 which are passed by copy. For such functions, GNAT describes
7006 the function's return type as being a struct where the return
7007 value is in a field called RETVAL, and where the other "out"
7008 or "in out" parameters are fields of that struct. This is not
7013 return (name != NULL
7014 && (startswith (name, "PARENT")
7015 || strcmp (name, "REP") == 0
7016 || startswith (name, "_parent")
7017 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7020 /* True iff field number FIELD_NUM of structure or union type TYPE
7021 is a variant wrapper. Assumes TYPE is a structure type with at least
7022 FIELD_NUM+1 fields. */
7025 ada_is_variant_part (struct type *type, int field_num)
7027 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7029 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7030 || (is_dynamic_field (type, field_num)
7031 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7032 == TYPE_CODE_UNION)));
7035 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7036 whose discriminants are contained in the record type OUTER_TYPE,
7037 returns the type of the controlling discriminant for the variant.
7038 May return NULL if the type could not be found. */
7041 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7043 const char *name = ada_variant_discrim_name (var_type);
7045 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7048 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7049 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7050 represents a 'when others' clause; otherwise 0. */
7053 ada_is_others_clause (struct type *type, int field_num)
7055 const char *name = TYPE_FIELD_NAME (type, field_num);
7057 return (name != NULL && name[0] == 'O');
7060 /* Assuming that TYPE0 is the type of the variant part of a record,
7061 returns the name of the discriminant controlling the variant.
7062 The value is valid until the next call to ada_variant_discrim_name. */
7065 ada_variant_discrim_name (struct type *type0)
7067 static char *result = NULL;
7068 static size_t result_len = 0;
7071 const char *discrim_end;
7072 const char *discrim_start;
7074 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7075 type = TYPE_TARGET_TYPE (type0);
7079 name = ada_type_name (type);
7081 if (name == NULL || name[0] == '\000')
7084 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7087 if (startswith (discrim_end, "___XVN"))
7090 if (discrim_end == name)
7093 for (discrim_start = discrim_end; discrim_start != name + 3;
7096 if (discrim_start == name + 1)
7098 if ((discrim_start > name + 3
7099 && startswith (discrim_start - 3, "___"))
7100 || discrim_start[-1] == '.')
7104 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7105 strncpy (result, discrim_start, discrim_end - discrim_start);
7106 result[discrim_end - discrim_start] = '\0';
7110 /* Scan STR for a subtype-encoded number, beginning at position K.
7111 Put the position of the character just past the number scanned in
7112 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7113 Return 1 if there was a valid number at the given position, and 0
7114 otherwise. A "subtype-encoded" number consists of the absolute value
7115 in decimal, followed by the letter 'm' to indicate a negative number.
7116 Assumes 0m does not occur. */
7119 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7123 if (!isdigit (str[k]))
7126 /* Do it the hard way so as not to make any assumption about
7127 the relationship of unsigned long (%lu scan format code) and
7130 while (isdigit (str[k]))
7132 RU = RU * 10 + (str[k] - '0');
7139 *R = (-(LONGEST) (RU - 1)) - 1;
7145 /* NOTE on the above: Technically, C does not say what the results of
7146 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7147 number representable as a LONGEST (although either would probably work
7148 in most implementations). When RU>0, the locution in the then branch
7149 above is always equivalent to the negative of RU. */
7156 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7157 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7158 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7161 ada_in_variant (LONGEST val, struct type *type, int field_num)
7163 const char *name = TYPE_FIELD_NAME (type, field_num);
7177 if (!ada_scan_number (name, p + 1, &W, &p))
7187 if (!ada_scan_number (name, p + 1, &L, &p)
7188 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7190 if (val >= L && val <= U)
7202 /* FIXME: Lots of redundancy below. Try to consolidate. */
7204 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7205 ARG_TYPE, extract and return the value of one of its (non-static)
7206 fields. FIELDNO says which field. Differs from value_primitive_field
7207 only in that it can handle packed values of arbitrary type. */
7209 static struct value *
7210 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7211 struct type *arg_type)
7215 arg_type = ada_check_typedef (arg_type);
7216 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7218 /* Handle packed fields. */
7220 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7222 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7223 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7225 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7226 offset + bit_pos / 8,
7227 bit_pos % 8, bit_size, type);
7230 return value_primitive_field (arg1, offset, fieldno, arg_type);
7233 /* Find field with name NAME in object of type TYPE. If found,
7234 set the following for each argument that is non-null:
7235 - *FIELD_TYPE_P to the field's type;
7236 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7237 an object of that type;
7238 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7239 - *BIT_SIZE_P to its size in bits if the field is packed, and
7241 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7242 fields up to but not including the desired field, or by the total
7243 number of fields if not found. A NULL value of NAME never
7244 matches; the function just counts visible fields in this case.
7246 Notice that we need to handle when a tagged record hierarchy
7247 has some components with the same name, like in this scenario:
7249 type Top_T is tagged record
7255 type Middle_T is new Top.Top_T with record
7256 N : Character := 'a';
7260 type Bottom_T is new Middle.Middle_T with record
7262 C : Character := '5';
7264 A : Character := 'J';
7267 Let's say we now have a variable declared and initialized as follow:
7269 TC : Top_A := new Bottom_T;
7271 And then we use this variable to call this function
7273 procedure Assign (Obj: in out Top_T; TV : Integer);
7277 Assign (Top_T (B), 12);
7279 Now, we're in the debugger, and we're inside that procedure
7280 then and we want to print the value of obj.c:
7282 Usually, the tagged record or one of the parent type owns the
7283 component to print and there's no issue but in this particular
7284 case, what does it mean to ask for Obj.C? Since the actual
7285 type for object is type Bottom_T, it could mean two things: type
7286 component C from the Middle_T view, but also component C from
7287 Bottom_T. So in that "undefined" case, when the component is
7288 not found in the non-resolved type (which includes all the
7289 components of the parent type), then resolve it and see if we
7290 get better luck once expanded.
7292 In the case of homonyms in the derived tagged type, we don't
7293 guaranty anything, and pick the one that's easiest for us
7296 Returns 1 if found, 0 otherwise. */
7299 find_struct_field (const char *name, struct type *type, int offset,
7300 struct type **field_type_p,
7301 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7305 int parent_offset = -1;
7307 type = ada_check_typedef (type);
7309 if (field_type_p != NULL)
7310 *field_type_p = NULL;
7311 if (byte_offset_p != NULL)
7313 if (bit_offset_p != NULL)
7315 if (bit_size_p != NULL)
7318 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7320 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7321 int fld_offset = offset + bit_pos / 8;
7322 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7324 if (t_field_name == NULL)
7327 else if (ada_is_parent_field (type, i))
7329 /* This is a field pointing us to the parent type of a tagged
7330 type. As hinted in this function's documentation, we give
7331 preference to fields in the current record first, so what
7332 we do here is just record the index of this field before
7333 we skip it. If it turns out we couldn't find our field
7334 in the current record, then we'll get back to it and search
7335 inside it whether the field might exist in the parent. */
7341 else if (name != NULL && field_name_match (t_field_name, name))
7343 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7345 if (field_type_p != NULL)
7346 *field_type_p = TYPE_FIELD_TYPE (type, i);
7347 if (byte_offset_p != NULL)
7348 *byte_offset_p = fld_offset;
7349 if (bit_offset_p != NULL)
7350 *bit_offset_p = bit_pos % 8;
7351 if (bit_size_p != NULL)
7352 *bit_size_p = bit_size;
7355 else if (ada_is_wrapper_field (type, i))
7357 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7358 field_type_p, byte_offset_p, bit_offset_p,
7359 bit_size_p, index_p))
7362 else if (ada_is_variant_part (type, i))
7364 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7367 struct type *field_type
7368 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7370 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7374 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7375 field_type_p, byte_offset_p,
7376 bit_offset_p, bit_size_p, index_p))
7380 else if (index_p != NULL)
7384 /* Field not found so far. If this is a tagged type which
7385 has a parent, try finding that field in the parent now. */
7387 if (parent_offset != -1)
7389 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7390 int fld_offset = offset + bit_pos / 8;
7392 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7393 fld_offset, field_type_p, byte_offset_p,
7394 bit_offset_p, bit_size_p, index_p))
7401 /* Number of user-visible fields in record type TYPE. */
7404 num_visible_fields (struct type *type)
7409 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7413 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7414 and search in it assuming it has (class) type TYPE.
7415 If found, return value, else return NULL.
7417 Searches recursively through wrapper fields (e.g., '_parent').
7419 In the case of homonyms in the tagged types, please refer to the
7420 long explanation in find_struct_field's function documentation. */
7422 static struct value *
7423 ada_search_struct_field (const char *name, struct value *arg, int offset,
7427 int parent_offset = -1;
7429 type = ada_check_typedef (type);
7430 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7432 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7434 if (t_field_name == NULL)
7437 else if (ada_is_parent_field (type, i))
7439 /* This is a field pointing us to the parent type of a tagged
7440 type. As hinted in this function's documentation, we give
7441 preference to fields in the current record first, so what
7442 we do here is just record the index of this field before
7443 we skip it. If it turns out we couldn't find our field
7444 in the current record, then we'll get back to it and search
7445 inside it whether the field might exist in the parent. */
7451 else if (field_name_match (t_field_name, name))
7452 return ada_value_primitive_field (arg, offset, i, type);
7454 else if (ada_is_wrapper_field (type, i))
7456 struct value *v = /* Do not let indent join lines here. */
7457 ada_search_struct_field (name, arg,
7458 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7459 TYPE_FIELD_TYPE (type, i));
7465 else if (ada_is_variant_part (type, i))
7467 /* PNH: Do we ever get here? See find_struct_field. */
7469 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7471 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7473 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7475 struct value *v = ada_search_struct_field /* Force line
7478 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7479 TYPE_FIELD_TYPE (field_type, j));
7487 /* Field not found so far. If this is a tagged type which
7488 has a parent, try finding that field in the parent now. */
7490 if (parent_offset != -1)
7492 struct value *v = ada_search_struct_field (
7493 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7494 TYPE_FIELD_TYPE (type, parent_offset));
7503 static struct value *ada_index_struct_field_1 (int *, struct value *,
7504 int, struct type *);
7507 /* Return field #INDEX in ARG, where the index is that returned by
7508 * find_struct_field through its INDEX_P argument. Adjust the address
7509 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7510 * If found, return value, else return NULL. */
7512 static struct value *
7513 ada_index_struct_field (int index, struct value *arg, int offset,
7516 return ada_index_struct_field_1 (&index, arg, offset, type);
7520 /* Auxiliary function for ada_index_struct_field. Like
7521 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7524 static struct value *
7525 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7529 type = ada_check_typedef (type);
7531 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7533 if (TYPE_FIELD_NAME (type, i) == NULL)
7535 else if (ada_is_wrapper_field (type, i))
7537 struct value *v = /* Do not let indent join lines here. */
7538 ada_index_struct_field_1 (index_p, arg,
7539 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7540 TYPE_FIELD_TYPE (type, i));
7546 else if (ada_is_variant_part (type, i))
7548 /* PNH: Do we ever get here? See ada_search_struct_field,
7549 find_struct_field. */
7550 error (_("Cannot assign this kind of variant record"));
7552 else if (*index_p == 0)
7553 return ada_value_primitive_field (arg, offset, i, type);
7560 /* Given ARG, a value of type (pointer or reference to a)*
7561 structure/union, extract the component named NAME from the ultimate
7562 target structure/union and return it as a value with its
7565 The routine searches for NAME among all members of the structure itself
7566 and (recursively) among all members of any wrapper members
7569 If NO_ERR, then simply return NULL in case of error, rather than
7573 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7575 struct type *t, *t1;
7579 t1 = t = ada_check_typedef (value_type (arg));
7580 if (TYPE_CODE (t) == TYPE_CODE_REF)
7582 t1 = TYPE_TARGET_TYPE (t);
7585 t1 = ada_check_typedef (t1);
7586 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7588 arg = coerce_ref (arg);
7593 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7595 t1 = TYPE_TARGET_TYPE (t);
7598 t1 = ada_check_typedef (t1);
7599 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7601 arg = value_ind (arg);
7608 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7612 v = ada_search_struct_field (name, arg, 0, t);
7615 int bit_offset, bit_size, byte_offset;
7616 struct type *field_type;
7619 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7620 address = value_address (ada_value_ind (arg));
7622 address = value_address (ada_coerce_ref (arg));
7624 /* Check to see if this is a tagged type. We also need to handle
7625 the case where the type is a reference to a tagged type, but
7626 we have to be careful to exclude pointers to tagged types.
7627 The latter should be shown as usual (as a pointer), whereas
7628 a reference should mostly be transparent to the user. */
7630 if (ada_is_tagged_type (t1, 0)
7631 || (TYPE_CODE (t1) == TYPE_CODE_REF
7632 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7634 /* We first try to find the searched field in the current type.
7635 If not found then let's look in the fixed type. */
7637 if (!find_struct_field (name, t1, 0,
7638 &field_type, &byte_offset, &bit_offset,
7640 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7644 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7647 if (find_struct_field (name, t1, 0,
7648 &field_type, &byte_offset, &bit_offset,
7653 if (TYPE_CODE (t) == TYPE_CODE_REF)
7654 arg = ada_coerce_ref (arg);
7656 arg = ada_value_ind (arg);
7657 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7658 bit_offset, bit_size,
7662 v = value_at_lazy (field_type, address + byte_offset);
7666 if (v != NULL || no_err)
7669 error (_("There is no member named %s."), name);
7675 error (_("Attempt to extract a component of "
7676 "a value that is not a record."));
7679 /* Return a string representation of type TYPE. */
7682 type_as_string (struct type *type)
7684 string_file tmp_stream;
7686 type_print (type, "", &tmp_stream, -1);
7688 return std::move (tmp_stream.string ());
7691 /* Given a type TYPE, look up the type of the component of type named NAME.
7692 If DISPP is non-null, add its byte displacement from the beginning of a
7693 structure (pointed to by a value) of type TYPE to *DISPP (does not
7694 work for packed fields).
7696 Matches any field whose name has NAME as a prefix, possibly
7699 TYPE can be either a struct or union. If REFOK, TYPE may also
7700 be a (pointer or reference)+ to a struct or union, and the
7701 ultimate target type will be searched.
7703 Looks recursively into variant clauses and parent types.
7705 In the case of homonyms in the tagged types, please refer to the
7706 long explanation in find_struct_field's function documentation.
7708 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7709 TYPE is not a type of the right kind. */
7711 static struct type *
7712 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7716 int parent_offset = -1;
7721 if (refok && type != NULL)
7724 type = ada_check_typedef (type);
7725 if (TYPE_CODE (type) != TYPE_CODE_PTR
7726 && TYPE_CODE (type) != TYPE_CODE_REF)
7728 type = TYPE_TARGET_TYPE (type);
7732 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7733 && TYPE_CODE (type) != TYPE_CODE_UNION))
7738 error (_("Type %s is not a structure or union type"),
7739 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7742 type = to_static_fixed_type (type);
7744 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7746 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7749 if (t_field_name == NULL)
7752 else if (ada_is_parent_field (type, i))
7754 /* This is a field pointing us to the parent type of a tagged
7755 type. As hinted in this function's documentation, we give
7756 preference to fields in the current record first, so what
7757 we do here is just record the index of this field before
7758 we skip it. If it turns out we couldn't find our field
7759 in the current record, then we'll get back to it and search
7760 inside it whether the field might exist in the parent. */
7766 else if (field_name_match (t_field_name, name))
7767 return TYPE_FIELD_TYPE (type, i);
7769 else if (ada_is_wrapper_field (type, i))
7771 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7777 else if (ada_is_variant_part (type, i))
7780 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7783 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7785 /* FIXME pnh 2008/01/26: We check for a field that is
7786 NOT wrapped in a struct, since the compiler sometimes
7787 generates these for unchecked variant types. Revisit
7788 if the compiler changes this practice. */
7789 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7791 if (v_field_name != NULL
7792 && field_name_match (v_field_name, name))
7793 t = TYPE_FIELD_TYPE (field_type, j);
7795 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7806 /* Field not found so far. If this is a tagged type which
7807 has a parent, try finding that field in the parent now. */
7809 if (parent_offset != -1)
7813 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7822 const char *name_str = name != NULL ? name : _("<null>");
7824 error (_("Type %s has no component named %s"),
7825 type_as_string (type).c_str (), name_str);
7831 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7832 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7833 represents an unchecked union (that is, the variant part of a
7834 record that is named in an Unchecked_Union pragma). */
7837 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7839 const char *discrim_name = ada_variant_discrim_name (var_type);
7841 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7845 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7846 within a value of type OUTER_TYPE that is stored in GDB at
7847 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7848 numbering from 0) is applicable. Returns -1 if none are. */
7851 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7852 const gdb_byte *outer_valaddr)
7856 const char *discrim_name = ada_variant_discrim_name (var_type);
7857 struct value *outer;
7858 struct value *discrim;
7859 LONGEST discrim_val;
7861 /* Using plain value_from_contents_and_address here causes problems
7862 because we will end up trying to resolve a type that is currently
7863 being constructed. */
7864 outer = value_from_contents_and_address_unresolved (outer_type,
7866 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7867 if (discrim == NULL)
7869 discrim_val = value_as_long (discrim);
7872 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7874 if (ada_is_others_clause (var_type, i))
7876 else if (ada_in_variant (discrim_val, var_type, i))
7880 return others_clause;
7885 /* Dynamic-Sized Records */
7887 /* Strategy: The type ostensibly attached to a value with dynamic size
7888 (i.e., a size that is not statically recorded in the debugging
7889 data) does not accurately reflect the size or layout of the value.
7890 Our strategy is to convert these values to values with accurate,
7891 conventional types that are constructed on the fly. */
7893 /* There is a subtle and tricky problem here. In general, we cannot
7894 determine the size of dynamic records without its data. However,
7895 the 'struct value' data structure, which GDB uses to represent
7896 quantities in the inferior process (the target), requires the size
7897 of the type at the time of its allocation in order to reserve space
7898 for GDB's internal copy of the data. That's why the
7899 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7900 rather than struct value*s.
7902 However, GDB's internal history variables ($1, $2, etc.) are
7903 struct value*s containing internal copies of the data that are not, in
7904 general, the same as the data at their corresponding addresses in
7905 the target. Fortunately, the types we give to these values are all
7906 conventional, fixed-size types (as per the strategy described
7907 above), so that we don't usually have to perform the
7908 'to_fixed_xxx_type' conversions to look at their values.
7909 Unfortunately, there is one exception: if one of the internal
7910 history variables is an array whose elements are unconstrained
7911 records, then we will need to create distinct fixed types for each
7912 element selected. */
7914 /* The upshot of all of this is that many routines take a (type, host
7915 address, target address) triple as arguments to represent a value.
7916 The host address, if non-null, is supposed to contain an internal
7917 copy of the relevant data; otherwise, the program is to consult the
7918 target at the target address. */
7920 /* Assuming that VAL0 represents a pointer value, the result of
7921 dereferencing it. Differs from value_ind in its treatment of
7922 dynamic-sized types. */
7925 ada_value_ind (struct value *val0)
7927 struct value *val = value_ind (val0);
7929 if (ada_is_tagged_type (value_type (val), 0))
7930 val = ada_tag_value_at_base_address (val);
7932 return ada_to_fixed_value (val);
7935 /* The value resulting from dereferencing any "reference to"
7936 qualifiers on VAL0. */
7938 static struct value *
7939 ada_coerce_ref (struct value *val0)
7941 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7943 struct value *val = val0;
7945 val = coerce_ref (val);
7947 if (ada_is_tagged_type (value_type (val), 0))
7948 val = ada_tag_value_at_base_address (val);
7950 return ada_to_fixed_value (val);
7956 /* Return OFF rounded upward if necessary to a multiple of
7957 ALIGNMENT (a power of 2). */
7960 align_value (unsigned int off, unsigned int alignment)
7962 return (off + alignment - 1) & ~(alignment - 1);
7965 /* Return the bit alignment required for field #F of template type TYPE. */
7968 field_alignment (struct type *type, int f)
7970 const char *name = TYPE_FIELD_NAME (type, f);
7974 /* The field name should never be null, unless the debugging information
7975 is somehow malformed. In this case, we assume the field does not
7976 require any alignment. */
7980 len = strlen (name);
7982 if (!isdigit (name[len - 1]))
7985 if (isdigit (name[len - 2]))
7986 align_offset = len - 2;
7988 align_offset = len - 1;
7990 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7991 return TARGET_CHAR_BIT;
7993 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7996 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7998 static struct symbol *
7999 ada_find_any_type_symbol (const char *name)
8003 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
8004 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
8007 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
8011 /* Find a type named NAME. Ignores ambiguity. This routine will look
8012 solely for types defined by debug info, it will not search the GDB
8015 static struct type *
8016 ada_find_any_type (const char *name)
8018 struct symbol *sym = ada_find_any_type_symbol (name);
8021 return SYMBOL_TYPE (sym);
8026 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8027 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8028 symbol, in which case it is returned. Otherwise, this looks for
8029 symbols whose name is that of NAME_SYM suffixed with "___XR".
8030 Return symbol if found, and NULL otherwise. */
8033 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8035 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8038 if (strstr (name, "___XR") != NULL)
8041 sym = find_old_style_renaming_symbol (name, block);
8046 /* Not right yet. FIXME pnh 7/20/2007. */
8047 sym = ada_find_any_type_symbol (name);
8048 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8054 static struct symbol *
8055 find_old_style_renaming_symbol (const char *name, const struct block *block)
8057 const struct symbol *function_sym = block_linkage_function (block);
8060 if (function_sym != NULL)
8062 /* If the symbol is defined inside a function, NAME is not fully
8063 qualified. This means we need to prepend the function name
8064 as well as adding the ``___XR'' suffix to build the name of
8065 the associated renaming symbol. */
8066 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8067 /* Function names sometimes contain suffixes used
8068 for instance to qualify nested subprograms. When building
8069 the XR type name, we need to make sure that this suffix is
8070 not included. So do not include any suffix in the function
8071 name length below. */
8072 int function_name_len = ada_name_prefix_len (function_name);
8073 const int rename_len = function_name_len + 2 /* "__" */
8074 + strlen (name) + 6 /* "___XR\0" */ ;
8076 /* Strip the suffix if necessary. */
8077 ada_remove_trailing_digits (function_name, &function_name_len);
8078 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8079 ada_remove_Xbn_suffix (function_name, &function_name_len);
8081 /* Library-level functions are a special case, as GNAT adds
8082 a ``_ada_'' prefix to the function name to avoid namespace
8083 pollution. However, the renaming symbols themselves do not
8084 have this prefix, so we need to skip this prefix if present. */
8085 if (function_name_len > 5 /* "_ada_" */
8086 && strstr (function_name, "_ada_") == function_name)
8089 function_name_len -= 5;
8092 rename = (char *) alloca (rename_len * sizeof (char));
8093 strncpy (rename, function_name, function_name_len);
8094 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8099 const int rename_len = strlen (name) + 6;
8101 rename = (char *) alloca (rename_len * sizeof (char));
8102 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8105 return ada_find_any_type_symbol (rename);
8108 /* Because of GNAT encoding conventions, several GDB symbols may match a
8109 given type name. If the type denoted by TYPE0 is to be preferred to
8110 that of TYPE1 for purposes of type printing, return non-zero;
8111 otherwise return 0. */
8114 ada_prefer_type (struct type *type0, struct type *type1)
8118 else if (type0 == NULL)
8120 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8122 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8124 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8126 else if (ada_is_constrained_packed_array_type (type0))
8128 else if (ada_is_array_descriptor_type (type0)
8129 && !ada_is_array_descriptor_type (type1))
8133 const char *type0_name = type_name_no_tag (type0);
8134 const char *type1_name = type_name_no_tag (type1);
8136 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8137 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8143 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8144 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8147 ada_type_name (struct type *type)
8151 else if (TYPE_NAME (type) != NULL)
8152 return TYPE_NAME (type);
8154 return TYPE_TAG_NAME (type);
8157 /* Search the list of "descriptive" types associated to TYPE for a type
8158 whose name is NAME. */
8160 static struct type *
8161 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8163 struct type *result, *tmp;
8165 if (ada_ignore_descriptive_types_p)
8168 /* If there no descriptive-type info, then there is no parallel type
8170 if (!HAVE_GNAT_AUX_INFO (type))
8173 result = TYPE_DESCRIPTIVE_TYPE (type);
8174 while (result != NULL)
8176 const char *result_name = ada_type_name (result);
8178 if (result_name == NULL)
8180 warning (_("unexpected null name on descriptive type"));
8184 /* If the names match, stop. */
8185 if (strcmp (result_name, name) == 0)
8188 /* Otherwise, look at the next item on the list, if any. */
8189 if (HAVE_GNAT_AUX_INFO (result))
8190 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8194 /* If not found either, try after having resolved the typedef. */
8199 result = check_typedef (result);
8200 if (HAVE_GNAT_AUX_INFO (result))
8201 result = TYPE_DESCRIPTIVE_TYPE (result);
8207 /* If we didn't find a match, see whether this is a packed array. With
8208 older compilers, the descriptive type information is either absent or
8209 irrelevant when it comes to packed arrays so the above lookup fails.
8210 Fall back to using a parallel lookup by name in this case. */
8211 if (result == NULL && ada_is_constrained_packed_array_type (type))
8212 return ada_find_any_type (name);
8217 /* Find a parallel type to TYPE with the specified NAME, using the
8218 descriptive type taken from the debugging information, if available,
8219 and otherwise using the (slower) name-based method. */
8221 static struct type *
8222 ada_find_parallel_type_with_name (struct type *type, const char *name)
8224 struct type *result = NULL;
8226 if (HAVE_GNAT_AUX_INFO (type))
8227 result = find_parallel_type_by_descriptive_type (type, name);
8229 result = ada_find_any_type (name);
8234 /* Same as above, but specify the name of the parallel type by appending
8235 SUFFIX to the name of TYPE. */
8238 ada_find_parallel_type (struct type *type, const char *suffix)
8241 const char *type_name = ada_type_name (type);
8244 if (type_name == NULL)
8247 len = strlen (type_name);
8249 name = (char *) alloca (len + strlen (suffix) + 1);
8251 strcpy (name, type_name);
8252 strcpy (name + len, suffix);
8254 return ada_find_parallel_type_with_name (type, name);
8257 /* If TYPE is a variable-size record type, return the corresponding template
8258 type describing its fields. Otherwise, return NULL. */
8260 static struct type *
8261 dynamic_template_type (struct type *type)
8263 type = ada_check_typedef (type);
8265 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8266 || ada_type_name (type) == NULL)
8270 int len = strlen (ada_type_name (type));
8272 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8275 return ada_find_parallel_type (type, "___XVE");
8279 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8280 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8283 is_dynamic_field (struct type *templ_type, int field_num)
8285 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8288 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8289 && strstr (name, "___XVL") != NULL;
8292 /* The index of the variant field of TYPE, or -1 if TYPE does not
8293 represent a variant record type. */
8296 variant_field_index (struct type *type)
8300 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8303 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8305 if (ada_is_variant_part (type, f))
8311 /* A record type with no fields. */
8313 static struct type *
8314 empty_record (struct type *templ)
8316 struct type *type = alloc_type_copy (templ);
8318 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8319 TYPE_NFIELDS (type) = 0;
8320 TYPE_FIELDS (type) = NULL;
8321 INIT_CPLUS_SPECIFIC (type);
8322 TYPE_NAME (type) = "<empty>";
8323 TYPE_TAG_NAME (type) = NULL;
8324 TYPE_LENGTH (type) = 0;
8328 /* An ordinary record type (with fixed-length fields) that describes
8329 the value of type TYPE at VALADDR or ADDRESS (see comments at
8330 the beginning of this section) VAL according to GNAT conventions.
8331 DVAL0 should describe the (portion of a) record that contains any
8332 necessary discriminants. It should be NULL if value_type (VAL) is
8333 an outer-level type (i.e., as opposed to a branch of a variant.) A
8334 variant field (unless unchecked) is replaced by a particular branch
8337 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8338 length are not statically known are discarded. As a consequence,
8339 VALADDR, ADDRESS and DVAL0 are ignored.
8341 NOTE: Limitations: For now, we assume that dynamic fields and
8342 variants occupy whole numbers of bytes. However, they need not be
8346 ada_template_to_fixed_record_type_1 (struct type *type,
8347 const gdb_byte *valaddr,
8348 CORE_ADDR address, struct value *dval0,
8349 int keep_dynamic_fields)
8351 struct value *mark = value_mark ();
8354 int nfields, bit_len;
8360 /* Compute the number of fields in this record type that are going
8361 to be processed: unless keep_dynamic_fields, this includes only
8362 fields whose position and length are static will be processed. */
8363 if (keep_dynamic_fields)
8364 nfields = TYPE_NFIELDS (type);
8368 while (nfields < TYPE_NFIELDS (type)
8369 && !ada_is_variant_part (type, nfields)
8370 && !is_dynamic_field (type, nfields))
8374 rtype = alloc_type_copy (type);
8375 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8376 INIT_CPLUS_SPECIFIC (rtype);
8377 TYPE_NFIELDS (rtype) = nfields;
8378 TYPE_FIELDS (rtype) = (struct field *)
8379 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8380 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8381 TYPE_NAME (rtype) = ada_type_name (type);
8382 TYPE_TAG_NAME (rtype) = NULL;
8383 TYPE_FIXED_INSTANCE (rtype) = 1;
8389 for (f = 0; f < nfields; f += 1)
8391 off = align_value (off, field_alignment (type, f))
8392 + TYPE_FIELD_BITPOS (type, f);
8393 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8394 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8396 if (ada_is_variant_part (type, f))
8401 else if (is_dynamic_field (type, f))
8403 const gdb_byte *field_valaddr = valaddr;
8404 CORE_ADDR field_address = address;
8405 struct type *field_type =
8406 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8410 /* rtype's length is computed based on the run-time
8411 value of discriminants. If the discriminants are not
8412 initialized, the type size may be completely bogus and
8413 GDB may fail to allocate a value for it. So check the
8414 size first before creating the value. */
8415 ada_ensure_varsize_limit (rtype);
8416 /* Using plain value_from_contents_and_address here
8417 causes problems because we will end up trying to
8418 resolve a type that is currently being
8420 dval = value_from_contents_and_address_unresolved (rtype,
8423 rtype = value_type (dval);
8428 /* If the type referenced by this field is an aligner type, we need
8429 to unwrap that aligner type, because its size might not be set.
8430 Keeping the aligner type would cause us to compute the wrong
8431 size for this field, impacting the offset of the all the fields
8432 that follow this one. */
8433 if (ada_is_aligner_type (field_type))
8435 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8437 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8438 field_address = cond_offset_target (field_address, field_offset);
8439 field_type = ada_aligned_type (field_type);
8442 field_valaddr = cond_offset_host (field_valaddr,
8443 off / TARGET_CHAR_BIT);
8444 field_address = cond_offset_target (field_address,
8445 off / TARGET_CHAR_BIT);
8447 /* Get the fixed type of the field. Note that, in this case,
8448 we do not want to get the real type out of the tag: if
8449 the current field is the parent part of a tagged record,
8450 we will get the tag of the object. Clearly wrong: the real
8451 type of the parent is not the real type of the child. We
8452 would end up in an infinite loop. */
8453 field_type = ada_get_base_type (field_type);
8454 field_type = ada_to_fixed_type (field_type, field_valaddr,
8455 field_address, dval, 0);
8456 /* If the field size is already larger than the maximum
8457 object size, then the record itself will necessarily
8458 be larger than the maximum object size. We need to make
8459 this check now, because the size might be so ridiculously
8460 large (due to an uninitialized variable in the inferior)
8461 that it would cause an overflow when adding it to the
8463 ada_ensure_varsize_limit (field_type);
8465 TYPE_FIELD_TYPE (rtype, f) = field_type;
8466 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8467 /* The multiplication can potentially overflow. But because
8468 the field length has been size-checked just above, and
8469 assuming that the maximum size is a reasonable value,
8470 an overflow should not happen in practice. So rather than
8471 adding overflow recovery code to this already complex code,
8472 we just assume that it's not going to happen. */
8474 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8478 /* Note: If this field's type is a typedef, it is important
8479 to preserve the typedef layer.
8481 Otherwise, we might be transforming a typedef to a fat
8482 pointer (encoding a pointer to an unconstrained array),
8483 into a basic fat pointer (encoding an unconstrained
8484 array). As both types are implemented using the same
8485 structure, the typedef is the only clue which allows us
8486 to distinguish between the two options. Stripping it
8487 would prevent us from printing this field appropriately. */
8488 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8489 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8490 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8492 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8495 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8497 /* We need to be careful of typedefs when computing
8498 the length of our field. If this is a typedef,
8499 get the length of the target type, not the length
8501 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8502 field_type = ada_typedef_target_type (field_type);
8505 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8508 if (off + fld_bit_len > bit_len)
8509 bit_len = off + fld_bit_len;
8511 TYPE_LENGTH (rtype) =
8512 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8515 /* We handle the variant part, if any, at the end because of certain
8516 odd cases in which it is re-ordered so as NOT to be the last field of
8517 the record. This can happen in the presence of representation
8519 if (variant_field >= 0)
8521 struct type *branch_type;
8523 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8527 /* Using plain value_from_contents_and_address here causes
8528 problems because we will end up trying to resolve a type
8529 that is currently being constructed. */
8530 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8532 rtype = value_type (dval);
8538 to_fixed_variant_branch_type
8539 (TYPE_FIELD_TYPE (type, variant_field),
8540 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8541 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8542 if (branch_type == NULL)
8544 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8545 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8546 TYPE_NFIELDS (rtype) -= 1;
8550 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8551 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8553 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8555 if (off + fld_bit_len > bit_len)
8556 bit_len = off + fld_bit_len;
8557 TYPE_LENGTH (rtype) =
8558 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8562 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8563 should contain the alignment of that record, which should be a strictly
8564 positive value. If null or negative, then something is wrong, most
8565 probably in the debug info. In that case, we don't round up the size
8566 of the resulting type. If this record is not part of another structure,
8567 the current RTYPE length might be good enough for our purposes. */
8568 if (TYPE_LENGTH (type) <= 0)
8570 if (TYPE_NAME (rtype))
8571 warning (_("Invalid type size for `%s' detected: %d."),
8572 TYPE_NAME (rtype), TYPE_LENGTH (type));
8574 warning (_("Invalid type size for <unnamed> detected: %d."),
8575 TYPE_LENGTH (type));
8579 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8580 TYPE_LENGTH (type));
8583 value_free_to_mark (mark);
8584 if (TYPE_LENGTH (rtype) > varsize_limit)
8585 error (_("record type with dynamic size is larger than varsize-limit"));
8589 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8592 static struct type *
8593 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8594 CORE_ADDR address, struct value *dval0)
8596 return ada_template_to_fixed_record_type_1 (type, valaddr,
8600 /* An ordinary record type in which ___XVL-convention fields and
8601 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8602 static approximations, containing all possible fields. Uses
8603 no runtime values. Useless for use in values, but that's OK,
8604 since the results are used only for type determinations. Works on both
8605 structs and unions. Representation note: to save space, we memorize
8606 the result of this function in the TYPE_TARGET_TYPE of the
8609 static struct type *
8610 template_to_static_fixed_type (struct type *type0)
8616 /* No need no do anything if the input type is already fixed. */
8617 if (TYPE_FIXED_INSTANCE (type0))
8620 /* Likewise if we already have computed the static approximation. */
8621 if (TYPE_TARGET_TYPE (type0) != NULL)
8622 return TYPE_TARGET_TYPE (type0);
8624 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8626 nfields = TYPE_NFIELDS (type0);
8628 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8629 recompute all over next time. */
8630 TYPE_TARGET_TYPE (type0) = type;
8632 for (f = 0; f < nfields; f += 1)
8634 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8635 struct type *new_type;
8637 if (is_dynamic_field (type0, f))
8639 field_type = ada_check_typedef (field_type);
8640 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8643 new_type = static_unwrap_type (field_type);
8645 if (new_type != field_type)
8647 /* Clone TYPE0 only the first time we get a new field type. */
8650 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8651 TYPE_CODE (type) = TYPE_CODE (type0);
8652 INIT_CPLUS_SPECIFIC (type);
8653 TYPE_NFIELDS (type) = nfields;
8654 TYPE_FIELDS (type) = (struct field *)
8655 TYPE_ALLOC (type, nfields * sizeof (struct field));
8656 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8657 sizeof (struct field) * nfields);
8658 TYPE_NAME (type) = ada_type_name (type0);
8659 TYPE_TAG_NAME (type) = NULL;
8660 TYPE_FIXED_INSTANCE (type) = 1;
8661 TYPE_LENGTH (type) = 0;
8663 TYPE_FIELD_TYPE (type, f) = new_type;
8664 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8671 /* Given an object of type TYPE whose contents are at VALADDR and
8672 whose address in memory is ADDRESS, returns a revision of TYPE,
8673 which should be a non-dynamic-sized record, in which the variant
8674 part, if any, is replaced with the appropriate branch. Looks
8675 for discriminant values in DVAL0, which can be NULL if the record
8676 contains the necessary discriminant values. */
8678 static struct type *
8679 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8680 CORE_ADDR address, struct value *dval0)
8682 struct value *mark = value_mark ();
8685 struct type *branch_type;
8686 int nfields = TYPE_NFIELDS (type);
8687 int variant_field = variant_field_index (type);
8689 if (variant_field == -1)
8694 dval = value_from_contents_and_address (type, valaddr, address);
8695 type = value_type (dval);
8700 rtype = alloc_type_copy (type);
8701 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8702 INIT_CPLUS_SPECIFIC (rtype);
8703 TYPE_NFIELDS (rtype) = nfields;
8704 TYPE_FIELDS (rtype) =
8705 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8706 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8707 sizeof (struct field) * nfields);
8708 TYPE_NAME (rtype) = ada_type_name (type);
8709 TYPE_TAG_NAME (rtype) = NULL;
8710 TYPE_FIXED_INSTANCE (rtype) = 1;
8711 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8713 branch_type = to_fixed_variant_branch_type
8714 (TYPE_FIELD_TYPE (type, variant_field),
8715 cond_offset_host (valaddr,
8716 TYPE_FIELD_BITPOS (type, variant_field)
8718 cond_offset_target (address,
8719 TYPE_FIELD_BITPOS (type, variant_field)
8720 / TARGET_CHAR_BIT), dval);
8721 if (branch_type == NULL)
8725 for (f = variant_field + 1; f < nfields; f += 1)
8726 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8727 TYPE_NFIELDS (rtype) -= 1;
8731 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8732 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8733 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8734 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8736 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8738 value_free_to_mark (mark);
8742 /* An ordinary record type (with fixed-length fields) that describes
8743 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8744 beginning of this section]. Any necessary discriminants' values
8745 should be in DVAL, a record value; it may be NULL if the object
8746 at ADDR itself contains any necessary discriminant values.
8747 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8748 values from the record are needed. Except in the case that DVAL,
8749 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8750 unchecked) is replaced by a particular branch of the variant.
8752 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8753 is questionable and may be removed. It can arise during the
8754 processing of an unconstrained-array-of-record type where all the
8755 variant branches have exactly the same size. This is because in
8756 such cases, the compiler does not bother to use the XVS convention
8757 when encoding the record. I am currently dubious of this
8758 shortcut and suspect the compiler should be altered. FIXME. */
8760 static struct type *
8761 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8762 CORE_ADDR address, struct value *dval)
8764 struct type *templ_type;
8766 if (TYPE_FIXED_INSTANCE (type0))
8769 templ_type = dynamic_template_type (type0);
8771 if (templ_type != NULL)
8772 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8773 else if (variant_field_index (type0) >= 0)
8775 if (dval == NULL && valaddr == NULL && address == 0)
8777 return to_record_with_fixed_variant_part (type0, valaddr, address,
8782 TYPE_FIXED_INSTANCE (type0) = 1;
8788 /* An ordinary record type (with fixed-length fields) that describes
8789 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8790 union type. Any necessary discriminants' values should be in DVAL,
8791 a record value. That is, this routine selects the appropriate
8792 branch of the union at ADDR according to the discriminant value
8793 indicated in the union's type name. Returns VAR_TYPE0 itself if
8794 it represents a variant subject to a pragma Unchecked_Union. */
8796 static struct type *
8797 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8798 CORE_ADDR address, struct value *dval)
8801 struct type *templ_type;
8802 struct type *var_type;
8804 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8805 var_type = TYPE_TARGET_TYPE (var_type0);
8807 var_type = var_type0;
8809 templ_type = ada_find_parallel_type (var_type, "___XVU");
8811 if (templ_type != NULL)
8812 var_type = templ_type;
8814 if (is_unchecked_variant (var_type, value_type (dval)))
8817 ada_which_variant_applies (var_type,
8818 value_type (dval), value_contents (dval));
8821 return empty_record (var_type);
8822 else if (is_dynamic_field (var_type, which))
8823 return to_fixed_record_type
8824 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8825 valaddr, address, dval);
8826 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8828 to_fixed_record_type
8829 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8831 return TYPE_FIELD_TYPE (var_type, which);
8834 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8835 ENCODING_TYPE, a type following the GNAT conventions for discrete
8836 type encodings, only carries redundant information. */
8839 ada_is_redundant_range_encoding (struct type *range_type,
8840 struct type *encoding_type)
8842 const char *bounds_str;
8846 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8848 if (TYPE_CODE (get_base_type (range_type))
8849 != TYPE_CODE (get_base_type (encoding_type)))
8851 /* The compiler probably used a simple base type to describe
8852 the range type instead of the range's actual base type,
8853 expecting us to get the real base type from the encoding
8854 anyway. In this situation, the encoding cannot be ignored
8859 if (is_dynamic_type (range_type))
8862 if (TYPE_NAME (encoding_type) == NULL)
8865 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8866 if (bounds_str == NULL)
8869 n = 8; /* Skip "___XDLU_". */
8870 if (!ada_scan_number (bounds_str, n, &lo, &n))
8872 if (TYPE_LOW_BOUND (range_type) != lo)
8875 n += 2; /* Skip the "__" separator between the two bounds. */
8876 if (!ada_scan_number (bounds_str, n, &hi, &n))
8878 if (TYPE_HIGH_BOUND (range_type) != hi)
8884 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8885 a type following the GNAT encoding for describing array type
8886 indices, only carries redundant information. */
8889 ada_is_redundant_index_type_desc (struct type *array_type,
8890 struct type *desc_type)
8892 struct type *this_layer = check_typedef (array_type);
8895 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8897 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8898 TYPE_FIELD_TYPE (desc_type, i)))
8900 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8906 /* Assuming that TYPE0 is an array type describing the type of a value
8907 at ADDR, and that DVAL describes a record containing any
8908 discriminants used in TYPE0, returns a type for the value that
8909 contains no dynamic components (that is, no components whose sizes
8910 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8911 true, gives an error message if the resulting type's size is over
8914 static struct type *
8915 to_fixed_array_type (struct type *type0, struct value *dval,
8918 struct type *index_type_desc;
8919 struct type *result;
8920 int constrained_packed_array_p;
8921 static const char *xa_suffix = "___XA";
8923 type0 = ada_check_typedef (type0);
8924 if (TYPE_FIXED_INSTANCE (type0))
8927 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8928 if (constrained_packed_array_p)
8929 type0 = decode_constrained_packed_array_type (type0);
8931 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8933 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8934 encoding suffixed with 'P' may still be generated. If so,
8935 it should be used to find the XA type. */
8937 if (index_type_desc == NULL)
8939 const char *type_name = ada_type_name (type0);
8941 if (type_name != NULL)
8943 const int len = strlen (type_name);
8944 char *name = (char *) alloca (len + strlen (xa_suffix));
8946 if (type_name[len - 1] == 'P')
8948 strcpy (name, type_name);
8949 strcpy (name + len - 1, xa_suffix);
8950 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8955 ada_fixup_array_indexes_type (index_type_desc);
8956 if (index_type_desc != NULL
8957 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8959 /* Ignore this ___XA parallel type, as it does not bring any
8960 useful information. This allows us to avoid creating fixed
8961 versions of the array's index types, which would be identical
8962 to the original ones. This, in turn, can also help avoid
8963 the creation of fixed versions of the array itself. */
8964 index_type_desc = NULL;
8967 if (index_type_desc == NULL)
8969 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8971 /* NOTE: elt_type---the fixed version of elt_type0---should never
8972 depend on the contents of the array in properly constructed
8974 /* Create a fixed version of the array element type.
8975 We're not providing the address of an element here,
8976 and thus the actual object value cannot be inspected to do
8977 the conversion. This should not be a problem, since arrays of
8978 unconstrained objects are not allowed. In particular, all
8979 the elements of an array of a tagged type should all be of
8980 the same type specified in the debugging info. No need to
8981 consult the object tag. */
8982 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8984 /* Make sure we always create a new array type when dealing with
8985 packed array types, since we're going to fix-up the array
8986 type length and element bitsize a little further down. */
8987 if (elt_type0 == elt_type && !constrained_packed_array_p)
8990 result = create_array_type (alloc_type_copy (type0),
8991 elt_type, TYPE_INDEX_TYPE (type0));
8996 struct type *elt_type0;
8999 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
9000 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9002 /* NOTE: result---the fixed version of elt_type0---should never
9003 depend on the contents of the array in properly constructed
9005 /* Create a fixed version of the array element type.
9006 We're not providing the address of an element here,
9007 and thus the actual object value cannot be inspected to do
9008 the conversion. This should not be a problem, since arrays of
9009 unconstrained objects are not allowed. In particular, all
9010 the elements of an array of a tagged type should all be of
9011 the same type specified in the debugging info. No need to
9012 consult the object tag. */
9014 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9017 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9019 struct type *range_type =
9020 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9022 result = create_array_type (alloc_type_copy (elt_type0),
9023 result, range_type);
9024 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9026 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9027 error (_("array type with dynamic size is larger than varsize-limit"));
9030 /* We want to preserve the type name. This can be useful when
9031 trying to get the type name of a value that has already been
9032 printed (for instance, if the user did "print VAR; whatis $". */
9033 TYPE_NAME (result) = TYPE_NAME (type0);
9035 if (constrained_packed_array_p)
9037 /* So far, the resulting type has been created as if the original
9038 type was a regular (non-packed) array type. As a result, the
9039 bitsize of the array elements needs to be set again, and the array
9040 length needs to be recomputed based on that bitsize. */
9041 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9042 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9044 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9045 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9046 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9047 TYPE_LENGTH (result)++;
9050 TYPE_FIXED_INSTANCE (result) = 1;
9055 /* A standard type (containing no dynamically sized components)
9056 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9057 DVAL describes a record containing any discriminants used in TYPE0,
9058 and may be NULL if there are none, or if the object of type TYPE at
9059 ADDRESS or in VALADDR contains these discriminants.
9061 If CHECK_TAG is not null, in the case of tagged types, this function
9062 attempts to locate the object's tag and use it to compute the actual
9063 type. However, when ADDRESS is null, we cannot use it to determine the
9064 location of the tag, and therefore compute the tagged type's actual type.
9065 So we return the tagged type without consulting the tag. */
9067 static struct type *
9068 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9069 CORE_ADDR address, struct value *dval, int check_tag)
9071 type = ada_check_typedef (type);
9072 switch (TYPE_CODE (type))
9076 case TYPE_CODE_STRUCT:
9078 struct type *static_type = to_static_fixed_type (type);
9079 struct type *fixed_record_type =
9080 to_fixed_record_type (type, valaddr, address, NULL);
9082 /* If STATIC_TYPE is a tagged type and we know the object's address,
9083 then we can determine its tag, and compute the object's actual
9084 type from there. Note that we have to use the fixed record
9085 type (the parent part of the record may have dynamic fields
9086 and the way the location of _tag is expressed may depend on
9089 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9092 value_tag_from_contents_and_address
9096 struct type *real_type = type_from_tag (tag);
9098 value_from_contents_and_address (fixed_record_type,
9101 fixed_record_type = value_type (obj);
9102 if (real_type != NULL)
9103 return to_fixed_record_type
9105 value_address (ada_tag_value_at_base_address (obj)), NULL);
9108 /* Check to see if there is a parallel ___XVZ variable.
9109 If there is, then it provides the actual size of our type. */
9110 else if (ada_type_name (fixed_record_type) != NULL)
9112 const char *name = ada_type_name (fixed_record_type);
9114 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9115 bool xvz_found = false;
9118 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9121 xvz_found = get_int_var_value (xvz_name, size);
9123 CATCH (except, RETURN_MASK_ERROR)
9125 /* We found the variable, but somehow failed to read
9126 its value. Rethrow the same error, but with a little
9127 bit more information, to help the user understand
9128 what went wrong (Eg: the variable might have been
9130 throw_error (except.error,
9131 _("unable to read value of %s (%s)"),
9132 xvz_name, except.message);
9136 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9138 fixed_record_type = copy_type (fixed_record_type);
9139 TYPE_LENGTH (fixed_record_type) = size;
9141 /* The FIXED_RECORD_TYPE may have be a stub. We have
9142 observed this when the debugging info is STABS, and
9143 apparently it is something that is hard to fix.
9145 In practice, we don't need the actual type definition
9146 at all, because the presence of the XVZ variable allows us
9147 to assume that there must be a XVS type as well, which we
9148 should be able to use later, when we need the actual type
9151 In the meantime, pretend that the "fixed" type we are
9152 returning is NOT a stub, because this can cause trouble
9153 when using this type to create new types targeting it.
9154 Indeed, the associated creation routines often check
9155 whether the target type is a stub and will try to replace
9156 it, thus using a type with the wrong size. This, in turn,
9157 might cause the new type to have the wrong size too.
9158 Consider the case of an array, for instance, where the size
9159 of the array is computed from the number of elements in
9160 our array multiplied by the size of its element. */
9161 TYPE_STUB (fixed_record_type) = 0;
9164 return fixed_record_type;
9166 case TYPE_CODE_ARRAY:
9167 return to_fixed_array_type (type, dval, 1);
9168 case TYPE_CODE_UNION:
9172 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9176 /* The same as ada_to_fixed_type_1, except that it preserves the type
9177 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9179 The typedef layer needs be preserved in order to differentiate between
9180 arrays and array pointers when both types are implemented using the same
9181 fat pointer. In the array pointer case, the pointer is encoded as
9182 a typedef of the pointer type. For instance, considering:
9184 type String_Access is access String;
9185 S1 : String_Access := null;
9187 To the debugger, S1 is defined as a typedef of type String. But
9188 to the user, it is a pointer. So if the user tries to print S1,
9189 we should not dereference the array, but print the array address
9192 If we didn't preserve the typedef layer, we would lose the fact that
9193 the type is to be presented as a pointer (needs de-reference before
9194 being printed). And we would also use the source-level type name. */
9197 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9198 CORE_ADDR address, struct value *dval, int check_tag)
9201 struct type *fixed_type =
9202 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9204 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9205 then preserve the typedef layer.
9207 Implementation note: We can only check the main-type portion of
9208 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9209 from TYPE now returns a type that has the same instance flags
9210 as TYPE. For instance, if TYPE is a "typedef const", and its
9211 target type is a "struct", then the typedef elimination will return
9212 a "const" version of the target type. See check_typedef for more
9213 details about how the typedef layer elimination is done.
9215 brobecker/2010-11-19: It seems to me that the only case where it is
9216 useful to preserve the typedef layer is when dealing with fat pointers.
9217 Perhaps, we could add a check for that and preserve the typedef layer
9218 only in that situation. But this seems unecessary so far, probably
9219 because we call check_typedef/ada_check_typedef pretty much everywhere.
9221 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9222 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9223 == TYPE_MAIN_TYPE (fixed_type)))
9229 /* A standard (static-sized) type corresponding as well as possible to
9230 TYPE0, but based on no runtime data. */
9232 static struct type *
9233 to_static_fixed_type (struct type *type0)
9240 if (TYPE_FIXED_INSTANCE (type0))
9243 type0 = ada_check_typedef (type0);
9245 switch (TYPE_CODE (type0))
9249 case TYPE_CODE_STRUCT:
9250 type = dynamic_template_type (type0);
9252 return template_to_static_fixed_type (type);
9254 return template_to_static_fixed_type (type0);
9255 case TYPE_CODE_UNION:
9256 type = ada_find_parallel_type (type0, "___XVU");
9258 return template_to_static_fixed_type (type);
9260 return template_to_static_fixed_type (type0);
9264 /* A static approximation of TYPE with all type wrappers removed. */
9266 static struct type *
9267 static_unwrap_type (struct type *type)
9269 if (ada_is_aligner_type (type))
9271 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9272 if (ada_type_name (type1) == NULL)
9273 TYPE_NAME (type1) = ada_type_name (type);
9275 return static_unwrap_type (type1);
9279 struct type *raw_real_type = ada_get_base_type (type);
9281 if (raw_real_type == type)
9284 return to_static_fixed_type (raw_real_type);
9288 /* In some cases, incomplete and private types require
9289 cross-references that are not resolved as records (for example,
9291 type FooP is access Foo;
9293 type Foo is array ...;
9294 ). In these cases, since there is no mechanism for producing
9295 cross-references to such types, we instead substitute for FooP a
9296 stub enumeration type that is nowhere resolved, and whose tag is
9297 the name of the actual type. Call these types "non-record stubs". */
9299 /* A type equivalent to TYPE that is not a non-record stub, if one
9300 exists, otherwise TYPE. */
9303 ada_check_typedef (struct type *type)
9308 /* If our type is a typedef type of a fat pointer, then we're done.
9309 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9310 what allows us to distinguish between fat pointers that represent
9311 array types, and fat pointers that represent array access types
9312 (in both cases, the compiler implements them as fat pointers). */
9313 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9314 && is_thick_pntr (ada_typedef_target_type (type)))
9317 type = check_typedef (type);
9318 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9319 || !TYPE_STUB (type)
9320 || TYPE_TAG_NAME (type) == NULL)
9324 const char *name = TYPE_TAG_NAME (type);
9325 struct type *type1 = ada_find_any_type (name);
9330 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9331 stubs pointing to arrays, as we don't create symbols for array
9332 types, only for the typedef-to-array types). If that's the case,
9333 strip the typedef layer. */
9334 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9335 type1 = ada_check_typedef (type1);
9341 /* A value representing the data at VALADDR/ADDRESS as described by
9342 type TYPE0, but with a standard (static-sized) type that correctly
9343 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9344 type, then return VAL0 [this feature is simply to avoid redundant
9345 creation of struct values]. */
9347 static struct value *
9348 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9351 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9353 if (type == type0 && val0 != NULL)
9356 if (VALUE_LVAL (val0) != lval_memory)
9358 /* Our value does not live in memory; it could be a convenience
9359 variable, for instance. Create a not_lval value using val0's
9361 return value_from_contents (type, value_contents (val0));
9364 return value_from_contents_and_address (type, 0, address);
9367 /* A value representing VAL, but with a standard (static-sized) type
9368 that correctly describes it. Does not necessarily create a new
9372 ada_to_fixed_value (struct value *val)
9374 val = unwrap_value (val);
9375 val = ada_to_fixed_value_create (value_type (val),
9376 value_address (val),
9384 /* Table mapping attribute numbers to names.
9385 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9387 static const char *attribute_names[] = {
9405 ada_attribute_name (enum exp_opcode n)
9407 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9408 return attribute_names[n - OP_ATR_FIRST + 1];
9410 return attribute_names[0];
9413 /* Evaluate the 'POS attribute applied to ARG. */
9416 pos_atr (struct value *arg)
9418 struct value *val = coerce_ref (arg);
9419 struct type *type = value_type (val);
9422 if (!discrete_type_p (type))
9423 error (_("'POS only defined on discrete types"));
9425 if (!discrete_position (type, value_as_long (val), &result))
9426 error (_("enumeration value is invalid: can't find 'POS"));
9431 static struct value *
9432 value_pos_atr (struct type *type, struct value *arg)
9434 return value_from_longest (type, pos_atr (arg));
9437 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9439 static struct value *
9440 value_val_atr (struct type *type, struct value *arg)
9442 if (!discrete_type_p (type))
9443 error (_("'VAL only defined on discrete types"));
9444 if (!integer_type_p (value_type (arg)))
9445 error (_("'VAL requires integral argument"));
9447 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9449 long pos = value_as_long (arg);
9451 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9452 error (_("argument to 'VAL out of range"));
9453 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9456 return value_from_longest (type, value_as_long (arg));
9462 /* True if TYPE appears to be an Ada character type.
9463 [At the moment, this is true only for Character and Wide_Character;
9464 It is a heuristic test that could stand improvement]. */
9467 ada_is_character_type (struct type *type)
9471 /* If the type code says it's a character, then assume it really is,
9472 and don't check any further. */
9473 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9476 /* Otherwise, assume it's a character type iff it is a discrete type
9477 with a known character type name. */
9478 name = ada_type_name (type);
9479 return (name != NULL
9480 && (TYPE_CODE (type) == TYPE_CODE_INT
9481 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9482 && (strcmp (name, "character") == 0
9483 || strcmp (name, "wide_character") == 0
9484 || strcmp (name, "wide_wide_character") == 0
9485 || strcmp (name, "unsigned char") == 0));
9488 /* True if TYPE appears to be an Ada string type. */
9491 ada_is_string_type (struct type *type)
9493 type = ada_check_typedef (type);
9495 && TYPE_CODE (type) != TYPE_CODE_PTR
9496 && (ada_is_simple_array_type (type)
9497 || ada_is_array_descriptor_type (type))
9498 && ada_array_arity (type) == 1)
9500 struct type *elttype = ada_array_element_type (type, 1);
9502 return ada_is_character_type (elttype);
9508 /* The compiler sometimes provides a parallel XVS type for a given
9509 PAD type. Normally, it is safe to follow the PAD type directly,
9510 but older versions of the compiler have a bug that causes the offset
9511 of its "F" field to be wrong. Following that field in that case
9512 would lead to incorrect results, but this can be worked around
9513 by ignoring the PAD type and using the associated XVS type instead.
9515 Set to True if the debugger should trust the contents of PAD types.
9516 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9517 static int trust_pad_over_xvs = 1;
9519 /* True if TYPE is a struct type introduced by the compiler to force the
9520 alignment of a value. Such types have a single field with a
9521 distinctive name. */
9524 ada_is_aligner_type (struct type *type)
9526 type = ada_check_typedef (type);
9528 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9531 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9532 && TYPE_NFIELDS (type) == 1
9533 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9536 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9537 the parallel type. */
9540 ada_get_base_type (struct type *raw_type)
9542 struct type *real_type_namer;
9543 struct type *raw_real_type;
9545 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9548 if (ada_is_aligner_type (raw_type))
9549 /* The encoding specifies that we should always use the aligner type.
9550 So, even if this aligner type has an associated XVS type, we should
9553 According to the compiler gurus, an XVS type parallel to an aligner
9554 type may exist because of a stabs limitation. In stabs, aligner
9555 types are empty because the field has a variable-sized type, and
9556 thus cannot actually be used as an aligner type. As a result,
9557 we need the associated parallel XVS type to decode the type.
9558 Since the policy in the compiler is to not change the internal
9559 representation based on the debugging info format, we sometimes
9560 end up having a redundant XVS type parallel to the aligner type. */
9563 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9564 if (real_type_namer == NULL
9565 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9566 || TYPE_NFIELDS (real_type_namer) != 1)
9569 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9571 /* This is an older encoding form where the base type needs to be
9572 looked up by name. We prefer the newer enconding because it is
9574 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9575 if (raw_real_type == NULL)
9578 return raw_real_type;
9581 /* The field in our XVS type is a reference to the base type. */
9582 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9585 /* The type of value designated by TYPE, with all aligners removed. */
9588 ada_aligned_type (struct type *type)
9590 if (ada_is_aligner_type (type))
9591 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9593 return ada_get_base_type (type);
9597 /* The address of the aligned value in an object at address VALADDR
9598 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9601 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9603 if (ada_is_aligner_type (type))
9604 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9606 TYPE_FIELD_BITPOS (type,
9607 0) / TARGET_CHAR_BIT);
9614 /* The printed representation of an enumeration literal with encoded
9615 name NAME. The value is good to the next call of ada_enum_name. */
9617 ada_enum_name (const char *name)
9619 static char *result;
9620 static size_t result_len = 0;
9623 /* First, unqualify the enumeration name:
9624 1. Search for the last '.' character. If we find one, then skip
9625 all the preceding characters, the unqualified name starts
9626 right after that dot.
9627 2. Otherwise, we may be debugging on a target where the compiler
9628 translates dots into "__". Search forward for double underscores,
9629 but stop searching when we hit an overloading suffix, which is
9630 of the form "__" followed by digits. */
9632 tmp = strrchr (name, '.');
9637 while ((tmp = strstr (name, "__")) != NULL)
9639 if (isdigit (tmp[2]))
9650 if (name[1] == 'U' || name[1] == 'W')
9652 if (sscanf (name + 2, "%x", &v) != 1)
9658 GROW_VECT (result, result_len, 16);
9659 if (isascii (v) && isprint (v))
9660 xsnprintf (result, result_len, "'%c'", v);
9661 else if (name[1] == 'U')
9662 xsnprintf (result, result_len, "[\"%02x\"]", v);
9664 xsnprintf (result, result_len, "[\"%04x\"]", v);
9670 tmp = strstr (name, "__");
9672 tmp = strstr (name, "$");
9675 GROW_VECT (result, result_len, tmp - name + 1);
9676 strncpy (result, name, tmp - name);
9677 result[tmp - name] = '\0';
9685 /* Evaluate the subexpression of EXP starting at *POS as for
9686 evaluate_type, updating *POS to point just past the evaluated
9689 static struct value *
9690 evaluate_subexp_type (struct expression *exp, int *pos)
9692 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9695 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9698 static struct value *
9699 unwrap_value (struct value *val)
9701 struct type *type = ada_check_typedef (value_type (val));
9703 if (ada_is_aligner_type (type))
9705 struct value *v = ada_value_struct_elt (val, "F", 0);
9706 struct type *val_type = ada_check_typedef (value_type (v));
9708 if (ada_type_name (val_type) == NULL)
9709 TYPE_NAME (val_type) = ada_type_name (type);
9711 return unwrap_value (v);
9715 struct type *raw_real_type =
9716 ada_check_typedef (ada_get_base_type (type));
9718 /* If there is no parallel XVS or XVE type, then the value is
9719 already unwrapped. Return it without further modification. */
9720 if ((type == raw_real_type)
9721 && ada_find_parallel_type (type, "___XVE") == NULL)
9725 coerce_unspec_val_to_type
9726 (val, ada_to_fixed_type (raw_real_type, 0,
9727 value_address (val),
9732 static struct value *
9733 cast_from_fixed (struct type *type, struct value *arg)
9735 struct value *scale = ada_scaling_factor (value_type (arg));
9736 arg = value_cast (value_type (scale), arg);
9738 arg = value_binop (arg, scale, BINOP_MUL);
9739 return value_cast (type, arg);
9742 static struct value *
9743 cast_to_fixed (struct type *type, struct value *arg)
9745 if (type == value_type (arg))
9748 struct value *scale = ada_scaling_factor (type);
9749 if (ada_is_fixed_point_type (value_type (arg)))
9750 arg = cast_from_fixed (value_type (scale), arg);
9752 arg = value_cast (value_type (scale), arg);
9754 arg = value_binop (arg, scale, BINOP_DIV);
9755 return value_cast (type, arg);
9758 /* Given two array types T1 and T2, return nonzero iff both arrays
9759 contain the same number of elements. */
9762 ada_same_array_size_p (struct type *t1, struct type *t2)
9764 LONGEST lo1, hi1, lo2, hi2;
9766 /* Get the array bounds in order to verify that the size of
9767 the two arrays match. */
9768 if (!get_array_bounds (t1, &lo1, &hi1)
9769 || !get_array_bounds (t2, &lo2, &hi2))
9770 error (_("unable to determine array bounds"));
9772 /* To make things easier for size comparison, normalize a bit
9773 the case of empty arrays by making sure that the difference
9774 between upper bound and lower bound is always -1. */
9780 return (hi1 - lo1 == hi2 - lo2);
9783 /* Assuming that VAL is an array of integrals, and TYPE represents
9784 an array with the same number of elements, but with wider integral
9785 elements, return an array "casted" to TYPE. In practice, this
9786 means that the returned array is built by casting each element
9787 of the original array into TYPE's (wider) element type. */
9789 static struct value *
9790 ada_promote_array_of_integrals (struct type *type, struct value *val)
9792 struct type *elt_type = TYPE_TARGET_TYPE (type);
9797 /* Verify that both val and type are arrays of scalars, and
9798 that the size of val's elements is smaller than the size
9799 of type's element. */
9800 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9801 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9802 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9803 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9804 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9805 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9807 if (!get_array_bounds (type, &lo, &hi))
9808 error (_("unable to determine array bounds"));
9810 res = allocate_value (type);
9812 /* Promote each array element. */
9813 for (i = 0; i < hi - lo + 1; i++)
9815 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9817 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9818 value_contents_all (elt), TYPE_LENGTH (elt_type));
9824 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9825 return the converted value. */
9827 static struct value *
9828 coerce_for_assign (struct type *type, struct value *val)
9830 struct type *type2 = value_type (val);
9835 type2 = ada_check_typedef (type2);
9836 type = ada_check_typedef (type);
9838 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9839 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9841 val = ada_value_ind (val);
9842 type2 = value_type (val);
9845 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9846 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9848 if (!ada_same_array_size_p (type, type2))
9849 error (_("cannot assign arrays of different length"));
9851 if (is_integral_type (TYPE_TARGET_TYPE (type))
9852 && is_integral_type (TYPE_TARGET_TYPE (type2))
9853 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9854 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9856 /* Allow implicit promotion of the array elements to
9858 return ada_promote_array_of_integrals (type, val);
9861 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9862 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9863 error (_("Incompatible types in assignment"));
9864 deprecated_set_value_type (val, type);
9869 static struct value *
9870 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9873 struct type *type1, *type2;
9876 arg1 = coerce_ref (arg1);
9877 arg2 = coerce_ref (arg2);
9878 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9879 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9881 if (TYPE_CODE (type1) != TYPE_CODE_INT
9882 || TYPE_CODE (type2) != TYPE_CODE_INT)
9883 return value_binop (arg1, arg2, op);
9892 return value_binop (arg1, arg2, op);
9895 v2 = value_as_long (arg2);
9897 error (_("second operand of %s must not be zero."), op_string (op));
9899 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9900 return value_binop (arg1, arg2, op);
9902 v1 = value_as_long (arg1);
9907 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9908 v += v > 0 ? -1 : 1;
9916 /* Should not reach this point. */
9920 val = allocate_value (type1);
9921 store_unsigned_integer (value_contents_raw (val),
9922 TYPE_LENGTH (value_type (val)),
9923 gdbarch_byte_order (get_type_arch (type1)), v);
9928 ada_value_equal (struct value *arg1, struct value *arg2)
9930 if (ada_is_direct_array_type (value_type (arg1))
9931 || ada_is_direct_array_type (value_type (arg2)))
9933 struct type *arg1_type, *arg2_type;
9935 /* Automatically dereference any array reference before
9936 we attempt to perform the comparison. */
9937 arg1 = ada_coerce_ref (arg1);
9938 arg2 = ada_coerce_ref (arg2);
9940 arg1 = ada_coerce_to_simple_array (arg1);
9941 arg2 = ada_coerce_to_simple_array (arg2);
9943 arg1_type = ada_check_typedef (value_type (arg1));
9944 arg2_type = ada_check_typedef (value_type (arg2));
9946 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9947 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9948 error (_("Attempt to compare array with non-array"));
9949 /* FIXME: The following works only for types whose
9950 representations use all bits (no padding or undefined bits)
9951 and do not have user-defined equality. */
9952 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9953 && memcmp (value_contents (arg1), value_contents (arg2),
9954 TYPE_LENGTH (arg1_type)) == 0);
9956 return value_equal (arg1, arg2);
9959 /* Total number of component associations in the aggregate starting at
9960 index PC in EXP. Assumes that index PC is the start of an
9964 num_component_specs (struct expression *exp, int pc)
9968 m = exp->elts[pc + 1].longconst;
9971 for (i = 0; i < m; i += 1)
9973 switch (exp->elts[pc].opcode)
9979 n += exp->elts[pc + 1].longconst;
9982 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9987 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9988 component of LHS (a simple array or a record), updating *POS past
9989 the expression, assuming that LHS is contained in CONTAINER. Does
9990 not modify the inferior's memory, nor does it modify LHS (unless
9991 LHS == CONTAINER). */
9994 assign_component (struct value *container, struct value *lhs, LONGEST index,
9995 struct expression *exp, int *pos)
9997 struct value *mark = value_mark ();
9999 struct type *lhs_type = check_typedef (value_type (lhs));
10001 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
10003 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
10004 struct value *index_val = value_from_longest (index_type, index);
10006 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
10010 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
10011 elt = ada_to_fixed_value (elt);
10014 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10015 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10017 value_assign_to_component (container, elt,
10018 ada_evaluate_subexp (NULL, exp, pos,
10021 value_free_to_mark (mark);
10024 /* Assuming that LHS represents an lvalue having a record or array
10025 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10026 of that aggregate's value to LHS, advancing *POS past the
10027 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10028 lvalue containing LHS (possibly LHS itself). Does not modify
10029 the inferior's memory, nor does it modify the contents of
10030 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10032 static struct value *
10033 assign_aggregate (struct value *container,
10034 struct value *lhs, struct expression *exp,
10035 int *pos, enum noside noside)
10037 struct type *lhs_type;
10038 int n = exp->elts[*pos+1].longconst;
10039 LONGEST low_index, high_index;
10042 int max_indices, num_indices;
10046 if (noside != EVAL_NORMAL)
10048 for (i = 0; i < n; i += 1)
10049 ada_evaluate_subexp (NULL, exp, pos, noside);
10053 container = ada_coerce_ref (container);
10054 if (ada_is_direct_array_type (value_type (container)))
10055 container = ada_coerce_to_simple_array (container);
10056 lhs = ada_coerce_ref (lhs);
10057 if (!deprecated_value_modifiable (lhs))
10058 error (_("Left operand of assignment is not a modifiable lvalue."));
10060 lhs_type = check_typedef (value_type (lhs));
10061 if (ada_is_direct_array_type (lhs_type))
10063 lhs = ada_coerce_to_simple_array (lhs);
10064 lhs_type = check_typedef (value_type (lhs));
10065 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10066 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10068 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10071 high_index = num_visible_fields (lhs_type) - 1;
10074 error (_("Left-hand side must be array or record."));
10076 num_specs = num_component_specs (exp, *pos - 3);
10077 max_indices = 4 * num_specs + 4;
10078 indices = XALLOCAVEC (LONGEST, max_indices);
10079 indices[0] = indices[1] = low_index - 1;
10080 indices[2] = indices[3] = high_index + 1;
10083 for (i = 0; i < n; i += 1)
10085 switch (exp->elts[*pos].opcode)
10088 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10089 &num_indices, max_indices,
10090 low_index, high_index);
10092 case OP_POSITIONAL:
10093 aggregate_assign_positional (container, lhs, exp, pos, indices,
10094 &num_indices, max_indices,
10095 low_index, high_index);
10099 error (_("Misplaced 'others' clause"));
10100 aggregate_assign_others (container, lhs, exp, pos, indices,
10101 num_indices, low_index, high_index);
10104 error (_("Internal error: bad aggregate clause"));
10111 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10112 construct at *POS, updating *POS past the construct, given that
10113 the positions are relative to lower bound LOW, where HIGH is the
10114 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10115 updating *NUM_INDICES as needed. CONTAINER is as for
10116 assign_aggregate. */
10118 aggregate_assign_positional (struct value *container,
10119 struct value *lhs, struct expression *exp,
10120 int *pos, LONGEST *indices, int *num_indices,
10121 int max_indices, LONGEST low, LONGEST high)
10123 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10125 if (ind - 1 == high)
10126 warning (_("Extra components in aggregate ignored."));
10129 add_component_interval (ind, ind, indices, num_indices, max_indices);
10131 assign_component (container, lhs, ind, exp, pos);
10134 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10137 /* Assign into the components of LHS indexed by the OP_CHOICES
10138 construct at *POS, updating *POS past the construct, given that
10139 the allowable indices are LOW..HIGH. Record the indices assigned
10140 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10141 needed. CONTAINER is as for assign_aggregate. */
10143 aggregate_assign_from_choices (struct value *container,
10144 struct value *lhs, struct expression *exp,
10145 int *pos, LONGEST *indices, int *num_indices,
10146 int max_indices, LONGEST low, LONGEST high)
10149 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10150 int choice_pos, expr_pc;
10151 int is_array = ada_is_direct_array_type (value_type (lhs));
10153 choice_pos = *pos += 3;
10155 for (j = 0; j < n_choices; j += 1)
10156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10160 for (j = 0; j < n_choices; j += 1)
10162 LONGEST lower, upper;
10163 enum exp_opcode op = exp->elts[choice_pos].opcode;
10165 if (op == OP_DISCRETE_RANGE)
10168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10170 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10175 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10187 name = &exp->elts[choice_pos + 2].string;
10190 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10193 error (_("Invalid record component association."));
10195 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10197 if (! find_struct_field (name, value_type (lhs), 0,
10198 NULL, NULL, NULL, NULL, &ind))
10199 error (_("Unknown component name: %s."), name);
10200 lower = upper = ind;
10203 if (lower <= upper && (lower < low || upper > high))
10204 error (_("Index in component association out of bounds."));
10206 add_component_interval (lower, upper, indices, num_indices,
10208 while (lower <= upper)
10213 assign_component (container, lhs, lower, exp, &pos1);
10219 /* Assign the value of the expression in the OP_OTHERS construct in
10220 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10221 have not been previously assigned. The index intervals already assigned
10222 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10223 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10225 aggregate_assign_others (struct value *container,
10226 struct value *lhs, struct expression *exp,
10227 int *pos, LONGEST *indices, int num_indices,
10228 LONGEST low, LONGEST high)
10231 int expr_pc = *pos + 1;
10233 for (i = 0; i < num_indices - 2; i += 2)
10237 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10241 localpos = expr_pc;
10242 assign_component (container, lhs, ind, exp, &localpos);
10245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10248 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10249 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10250 modifying *SIZE as needed. It is an error if *SIZE exceeds
10251 MAX_SIZE. The resulting intervals do not overlap. */
10253 add_component_interval (LONGEST low, LONGEST high,
10254 LONGEST* indices, int *size, int max_size)
10258 for (i = 0; i < *size; i += 2) {
10259 if (high >= indices[i] && low <= indices[i + 1])
10263 for (kh = i + 2; kh < *size; kh += 2)
10264 if (high < indices[kh])
10266 if (low < indices[i])
10268 indices[i + 1] = indices[kh - 1];
10269 if (high > indices[i + 1])
10270 indices[i + 1] = high;
10271 memcpy (indices + i + 2, indices + kh, *size - kh);
10272 *size -= kh - i - 2;
10275 else if (high < indices[i])
10279 if (*size == max_size)
10280 error (_("Internal error: miscounted aggregate components."));
10282 for (j = *size-1; j >= i+2; j -= 1)
10283 indices[j] = indices[j - 2];
10285 indices[i + 1] = high;
10288 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10291 static struct value *
10292 ada_value_cast (struct type *type, struct value *arg2)
10294 if (type == ada_check_typedef (value_type (arg2)))
10297 if (ada_is_fixed_point_type (type))
10298 return (cast_to_fixed (type, arg2));
10300 if (ada_is_fixed_point_type (value_type (arg2)))
10301 return cast_from_fixed (type, arg2);
10303 return value_cast (type, arg2);
10306 /* Evaluating Ada expressions, and printing their result.
10307 ------------------------------------------------------
10312 We usually evaluate an Ada expression in order to print its value.
10313 We also evaluate an expression in order to print its type, which
10314 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10315 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10316 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10317 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10320 Evaluating expressions is a little more complicated for Ada entities
10321 than it is for entities in languages such as C. The main reason for
10322 this is that Ada provides types whose definition might be dynamic.
10323 One example of such types is variant records. Or another example
10324 would be an array whose bounds can only be known at run time.
10326 The following description is a general guide as to what should be
10327 done (and what should NOT be done) in order to evaluate an expression
10328 involving such types, and when. This does not cover how the semantic
10329 information is encoded by GNAT as this is covered separatly. For the
10330 document used as the reference for the GNAT encoding, see exp_dbug.ads
10331 in the GNAT sources.
10333 Ideally, we should embed each part of this description next to its
10334 associated code. Unfortunately, the amount of code is so vast right
10335 now that it's hard to see whether the code handling a particular
10336 situation might be duplicated or not. One day, when the code is
10337 cleaned up, this guide might become redundant with the comments
10338 inserted in the code, and we might want to remove it.
10340 2. ``Fixing'' an Entity, the Simple Case:
10341 -----------------------------------------
10343 When evaluating Ada expressions, the tricky issue is that they may
10344 reference entities whose type contents and size are not statically
10345 known. Consider for instance a variant record:
10347 type Rec (Empty : Boolean := True) is record
10350 when False => Value : Integer;
10353 Yes : Rec := (Empty => False, Value => 1);
10354 No : Rec := (empty => True);
10356 The size and contents of that record depends on the value of the
10357 descriminant (Rec.Empty). At this point, neither the debugging
10358 information nor the associated type structure in GDB are able to
10359 express such dynamic types. So what the debugger does is to create
10360 "fixed" versions of the type that applies to the specific object.
10361 We also informally refer to this opperation as "fixing" an object,
10362 which means creating its associated fixed type.
10364 Example: when printing the value of variable "Yes" above, its fixed
10365 type would look like this:
10372 On the other hand, if we printed the value of "No", its fixed type
10379 Things become a little more complicated when trying to fix an entity
10380 with a dynamic type that directly contains another dynamic type,
10381 such as an array of variant records, for instance. There are
10382 two possible cases: Arrays, and records.
10384 3. ``Fixing'' Arrays:
10385 ---------------------
10387 The type structure in GDB describes an array in terms of its bounds,
10388 and the type of its elements. By design, all elements in the array
10389 have the same type and we cannot represent an array of variant elements
10390 using the current type structure in GDB. When fixing an array,
10391 we cannot fix the array element, as we would potentially need one
10392 fixed type per element of the array. As a result, the best we can do
10393 when fixing an array is to produce an array whose bounds and size
10394 are correct (allowing us to read it from memory), but without having
10395 touched its element type. Fixing each element will be done later,
10396 when (if) necessary.
10398 Arrays are a little simpler to handle than records, because the same
10399 amount of memory is allocated for each element of the array, even if
10400 the amount of space actually used by each element differs from element
10401 to element. Consider for instance the following array of type Rec:
10403 type Rec_Array is array (1 .. 2) of Rec;
10405 The actual amount of memory occupied by each element might be different
10406 from element to element, depending on the value of their discriminant.
10407 But the amount of space reserved for each element in the array remains
10408 fixed regardless. So we simply need to compute that size using
10409 the debugging information available, from which we can then determine
10410 the array size (we multiply the number of elements of the array by
10411 the size of each element).
10413 The simplest case is when we have an array of a constrained element
10414 type. For instance, consider the following type declarations:
10416 type Bounded_String (Max_Size : Integer) is
10418 Buffer : String (1 .. Max_Size);
10420 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10422 In this case, the compiler describes the array as an array of
10423 variable-size elements (identified by its XVS suffix) for which
10424 the size can be read in the parallel XVZ variable.
10426 In the case of an array of an unconstrained element type, the compiler
10427 wraps the array element inside a private PAD type. This type should not
10428 be shown to the user, and must be "unwrap"'ed before printing. Note
10429 that we also use the adjective "aligner" in our code to designate
10430 these wrapper types.
10432 In some cases, the size allocated for each element is statically
10433 known. In that case, the PAD type already has the correct size,
10434 and the array element should remain unfixed.
10436 But there are cases when this size is not statically known.
10437 For instance, assuming that "Five" is an integer variable:
10439 type Dynamic is array (1 .. Five) of Integer;
10440 type Wrapper (Has_Length : Boolean := False) is record
10443 when True => Length : Integer;
10444 when False => null;
10447 type Wrapper_Array is array (1 .. 2) of Wrapper;
10449 Hello : Wrapper_Array := (others => (Has_Length => True,
10450 Data => (others => 17),
10454 The debugging info would describe variable Hello as being an
10455 array of a PAD type. The size of that PAD type is not statically
10456 known, but can be determined using a parallel XVZ variable.
10457 In that case, a copy of the PAD type with the correct size should
10458 be used for the fixed array.
10460 3. ``Fixing'' record type objects:
10461 ----------------------------------
10463 Things are slightly different from arrays in the case of dynamic
10464 record types. In this case, in order to compute the associated
10465 fixed type, we need to determine the size and offset of each of
10466 its components. This, in turn, requires us to compute the fixed
10467 type of each of these components.
10469 Consider for instance the example:
10471 type Bounded_String (Max_Size : Natural) is record
10472 Str : String (1 .. Max_Size);
10475 My_String : Bounded_String (Max_Size => 10);
10477 In that case, the position of field "Length" depends on the size
10478 of field Str, which itself depends on the value of the Max_Size
10479 discriminant. In order to fix the type of variable My_String,
10480 we need to fix the type of field Str. Therefore, fixing a variant
10481 record requires us to fix each of its components.
10483 However, if a component does not have a dynamic size, the component
10484 should not be fixed. In particular, fields that use a PAD type
10485 should not fixed. Here is an example where this might happen
10486 (assuming type Rec above):
10488 type Container (Big : Boolean) is record
10492 when True => Another : Integer;
10493 when False => null;
10496 My_Container : Container := (Big => False,
10497 First => (Empty => True),
10500 In that example, the compiler creates a PAD type for component First,
10501 whose size is constant, and then positions the component After just
10502 right after it. The offset of component After is therefore constant
10505 The debugger computes the position of each field based on an algorithm
10506 that uses, among other things, the actual position and size of the field
10507 preceding it. Let's now imagine that the user is trying to print
10508 the value of My_Container. If the type fixing was recursive, we would
10509 end up computing the offset of field After based on the size of the
10510 fixed version of field First. And since in our example First has
10511 only one actual field, the size of the fixed type is actually smaller
10512 than the amount of space allocated to that field, and thus we would
10513 compute the wrong offset of field After.
10515 To make things more complicated, we need to watch out for dynamic
10516 components of variant records (identified by the ___XVL suffix in
10517 the component name). Even if the target type is a PAD type, the size
10518 of that type might not be statically known. So the PAD type needs
10519 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10520 we might end up with the wrong size for our component. This can be
10521 observed with the following type declarations:
10523 type Octal is new Integer range 0 .. 7;
10524 type Octal_Array is array (Positive range <>) of Octal;
10525 pragma Pack (Octal_Array);
10527 type Octal_Buffer (Size : Positive) is record
10528 Buffer : Octal_Array (1 .. Size);
10532 In that case, Buffer is a PAD type whose size is unset and needs
10533 to be computed by fixing the unwrapped type.
10535 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10536 ----------------------------------------------------------
10538 Lastly, when should the sub-elements of an entity that remained unfixed
10539 thus far, be actually fixed?
10541 The answer is: Only when referencing that element. For instance
10542 when selecting one component of a record, this specific component
10543 should be fixed at that point in time. Or when printing the value
10544 of a record, each component should be fixed before its value gets
10545 printed. Similarly for arrays, the element of the array should be
10546 fixed when printing each element of the array, or when extracting
10547 one element out of that array. On the other hand, fixing should
10548 not be performed on the elements when taking a slice of an array!
10550 Note that one of the side effects of miscomputing the offset and
10551 size of each field is that we end up also miscomputing the size
10552 of the containing type. This can have adverse results when computing
10553 the value of an entity. GDB fetches the value of an entity based
10554 on the size of its type, and thus a wrong size causes GDB to fetch
10555 the wrong amount of memory. In the case where the computed size is
10556 too small, GDB fetches too little data to print the value of our
10557 entity. Results in this case are unpredictable, as we usually read
10558 past the buffer containing the data =:-o. */
10560 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10561 for that subexpression cast to TO_TYPE. Advance *POS over the
10565 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10566 enum noside noside, struct type *to_type)
10570 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10571 || exp->elts[pc].opcode == OP_VAR_VALUE)
10576 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10579 return value_zero (to_type, not_lval);
10581 val = evaluate_var_msym_value (noside,
10582 exp->elts[pc + 1].objfile,
10583 exp->elts[pc + 2].msymbol);
10586 val = evaluate_var_value (noside,
10587 exp->elts[pc + 1].block,
10588 exp->elts[pc + 2].symbol);
10590 if (noside == EVAL_SKIP)
10591 return eval_skip_value (exp);
10593 val = ada_value_cast (to_type, val);
10595 /* Follow the Ada language semantics that do not allow taking
10596 an address of the result of a cast (view conversion in Ada). */
10597 if (VALUE_LVAL (val) == lval_memory)
10599 if (value_lazy (val))
10600 value_fetch_lazy (val);
10601 VALUE_LVAL (val) = not_lval;
10606 value *val = evaluate_subexp (to_type, exp, pos, noside);
10607 if (noside == EVAL_SKIP)
10608 return eval_skip_value (exp);
10609 return ada_value_cast (to_type, val);
10612 /* Implement the evaluate_exp routine in the exp_descriptor structure
10613 for the Ada language. */
10615 static struct value *
10616 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10617 int *pos, enum noside noside)
10619 enum exp_opcode op;
10623 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10626 struct value **argvec;
10630 op = exp->elts[pc].opcode;
10636 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10638 if (noside == EVAL_NORMAL)
10639 arg1 = unwrap_value (arg1);
10641 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10642 then we need to perform the conversion manually, because
10643 evaluate_subexp_standard doesn't do it. This conversion is
10644 necessary in Ada because the different kinds of float/fixed
10645 types in Ada have different representations.
10647 Similarly, we need to perform the conversion from OP_LONG
10649 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10650 arg1 = ada_value_cast (expect_type, arg1);
10656 struct value *result;
10659 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10660 /* The result type will have code OP_STRING, bashed there from
10661 OP_ARRAY. Bash it back. */
10662 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10663 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10669 type = exp->elts[pc + 1].type;
10670 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10674 type = exp->elts[pc + 1].type;
10675 return ada_evaluate_subexp (type, exp, pos, noside);
10678 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10679 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10681 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10682 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10684 return ada_value_assign (arg1, arg1);
10686 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10687 except if the lhs of our assignment is a convenience variable.
10688 In the case of assigning to a convenience variable, the lhs
10689 should be exactly the result of the evaluation of the rhs. */
10690 type = value_type (arg1);
10691 if (VALUE_LVAL (arg1) == lval_internalvar)
10693 arg2 = evaluate_subexp (type, exp, pos, noside);
10694 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10696 if (ada_is_fixed_point_type (value_type (arg1)))
10697 arg2 = cast_to_fixed (value_type (arg1), arg2);
10698 else if (ada_is_fixed_point_type (value_type (arg2)))
10700 (_("Fixed-point values must be assigned to fixed-point variables"));
10702 arg2 = coerce_for_assign (value_type (arg1), arg2);
10703 return ada_value_assign (arg1, arg2);
10706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 if (noside == EVAL_SKIP)
10710 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10711 return (value_from_longest
10712 (value_type (arg1),
10713 value_as_long (arg1) + value_as_long (arg2)));
10714 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10715 return (value_from_longest
10716 (value_type (arg2),
10717 value_as_long (arg1) + value_as_long (arg2)));
10718 if ((ada_is_fixed_point_type (value_type (arg1))
10719 || ada_is_fixed_point_type (value_type (arg2)))
10720 && value_type (arg1) != value_type (arg2))
10721 error (_("Operands of fixed-point addition must have the same type"));
10722 /* Do the addition, and cast the result to the type of the first
10723 argument. We cannot cast the result to a reference type, so if
10724 ARG1 is a reference type, find its underlying type. */
10725 type = value_type (arg1);
10726 while (TYPE_CODE (type) == TYPE_CODE_REF)
10727 type = TYPE_TARGET_TYPE (type);
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10732 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10733 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10734 if (noside == EVAL_SKIP)
10736 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10737 return (value_from_longest
10738 (value_type (arg1),
10739 value_as_long (arg1) - value_as_long (arg2)));
10740 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10741 return (value_from_longest
10742 (value_type (arg2),
10743 value_as_long (arg1) - value_as_long (arg2)));
10744 if ((ada_is_fixed_point_type (value_type (arg1))
10745 || ada_is_fixed_point_type (value_type (arg2)))
10746 && value_type (arg1) != value_type (arg2))
10747 error (_("Operands of fixed-point subtraction "
10748 "must have the same type"));
10749 /* Do the substraction, and cast the result to the type of the first
10750 argument. We cannot cast the result to a reference type, so if
10751 ARG1 is a reference type, find its underlying type. */
10752 type = value_type (arg1);
10753 while (TYPE_CODE (type) == TYPE_CODE_REF)
10754 type = TYPE_TARGET_TYPE (type);
10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10756 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10763 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10764 if (noside == EVAL_SKIP)
10766 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10769 return value_zero (value_type (arg1), not_lval);
10773 type = builtin_type (exp->gdbarch)->builtin_double;
10774 if (ada_is_fixed_point_type (value_type (arg1)))
10775 arg1 = cast_from_fixed (type, arg1);
10776 if (ada_is_fixed_point_type (value_type (arg2)))
10777 arg2 = cast_from_fixed (type, arg2);
10778 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10779 return ada_value_binop (arg1, arg2, op);
10783 case BINOP_NOTEQUAL:
10784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10785 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10786 if (noside == EVAL_SKIP)
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10793 tem = ada_value_equal (arg1, arg2);
10795 if (op == BINOP_NOTEQUAL)
10797 type = language_bool_type (exp->language_defn, exp->gdbarch);
10798 return value_from_longest (type, (LONGEST) tem);
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10802 if (noside == EVAL_SKIP)
10804 else if (ada_is_fixed_point_type (value_type (arg1)))
10805 return value_cast (value_type (arg1), value_neg (arg1));
10808 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10809 return value_neg (arg1);
10812 case BINOP_LOGICAL_AND:
10813 case BINOP_LOGICAL_OR:
10814 case UNOP_LOGICAL_NOT:
10819 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10820 type = language_bool_type (exp->language_defn, exp->gdbarch);
10821 return value_cast (type, val);
10824 case BINOP_BITWISE_AND:
10825 case BINOP_BITWISE_IOR:
10826 case BINOP_BITWISE_XOR:
10830 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10832 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10834 return value_cast (value_type (arg1), val);
10840 if (noside == EVAL_SKIP)
10846 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10847 /* Only encountered when an unresolved symbol occurs in a
10848 context other than a function call, in which case, it is
10850 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10851 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10855 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10856 /* Check to see if this is a tagged type. We also need to handle
10857 the case where the type is a reference to a tagged type, but
10858 we have to be careful to exclude pointers to tagged types.
10859 The latter should be shown as usual (as a pointer), whereas
10860 a reference should mostly be transparent to the user. */
10861 if (ada_is_tagged_type (type, 0)
10862 || (TYPE_CODE (type) == TYPE_CODE_REF
10863 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10865 /* Tagged types are a little special in the fact that the real
10866 type is dynamic and can only be determined by inspecting the
10867 object's tag. This means that we need to get the object's
10868 value first (EVAL_NORMAL) and then extract the actual object
10871 Note that we cannot skip the final step where we extract
10872 the object type from its tag, because the EVAL_NORMAL phase
10873 results in dynamic components being resolved into fixed ones.
10874 This can cause problems when trying to print the type
10875 description of tagged types whose parent has a dynamic size:
10876 We use the type name of the "_parent" component in order
10877 to print the name of the ancestor type in the type description.
10878 If that component had a dynamic size, the resolution into
10879 a fixed type would result in the loss of that type name,
10880 thus preventing us from printing the name of the ancestor
10881 type in the type description. */
10882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10884 if (TYPE_CODE (type) != TYPE_CODE_REF)
10886 struct type *actual_type;
10888 actual_type = type_from_tag (ada_value_tag (arg1));
10889 if (actual_type == NULL)
10890 /* If, for some reason, we were unable to determine
10891 the actual type from the tag, then use the static
10892 approximation that we just computed as a fallback.
10893 This can happen if the debugging information is
10894 incomplete, for instance. */
10895 actual_type = type;
10896 return value_zero (actual_type, not_lval);
10900 /* In the case of a ref, ada_coerce_ref takes care
10901 of determining the actual type. But the evaluation
10902 should return a ref as it should be valid to ask
10903 for its address; so rebuild a ref after coerce. */
10904 arg1 = ada_coerce_ref (arg1);
10905 return value_ref (arg1, TYPE_CODE_REF);
10909 /* Records and unions for which GNAT encodings have been
10910 generated need to be statically fixed as well.
10911 Otherwise, non-static fixing produces a type where
10912 all dynamic properties are removed, which prevents "ptype"
10913 from being able to completely describe the type.
10914 For instance, a case statement in a variant record would be
10915 replaced by the relevant components based on the actual
10916 value of the discriminants. */
10917 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10918 && dynamic_template_type (type) != NULL)
10919 || (TYPE_CODE (type) == TYPE_CODE_UNION
10920 && ada_find_parallel_type (type, "___XVU") != NULL))
10923 return value_zero (to_static_fixed_type (type), not_lval);
10927 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10928 return ada_to_fixed_value (arg1);
10933 /* Allocate arg vector, including space for the function to be
10934 called in argvec[0] and a terminating NULL. */
10935 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10936 argvec = XALLOCAVEC (struct value *, nargs + 2);
10938 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10939 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10940 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10941 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10944 for (tem = 0; tem <= nargs; tem += 1)
10945 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10948 if (noside == EVAL_SKIP)
10952 if (ada_is_constrained_packed_array_type
10953 (desc_base_type (value_type (argvec[0]))))
10954 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10955 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10956 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10957 /* This is a packed array that has already been fixed, and
10958 therefore already coerced to a simple array. Nothing further
10961 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10963 /* Make sure we dereference references so that all the code below
10964 feels like it's really handling the referenced value. Wrapping
10965 types (for alignment) may be there, so make sure we strip them as
10967 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10969 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10970 && VALUE_LVAL (argvec[0]) == lval_memory)
10971 argvec[0] = value_addr (argvec[0]);
10973 type = ada_check_typedef (value_type (argvec[0]));
10975 /* Ada allows us to implicitly dereference arrays when subscripting
10976 them. So, if this is an array typedef (encoding use for array
10977 access types encoded as fat pointers), strip it now. */
10978 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10979 type = ada_typedef_target_type (type);
10981 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10983 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10985 case TYPE_CODE_FUNC:
10986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10988 case TYPE_CODE_ARRAY:
10990 case TYPE_CODE_STRUCT:
10991 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10992 argvec[0] = ada_value_ind (argvec[0]);
10993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10996 error (_("cannot subscript or call something of type `%s'"),
10997 ada_type_name (value_type (argvec[0])));
11002 switch (TYPE_CODE (type))
11004 case TYPE_CODE_FUNC:
11005 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11007 if (TYPE_TARGET_TYPE (type) == NULL)
11008 error_call_unknown_return_type (NULL);
11009 return allocate_value (TYPE_TARGET_TYPE (type));
11011 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
11012 case TYPE_CODE_INTERNAL_FUNCTION:
11013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11014 /* We don't know anything about what the internal
11015 function might return, but we have to return
11017 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11020 return call_internal_function (exp->gdbarch, exp->language_defn,
11021 argvec[0], nargs, argvec + 1);
11023 case TYPE_CODE_STRUCT:
11027 arity = ada_array_arity (type);
11028 type = ada_array_element_type (type, nargs);
11030 error (_("cannot subscript or call a record"));
11031 if (arity != nargs)
11032 error (_("wrong number of subscripts; expecting %d"), arity);
11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 return value_zero (ada_aligned_type (type), lval_memory);
11036 unwrap_value (ada_value_subscript
11037 (argvec[0], nargs, argvec + 1));
11039 case TYPE_CODE_ARRAY:
11040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11042 type = ada_array_element_type (type, nargs);
11044 error (_("element type of array unknown"));
11046 return value_zero (ada_aligned_type (type), lval_memory);
11049 unwrap_value (ada_value_subscript
11050 (ada_coerce_to_simple_array (argvec[0]),
11051 nargs, argvec + 1));
11052 case TYPE_CODE_PTR: /* Pointer to array */
11053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11055 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11056 type = ada_array_element_type (type, nargs);
11058 error (_("element type of array unknown"));
11060 return value_zero (ada_aligned_type (type), lval_memory);
11063 unwrap_value (ada_value_ptr_subscript (argvec[0],
11064 nargs, argvec + 1));
11067 error (_("Attempt to index or call something other than an "
11068 "array or function"));
11073 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11074 struct value *low_bound_val =
11075 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11076 struct value *high_bound_val =
11077 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11079 LONGEST high_bound;
11081 low_bound_val = coerce_ref (low_bound_val);
11082 high_bound_val = coerce_ref (high_bound_val);
11083 low_bound = value_as_long (low_bound_val);
11084 high_bound = value_as_long (high_bound_val);
11086 if (noside == EVAL_SKIP)
11089 /* If this is a reference to an aligner type, then remove all
11091 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11092 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11093 TYPE_TARGET_TYPE (value_type (array)) =
11094 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11096 if (ada_is_constrained_packed_array_type (value_type (array)))
11097 error (_("cannot slice a packed array"));
11099 /* If this is a reference to an array or an array lvalue,
11100 convert to a pointer. */
11101 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11102 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11103 && VALUE_LVAL (array) == lval_memory))
11104 array = value_addr (array);
11106 if (noside == EVAL_AVOID_SIDE_EFFECTS
11107 && ada_is_array_descriptor_type (ada_check_typedef
11108 (value_type (array))))
11109 return empty_array (ada_type_of_array (array, 0), low_bound);
11111 array = ada_coerce_to_simple_array_ptr (array);
11113 /* If we have more than one level of pointer indirection,
11114 dereference the value until we get only one level. */
11115 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11116 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11118 array = value_ind (array);
11120 /* Make sure we really do have an array type before going further,
11121 to avoid a SEGV when trying to get the index type or the target
11122 type later down the road if the debug info generated by
11123 the compiler is incorrect or incomplete. */
11124 if (!ada_is_simple_array_type (value_type (array)))
11125 error (_("cannot take slice of non-array"));
11127 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11130 struct type *type0 = ada_check_typedef (value_type (array));
11132 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11133 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11136 struct type *arr_type0 =
11137 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11139 return ada_value_slice_from_ptr (array, arr_type0,
11140 longest_to_int (low_bound),
11141 longest_to_int (high_bound));
11144 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11146 else if (high_bound < low_bound)
11147 return empty_array (value_type (array), low_bound);
11149 return ada_value_slice (array, longest_to_int (low_bound),
11150 longest_to_int (high_bound));
11153 case UNOP_IN_RANGE:
11155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 type = check_typedef (exp->elts[pc + 1].type);
11158 if (noside == EVAL_SKIP)
11161 switch (TYPE_CODE (type))
11164 lim_warning (_("Membership test incompletely implemented; "
11165 "always returns true"));
11166 type = language_bool_type (exp->language_defn, exp->gdbarch);
11167 return value_from_longest (type, (LONGEST) 1);
11169 case TYPE_CODE_RANGE:
11170 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11171 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11174 type = language_bool_type (exp->language_defn, exp->gdbarch);
11176 value_from_longest (type,
11177 (value_less (arg1, arg3)
11178 || value_equal (arg1, arg3))
11179 && (value_less (arg2, arg1)
11180 || value_equal (arg2, arg1)));
11183 case BINOP_IN_BOUNDS:
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11188 if (noside == EVAL_SKIP)
11191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11193 type = language_bool_type (exp->language_defn, exp->gdbarch);
11194 return value_zero (type, not_lval);
11197 tem = longest_to_int (exp->elts[pc + 1].longconst);
11199 type = ada_index_type (value_type (arg2), tem, "range");
11201 type = value_type (arg1);
11203 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11204 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11208 type = language_bool_type (exp->language_defn, exp->gdbarch);
11210 value_from_longest (type,
11211 (value_less (arg1, arg3)
11212 || value_equal (arg1, arg3))
11213 && (value_less (arg2, arg1)
11214 || value_equal (arg2, arg1)));
11216 case TERNOP_IN_RANGE:
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 if (noside == EVAL_SKIP)
11224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11226 type = language_bool_type (exp->language_defn, exp->gdbarch);
11228 value_from_longest (type,
11229 (value_less (arg1, arg3)
11230 || value_equal (arg1, arg3))
11231 && (value_less (arg2, arg1)
11232 || value_equal (arg2, arg1)));
11236 case OP_ATR_LENGTH:
11238 struct type *type_arg;
11240 if (exp->elts[*pos].opcode == OP_TYPE)
11242 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11244 type_arg = check_typedef (exp->elts[pc + 2].type);
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11252 if (exp->elts[*pos].opcode != OP_LONG)
11253 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11254 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11257 if (noside == EVAL_SKIP)
11260 if (type_arg == NULL)
11262 arg1 = ada_coerce_ref (arg1);
11264 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11265 arg1 = ada_coerce_to_simple_array (arg1);
11267 if (op == OP_ATR_LENGTH)
11268 type = builtin_type (exp->gdbarch)->builtin_int;
11271 type = ada_index_type (value_type (arg1), tem,
11272 ada_attribute_name (op));
11274 type = builtin_type (exp->gdbarch)->builtin_int;
11277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11278 return allocate_value (type);
11282 default: /* Should never happen. */
11283 error (_("unexpected attribute encountered"));
11285 return value_from_longest
11286 (type, ada_array_bound (arg1, tem, 0));
11288 return value_from_longest
11289 (type, ada_array_bound (arg1, tem, 1));
11290 case OP_ATR_LENGTH:
11291 return value_from_longest
11292 (type, ada_array_length (arg1, tem));
11295 else if (discrete_type_p (type_arg))
11297 struct type *range_type;
11298 const char *name = ada_type_name (type_arg);
11301 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11302 range_type = to_fixed_range_type (type_arg, NULL);
11303 if (range_type == NULL)
11304 range_type = type_arg;
11308 error (_("unexpected attribute encountered"));
11310 return value_from_longest
11311 (range_type, ada_discrete_type_low_bound (range_type));
11313 return value_from_longest
11314 (range_type, ada_discrete_type_high_bound (range_type));
11315 case OP_ATR_LENGTH:
11316 error (_("the 'length attribute applies only to array types"));
11319 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11320 error (_("unimplemented type attribute"));
11325 if (ada_is_constrained_packed_array_type (type_arg))
11326 type_arg = decode_constrained_packed_array_type (type_arg);
11328 if (op == OP_ATR_LENGTH)
11329 type = builtin_type (exp->gdbarch)->builtin_int;
11332 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11334 type = builtin_type (exp->gdbarch)->builtin_int;
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return allocate_value (type);
11343 error (_("unexpected attribute encountered"));
11345 low = ada_array_bound_from_type (type_arg, tem, 0);
11346 return value_from_longest (type, low);
11348 high = ada_array_bound_from_type (type_arg, tem, 1);
11349 return value_from_longest (type, high);
11350 case OP_ATR_LENGTH:
11351 low = ada_array_bound_from_type (type_arg, tem, 0);
11352 high = ada_array_bound_from_type (type_arg, tem, 1);
11353 return value_from_longest (type, high - low + 1);
11359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11360 if (noside == EVAL_SKIP)
11363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11364 return value_zero (ada_tag_type (arg1), not_lval);
11366 return ada_value_tag (arg1);
11370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11372 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 if (noside == EVAL_SKIP)
11375 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11376 return value_zero (value_type (arg1), not_lval);
11379 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11380 return value_binop (arg1, arg2,
11381 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11384 case OP_ATR_MODULUS:
11386 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11388 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11389 if (noside == EVAL_SKIP)
11392 if (!ada_is_modular_type (type_arg))
11393 error (_("'modulus must be applied to modular type"));
11395 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11396 ada_modulus (type_arg));
11401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
11405 type = builtin_type (exp->gdbarch)->builtin_int;
11406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11407 return value_zero (type, not_lval);
11409 return value_pos_atr (type, arg1);
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 type = value_type (arg1);
11415 /* If the argument is a reference, then dereference its type, since
11416 the user is really asking for the size of the actual object,
11417 not the size of the pointer. */
11418 if (TYPE_CODE (type) == TYPE_CODE_REF)
11419 type = TYPE_TARGET_TYPE (type);
11421 if (noside == EVAL_SKIP)
11423 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11424 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11426 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11427 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11430 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 type = exp->elts[pc + 2].type;
11433 if (noside == EVAL_SKIP)
11435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11436 return value_zero (type, not_lval);
11438 return value_val_atr (type, arg1);
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11443 if (noside == EVAL_SKIP)
11445 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11446 return value_zero (value_type (arg1), not_lval);
11449 /* For integer exponentiation operations,
11450 only promote the first argument. */
11451 if (is_integral_type (value_type (arg2)))
11452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11456 return value_binop (arg1, arg2, op);
11460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11461 if (noside == EVAL_SKIP)
11467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11468 if (noside == EVAL_SKIP)
11470 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11471 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11472 return value_neg (arg1);
11477 preeval_pos = *pos;
11478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11479 if (noside == EVAL_SKIP)
11481 type = ada_check_typedef (value_type (arg1));
11482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11484 if (ada_is_array_descriptor_type (type))
11485 /* GDB allows dereferencing GNAT array descriptors. */
11487 struct type *arrType = ada_type_of_array (arg1, 0);
11489 if (arrType == NULL)
11490 error (_("Attempt to dereference null array pointer."));
11491 return value_at_lazy (arrType, 0);
11493 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11494 || TYPE_CODE (type) == TYPE_CODE_REF
11495 /* In C you can dereference an array to get the 1st elt. */
11496 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11498 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11499 only be determined by inspecting the object's tag.
11500 This means that we need to evaluate completely the
11501 expression in order to get its type. */
11503 if ((TYPE_CODE (type) == TYPE_CODE_REF
11504 || TYPE_CODE (type) == TYPE_CODE_PTR)
11505 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11507 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11509 type = value_type (ada_value_ind (arg1));
11513 type = to_static_fixed_type
11515 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11517 ada_ensure_varsize_limit (type);
11518 return value_zero (type, lval_memory);
11520 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11522 /* GDB allows dereferencing an int. */
11523 if (expect_type == NULL)
11524 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11529 to_static_fixed_type (ada_aligned_type (expect_type));
11530 return value_zero (expect_type, lval_memory);
11534 error (_("Attempt to take contents of a non-pointer value."));
11536 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11537 type = ada_check_typedef (value_type (arg1));
11539 if (TYPE_CODE (type) == TYPE_CODE_INT)
11540 /* GDB allows dereferencing an int. If we were given
11541 the expect_type, then use that as the target type.
11542 Otherwise, assume that the target type is an int. */
11544 if (expect_type != NULL)
11545 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11548 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11549 (CORE_ADDR) value_as_address (arg1));
11552 if (ada_is_array_descriptor_type (type))
11553 /* GDB allows dereferencing GNAT array descriptors. */
11554 return ada_coerce_to_simple_array (arg1);
11556 return ada_value_ind (arg1);
11558 case STRUCTOP_STRUCT:
11559 tem = longest_to_int (exp->elts[pc + 1].longconst);
11560 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11561 preeval_pos = *pos;
11562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11563 if (noside == EVAL_SKIP)
11565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11567 struct type *type1 = value_type (arg1);
11569 if (ada_is_tagged_type (type1, 1))
11571 type = ada_lookup_struct_elt_type (type1,
11572 &exp->elts[pc + 2].string,
11575 /* If the field is not found, check if it exists in the
11576 extension of this object's type. This means that we
11577 need to evaluate completely the expression. */
11581 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11583 arg1 = ada_value_struct_elt (arg1,
11584 &exp->elts[pc + 2].string,
11586 arg1 = unwrap_value (arg1);
11587 type = value_type (ada_to_fixed_value (arg1));
11592 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11595 return value_zero (ada_aligned_type (type), lval_memory);
11599 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11600 arg1 = unwrap_value (arg1);
11601 return ada_to_fixed_value (arg1);
11605 /* The value is not supposed to be used. This is here to make it
11606 easier to accommodate expressions that contain types. */
11608 if (noside == EVAL_SKIP)
11610 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11611 return allocate_value (exp->elts[pc + 1].type);
11613 error (_("Attempt to use a type name as an expression"));
11618 case OP_DISCRETE_RANGE:
11619 case OP_POSITIONAL:
11621 if (noside == EVAL_NORMAL)
11625 error (_("Undefined name, ambiguous name, or renaming used in "
11626 "component association: %s."), &exp->elts[pc+2].string);
11628 error (_("Aggregates only allowed on the right of an assignment"));
11630 internal_error (__FILE__, __LINE__,
11631 _("aggregate apparently mangled"));
11634 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11636 for (tem = 0; tem < nargs; tem += 1)
11637 ada_evaluate_subexp (NULL, exp, pos, noside);
11642 return eval_skip_value (exp);
11648 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11649 type name that encodes the 'small and 'delta information.
11650 Otherwise, return NULL. */
11652 static const char *
11653 fixed_type_info (struct type *type)
11655 const char *name = ada_type_name (type);
11656 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11658 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11660 const char *tail = strstr (name, "___XF_");
11667 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11668 return fixed_type_info (TYPE_TARGET_TYPE (type));
11673 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11676 ada_is_fixed_point_type (struct type *type)
11678 return fixed_type_info (type) != NULL;
11681 /* Return non-zero iff TYPE represents a System.Address type. */
11684 ada_is_system_address_type (struct type *type)
11686 return (TYPE_NAME (type)
11687 && strcmp (TYPE_NAME (type), "system__address") == 0);
11690 /* Assuming that TYPE is the representation of an Ada fixed-point
11691 type, return the target floating-point type to be used to represent
11692 of this type during internal computation. */
11694 static struct type *
11695 ada_scaling_type (struct type *type)
11697 return builtin_type (get_type_arch (type))->builtin_long_double;
11700 /* Assuming that TYPE is the representation of an Ada fixed-point
11701 type, return its delta, or NULL if the type is malformed and the
11702 delta cannot be determined. */
11705 ada_delta (struct type *type)
11707 const char *encoding = fixed_type_info (type);
11708 struct type *scale_type = ada_scaling_type (type);
11710 long long num, den;
11712 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11715 return value_binop (value_from_longest (scale_type, num),
11716 value_from_longest (scale_type, den), BINOP_DIV);
11719 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11720 factor ('SMALL value) associated with the type. */
11723 ada_scaling_factor (struct type *type)
11725 const char *encoding = fixed_type_info (type);
11726 struct type *scale_type = ada_scaling_type (type);
11728 long long num0, den0, num1, den1;
11731 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11732 &num0, &den0, &num1, &den1);
11735 return value_from_longest (scale_type, 1);
11737 return value_binop (value_from_longest (scale_type, num1),
11738 value_from_longest (scale_type, den1), BINOP_DIV);
11740 return value_binop (value_from_longest (scale_type, num0),
11741 value_from_longest (scale_type, den0), BINOP_DIV);
11748 /* Scan STR beginning at position K for a discriminant name, and
11749 return the value of that discriminant field of DVAL in *PX. If
11750 PNEW_K is not null, put the position of the character beyond the
11751 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11752 not alter *PX and *PNEW_K if unsuccessful. */
11755 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11758 static char *bound_buffer = NULL;
11759 static size_t bound_buffer_len = 0;
11760 const char *pstart, *pend, *bound;
11761 struct value *bound_val;
11763 if (dval == NULL || str == NULL || str[k] == '\0')
11767 pend = strstr (pstart, "__");
11771 k += strlen (bound);
11775 int len = pend - pstart;
11777 /* Strip __ and beyond. */
11778 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11779 strncpy (bound_buffer, pstart, len);
11780 bound_buffer[len] = '\0';
11782 bound = bound_buffer;
11786 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11787 if (bound_val == NULL)
11790 *px = value_as_long (bound_val);
11791 if (pnew_k != NULL)
11796 /* Value of variable named NAME in the current environment. If
11797 no such variable found, then if ERR_MSG is null, returns 0, and
11798 otherwise causes an error with message ERR_MSG. */
11800 static struct value *
11801 get_var_value (const char *name, const char *err_msg)
11803 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11805 struct block_symbol *syms;
11806 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11807 get_selected_block (0),
11808 VAR_DOMAIN, &syms, 1);
11809 struct cleanup *old_chain = make_cleanup (xfree, syms);
11813 do_cleanups (old_chain);
11814 if (err_msg == NULL)
11817 error (("%s"), err_msg);
11820 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11821 do_cleanups (old_chain);
11825 /* Value of integer variable named NAME in the current environment.
11826 If no such variable is found, returns false. Otherwise, sets VALUE
11827 to the variable's value and returns true. */
11830 get_int_var_value (const char *name, LONGEST &value)
11832 struct value *var_val = get_var_value (name, 0);
11837 value = value_as_long (var_val);
11842 /* Return a range type whose base type is that of the range type named
11843 NAME in the current environment, and whose bounds are calculated
11844 from NAME according to the GNAT range encoding conventions.
11845 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11846 corresponding range type from debug information; fall back to using it
11847 if symbol lookup fails. If a new type must be created, allocate it
11848 like ORIG_TYPE was. The bounds information, in general, is encoded
11849 in NAME, the base type given in the named range type. */
11851 static struct type *
11852 to_fixed_range_type (struct type *raw_type, struct value *dval)
11855 struct type *base_type;
11856 const char *subtype_info;
11858 gdb_assert (raw_type != NULL);
11859 gdb_assert (TYPE_NAME (raw_type) != NULL);
11861 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11862 base_type = TYPE_TARGET_TYPE (raw_type);
11864 base_type = raw_type;
11866 name = TYPE_NAME (raw_type);
11867 subtype_info = strstr (name, "___XD");
11868 if (subtype_info == NULL)
11870 LONGEST L = ada_discrete_type_low_bound (raw_type);
11871 LONGEST U = ada_discrete_type_high_bound (raw_type);
11873 if (L < INT_MIN || U > INT_MAX)
11876 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11881 static char *name_buf = NULL;
11882 static size_t name_len = 0;
11883 int prefix_len = subtype_info - name;
11886 const char *bounds_str;
11889 GROW_VECT (name_buf, name_len, prefix_len + 5);
11890 strncpy (name_buf, name, prefix_len);
11891 name_buf[prefix_len] = '\0';
11894 bounds_str = strchr (subtype_info, '_');
11897 if (*subtype_info == 'L')
11899 if (!ada_scan_number (bounds_str, n, &L, &n)
11900 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11902 if (bounds_str[n] == '_')
11904 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11910 strcpy (name_buf + prefix_len, "___L");
11911 if (!get_int_var_value (name_buf, L))
11913 lim_warning (_("Unknown lower bound, using 1."));
11918 if (*subtype_info == 'U')
11920 if (!ada_scan_number (bounds_str, n, &U, &n)
11921 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11926 strcpy (name_buf + prefix_len, "___U");
11927 if (!get_int_var_value (name_buf, U))
11929 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11934 type = create_static_range_type (alloc_type_copy (raw_type),
11936 /* create_static_range_type alters the resulting type's length
11937 to match the size of the base_type, which is not what we want.
11938 Set it back to the original range type's length. */
11939 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11940 TYPE_NAME (type) = name;
11945 /* True iff NAME is the name of a range type. */
11948 ada_is_range_type_name (const char *name)
11950 return (name != NULL && strstr (name, "___XD"));
11954 /* Modular types */
11956 /* True iff TYPE is an Ada modular type. */
11959 ada_is_modular_type (struct type *type)
11961 struct type *subranged_type = get_base_type (type);
11963 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11964 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11965 && TYPE_UNSIGNED (subranged_type));
11968 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11971 ada_modulus (struct type *type)
11973 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11977 /* Ada exception catchpoint support:
11978 ---------------------------------
11980 We support 3 kinds of exception catchpoints:
11981 . catchpoints on Ada exceptions
11982 . catchpoints on unhandled Ada exceptions
11983 . catchpoints on failed assertions
11985 Exceptions raised during failed assertions, or unhandled exceptions
11986 could perfectly be caught with the general catchpoint on Ada exceptions.
11987 However, we can easily differentiate these two special cases, and having
11988 the option to distinguish these two cases from the rest can be useful
11989 to zero-in on certain situations.
11991 Exception catchpoints are a specialized form of breakpoint,
11992 since they rely on inserting breakpoints inside known routines
11993 of the GNAT runtime. The implementation therefore uses a standard
11994 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11997 Support in the runtime for exception catchpoints have been changed
11998 a few times already, and these changes affect the implementation
11999 of these catchpoints. In order to be able to support several
12000 variants of the runtime, we use a sniffer that will determine
12001 the runtime variant used by the program being debugged. */
12003 /* Ada's standard exceptions.
12005 The Ada 83 standard also defined Numeric_Error. But there so many
12006 situations where it was unclear from the Ada 83 Reference Manual
12007 (RM) whether Constraint_Error or Numeric_Error should be raised,
12008 that the ARG (Ada Rapporteur Group) eventually issued a Binding
12009 Interpretation saying that anytime the RM says that Numeric_Error
12010 should be raised, the implementation may raise Constraint_Error.
12011 Ada 95 went one step further and pretty much removed Numeric_Error
12012 from the list of standard exceptions (it made it a renaming of
12013 Constraint_Error, to help preserve compatibility when compiling
12014 an Ada83 compiler). As such, we do not include Numeric_Error from
12015 this list of standard exceptions. */
12017 static const char *standard_exc[] = {
12018 "constraint_error",
12024 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12026 /* A structure that describes how to support exception catchpoints
12027 for a given executable. */
12029 struct exception_support_info
12031 /* The name of the symbol to break on in order to insert
12032 a catchpoint on exceptions. */
12033 const char *catch_exception_sym;
12035 /* The name of the symbol to break on in order to insert
12036 a catchpoint on unhandled exceptions. */
12037 const char *catch_exception_unhandled_sym;
12039 /* The name of the symbol to break on in order to insert
12040 a catchpoint on failed assertions. */
12041 const char *catch_assert_sym;
12043 /* The name of the symbol to break on in order to insert
12044 a catchpoint on exception handling. */
12045 const char *catch_handlers_sym;
12047 /* Assuming that the inferior just triggered an unhandled exception
12048 catchpoint, this function is responsible for returning the address
12049 in inferior memory where the name of that exception is stored.
12050 Return zero if the address could not be computed. */
12051 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12054 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12055 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12057 /* The following exception support info structure describes how to
12058 implement exception catchpoints with the latest version of the
12059 Ada runtime (as of 2007-03-06). */
12061 static const struct exception_support_info default_exception_support_info =
12063 "__gnat_debug_raise_exception", /* catch_exception_sym */
12064 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12065 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12066 "__gnat_begin_handler", /* catch_handlers_sym */
12067 ada_unhandled_exception_name_addr
12070 /* The following exception support info structure describes how to
12071 implement exception catchpoints with a slightly older version
12072 of the Ada runtime. */
12074 static const struct exception_support_info exception_support_info_fallback =
12076 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12077 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12078 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12079 "__gnat_begin_handler", /* catch_handlers_sym */
12080 ada_unhandled_exception_name_addr_from_raise
12083 /* Return nonzero if we can detect the exception support routines
12084 described in EINFO.
12086 This function errors out if an abnormal situation is detected
12087 (for instance, if we find the exception support routines, but
12088 that support is found to be incomplete). */
12091 ada_has_this_exception_support (const struct exception_support_info *einfo)
12093 struct symbol *sym;
12095 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12096 that should be compiled with debugging information. As a result, we
12097 expect to find that symbol in the symtabs. */
12099 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12102 /* Perhaps we did not find our symbol because the Ada runtime was
12103 compiled without debugging info, or simply stripped of it.
12104 It happens on some GNU/Linux distributions for instance, where
12105 users have to install a separate debug package in order to get
12106 the runtime's debugging info. In that situation, let the user
12107 know why we cannot insert an Ada exception catchpoint.
12109 Note: Just for the purpose of inserting our Ada exception
12110 catchpoint, we could rely purely on the associated minimal symbol.
12111 But we would be operating in degraded mode anyway, since we are
12112 still lacking the debugging info needed later on to extract
12113 the name of the exception being raised (this name is printed in
12114 the catchpoint message, and is also used when trying to catch
12115 a specific exception). We do not handle this case for now. */
12116 struct bound_minimal_symbol msym
12117 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12119 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12120 error (_("Your Ada runtime appears to be missing some debugging "
12121 "information.\nCannot insert Ada exception catchpoint "
12122 "in this configuration."));
12127 /* Make sure that the symbol we found corresponds to a function. */
12129 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12130 error (_("Symbol \"%s\" is not a function (class = %d)"),
12131 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12136 /* Inspect the Ada runtime and determine which exception info structure
12137 should be used to provide support for exception catchpoints.
12139 This function will always set the per-inferior exception_info,
12140 or raise an error. */
12143 ada_exception_support_info_sniffer (void)
12145 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12147 /* If the exception info is already known, then no need to recompute it. */
12148 if (data->exception_info != NULL)
12151 /* Check the latest (default) exception support info. */
12152 if (ada_has_this_exception_support (&default_exception_support_info))
12154 data->exception_info = &default_exception_support_info;
12158 /* Try our fallback exception suport info. */
12159 if (ada_has_this_exception_support (&exception_support_info_fallback))
12161 data->exception_info = &exception_support_info_fallback;
12165 /* Sometimes, it is normal for us to not be able to find the routine
12166 we are looking for. This happens when the program is linked with
12167 the shared version of the GNAT runtime, and the program has not been
12168 started yet. Inform the user of these two possible causes if
12171 if (ada_update_initial_language (language_unknown) != language_ada)
12172 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12174 /* If the symbol does not exist, then check that the program is
12175 already started, to make sure that shared libraries have been
12176 loaded. If it is not started, this may mean that the symbol is
12177 in a shared library. */
12179 if (ptid_get_pid (inferior_ptid) == 0)
12180 error (_("Unable to insert catchpoint. Try to start the program first."));
12182 /* At this point, we know that we are debugging an Ada program and
12183 that the inferior has been started, but we still are not able to
12184 find the run-time symbols. That can mean that we are in
12185 configurable run time mode, or that a-except as been optimized
12186 out by the linker... In any case, at this point it is not worth
12187 supporting this feature. */
12189 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12192 /* True iff FRAME is very likely to be that of a function that is
12193 part of the runtime system. This is all very heuristic, but is
12194 intended to be used as advice as to what frames are uninteresting
12198 is_known_support_routine (struct frame_info *frame)
12200 enum language func_lang;
12202 const char *fullname;
12204 /* If this code does not have any debugging information (no symtab),
12205 This cannot be any user code. */
12207 symtab_and_line sal = find_frame_sal (frame);
12208 if (sal.symtab == NULL)
12211 /* If there is a symtab, but the associated source file cannot be
12212 located, then assume this is not user code: Selecting a frame
12213 for which we cannot display the code would not be very helpful
12214 for the user. This should also take care of case such as VxWorks
12215 where the kernel has some debugging info provided for a few units. */
12217 fullname = symtab_to_fullname (sal.symtab);
12218 if (access (fullname, R_OK) != 0)
12221 /* Check the unit filename againt the Ada runtime file naming.
12222 We also check the name of the objfile against the name of some
12223 known system libraries that sometimes come with debugging info
12226 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12228 re_comp (known_runtime_file_name_patterns[i]);
12229 if (re_exec (lbasename (sal.symtab->filename)))
12231 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12232 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12236 /* Check whether the function is a GNAT-generated entity. */
12238 gdb::unique_xmalloc_ptr<char> func_name
12239 = find_frame_funname (frame, &func_lang, NULL);
12240 if (func_name == NULL)
12243 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12245 re_comp (known_auxiliary_function_name_patterns[i]);
12246 if (re_exec (func_name.get ()))
12253 /* Find the first frame that contains debugging information and that is not
12254 part of the Ada run-time, starting from FI and moving upward. */
12257 ada_find_printable_frame (struct frame_info *fi)
12259 for (; fi != NULL; fi = get_prev_frame (fi))
12261 if (!is_known_support_routine (fi))
12270 /* Assuming that the inferior just triggered an unhandled exception
12271 catchpoint, return the address in inferior memory where the name
12272 of the exception is stored.
12274 Return zero if the address could not be computed. */
12277 ada_unhandled_exception_name_addr (void)
12279 return parse_and_eval_address ("e.full_name");
12282 /* Same as ada_unhandled_exception_name_addr, except that this function
12283 should be used when the inferior uses an older version of the runtime,
12284 where the exception name needs to be extracted from a specific frame
12285 several frames up in the callstack. */
12288 ada_unhandled_exception_name_addr_from_raise (void)
12291 struct frame_info *fi;
12292 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12294 /* To determine the name of this exception, we need to select
12295 the frame corresponding to RAISE_SYM_NAME. This frame is
12296 at least 3 levels up, so we simply skip the first 3 frames
12297 without checking the name of their associated function. */
12298 fi = get_current_frame ();
12299 for (frame_level = 0; frame_level < 3; frame_level += 1)
12301 fi = get_prev_frame (fi);
12305 enum language func_lang;
12307 gdb::unique_xmalloc_ptr<char> func_name
12308 = find_frame_funname (fi, &func_lang, NULL);
12309 if (func_name != NULL)
12311 if (strcmp (func_name.get (),
12312 data->exception_info->catch_exception_sym) == 0)
12313 break; /* We found the frame we were looking for... */
12314 fi = get_prev_frame (fi);
12322 return parse_and_eval_address ("id.full_name");
12325 /* Assuming the inferior just triggered an Ada exception catchpoint
12326 (of any type), return the address in inferior memory where the name
12327 of the exception is stored, if applicable.
12329 Assumes the selected frame is the current frame.
12331 Return zero if the address could not be computed, or if not relevant. */
12334 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12335 struct breakpoint *b)
12337 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12341 case ada_catch_exception:
12342 return (parse_and_eval_address ("e.full_name"));
12345 case ada_catch_exception_unhandled:
12346 return data->exception_info->unhandled_exception_name_addr ();
12349 case ada_catch_handlers:
12350 return 0; /* The runtimes does not provide access to the exception
12354 case ada_catch_assert:
12355 return 0; /* Exception name is not relevant in this case. */
12359 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12363 return 0; /* Should never be reached. */
12366 /* Assuming the inferior is stopped at an exception catchpoint,
12367 return the message which was associated to the exception, if
12368 available. Return NULL if the message could not be retrieved.
12370 The caller must xfree the string after use.
12372 Note: The exception message can be associated to an exception
12373 either through the use of the Raise_Exception function, or
12374 more simply (Ada 2005 and later), via:
12376 raise Exception_Name with "exception message";
12381 ada_exception_message_1 (void)
12383 struct value *e_msg_val;
12384 char *e_msg = NULL;
12386 struct cleanup *cleanups;
12388 /* For runtimes that support this feature, the exception message
12389 is passed as an unbounded string argument called "message". */
12390 e_msg_val = parse_and_eval ("message");
12391 if (e_msg_val == NULL)
12392 return NULL; /* Exception message not supported. */
12394 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12395 gdb_assert (e_msg_val != NULL);
12396 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12398 /* If the message string is empty, then treat it as if there was
12399 no exception message. */
12400 if (e_msg_len <= 0)
12403 e_msg = (char *) xmalloc (e_msg_len + 1);
12404 cleanups = make_cleanup (xfree, e_msg);
12405 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12406 e_msg[e_msg_len] = '\0';
12408 discard_cleanups (cleanups);
12412 /* Same as ada_exception_message_1, except that all exceptions are
12413 contained here (returning NULL instead). */
12416 ada_exception_message (void)
12418 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12422 e_msg = ada_exception_message_1 ();
12424 CATCH (e, RETURN_MASK_ERROR)
12433 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12434 any error that ada_exception_name_addr_1 might cause to be thrown.
12435 When an error is intercepted, a warning with the error message is printed,
12436 and zero is returned. */
12439 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12440 struct breakpoint *b)
12442 CORE_ADDR result = 0;
12446 result = ada_exception_name_addr_1 (ex, b);
12449 CATCH (e, RETURN_MASK_ERROR)
12451 warning (_("failed to get exception name: %s"), e.message);
12459 static char *ada_exception_catchpoint_cond_string
12460 (const char *excep_string,
12461 enum ada_exception_catchpoint_kind ex);
12463 /* Ada catchpoints.
12465 In the case of catchpoints on Ada exceptions, the catchpoint will
12466 stop the target on every exception the program throws. When a user
12467 specifies the name of a specific exception, we translate this
12468 request into a condition expression (in text form), and then parse
12469 it into an expression stored in each of the catchpoint's locations.
12470 We then use this condition to check whether the exception that was
12471 raised is the one the user is interested in. If not, then the
12472 target is resumed again. We store the name of the requested
12473 exception, in order to be able to re-set the condition expression
12474 when symbols change. */
12476 /* An instance of this type is used to represent an Ada catchpoint
12477 breakpoint location. */
12479 class ada_catchpoint_location : public bp_location
12482 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12483 : bp_location (ops, owner)
12486 /* The condition that checks whether the exception that was raised
12487 is the specific exception the user specified on catchpoint
12489 expression_up excep_cond_expr;
12492 /* Implement the DTOR method in the bp_location_ops structure for all
12493 Ada exception catchpoint kinds. */
12496 ada_catchpoint_location_dtor (struct bp_location *bl)
12498 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12500 al->excep_cond_expr.reset ();
12503 /* The vtable to be used in Ada catchpoint locations. */
12505 static const struct bp_location_ops ada_catchpoint_location_ops =
12507 ada_catchpoint_location_dtor
12510 /* An instance of this type is used to represent an Ada catchpoint. */
12512 struct ada_catchpoint : public breakpoint
12514 ~ada_catchpoint () override;
12516 /* The name of the specific exception the user specified. */
12517 char *excep_string;
12520 /* Parse the exception condition string in the context of each of the
12521 catchpoint's locations, and store them for later evaluation. */
12524 create_excep_cond_exprs (struct ada_catchpoint *c,
12525 enum ada_exception_catchpoint_kind ex)
12527 struct cleanup *old_chain;
12528 struct bp_location *bl;
12531 /* Nothing to do if there's no specific exception to catch. */
12532 if (c->excep_string == NULL)
12535 /* Same if there are no locations... */
12536 if (c->loc == NULL)
12539 /* Compute the condition expression in text form, from the specific
12540 expection we want to catch. */
12541 cond_string = ada_exception_catchpoint_cond_string (c->excep_string, ex);
12542 old_chain = make_cleanup (xfree, cond_string);
12544 /* Iterate over all the catchpoint's locations, and parse an
12545 expression for each. */
12546 for (bl = c->loc; bl != NULL; bl = bl->next)
12548 struct ada_catchpoint_location *ada_loc
12549 = (struct ada_catchpoint_location *) bl;
12552 if (!bl->shlib_disabled)
12559 exp = parse_exp_1 (&s, bl->address,
12560 block_for_pc (bl->address),
12563 CATCH (e, RETURN_MASK_ERROR)
12565 warning (_("failed to reevaluate internal exception condition "
12566 "for catchpoint %d: %s"),
12567 c->number, e.message);
12572 ada_loc->excep_cond_expr = std::move (exp);
12575 do_cleanups (old_chain);
12578 /* ada_catchpoint destructor. */
12580 ada_catchpoint::~ada_catchpoint ()
12582 xfree (this->excep_string);
12585 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12586 structure for all exception catchpoint kinds. */
12588 static struct bp_location *
12589 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12590 struct breakpoint *self)
12592 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12595 /* Implement the RE_SET method in the breakpoint_ops structure for all
12596 exception catchpoint kinds. */
12599 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12601 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12603 /* Call the base class's method. This updates the catchpoint's
12605 bkpt_breakpoint_ops.re_set (b);
12607 /* Reparse the exception conditional expressions. One for each
12609 create_excep_cond_exprs (c, ex);
12612 /* Returns true if we should stop for this breakpoint hit. If the
12613 user specified a specific exception, we only want to cause a stop
12614 if the program thrown that exception. */
12617 should_stop_exception (const struct bp_location *bl)
12619 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12620 const struct ada_catchpoint_location *ada_loc
12621 = (const struct ada_catchpoint_location *) bl;
12624 /* With no specific exception, should always stop. */
12625 if (c->excep_string == NULL)
12628 if (ada_loc->excep_cond_expr == NULL)
12630 /* We will have a NULL expression if back when we were creating
12631 the expressions, this location's had failed to parse. */
12638 struct value *mark;
12640 mark = value_mark ();
12641 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12642 value_free_to_mark (mark);
12644 CATCH (ex, RETURN_MASK_ALL)
12646 exception_fprintf (gdb_stderr, ex,
12647 _("Error in testing exception condition:\n"));
12654 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12655 for all exception catchpoint kinds. */
12658 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12660 bs->stop = should_stop_exception (bs->bp_location_at);
12663 /* Implement the PRINT_IT method in the breakpoint_ops structure
12664 for all exception catchpoint kinds. */
12666 static enum print_stop_action
12667 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12669 struct ui_out *uiout = current_uiout;
12670 struct breakpoint *b = bs->breakpoint_at;
12671 char *exception_message;
12673 annotate_catchpoint (b->number);
12675 if (uiout->is_mi_like_p ())
12677 uiout->field_string ("reason",
12678 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12679 uiout->field_string ("disp", bpdisp_text (b->disposition));
12682 uiout->text (b->disposition == disp_del
12683 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12684 uiout->field_int ("bkptno", b->number);
12685 uiout->text (", ");
12687 /* ada_exception_name_addr relies on the selected frame being the
12688 current frame. Need to do this here because this function may be
12689 called more than once when printing a stop, and below, we'll
12690 select the first frame past the Ada run-time (see
12691 ada_find_printable_frame). */
12692 select_frame (get_current_frame ());
12696 case ada_catch_exception:
12697 case ada_catch_exception_unhandled:
12698 case ada_catch_handlers:
12700 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12701 char exception_name[256];
12705 read_memory (addr, (gdb_byte *) exception_name,
12706 sizeof (exception_name) - 1);
12707 exception_name [sizeof (exception_name) - 1] = '\0';
12711 /* For some reason, we were unable to read the exception
12712 name. This could happen if the Runtime was compiled
12713 without debugging info, for instance. In that case,
12714 just replace the exception name by the generic string
12715 "exception" - it will read as "an exception" in the
12716 notification we are about to print. */
12717 memcpy (exception_name, "exception", sizeof ("exception"));
12719 /* In the case of unhandled exception breakpoints, we print
12720 the exception name as "unhandled EXCEPTION_NAME", to make
12721 it clearer to the user which kind of catchpoint just got
12722 hit. We used ui_out_text to make sure that this extra
12723 info does not pollute the exception name in the MI case. */
12724 if (ex == ada_catch_exception_unhandled)
12725 uiout->text ("unhandled ");
12726 uiout->field_string ("exception-name", exception_name);
12729 case ada_catch_assert:
12730 /* In this case, the name of the exception is not really
12731 important. Just print "failed assertion" to make it clearer
12732 that his program just hit an assertion-failure catchpoint.
12733 We used ui_out_text because this info does not belong in
12735 uiout->text ("failed assertion");
12739 exception_message = ada_exception_message ();
12740 if (exception_message != NULL)
12742 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12744 uiout->text (" (");
12745 uiout->field_string ("exception-message", exception_message);
12748 do_cleanups (cleanups);
12751 uiout->text (" at ");
12752 ada_find_printable_frame (get_current_frame ());
12754 return PRINT_SRC_AND_LOC;
12757 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12761 print_one_exception (enum ada_exception_catchpoint_kind ex,
12762 struct breakpoint *b, struct bp_location **last_loc)
12764 struct ui_out *uiout = current_uiout;
12765 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12766 struct value_print_options opts;
12768 get_user_print_options (&opts);
12769 if (opts.addressprint)
12771 annotate_field (4);
12772 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12775 annotate_field (5);
12776 *last_loc = b->loc;
12779 case ada_catch_exception:
12780 if (c->excep_string != NULL)
12782 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12784 uiout->field_string ("what", msg);
12788 uiout->field_string ("what", "all Ada exceptions");
12792 case ada_catch_exception_unhandled:
12793 uiout->field_string ("what", "unhandled Ada exceptions");
12796 case ada_catch_handlers:
12797 if (c->excep_string != NULL)
12799 uiout->field_fmt ("what",
12800 _("`%s' Ada exception handlers"),
12804 uiout->field_string ("what", "all Ada exceptions handlers");
12807 case ada_catch_assert:
12808 uiout->field_string ("what", "failed Ada assertions");
12812 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12817 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12818 for all exception catchpoint kinds. */
12821 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12822 struct breakpoint *b)
12824 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12825 struct ui_out *uiout = current_uiout;
12827 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12828 : _("Catchpoint "));
12829 uiout->field_int ("bkptno", b->number);
12830 uiout->text (": ");
12834 case ada_catch_exception:
12835 if (c->excep_string != NULL)
12837 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12838 struct cleanup *old_chain = make_cleanup (xfree, info);
12840 uiout->text (info);
12841 do_cleanups (old_chain);
12844 uiout->text (_("all Ada exceptions"));
12847 case ada_catch_exception_unhandled:
12848 uiout->text (_("unhandled Ada exceptions"));
12851 case ada_catch_handlers:
12852 if (c->excep_string != NULL)
12855 = string_printf (_("`%s' Ada exception handlers"),
12857 uiout->text (info.c_str ());
12860 uiout->text (_("all Ada exceptions handlers"));
12863 case ada_catch_assert:
12864 uiout->text (_("failed Ada assertions"));
12868 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12873 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12874 for all exception catchpoint kinds. */
12877 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12878 struct breakpoint *b, struct ui_file *fp)
12880 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12884 case ada_catch_exception:
12885 fprintf_filtered (fp, "catch exception");
12886 if (c->excep_string != NULL)
12887 fprintf_filtered (fp, " %s", c->excep_string);
12890 case ada_catch_exception_unhandled:
12891 fprintf_filtered (fp, "catch exception unhandled");
12894 case ada_catch_handlers:
12895 fprintf_filtered (fp, "catch handlers");
12898 case ada_catch_assert:
12899 fprintf_filtered (fp, "catch assert");
12903 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12905 print_recreate_thread (b, fp);
12908 /* Virtual table for "catch exception" breakpoints. */
12910 static struct bp_location *
12911 allocate_location_catch_exception (struct breakpoint *self)
12913 return allocate_location_exception (ada_catch_exception, self);
12917 re_set_catch_exception (struct breakpoint *b)
12919 re_set_exception (ada_catch_exception, b);
12923 check_status_catch_exception (bpstat bs)
12925 check_status_exception (ada_catch_exception, bs);
12928 static enum print_stop_action
12929 print_it_catch_exception (bpstat bs)
12931 return print_it_exception (ada_catch_exception, bs);
12935 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12937 print_one_exception (ada_catch_exception, b, last_loc);
12941 print_mention_catch_exception (struct breakpoint *b)
12943 print_mention_exception (ada_catch_exception, b);
12947 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12949 print_recreate_exception (ada_catch_exception, b, fp);
12952 static struct breakpoint_ops catch_exception_breakpoint_ops;
12954 /* Virtual table for "catch exception unhandled" breakpoints. */
12956 static struct bp_location *
12957 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12959 return allocate_location_exception (ada_catch_exception_unhandled, self);
12963 re_set_catch_exception_unhandled (struct breakpoint *b)
12965 re_set_exception (ada_catch_exception_unhandled, b);
12969 check_status_catch_exception_unhandled (bpstat bs)
12971 check_status_exception (ada_catch_exception_unhandled, bs);
12974 static enum print_stop_action
12975 print_it_catch_exception_unhandled (bpstat bs)
12977 return print_it_exception (ada_catch_exception_unhandled, bs);
12981 print_one_catch_exception_unhandled (struct breakpoint *b,
12982 struct bp_location **last_loc)
12984 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12988 print_mention_catch_exception_unhandled (struct breakpoint *b)
12990 print_mention_exception (ada_catch_exception_unhandled, b);
12994 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12995 struct ui_file *fp)
12997 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
13000 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
13002 /* Virtual table for "catch assert" breakpoints. */
13004 static struct bp_location *
13005 allocate_location_catch_assert (struct breakpoint *self)
13007 return allocate_location_exception (ada_catch_assert, self);
13011 re_set_catch_assert (struct breakpoint *b)
13013 re_set_exception (ada_catch_assert, b);
13017 check_status_catch_assert (bpstat bs)
13019 check_status_exception (ada_catch_assert, bs);
13022 static enum print_stop_action
13023 print_it_catch_assert (bpstat bs)
13025 return print_it_exception (ada_catch_assert, bs);
13029 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
13031 print_one_exception (ada_catch_assert, b, last_loc);
13035 print_mention_catch_assert (struct breakpoint *b)
13037 print_mention_exception (ada_catch_assert, b);
13041 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13043 print_recreate_exception (ada_catch_assert, b, fp);
13046 static struct breakpoint_ops catch_assert_breakpoint_ops;
13048 /* Virtual table for "catch handlers" breakpoints. */
13050 static struct bp_location *
13051 allocate_location_catch_handlers (struct breakpoint *self)
13053 return allocate_location_exception (ada_catch_handlers, self);
13057 re_set_catch_handlers (struct breakpoint *b)
13059 re_set_exception (ada_catch_handlers, b);
13063 check_status_catch_handlers (bpstat bs)
13065 check_status_exception (ada_catch_handlers, bs);
13068 static enum print_stop_action
13069 print_it_catch_handlers (bpstat bs)
13071 return print_it_exception (ada_catch_handlers, bs);
13075 print_one_catch_handlers (struct breakpoint *b,
13076 struct bp_location **last_loc)
13078 print_one_exception (ada_catch_handlers, b, last_loc);
13082 print_mention_catch_handlers (struct breakpoint *b)
13084 print_mention_exception (ada_catch_handlers, b);
13088 print_recreate_catch_handlers (struct breakpoint *b,
13089 struct ui_file *fp)
13091 print_recreate_exception (ada_catch_handlers, b, fp);
13094 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13096 /* Return a newly allocated copy of the first space-separated token
13097 in ARGSP, and then adjust ARGSP to point immediately after that
13100 Return NULL if ARGPS does not contain any more tokens. */
13103 ada_get_next_arg (const char **argsp)
13105 const char *args = *argsp;
13109 args = skip_spaces (args);
13110 if (args[0] == '\0')
13111 return NULL; /* No more arguments. */
13113 /* Find the end of the current argument. */
13115 end = skip_to_space (args);
13117 /* Adjust ARGSP to point to the start of the next argument. */
13121 /* Make a copy of the current argument and return it. */
13123 result = (char *) xmalloc (end - args + 1);
13124 strncpy (result, args, end - args);
13125 result[end - args] = '\0';
13130 /* Split the arguments specified in a "catch exception" command.
13131 Set EX to the appropriate catchpoint type.
13132 Set EXCEP_STRING to the name of the specific exception if
13133 specified by the user.
13134 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13135 "catch handlers" command. False otherwise.
13136 If a condition is found at the end of the arguments, the condition
13137 expression is stored in COND_STRING (memory must be deallocated
13138 after use). Otherwise COND_STRING is set to NULL. */
13141 catch_ada_exception_command_split (const char *args,
13142 bool is_catch_handlers_cmd,
13143 enum ada_exception_catchpoint_kind *ex,
13144 char **excep_string,
13145 std::string &cond_string)
13147 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13148 char *exception_name;
13151 exception_name = ada_get_next_arg (&args);
13152 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13154 /* This is not an exception name; this is the start of a condition
13155 expression for a catchpoint on all exceptions. So, "un-get"
13156 this token, and set exception_name to NULL. */
13157 xfree (exception_name);
13158 exception_name = NULL;
13161 make_cleanup (xfree, exception_name);
13163 /* Check to see if we have a condition. */
13165 args = skip_spaces (args);
13166 if (startswith (args, "if")
13167 && (isspace (args[2]) || args[2] == '\0'))
13170 args = skip_spaces (args);
13172 if (args[0] == '\0')
13173 error (_("Condition missing after `if' keyword"));
13174 cond = xstrdup (args);
13175 make_cleanup (xfree, cond);
13177 args += strlen (args);
13180 /* Check that we do not have any more arguments. Anything else
13183 if (args[0] != '\0')
13184 error (_("Junk at end of expression"));
13186 discard_cleanups (old_chain);
13188 if (is_catch_handlers_cmd)
13190 /* Catch handling of exceptions. */
13191 *ex = ada_catch_handlers;
13192 *excep_string = exception_name;
13194 else if (exception_name == NULL)
13196 /* Catch all exceptions. */
13197 *ex = ada_catch_exception;
13198 *excep_string = NULL;
13200 else if (strcmp (exception_name, "unhandled") == 0)
13202 /* Catch unhandled exceptions. */
13203 *ex = ada_catch_exception_unhandled;
13204 *excep_string = NULL;
13208 /* Catch a specific exception. */
13209 *ex = ada_catch_exception;
13210 *excep_string = exception_name;
13213 cond_string.assign (cond);
13216 /* Return the name of the symbol on which we should break in order to
13217 implement a catchpoint of the EX kind. */
13219 static const char *
13220 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13222 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13224 gdb_assert (data->exception_info != NULL);
13228 case ada_catch_exception:
13229 return (data->exception_info->catch_exception_sym);
13231 case ada_catch_exception_unhandled:
13232 return (data->exception_info->catch_exception_unhandled_sym);
13234 case ada_catch_assert:
13235 return (data->exception_info->catch_assert_sym);
13237 case ada_catch_handlers:
13238 return (data->exception_info->catch_handlers_sym);
13241 internal_error (__FILE__, __LINE__,
13242 _("unexpected catchpoint kind (%d)"), ex);
13246 /* Return the breakpoint ops "virtual table" used for catchpoints
13249 static const struct breakpoint_ops *
13250 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13254 case ada_catch_exception:
13255 return (&catch_exception_breakpoint_ops);
13257 case ada_catch_exception_unhandled:
13258 return (&catch_exception_unhandled_breakpoint_ops);
13260 case ada_catch_assert:
13261 return (&catch_assert_breakpoint_ops);
13263 case ada_catch_handlers:
13264 return (&catch_handlers_breakpoint_ops);
13267 internal_error (__FILE__, __LINE__,
13268 _("unexpected catchpoint kind (%d)"), ex);
13272 /* Return the condition that will be used to match the current exception
13273 being raised with the exception that the user wants to catch. This
13274 assumes that this condition is used when the inferior just triggered
13275 an exception catchpoint.
13276 EX: the type of catchpoints used for catching Ada exceptions.
13278 The string returned is a newly allocated string that needs to be
13279 deallocated later. */
13282 ada_exception_catchpoint_cond_string (const char *excep_string,
13283 enum ada_exception_catchpoint_kind ex)
13286 bool is_standard_exc = false;
13287 const char *actual_exc_expr;
13288 char *ref_exc_expr;
13290 if (ex == ada_catch_handlers)
13292 /* For exception handlers catchpoints, the condition string does
13293 not use the same parameter as for the other exceptions. */
13294 actual_exc_expr = ("long_integer (GNAT_GCC_exception_Access"
13295 "(gcc_exception).all.occurrence.id)");
13298 actual_exc_expr = "long_integer (e)";
13300 /* The standard exceptions are a special case. They are defined in
13301 runtime units that have been compiled without debugging info; if
13302 EXCEP_STRING is the not-fully-qualified name of a standard
13303 exception (e.g. "constraint_error") then, during the evaluation
13304 of the condition expression, the symbol lookup on this name would
13305 *not* return this standard exception. The catchpoint condition
13306 may then be set only on user-defined exceptions which have the
13307 same not-fully-qualified name (e.g. my_package.constraint_error).
13309 To avoid this unexcepted behavior, these standard exceptions are
13310 systematically prefixed by "standard". This means that "catch
13311 exception constraint_error" is rewritten into "catch exception
13312 standard.constraint_error".
13314 If an exception named contraint_error is defined in another package of
13315 the inferior program, then the only way to specify this exception as a
13316 breakpoint condition is to use its fully-qualified named:
13317 e.g. my_package.constraint_error. */
13319 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13321 if (strcmp (standard_exc [i], excep_string) == 0)
13323 is_standard_exc = true;
13328 if (is_standard_exc)
13329 ref_exc_expr = xstrprintf ("long_integer (&standard.%s)", excep_string);
13331 ref_exc_expr = xstrprintf ("long_integer (&%s)", excep_string);
13333 char *result = xstrprintf ("%s = %s", actual_exc_expr, ref_exc_expr);
13334 xfree (ref_exc_expr);
13338 /* Return the symtab_and_line that should be used to insert an exception
13339 catchpoint of the TYPE kind.
13341 EXCEP_STRING should contain the name of a specific exception that
13342 the catchpoint should catch, or NULL otherwise.
13344 ADDR_STRING returns the name of the function where the real
13345 breakpoint that implements the catchpoints is set, depending on the
13346 type of catchpoint we need to create. */
13348 static struct symtab_and_line
13349 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13350 const char **addr_string, const struct breakpoint_ops **ops)
13352 const char *sym_name;
13353 struct symbol *sym;
13355 /* First, find out which exception support info to use. */
13356 ada_exception_support_info_sniffer ();
13358 /* Then lookup the function on which we will break in order to catch
13359 the Ada exceptions requested by the user. */
13360 sym_name = ada_exception_sym_name (ex);
13361 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13363 /* We can assume that SYM is not NULL at this stage. If the symbol
13364 did not exist, ada_exception_support_info_sniffer would have
13365 raised an exception.
13367 Also, ada_exception_support_info_sniffer should have already
13368 verified that SYM is a function symbol. */
13369 gdb_assert (sym != NULL);
13370 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13372 /* Set ADDR_STRING. */
13373 *addr_string = xstrdup (sym_name);
13376 *ops = ada_exception_breakpoint_ops (ex);
13378 return find_function_start_sal (sym, 1);
13381 /* Create an Ada exception catchpoint.
13383 EX_KIND is the kind of exception catchpoint to be created.
13385 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13386 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13387 of the exception to which this catchpoint applies. When not NULL,
13388 the string must be allocated on the heap, and its deallocation
13389 is no longer the responsibility of the caller.
13391 COND_STRING, if not NULL, is the catchpoint condition. This string
13392 must be allocated on the heap, and its deallocation is no longer
13393 the responsibility of the caller.
13395 TEMPFLAG, if nonzero, means that the underlying breakpoint
13396 should be temporary.
13398 FROM_TTY is the usual argument passed to all commands implementations. */
13401 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13402 enum ada_exception_catchpoint_kind ex_kind,
13403 char *excep_string,
13404 const std::string &cond_string,
13409 const char *addr_string = NULL;
13410 const struct breakpoint_ops *ops = NULL;
13411 struct symtab_and_line sal
13412 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13414 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13415 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13416 ops, tempflag, disabled, from_tty);
13417 c->excep_string = excep_string;
13418 create_excep_cond_exprs (c.get (), ex_kind);
13419 if (!cond_string.empty ())
13420 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13421 install_breakpoint (0, std::move (c), 1);
13424 /* Implement the "catch exception" command. */
13427 catch_ada_exception_command (const char *arg_entry, int from_tty,
13428 struct cmd_list_element *command)
13430 const char *arg = arg_entry;
13431 struct gdbarch *gdbarch = get_current_arch ();
13433 enum ada_exception_catchpoint_kind ex_kind;
13434 char *excep_string = NULL;
13435 std::string cond_string;
13437 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13441 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13443 create_ada_exception_catchpoint (gdbarch, ex_kind,
13444 excep_string, cond_string,
13445 tempflag, 1 /* enabled */,
13449 /* Implement the "catch handlers" command. */
13452 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13453 struct cmd_list_element *command)
13455 const char *arg = arg_entry;
13456 struct gdbarch *gdbarch = get_current_arch ();
13458 enum ada_exception_catchpoint_kind ex_kind;
13459 char *excep_string = NULL;
13460 std::string cond_string;
13462 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13466 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13468 create_ada_exception_catchpoint (gdbarch, ex_kind,
13469 excep_string, cond_string,
13470 tempflag, 1 /* enabled */,
13474 /* Split the arguments specified in a "catch assert" command.
13476 ARGS contains the command's arguments (or the empty string if
13477 no arguments were passed).
13479 If ARGS contains a condition, set COND_STRING to that condition
13480 (the memory needs to be deallocated after use). */
13483 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13485 args = skip_spaces (args);
13487 /* Check whether a condition was provided. */
13488 if (startswith (args, "if")
13489 && (isspace (args[2]) || args[2] == '\0'))
13492 args = skip_spaces (args);
13493 if (args[0] == '\0')
13494 error (_("condition missing after `if' keyword"));
13495 cond_string.assign (args);
13498 /* Otherwise, there should be no other argument at the end of
13500 else if (args[0] != '\0')
13501 error (_("Junk at end of arguments."));
13504 /* Implement the "catch assert" command. */
13507 catch_assert_command (const char *arg_entry, int from_tty,
13508 struct cmd_list_element *command)
13510 const char *arg = arg_entry;
13511 struct gdbarch *gdbarch = get_current_arch ();
13513 std::string cond_string;
13515 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13519 catch_ada_assert_command_split (arg, cond_string);
13520 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13522 tempflag, 1 /* enabled */,
13526 /* Return non-zero if the symbol SYM is an Ada exception object. */
13529 ada_is_exception_sym (struct symbol *sym)
13531 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13533 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13534 && SYMBOL_CLASS (sym) != LOC_BLOCK
13535 && SYMBOL_CLASS (sym) != LOC_CONST
13536 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13537 && type_name != NULL && strcmp (type_name, "exception") == 0);
13540 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13541 Ada exception object. This matches all exceptions except the ones
13542 defined by the Ada language. */
13545 ada_is_non_standard_exception_sym (struct symbol *sym)
13549 if (!ada_is_exception_sym (sym))
13552 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13553 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13554 return 0; /* A standard exception. */
13556 /* Numeric_Error is also a standard exception, so exclude it.
13557 See the STANDARD_EXC description for more details as to why
13558 this exception is not listed in that array. */
13559 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13565 /* A helper function for std::sort, comparing two struct ada_exc_info
13568 The comparison is determined first by exception name, and then
13569 by exception address. */
13572 ada_exc_info::operator< (const ada_exc_info &other) const
13576 result = strcmp (name, other.name);
13579 if (result == 0 && addr < other.addr)
13585 ada_exc_info::operator== (const ada_exc_info &other) const
13587 return addr == other.addr && strcmp (name, other.name) == 0;
13590 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13591 routine, but keeping the first SKIP elements untouched.
13593 All duplicates are also removed. */
13596 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13599 std::sort (exceptions->begin () + skip, exceptions->end ());
13600 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13601 exceptions->end ());
13604 /* Add all exceptions defined by the Ada standard whose name match
13605 a regular expression.
13607 If PREG is not NULL, then this regexp_t object is used to
13608 perform the symbol name matching. Otherwise, no name-based
13609 filtering is performed.
13611 EXCEPTIONS is a vector of exceptions to which matching exceptions
13615 ada_add_standard_exceptions (compiled_regex *preg,
13616 std::vector<ada_exc_info> *exceptions)
13620 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13623 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13625 struct bound_minimal_symbol msymbol
13626 = ada_lookup_simple_minsym (standard_exc[i]);
13628 if (msymbol.minsym != NULL)
13630 struct ada_exc_info info
13631 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13633 exceptions->push_back (info);
13639 /* Add all Ada exceptions defined locally and accessible from the given
13642 If PREG is not NULL, then this regexp_t object is used to
13643 perform the symbol name matching. Otherwise, no name-based
13644 filtering is performed.
13646 EXCEPTIONS is a vector of exceptions to which matching exceptions
13650 ada_add_exceptions_from_frame (compiled_regex *preg,
13651 struct frame_info *frame,
13652 std::vector<ada_exc_info> *exceptions)
13654 const struct block *block = get_frame_block (frame, 0);
13658 struct block_iterator iter;
13659 struct symbol *sym;
13661 ALL_BLOCK_SYMBOLS (block, iter, sym)
13663 switch (SYMBOL_CLASS (sym))
13670 if (ada_is_exception_sym (sym))
13672 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13673 SYMBOL_VALUE_ADDRESS (sym)};
13675 exceptions->push_back (info);
13679 if (BLOCK_FUNCTION (block) != NULL)
13681 block = BLOCK_SUPERBLOCK (block);
13685 /* Return true if NAME matches PREG or if PREG is NULL. */
13688 name_matches_regex (const char *name, compiled_regex *preg)
13690 return (preg == NULL
13691 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13694 /* Add all exceptions defined globally whose name name match
13695 a regular expression, excluding standard exceptions.
13697 The reason we exclude standard exceptions is that they need
13698 to be handled separately: Standard exceptions are defined inside
13699 a runtime unit which is normally not compiled with debugging info,
13700 and thus usually do not show up in our symbol search. However,
13701 if the unit was in fact built with debugging info, we need to
13702 exclude them because they would duplicate the entry we found
13703 during the special loop that specifically searches for those
13704 standard exceptions.
13706 If PREG is not NULL, then this regexp_t object is used to
13707 perform the symbol name matching. Otherwise, no name-based
13708 filtering is performed.
13710 EXCEPTIONS is a vector of exceptions to which matching exceptions
13714 ada_add_global_exceptions (compiled_regex *preg,
13715 std::vector<ada_exc_info> *exceptions)
13717 struct objfile *objfile;
13718 struct compunit_symtab *s;
13720 /* In Ada, the symbol "search name" is a linkage name, whereas the
13721 regular expression used to do the matching refers to the natural
13722 name. So match against the decoded name. */
13723 expand_symtabs_matching (NULL,
13724 lookup_name_info::match_any (),
13725 [&] (const char *search_name)
13727 const char *decoded = ada_decode (search_name);
13728 return name_matches_regex (decoded, preg);
13733 ALL_COMPUNITS (objfile, s)
13735 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13738 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13740 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13741 struct block_iterator iter;
13742 struct symbol *sym;
13744 ALL_BLOCK_SYMBOLS (b, iter, sym)
13745 if (ada_is_non_standard_exception_sym (sym)
13746 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13748 struct ada_exc_info info
13749 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13751 exceptions->push_back (info);
13757 /* Implements ada_exceptions_list with the regular expression passed
13758 as a regex_t, rather than a string.
13760 If not NULL, PREG is used to filter out exceptions whose names
13761 do not match. Otherwise, all exceptions are listed. */
13763 static std::vector<ada_exc_info>
13764 ada_exceptions_list_1 (compiled_regex *preg)
13766 std::vector<ada_exc_info> result;
13769 /* First, list the known standard exceptions. These exceptions
13770 need to be handled separately, as they are usually defined in
13771 runtime units that have been compiled without debugging info. */
13773 ada_add_standard_exceptions (preg, &result);
13775 /* Next, find all exceptions whose scope is local and accessible
13776 from the currently selected frame. */
13778 if (has_stack_frames ())
13780 prev_len = result.size ();
13781 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13783 if (result.size () > prev_len)
13784 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13787 /* Add all exceptions whose scope is global. */
13789 prev_len = result.size ();
13790 ada_add_global_exceptions (preg, &result);
13791 if (result.size () > prev_len)
13792 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13797 /* Return a vector of ada_exc_info.
13799 If REGEXP is NULL, all exceptions are included in the result.
13800 Otherwise, it should contain a valid regular expression,
13801 and only the exceptions whose names match that regular expression
13802 are included in the result.
13804 The exceptions are sorted in the following order:
13805 - Standard exceptions (defined by the Ada language), in
13806 alphabetical order;
13807 - Exceptions only visible from the current frame, in
13808 alphabetical order;
13809 - Exceptions whose scope is global, in alphabetical order. */
13811 std::vector<ada_exc_info>
13812 ada_exceptions_list (const char *regexp)
13814 if (regexp == NULL)
13815 return ada_exceptions_list_1 (NULL);
13817 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13818 return ada_exceptions_list_1 (®);
13821 /* Implement the "info exceptions" command. */
13824 info_exceptions_command (const char *regexp, int from_tty)
13826 struct gdbarch *gdbarch = get_current_arch ();
13828 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13830 if (regexp != NULL)
13832 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13834 printf_filtered (_("All defined Ada exceptions:\n"));
13836 for (const ada_exc_info &info : exceptions)
13837 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13841 /* Information about operators given special treatment in functions
13843 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13845 #define ADA_OPERATORS \
13846 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13847 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13848 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13849 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13850 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13851 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13852 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13853 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13854 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13855 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13856 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13857 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13858 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13859 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13860 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13861 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13862 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13863 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13864 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13867 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13870 switch (exp->elts[pc - 1].opcode)
13873 operator_length_standard (exp, pc, oplenp, argsp);
13876 #define OP_DEFN(op, len, args, binop) \
13877 case op: *oplenp = len; *argsp = args; break;
13883 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13888 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13893 /* Implementation of the exp_descriptor method operator_check. */
13896 ada_operator_check (struct expression *exp, int pos,
13897 int (*objfile_func) (struct objfile *objfile, void *data),
13900 const union exp_element *const elts = exp->elts;
13901 struct type *type = NULL;
13903 switch (elts[pos].opcode)
13905 case UNOP_IN_RANGE:
13907 type = elts[pos + 1].type;
13911 return operator_check_standard (exp, pos, objfile_func, data);
13914 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13916 if (type && TYPE_OBJFILE (type)
13917 && (*objfile_func) (TYPE_OBJFILE (type), data))
13923 static const char *
13924 ada_op_name (enum exp_opcode opcode)
13929 return op_name_standard (opcode);
13931 #define OP_DEFN(op, len, args, binop) case op: return #op;
13936 return "OP_AGGREGATE";
13938 return "OP_CHOICES";
13944 /* As for operator_length, but assumes PC is pointing at the first
13945 element of the operator, and gives meaningful results only for the
13946 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13949 ada_forward_operator_length (struct expression *exp, int pc,
13950 int *oplenp, int *argsp)
13952 switch (exp->elts[pc].opcode)
13955 *oplenp = *argsp = 0;
13958 #define OP_DEFN(op, len, args, binop) \
13959 case op: *oplenp = len; *argsp = args; break;
13965 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13970 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13976 int len = longest_to_int (exp->elts[pc + 1].longconst);
13978 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13986 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13988 enum exp_opcode op = exp->elts[elt].opcode;
13993 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13997 /* Ada attributes ('Foo). */
14000 case OP_ATR_LENGTH:
14004 case OP_ATR_MODULUS:
14011 case UNOP_IN_RANGE:
14013 /* XXX: gdb_sprint_host_address, type_sprint */
14014 fprintf_filtered (stream, _("Type @"));
14015 gdb_print_host_address (exp->elts[pc + 1].type, stream);
14016 fprintf_filtered (stream, " (");
14017 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
14018 fprintf_filtered (stream, ")");
14020 case BINOP_IN_BOUNDS:
14021 fprintf_filtered (stream, " (%d)",
14022 longest_to_int (exp->elts[pc + 2].longconst));
14024 case TERNOP_IN_RANGE:
14029 case OP_DISCRETE_RANGE:
14030 case OP_POSITIONAL:
14037 char *name = &exp->elts[elt + 2].string;
14038 int len = longest_to_int (exp->elts[elt + 1].longconst);
14040 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14045 return dump_subexp_body_standard (exp, stream, elt);
14049 for (i = 0; i < nargs; i += 1)
14050 elt = dump_subexp (exp, stream, elt);
14055 /* The Ada extension of print_subexp (q.v.). */
14058 ada_print_subexp (struct expression *exp, int *pos,
14059 struct ui_file *stream, enum precedence prec)
14061 int oplen, nargs, i;
14063 enum exp_opcode op = exp->elts[pc].opcode;
14065 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14072 print_subexp_standard (exp, pos, stream, prec);
14076 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14079 case BINOP_IN_BOUNDS:
14080 /* XXX: sprint_subexp */
14081 print_subexp (exp, pos, stream, PREC_SUFFIX);
14082 fputs_filtered (" in ", stream);
14083 print_subexp (exp, pos, stream, PREC_SUFFIX);
14084 fputs_filtered ("'range", stream);
14085 if (exp->elts[pc + 1].longconst > 1)
14086 fprintf_filtered (stream, "(%ld)",
14087 (long) exp->elts[pc + 1].longconst);
14090 case TERNOP_IN_RANGE:
14091 if (prec >= PREC_EQUAL)
14092 fputs_filtered ("(", stream);
14093 /* XXX: sprint_subexp */
14094 print_subexp (exp, pos, stream, PREC_SUFFIX);
14095 fputs_filtered (" in ", stream);
14096 print_subexp (exp, pos, stream, PREC_EQUAL);
14097 fputs_filtered (" .. ", stream);
14098 print_subexp (exp, pos, stream, PREC_EQUAL);
14099 if (prec >= PREC_EQUAL)
14100 fputs_filtered (")", stream);
14105 case OP_ATR_LENGTH:
14109 case OP_ATR_MODULUS:
14114 if (exp->elts[*pos].opcode == OP_TYPE)
14116 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14117 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14118 &type_print_raw_options);
14122 print_subexp (exp, pos, stream, PREC_SUFFIX);
14123 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14128 for (tem = 1; tem < nargs; tem += 1)
14130 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14131 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14133 fputs_filtered (")", stream);
14138 type_print (exp->elts[pc + 1].type, "", stream, 0);
14139 fputs_filtered ("'(", stream);
14140 print_subexp (exp, pos, stream, PREC_PREFIX);
14141 fputs_filtered (")", stream);
14144 case UNOP_IN_RANGE:
14145 /* XXX: sprint_subexp */
14146 print_subexp (exp, pos, stream, PREC_SUFFIX);
14147 fputs_filtered (" in ", stream);
14148 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14149 &type_print_raw_options);
14152 case OP_DISCRETE_RANGE:
14153 print_subexp (exp, pos, stream, PREC_SUFFIX);
14154 fputs_filtered ("..", stream);
14155 print_subexp (exp, pos, stream, PREC_SUFFIX);
14159 fputs_filtered ("others => ", stream);
14160 print_subexp (exp, pos, stream, PREC_SUFFIX);
14164 for (i = 0; i < nargs-1; i += 1)
14167 fputs_filtered ("|", stream);
14168 print_subexp (exp, pos, stream, PREC_SUFFIX);
14170 fputs_filtered (" => ", stream);
14171 print_subexp (exp, pos, stream, PREC_SUFFIX);
14174 case OP_POSITIONAL:
14175 print_subexp (exp, pos, stream, PREC_SUFFIX);
14179 fputs_filtered ("(", stream);
14180 for (i = 0; i < nargs; i += 1)
14183 fputs_filtered (", ", stream);
14184 print_subexp (exp, pos, stream, PREC_SUFFIX);
14186 fputs_filtered (")", stream);
14191 /* Table mapping opcodes into strings for printing operators
14192 and precedences of the operators. */
14194 static const struct op_print ada_op_print_tab[] = {
14195 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14196 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14197 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14198 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14199 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14200 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14201 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14202 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14203 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14204 {">=", BINOP_GEQ, PREC_ORDER, 0},
14205 {">", BINOP_GTR, PREC_ORDER, 0},
14206 {"<", BINOP_LESS, PREC_ORDER, 0},
14207 {">>", BINOP_RSH, PREC_SHIFT, 0},
14208 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14209 {"+", BINOP_ADD, PREC_ADD, 0},
14210 {"-", BINOP_SUB, PREC_ADD, 0},
14211 {"&", BINOP_CONCAT, PREC_ADD, 0},
14212 {"*", BINOP_MUL, PREC_MUL, 0},
14213 {"/", BINOP_DIV, PREC_MUL, 0},
14214 {"rem", BINOP_REM, PREC_MUL, 0},
14215 {"mod", BINOP_MOD, PREC_MUL, 0},
14216 {"**", BINOP_EXP, PREC_REPEAT, 0},
14217 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14218 {"-", UNOP_NEG, PREC_PREFIX, 0},
14219 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14220 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14221 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14222 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14223 {".all", UNOP_IND, PREC_SUFFIX, 1},
14224 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14225 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14226 {NULL, OP_NULL, PREC_SUFFIX, 0}
14229 enum ada_primitive_types {
14230 ada_primitive_type_int,
14231 ada_primitive_type_long,
14232 ada_primitive_type_short,
14233 ada_primitive_type_char,
14234 ada_primitive_type_float,
14235 ada_primitive_type_double,
14236 ada_primitive_type_void,
14237 ada_primitive_type_long_long,
14238 ada_primitive_type_long_double,
14239 ada_primitive_type_natural,
14240 ada_primitive_type_positive,
14241 ada_primitive_type_system_address,
14242 ada_primitive_type_storage_offset,
14243 nr_ada_primitive_types
14247 ada_language_arch_info (struct gdbarch *gdbarch,
14248 struct language_arch_info *lai)
14250 const struct builtin_type *builtin = builtin_type (gdbarch);
14252 lai->primitive_type_vector
14253 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14256 lai->primitive_type_vector [ada_primitive_type_int]
14257 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14259 lai->primitive_type_vector [ada_primitive_type_long]
14260 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14261 0, "long_integer");
14262 lai->primitive_type_vector [ada_primitive_type_short]
14263 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14264 0, "short_integer");
14265 lai->string_char_type
14266 = lai->primitive_type_vector [ada_primitive_type_char]
14267 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14268 lai->primitive_type_vector [ada_primitive_type_float]
14269 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14270 "float", gdbarch_float_format (gdbarch));
14271 lai->primitive_type_vector [ada_primitive_type_double]
14272 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14273 "long_float", gdbarch_double_format (gdbarch));
14274 lai->primitive_type_vector [ada_primitive_type_long_long]
14275 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14276 0, "long_long_integer");
14277 lai->primitive_type_vector [ada_primitive_type_long_double]
14278 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14279 "long_long_float", gdbarch_long_double_format (gdbarch));
14280 lai->primitive_type_vector [ada_primitive_type_natural]
14281 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14283 lai->primitive_type_vector [ada_primitive_type_positive]
14284 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14286 lai->primitive_type_vector [ada_primitive_type_void]
14287 = builtin->builtin_void;
14289 lai->primitive_type_vector [ada_primitive_type_system_address]
14290 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14292 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14293 = "system__address";
14295 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14296 type. This is a signed integral type whose size is the same as
14297 the size of addresses. */
14299 unsigned int addr_length = TYPE_LENGTH
14300 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14302 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14303 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14307 lai->bool_type_symbol = NULL;
14308 lai->bool_type_default = builtin->builtin_bool;
14311 /* Language vector */
14313 /* Not really used, but needed in the ada_language_defn. */
14316 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14318 ada_emit_char (c, type, stream, quoter, 1);
14322 parse (struct parser_state *ps)
14324 warnings_issued = 0;
14325 return ada_parse (ps);
14328 static const struct exp_descriptor ada_exp_descriptor = {
14330 ada_operator_length,
14331 ada_operator_check,
14333 ada_dump_subexp_body,
14334 ada_evaluate_subexp
14337 /* symbol_name_matcher_ftype adapter for wild_match. */
14340 do_wild_match (const char *symbol_search_name,
14341 const lookup_name_info &lookup_name,
14342 completion_match_result *comp_match_res)
14344 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14347 /* symbol_name_matcher_ftype adapter for full_match. */
14350 do_full_match (const char *symbol_search_name,
14351 const lookup_name_info &lookup_name,
14352 completion_match_result *comp_match_res)
14354 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14357 /* Build the Ada lookup name for LOOKUP_NAME. */
14359 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14361 const std::string &user_name = lookup_name.name ();
14363 if (user_name[0] == '<')
14365 if (user_name.back () == '>')
14366 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14368 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14369 m_encoded_p = true;
14370 m_verbatim_p = true;
14371 m_wild_match_p = false;
14372 m_standard_p = false;
14376 m_verbatim_p = false;
14378 m_encoded_p = user_name.find ("__") != std::string::npos;
14382 const char *folded = ada_fold_name (user_name.c_str ());
14383 const char *encoded = ada_encode_1 (folded, false);
14384 if (encoded != NULL)
14385 m_encoded_name = encoded;
14387 m_encoded_name = user_name;
14390 m_encoded_name = user_name;
14392 /* Handle the 'package Standard' special case. See description
14393 of m_standard_p. */
14394 if (startswith (m_encoded_name.c_str (), "standard__"))
14396 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14397 m_standard_p = true;
14400 m_standard_p = false;
14402 /* If the name contains a ".", then the user is entering a fully
14403 qualified entity name, and the match must not be done in wild
14404 mode. Similarly, if the user wants to complete what looks
14405 like an encoded name, the match must not be done in wild
14406 mode. Also, in the standard__ special case always do
14407 non-wild matching. */
14409 = (lookup_name.match_type () != symbol_name_match_type::FULL
14412 && user_name.find ('.') == std::string::npos);
14416 /* symbol_name_matcher_ftype method for Ada. This only handles
14417 completion mode. */
14420 ada_symbol_name_matches (const char *symbol_search_name,
14421 const lookup_name_info &lookup_name,
14422 completion_match_result *comp_match_res)
14424 return lookup_name.ada ().matches (symbol_search_name,
14425 lookup_name.match_type (),
14429 /* A name matcher that matches the symbol name exactly, with
14433 literal_symbol_name_matcher (const char *symbol_search_name,
14434 const lookup_name_info &lookup_name,
14435 completion_match_result *comp_match_res)
14437 const std::string &name = lookup_name.name ();
14439 int cmp = (lookup_name.completion_mode ()
14440 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14441 : strcmp (symbol_search_name, name.c_str ()));
14444 if (comp_match_res != NULL)
14445 comp_match_res->set_match (symbol_search_name);
14452 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14455 static symbol_name_matcher_ftype *
14456 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14458 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14459 return literal_symbol_name_matcher;
14461 if (lookup_name.completion_mode ())
14462 return ada_symbol_name_matches;
14465 if (lookup_name.ada ().wild_match_p ())
14466 return do_wild_match;
14468 return do_full_match;
14472 /* Implement the "la_read_var_value" language_defn method for Ada. */
14474 static struct value *
14475 ada_read_var_value (struct symbol *var, const struct block *var_block,
14476 struct frame_info *frame)
14478 const struct block *frame_block = NULL;
14479 struct symbol *renaming_sym = NULL;
14481 /* The only case where default_read_var_value is not sufficient
14482 is when VAR is a renaming... */
14484 frame_block = get_frame_block (frame, NULL);
14486 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14487 if (renaming_sym != NULL)
14488 return ada_read_renaming_var_value (renaming_sym, frame_block);
14490 /* This is a typical case where we expect the default_read_var_value
14491 function to work. */
14492 return default_read_var_value (var, var_block, frame);
14495 static const char *ada_extensions[] =
14497 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14500 extern const struct language_defn ada_language_defn = {
14501 "ada", /* Language name */
14505 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14506 that's not quite what this means. */
14508 macro_expansion_no,
14510 &ada_exp_descriptor,
14514 ada_printchar, /* Print a character constant */
14515 ada_printstr, /* Function to print string constant */
14516 emit_char, /* Function to print single char (not used) */
14517 ada_print_type, /* Print a type using appropriate syntax */
14518 ada_print_typedef, /* Print a typedef using appropriate syntax */
14519 ada_val_print, /* Print a value using appropriate syntax */
14520 ada_value_print, /* Print a top-level value */
14521 ada_read_var_value, /* la_read_var_value */
14522 NULL, /* Language specific skip_trampoline */
14523 NULL, /* name_of_this */
14524 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14525 basic_lookup_transparent_type, /* lookup_transparent_type */
14526 ada_la_decode, /* Language specific symbol demangler */
14527 ada_sniff_from_mangled_name,
14528 NULL, /* Language specific
14529 class_name_from_physname */
14530 ada_op_print_tab, /* expression operators for printing */
14531 0, /* c-style arrays */
14532 1, /* String lower bound */
14533 ada_get_gdb_completer_word_break_characters,
14534 ada_collect_symbol_completion_matches,
14535 ada_language_arch_info,
14536 ada_print_array_index,
14537 default_pass_by_reference,
14539 c_watch_location_expression,
14540 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14541 ada_iterate_over_symbols,
14542 default_search_name_hash,
14549 /* Command-list for the "set/show ada" prefix command. */
14550 static struct cmd_list_element *set_ada_list;
14551 static struct cmd_list_element *show_ada_list;
14553 /* Implement the "set ada" prefix command. */
14556 set_ada_command (const char *arg, int from_tty)
14558 printf_unfiltered (_(\
14559 "\"set ada\" must be followed by the name of a setting.\n"));
14560 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14563 /* Implement the "show ada" prefix command. */
14566 show_ada_command (const char *args, int from_tty)
14568 cmd_show_list (show_ada_list, from_tty, "");
14572 initialize_ada_catchpoint_ops (void)
14574 struct breakpoint_ops *ops;
14576 initialize_breakpoint_ops ();
14578 ops = &catch_exception_breakpoint_ops;
14579 *ops = bkpt_breakpoint_ops;
14580 ops->allocate_location = allocate_location_catch_exception;
14581 ops->re_set = re_set_catch_exception;
14582 ops->check_status = check_status_catch_exception;
14583 ops->print_it = print_it_catch_exception;
14584 ops->print_one = print_one_catch_exception;
14585 ops->print_mention = print_mention_catch_exception;
14586 ops->print_recreate = print_recreate_catch_exception;
14588 ops = &catch_exception_unhandled_breakpoint_ops;
14589 *ops = bkpt_breakpoint_ops;
14590 ops->allocate_location = allocate_location_catch_exception_unhandled;
14591 ops->re_set = re_set_catch_exception_unhandled;
14592 ops->check_status = check_status_catch_exception_unhandled;
14593 ops->print_it = print_it_catch_exception_unhandled;
14594 ops->print_one = print_one_catch_exception_unhandled;
14595 ops->print_mention = print_mention_catch_exception_unhandled;
14596 ops->print_recreate = print_recreate_catch_exception_unhandled;
14598 ops = &catch_assert_breakpoint_ops;
14599 *ops = bkpt_breakpoint_ops;
14600 ops->allocate_location = allocate_location_catch_assert;
14601 ops->re_set = re_set_catch_assert;
14602 ops->check_status = check_status_catch_assert;
14603 ops->print_it = print_it_catch_assert;
14604 ops->print_one = print_one_catch_assert;
14605 ops->print_mention = print_mention_catch_assert;
14606 ops->print_recreate = print_recreate_catch_assert;
14608 ops = &catch_handlers_breakpoint_ops;
14609 *ops = bkpt_breakpoint_ops;
14610 ops->allocate_location = allocate_location_catch_handlers;
14611 ops->re_set = re_set_catch_handlers;
14612 ops->check_status = check_status_catch_handlers;
14613 ops->print_it = print_it_catch_handlers;
14614 ops->print_one = print_one_catch_handlers;
14615 ops->print_mention = print_mention_catch_handlers;
14616 ops->print_recreate = print_recreate_catch_handlers;
14619 /* This module's 'new_objfile' observer. */
14622 ada_new_objfile_observer (struct objfile *objfile)
14624 ada_clear_symbol_cache ();
14627 /* This module's 'free_objfile' observer. */
14630 ada_free_objfile_observer (struct objfile *objfile)
14632 ada_clear_symbol_cache ();
14636 _initialize_ada_language (void)
14638 initialize_ada_catchpoint_ops ();
14640 add_prefix_cmd ("ada", no_class, set_ada_command,
14641 _("Prefix command for changing Ada-specfic settings"),
14642 &set_ada_list, "set ada ", 0, &setlist);
14644 add_prefix_cmd ("ada", no_class, show_ada_command,
14645 _("Generic command for showing Ada-specific settings."),
14646 &show_ada_list, "show ada ", 0, &showlist);
14648 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14649 &trust_pad_over_xvs, _("\
14650 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14651 Show whether an optimization trusting PAD types over XVS types is activated"),
14653 This is related to the encoding used by the GNAT compiler. The debugger\n\
14654 should normally trust the contents of PAD types, but certain older versions\n\
14655 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14656 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14657 work around this bug. It is always safe to turn this option \"off\", but\n\
14658 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14659 this option to \"off\" unless necessary."),
14660 NULL, NULL, &set_ada_list, &show_ada_list);
14662 add_setshow_boolean_cmd ("print-signatures", class_vars,
14663 &print_signatures, _("\
14664 Enable or disable the output of formal and return types for functions in the \
14665 overloads selection menu"), _("\
14666 Show whether the output of formal and return types for functions in the \
14667 overloads selection menu is activated"),
14668 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14670 add_catch_command ("exception", _("\
14671 Catch Ada exceptions, when raised.\n\
14672 With an argument, catch only exceptions with the given name."),
14673 catch_ada_exception_command,
14678 add_catch_command ("handlers", _("\
14679 Catch Ada exceptions, when handled.\n\
14680 With an argument, catch only exceptions with the given name."),
14681 catch_ada_handlers_command,
14685 add_catch_command ("assert", _("\
14686 Catch failed Ada assertions, when raised.\n\
14687 With an argument, catch only exceptions with the given name."),
14688 catch_assert_command,
14693 varsize_limit = 65536;
14695 add_info ("exceptions", info_exceptions_command,
14697 List all Ada exception names.\n\
14698 If a regular expression is passed as an argument, only those matching\n\
14699 the regular expression are listed."));
14701 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14702 _("Set Ada maintenance-related variables."),
14703 &maint_set_ada_cmdlist, "maintenance set ada ",
14704 0/*allow-unknown*/, &maintenance_set_cmdlist);
14706 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14707 _("Show Ada maintenance-related variables"),
14708 &maint_show_ada_cmdlist, "maintenance show ada ",
14709 0/*allow-unknown*/, &maintenance_show_cmdlist);
14711 add_setshow_boolean_cmd
14712 ("ignore-descriptive-types", class_maintenance,
14713 &ada_ignore_descriptive_types_p,
14714 _("Set whether descriptive types generated by GNAT should be ignored."),
14715 _("Show whether descriptive types generated by GNAT should be ignored."),
14717 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14718 DWARF attribute."),
14719 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14721 decoded_names_store = htab_create_alloc
14722 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14723 NULL, xcalloc, xfree);
14725 /* The ada-lang observers. */
14726 observer_attach_new_objfile (ada_new_objfile_observer);
14727 observer_attach_free_objfile (ada_free_objfile_observer);
14728 observer_attach_inferior_exit (ada_inferior_exit);
14730 /* Setup various context-specific data. */
14732 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14733 ada_pspace_data_handle
14734 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);