1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "gdb_string.h"
30 #include "gdb_regex.h"
35 #include "expression.h"
36 #include "parser-defs.h"
42 #include "breakpoint.h"
45 #include "gdb_obstack.h"
47 #include "completer.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
61 #ifndef ADA_RETAIN_DOTS
62 #define ADA_RETAIN_DOTS 0
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 static void extract_string (CORE_ADDR addr, char *buf);
76 static struct type *ada_create_fundamental_type (struct objfile *, int);
78 static void modify_general_field (char *, LONGEST, int, int);
80 static struct type *desc_base_type (struct type *);
82 static struct type *desc_bounds_type (struct type *);
84 static struct value *desc_bounds (struct value *);
86 static int fat_pntr_bounds_bitpos (struct type *);
88 static int fat_pntr_bounds_bitsize (struct type *);
90 static struct type *desc_data_type (struct type *);
92 static struct value *desc_data (struct value *);
94 static int fat_pntr_data_bitpos (struct type *);
96 static int fat_pntr_data_bitsize (struct type *);
98 static struct value *desc_one_bound (struct value *, int, int);
100 static int desc_bound_bitpos (struct type *, int, int);
102 static int desc_bound_bitsize (struct type *, int, int);
104 static struct type *desc_index_type (struct type *, int);
106 static int desc_arity (struct type *);
108 static int ada_type_match (struct type *, struct type *, int);
110 static int ada_args_match (struct symbol *, struct value **, int);
112 static struct value *ensure_lval (struct value *, CORE_ADDR *);
114 static struct value *convert_actual (struct value *, struct type *,
117 static struct value *make_array_descriptor (struct type *, struct value *,
120 static void ada_add_block_symbols (struct obstack *,
121 struct block *, const char *,
122 domain_enum, struct objfile *,
123 struct symtab *, int);
125 static int is_nonfunction (struct ada_symbol_info *, int);
127 static void add_defn_to_vec (struct obstack *, struct symbol *,
128 struct block *, struct symtab *);
130 static int num_defns_collected (struct obstack *);
132 static struct ada_symbol_info *defns_collected (struct obstack *, int);
134 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
135 *, const char *, int,
138 static struct symtab *symtab_for_sym (struct symbol *);
140 static struct value *resolve_subexp (struct expression **, int *, int,
143 static void replace_operator_with_call (struct expression **, int, int, int,
144 struct symbol *, struct block *);
146 static int possible_user_operator_p (enum exp_opcode, struct value **);
148 static char *ada_op_name (enum exp_opcode);
150 static const char *ada_decoded_op_name (enum exp_opcode);
152 static int numeric_type_p (struct type *);
154 static int integer_type_p (struct type *);
156 static int scalar_type_p (struct type *);
158 static int discrete_type_p (struct type *);
160 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
163 static struct value *evaluate_subexp (struct type *, struct expression *,
166 static struct value *evaluate_subexp_type (struct expression *, int *);
168 static int is_dynamic_field (struct type *, int);
170 static struct type *to_fixed_variant_branch_type (struct type *,
172 CORE_ADDR, struct value *);
174 static struct type *to_fixed_array_type (struct type *, struct value *, int);
176 static struct type *to_fixed_range_type (char *, struct value *,
179 static struct type *to_static_fixed_type (struct type *);
181 static struct value *unwrap_value (struct value *);
183 static struct type *packed_array_type (struct type *, long *);
185 static struct type *decode_packed_array_type (struct type *);
187 static struct value *decode_packed_array (struct value *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int wild_match (const char *, int, const char *);
207 static struct value *ada_coerce_ref (struct value *);
209 static LONGEST pos_atr (struct value *);
211 static struct value *value_pos_atr (struct value *);
213 static struct value *value_val_atr (struct type *, struct value *);
215 static struct symbol *standard_lookup (const char *, const struct block *,
218 static struct value *ada_search_struct_field (char *, struct value *, int,
221 static struct value *ada_value_primitive_field (struct value *, int, int,
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 static struct value *ada_to_fixed_value (struct value *);
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
236 static struct value *ada_coerce_to_simple_array (struct value *);
238 static int ada_is_direct_array_type (struct type *);
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
243 static void check_size (const struct type *);
245 static struct value *ada_index_struct_field (int, struct value *, int,
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
251 static void aggregate_assign_from_choices (struct value *, struct value *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
256 static void aggregate_assign_positional (struct value *, struct value *,
258 int *, LONGEST *, int *, int,
262 static void aggregate_assign_others (struct value *, struct value *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
273 static void ada_forward_operator_length (struct expression *, int, int *,
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
316 ada_get_gdb_completer_word_break_characters (void)
318 return ada_completer_word_break_characters;
321 /* Print an array element index using the Ada syntax. */
324 ada_print_array_index (struct value *index_value, struct ui_file *stream,
325 int format, enum val_prettyprint pretty)
327 LA_VALUE_PRINT (index_value, stream, format, pretty);
328 fprintf_filtered (stream, " => ");
331 /* Read the string located at ADDR from the inferior and store the
335 extract_string (CORE_ADDR addr, char *buf)
339 /* Loop, reading one byte at a time, until we reach the '\000'
340 end-of-string marker. */
343 target_read_memory (addr + char_index * sizeof (char),
344 buf + char_index * sizeof (char), sizeof (char));
347 while (buf[char_index - 1] != '\000');
350 /* Assuming VECT points to an array of *SIZE objects of size
351 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
352 updating *SIZE as necessary and returning the (new) array. */
355 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
357 if (*size < min_size)
360 if (*size < min_size)
362 vect = xrealloc (vect, *size * element_size);
367 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
368 suffix of FIELD_NAME beginning "___". */
371 field_name_match (const char *field_name, const char *target)
373 int len = strlen (target);
375 (strncmp (field_name, target, len) == 0
376 && (field_name[len] == '\0'
377 || (strncmp (field_name + len, "___", 3) == 0
378 && strcmp (field_name + strlen (field_name) - 6,
383 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
384 FIELD_NAME, and return its index. This function also handles fields
385 whose name have ___ suffixes because the compiler sometimes alters
386 their name by adding such a suffix to represent fields with certain
387 constraints. If the field could not be found, return a negative
388 number if MAYBE_MISSING is set. Otherwise raise an error. */
391 ada_get_field_index (const struct type *type, const char *field_name,
395 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
396 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
400 error (_("Unable to find field %s in struct %s. Aborting"),
401 field_name, TYPE_NAME (type));
406 /* The length of the prefix of NAME prior to any "___" suffix. */
409 ada_name_prefix_len (const char *name)
415 const char *p = strstr (name, "___");
417 return strlen (name);
423 /* Return non-zero if SUFFIX is a suffix of STR.
424 Return zero if STR is null. */
427 is_suffix (const char *str, const char *suffix)
433 len2 = strlen (suffix);
434 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
437 /* Create a value of type TYPE whose contents come from VALADDR, if it
438 is non-null, and whose memory address (in the inferior) is
442 value_from_contents_and_address (struct type *type,
443 const gdb_byte *valaddr,
446 struct value *v = allocate_value (type);
448 set_value_lazy (v, 1);
450 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
451 VALUE_ADDRESS (v) = address;
453 VALUE_LVAL (v) = lval_memory;
457 /* The contents of value VAL, treated as a value of type TYPE. The
458 result is an lval in memory if VAL is. */
460 static struct value *
461 coerce_unspec_val_to_type (struct value *val, struct type *type)
463 type = ada_check_typedef (type);
464 if (value_type (val) == type)
468 struct value *result;
470 /* Make sure that the object size is not unreasonable before
471 trying to allocate some memory for it. */
474 result = allocate_value (type);
475 VALUE_LVAL (result) = VALUE_LVAL (val);
476 set_value_bitsize (result, value_bitsize (val));
477 set_value_bitpos (result, value_bitpos (val));
478 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
480 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
481 set_value_lazy (result, 1);
483 memcpy (value_contents_raw (result), value_contents (val),
489 static const gdb_byte *
490 cond_offset_host (const gdb_byte *valaddr, long offset)
495 return valaddr + offset;
499 cond_offset_target (CORE_ADDR address, long offset)
504 return address + offset;
507 /* Issue a warning (as for the definition of warning in utils.c, but
508 with exactly one argument rather than ...), unless the limit on the
509 number of warnings has passed during the evaluation of the current
512 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
513 provided by "complaint". */
514 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
517 lim_warning (const char *format, ...)
520 va_start (args, format);
522 warnings_issued += 1;
523 if (warnings_issued <= warning_limit)
524 vwarning (format, args);
529 /* Issue an error if the size of an object of type T is unreasonable,
530 i.e. if it would be a bad idea to allocate a value of this type in
534 check_size (const struct type *type)
536 if (TYPE_LENGTH (type) > varsize_limit)
537 error (_("object size is larger than varsize-limit"));
541 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
542 gdbtypes.h, but some of the necessary definitions in that file
543 seem to have gone missing. */
545 /* Maximum value of a SIZE-byte signed integer type. */
547 max_of_size (int size)
549 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
550 return top_bit | (top_bit - 1);
553 /* Minimum value of a SIZE-byte signed integer type. */
555 min_of_size (int size)
557 return -max_of_size (size) - 1;
560 /* Maximum value of a SIZE-byte unsigned integer type. */
562 umax_of_size (int size)
564 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
565 return top_bit | (top_bit - 1);
568 /* Maximum value of integral type T, as a signed quantity. */
570 max_of_type (struct type *t)
572 if (TYPE_UNSIGNED (t))
573 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
575 return max_of_size (TYPE_LENGTH (t));
578 /* Minimum value of integral type T, as a signed quantity. */
580 min_of_type (struct type *t)
582 if (TYPE_UNSIGNED (t))
585 return min_of_size (TYPE_LENGTH (t));
588 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
589 static struct value *
590 discrete_type_high_bound (struct type *type)
592 switch (TYPE_CODE (type))
594 case TYPE_CODE_RANGE:
595 return value_from_longest (TYPE_TARGET_TYPE (type),
596 TYPE_HIGH_BOUND (type));
599 value_from_longest (type,
600 TYPE_FIELD_BITPOS (type,
601 TYPE_NFIELDS (type) - 1));
603 return value_from_longest (type, max_of_type (type));
605 error (_("Unexpected type in discrete_type_high_bound."));
609 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
610 static struct value *
611 discrete_type_low_bound (struct type *type)
613 switch (TYPE_CODE (type))
615 case TYPE_CODE_RANGE:
616 return value_from_longest (TYPE_TARGET_TYPE (type),
617 TYPE_LOW_BOUND (type));
619 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
621 return value_from_longest (type, min_of_type (type));
623 error (_("Unexpected type in discrete_type_low_bound."));
627 /* The identity on non-range types. For range types, the underlying
628 non-range scalar type. */
631 base_type (struct type *type)
633 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
635 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
637 type = TYPE_TARGET_TYPE (type);
643 /* Language Selection */
645 /* If the main program is in Ada, return language_ada, otherwise return LANG
646 (the main program is in Ada iif the adainit symbol is found).
648 MAIN_PST is not used. */
651 ada_update_initial_language (enum language lang,
652 struct partial_symtab *main_pst)
654 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
655 (struct objfile *) NULL) != NULL)
661 /* If the main procedure is written in Ada, then return its name.
662 The result is good until the next call. Return NULL if the main
663 procedure doesn't appear to be in Ada. */
668 struct minimal_symbol *msym;
669 CORE_ADDR main_program_name_addr;
670 static char main_program_name[1024];
672 /* For Ada, the name of the main procedure is stored in a specific
673 string constant, generated by the binder. Look for that symbol,
674 extract its address, and then read that string. If we didn't find
675 that string, then most probably the main procedure is not written
677 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
681 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
682 if (main_program_name_addr == 0)
683 error (_("Invalid address for Ada main program name."));
685 extract_string (main_program_name_addr, main_program_name);
686 return main_program_name;
689 /* The main procedure doesn't seem to be in Ada. */
695 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
698 const struct ada_opname_map ada_opname_table[] = {
699 {"Oadd", "\"+\"", BINOP_ADD},
700 {"Osubtract", "\"-\"", BINOP_SUB},
701 {"Omultiply", "\"*\"", BINOP_MUL},
702 {"Odivide", "\"/\"", BINOP_DIV},
703 {"Omod", "\"mod\"", BINOP_MOD},
704 {"Orem", "\"rem\"", BINOP_REM},
705 {"Oexpon", "\"**\"", BINOP_EXP},
706 {"Olt", "\"<\"", BINOP_LESS},
707 {"Ole", "\"<=\"", BINOP_LEQ},
708 {"Ogt", "\">\"", BINOP_GTR},
709 {"Oge", "\">=\"", BINOP_GEQ},
710 {"Oeq", "\"=\"", BINOP_EQUAL},
711 {"One", "\"/=\"", BINOP_NOTEQUAL},
712 {"Oand", "\"and\"", BINOP_BITWISE_AND},
713 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
714 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
715 {"Oconcat", "\"&\"", BINOP_CONCAT},
716 {"Oabs", "\"abs\"", UNOP_ABS},
717 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
718 {"Oadd", "\"+\"", UNOP_PLUS},
719 {"Osubtract", "\"-\"", UNOP_NEG},
723 /* Return non-zero if STR should be suppressed in info listings. */
726 is_suppressed_name (const char *str)
728 if (strncmp (str, "_ada_", 5) == 0)
730 if (str[0] == '_' || str[0] == '\000')
735 const char *suffix = strstr (str, "___");
736 if (suffix != NULL && suffix[3] != 'X')
739 suffix = str + strlen (str);
740 for (p = suffix - 1; p != str; p -= 1)
744 if (p[0] == 'X' && p[-1] != '_')
748 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
749 if (strncmp (ada_opname_table[i].encoded, p,
750 strlen (ada_opname_table[i].encoded)) == 0)
759 /* The "encoded" form of DECODED, according to GNAT conventions.
760 The result is valid until the next call to ada_encode. */
763 ada_encode (const char *decoded)
765 static char *encoding_buffer = NULL;
766 static size_t encoding_buffer_size = 0;
773 GROW_VECT (encoding_buffer, encoding_buffer_size,
774 2 * strlen (decoded) + 10);
777 for (p = decoded; *p != '\0'; p += 1)
779 if (!ADA_RETAIN_DOTS && *p == '.')
781 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
786 const struct ada_opname_map *mapping;
788 for (mapping = ada_opname_table;
789 mapping->encoded != NULL
790 && strncmp (mapping->decoded, p,
791 strlen (mapping->decoded)) != 0; mapping += 1)
793 if (mapping->encoded == NULL)
794 error (_("invalid Ada operator name: %s"), p);
795 strcpy (encoding_buffer + k, mapping->encoded);
796 k += strlen (mapping->encoded);
801 encoding_buffer[k] = *p;
806 encoding_buffer[k] = '\0';
807 return encoding_buffer;
810 /* Return NAME folded to lower case, or, if surrounded by single
811 quotes, unfolded, but with the quotes stripped away. Result good
815 ada_fold_name (const char *name)
817 static char *fold_buffer = NULL;
818 static size_t fold_buffer_size = 0;
820 int len = strlen (name);
821 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
825 strncpy (fold_buffer, name + 1, len - 2);
826 fold_buffer[len - 2] = '\000';
831 for (i = 0; i <= len; i += 1)
832 fold_buffer[i] = tolower (name[i]);
838 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
841 is_lower_alphanum (const char c)
843 return (isdigit (c) || (isalpha (c) && islower (c)));
847 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
848 These are suffixes introduced by GNAT5 to nested subprogram
849 names, and do not serve any purpose for the debugger.
850 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
851 . Discard final N if it follows a lowercase alphanumeric character
852 (protected object subprogram suffix)
853 . Convert other instances of embedded "__" to `.'.
854 . Discard leading _ada_.
855 . Convert operator names to the appropriate quoted symbols.
856 . Remove everything after first ___ if it is followed by
858 . Replace TK__ with __, and a trailing B or TKB with nothing.
859 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
860 . Put symbols that should be suppressed in <...> brackets.
861 . Remove trailing X[bn]* suffix (indicating names in package bodies).
863 The resulting string is valid until the next call of ada_decode.
864 If the string is unchanged by demangling, the original string pointer
868 ada_decode (const char *encoded)
875 static char *decoding_buffer = NULL;
876 static size_t decoding_buffer_size = 0;
878 if (strncmp (encoded, "_ada_", 5) == 0)
881 if (encoded[0] == '_' || encoded[0] == '<')
884 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
885 len0 = strlen (encoded);
886 if (len0 > 1 && isdigit (encoded[len0 - 1]))
889 while (i > 0 && isdigit (encoded[i]))
891 if (i >= 0 && encoded[i] == '.')
893 else if (i >= 0 && encoded[i] == '$')
895 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
897 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
901 /* Remove trailing N. */
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
912 && encoded[len0 - 1] == 'N'
913 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
916 /* Remove the ___X.* suffix if present. Do not forget to verify that
917 the suffix is located before the current "end" of ENCODED. We want
918 to avoid re-matching parts of ENCODED that have previously been
919 marked as discarded (by decrementing LEN0). */
920 p = strstr (encoded, "___");
921 if (p != NULL && p - encoded < len0 - 3)
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 /* Make decoded big enough for possible expansion by operator name. */
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
939 if (len0 > 1 && isdigit (encoded[len0 - 1]))
942 while ((i >= 0 && isdigit (encoded[i]))
943 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
945 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
947 else if (encoded[i] == '$')
951 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
952 decoded[j] = encoded[i];
957 if (at_start_name && encoded[i] == 'O')
960 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
962 int op_len = strlen (ada_opname_table[k].encoded);
963 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
965 && !isalnum (encoded[i + op_len]))
967 strcpy (decoded + j, ada_opname_table[k].decoded);
970 j += strlen (ada_opname_table[k].decoded);
974 if (ada_opname_table[k].encoded != NULL)
979 /* Replace "TK__" with "__", which will eventually be translated
980 into "." (just below). */
982 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
985 /* Remove _E{DIGITS}+[sb] */
987 /* Just as for protected object subprograms, there are 2 categories
988 of subprograms created by the compiler for each entry. The first
989 one implements the actual entry code, and has a suffix following
990 the convention above; the second one implements the barrier and
991 uses the same convention as above, except that the 'E' is replaced
994 Just as above, we do not decode the name of barrier functions
995 to give the user a clue that the code he is debugging has been
996 internally generated. */
998 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
999 && isdigit (encoded[i+2]))
1003 while (k < len0 && isdigit (encoded[k]))
1007 && (encoded[k] == 'b' || encoded[k] == 's'))
1010 /* Just as an extra precaution, make sure that if this
1011 suffix is followed by anything else, it is a '_'.
1012 Otherwise, we matched this sequence by accident. */
1014 || (k < len0 && encoded[k] == '_'))
1019 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1020 the GNAT front-end in protected object subprograms. */
1023 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1025 /* Backtrack a bit up until we reach either the begining of
1026 the encoded name, or "__". Make sure that we only find
1027 digits or lowercase characters. */
1028 const char *ptr = encoded + i - 1;
1030 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1033 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1037 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1041 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1045 else if (!ADA_RETAIN_DOTS
1046 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1055 decoded[j] = encoded[i];
1060 decoded[j] = '\000';
1062 for (i = 0; decoded[i] != '\0'; i += 1)
1063 if (isupper (decoded[i]) || decoded[i] == ' ')
1066 if (strcmp (decoded, encoded) == 0)
1072 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1073 decoded = decoding_buffer;
1074 if (encoded[0] == '<')
1075 strcpy (decoded, encoded);
1077 sprintf (decoded, "<%s>", encoded);
1082 /* Table for keeping permanent unique copies of decoded names. Once
1083 allocated, names in this table are never released. While this is a
1084 storage leak, it should not be significant unless there are massive
1085 changes in the set of decoded names in successive versions of a
1086 symbol table loaded during a single session. */
1087 static struct htab *decoded_names_store;
1089 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1090 in the language-specific part of GSYMBOL, if it has not been
1091 previously computed. Tries to save the decoded name in the same
1092 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1093 in any case, the decoded symbol has a lifetime at least that of
1095 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1096 const, but nevertheless modified to a semantically equivalent form
1097 when a decoded name is cached in it.
1101 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1104 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1105 if (*resultp == NULL)
1107 const char *decoded = ada_decode (gsymbol->name);
1108 if (gsymbol->bfd_section != NULL)
1110 bfd *obfd = gsymbol->bfd_section->owner;
1113 struct objfile *objf;
1116 if (obfd == objf->obfd)
1118 *resultp = obsavestring (decoded, strlen (decoded),
1119 &objf->objfile_obstack);
1125 /* Sometimes, we can't find a corresponding objfile, in which
1126 case, we put the result on the heap. Since we only decode
1127 when needed, we hope this usually does not cause a
1128 significant memory leak (FIXME). */
1129 if (*resultp == NULL)
1131 char **slot = (char **) htab_find_slot (decoded_names_store,
1134 *slot = xstrdup (decoded);
1143 ada_la_decode (const char *encoded, int options)
1145 return xstrdup (ada_decode (encoded));
1148 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1149 suffixes that encode debugging information or leading _ada_ on
1150 SYM_NAME (see is_name_suffix commentary for the debugging
1151 information that is ignored). If WILD, then NAME need only match a
1152 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1153 either argument is NULL. */
1156 ada_match_name (const char *sym_name, const char *name, int wild)
1158 if (sym_name == NULL || name == NULL)
1161 return wild_match (name, strlen (name), sym_name);
1164 int len_name = strlen (name);
1165 return (strncmp (sym_name, name, len_name) == 0
1166 && is_name_suffix (sym_name + len_name))
1167 || (strncmp (sym_name, "_ada_", 5) == 0
1168 && strncmp (sym_name + 5, name, len_name) == 0
1169 && is_name_suffix (sym_name + len_name + 5));
1173 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1174 suppressed in info listings. */
1177 ada_suppress_symbol_printing (struct symbol *sym)
1179 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1182 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1188 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1190 static char *bound_name[] = {
1191 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1192 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1195 /* Maximum number of array dimensions we are prepared to handle. */
1197 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1199 /* Like modify_field, but allows bitpos > wordlength. */
1202 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1204 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1208 /* The desc_* routines return primitive portions of array descriptors
1211 /* The descriptor or array type, if any, indicated by TYPE; removes
1212 level of indirection, if needed. */
1214 static struct type *
1215 desc_base_type (struct type *type)
1219 type = ada_check_typedef (type);
1221 && (TYPE_CODE (type) == TYPE_CODE_PTR
1222 || TYPE_CODE (type) == TYPE_CODE_REF))
1223 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1228 /* True iff TYPE indicates a "thin" array pointer type. */
1231 is_thin_pntr (struct type *type)
1234 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1235 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1238 /* The descriptor type for thin pointer type TYPE. */
1240 static struct type *
1241 thin_descriptor_type (struct type *type)
1243 struct type *base_type = desc_base_type (type);
1244 if (base_type == NULL)
1246 if (is_suffix (ada_type_name (base_type), "___XVE"))
1250 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1251 if (alt_type == NULL)
1258 /* A pointer to the array data for thin-pointer value VAL. */
1260 static struct value *
1261 thin_data_pntr (struct value *val)
1263 struct type *type = value_type (val);
1264 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1265 return value_cast (desc_data_type (thin_descriptor_type (type)),
1268 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1269 VALUE_ADDRESS (val) + value_offset (val));
1272 /* True iff TYPE indicates a "thick" array pointer type. */
1275 is_thick_pntr (struct type *type)
1277 type = desc_base_type (type);
1278 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1279 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1282 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1283 pointer to one, the type of its bounds data; otherwise, NULL. */
1285 static struct type *
1286 desc_bounds_type (struct type *type)
1290 type = desc_base_type (type);
1294 else if (is_thin_pntr (type))
1296 type = thin_descriptor_type (type);
1299 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1301 return ada_check_typedef (r);
1303 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1305 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1307 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1312 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1313 one, a pointer to its bounds data. Otherwise NULL. */
1315 static struct value *
1316 desc_bounds (struct value *arr)
1318 struct type *type = ada_check_typedef (value_type (arr));
1319 if (is_thin_pntr (type))
1321 struct type *bounds_type =
1322 desc_bounds_type (thin_descriptor_type (type));
1325 if (bounds_type == NULL)
1326 error (_("Bad GNAT array descriptor"));
1328 /* NOTE: The following calculation is not really kosher, but
1329 since desc_type is an XVE-encoded type (and shouldn't be),
1330 the correct calculation is a real pain. FIXME (and fix GCC). */
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 addr = value_as_long (arr);
1334 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1337 value_from_longest (lookup_pointer_type (bounds_type),
1338 addr - TYPE_LENGTH (bounds_type));
1341 else if (is_thick_pntr (type))
1342 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1343 _("Bad GNAT array descriptor"));
1348 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1349 position of the field containing the address of the bounds data. */
1352 fat_pntr_bounds_bitpos (struct type *type)
1354 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1357 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1358 size of the field containing the address of the bounds data. */
1361 fat_pntr_bounds_bitsize (struct type *type)
1363 type = desc_base_type (type);
1365 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1366 return TYPE_FIELD_BITSIZE (type, 1);
1368 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its array data (a
1373 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1374 ada_type_of_array to get an array type with bounds data. */
1376 static struct type *
1377 desc_data_type (struct type *type)
1379 type = desc_base_type (type);
1381 /* NOTE: The following is bogus; see comment in desc_bounds. */
1382 if (is_thin_pntr (type))
1383 return lookup_pointer_type
1384 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1385 else if (is_thick_pntr (type))
1386 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1391 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1394 static struct value *
1395 desc_data (struct value *arr)
1397 struct type *type = value_type (arr);
1398 if (is_thin_pntr (type))
1399 return thin_data_pntr (arr);
1400 else if (is_thick_pntr (type))
1401 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1402 _("Bad GNAT array descriptor"));
1408 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1409 position of the field containing the address of the data. */
1412 fat_pntr_data_bitpos (struct type *type)
1414 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1417 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1418 size of the field containing the address of the data. */
1421 fat_pntr_data_bitsize (struct type *type)
1423 type = desc_base_type (type);
1425 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1426 return TYPE_FIELD_BITSIZE (type, 0);
1428 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1431 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1432 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1433 bound, if WHICH is 1. The first bound is I=1. */
1435 static struct value *
1436 desc_one_bound (struct value *bounds, int i, int which)
1438 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1439 _("Bad GNAT array descriptor bounds"));
1442 /* If BOUNDS is an array-bounds structure type, return the bit position
1443 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1444 bound, if WHICH is 1. The first bound is I=1. */
1447 desc_bound_bitpos (struct type *type, int i, int which)
1449 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1452 /* If BOUNDS is an array-bounds structure type, return the bit field size
1453 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1457 desc_bound_bitsize (struct type *type, int i, int which)
1459 type = desc_base_type (type);
1461 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1462 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1464 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1467 /* If TYPE is the type of an array-bounds structure, the type of its
1468 Ith bound (numbering from 1). Otherwise, NULL. */
1470 static struct type *
1471 desc_index_type (struct type *type, int i)
1473 type = desc_base_type (type);
1475 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1476 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1481 /* The number of index positions in the array-bounds type TYPE.
1482 Return 0 if TYPE is NULL. */
1485 desc_arity (struct type *type)
1487 type = desc_base_type (type);
1490 return TYPE_NFIELDS (type) / 2;
1494 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1495 an array descriptor type (representing an unconstrained array
1499 ada_is_direct_array_type (struct type *type)
1503 type = ada_check_typedef (type);
1504 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1505 || ada_is_array_descriptor_type (type));
1508 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1512 ada_is_array_type (struct type *type)
1515 && (TYPE_CODE (type) == TYPE_CODE_PTR
1516 || TYPE_CODE (type) == TYPE_CODE_REF))
1517 type = TYPE_TARGET_TYPE (type);
1518 return ada_is_direct_array_type (type);
1521 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1524 ada_is_simple_array_type (struct type *type)
1528 type = ada_check_typedef (type);
1529 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 || (TYPE_CODE (type) == TYPE_CODE_PTR
1531 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1534 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1537 ada_is_array_descriptor_type (struct type *type)
1539 struct type *data_type = desc_data_type (type);
1543 type = ada_check_typedef (type);
1546 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1547 && TYPE_TARGET_TYPE (data_type) != NULL
1548 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1549 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1550 && desc_arity (desc_bounds_type (type)) > 0;
1553 /* Non-zero iff type is a partially mal-formed GNAT array
1554 descriptor. FIXME: This is to compensate for some problems with
1555 debugging output from GNAT. Re-examine periodically to see if it
1559 ada_is_bogus_array_descriptor (struct type *type)
1563 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1564 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1565 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1566 && !ada_is_array_descriptor_type (type);
1570 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1571 (fat pointer) returns the type of the array data described---specifically,
1572 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1573 in from the descriptor; otherwise, they are left unspecified. If
1574 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1575 returns NULL. The result is simply the type of ARR if ARR is not
1578 ada_type_of_array (struct value *arr, int bounds)
1580 if (ada_is_packed_array_type (value_type (arr)))
1581 return decode_packed_array_type (value_type (arr));
1583 if (!ada_is_array_descriptor_type (value_type (arr)))
1584 return value_type (arr);
1588 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1591 struct type *elt_type;
1593 struct value *descriptor;
1594 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1596 elt_type = ada_array_element_type (value_type (arr), -1);
1597 arity = ada_array_arity (value_type (arr));
1599 if (elt_type == NULL || arity == 0)
1600 return ada_check_typedef (value_type (arr));
1602 descriptor = desc_bounds (arr);
1603 if (value_as_long (descriptor) == 0)
1607 struct type *range_type = alloc_type (objf);
1608 struct type *array_type = alloc_type (objf);
1609 struct value *low = desc_one_bound (descriptor, arity, 0);
1610 struct value *high = desc_one_bound (descriptor, arity, 1);
1613 create_range_type (range_type, value_type (low),
1614 longest_to_int (value_as_long (low)),
1615 longest_to_int (value_as_long (high)));
1616 elt_type = create_array_type (array_type, elt_type, range_type);
1619 return lookup_pointer_type (elt_type);
1623 /* If ARR does not represent an array, returns ARR unchanged.
1624 Otherwise, returns either a standard GDB array with bounds set
1625 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1626 GDB array. Returns NULL if ARR is a null fat pointer. */
1629 ada_coerce_to_simple_array_ptr (struct value *arr)
1631 if (ada_is_array_descriptor_type (value_type (arr)))
1633 struct type *arrType = ada_type_of_array (arr, 1);
1634 if (arrType == NULL)
1636 return value_cast (arrType, value_copy (desc_data (arr)));
1638 else if (ada_is_packed_array_type (value_type (arr)))
1639 return decode_packed_array (arr);
1644 /* If ARR does not represent an array, returns ARR unchanged.
1645 Otherwise, returns a standard GDB array describing ARR (which may
1646 be ARR itself if it already is in the proper form). */
1648 static struct value *
1649 ada_coerce_to_simple_array (struct value *arr)
1651 if (ada_is_array_descriptor_type (value_type (arr)))
1653 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1655 error (_("Bounds unavailable for null array pointer."));
1656 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1657 return value_ind (arrVal);
1659 else if (ada_is_packed_array_type (value_type (arr)))
1660 return decode_packed_array (arr);
1665 /* If TYPE represents a GNAT array type, return it translated to an
1666 ordinary GDB array type (possibly with BITSIZE fields indicating
1667 packing). For other types, is the identity. */
1670 ada_coerce_to_simple_array_type (struct type *type)
1672 struct value *mark = value_mark ();
1673 struct value *dummy = value_from_longest (builtin_type_long, 0);
1674 struct type *result;
1675 deprecated_set_value_type (dummy, type);
1676 result = ada_type_of_array (dummy, 0);
1677 value_free_to_mark (mark);
1681 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1684 ada_is_packed_array_type (struct type *type)
1688 type = desc_base_type (type);
1689 type = ada_check_typedef (type);
1691 ada_type_name (type) != NULL
1692 && strstr (ada_type_name (type), "___XP") != NULL;
1695 /* Given that TYPE is a standard GDB array type with all bounds filled
1696 in, and that the element size of its ultimate scalar constituents
1697 (that is, either its elements, or, if it is an array of arrays, its
1698 elements' elements, etc.) is *ELT_BITS, return an identical type,
1699 but with the bit sizes of its elements (and those of any
1700 constituent arrays) recorded in the BITSIZE components of its
1701 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1704 static struct type *
1705 packed_array_type (struct type *type, long *elt_bits)
1707 struct type *new_elt_type;
1708 struct type *new_type;
1709 LONGEST low_bound, high_bound;
1711 type = ada_check_typedef (type);
1712 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1715 new_type = alloc_type (TYPE_OBJFILE (type));
1716 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1718 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1719 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1720 TYPE_NAME (new_type) = ada_type_name (type);
1722 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1723 &low_bound, &high_bound) < 0)
1724 low_bound = high_bound = 0;
1725 if (high_bound < low_bound)
1726 *elt_bits = TYPE_LENGTH (new_type) = 0;
1729 *elt_bits *= (high_bound - low_bound + 1);
1730 TYPE_LENGTH (new_type) =
1731 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1734 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1738 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1740 static struct type *
1741 decode_packed_array_type (struct type *type)
1744 struct block **blocks;
1745 const char *raw_name = ada_type_name (ada_check_typedef (type));
1746 char *name = (char *) alloca (strlen (raw_name) + 1);
1747 char *tail = strstr (raw_name, "___XP");
1748 struct type *shadow_type;
1752 type = desc_base_type (type);
1754 memcpy (name, raw_name, tail - raw_name);
1755 name[tail - raw_name] = '\000';
1757 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1758 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1760 lim_warning (_("could not find bounds information on packed array"));
1763 shadow_type = SYMBOL_TYPE (sym);
1765 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1767 lim_warning (_("could not understand bounds information on packed array"));
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1774 (_("could not understand bit size information on packed array"));
1778 return packed_array_type (shadow_type, &bits);
1781 /* Given that ARR is a struct value *indicating a GNAT packed array,
1782 returns a simple array that denotes that array. Its type is a
1783 standard GDB array type except that the BITSIZEs of the array
1784 target types are set to the number of bits in each element, and the
1785 type length is set appropriately. */
1787 static struct value *
1788 decode_packed_array (struct value *arr)
1792 arr = ada_coerce_ref (arr);
1793 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1794 arr = ada_value_ind (arr);
1796 type = decode_packed_array_type (value_type (arr));
1799 error (_("can't unpack array"));
1803 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1805 /* This is a (right-justified) modular type representing a packed
1806 array with no wrapper. In order to interpret the value through
1807 the (left-justified) packed array type we just built, we must
1808 first left-justify it. */
1809 int bit_size, bit_pos;
1812 mod = ada_modulus (value_type (arr)) - 1;
1819 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1820 arr = ada_value_primitive_packed_val (arr, NULL,
1821 bit_pos / HOST_CHAR_BIT,
1822 bit_pos % HOST_CHAR_BIT,
1827 return coerce_unspec_val_to_type (arr, type);
1831 /* The value of the element of packed array ARR at the ARITY indices
1832 given in IND. ARR must be a simple array. */
1834 static struct value *
1835 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1838 int bits, elt_off, bit_off;
1839 long elt_total_bit_offset;
1840 struct type *elt_type;
1844 elt_total_bit_offset = 0;
1845 elt_type = ada_check_typedef (value_type (arr));
1846 for (i = 0; i < arity; i += 1)
1848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1849 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1851 (_("attempt to do packed indexing of something other than a packed array"));
1854 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1855 LONGEST lowerbound, upperbound;
1858 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1860 lim_warning (_("don't know bounds of array"));
1861 lowerbound = upperbound = 0;
1864 idx = value_as_long (value_pos_atr (ind[i]));
1865 if (idx < lowerbound || idx > upperbound)
1866 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1867 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1868 elt_total_bit_offset += (idx - lowerbound) * bits;
1869 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1872 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1873 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1875 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1880 /* Non-zero iff TYPE includes negative integer values. */
1883 has_negatives (struct type *type)
1885 switch (TYPE_CODE (type))
1890 return !TYPE_UNSIGNED (type);
1891 case TYPE_CODE_RANGE:
1892 return TYPE_LOW_BOUND (type) < 0;
1897 /* Create a new value of type TYPE from the contents of OBJ starting
1898 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1899 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1900 assigning through the result will set the field fetched from.
1901 VALADDR is ignored unless OBJ is NULL, in which case,
1902 VALADDR+OFFSET must address the start of storage containing the
1903 packed value. The value returned in this case is never an lval.
1904 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1907 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1908 long offset, int bit_offset, int bit_size,
1912 int src, /* Index into the source area */
1913 targ, /* Index into the target area */
1914 srcBitsLeft, /* Number of source bits left to move */
1915 nsrc, ntarg, /* Number of source and target bytes */
1916 unusedLS, /* Number of bits in next significant
1917 byte of source that are unused */
1918 accumSize; /* Number of meaningful bits in accum */
1919 unsigned char *bytes; /* First byte containing data to unpack */
1920 unsigned char *unpacked;
1921 unsigned long accum; /* Staging area for bits being transferred */
1923 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1924 /* Transmit bytes from least to most significant; delta is the direction
1925 the indices move. */
1926 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1928 type = ada_check_typedef (type);
1932 v = allocate_value (type);
1933 bytes = (unsigned char *) (valaddr + offset);
1935 else if (value_lazy (obj))
1938 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1939 bytes = (unsigned char *) alloca (len);
1940 read_memory (VALUE_ADDRESS (v), bytes, len);
1944 v = allocate_value (type);
1945 bytes = (unsigned char *) value_contents (obj) + offset;
1950 VALUE_LVAL (v) = VALUE_LVAL (obj);
1951 if (VALUE_LVAL (obj) == lval_internalvar)
1952 VALUE_LVAL (v) = lval_internalvar_component;
1953 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1954 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1955 set_value_bitsize (v, bit_size);
1956 if (value_bitpos (v) >= HOST_CHAR_BIT)
1958 VALUE_ADDRESS (v) += 1;
1959 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1963 set_value_bitsize (v, bit_size);
1964 unpacked = (unsigned char *) value_contents (v);
1966 srcBitsLeft = bit_size;
1968 ntarg = TYPE_LENGTH (type);
1972 memset (unpacked, 0, TYPE_LENGTH (type));
1975 else if (BITS_BIG_ENDIAN)
1978 if (has_negatives (type)
1979 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1983 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1986 switch (TYPE_CODE (type))
1988 case TYPE_CODE_ARRAY:
1989 case TYPE_CODE_UNION:
1990 case TYPE_CODE_STRUCT:
1991 /* Non-scalar values must be aligned at a byte boundary... */
1993 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1994 /* ... And are placed at the beginning (most-significant) bytes
1996 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2000 targ = TYPE_LENGTH (type) - 1;
2006 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2009 unusedLS = bit_offset;
2012 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2019 /* Mask for removing bits of the next source byte that are not
2020 part of the value. */
2021 unsigned int unusedMSMask =
2022 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2024 /* Sign-extend bits for this byte. */
2025 unsigned int signMask = sign & ~unusedMSMask;
2027 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2028 accumSize += HOST_CHAR_BIT - unusedLS;
2029 if (accumSize >= HOST_CHAR_BIT)
2031 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2032 accumSize -= HOST_CHAR_BIT;
2033 accum >>= HOST_CHAR_BIT;
2037 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2044 accum |= sign << accumSize;
2045 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2046 accumSize -= HOST_CHAR_BIT;
2047 accum >>= HOST_CHAR_BIT;
2055 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2056 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2059 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2060 int src_offset, int n)
2062 unsigned int accum, mask;
2063 int accum_bits, chunk_size;
2065 target += targ_offset / HOST_CHAR_BIT;
2066 targ_offset %= HOST_CHAR_BIT;
2067 source += src_offset / HOST_CHAR_BIT;
2068 src_offset %= HOST_CHAR_BIT;
2069 if (BITS_BIG_ENDIAN)
2071 accum = (unsigned char) *source;
2073 accum_bits = HOST_CHAR_BIT - src_offset;
2078 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2079 accum_bits += HOST_CHAR_BIT;
2081 chunk_size = HOST_CHAR_BIT - targ_offset;
2084 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2085 mask = ((1 << chunk_size) - 1) << unused_right;
2088 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2090 accum_bits -= chunk_size;
2097 accum = (unsigned char) *source >> src_offset;
2099 accum_bits = HOST_CHAR_BIT - src_offset;
2103 accum = accum + ((unsigned char) *source << accum_bits);
2104 accum_bits += HOST_CHAR_BIT;
2106 chunk_size = HOST_CHAR_BIT - targ_offset;
2109 mask = ((1 << chunk_size) - 1) << targ_offset;
2110 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2112 accum_bits -= chunk_size;
2113 accum >>= chunk_size;
2120 /* Store the contents of FROMVAL into the location of TOVAL.
2121 Return a new value with the location of TOVAL and contents of
2122 FROMVAL. Handles assignment into packed fields that have
2123 floating-point or non-scalar types. */
2125 static struct value *
2126 ada_value_assign (struct value *toval, struct value *fromval)
2128 struct type *type = value_type (toval);
2129 int bits = value_bitsize (toval);
2131 toval = ada_coerce_ref (toval);
2132 fromval = ada_coerce_ref (fromval);
2134 if (ada_is_direct_array_type (value_type (toval)))
2135 toval = ada_coerce_to_simple_array (toval);
2136 if (ada_is_direct_array_type (value_type (fromval)))
2137 fromval = ada_coerce_to_simple_array (fromval);
2139 if (!deprecated_value_modifiable (toval))
2140 error (_("Left operand of assignment is not a modifiable lvalue."));
2142 if (VALUE_LVAL (toval) == lval_memory
2144 && (TYPE_CODE (type) == TYPE_CODE_FLT
2145 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2147 int len = (value_bitpos (toval)
2148 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2149 char *buffer = (char *) alloca (len);
2151 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2153 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2154 fromval = value_cast (type, fromval);
2156 read_memory (to_addr, buffer, len);
2157 if (BITS_BIG_ENDIAN)
2158 move_bits (buffer, value_bitpos (toval),
2159 value_contents (fromval),
2160 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2163 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2165 write_memory (to_addr, buffer, len);
2166 if (deprecated_memory_changed_hook)
2167 deprecated_memory_changed_hook (to_addr, len);
2169 val = value_copy (toval);
2170 memcpy (value_contents_raw (val), value_contents (fromval),
2171 TYPE_LENGTH (type));
2172 deprecated_set_value_type (val, type);
2177 return value_assign (toval, fromval);
2181 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2182 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2183 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2184 * COMPONENT, and not the inferior's memory. The current contents
2185 * of COMPONENT are ignored. */
2187 value_assign_to_component (struct value *container, struct value *component,
2190 LONGEST offset_in_container =
2191 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2192 - VALUE_ADDRESS (container) - value_offset (container));
2193 int bit_offset_in_container =
2194 value_bitpos (component) - value_bitpos (container);
2197 val = value_cast (value_type (component), val);
2199 if (value_bitsize (component) == 0)
2200 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2202 bits = value_bitsize (component);
2204 if (BITS_BIG_ENDIAN)
2205 move_bits (value_contents_writeable (container) + offset_in_container,
2206 value_bitpos (container) + bit_offset_in_container,
2207 value_contents (val),
2208 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2211 move_bits (value_contents_writeable (container) + offset_in_container,
2212 value_bitpos (container) + bit_offset_in_container,
2213 value_contents (val), 0, bits);
2216 /* The value of the element of array ARR at the ARITY indices given in IND.
2217 ARR may be either a simple array, GNAT array descriptor, or pointer
2221 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2225 struct type *elt_type;
2227 elt = ada_coerce_to_simple_array (arr);
2229 elt_type = ada_check_typedef (value_type (elt));
2230 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2231 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2232 return value_subscript_packed (elt, arity, ind);
2234 for (k = 0; k < arity; k += 1)
2236 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2237 error (_("too many subscripts (%d expected)"), k);
2238 elt = value_subscript (elt, value_pos_atr (ind[k]));
2243 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2244 value of the element of *ARR at the ARITY indices given in
2245 IND. Does not read the entire array into memory. */
2248 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2253 for (k = 0; k < arity; k += 1)
2258 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2259 error (_("too many subscripts (%d expected)"), k);
2260 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2262 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2263 idx = value_pos_atr (ind[k]);
2265 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2266 arr = value_add (arr, idx);
2267 type = TYPE_TARGET_TYPE (type);
2270 return value_ind (arr);
2273 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2274 actual type of ARRAY_PTR is ignored), returns a reference to
2275 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2276 bound of this array is LOW, as per Ada rules. */
2277 static struct value *
2278 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2281 CORE_ADDR base = value_as_address (array_ptr)
2282 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2283 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2284 struct type *index_type =
2285 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2287 struct type *slice_type =
2288 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2289 return value_from_pointer (lookup_reference_type (slice_type), base);
2293 static struct value *
2294 ada_value_slice (struct value *array, int low, int high)
2296 struct type *type = value_type (array);
2297 struct type *index_type =
2298 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2299 struct type *slice_type =
2300 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2301 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2304 /* If type is a record type in the form of a standard GNAT array
2305 descriptor, returns the number of dimensions for type. If arr is a
2306 simple array, returns the number of "array of"s that prefix its
2307 type designation. Otherwise, returns 0. */
2310 ada_array_arity (struct type *type)
2317 type = desc_base_type (type);
2320 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2321 return desc_arity (desc_bounds_type (type));
2323 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2326 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2332 /* If TYPE is a record type in the form of a standard GNAT array
2333 descriptor or a simple array type, returns the element type for
2334 TYPE after indexing by NINDICES indices, or by all indices if
2335 NINDICES is -1. Otherwise, returns NULL. */
2338 ada_array_element_type (struct type *type, int nindices)
2340 type = desc_base_type (type);
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2345 struct type *p_array_type;
2347 p_array_type = desc_data_type (type);
2349 k = ada_array_arity (type);
2353 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2354 if (nindices >= 0 && k > nindices)
2356 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2357 while (k > 0 && p_array_type != NULL)
2359 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2362 return p_array_type;
2364 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2366 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2368 type = TYPE_TARGET_TYPE (type);
2377 /* The type of nth index in arrays of given type (n numbering from 1).
2378 Does not examine memory. */
2381 ada_index_type (struct type *type, int n)
2383 struct type *result_type;
2385 type = desc_base_type (type);
2387 if (n > ada_array_arity (type))
2390 if (ada_is_simple_array_type (type))
2394 for (i = 1; i < n; i += 1)
2395 type = TYPE_TARGET_TYPE (type);
2396 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2397 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2398 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2399 perhaps stabsread.c would make more sense. */
2400 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2401 result_type = builtin_type_int;
2406 return desc_index_type (desc_bounds_type (type), n);
2409 /* Given that arr is an array type, returns the lower bound of the
2410 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2411 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2412 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2413 bounds type. It works for other arrays with bounds supplied by
2414 run-time quantities other than discriminants. */
2417 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2418 struct type ** typep)
2421 struct type *index_type_desc;
2423 if (ada_is_packed_array_type (arr_type))
2424 arr_type = decode_packed_array_type (arr_type);
2426 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2429 *typep = builtin_type_int;
2430 return (LONGEST) - which;
2433 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2434 type = TYPE_TARGET_TYPE (arr_type);
2438 index_type_desc = ada_find_parallel_type (type, "___XA");
2439 if (index_type_desc == NULL)
2441 struct type *range_type;
2442 struct type *index_type;
2446 type = TYPE_TARGET_TYPE (type);
2450 range_type = TYPE_INDEX_TYPE (type);
2451 index_type = TYPE_TARGET_TYPE (range_type);
2452 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2453 index_type = builtin_type_long;
2455 *typep = index_type;
2457 (LONGEST) (which == 0
2458 ? TYPE_LOW_BOUND (range_type)
2459 : TYPE_HIGH_BOUND (range_type));
2463 struct type *index_type =
2464 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2465 NULL, TYPE_OBJFILE (arr_type));
2467 *typep = TYPE_TARGET_TYPE (index_type);
2469 (LONGEST) (which == 0
2470 ? TYPE_LOW_BOUND (index_type)
2471 : TYPE_HIGH_BOUND (index_type));
2475 /* Given that arr is an array value, returns the lower bound of the
2476 nth index (numbering from 1) if which is 0, and the upper bound if
2477 which is 1. This routine will also work for arrays with bounds
2478 supplied by run-time quantities other than discriminants. */
2481 ada_array_bound (struct value *arr, int n, int which)
2483 struct type *arr_type = value_type (arr);
2485 if (ada_is_packed_array_type (arr_type))
2486 return ada_array_bound (decode_packed_array (arr), n, which);
2487 else if (ada_is_simple_array_type (arr_type))
2490 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2491 return value_from_longest (type, v);
2494 return desc_one_bound (desc_bounds (arr), n, which);
2497 /* Given that arr is an array value, returns the length of the
2498 nth index. This routine will also work for arrays with bounds
2499 supplied by run-time quantities other than discriminants.
2500 Does not work for arrays indexed by enumeration types with representation
2501 clauses at the moment. */
2504 ada_array_length (struct value *arr, int n)
2506 struct type *arr_type = ada_check_typedef (value_type (arr));
2508 if (ada_is_packed_array_type (arr_type))
2509 return ada_array_length (decode_packed_array (arr), n);
2511 if (ada_is_simple_array_type (arr_type))
2515 ada_array_bound_from_type (arr_type, n, 1, &type) -
2516 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2517 return value_from_longest (type, v);
2521 value_from_longest (builtin_type_int,
2522 value_as_long (desc_one_bound (desc_bounds (arr),
2524 - value_as_long (desc_one_bound (desc_bounds (arr),
2528 /* An empty array whose type is that of ARR_TYPE (an array type),
2529 with bounds LOW to LOW-1. */
2531 static struct value *
2532 empty_array (struct type *arr_type, int low)
2534 struct type *index_type =
2535 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2537 struct type *elt_type = ada_array_element_type (arr_type, 1);
2538 return allocate_value (create_array_type (NULL, elt_type, index_type));
2542 /* Name resolution */
2544 /* The "decoded" name for the user-definable Ada operator corresponding
2548 ada_decoded_op_name (enum exp_opcode op)
2552 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2554 if (ada_opname_table[i].op == op)
2555 return ada_opname_table[i].decoded;
2557 error (_("Could not find operator name for opcode"));
2561 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2562 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2563 undefined namespace) and converts operators that are
2564 user-defined into appropriate function calls. If CONTEXT_TYPE is
2565 non-null, it provides a preferred result type [at the moment, only
2566 type void has any effect---causing procedures to be preferred over
2567 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2568 return type is preferred. May change (expand) *EXP. */
2571 resolve (struct expression **expp, int void_context_p)
2575 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2578 /* Resolve the operator of the subexpression beginning at
2579 position *POS of *EXPP. "Resolving" consists of replacing
2580 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2581 with their resolutions, replacing built-in operators with
2582 function calls to user-defined operators, where appropriate, and,
2583 when DEPROCEDURE_P is non-zero, converting function-valued variables
2584 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2585 are as in ada_resolve, above. */
2587 static struct value *
2588 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2589 struct type *context_type)
2593 struct expression *exp; /* Convenience: == *expp. */
2594 enum exp_opcode op = (*expp)->elts[pc].opcode;
2595 struct value **argvec; /* Vector of operand types (alloca'ed). */
2596 int nargs; /* Number of operands. */
2603 /* Pass one: resolve operands, saving their types and updating *pos,
2608 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2614 resolve_subexp (expp, pos, 0, NULL);
2616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2621 resolve_subexp (expp, pos, 0, NULL);
2626 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2629 case OP_ATR_MODULUS:
2639 case TERNOP_IN_RANGE:
2640 case BINOP_IN_BOUNDS:
2646 case OP_DISCRETE_RANGE:
2648 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2657 arg1 = resolve_subexp (expp, pos, 0, NULL);
2659 resolve_subexp (expp, pos, 1, NULL);
2661 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 case BINOP_LOGICAL_AND:
2679 case BINOP_LOGICAL_OR:
2680 case BINOP_BITWISE_AND:
2681 case BINOP_BITWISE_IOR:
2682 case BINOP_BITWISE_XOR:
2685 case BINOP_NOTEQUAL:
2692 case BINOP_SUBSCRIPT:
2697 case UNOP_LOGICAL_NOT:
2713 case OP_INTERNALVAR:
2723 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2726 case STRUCTOP_STRUCT:
2727 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2740 error (_("Unexpected operator during name resolution"));
2743 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2744 for (i = 0; i < nargs; i += 1)
2745 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2749 /* Pass two: perform any resolution on principal operator. */
2756 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2758 struct ada_symbol_info *candidates;
2762 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2763 (exp->elts[pc + 2].symbol),
2764 exp->elts[pc + 1].block, VAR_DOMAIN,
2767 if (n_candidates > 1)
2769 /* Types tend to get re-introduced locally, so if there
2770 are any local symbols that are not types, first filter
2773 for (j = 0; j < n_candidates; j += 1)
2774 switch (SYMBOL_CLASS (candidates[j].sym))
2780 case LOC_REGPARM_ADDR:
2784 case LOC_BASEREG_ARG:
2786 case LOC_COMPUTED_ARG:
2792 if (j < n_candidates)
2795 while (j < n_candidates)
2797 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2799 candidates[j] = candidates[n_candidates - 1];
2808 if (n_candidates == 0)
2809 error (_("No definition found for %s"),
2810 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2811 else if (n_candidates == 1)
2813 else if (deprocedure_p
2814 && !is_nonfunction (candidates, n_candidates))
2816 i = ada_resolve_function
2817 (candidates, n_candidates, NULL, 0,
2818 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2821 error (_("Could not find a match for %s"),
2822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2826 printf_filtered (_("Multiple matches for %s\n"),
2827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2828 user_select_syms (candidates, n_candidates, 1);
2832 exp->elts[pc + 1].block = candidates[i].block;
2833 exp->elts[pc + 2].symbol = candidates[i].sym;
2834 if (innermost_block == NULL
2835 || contained_in (candidates[i].block, innermost_block))
2836 innermost_block = candidates[i].block;
2840 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2843 replace_operator_with_call (expp, pc, 0, 0,
2844 exp->elts[pc + 2].symbol,
2845 exp->elts[pc + 1].block);
2852 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2853 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2855 struct ada_symbol_info *candidates;
2859 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2860 (exp->elts[pc + 5].symbol),
2861 exp->elts[pc + 4].block, VAR_DOMAIN,
2863 if (n_candidates == 1)
2867 i = ada_resolve_function
2868 (candidates, n_candidates,
2870 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2873 error (_("Could not find a match for %s"),
2874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2877 exp->elts[pc + 4].block = candidates[i].block;
2878 exp->elts[pc + 5].symbol = candidates[i].sym;
2879 if (innermost_block == NULL
2880 || contained_in (candidates[i].block, innermost_block))
2881 innermost_block = candidates[i].block;
2892 case BINOP_BITWISE_AND:
2893 case BINOP_BITWISE_IOR:
2894 case BINOP_BITWISE_XOR:
2896 case BINOP_NOTEQUAL:
2904 case UNOP_LOGICAL_NOT:
2906 if (possible_user_operator_p (op, argvec))
2908 struct ada_symbol_info *candidates;
2912 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2913 (struct block *) NULL, VAR_DOMAIN,
2915 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2916 ada_decoded_op_name (op), NULL);
2920 replace_operator_with_call (expp, pc, nargs, 1,
2921 candidates[i].sym, candidates[i].block);
2931 return evaluate_subexp_type (exp, pos);
2934 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2935 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2936 a non-pointer. A type of 'void' (which is never a valid expression type)
2937 by convention matches anything. */
2938 /* The term "match" here is rather loose. The match is heuristic and
2939 liberal. FIXME: TOO liberal, in fact. */
2942 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2944 ftype = ada_check_typedef (ftype);
2945 atype = ada_check_typedef (atype);
2947 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2948 ftype = TYPE_TARGET_TYPE (ftype);
2949 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2950 atype = TYPE_TARGET_TYPE (atype);
2952 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2953 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2956 switch (TYPE_CODE (ftype))
2961 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2962 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2963 TYPE_TARGET_TYPE (atype), 0);
2966 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2968 case TYPE_CODE_ENUM:
2969 case TYPE_CODE_RANGE:
2970 switch (TYPE_CODE (atype))
2973 case TYPE_CODE_ENUM:
2974 case TYPE_CODE_RANGE:
2980 case TYPE_CODE_ARRAY:
2981 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2982 || ada_is_array_descriptor_type (atype));
2984 case TYPE_CODE_STRUCT:
2985 if (ada_is_array_descriptor_type (ftype))
2986 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2987 || ada_is_array_descriptor_type (atype));
2989 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2990 && !ada_is_array_descriptor_type (atype));
2992 case TYPE_CODE_UNION:
2994 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2998 /* Return non-zero if the formals of FUNC "sufficiently match" the
2999 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3000 may also be an enumeral, in which case it is treated as a 0-
3001 argument function. */
3004 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3007 struct type *func_type = SYMBOL_TYPE (func);
3009 if (SYMBOL_CLASS (func) == LOC_CONST
3010 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3011 return (n_actuals == 0);
3012 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3015 if (TYPE_NFIELDS (func_type) != n_actuals)
3018 for (i = 0; i < n_actuals; i += 1)
3020 if (actuals[i] == NULL)
3024 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3025 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3027 if (!ada_type_match (ftype, atype, 1))
3034 /* False iff function type FUNC_TYPE definitely does not produce a value
3035 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3036 FUNC_TYPE is not a valid function type with a non-null return type
3037 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3040 return_match (struct type *func_type, struct type *context_type)
3042 struct type *return_type;
3044 if (func_type == NULL)
3047 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3048 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3050 return_type = base_type (func_type);
3051 if (return_type == NULL)
3054 context_type = base_type (context_type);
3056 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3057 return context_type == NULL || return_type == context_type;
3058 else if (context_type == NULL)
3059 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3061 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3065 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3066 function (if any) that matches the types of the NARGS arguments in
3067 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3068 that returns that type, then eliminate matches that don't. If
3069 CONTEXT_TYPE is void and there is at least one match that does not
3070 return void, eliminate all matches that do.
3072 Asks the user if there is more than one match remaining. Returns -1
3073 if there is no such symbol or none is selected. NAME is used
3074 solely for messages. May re-arrange and modify SYMS in
3075 the process; the index returned is for the modified vector. */
3078 ada_resolve_function (struct ada_symbol_info syms[],
3079 int nsyms, struct value **args, int nargs,
3080 const char *name, struct type *context_type)
3083 int m; /* Number of hits */
3084 struct type *fallback;
3085 struct type *return_type;
3087 return_type = context_type;
3088 if (context_type == NULL)
3089 fallback = builtin_type_void;
3096 for (k = 0; k < nsyms; k += 1)
3098 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3100 if (ada_args_match (syms[k].sym, args, nargs)
3101 && return_match (type, return_type))
3107 if (m > 0 || return_type == fallback)
3110 return_type = fallback;
3117 printf_filtered (_("Multiple matches for %s\n"), name);
3118 user_select_syms (syms, m, 1);
3124 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3125 in a listing of choices during disambiguation (see sort_choices, below).
3126 The idea is that overloadings of a subprogram name from the
3127 same package should sort in their source order. We settle for ordering
3128 such symbols by their trailing number (__N or $N). */
3131 encoded_ordered_before (char *N0, char *N1)
3135 else if (N0 == NULL)
3140 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3142 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3144 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3145 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3149 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3152 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3154 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3155 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3157 return (strcmp (N0, N1) < 0);
3161 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3165 sort_choices (struct ada_symbol_info syms[], int nsyms)
3168 for (i = 1; i < nsyms; i += 1)
3170 struct ada_symbol_info sym = syms[i];
3173 for (j = i - 1; j >= 0; j -= 1)
3175 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3176 SYMBOL_LINKAGE_NAME (sym.sym)))
3178 syms[j + 1] = syms[j];
3184 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3185 by asking the user (if necessary), returning the number selected,
3186 and setting the first elements of SYMS items. Error if no symbols
3189 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3190 to be re-integrated one of these days. */
3193 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3196 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3198 int first_choice = (max_results == 1) ? 1 : 2;
3200 if (max_results < 1)
3201 error (_("Request to select 0 symbols!"));
3205 printf_unfiltered (_("[0] cancel\n"));
3206 if (max_results > 1)
3207 printf_unfiltered (_("[1] all\n"));
3209 sort_choices (syms, nsyms);
3211 for (i = 0; i < nsyms; i += 1)
3213 if (syms[i].sym == NULL)
3216 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3218 struct symtab_and_line sal =
3219 find_function_start_sal (syms[i].sym, 1);
3220 if (sal.symtab == NULL)
3221 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3223 SYMBOL_PRINT_NAME (syms[i].sym),
3226 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3227 SYMBOL_PRINT_NAME (syms[i].sym),
3228 sal.symtab->filename, sal.line);
3234 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3235 && SYMBOL_TYPE (syms[i].sym) != NULL
3236 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3237 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3239 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3240 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3242 SYMBOL_PRINT_NAME (syms[i].sym),
3243 symtab->filename, SYMBOL_LINE (syms[i].sym));
3244 else if (is_enumeral
3245 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3247 printf_unfiltered (("[%d] "), i + first_choice);
3248 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3250 printf_unfiltered (_("'(%s) (enumeral)\n"),
3251 SYMBOL_PRINT_NAME (syms[i].sym));
3253 else if (symtab != NULL)
3254 printf_unfiltered (is_enumeral
3255 ? _("[%d] %s in %s (enumeral)\n")
3256 : _("[%d] %s at %s:?\n"),
3258 SYMBOL_PRINT_NAME (syms[i].sym),
3261 printf_unfiltered (is_enumeral
3262 ? _("[%d] %s (enumeral)\n")
3263 : _("[%d] %s at ?\n"),
3265 SYMBOL_PRINT_NAME (syms[i].sym));
3269 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3272 for (i = 0; i < n_chosen; i += 1)
3273 syms[i] = syms[chosen[i]];
3278 /* Read and validate a set of numeric choices from the user in the
3279 range 0 .. N_CHOICES-1. Place the results in increasing
3280 order in CHOICES[0 .. N-1], and return N.
3282 The user types choices as a sequence of numbers on one line
3283 separated by blanks, encoding them as follows:
3285 + A choice of 0 means to cancel the selection, throwing an error.
3286 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3287 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3289 The user is not allowed to choose more than MAX_RESULTS values.
3291 ANNOTATION_SUFFIX, if present, is used to annotate the input
3292 prompts (for use with the -f switch). */
3295 get_selections (int *choices, int n_choices, int max_results,
3296 int is_all_choice, char *annotation_suffix)
3301 int first_choice = is_all_choice ? 2 : 1;
3303 prompt = getenv ("PS2");
3307 printf_unfiltered (("%s "), prompt);
3308 gdb_flush (gdb_stdout);
3310 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3313 error_no_arg (_("one or more choice numbers"));
3317 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3318 order, as given in args. Choices are validated. */
3324 while (isspace (*args))
3326 if (*args == '\0' && n_chosen == 0)
3327 error_no_arg (_("one or more choice numbers"));
3328 else if (*args == '\0')
3331 choice = strtol (args, &args2, 10);
3332 if (args == args2 || choice < 0
3333 || choice > n_choices + first_choice - 1)
3334 error (_("Argument must be choice number"));
3338 error (_("cancelled"));
3340 if (choice < first_choice)
3342 n_chosen = n_choices;
3343 for (j = 0; j < n_choices; j += 1)
3347 choice -= first_choice;
3349 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3353 if (j < 0 || choice != choices[j])
3356 for (k = n_chosen - 1; k > j; k -= 1)
3357 choices[k + 1] = choices[k];
3358 choices[j + 1] = choice;
3363 if (n_chosen > max_results)
3364 error (_("Select no more than %d of the above"), max_results);
3369 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3370 on the function identified by SYM and BLOCK, and taking NARGS
3371 arguments. Update *EXPP as needed to hold more space. */
3374 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3375 int oplen, struct symbol *sym,
3376 struct block *block)
3378 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3379 symbol, -oplen for operator being replaced). */
3380 struct expression *newexp = (struct expression *)
3381 xmalloc (sizeof (struct expression)
3382 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3383 struct expression *exp = *expp;
3385 newexp->nelts = exp->nelts + 7 - oplen;
3386 newexp->language_defn = exp->language_defn;
3387 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3388 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3389 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3391 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3392 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3394 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3395 newexp->elts[pc + 4].block = block;
3396 newexp->elts[pc + 5].symbol = sym;
3402 /* Type-class predicates */
3404 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3408 numeric_type_p (struct type *type)
3414 switch (TYPE_CODE (type))
3419 case TYPE_CODE_RANGE:
3420 return (type == TYPE_TARGET_TYPE (type)
3421 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3428 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3431 integer_type_p (struct type *type)
3437 switch (TYPE_CODE (type))
3441 case TYPE_CODE_RANGE:
3442 return (type == TYPE_TARGET_TYPE (type)
3443 || integer_type_p (TYPE_TARGET_TYPE (type)));
3450 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3453 scalar_type_p (struct type *type)
3459 switch (TYPE_CODE (type))
3462 case TYPE_CODE_RANGE:
3463 case TYPE_CODE_ENUM:
3472 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3475 discrete_type_p (struct type *type)
3481 switch (TYPE_CODE (type))
3484 case TYPE_CODE_RANGE:
3485 case TYPE_CODE_ENUM:
3493 /* Returns non-zero if OP with operands in the vector ARGS could be
3494 a user-defined function. Errs on the side of pre-defined operators
3495 (i.e., result 0). */
3498 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3500 struct type *type0 =
3501 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3502 struct type *type1 =
3503 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3517 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3521 case BINOP_BITWISE_AND:
3522 case BINOP_BITWISE_IOR:
3523 case BINOP_BITWISE_XOR:
3524 return (!(integer_type_p (type0) && integer_type_p (type1)));
3527 case BINOP_NOTEQUAL:
3532 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3536 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3537 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3538 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3539 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3540 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3541 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3542 != TYPE_CODE_ARRAY))));
3545 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3549 case UNOP_LOGICAL_NOT:
3551 return (!numeric_type_p (type0));
3558 /* NOTE: In the following, we assume that a renaming type's name may
3559 have an ___XD suffix. It would be nice if this went away at some
3562 /* If TYPE encodes a renaming, returns the renaming suffix, which
3563 is XR for an object renaming, XRP for a procedure renaming, XRE for
3564 an exception renaming, and XRS for a subprogram renaming. Returns
3565 NULL if NAME encodes none of these. */
3568 ada_renaming_type (struct type *type)
3570 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3572 const char *name = type_name_no_tag (type);
3573 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3575 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3584 /* Return non-zero iff SYM encodes an object renaming. */
3587 ada_is_object_renaming (struct symbol *sym)
3589 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3590 return renaming_type != NULL
3591 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3594 /* Assuming that SYM encodes a non-object renaming, returns the original
3595 name of the renamed entity. The name is good until the end of
3599 ada_simple_renamed_entity (struct symbol *sym)
3602 const char *raw_name;
3606 type = SYMBOL_TYPE (sym);
3607 if (type == NULL || TYPE_NFIELDS (type) < 1)
3608 error (_("Improperly encoded renaming."));
3610 raw_name = TYPE_FIELD_NAME (type, 0);
3611 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3613 error (_("Improperly encoded renaming."));
3615 result = xmalloc (len + 1);
3616 strncpy (result, raw_name, len);
3617 result[len] = '\000';
3623 /* Evaluation: Function Calls */
3625 /* Return an lvalue containing the value VAL. This is the identity on
3626 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3627 on the stack, using and updating *SP as the stack pointer, and
3628 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3630 static struct value *
3631 ensure_lval (struct value *val, CORE_ADDR *sp)
3633 if (! VALUE_LVAL (val))
3635 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3637 /* The following is taken from the structure-return code in
3638 call_function_by_hand. FIXME: Therefore, some refactoring seems
3640 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3642 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3643 reserving sufficient space. */
3645 if (gdbarch_frame_align_p (current_gdbarch))
3646 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3647 VALUE_ADDRESS (val) = *sp;
3651 /* Stack grows upward. Align the frame, allocate space, and
3652 then again, re-align the frame. */
3653 if (gdbarch_frame_align_p (current_gdbarch))
3654 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3655 VALUE_ADDRESS (val) = *sp;
3657 if (gdbarch_frame_align_p (current_gdbarch))
3658 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3661 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3667 /* Return the value ACTUAL, converted to be an appropriate value for a
3668 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3669 allocating any necessary descriptors (fat pointers), or copies of
3670 values not residing in memory, updating it as needed. */
3672 static struct value *
3673 convert_actual (struct value *actual, struct type *formal_type0,
3676 struct type *actual_type = ada_check_typedef (value_type (actual));
3677 struct type *formal_type = ada_check_typedef (formal_type0);
3678 struct type *formal_target =
3679 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3680 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3681 struct type *actual_target =
3682 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3683 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3685 if (ada_is_array_descriptor_type (formal_target)
3686 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3687 return make_array_descriptor (formal_type, actual, sp);
3688 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3690 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3691 && ada_is_array_descriptor_type (actual_target))
3692 return desc_data (actual);
3693 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3695 if (VALUE_LVAL (actual) != lval_memory)
3698 actual_type = ada_check_typedef (value_type (actual));
3699 val = allocate_value (actual_type);
3700 memcpy ((char *) value_contents_raw (val),
3701 (char *) value_contents (actual),
3702 TYPE_LENGTH (actual_type));
3703 actual = ensure_lval (val, sp);
3705 return value_addr (actual);
3708 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3709 return ada_value_ind (actual);
3715 /* Push a descriptor of type TYPE for array value ARR on the stack at
3716 *SP, updating *SP to reflect the new descriptor. Return either
3717 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3718 to-descriptor type rather than a descriptor type), a struct value *
3719 representing a pointer to this descriptor. */
3721 static struct value *
3722 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3724 struct type *bounds_type = desc_bounds_type (type);
3725 struct type *desc_type = desc_base_type (type);
3726 struct value *descriptor = allocate_value (desc_type);
3727 struct value *bounds = allocate_value (bounds_type);
3730 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3732 modify_general_field (value_contents_writeable (bounds),
3733 value_as_long (ada_array_bound (arr, i, 0)),
3734 desc_bound_bitpos (bounds_type, i, 0),
3735 desc_bound_bitsize (bounds_type, i, 0));
3736 modify_general_field (value_contents_writeable (bounds),
3737 value_as_long (ada_array_bound (arr, i, 1)),
3738 desc_bound_bitpos (bounds_type, i, 1),
3739 desc_bound_bitsize (bounds_type, i, 1));
3742 bounds = ensure_lval (bounds, sp);
3744 modify_general_field (value_contents_writeable (descriptor),
3745 VALUE_ADDRESS (ensure_lval (arr, sp)),
3746 fat_pntr_data_bitpos (desc_type),
3747 fat_pntr_data_bitsize (desc_type));
3749 modify_general_field (value_contents_writeable (descriptor),
3750 VALUE_ADDRESS (bounds),
3751 fat_pntr_bounds_bitpos (desc_type),
3752 fat_pntr_bounds_bitsize (desc_type));
3754 descriptor = ensure_lval (descriptor, sp);
3756 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3757 return value_addr (descriptor);
3763 /* Assuming a dummy frame has been established on the target, perform any
3764 conversions needed for calling function FUNC on the NARGS actual
3765 parameters in ARGS, other than standard C conversions. Does
3766 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3767 does not match the number of arguments expected. Use *SP as a
3768 stack pointer for additional data that must be pushed, updating its
3772 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3777 if (TYPE_NFIELDS (value_type (func)) == 0
3778 || nargs != TYPE_NFIELDS (value_type (func)))
3781 for (i = 0; i < nargs; i += 1)
3783 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3786 /* Dummy definitions for an experimental caching module that is not
3787 * used in the public sources. */
3790 lookup_cached_symbol (const char *name, domain_enum namespace,
3791 struct symbol **sym, struct block **block,
3792 struct symtab **symtab)
3798 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3799 struct block *block, struct symtab *symtab)
3805 /* Return the result of a standard (literal, C-like) lookup of NAME in
3806 given DOMAIN, visible from lexical block BLOCK. */
3808 static struct symbol *
3809 standard_lookup (const char *name, const struct block *block,
3813 struct symtab *symtab;
3815 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3818 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3819 cache_symbol (name, domain, sym, block_found, symtab);
3824 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3825 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3826 since they contend in overloading in the same way. */
3828 is_nonfunction (struct ada_symbol_info syms[], int n)
3832 for (i = 0; i < n; i += 1)
3833 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3834 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3835 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3841 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3842 struct types. Otherwise, they may not. */
3845 equiv_types (struct type *type0, struct type *type1)
3849 if (type0 == NULL || type1 == NULL
3850 || TYPE_CODE (type0) != TYPE_CODE (type1))
3852 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3853 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3854 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3855 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3861 /* True iff SYM0 represents the same entity as SYM1, or one that is
3862 no more defined than that of SYM1. */
3865 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3869 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3870 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3873 switch (SYMBOL_CLASS (sym0))
3879 struct type *type0 = SYMBOL_TYPE (sym0);
3880 struct type *type1 = SYMBOL_TYPE (sym1);
3881 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3882 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3883 int len0 = strlen (name0);
3885 TYPE_CODE (type0) == TYPE_CODE (type1)
3886 && (equiv_types (type0, type1)
3887 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3888 && strncmp (name1 + len0, "___XV", 5) == 0));
3891 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3892 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3898 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3899 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3902 add_defn_to_vec (struct obstack *obstackp,
3904 struct block *block, struct symtab *symtab)
3908 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3910 /* Do not try to complete stub types, as the debugger is probably
3911 already scanning all symbols matching a certain name at the
3912 time when this function is called. Trying to replace the stub
3913 type by its associated full type will cause us to restart a scan
3914 which may lead to an infinite recursion. Instead, the client
3915 collecting the matching symbols will end up collecting several
3916 matches, with at least one of them complete. It can then filter
3917 out the stub ones if needed. */
3919 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3921 if (lesseq_defined_than (sym, prevDefns[i].sym))
3923 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3925 prevDefns[i].sym = sym;
3926 prevDefns[i].block = block;
3927 prevDefns[i].symtab = symtab;
3933 struct ada_symbol_info info;
3937 info.symtab = symtab;
3938 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3942 /* Number of ada_symbol_info structures currently collected in
3943 current vector in *OBSTACKP. */
3946 num_defns_collected (struct obstack *obstackp)
3948 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3951 /* Vector of ada_symbol_info structures currently collected in current
3952 vector in *OBSTACKP. If FINISH, close off the vector and return
3953 its final address. */
3955 static struct ada_symbol_info *
3956 defns_collected (struct obstack *obstackp, int finish)
3959 return obstack_finish (obstackp);
3961 return (struct ada_symbol_info *) obstack_base (obstackp);
3964 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3965 Check the global symbols if GLOBAL, the static symbols if not.
3966 Do wild-card match if WILD. */
3968 static struct partial_symbol *
3969 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3970 int global, domain_enum namespace, int wild)
3972 struct partial_symbol **start;
3973 int name_len = strlen (name);
3974 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3983 pst->objfile->global_psymbols.list + pst->globals_offset :
3984 pst->objfile->static_psymbols.list + pst->statics_offset);
3988 for (i = 0; i < length; i += 1)
3990 struct partial_symbol *psym = start[i];
3992 if (SYMBOL_DOMAIN (psym) == namespace
3993 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4007 int M = (U + i) >> 1;
4008 struct partial_symbol *psym = start[M];
4009 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4011 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4013 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4024 struct partial_symbol *psym = start[i];
4026 if (SYMBOL_DOMAIN (psym) == namespace)
4028 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4036 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4050 int M = (U + i) >> 1;
4051 struct partial_symbol *psym = start[M];
4052 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4054 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4056 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4067 struct partial_symbol *psym = start[i];
4069 if (SYMBOL_DOMAIN (psym) == namespace)
4073 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4076 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4078 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4088 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4098 /* Find a symbol table containing symbol SYM or NULL if none. */
4100 static struct symtab *
4101 symtab_for_sym (struct symbol *sym)
4104 struct objfile *objfile;
4106 struct symbol *tmp_sym;
4107 struct dict_iterator iter;
4110 ALL_PRIMARY_SYMTABS (objfile, s)
4112 switch (SYMBOL_CLASS (sym))
4120 case LOC_CONST_BYTES:
4121 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4122 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4124 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4125 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4131 switch (SYMBOL_CLASS (sym))
4137 case LOC_REGPARM_ADDR:
4142 case LOC_BASEREG_ARG:
4144 case LOC_COMPUTED_ARG:
4145 for (j = FIRST_LOCAL_BLOCK;
4146 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4148 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4149 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4160 /* Return a minimal symbol matching NAME according to Ada decoding
4161 rules. Returns NULL if there is no such minimal symbol. Names
4162 prefixed with "standard__" are handled specially: "standard__" is
4163 first stripped off, and only static and global symbols are searched. */
4165 struct minimal_symbol *
4166 ada_lookup_simple_minsym (const char *name)
4168 struct objfile *objfile;
4169 struct minimal_symbol *msymbol;
4172 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4174 name += sizeof ("standard__") - 1;
4178 wild_match = (strstr (name, "__") == NULL);
4180 ALL_MSYMBOLS (objfile, msymbol)
4182 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4183 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4190 /* For all subprograms that statically enclose the subprogram of the
4191 selected frame, add symbols matching identifier NAME in DOMAIN
4192 and their blocks to the list of data in OBSTACKP, as for
4193 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4197 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4198 const char *name, domain_enum namespace,
4203 /* True if TYPE is definitely an artificial type supplied to a symbol
4204 for which no debugging information was given in the symbol file. */
4207 is_nondebugging_type (struct type *type)
4209 char *name = ada_type_name (type);
4210 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4213 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4214 duplicate other symbols in the list (The only case I know of where
4215 this happens is when object files containing stabs-in-ecoff are
4216 linked with files containing ordinary ecoff debugging symbols (or no
4217 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4218 Returns the number of items in the modified list. */
4221 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4228 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4229 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4230 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4232 for (j = 0; j < nsyms; j += 1)
4235 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4236 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4237 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4238 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4239 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4240 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4243 for (k = i + 1; k < nsyms; k += 1)
4244 syms[k - 1] = syms[k];
4257 /* Given a type that corresponds to a renaming entity, use the type name
4258 to extract the scope (package name or function name, fully qualified,
4259 and following the GNAT encoding convention) where this renaming has been
4260 defined. The string returned needs to be deallocated after use. */
4263 xget_renaming_scope (struct type *renaming_type)
4265 /* The renaming types adhere to the following convention:
4266 <scope>__<rename>___<XR extension>.
4267 So, to extract the scope, we search for the "___XR" extension,
4268 and then backtrack until we find the first "__". */
4270 const char *name = type_name_no_tag (renaming_type);
4271 char *suffix = strstr (name, "___XR");
4276 /* Now, backtrack a bit until we find the first "__". Start looking
4277 at suffix - 3, as the <rename> part is at least one character long. */
4279 for (last = suffix - 3; last > name; last--)
4280 if (last[0] == '_' && last[1] == '_')
4283 /* Make a copy of scope and return it. */
4285 scope_len = last - name;
4286 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4288 strncpy (scope, name, scope_len);
4289 scope[scope_len] = '\0';
4294 /* Return nonzero if NAME corresponds to a package name. */
4297 is_package_name (const char *name)
4299 /* Here, We take advantage of the fact that no symbols are generated
4300 for packages, while symbols are generated for each function.
4301 So the condition for NAME represent a package becomes equivalent
4302 to NAME not existing in our list of symbols. There is only one
4303 small complication with library-level functions (see below). */
4307 /* If it is a function that has not been defined at library level,
4308 then we should be able to look it up in the symbols. */
4309 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4312 /* Library-level function names start with "_ada_". See if function
4313 "_ada_" followed by NAME can be found. */
4315 /* Do a quick check that NAME does not contain "__", since library-level
4316 functions names cannot contain "__" in them. */
4317 if (strstr (name, "__") != NULL)
4320 fun_name = xstrprintf ("_ada_%s", name);
4322 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4325 /* Return nonzero if SYM corresponds to a renaming entity that is
4326 visible from FUNCTION_NAME. */
4329 renaming_is_visible (const struct symbol *sym, char *function_name)
4331 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4333 make_cleanup (xfree, scope);
4335 /* If the rename has been defined in a package, then it is visible. */
4336 if (is_package_name (scope))
4339 /* Check that the rename is in the current function scope by checking
4340 that its name starts with SCOPE. */
4342 /* If the function name starts with "_ada_", it means that it is
4343 a library-level function. Strip this prefix before doing the
4344 comparison, as the encoding for the renaming does not contain
4346 if (strncmp (function_name, "_ada_", 5) == 0)
4349 return (strncmp (function_name, scope, strlen (scope)) == 0);
4352 /* Iterates over the SYMS list and remove any entry that corresponds to
4353 a renaming entity that is not visible from the function associated
4357 GNAT emits a type following a specified encoding for each renaming
4358 entity. Unfortunately, STABS currently does not support the definition
4359 of types that are local to a given lexical block, so all renamings types
4360 are emitted at library level. As a consequence, if an application
4361 contains two renaming entities using the same name, and a user tries to
4362 print the value of one of these entities, the result of the ada symbol
4363 lookup will also contain the wrong renaming type.
4365 This function partially covers for this limitation by attempting to
4366 remove from the SYMS list renaming symbols that should be visible
4367 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4368 method with the current information available. The implementation
4369 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4371 - When the user tries to print a rename in a function while there
4372 is another rename entity defined in a package: Normally, the
4373 rename in the function has precedence over the rename in the
4374 package, so the latter should be removed from the list. This is
4375 currently not the case.
4377 - This function will incorrectly remove valid renames if
4378 the CURRENT_BLOCK corresponds to a function which symbol name
4379 has been changed by an "Export" pragma. As a consequence,
4380 the user will be unable to print such rename entities. */
4383 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4384 int nsyms, const struct block *current_block)
4386 struct symbol *current_function;
4387 char *current_function_name;
4390 /* Extract the function name associated to CURRENT_BLOCK.
4391 Abort if unable to do so. */
4393 if (current_block == NULL)
4396 current_function = block_function (current_block);
4397 if (current_function == NULL)
4400 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4401 if (current_function_name == NULL)
4404 /* Check each of the symbols, and remove it from the list if it is
4405 a type corresponding to a renaming that is out of the scope of
4406 the current block. */
4411 if (ada_is_object_renaming (syms[i].sym)
4412 && !renaming_is_visible (syms[i].sym, current_function_name))
4415 for (j = i + 1; j < nsyms; j++)
4416 syms[j - 1] = syms[j];
4426 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4427 scope and in global scopes, returning the number of matches. Sets
4428 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4429 indicating the symbols found and the blocks and symbol tables (if
4430 any) in which they were found. This vector are transient---good only to
4431 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4432 symbol match within the nest of blocks whose innermost member is BLOCK0,
4433 is the one match returned (no other matches in that or
4434 enclosing blocks is returned). If there are any matches in or
4435 surrounding BLOCK0, then these alone are returned. Otherwise, the
4436 search extends to global and file-scope (static) symbol tables.
4437 Names prefixed with "standard__" are handled specially: "standard__"
4438 is first stripped off, and only static and global symbols are searched. */
4441 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4442 domain_enum namespace,
4443 struct ada_symbol_info **results)
4447 struct partial_symtab *ps;
4448 struct blockvector *bv;
4449 struct objfile *objfile;
4450 struct block *block;
4452 struct minimal_symbol *msymbol;
4458 obstack_free (&symbol_list_obstack, NULL);
4459 obstack_init (&symbol_list_obstack);
4463 /* Search specified block and its superiors. */
4465 wild_match = (strstr (name0, "__") == NULL);
4467 block = (struct block *) block0; /* FIXME: No cast ought to be
4468 needed, but adding const will
4469 have a cascade effect. */
4470 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4474 name = name0 + sizeof ("standard__") - 1;
4478 while (block != NULL)
4481 ada_add_block_symbols (&symbol_list_obstack, block, name,
4482 namespace, NULL, NULL, wild_match);
4484 /* If we found a non-function match, assume that's the one. */
4485 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4486 num_defns_collected (&symbol_list_obstack)))
4489 block = BLOCK_SUPERBLOCK (block);
4492 /* If no luck so far, try to find NAME as a local symbol in some lexically
4493 enclosing subprogram. */
4494 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4495 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4496 name, namespace, wild_match);
4498 /* If we found ANY matches among non-global symbols, we're done. */
4500 if (num_defns_collected (&symbol_list_obstack) > 0)
4504 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4507 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4511 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4512 tables, and psymtab's. */
4514 ALL_PRIMARY_SYMTABS (objfile, s)
4517 bv = BLOCKVECTOR (s);
4518 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4519 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4520 objfile, s, wild_match);
4523 if (namespace == VAR_DOMAIN)
4525 ALL_MSYMBOLS (objfile, msymbol)
4527 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4529 switch (MSYMBOL_TYPE (msymbol))
4531 case mst_solib_trampoline:
4534 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4537 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4539 bv = BLOCKVECTOR (s);
4540 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4541 ada_add_block_symbols (&symbol_list_obstack, block,
4542 SYMBOL_LINKAGE_NAME (msymbol),
4543 namespace, objfile, s, wild_match);
4545 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4547 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4548 ada_add_block_symbols (&symbol_list_obstack, block,
4549 SYMBOL_LINKAGE_NAME (msymbol),
4550 namespace, objfile, s,
4559 ALL_PSYMTABS (objfile, ps)
4563 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4565 s = PSYMTAB_TO_SYMTAB (ps);
4568 bv = BLOCKVECTOR (s);
4569 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4570 ada_add_block_symbols (&symbol_list_obstack, block, name,
4571 namespace, objfile, s, wild_match);
4575 /* Now add symbols from all per-file blocks if we've gotten no hits
4576 (Not strictly correct, but perhaps better than an error).
4577 Do the symtabs first, then check the psymtabs. */
4579 if (num_defns_collected (&symbol_list_obstack) == 0)
4582 ALL_PRIMARY_SYMTABS (objfile, s)
4585 bv = BLOCKVECTOR (s);
4586 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4587 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4588 objfile, s, wild_match);
4591 ALL_PSYMTABS (objfile, ps)
4595 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4597 s = PSYMTAB_TO_SYMTAB (ps);
4598 bv = BLOCKVECTOR (s);
4601 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4602 ada_add_block_symbols (&symbol_list_obstack, block, name,
4603 namespace, objfile, s, wild_match);
4609 ndefns = num_defns_collected (&symbol_list_obstack);
4610 *results = defns_collected (&symbol_list_obstack, 1);
4612 ndefns = remove_extra_symbols (*results, ndefns);
4615 cache_symbol (name0, namespace, NULL, NULL, NULL);
4617 if (ndefns == 1 && cacheIfUnique)
4618 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4619 (*results)[0].symtab);
4621 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4626 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4627 scope and in global scopes, or NULL if none. NAME is folded and
4628 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4629 choosing the first symbol if there are multiple choices.
4630 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4631 table in which the symbol was found (in both cases, these
4632 assignments occur only if the pointers are non-null). */
4635 ada_lookup_symbol (const char *name, const struct block *block0,
4636 domain_enum namespace, int *is_a_field_of_this,
4637 struct symtab **symtab)
4639 struct ada_symbol_info *candidates;
4642 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4643 block0, namespace, &candidates);
4645 if (n_candidates == 0)
4648 if (is_a_field_of_this != NULL)
4649 *is_a_field_of_this = 0;
4653 *symtab = candidates[0].symtab;
4654 if (*symtab == NULL && candidates[0].block != NULL)
4656 struct objfile *objfile;
4659 struct blockvector *bv;
4661 /* Search the list of symtabs for one which contains the
4662 address of the start of this block. */
4663 ALL_PRIMARY_SYMTABS (objfile, s)
4665 bv = BLOCKVECTOR (s);
4666 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4667 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4668 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4671 return fixup_symbol_section (candidates[0].sym, objfile);
4674 /* FIXME: brobecker/2004-11-12: I think that we should never
4675 reach this point. I don't see a reason why we would not
4676 find a symtab for a given block, so I suggest raising an
4677 internal_error exception here. Otherwise, we end up
4678 returning a symbol but no symtab, which certain parts of
4679 the code that rely (indirectly) on this function do not
4680 expect, eventually causing a SEGV. */
4681 return fixup_symbol_section (candidates[0].sym, NULL);
4684 return candidates[0].sym;
4687 static struct symbol *
4688 ada_lookup_symbol_nonlocal (const char *name,
4689 const char *linkage_name,
4690 const struct block *block,
4691 const domain_enum domain, struct symtab **symtab)
4693 if (linkage_name == NULL)
4694 linkage_name = name;
4695 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4700 /* True iff STR is a possible encoded suffix of a normal Ada name
4701 that is to be ignored for matching purposes. Suffixes of parallel
4702 names (e.g., XVE) are not included here. Currently, the possible suffixes
4703 are given by either of the regular expression:
4705 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4707 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4708 _E[0-9]+[bs]$ [protected object entry suffixes]
4709 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4713 is_name_suffix (const char *str)
4716 const char *matching;
4717 const int len = strlen (str);
4719 /* (__[0-9]+)?\.[0-9]+ */
4721 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4724 while (isdigit (matching[0]))
4726 if (matching[0] == '\0')
4730 if (matching[0] == '.' || matching[0] == '$')
4733 while (isdigit (matching[0]))
4735 if (matching[0] == '\0')
4740 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4743 while (isdigit (matching[0]))
4745 if (matching[0] == '\0')
4750 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4751 with a N at the end. Unfortunately, the compiler uses the same
4752 convention for other internal types it creates. So treating
4753 all entity names that end with an "N" as a name suffix causes
4754 some regressions. For instance, consider the case of an enumerated
4755 type. To support the 'Image attribute, it creates an array whose
4757 Having a single character like this as a suffix carrying some
4758 information is a bit risky. Perhaps we should change the encoding
4759 to be something like "_N" instead. In the meantime, do not do
4760 the following check. */
4761 /* Protected Object Subprograms */
4762 if (len == 1 && str [0] == 'N')
4767 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4770 while (isdigit (matching[0]))
4772 if ((matching[0] == 'b' || matching[0] == 's')
4773 && matching [1] == '\0')
4777 /* ??? We should not modify STR directly, as we are doing below. This
4778 is fine in this case, but may become problematic later if we find
4779 that this alternative did not work, and want to try matching
4780 another one from the begining of STR. Since we modified it, we
4781 won't be able to find the begining of the string anymore! */
4785 while (str[0] != '_' && str[0] != '\0')
4787 if (str[0] != 'n' && str[0] != 'b')
4792 if (str[0] == '\000')
4796 if (str[1] != '_' || str[2] == '\000')
4800 if (strcmp (str + 3, "JM") == 0)
4802 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4803 the LJM suffix in favor of the JM one. But we will
4804 still accept LJM as a valid suffix for a reasonable
4805 amount of time, just to allow ourselves to debug programs
4806 compiled using an older version of GNAT. */
4807 if (strcmp (str + 3, "LJM") == 0)
4811 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4812 || str[4] == 'U' || str[4] == 'P')
4814 if (str[4] == 'R' && str[5] != 'T')
4818 if (!isdigit (str[2]))
4820 for (k = 3; str[k] != '\0'; k += 1)
4821 if (!isdigit (str[k]) && str[k] != '_')
4825 if (str[0] == '$' && isdigit (str[1]))
4827 for (k = 2; str[k] != '\0'; k += 1)
4828 if (!isdigit (str[k]) && str[k] != '_')
4835 /* Return nonzero if the given string starts with a dot ('.')
4836 followed by zero or more digits.
4838 Note: brobecker/2003-11-10: A forward declaration has not been
4839 added at the begining of this file yet, because this function
4840 is only used to work around a problem found during wild matching
4841 when trying to match minimal symbol names against symbol names
4842 obtained from dwarf-2 data. This function is therefore currently
4843 only used in wild_match() and is likely to be deleted when the
4844 problem in dwarf-2 is fixed. */
4847 is_dot_digits_suffix (const char *str)
4853 while (isdigit (str[0]))
4855 return (str[0] == '\0');
4858 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4859 Certain symbols appear at first to match, except that they turn out
4860 not to follow the Ada encoding and hence should not be used as a wild
4861 match of a given pattern. */
4864 is_valid_name_for_wild_match (const char *name0)
4866 const char *decoded_name = ada_decode (name0);
4869 for (i=0; decoded_name[i] != '\0'; i++)
4870 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4876 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4877 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4878 informational suffixes of NAME (i.e., for which is_name_suffix is
4882 wild_match (const char *patn0, int patn_len, const char *name0)
4888 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4889 stored in the symbol table for nested function names is sometimes
4890 different from the name of the associated entity stored in
4891 the dwarf-2 data: This is the case for nested subprograms, where
4892 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4893 while the symbol name from the dwarf-2 data does not.
4895 Although the DWARF-2 standard documents that entity names stored
4896 in the dwarf-2 data should be identical to the name as seen in
4897 the source code, GNAT takes a different approach as we already use
4898 a special encoding mechanism to convey the information so that
4899 a C debugger can still use the information generated to debug
4900 Ada programs. A corollary is that the symbol names in the dwarf-2
4901 data should match the names found in the symbol table. I therefore
4902 consider this issue as a compiler defect.
4904 Until the compiler is properly fixed, we work-around the problem
4905 by ignoring such suffixes during the match. We do so by making
4906 a copy of PATN0 and NAME0, and then by stripping such a suffix
4907 if present. We then perform the match on the resulting strings. */
4910 name_len = strlen (name0);
4912 name = (char *) alloca ((name_len + 1) * sizeof (char));
4913 strcpy (name, name0);
4914 dot = strrchr (name, '.');
4915 if (dot != NULL && is_dot_digits_suffix (dot))
4918 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4919 strncpy (patn, patn0, patn_len);
4920 patn[patn_len] = '\0';
4921 dot = strrchr (patn, '.');
4922 if (dot != NULL && is_dot_digits_suffix (dot))
4925 patn_len = dot - patn;
4929 /* Now perform the wild match. */
4931 name_len = strlen (name);
4932 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4933 && strncmp (patn, name + 5, patn_len) == 0
4934 && is_name_suffix (name + patn_len + 5))
4937 while (name_len >= patn_len)
4939 if (strncmp (patn, name, patn_len) == 0
4940 && is_name_suffix (name + patn_len))
4941 return (is_valid_name_for_wild_match (name0));
4948 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4953 if (!islower (name[2]))
4960 if (!islower (name[1]))
4971 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4972 vector *defn_symbols, updating the list of symbols in OBSTACKP
4973 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4974 OBJFILE is the section containing BLOCK.
4975 SYMTAB is recorded with each symbol added. */
4978 ada_add_block_symbols (struct obstack *obstackp,
4979 struct block *block, const char *name,
4980 domain_enum domain, struct objfile *objfile,
4981 struct symtab *symtab, int wild)
4983 struct dict_iterator iter;
4984 int name_len = strlen (name);
4985 /* A matching argument symbol, if any. */
4986 struct symbol *arg_sym;
4987 /* Set true when we find a matching non-argument symbol. */
4996 ALL_BLOCK_SYMBOLS (block, iter, sym)
4998 if (SYMBOL_DOMAIN (sym) == domain
4999 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5001 switch (SYMBOL_CLASS (sym))
5007 case LOC_REGPARM_ADDR:
5008 case LOC_BASEREG_ARG:
5009 case LOC_COMPUTED_ARG:
5012 case LOC_UNRESOLVED:
5016 add_defn_to_vec (obstackp,
5017 fixup_symbol_section (sym, objfile),
5026 ALL_BLOCK_SYMBOLS (block, iter, sym)
5028 if (SYMBOL_DOMAIN (sym) == domain)
5030 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5032 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5034 switch (SYMBOL_CLASS (sym))
5040 case LOC_REGPARM_ADDR:
5041 case LOC_BASEREG_ARG:
5042 case LOC_COMPUTED_ARG:
5045 case LOC_UNRESOLVED:
5049 add_defn_to_vec (obstackp,
5050 fixup_symbol_section (sym, objfile),
5059 if (!found_sym && arg_sym != NULL)
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (arg_sym, objfile),
5071 ALL_BLOCK_SYMBOLS (block, iter, sym)
5073 if (SYMBOL_DOMAIN (sym) == domain)
5077 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5080 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5082 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5087 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5089 switch (SYMBOL_CLASS (sym))
5095 case LOC_REGPARM_ADDR:
5096 case LOC_BASEREG_ARG:
5097 case LOC_COMPUTED_ARG:
5100 case LOC_UNRESOLVED:
5104 add_defn_to_vec (obstackp,
5105 fixup_symbol_section (sym, objfile),
5113 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5114 They aren't parameters, right? */
5115 if (!found_sym && arg_sym != NULL)
5117 add_defn_to_vec (obstackp,
5118 fixup_symbol_section (arg_sym, objfile),
5126 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5127 to be invisible to users. */
5130 ada_is_ignored_field (struct type *type, int field_num)
5132 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5136 const char *name = TYPE_FIELD_NAME (type, field_num);
5137 return (name == NULL
5138 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5142 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5143 pointer or reference type whose ultimate target has a tag field. */
5146 ada_is_tagged_type (struct type *type, int refok)
5148 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5151 /* True iff TYPE represents the type of X'Tag */
5154 ada_is_tag_type (struct type *type)
5156 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5160 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5161 return (name != NULL
5162 && strcmp (name, "ada__tags__dispatch_table") == 0);
5166 /* The type of the tag on VAL. */
5169 ada_tag_type (struct value *val)
5171 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5174 /* The value of the tag on VAL. */
5177 ada_value_tag (struct value *val)
5179 return ada_value_struct_elt (val, "_tag", 0);
5182 /* The value of the tag on the object of type TYPE whose contents are
5183 saved at VALADDR, if it is non-null, or is at memory address
5186 static struct value *
5187 value_tag_from_contents_and_address (struct type *type,
5188 const gdb_byte *valaddr,
5191 int tag_byte_offset, dummy1, dummy2;
5192 struct type *tag_type;
5193 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5196 const gdb_byte *valaddr1 = ((valaddr == NULL)
5198 : valaddr + tag_byte_offset);
5199 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5201 return value_from_contents_and_address (tag_type, valaddr1, address1);
5206 static struct type *
5207 type_from_tag (struct value *tag)
5209 const char *type_name = ada_tag_name (tag);
5210 if (type_name != NULL)
5211 return ada_find_any_type (ada_encode (type_name));
5222 static int ada_tag_name_1 (void *);
5223 static int ada_tag_name_2 (struct tag_args *);
5225 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5226 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5227 The value stored in ARGS->name is valid until the next call to
5231 ada_tag_name_1 (void *args0)
5233 struct tag_args *args = (struct tag_args *) args0;
5234 static char name[1024];
5238 val = ada_value_struct_elt (args->tag, "tsd", 1);
5240 return ada_tag_name_2 (args);
5241 val = ada_value_struct_elt (val, "expanded_name", 1);
5244 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5245 for (p = name; *p != '\0'; p += 1)
5252 /* Utility function for ada_tag_name_1 that tries the second
5253 representation for the dispatch table (in which there is no
5254 explicit 'tsd' field in the referent of the tag pointer, and instead
5255 the tsd pointer is stored just before the dispatch table. */
5258 ada_tag_name_2 (struct tag_args *args)
5260 struct type *info_type;
5261 static char name[1024];
5263 struct value *val, *valp;
5266 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5267 if (info_type == NULL)
5269 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5270 valp = value_cast (info_type, args->tag);
5273 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5276 val = ada_value_struct_elt (val, "expanded_name", 1);
5279 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5280 for (p = name; *p != '\0'; p += 1)
5287 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5291 ada_tag_name (struct value *tag)
5293 struct tag_args args;
5294 if (!ada_is_tag_type (value_type (tag)))
5298 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5302 /* The parent type of TYPE, or NULL if none. */
5305 ada_parent_type (struct type *type)
5309 type = ada_check_typedef (type);
5311 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5314 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5315 if (ada_is_parent_field (type, i))
5316 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5321 /* True iff field number FIELD_NUM of structure type TYPE contains the
5322 parent-type (inherited) fields of a derived type. Assumes TYPE is
5323 a structure type with at least FIELD_NUM+1 fields. */
5326 ada_is_parent_field (struct type *type, int field_num)
5328 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5329 return (name != NULL
5330 && (strncmp (name, "PARENT", 6) == 0
5331 || strncmp (name, "_parent", 7) == 0));
5334 /* True iff field number FIELD_NUM of structure type TYPE is a
5335 transparent wrapper field (which should be silently traversed when doing
5336 field selection and flattened when printing). Assumes TYPE is a
5337 structure type with at least FIELD_NUM+1 fields. Such fields are always
5341 ada_is_wrapper_field (struct type *type, int field_num)
5343 const char *name = TYPE_FIELD_NAME (type, field_num);
5344 return (name != NULL
5345 && (strncmp (name, "PARENT", 6) == 0
5346 || strcmp (name, "REP") == 0
5347 || strncmp (name, "_parent", 7) == 0
5348 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5351 /* True iff field number FIELD_NUM of structure or union type TYPE
5352 is a variant wrapper. Assumes TYPE is a structure type with at least
5353 FIELD_NUM+1 fields. */
5356 ada_is_variant_part (struct type *type, int field_num)
5358 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5359 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5360 || (is_dynamic_field (type, field_num)
5361 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5362 == TYPE_CODE_UNION)));
5365 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5366 whose discriminants are contained in the record type OUTER_TYPE,
5367 returns the type of the controlling discriminant for the variant. */
5370 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5372 char *name = ada_variant_discrim_name (var_type);
5374 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5376 return builtin_type_int;
5381 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5382 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5383 represents a 'when others' clause; otherwise 0. */
5386 ada_is_others_clause (struct type *type, int field_num)
5388 const char *name = TYPE_FIELD_NAME (type, field_num);
5389 return (name != NULL && name[0] == 'O');
5392 /* Assuming that TYPE0 is the type of the variant part of a record,
5393 returns the name of the discriminant controlling the variant.
5394 The value is valid until the next call to ada_variant_discrim_name. */
5397 ada_variant_discrim_name (struct type *type0)
5399 static char *result = NULL;
5400 static size_t result_len = 0;
5403 const char *discrim_end;
5404 const char *discrim_start;
5406 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5407 type = TYPE_TARGET_TYPE (type0);
5411 name = ada_type_name (type);
5413 if (name == NULL || name[0] == '\000')
5416 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5419 if (strncmp (discrim_end, "___XVN", 6) == 0)
5422 if (discrim_end == name)
5425 for (discrim_start = discrim_end; discrim_start != name + 3;
5428 if (discrim_start == name + 1)
5430 if ((discrim_start > name + 3
5431 && strncmp (discrim_start - 3, "___", 3) == 0)
5432 || discrim_start[-1] == '.')
5436 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5437 strncpy (result, discrim_start, discrim_end - discrim_start);
5438 result[discrim_end - discrim_start] = '\0';
5442 /* Scan STR for a subtype-encoded number, beginning at position K.
5443 Put the position of the character just past the number scanned in
5444 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5445 Return 1 if there was a valid number at the given position, and 0
5446 otherwise. A "subtype-encoded" number consists of the absolute value
5447 in decimal, followed by the letter 'm' to indicate a negative number.
5448 Assumes 0m does not occur. */
5451 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5455 if (!isdigit (str[k]))
5458 /* Do it the hard way so as not to make any assumption about
5459 the relationship of unsigned long (%lu scan format code) and
5462 while (isdigit (str[k]))
5464 RU = RU * 10 + (str[k] - '0');
5471 *R = (-(LONGEST) (RU - 1)) - 1;
5477 /* NOTE on the above: Technically, C does not say what the results of
5478 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5479 number representable as a LONGEST (although either would probably work
5480 in most implementations). When RU>0, the locution in the then branch
5481 above is always equivalent to the negative of RU. */
5488 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5489 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5490 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5493 ada_in_variant (LONGEST val, struct type *type, int field_num)
5495 const char *name = TYPE_FIELD_NAME (type, field_num);
5508 if (!ada_scan_number (name, p + 1, &W, &p))
5517 if (!ada_scan_number (name, p + 1, &L, &p)
5518 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5520 if (val >= L && val <= U)
5532 /* FIXME: Lots of redundancy below. Try to consolidate. */
5534 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5535 ARG_TYPE, extract and return the value of one of its (non-static)
5536 fields. FIELDNO says which field. Differs from value_primitive_field
5537 only in that it can handle packed values of arbitrary type. */
5539 static struct value *
5540 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5541 struct type *arg_type)
5545 arg_type = ada_check_typedef (arg_type);
5546 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5548 /* Handle packed fields. */
5550 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5552 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5553 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5555 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5556 offset + bit_pos / 8,
5557 bit_pos % 8, bit_size, type);
5560 return value_primitive_field (arg1, offset, fieldno, arg_type);
5563 /* Find field with name NAME in object of type TYPE. If found,
5564 set the following for each argument that is non-null:
5565 - *FIELD_TYPE_P to the field's type;
5566 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5567 an object of that type;
5568 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5569 - *BIT_SIZE_P to its size in bits if the field is packed, and
5571 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5572 fields up to but not including the desired field, or by the total
5573 number of fields if not found. A NULL value of NAME never
5574 matches; the function just counts visible fields in this case.
5576 Returns 1 if found, 0 otherwise. */
5579 find_struct_field (char *name, struct type *type, int offset,
5580 struct type **field_type_p,
5581 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5586 type = ada_check_typedef (type);
5588 if (field_type_p != NULL)
5589 *field_type_p = NULL;
5590 if (byte_offset_p != NULL)
5592 if (bit_offset_p != NULL)
5594 if (bit_size_p != NULL)
5597 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5599 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5600 int fld_offset = offset + bit_pos / 8;
5601 char *t_field_name = TYPE_FIELD_NAME (type, i);
5603 if (t_field_name == NULL)
5606 else if (name != NULL && field_name_match (t_field_name, name))
5608 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5609 if (field_type_p != NULL)
5610 *field_type_p = TYPE_FIELD_TYPE (type, i);
5611 if (byte_offset_p != NULL)
5612 *byte_offset_p = fld_offset;
5613 if (bit_offset_p != NULL)
5614 *bit_offset_p = bit_pos % 8;
5615 if (bit_size_p != NULL)
5616 *bit_size_p = bit_size;
5619 else if (ada_is_wrapper_field (type, i))
5621 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5622 field_type_p, byte_offset_p, bit_offset_p,
5623 bit_size_p, index_p))
5626 else if (ada_is_variant_part (type, i))
5628 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5631 struct type *field_type
5632 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5634 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5636 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5638 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5639 field_type_p, byte_offset_p,
5640 bit_offset_p, bit_size_p, index_p))
5644 else if (index_p != NULL)
5650 /* Number of user-visible fields in record type TYPE. */
5653 num_visible_fields (struct type *type)
5657 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5661 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5662 and search in it assuming it has (class) type TYPE.
5663 If found, return value, else return NULL.
5665 Searches recursively through wrapper fields (e.g., '_parent'). */
5667 static struct value *
5668 ada_search_struct_field (char *name, struct value *arg, int offset,
5672 type = ada_check_typedef (type);
5674 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5676 char *t_field_name = TYPE_FIELD_NAME (type, i);
5678 if (t_field_name == NULL)
5681 else if (field_name_match (t_field_name, name))
5682 return ada_value_primitive_field (arg, offset, i, type);
5684 else if (ada_is_wrapper_field (type, i))
5686 struct value *v = /* Do not let indent join lines here. */
5687 ada_search_struct_field (name, arg,
5688 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5689 TYPE_FIELD_TYPE (type, i));
5694 else if (ada_is_variant_part (type, i))
5696 /* PNH: Do we ever get here? See find_struct_field. */
5698 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5699 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5701 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5703 struct value *v = ada_search_struct_field /* Force line break. */
5705 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5706 TYPE_FIELD_TYPE (field_type, j));
5715 static struct value *ada_index_struct_field_1 (int *, struct value *,
5716 int, struct type *);
5719 /* Return field #INDEX in ARG, where the index is that returned by
5720 * find_struct_field through its INDEX_P argument. Adjust the address
5721 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5722 * If found, return value, else return NULL. */
5724 static struct value *
5725 ada_index_struct_field (int index, struct value *arg, int offset,
5728 return ada_index_struct_field_1 (&index, arg, offset, type);
5732 /* Auxiliary function for ada_index_struct_field. Like
5733 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5736 static struct value *
5737 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5741 type = ada_check_typedef (type);
5743 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5745 if (TYPE_FIELD_NAME (type, i) == NULL)
5747 else if (ada_is_wrapper_field (type, i))
5749 struct value *v = /* Do not let indent join lines here. */
5750 ada_index_struct_field_1 (index_p, arg,
5751 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5752 TYPE_FIELD_TYPE (type, i));
5757 else if (ada_is_variant_part (type, i))
5759 /* PNH: Do we ever get here? See ada_search_struct_field,
5760 find_struct_field. */
5761 error (_("Cannot assign this kind of variant record"));
5763 else if (*index_p == 0)
5764 return ada_value_primitive_field (arg, offset, i, type);
5771 /* Given ARG, a value of type (pointer or reference to a)*
5772 structure/union, extract the component named NAME from the ultimate
5773 target structure/union and return it as a value with its
5774 appropriate type. If ARG is a pointer or reference and the field
5775 is not packed, returns a reference to the field, otherwise the
5776 value of the field (an lvalue if ARG is an lvalue).
5778 The routine searches for NAME among all members of the structure itself
5779 and (recursively) among all members of any wrapper members
5782 If NO_ERR, then simply return NULL in case of error, rather than
5786 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5788 struct type *t, *t1;
5792 t1 = t = ada_check_typedef (value_type (arg));
5793 if (TYPE_CODE (t) == TYPE_CODE_REF)
5795 t1 = TYPE_TARGET_TYPE (t);
5798 t1 = ada_check_typedef (t1);
5799 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5801 arg = coerce_ref (arg);
5806 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5808 t1 = TYPE_TARGET_TYPE (t);
5811 t1 = ada_check_typedef (t1);
5812 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5814 arg = value_ind (arg);
5821 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5825 v = ada_search_struct_field (name, arg, 0, t);
5828 int bit_offset, bit_size, byte_offset;
5829 struct type *field_type;
5832 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5833 address = value_as_address (arg);
5835 address = unpack_pointer (t, value_contents (arg));
5837 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5838 if (find_struct_field (name, t1, 0,
5839 &field_type, &byte_offset, &bit_offset,
5844 if (TYPE_CODE (t) == TYPE_CODE_REF)
5845 arg = ada_coerce_ref (arg);
5847 arg = ada_value_ind (arg);
5848 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5849 bit_offset, bit_size,
5853 v = value_from_pointer (lookup_reference_type (field_type),
5854 address + byte_offset);
5858 if (v != NULL || no_err)
5861 error (_("There is no member named %s."), name);
5867 error (_("Attempt to extract a component of a value that is not a record."));
5870 /* Given a type TYPE, look up the type of the component of type named NAME.
5871 If DISPP is non-null, add its byte displacement from the beginning of a
5872 structure (pointed to by a value) of type TYPE to *DISPP (does not
5873 work for packed fields).
5875 Matches any field whose name has NAME as a prefix, possibly
5878 TYPE can be either a struct or union. If REFOK, TYPE may also
5879 be a (pointer or reference)+ to a struct or union, and the
5880 ultimate target type will be searched.
5882 Looks recursively into variant clauses and parent types.
5884 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5885 TYPE is not a type of the right kind. */
5887 static struct type *
5888 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5889 int noerr, int *dispp)
5896 if (refok && type != NULL)
5899 type = ada_check_typedef (type);
5900 if (TYPE_CODE (type) != TYPE_CODE_PTR
5901 && TYPE_CODE (type) != TYPE_CODE_REF)
5903 type = TYPE_TARGET_TYPE (type);
5907 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5908 && TYPE_CODE (type) != TYPE_CODE_UNION))
5914 target_terminal_ours ();
5915 gdb_flush (gdb_stdout);
5917 error (_("Type (null) is not a structure or union type"));
5920 /* XXX: type_sprint */
5921 fprintf_unfiltered (gdb_stderr, _("Type "));
5922 type_print (type, "", gdb_stderr, -1);
5923 error (_(" is not a structure or union type"));
5928 type = to_static_fixed_type (type);
5930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5932 char *t_field_name = TYPE_FIELD_NAME (type, i);
5936 if (t_field_name == NULL)
5939 else if (field_name_match (t_field_name, name))
5942 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5943 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5946 else if (ada_is_wrapper_field (type, i))
5949 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5954 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5959 else if (ada_is_variant_part (type, i))
5962 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5964 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5967 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5972 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5983 target_terminal_ours ();
5984 gdb_flush (gdb_stdout);
5987 /* XXX: type_sprint */
5988 fprintf_unfiltered (gdb_stderr, _("Type "));
5989 type_print (type, "", gdb_stderr, -1);
5990 error (_(" has no component named <null>"));
5994 /* XXX: type_sprint */
5995 fprintf_unfiltered (gdb_stderr, _("Type "));
5996 type_print (type, "", gdb_stderr, -1);
5997 error (_(" has no component named %s"), name);
6004 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6005 within a value of type OUTER_TYPE that is stored in GDB at
6006 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6007 numbering from 0) is applicable. Returns -1 if none are. */
6010 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6011 const gdb_byte *outer_valaddr)
6016 struct type *discrim_type;
6017 char *discrim_name = ada_variant_discrim_name (var_type);
6018 LONGEST discrim_val;
6022 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6023 if (discrim_type == NULL)
6025 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6028 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6030 if (ada_is_others_clause (var_type, i))
6032 else if (ada_in_variant (discrim_val, var_type, i))
6036 return others_clause;
6041 /* Dynamic-Sized Records */
6043 /* Strategy: The type ostensibly attached to a value with dynamic size
6044 (i.e., a size that is not statically recorded in the debugging
6045 data) does not accurately reflect the size or layout of the value.
6046 Our strategy is to convert these values to values with accurate,
6047 conventional types that are constructed on the fly. */
6049 /* There is a subtle and tricky problem here. In general, we cannot
6050 determine the size of dynamic records without its data. However,
6051 the 'struct value' data structure, which GDB uses to represent
6052 quantities in the inferior process (the target), requires the size
6053 of the type at the time of its allocation in order to reserve space
6054 for GDB's internal copy of the data. That's why the
6055 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6056 rather than struct value*s.
6058 However, GDB's internal history variables ($1, $2, etc.) are
6059 struct value*s containing internal copies of the data that are not, in
6060 general, the same as the data at their corresponding addresses in
6061 the target. Fortunately, the types we give to these values are all
6062 conventional, fixed-size types (as per the strategy described
6063 above), so that we don't usually have to perform the
6064 'to_fixed_xxx_type' conversions to look at their values.
6065 Unfortunately, there is one exception: if one of the internal
6066 history variables is an array whose elements are unconstrained
6067 records, then we will need to create distinct fixed types for each
6068 element selected. */
6070 /* The upshot of all of this is that many routines take a (type, host
6071 address, target address) triple as arguments to represent a value.
6072 The host address, if non-null, is supposed to contain an internal
6073 copy of the relevant data; otherwise, the program is to consult the
6074 target at the target address. */
6076 /* Assuming that VAL0 represents a pointer value, the result of
6077 dereferencing it. Differs from value_ind in its treatment of
6078 dynamic-sized types. */
6081 ada_value_ind (struct value *val0)
6083 struct value *val = unwrap_value (value_ind (val0));
6084 return ada_to_fixed_value (val);
6087 /* The value resulting from dereferencing any "reference to"
6088 qualifiers on VAL0. */
6090 static struct value *
6091 ada_coerce_ref (struct value *val0)
6093 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6095 struct value *val = val0;
6096 val = coerce_ref (val);
6097 val = unwrap_value (val);
6098 return ada_to_fixed_value (val);
6104 /* Return OFF rounded upward if necessary to a multiple of
6105 ALIGNMENT (a power of 2). */
6108 align_value (unsigned int off, unsigned int alignment)
6110 return (off + alignment - 1) & ~(alignment - 1);
6113 /* Return the bit alignment required for field #F of template type TYPE. */
6116 field_alignment (struct type *type, int f)
6118 const char *name = TYPE_FIELD_NAME (type, f);
6119 int len = (name == NULL) ? 0 : strlen (name);
6122 if (!isdigit (name[len - 1]))
6125 if (isdigit (name[len - 2]))
6126 align_offset = len - 2;
6128 align_offset = len - 1;
6130 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6131 return TARGET_CHAR_BIT;
6133 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6136 /* Find a symbol named NAME. Ignores ambiguity. */
6139 ada_find_any_symbol (const char *name)
6143 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6144 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6147 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6151 /* Find a type named NAME. Ignores ambiguity. */
6154 ada_find_any_type (const char *name)
6156 struct symbol *sym = ada_find_any_symbol (name);
6159 return SYMBOL_TYPE (sym);
6164 /* Given a symbol NAME and its associated BLOCK, search all symbols
6165 for its ___XR counterpart, which is the ``renaming'' symbol
6166 associated to NAME. Return this symbol if found, return
6170 ada_find_renaming_symbol (const char *name, struct block *block)
6172 const struct symbol *function_sym = block_function (block);
6175 if (function_sym != NULL)
6177 /* If the symbol is defined inside a function, NAME is not fully
6178 qualified. This means we need to prepend the function name
6179 as well as adding the ``___XR'' suffix to build the name of
6180 the associated renaming symbol. */
6181 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6182 /* Function names sometimes contain suffixes used
6183 for instance to qualify nested subprograms. When building
6184 the XR type name, we need to make sure that this suffix is
6185 not included. So do not include any suffix in the function
6186 name length below. */
6187 const int function_name_len = ada_name_prefix_len (function_name);
6188 const int rename_len = function_name_len + 2 /* "__" */
6189 + strlen (name) + 6 /* "___XR\0" */ ;
6191 /* Strip the suffix if necessary. */
6192 function_name[function_name_len] = '\0';
6194 /* Library-level functions are a special case, as GNAT adds
6195 a ``_ada_'' prefix to the function name to avoid namespace
6196 pollution. However, the renaming symbol themselves do not
6197 have this prefix, so we need to skip this prefix if present. */
6198 if (function_name_len > 5 /* "_ada_" */
6199 && strstr (function_name, "_ada_") == function_name)
6200 function_name = function_name + 5;
6202 rename = (char *) alloca (rename_len * sizeof (char));
6203 sprintf (rename, "%s__%s___XR", function_name, name);
6207 const int rename_len = strlen (name) + 6;
6208 rename = (char *) alloca (rename_len * sizeof (char));
6209 sprintf (rename, "%s___XR", name);
6212 return ada_find_any_symbol (rename);
6215 /* Because of GNAT encoding conventions, several GDB symbols may match a
6216 given type name. If the type denoted by TYPE0 is to be preferred to
6217 that of TYPE1 for purposes of type printing, return non-zero;
6218 otherwise return 0. */
6221 ada_prefer_type (struct type *type0, struct type *type1)
6225 else if (type0 == NULL)
6227 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6229 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6231 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6233 else if (ada_is_packed_array_type (type0))
6235 else if (ada_is_array_descriptor_type (type0)
6236 && !ada_is_array_descriptor_type (type1))
6238 else if (ada_renaming_type (type0) != NULL
6239 && ada_renaming_type (type1) == NULL)
6244 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6245 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6248 ada_type_name (struct type *type)
6252 else if (TYPE_NAME (type) != NULL)
6253 return TYPE_NAME (type);
6255 return TYPE_TAG_NAME (type);
6258 /* Find a parallel type to TYPE whose name is formed by appending
6259 SUFFIX to the name of TYPE. */
6262 ada_find_parallel_type (struct type *type, const char *suffix)
6265 static size_t name_len = 0;
6267 char *typename = ada_type_name (type);
6269 if (typename == NULL)
6272 len = strlen (typename);
6274 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6276 strcpy (name, typename);
6277 strcpy (name + len, suffix);
6279 return ada_find_any_type (name);
6283 /* If TYPE is a variable-size record type, return the corresponding template
6284 type describing its fields. Otherwise, return NULL. */
6286 static struct type *
6287 dynamic_template_type (struct type *type)
6289 type = ada_check_typedef (type);
6291 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6292 || ada_type_name (type) == NULL)
6296 int len = strlen (ada_type_name (type));
6297 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6300 return ada_find_parallel_type (type, "___XVE");
6304 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6305 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6308 is_dynamic_field (struct type *templ_type, int field_num)
6310 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6312 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6313 && strstr (name, "___XVL") != NULL;
6316 /* The index of the variant field of TYPE, or -1 if TYPE does not
6317 represent a variant record type. */
6320 variant_field_index (struct type *type)
6324 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6327 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6329 if (ada_is_variant_part (type, f))
6335 /* A record type with no fields. */
6337 static struct type *
6338 empty_record (struct objfile *objfile)
6340 struct type *type = alloc_type (objfile);
6341 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6342 TYPE_NFIELDS (type) = 0;
6343 TYPE_FIELDS (type) = NULL;
6344 TYPE_NAME (type) = "<empty>";
6345 TYPE_TAG_NAME (type) = NULL;
6346 TYPE_FLAGS (type) = 0;
6347 TYPE_LENGTH (type) = 0;
6351 /* An ordinary record type (with fixed-length fields) that describes
6352 the value of type TYPE at VALADDR or ADDRESS (see comments at
6353 the beginning of this section) VAL according to GNAT conventions.
6354 DVAL0 should describe the (portion of a) record that contains any
6355 necessary discriminants. It should be NULL if value_type (VAL) is
6356 an outer-level type (i.e., as opposed to a branch of a variant.) A
6357 variant field (unless unchecked) is replaced by a particular branch
6360 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6361 length are not statically known are discarded. As a consequence,
6362 VALADDR, ADDRESS and DVAL0 are ignored.
6364 NOTE: Limitations: For now, we assume that dynamic fields and
6365 variants occupy whole numbers of bytes. However, they need not be
6369 ada_template_to_fixed_record_type_1 (struct type *type,
6370 const gdb_byte *valaddr,
6371 CORE_ADDR address, struct value *dval0,
6372 int keep_dynamic_fields)
6374 struct value *mark = value_mark ();
6377 int nfields, bit_len;
6380 int fld_bit_len, bit_incr;
6383 /* Compute the number of fields in this record type that are going
6384 to be processed: unless keep_dynamic_fields, this includes only
6385 fields whose position and length are static will be processed. */
6386 if (keep_dynamic_fields)
6387 nfields = TYPE_NFIELDS (type);
6391 while (nfields < TYPE_NFIELDS (type)
6392 && !ada_is_variant_part (type, nfields)
6393 && !is_dynamic_field (type, nfields))
6397 rtype = alloc_type (TYPE_OBJFILE (type));
6398 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6399 INIT_CPLUS_SPECIFIC (rtype);
6400 TYPE_NFIELDS (rtype) = nfields;
6401 TYPE_FIELDS (rtype) = (struct field *)
6402 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6403 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6404 TYPE_NAME (rtype) = ada_type_name (type);
6405 TYPE_TAG_NAME (rtype) = NULL;
6406 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6412 for (f = 0; f < nfields; f += 1)
6414 off = align_value (off, field_alignment (type, f))
6415 + TYPE_FIELD_BITPOS (type, f);
6416 TYPE_FIELD_BITPOS (rtype, f) = off;
6417 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6419 if (ada_is_variant_part (type, f))
6422 fld_bit_len = bit_incr = 0;
6424 else if (is_dynamic_field (type, f))
6427 dval = value_from_contents_and_address (rtype, valaddr, address);
6431 TYPE_FIELD_TYPE (rtype, f) =
6434 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6435 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6436 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6437 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6438 bit_incr = fld_bit_len =
6439 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6443 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6444 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6445 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6446 bit_incr = fld_bit_len =
6447 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6449 bit_incr = fld_bit_len =
6450 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6452 if (off + fld_bit_len > bit_len)
6453 bit_len = off + fld_bit_len;
6455 TYPE_LENGTH (rtype) =
6456 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6459 /* We handle the variant part, if any, at the end because of certain
6460 odd cases in which it is re-ordered so as NOT the last field of
6461 the record. This can happen in the presence of representation
6463 if (variant_field >= 0)
6465 struct type *branch_type;
6467 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6470 dval = value_from_contents_and_address (rtype, valaddr, address);
6475 to_fixed_variant_branch_type
6476 (TYPE_FIELD_TYPE (type, variant_field),
6477 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6478 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6479 if (branch_type == NULL)
6481 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6482 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6483 TYPE_NFIELDS (rtype) -= 1;
6487 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6488 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6490 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6492 if (off + fld_bit_len > bit_len)
6493 bit_len = off + fld_bit_len;
6494 TYPE_LENGTH (rtype) =
6495 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6499 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6500 should contain the alignment of that record, which should be a strictly
6501 positive value. If null or negative, then something is wrong, most
6502 probably in the debug info. In that case, we don't round up the size
6503 of the resulting type. If this record is not part of another structure,
6504 the current RTYPE length might be good enough for our purposes. */
6505 if (TYPE_LENGTH (type) <= 0)
6507 if (TYPE_NAME (rtype))
6508 warning (_("Invalid type size for `%s' detected: %d."),
6509 TYPE_NAME (rtype), TYPE_LENGTH (type));
6511 warning (_("Invalid type size for <unnamed> detected: %d."),
6512 TYPE_LENGTH (type));
6516 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6517 TYPE_LENGTH (type));
6520 value_free_to_mark (mark);
6521 if (TYPE_LENGTH (rtype) > varsize_limit)
6522 error (_("record type with dynamic size is larger than varsize-limit"));
6526 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6529 static struct type *
6530 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6531 CORE_ADDR address, struct value *dval0)
6533 return ada_template_to_fixed_record_type_1 (type, valaddr,
6537 /* An ordinary record type in which ___XVL-convention fields and
6538 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6539 static approximations, containing all possible fields. Uses
6540 no runtime values. Useless for use in values, but that's OK,
6541 since the results are used only for type determinations. Works on both
6542 structs and unions. Representation note: to save space, we memorize
6543 the result of this function in the TYPE_TARGET_TYPE of the
6546 static struct type *
6547 template_to_static_fixed_type (struct type *type0)
6553 if (TYPE_TARGET_TYPE (type0) != NULL)
6554 return TYPE_TARGET_TYPE (type0);
6556 nfields = TYPE_NFIELDS (type0);
6559 for (f = 0; f < nfields; f += 1)
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6562 struct type *new_type;
6564 if (is_dynamic_field (type0, f))
6565 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6567 new_type = to_static_fixed_type (field_type);
6568 if (type == type0 && new_type != field_type)
6570 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6571 TYPE_CODE (type) = TYPE_CODE (type0);
6572 INIT_CPLUS_SPECIFIC (type);
6573 TYPE_NFIELDS (type) = nfields;
6574 TYPE_FIELDS (type) = (struct field *)
6575 TYPE_ALLOC (type, nfields * sizeof (struct field));
6576 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6577 sizeof (struct field) * nfields);
6578 TYPE_NAME (type) = ada_type_name (type0);
6579 TYPE_TAG_NAME (type) = NULL;
6580 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6581 TYPE_LENGTH (type) = 0;
6583 TYPE_FIELD_TYPE (type, f) = new_type;
6584 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6589 /* Given an object of type TYPE whose contents are at VALADDR and
6590 whose address in memory is ADDRESS, returns a revision of TYPE --
6591 a non-dynamic-sized record with a variant part -- in which
6592 the variant part is replaced with the appropriate branch. Looks
6593 for discriminant values in DVAL0, which can be NULL if the record
6594 contains the necessary discriminant values. */
6596 static struct type *
6597 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6598 CORE_ADDR address, struct value *dval0)
6600 struct value *mark = value_mark ();
6603 struct type *branch_type;
6604 int nfields = TYPE_NFIELDS (type);
6605 int variant_field = variant_field_index (type);
6607 if (variant_field == -1)
6611 dval = value_from_contents_and_address (type, valaddr, address);
6615 rtype = alloc_type (TYPE_OBJFILE (type));
6616 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6617 INIT_CPLUS_SPECIFIC (rtype);
6618 TYPE_NFIELDS (rtype) = nfields;
6619 TYPE_FIELDS (rtype) =
6620 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6621 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6622 sizeof (struct field) * nfields);
6623 TYPE_NAME (rtype) = ada_type_name (type);
6624 TYPE_TAG_NAME (rtype) = NULL;
6625 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6626 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6628 branch_type = to_fixed_variant_branch_type
6629 (TYPE_FIELD_TYPE (type, variant_field),
6630 cond_offset_host (valaddr,
6631 TYPE_FIELD_BITPOS (type, variant_field)
6633 cond_offset_target (address,
6634 TYPE_FIELD_BITPOS (type, variant_field)
6635 / TARGET_CHAR_BIT), dval);
6636 if (branch_type == NULL)
6639 for (f = variant_field + 1; f < nfields; f += 1)
6640 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6641 TYPE_NFIELDS (rtype) -= 1;
6645 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6646 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6647 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6648 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6650 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6652 value_free_to_mark (mark);
6656 /* An ordinary record type (with fixed-length fields) that describes
6657 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6658 beginning of this section]. Any necessary discriminants' values
6659 should be in DVAL, a record value; it may be NULL if the object
6660 at ADDR itself contains any necessary discriminant values.
6661 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6662 values from the record are needed. Except in the case that DVAL,
6663 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6664 unchecked) is replaced by a particular branch of the variant.
6666 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6667 is questionable and may be removed. It can arise during the
6668 processing of an unconstrained-array-of-record type where all the
6669 variant branches have exactly the same size. This is because in
6670 such cases, the compiler does not bother to use the XVS convention
6671 when encoding the record. I am currently dubious of this
6672 shortcut and suspect the compiler should be altered. FIXME. */
6674 static struct type *
6675 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6676 CORE_ADDR address, struct value *dval)
6678 struct type *templ_type;
6680 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6683 templ_type = dynamic_template_type (type0);
6685 if (templ_type != NULL)
6686 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6687 else if (variant_field_index (type0) >= 0)
6689 if (dval == NULL && valaddr == NULL && address == 0)
6691 return to_record_with_fixed_variant_part (type0, valaddr, address,
6696 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6702 /* An ordinary record type (with fixed-length fields) that describes
6703 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6704 union type. Any necessary discriminants' values should be in DVAL,
6705 a record value. That is, this routine selects the appropriate
6706 branch of the union at ADDR according to the discriminant value
6707 indicated in the union's type name. */
6709 static struct type *
6710 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6711 CORE_ADDR address, struct value *dval)
6714 struct type *templ_type;
6715 struct type *var_type;
6717 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6718 var_type = TYPE_TARGET_TYPE (var_type0);
6720 var_type = var_type0;
6722 templ_type = ada_find_parallel_type (var_type, "___XVU");
6724 if (templ_type != NULL)
6725 var_type = templ_type;
6728 ada_which_variant_applies (var_type,
6729 value_type (dval), value_contents (dval));
6732 return empty_record (TYPE_OBJFILE (var_type));
6733 else if (is_dynamic_field (var_type, which))
6734 return to_fixed_record_type
6735 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6736 valaddr, address, dval);
6737 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6739 to_fixed_record_type
6740 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6742 return TYPE_FIELD_TYPE (var_type, which);
6745 /* Assuming that TYPE0 is an array type describing the type of a value
6746 at ADDR, and that DVAL describes a record containing any
6747 discriminants used in TYPE0, returns a type for the value that
6748 contains no dynamic components (that is, no components whose sizes
6749 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6750 true, gives an error message if the resulting type's size is over
6753 static struct type *
6754 to_fixed_array_type (struct type *type0, struct value *dval,
6757 struct type *index_type_desc;
6758 struct type *result;
6760 if (ada_is_packed_array_type (type0) /* revisit? */
6761 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6764 index_type_desc = ada_find_parallel_type (type0, "___XA");
6765 if (index_type_desc == NULL)
6767 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6768 /* NOTE: elt_type---the fixed version of elt_type0---should never
6769 depend on the contents of the array in properly constructed
6771 /* Create a fixed version of the array element type.
6772 We're not providing the address of an element here,
6773 and thus the actual object value cannot be inspected to do
6774 the conversion. This should not be a problem, since arrays of
6775 unconstrained objects are not allowed. In particular, all
6776 the elements of an array of a tagged type should all be of
6777 the same type specified in the debugging info. No need to
6778 consult the object tag. */
6779 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6781 if (elt_type0 == elt_type)
6784 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6785 elt_type, TYPE_INDEX_TYPE (type0));
6790 struct type *elt_type0;
6793 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6794 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6796 /* NOTE: result---the fixed version of elt_type0---should never
6797 depend on the contents of the array in properly constructed
6799 /* Create a fixed version of the array element type.
6800 We're not providing the address of an element here,
6801 and thus the actual object value cannot be inspected to do
6802 the conversion. This should not be a problem, since arrays of
6803 unconstrained objects are not allowed. In particular, all
6804 the elements of an array of a tagged type should all be of
6805 the same type specified in the debugging info. No need to
6806 consult the object tag. */
6807 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6808 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6810 struct type *range_type =
6811 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6812 dval, TYPE_OBJFILE (type0));
6813 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6814 result, range_type);
6816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6817 error (_("array type with dynamic size is larger than varsize-limit"));
6820 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6825 /* A standard type (containing no dynamically sized components)
6826 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6827 DVAL describes a record containing any discriminants used in TYPE0,
6828 and may be NULL if there are none, or if the object of type TYPE at
6829 ADDRESS or in VALADDR contains these discriminants.
6831 In the case of tagged types, this function attempts to locate the object's
6832 tag and use it to compute the actual type. However, when ADDRESS is null,
6833 we cannot use it to determine the location of the tag, and therefore
6834 compute the tagged type's actual type. So we return the tagged type
6835 without consulting the tag. */
6838 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6839 CORE_ADDR address, struct value *dval)
6841 type = ada_check_typedef (type);
6842 switch (TYPE_CODE (type))
6846 case TYPE_CODE_STRUCT:
6848 struct type *static_type = to_static_fixed_type (type);
6850 /* If STATIC_TYPE is a tagged type and we know the object's address,
6851 then we can determine its tag, and compute the object's actual
6854 if (address != 0 && ada_is_tagged_type (static_type, 0))
6856 struct type *real_type =
6857 type_from_tag (value_tag_from_contents_and_address (static_type,
6860 if (real_type != NULL)
6863 return to_fixed_record_type (type, valaddr, address, NULL);
6865 case TYPE_CODE_ARRAY:
6866 return to_fixed_array_type (type, dval, 1);
6867 case TYPE_CODE_UNION:
6871 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6875 /* A standard (static-sized) type corresponding as well as possible to
6876 TYPE0, but based on no runtime data. */
6878 static struct type *
6879 to_static_fixed_type (struct type *type0)
6886 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6889 type0 = ada_check_typedef (type0);
6891 switch (TYPE_CODE (type0))
6895 case TYPE_CODE_STRUCT:
6896 type = dynamic_template_type (type0);
6898 return template_to_static_fixed_type (type);
6900 return template_to_static_fixed_type (type0);
6901 case TYPE_CODE_UNION:
6902 type = ada_find_parallel_type (type0, "___XVU");
6904 return template_to_static_fixed_type (type);
6906 return template_to_static_fixed_type (type0);
6910 /* A static approximation of TYPE with all type wrappers removed. */
6912 static struct type *
6913 static_unwrap_type (struct type *type)
6915 if (ada_is_aligner_type (type))
6917 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6918 if (ada_type_name (type1) == NULL)
6919 TYPE_NAME (type1) = ada_type_name (type);
6921 return static_unwrap_type (type1);
6925 struct type *raw_real_type = ada_get_base_type (type);
6926 if (raw_real_type == type)
6929 return to_static_fixed_type (raw_real_type);
6933 /* In some cases, incomplete and private types require
6934 cross-references that are not resolved as records (for example,
6936 type FooP is access Foo;
6938 type Foo is array ...;
6939 ). In these cases, since there is no mechanism for producing
6940 cross-references to such types, we instead substitute for FooP a
6941 stub enumeration type that is nowhere resolved, and whose tag is
6942 the name of the actual type. Call these types "non-record stubs". */
6944 /* A type equivalent to TYPE that is not a non-record stub, if one
6945 exists, otherwise TYPE. */
6948 ada_check_typedef (struct type *type)
6950 CHECK_TYPEDEF (type);
6951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6952 || !TYPE_STUB (type)
6953 || TYPE_TAG_NAME (type) == NULL)
6957 char *name = TYPE_TAG_NAME (type);
6958 struct type *type1 = ada_find_any_type (name);
6959 return (type1 == NULL) ? type : type1;
6963 /* A value representing the data at VALADDR/ADDRESS as described by
6964 type TYPE0, but with a standard (static-sized) type that correctly
6965 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6966 type, then return VAL0 [this feature is simply to avoid redundant
6967 creation of struct values]. */
6969 static struct value *
6970 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6973 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6974 if (type == type0 && val0 != NULL)
6977 return value_from_contents_and_address (type, 0, address);
6980 /* A value representing VAL, but with a standard (static-sized) type
6981 that correctly describes it. Does not necessarily create a new
6984 static struct value *
6985 ada_to_fixed_value (struct value *val)
6987 return ada_to_fixed_value_create (value_type (val),
6988 VALUE_ADDRESS (val) + value_offset (val),
6992 /* A value representing VAL, but with a standard (static-sized) type
6993 chosen to approximate the real type of VAL as well as possible, but
6994 without consulting any runtime values. For Ada dynamic-sized
6995 types, therefore, the type of the result is likely to be inaccurate. */
6998 ada_to_static_fixed_value (struct value *val)
7001 to_static_fixed_type (static_unwrap_type (value_type (val)));
7002 if (type == value_type (val))
7005 return coerce_unspec_val_to_type (val, type);
7011 /* Table mapping attribute numbers to names.
7012 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7014 static const char *attribute_names[] = {
7032 ada_attribute_name (enum exp_opcode n)
7034 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7035 return attribute_names[n - OP_ATR_FIRST + 1];
7037 return attribute_names[0];
7040 /* Evaluate the 'POS attribute applied to ARG. */
7043 pos_atr (struct value *arg)
7045 struct type *type = value_type (arg);
7047 if (!discrete_type_p (type))
7048 error (_("'POS only defined on discrete types"));
7050 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7053 LONGEST v = value_as_long (arg);
7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7057 if (v == TYPE_FIELD_BITPOS (type, i))
7060 error (_("enumeration value is invalid: can't find 'POS"));
7063 return value_as_long (arg);
7066 static struct value *
7067 value_pos_atr (struct value *arg)
7069 return value_from_longest (builtin_type_int, pos_atr (arg));
7072 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7074 static struct value *
7075 value_val_atr (struct type *type, struct value *arg)
7077 if (!discrete_type_p (type))
7078 error (_("'VAL only defined on discrete types"));
7079 if (!integer_type_p (value_type (arg)))
7080 error (_("'VAL requires integral argument"));
7082 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7084 long pos = value_as_long (arg);
7085 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7086 error (_("argument to 'VAL out of range"));
7087 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7090 return value_from_longest (type, value_as_long (arg));
7096 /* True if TYPE appears to be an Ada character type.
7097 [At the moment, this is true only for Character and Wide_Character;
7098 It is a heuristic test that could stand improvement]. */
7101 ada_is_character_type (struct type *type)
7103 const char *name = ada_type_name (type);
7106 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7107 || TYPE_CODE (type) == TYPE_CODE_INT
7108 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7109 && (strcmp (name, "character") == 0
7110 || strcmp (name, "wide_character") == 0
7111 || strcmp (name, "unsigned char") == 0);
7114 /* True if TYPE appears to be an Ada string type. */
7117 ada_is_string_type (struct type *type)
7119 type = ada_check_typedef (type);
7121 && TYPE_CODE (type) != TYPE_CODE_PTR
7122 && (ada_is_simple_array_type (type)
7123 || ada_is_array_descriptor_type (type))
7124 && ada_array_arity (type) == 1)
7126 struct type *elttype = ada_array_element_type (type, 1);
7128 return ada_is_character_type (elttype);
7135 /* True if TYPE is a struct type introduced by the compiler to force the
7136 alignment of a value. Such types have a single field with a
7137 distinctive name. */
7140 ada_is_aligner_type (struct type *type)
7142 type = ada_check_typedef (type);
7144 /* If we can find a parallel XVS type, then the XVS type should
7145 be used instead of this type. And hence, this is not an aligner
7147 if (ada_find_parallel_type (type, "___XVS") != NULL)
7150 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7151 && TYPE_NFIELDS (type) == 1
7152 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7155 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7156 the parallel type. */
7159 ada_get_base_type (struct type *raw_type)
7161 struct type *real_type_namer;
7162 struct type *raw_real_type;
7164 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7167 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7168 if (real_type_namer == NULL
7169 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7170 || TYPE_NFIELDS (real_type_namer) != 1)
7173 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7174 if (raw_real_type == NULL)
7177 return raw_real_type;
7180 /* The type of value designated by TYPE, with all aligners removed. */
7183 ada_aligned_type (struct type *type)
7185 if (ada_is_aligner_type (type))
7186 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7188 return ada_get_base_type (type);
7192 /* The address of the aligned value in an object at address VALADDR
7193 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7196 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7198 if (ada_is_aligner_type (type))
7199 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7201 TYPE_FIELD_BITPOS (type,
7202 0) / TARGET_CHAR_BIT);
7209 /* The printed representation of an enumeration literal with encoded
7210 name NAME. The value is good to the next call of ada_enum_name. */
7212 ada_enum_name (const char *name)
7214 static char *result;
7215 static size_t result_len = 0;
7218 /* First, unqualify the enumeration name:
7219 1. Search for the last '.' character. If we find one, then skip
7220 all the preceeding characters, the unqualified name starts
7221 right after that dot.
7222 2. Otherwise, we may be debugging on a target where the compiler
7223 translates dots into "__". Search forward for double underscores,
7224 but stop searching when we hit an overloading suffix, which is
7225 of the form "__" followed by digits. */
7227 tmp = strrchr (name, '.');
7232 while ((tmp = strstr (name, "__")) != NULL)
7234 if (isdigit (tmp[2]))
7244 if (name[1] == 'U' || name[1] == 'W')
7246 if (sscanf (name + 2, "%x", &v) != 1)
7252 GROW_VECT (result, result_len, 16);
7253 if (isascii (v) && isprint (v))
7254 sprintf (result, "'%c'", v);
7255 else if (name[1] == 'U')
7256 sprintf (result, "[\"%02x\"]", v);
7258 sprintf (result, "[\"%04x\"]", v);
7264 tmp = strstr (name, "__");
7266 tmp = strstr (name, "$");
7269 GROW_VECT (result, result_len, tmp - name + 1);
7270 strncpy (result, name, tmp - name);
7271 result[tmp - name] = '\0';
7279 static struct value *
7280 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7283 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7284 (expect_type, exp, pos, noside);
7287 /* Evaluate the subexpression of EXP starting at *POS as for
7288 evaluate_type, updating *POS to point just past the evaluated
7291 static struct value *
7292 evaluate_subexp_type (struct expression *exp, int *pos)
7294 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7295 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7298 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7301 static struct value *
7302 unwrap_value (struct value *val)
7304 struct type *type = ada_check_typedef (value_type (val));
7305 if (ada_is_aligner_type (type))
7307 struct value *v = value_struct_elt (&val, NULL, "F",
7308 NULL, "internal structure");
7309 struct type *val_type = ada_check_typedef (value_type (v));
7310 if (ada_type_name (val_type) == NULL)
7311 TYPE_NAME (val_type) = ada_type_name (type);
7313 return unwrap_value (v);
7317 struct type *raw_real_type =
7318 ada_check_typedef (ada_get_base_type (type));
7320 if (type == raw_real_type)
7324 coerce_unspec_val_to_type
7325 (val, ada_to_fixed_type (raw_real_type, 0,
7326 VALUE_ADDRESS (val) + value_offset (val),
7331 static struct value *
7332 cast_to_fixed (struct type *type, struct value *arg)
7336 if (type == value_type (arg))
7338 else if (ada_is_fixed_point_type (value_type (arg)))
7339 val = ada_float_to_fixed (type,
7340 ada_fixed_to_float (value_type (arg),
7341 value_as_long (arg)));
7345 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7346 val = ada_float_to_fixed (type, argd);
7349 return value_from_longest (type, val);
7352 static struct value *
7353 cast_from_fixed_to_double (struct value *arg)
7355 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7356 value_as_long (arg));
7357 return value_from_double (builtin_type_double, val);
7360 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7361 return the converted value. */
7363 static struct value *
7364 coerce_for_assign (struct type *type, struct value *val)
7366 struct type *type2 = value_type (val);
7370 type2 = ada_check_typedef (type2);
7371 type = ada_check_typedef (type);
7373 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7374 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7376 val = ada_value_ind (val);
7377 type2 = value_type (val);
7380 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7381 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7383 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7384 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7385 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7386 error (_("Incompatible types in assignment"));
7387 deprecated_set_value_type (val, type);
7392 static struct value *
7393 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7396 struct type *type1, *type2;
7399 arg1 = coerce_ref (arg1);
7400 arg2 = coerce_ref (arg2);
7401 type1 = base_type (ada_check_typedef (value_type (arg1)));
7402 type2 = base_type (ada_check_typedef (value_type (arg2)));
7404 if (TYPE_CODE (type1) != TYPE_CODE_INT
7405 || TYPE_CODE (type2) != TYPE_CODE_INT)
7406 return value_binop (arg1, arg2, op);
7415 return value_binop (arg1, arg2, op);
7418 v2 = value_as_long (arg2);
7420 error (_("second operand of %s must not be zero."), op_string (op));
7422 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7423 return value_binop (arg1, arg2, op);
7425 v1 = value_as_long (arg1);
7430 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7431 v += v > 0 ? -1 : 1;
7439 /* Should not reach this point. */
7443 val = allocate_value (type1);
7444 store_unsigned_integer (value_contents_raw (val),
7445 TYPE_LENGTH (value_type (val)), v);
7450 ada_value_equal (struct value *arg1, struct value *arg2)
7452 if (ada_is_direct_array_type (value_type (arg1))
7453 || ada_is_direct_array_type (value_type (arg2)))
7455 arg1 = ada_coerce_to_simple_array (arg1);
7456 arg2 = ada_coerce_to_simple_array (arg2);
7457 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7458 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7459 error (_("Attempt to compare array with non-array"));
7460 /* FIXME: The following works only for types whose
7461 representations use all bits (no padding or undefined bits)
7462 and do not have user-defined equality. */
7464 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7465 && memcmp (value_contents (arg1), value_contents (arg2),
7466 TYPE_LENGTH (value_type (arg1))) == 0;
7468 return value_equal (arg1, arg2);
7471 /* Total number of component associations in the aggregate starting at
7472 index PC in EXP. Assumes that index PC is the start of an
7476 num_component_specs (struct expression *exp, int pc)
7479 m = exp->elts[pc + 1].longconst;
7482 for (i = 0; i < m; i += 1)
7484 switch (exp->elts[pc].opcode)
7490 n += exp->elts[pc + 1].longconst;
7493 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7498 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7499 component of LHS (a simple array or a record), updating *POS past
7500 the expression, assuming that LHS is contained in CONTAINER. Does
7501 not modify the inferior's memory, nor does it modify LHS (unless
7502 LHS == CONTAINER). */
7505 assign_component (struct value *container, struct value *lhs, LONGEST index,
7506 struct expression *exp, int *pos)
7508 struct value *mark = value_mark ();
7510 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7512 struct value *index_val = value_from_longest (builtin_type_int, index);
7513 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7517 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7518 elt = ada_to_fixed_value (unwrap_value (elt));
7521 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7522 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7524 value_assign_to_component (container, elt,
7525 ada_evaluate_subexp (NULL, exp, pos,
7528 value_free_to_mark (mark);
7531 /* Assuming that LHS represents an lvalue having a record or array
7532 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7533 of that aggregate's value to LHS, advancing *POS past the
7534 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7535 lvalue containing LHS (possibly LHS itself). Does not modify
7536 the inferior's memory, nor does it modify the contents of
7537 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7539 static struct value *
7540 assign_aggregate (struct value *container,
7541 struct value *lhs, struct expression *exp,
7542 int *pos, enum noside noside)
7544 struct type *lhs_type;
7545 int n = exp->elts[*pos+1].longconst;
7546 LONGEST low_index, high_index;
7549 int max_indices, num_indices;
7550 int is_array_aggregate;
7552 struct value *mark = value_mark ();
7555 if (noside != EVAL_NORMAL)
7558 for (i = 0; i < n; i += 1)
7559 ada_evaluate_subexp (NULL, exp, pos, noside);
7563 container = ada_coerce_ref (container);
7564 if (ada_is_direct_array_type (value_type (container)))
7565 container = ada_coerce_to_simple_array (container);
7566 lhs = ada_coerce_ref (lhs);
7567 if (!deprecated_value_modifiable (lhs))
7568 error (_("Left operand of assignment is not a modifiable lvalue."));
7570 lhs_type = value_type (lhs);
7571 if (ada_is_direct_array_type (lhs_type))
7573 lhs = ada_coerce_to_simple_array (lhs);
7574 lhs_type = value_type (lhs);
7575 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7576 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7577 is_array_aggregate = 1;
7579 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7582 high_index = num_visible_fields (lhs_type) - 1;
7583 is_array_aggregate = 0;
7586 error (_("Left-hand side must be array or record."));
7588 num_specs = num_component_specs (exp, *pos - 3);
7589 max_indices = 4 * num_specs + 4;
7590 indices = alloca (max_indices * sizeof (indices[0]));
7591 indices[0] = indices[1] = low_index - 1;
7592 indices[2] = indices[3] = high_index + 1;
7595 for (i = 0; i < n; i += 1)
7597 switch (exp->elts[*pos].opcode)
7600 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7601 &num_indices, max_indices,
7602 low_index, high_index);
7605 aggregate_assign_positional (container, lhs, exp, pos, indices,
7606 &num_indices, max_indices,
7607 low_index, high_index);
7611 error (_("Misplaced 'others' clause"));
7612 aggregate_assign_others (container, lhs, exp, pos, indices,
7613 num_indices, low_index, high_index);
7616 error (_("Internal error: bad aggregate clause"));
7623 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7624 construct at *POS, updating *POS past the construct, given that
7625 the positions are relative to lower bound LOW, where HIGH is the
7626 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7627 updating *NUM_INDICES as needed. CONTAINER is as for
7628 assign_aggregate. */
7630 aggregate_assign_positional (struct value *container,
7631 struct value *lhs, struct expression *exp,
7632 int *pos, LONGEST *indices, int *num_indices,
7633 int max_indices, LONGEST low, LONGEST high)
7635 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7637 if (ind - 1 == high)
7638 warning (_("Extra components in aggregate ignored."));
7641 add_component_interval (ind, ind, indices, num_indices, max_indices);
7643 assign_component (container, lhs, ind, exp, pos);
7646 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7649 /* Assign into the components of LHS indexed by the OP_CHOICES
7650 construct at *POS, updating *POS past the construct, given that
7651 the allowable indices are LOW..HIGH. Record the indices assigned
7652 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7653 needed. CONTAINER is as for assign_aggregate. */
7655 aggregate_assign_from_choices (struct value *container,
7656 struct value *lhs, struct expression *exp,
7657 int *pos, LONGEST *indices, int *num_indices,
7658 int max_indices, LONGEST low, LONGEST high)
7661 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7662 int choice_pos, expr_pc;
7663 int is_array = ada_is_direct_array_type (value_type (lhs));
7665 choice_pos = *pos += 3;
7667 for (j = 0; j < n_choices; j += 1)
7668 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7670 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7672 for (j = 0; j < n_choices; j += 1)
7674 LONGEST lower, upper;
7675 enum exp_opcode op = exp->elts[choice_pos].opcode;
7676 if (op == OP_DISCRETE_RANGE)
7679 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7681 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7686 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7697 name = &exp->elts[choice_pos + 2].string;
7700 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7703 error (_("Invalid record component association."));
7705 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7707 if (! find_struct_field (name, value_type (lhs), 0,
7708 NULL, NULL, NULL, NULL, &ind))
7709 error (_("Unknown component name: %s."), name);
7710 lower = upper = ind;
7713 if (lower <= upper && (lower < low || upper > high))
7714 error (_("Index in component association out of bounds."));
7716 add_component_interval (lower, upper, indices, num_indices,
7718 while (lower <= upper)
7722 assign_component (container, lhs, lower, exp, &pos1);
7728 /* Assign the value of the expression in the OP_OTHERS construct in
7729 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7730 have not been previously assigned. The index intervals already assigned
7731 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7732 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7734 aggregate_assign_others (struct value *container,
7735 struct value *lhs, struct expression *exp,
7736 int *pos, LONGEST *indices, int num_indices,
7737 LONGEST low, LONGEST high)
7740 int expr_pc = *pos+1;
7742 for (i = 0; i < num_indices - 2; i += 2)
7745 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7749 assign_component (container, lhs, ind, exp, &pos);
7752 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7755 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7756 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7757 modifying *SIZE as needed. It is an error if *SIZE exceeds
7758 MAX_SIZE. The resulting intervals do not overlap. */
7760 add_component_interval (LONGEST low, LONGEST high,
7761 LONGEST* indices, int *size, int max_size)
7764 for (i = 0; i < *size; i += 2) {
7765 if (high >= indices[i] && low <= indices[i + 1])
7768 for (kh = i + 2; kh < *size; kh += 2)
7769 if (high < indices[kh])
7771 if (low < indices[i])
7773 indices[i + 1] = indices[kh - 1];
7774 if (high > indices[i + 1])
7775 indices[i + 1] = high;
7776 memcpy (indices + i + 2, indices + kh, *size - kh);
7777 *size -= kh - i - 2;
7780 else if (high < indices[i])
7784 if (*size == max_size)
7785 error (_("Internal error: miscounted aggregate components."));
7787 for (j = *size-1; j >= i+2; j -= 1)
7788 indices[j] = indices[j - 2];
7790 indices[i + 1] = high;
7793 static struct value *
7794 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7795 int *pos, enum noside noside)
7798 int tem, tem2, tem3;
7800 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7803 struct value **argvec;
7807 op = exp->elts[pc].opcode;
7814 unwrap_value (evaluate_subexp_standard
7815 (expect_type, exp, pos, noside));
7819 struct value *result;
7821 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7822 /* The result type will have code OP_STRING, bashed there from
7823 OP_ARRAY. Bash it back. */
7824 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7825 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7831 type = exp->elts[pc + 1].type;
7832 arg1 = evaluate_subexp (type, exp, pos, noside);
7833 if (noside == EVAL_SKIP)
7835 if (type != ada_check_typedef (value_type (arg1)))
7837 if (ada_is_fixed_point_type (type))
7838 arg1 = cast_to_fixed (type, arg1);
7839 else if (ada_is_fixed_point_type (value_type (arg1)))
7840 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7841 else if (VALUE_LVAL (arg1) == lval_memory)
7843 /* This is in case of the really obscure (and undocumented,
7844 but apparently expected) case of (Foo) Bar.all, where Bar
7845 is an integer constant and Foo is a dynamic-sized type.
7846 If we don't do this, ARG1 will simply be relabeled with
7848 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7849 return value_zero (to_static_fixed_type (type), not_lval);
7851 ada_to_fixed_value_create
7852 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7855 arg1 = value_cast (type, arg1);
7861 type = exp->elts[pc + 1].type;
7862 return ada_evaluate_subexp (type, exp, pos, noside);
7865 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7866 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7868 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7869 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7871 return ada_value_assign (arg1, arg1);
7873 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7874 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7876 if (ada_is_fixed_point_type (value_type (arg1)))
7877 arg2 = cast_to_fixed (value_type (arg1), arg2);
7878 else if (ada_is_fixed_point_type (value_type (arg2)))
7880 (_("Fixed-point values must be assigned to fixed-point variables"));
7882 arg2 = coerce_for_assign (value_type (arg1), arg2);
7883 return ada_value_assign (arg1, arg2);
7886 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7887 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7888 if (noside == EVAL_SKIP)
7890 if ((ada_is_fixed_point_type (value_type (arg1))
7891 || ada_is_fixed_point_type (value_type (arg2)))
7892 && value_type (arg1) != value_type (arg2))
7893 error (_("Operands of fixed-point addition must have the same type"));
7894 return value_cast (value_type (arg1), value_add (arg1, arg2));
7897 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7898 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7899 if (noside == EVAL_SKIP)
7901 if ((ada_is_fixed_point_type (value_type (arg1))
7902 || ada_is_fixed_point_type (value_type (arg2)))
7903 && value_type (arg1) != value_type (arg2))
7904 error (_("Operands of fixed-point subtraction must have the same type"));
7905 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7910 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7911 if (noside == EVAL_SKIP)
7913 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7914 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7915 return value_zero (value_type (arg1), not_lval);
7918 if (ada_is_fixed_point_type (value_type (arg1)))
7919 arg1 = cast_from_fixed_to_double (arg1);
7920 if (ada_is_fixed_point_type (value_type (arg2)))
7921 arg2 = cast_from_fixed_to_double (arg2);
7922 return ada_value_binop (arg1, arg2, op);
7927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7928 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7929 if (noside == EVAL_SKIP)
7931 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7932 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7933 return value_zero (value_type (arg1), not_lval);
7935 return ada_value_binop (arg1, arg2, op);
7938 case BINOP_NOTEQUAL:
7939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7940 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7941 if (noside == EVAL_SKIP)
7943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7946 tem = ada_value_equal (arg1, arg2);
7947 if (op == BINOP_NOTEQUAL)
7949 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 if (noside == EVAL_SKIP)
7955 else if (ada_is_fixed_point_type (value_type (arg1)))
7956 return value_cast (value_type (arg1), value_neg (arg1));
7958 return value_neg (arg1);
7962 if (noside == EVAL_SKIP)
7967 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7968 /* Only encountered when an unresolved symbol occurs in a
7969 context other than a function call, in which case, it is
7971 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7972 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7973 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7977 (to_static_fixed_type
7978 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7984 unwrap_value (evaluate_subexp_standard
7985 (expect_type, exp, pos, noside));
7986 return ada_to_fixed_value (arg1);
7992 /* Allocate arg vector, including space for the function to be
7993 called in argvec[0] and a terminating NULL. */
7994 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7996 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7998 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7999 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8000 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8001 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8004 for (tem = 0; tem <= nargs; tem += 1)
8005 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008 if (noside == EVAL_SKIP)
8012 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8013 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8014 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8015 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8016 && VALUE_LVAL (argvec[0]) == lval_memory))
8017 argvec[0] = value_addr (argvec[0]);
8019 type = ada_check_typedef (value_type (argvec[0]));
8020 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8022 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8024 case TYPE_CODE_FUNC:
8025 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8027 case TYPE_CODE_ARRAY:
8029 case TYPE_CODE_STRUCT:
8030 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8031 argvec[0] = ada_value_ind (argvec[0]);
8032 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8035 error (_("cannot subscript or call something of type `%s'"),
8036 ada_type_name (value_type (argvec[0])));
8041 switch (TYPE_CODE (type))
8043 case TYPE_CODE_FUNC:
8044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8045 return allocate_value (TYPE_TARGET_TYPE (type));
8046 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8047 case TYPE_CODE_STRUCT:
8051 arity = ada_array_arity (type);
8052 type = ada_array_element_type (type, nargs);
8054 error (_("cannot subscript or call a record"));
8056 error (_("wrong number of subscripts; expecting %d"), arity);
8057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8058 return allocate_value (ada_aligned_type (type));
8060 unwrap_value (ada_value_subscript
8061 (argvec[0], nargs, argvec + 1));
8063 case TYPE_CODE_ARRAY:
8064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8066 type = ada_array_element_type (type, nargs);
8068 error (_("element type of array unknown"));
8070 return allocate_value (ada_aligned_type (type));
8073 unwrap_value (ada_value_subscript
8074 (ada_coerce_to_simple_array (argvec[0]),
8075 nargs, argvec + 1));
8076 case TYPE_CODE_PTR: /* Pointer to array */
8077 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8080 type = ada_array_element_type (type, nargs);
8082 error (_("element type of array unknown"));
8084 return allocate_value (ada_aligned_type (type));
8087 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8088 nargs, argvec + 1));
8091 error (_("Attempt to index or call something other than an "
8092 "array or function"));
8097 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8098 struct value *low_bound_val =
8099 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8100 struct value *high_bound_val =
8101 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8104 low_bound_val = coerce_ref (low_bound_val);
8105 high_bound_val = coerce_ref (high_bound_val);
8106 low_bound = pos_atr (low_bound_val);
8107 high_bound = pos_atr (high_bound_val);
8109 if (noside == EVAL_SKIP)
8112 /* If this is a reference to an aligner type, then remove all
8114 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8115 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8116 TYPE_TARGET_TYPE (value_type (array)) =
8117 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8119 if (ada_is_packed_array_type (value_type (array)))
8120 error (_("cannot slice a packed array"));
8122 /* If this is a reference to an array or an array lvalue,
8123 convert to a pointer. */
8124 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8125 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8126 && VALUE_LVAL (array) == lval_memory))
8127 array = value_addr (array);
8129 if (noside == EVAL_AVOID_SIDE_EFFECTS
8130 && ada_is_array_descriptor_type (ada_check_typedef
8131 (value_type (array))))
8132 return empty_array (ada_type_of_array (array, 0), low_bound);
8134 array = ada_coerce_to_simple_array_ptr (array);
8136 /* If we have more than one level of pointer indirection,
8137 dereference the value until we get only one level. */
8138 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8139 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8141 array = value_ind (array);
8143 /* Make sure we really do have an array type before going further,
8144 to avoid a SEGV when trying to get the index type or the target
8145 type later down the road if the debug info generated by
8146 the compiler is incorrect or incomplete. */
8147 if (!ada_is_simple_array_type (value_type (array)))
8148 error (_("cannot take slice of non-array"));
8150 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8152 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8153 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8157 struct type *arr_type0 =
8158 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8160 return ada_value_slice_ptr (array, arr_type0,
8161 longest_to_int (low_bound),
8162 longest_to_int (high_bound));
8165 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8167 else if (high_bound < low_bound)
8168 return empty_array (value_type (array), low_bound);
8170 return ada_value_slice (array, longest_to_int (low_bound),
8171 longest_to_int (high_bound));
8176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8177 type = exp->elts[pc + 1].type;
8179 if (noside == EVAL_SKIP)
8182 switch (TYPE_CODE (type))
8185 lim_warning (_("Membership test incompletely implemented; "
8186 "always returns true"));
8187 return value_from_longest (builtin_type_int, (LONGEST) 1);
8189 case TYPE_CODE_RANGE:
8190 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8191 arg3 = value_from_longest (builtin_type_int,
8192 TYPE_HIGH_BOUND (type));
8194 value_from_longest (builtin_type_int,
8195 (value_less (arg1, arg3)
8196 || value_equal (arg1, arg3))
8197 && (value_less (arg2, arg1)
8198 || value_equal (arg2, arg1)));
8201 case BINOP_IN_BOUNDS:
8203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8204 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8206 if (noside == EVAL_SKIP)
8209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8210 return value_zero (builtin_type_int, not_lval);
8212 tem = longest_to_int (exp->elts[pc + 1].longconst);
8214 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8215 error (_("invalid dimension number to 'range"));
8217 arg3 = ada_array_bound (arg2, tem, 1);
8218 arg2 = ada_array_bound (arg2, tem, 0);
8221 value_from_longest (builtin_type_int,
8222 (value_less (arg1, arg3)
8223 || value_equal (arg1, arg3))
8224 && (value_less (arg2, arg1)
8225 || value_equal (arg2, arg1)));
8227 case TERNOP_IN_RANGE:
8228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8230 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8232 if (noside == EVAL_SKIP)
8236 value_from_longest (builtin_type_int,
8237 (value_less (arg1, arg3)
8238 || value_equal (arg1, arg3))
8239 && (value_less (arg2, arg1)
8240 || value_equal (arg2, arg1)));
8246 struct type *type_arg;
8247 if (exp->elts[*pos].opcode == OP_TYPE)
8249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8251 type_arg = exp->elts[pc + 2].type;
8255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8259 if (exp->elts[*pos].opcode != OP_LONG)
8260 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8261 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8264 if (noside == EVAL_SKIP)
8267 if (type_arg == NULL)
8269 arg1 = ada_coerce_ref (arg1);
8271 if (ada_is_packed_array_type (value_type (arg1)))
8272 arg1 = ada_coerce_to_simple_array (arg1);
8274 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8275 error (_("invalid dimension number to '%s"),
8276 ada_attribute_name (op));
8278 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8280 type = ada_index_type (value_type (arg1), tem);
8283 (_("attempt to take bound of something that is not an array"));
8284 return allocate_value (type);
8289 default: /* Should never happen. */
8290 error (_("unexpected attribute encountered"));
8292 return ada_array_bound (arg1, tem, 0);
8294 return ada_array_bound (arg1, tem, 1);
8296 return ada_array_length (arg1, tem);
8299 else if (discrete_type_p (type_arg))
8301 struct type *range_type;
8302 char *name = ada_type_name (type_arg);
8304 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8306 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8307 if (range_type == NULL)
8308 range_type = type_arg;
8312 error (_("unexpected attribute encountered"));
8314 return discrete_type_low_bound (range_type);
8316 return discrete_type_high_bound (range_type);
8318 error (_("the 'length attribute applies only to array types"));
8321 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8322 error (_("unimplemented type attribute"));
8327 if (ada_is_packed_array_type (type_arg))
8328 type_arg = decode_packed_array_type (type_arg);
8330 if (tem < 1 || tem > ada_array_arity (type_arg))
8331 error (_("invalid dimension number to '%s"),
8332 ada_attribute_name (op));
8334 type = ada_index_type (type_arg, tem);
8337 (_("attempt to take bound of something that is not an array"));
8338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8339 return allocate_value (type);
8344 error (_("unexpected attribute encountered"));
8346 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8347 return value_from_longest (type, low);
8349 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8350 return value_from_longest (type, high);
8352 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8353 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8354 return value_from_longest (type, high - low + 1);
8360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8361 if (noside == EVAL_SKIP)
8364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8365 return value_zero (ada_tag_type (arg1), not_lval);
8367 return ada_value_tag (arg1);
8371 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8374 if (noside == EVAL_SKIP)
8376 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8377 return value_zero (value_type (arg1), not_lval);
8379 return value_binop (arg1, arg2,
8380 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8382 case OP_ATR_MODULUS:
8384 struct type *type_arg = exp->elts[pc + 2].type;
8385 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8387 if (noside == EVAL_SKIP)
8390 if (!ada_is_modular_type (type_arg))
8391 error (_("'modulus must be applied to modular type"));
8393 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8394 ada_modulus (type_arg));
8399 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8401 if (noside == EVAL_SKIP)
8403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8404 return value_zero (builtin_type_int, not_lval);
8406 return value_pos_atr (arg1);
8409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8410 if (noside == EVAL_SKIP)
8412 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8413 return value_zero (builtin_type_int, not_lval);
8415 return value_from_longest (builtin_type_int,
8417 * TYPE_LENGTH (value_type (arg1)));
8420 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8422 type = exp->elts[pc + 2].type;
8423 if (noside == EVAL_SKIP)
8425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8426 return value_zero (type, not_lval);
8428 return value_val_atr (type, arg1);
8431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8432 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8433 if (noside == EVAL_SKIP)
8435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8436 return value_zero (value_type (arg1), not_lval);
8438 return value_binop (arg1, arg2, op);
8441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8442 if (noside == EVAL_SKIP)
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8451 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8452 return value_neg (arg1);
8457 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8458 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8459 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8460 if (noside == EVAL_SKIP)
8462 type = ada_check_typedef (value_type (arg1));
8463 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 if (ada_is_array_descriptor_type (type))
8466 /* GDB allows dereferencing GNAT array descriptors. */
8468 struct type *arrType = ada_type_of_array (arg1, 0);
8469 if (arrType == NULL)
8470 error (_("Attempt to dereference null array pointer."));
8471 return value_at_lazy (arrType, 0);
8473 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8474 || TYPE_CODE (type) == TYPE_CODE_REF
8475 /* In C you can dereference an array to get the 1st elt. */
8476 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8478 type = to_static_fixed_type
8480 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8482 return value_zero (type, lval_memory);
8484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8485 /* GDB allows dereferencing an int. */
8486 return value_zero (builtin_type_int, lval_memory);
8488 error (_("Attempt to take contents of a non-pointer value."));
8490 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8491 type = ada_check_typedef (value_type (arg1));
8493 if (ada_is_array_descriptor_type (type))
8494 /* GDB allows dereferencing GNAT array descriptors. */
8495 return ada_coerce_to_simple_array (arg1);
8497 return ada_value_ind (arg1);
8499 case STRUCTOP_STRUCT:
8500 tem = longest_to_int (exp->elts[pc + 1].longconst);
8501 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8503 if (noside == EVAL_SKIP)
8505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8507 struct type *type1 = value_type (arg1);
8508 if (ada_is_tagged_type (type1, 1))
8510 type = ada_lookup_struct_elt_type (type1,
8511 &exp->elts[pc + 2].string,
8514 /* In this case, we assume that the field COULD exist
8515 in some extension of the type. Return an object of
8516 "type" void, which will match any formal
8517 (see ada_type_match). */
8518 return value_zero (builtin_type_void, lval_memory);
8522 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8525 return value_zero (ada_aligned_type (type), lval_memory);
8529 ada_to_fixed_value (unwrap_value
8530 (ada_value_struct_elt
8531 (arg1, &exp->elts[pc + 2].string, 0)));
8533 /* The value is not supposed to be used. This is here to make it
8534 easier to accommodate expressions that contain types. */
8536 if (noside == EVAL_SKIP)
8538 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8539 return allocate_value (exp->elts[pc + 1].type);
8541 error (_("Attempt to use a type name as an expression"));
8546 case OP_DISCRETE_RANGE:
8549 if (noside == EVAL_NORMAL)
8553 error (_("Undefined name, ambiguous name, or renaming used in "
8554 "component association: %s."), &exp->elts[pc+2].string);
8556 error (_("Aggregates only allowed on the right of an assignment"));
8558 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8561 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8563 for (tem = 0; tem < nargs; tem += 1)
8564 ada_evaluate_subexp (NULL, exp, pos, noside);
8569 return value_from_longest (builtin_type_long, (LONGEST) 1);
8575 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8576 type name that encodes the 'small and 'delta information.
8577 Otherwise, return NULL. */
8580 fixed_type_info (struct type *type)
8582 const char *name = ada_type_name (type);
8583 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8585 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8587 const char *tail = strstr (name, "___XF_");
8593 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8594 return fixed_type_info (TYPE_TARGET_TYPE (type));
8599 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8602 ada_is_fixed_point_type (struct type *type)
8604 return fixed_type_info (type) != NULL;
8607 /* Return non-zero iff TYPE represents a System.Address type. */
8610 ada_is_system_address_type (struct type *type)
8612 return (TYPE_NAME (type)
8613 && strcmp (TYPE_NAME (type), "system__address") == 0);
8616 /* Assuming that TYPE is the representation of an Ada fixed-point
8617 type, return its delta, or -1 if the type is malformed and the
8618 delta cannot be determined. */
8621 ada_delta (struct type *type)
8623 const char *encoding = fixed_type_info (type);
8626 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8629 return (DOUBLEST) num / (DOUBLEST) den;
8632 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8633 factor ('SMALL value) associated with the type. */
8636 scaling_factor (struct type *type)
8638 const char *encoding = fixed_type_info (type);
8639 unsigned long num0, den0, num1, den1;
8642 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8647 return (DOUBLEST) num1 / (DOUBLEST) den1;
8649 return (DOUBLEST) num0 / (DOUBLEST) den0;
8653 /* Assuming that X is the representation of a value of fixed-point
8654 type TYPE, return its floating-point equivalent. */
8657 ada_fixed_to_float (struct type *type, LONGEST x)
8659 return (DOUBLEST) x *scaling_factor (type);
8662 /* The representation of a fixed-point value of type TYPE
8663 corresponding to the value X. */
8666 ada_float_to_fixed (struct type *type, DOUBLEST x)
8668 return (LONGEST) (x / scaling_factor (type) + 0.5);
8672 /* VAX floating formats */
8674 /* Non-zero iff TYPE represents one of the special VAX floating-point
8678 ada_is_vax_floating_type (struct type *type)
8681 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8684 && (TYPE_CODE (type) == TYPE_CODE_INT
8685 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8686 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8689 /* The type of special VAX floating-point type this is, assuming
8690 ada_is_vax_floating_point. */
8693 ada_vax_float_type_suffix (struct type *type)
8695 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8698 /* A value representing the special debugging function that outputs
8699 VAX floating-point values of the type represented by TYPE. Assumes
8700 ada_is_vax_floating_type (TYPE). */
8703 ada_vax_float_print_function (struct type *type)
8705 switch (ada_vax_float_type_suffix (type))
8708 return get_var_value ("DEBUG_STRING_F", 0);
8710 return get_var_value ("DEBUG_STRING_D", 0);
8712 return get_var_value ("DEBUG_STRING_G", 0);
8714 error (_("invalid VAX floating-point type"));
8721 /* Scan STR beginning at position K for a discriminant name, and
8722 return the value of that discriminant field of DVAL in *PX. If
8723 PNEW_K is not null, put the position of the character beyond the
8724 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8725 not alter *PX and *PNEW_K if unsuccessful. */
8728 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8731 static char *bound_buffer = NULL;
8732 static size_t bound_buffer_len = 0;
8735 struct value *bound_val;
8737 if (dval == NULL || str == NULL || str[k] == '\0')
8740 pend = strstr (str + k, "__");
8744 k += strlen (bound);
8748 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8749 bound = bound_buffer;
8750 strncpy (bound_buffer, str + k, pend - (str + k));
8751 bound[pend - (str + k)] = '\0';
8755 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8756 if (bound_val == NULL)
8759 *px = value_as_long (bound_val);
8765 /* Value of variable named NAME in the current environment. If
8766 no such variable found, then if ERR_MSG is null, returns 0, and
8767 otherwise causes an error with message ERR_MSG. */
8769 static struct value *
8770 get_var_value (char *name, char *err_msg)
8772 struct ada_symbol_info *syms;
8775 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8780 if (err_msg == NULL)
8783 error (("%s"), err_msg);
8786 return value_of_variable (syms[0].sym, syms[0].block);
8789 /* Value of integer variable named NAME in the current environment. If
8790 no such variable found, returns 0, and sets *FLAG to 0. If
8791 successful, sets *FLAG to 1. */
8794 get_int_var_value (char *name, int *flag)
8796 struct value *var_val = get_var_value (name, 0);
8808 return value_as_long (var_val);
8813 /* Return a range type whose base type is that of the range type named
8814 NAME in the current environment, and whose bounds are calculated
8815 from NAME according to the GNAT range encoding conventions.
8816 Extract discriminant values, if needed, from DVAL. If a new type
8817 must be created, allocate in OBJFILE's space. The bounds
8818 information, in general, is encoded in NAME, the base type given in
8819 the named range type. */
8821 static struct type *
8822 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8824 struct type *raw_type = ada_find_any_type (name);
8825 struct type *base_type;
8828 if (raw_type == NULL)
8829 base_type = builtin_type_int;
8830 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8831 base_type = TYPE_TARGET_TYPE (raw_type);
8833 base_type = raw_type;
8835 subtype_info = strstr (name, "___XD");
8836 if (subtype_info == NULL)
8840 static char *name_buf = NULL;
8841 static size_t name_len = 0;
8842 int prefix_len = subtype_info - name;
8848 GROW_VECT (name_buf, name_len, prefix_len + 5);
8849 strncpy (name_buf, name, prefix_len);
8850 name_buf[prefix_len] = '\0';
8853 bounds_str = strchr (subtype_info, '_');
8856 if (*subtype_info == 'L')
8858 if (!ada_scan_number (bounds_str, n, &L, &n)
8859 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8861 if (bounds_str[n] == '_')
8863 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8870 strcpy (name_buf + prefix_len, "___L");
8871 L = get_int_var_value (name_buf, &ok);
8874 lim_warning (_("Unknown lower bound, using 1."));
8879 if (*subtype_info == 'U')
8881 if (!ada_scan_number (bounds_str, n, &U, &n)
8882 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8888 strcpy (name_buf + prefix_len, "___U");
8889 U = get_int_var_value (name_buf, &ok);
8892 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8897 if (objfile == NULL)
8898 objfile = TYPE_OBJFILE (base_type);
8899 type = create_range_type (alloc_type (objfile), base_type, L, U);
8900 TYPE_NAME (type) = name;
8905 /* True iff NAME is the name of a range type. */
8908 ada_is_range_type_name (const char *name)
8910 return (name != NULL && strstr (name, "___XD"));
8916 /* True iff TYPE is an Ada modular type. */
8919 ada_is_modular_type (struct type *type)
8921 struct type *subranged_type = base_type (type);
8923 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8924 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8925 && TYPE_UNSIGNED (subranged_type));
8928 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8931 ada_modulus (struct type * type)
8933 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8937 /* Ada exception catchpoint support:
8938 ---------------------------------
8940 We support 3 kinds of exception catchpoints:
8941 . catchpoints on Ada exceptions
8942 . catchpoints on unhandled Ada exceptions
8943 . catchpoints on failed assertions
8945 Exceptions raised during failed assertions, or unhandled exceptions
8946 could perfectly be caught with the general catchpoint on Ada exceptions.
8947 However, we can easily differentiate these two special cases, and having
8948 the option to distinguish these two cases from the rest can be useful
8949 to zero-in on certain situations.
8951 Exception catchpoints are a specialized form of breakpoint,
8952 since they rely on inserting breakpoints inside known routines
8953 of the GNAT runtime. The implementation therefore uses a standard
8954 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8957 Support in the runtime for exception catchpoints have been changed
8958 a few times already, and these changes affect the implementation
8959 of these catchpoints. In order to be able to support several
8960 variants of the runtime, we use a sniffer that will determine
8961 the runtime variant used by the program being debugged.
8963 At this time, we do not support the use of conditions on Ada exception
8964 catchpoints. The COND and COND_STRING fields are therefore set
8965 to NULL (most of the time, see below).
8967 Conditions where EXP_STRING, COND, and COND_STRING are used:
8969 When a user specifies the name of a specific exception in the case
8970 of catchpoints on Ada exceptions, we store the name of that exception
8971 in the EXP_STRING. We then translate this request into an actual
8972 condition stored in COND_STRING, and then parse it into an expression
8975 /* The different types of catchpoints that we introduced for catching
8978 enum exception_catchpoint_kind
8981 ex_catch_exception_unhandled,
8985 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8987 /* A structure that describes how to support exception catchpoints
8988 for a given executable. */
8990 struct exception_support_info
8992 /* The name of the symbol to break on in order to insert
8993 a catchpoint on exceptions. */
8994 const char *catch_exception_sym;
8996 /* The name of the symbol to break on in order to insert
8997 a catchpoint on unhandled exceptions. */
8998 const char *catch_exception_unhandled_sym;
9000 /* The name of the symbol to break on in order to insert
9001 a catchpoint on failed assertions. */
9002 const char *catch_assert_sym;
9004 /* Assuming that the inferior just triggered an unhandled exception
9005 catchpoint, this function is responsible for returning the address
9006 in inferior memory where the name of that exception is stored.
9007 Return zero if the address could not be computed. */
9008 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9011 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9012 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9014 /* The following exception support info structure describes how to
9015 implement exception catchpoints with the latest version of the
9016 Ada runtime (as of 2007-03-06). */
9018 static const struct exception_support_info default_exception_support_info =
9020 "__gnat_debug_raise_exception", /* catch_exception_sym */
9021 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9022 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9023 ada_unhandled_exception_name_addr
9026 /* The following exception support info structure describes how to
9027 implement exception catchpoints with a slightly older version
9028 of the Ada runtime. */
9030 static const struct exception_support_info exception_support_info_fallback =
9032 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9033 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9034 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9035 ada_unhandled_exception_name_addr_from_raise
9038 /* For each executable, we sniff which exception info structure to use
9039 and cache it in the following global variable. */
9041 static const struct exception_support_info *exception_info = NULL;
9043 /* Inspect the Ada runtime and determine which exception info structure
9044 should be used to provide support for exception catchpoints.
9046 This function will always set exception_info, or raise an error. */
9049 ada_exception_support_info_sniffer (void)
9053 /* If the exception info is already known, then no need to recompute it. */
9054 if (exception_info != NULL)
9057 /* Check the latest (default) exception support info. */
9058 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9062 exception_info = &default_exception_support_info;
9066 /* Try our fallback exception suport info. */
9067 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9071 exception_info = &exception_support_info_fallback;
9075 /* Sometimes, it is normal for us to not be able to find the routine
9076 we are looking for. This happens when the program is linked with
9077 the shared version of the GNAT runtime, and the program has not been
9078 started yet. Inform the user of these two possible causes if
9081 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9082 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9084 /* If the symbol does not exist, then check that the program is
9085 already started, to make sure that shared libraries have been
9086 loaded. If it is not started, this may mean that the symbol is
9087 in a shared library. */
9089 if (ptid_get_pid (inferior_ptid) == 0)
9090 error (_("Unable to insert catchpoint. Try to start the program first."));
9092 /* At this point, we know that we are debugging an Ada program and
9093 that the inferior has been started, but we still are not able to
9094 find the run-time symbols. That can mean that we are in
9095 configurable run time mode, or that a-except as been optimized
9096 out by the linker... In any case, at this point it is not worth
9097 supporting this feature. */
9099 error (_("Cannot insert catchpoints in this configuration."));
9102 /* An observer of "executable_changed" events.
9103 Its role is to clear certain cached values that need to be recomputed
9104 each time a new executable is loaded by GDB. */
9107 ada_executable_changed_observer (void *unused)
9109 /* If the executable changed, then it is possible that the Ada runtime
9110 is different. So we need to invalidate the exception support info
9112 exception_info = NULL;
9115 /* Return the name of the function at PC, NULL if could not find it.
9116 This function only checks the debugging information, not the symbol
9120 function_name_from_pc (CORE_ADDR pc)
9124 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9130 /* True iff FRAME is very likely to be that of a function that is
9131 part of the runtime system. This is all very heuristic, but is
9132 intended to be used as advice as to what frames are uninteresting
9136 is_known_support_routine (struct frame_info *frame)
9138 struct symtab_and_line sal;
9142 /* If this code does not have any debugging information (no symtab),
9143 This cannot be any user code. */
9145 find_frame_sal (frame, &sal);
9146 if (sal.symtab == NULL)
9149 /* If there is a symtab, but the associated source file cannot be
9150 located, then assume this is not user code: Selecting a frame
9151 for which we cannot display the code would not be very helpful
9152 for the user. This should also take care of case such as VxWorks
9153 where the kernel has some debugging info provided for a few units. */
9155 if (symtab_to_fullname (sal.symtab) == NULL)
9158 /* Check the unit filename againt the Ada runtime file naming.
9159 We also check the name of the objfile against the name of some
9160 known system libraries that sometimes come with debugging info
9163 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9165 re_comp (known_runtime_file_name_patterns[i]);
9166 if (re_exec (sal.symtab->filename))
9168 if (sal.symtab->objfile != NULL
9169 && re_exec (sal.symtab->objfile->name))
9173 /* Check whether the function is a GNAT-generated entity. */
9175 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9176 if (func_name == NULL)
9179 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9181 re_comp (known_auxiliary_function_name_patterns[i]);
9182 if (re_exec (func_name))
9189 /* Find the first frame that contains debugging information and that is not
9190 part of the Ada run-time, starting from FI and moving upward. */
9193 ada_find_printable_frame (struct frame_info *fi)
9195 for (; fi != NULL; fi = get_prev_frame (fi))
9197 if (!is_known_support_routine (fi))
9206 /* Assuming that the inferior just triggered an unhandled exception
9207 catchpoint, return the address in inferior memory where the name
9208 of the exception is stored.
9210 Return zero if the address could not be computed. */
9213 ada_unhandled_exception_name_addr (void)
9215 return parse_and_eval_address ("e.full_name");
9218 /* Same as ada_unhandled_exception_name_addr, except that this function
9219 should be used when the inferior uses an older version of the runtime,
9220 where the exception name needs to be extracted from a specific frame
9221 several frames up in the callstack. */
9224 ada_unhandled_exception_name_addr_from_raise (void)
9227 struct frame_info *fi;
9229 /* To determine the name of this exception, we need to select
9230 the frame corresponding to RAISE_SYM_NAME. This frame is
9231 at least 3 levels up, so we simply skip the first 3 frames
9232 without checking the name of their associated function. */
9233 fi = get_current_frame ();
9234 for (frame_level = 0; frame_level < 3; frame_level += 1)
9236 fi = get_prev_frame (fi);
9240 const char *func_name =
9241 function_name_from_pc (get_frame_address_in_block (fi));
9242 if (func_name != NULL
9243 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9244 break; /* We found the frame we were looking for... */
9245 fi = get_prev_frame (fi);
9252 return parse_and_eval_address ("id.full_name");
9255 /* Assuming the inferior just triggered an Ada exception catchpoint
9256 (of any type), return the address in inferior memory where the name
9257 of the exception is stored, if applicable.
9259 Return zero if the address could not be computed, or if not relevant. */
9262 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9263 struct breakpoint *b)
9267 case ex_catch_exception:
9268 return (parse_and_eval_address ("e.full_name"));
9271 case ex_catch_exception_unhandled:
9272 return exception_info->unhandled_exception_name_addr ();
9275 case ex_catch_assert:
9276 return 0; /* Exception name is not relevant in this case. */
9280 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9284 return 0; /* Should never be reached. */
9287 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9288 any error that ada_exception_name_addr_1 might cause to be thrown.
9289 When an error is intercepted, a warning with the error message is printed,
9290 and zero is returned. */
9293 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9294 struct breakpoint *b)
9296 struct gdb_exception e;
9297 CORE_ADDR result = 0;
9299 TRY_CATCH (e, RETURN_MASK_ERROR)
9301 result = ada_exception_name_addr_1 (ex, b);
9306 warning (_("failed to get exception name: %s"), e.message);
9313 /* Implement the PRINT_IT method in the breakpoint_ops structure
9314 for all exception catchpoint kinds. */
9316 static enum print_stop_action
9317 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9319 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9320 char exception_name[256];
9324 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9325 exception_name [sizeof (exception_name) - 1] = '\0';
9328 ada_find_printable_frame (get_current_frame ());
9330 annotate_catchpoint (b->number);
9333 case ex_catch_exception:
9335 printf_filtered (_("\nCatchpoint %d, %s at "),
9336 b->number, exception_name);
9338 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9340 case ex_catch_exception_unhandled:
9342 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9343 b->number, exception_name);
9345 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9348 case ex_catch_assert:
9349 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9354 return PRINT_SRC_AND_LOC;
9357 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9358 for all exception catchpoint kinds. */
9361 print_one_exception (enum exception_catchpoint_kind ex,
9362 struct breakpoint *b, CORE_ADDR *last_addr)
9367 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9371 *last_addr = b->loc->address;
9374 case ex_catch_exception:
9375 if (b->exp_string != NULL)
9377 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9379 ui_out_field_string (uiout, "what", msg);
9383 ui_out_field_string (uiout, "what", "all Ada exceptions");
9387 case ex_catch_exception_unhandled:
9388 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9391 case ex_catch_assert:
9392 ui_out_field_string (uiout, "what", "failed Ada assertions");
9396 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9401 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9402 for all exception catchpoint kinds. */
9405 print_mention_exception (enum exception_catchpoint_kind ex,
9406 struct breakpoint *b)
9410 case ex_catch_exception:
9411 if (b->exp_string != NULL)
9412 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9413 b->number, b->exp_string);
9415 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9419 case ex_catch_exception_unhandled:
9420 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9424 case ex_catch_assert:
9425 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9429 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9434 /* Virtual table for "catch exception" breakpoints. */
9436 static enum print_stop_action
9437 print_it_catch_exception (struct breakpoint *b)
9439 return print_it_exception (ex_catch_exception, b);
9443 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9445 print_one_exception (ex_catch_exception, b, last_addr);
9449 print_mention_catch_exception (struct breakpoint *b)
9451 print_mention_exception (ex_catch_exception, b);
9454 static struct breakpoint_ops catch_exception_breakpoint_ops =
9456 print_it_catch_exception,
9457 print_one_catch_exception,
9458 print_mention_catch_exception
9461 /* Virtual table for "catch exception unhandled" breakpoints. */
9463 static enum print_stop_action
9464 print_it_catch_exception_unhandled (struct breakpoint *b)
9466 return print_it_exception (ex_catch_exception_unhandled, b);
9470 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9472 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9476 print_mention_catch_exception_unhandled (struct breakpoint *b)
9478 print_mention_exception (ex_catch_exception_unhandled, b);
9481 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9482 print_it_catch_exception_unhandled,
9483 print_one_catch_exception_unhandled,
9484 print_mention_catch_exception_unhandled
9487 /* Virtual table for "catch assert" breakpoints. */
9489 static enum print_stop_action
9490 print_it_catch_assert (struct breakpoint *b)
9492 return print_it_exception (ex_catch_assert, b);
9496 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9498 print_one_exception (ex_catch_assert, b, last_addr);
9502 print_mention_catch_assert (struct breakpoint *b)
9504 print_mention_exception (ex_catch_assert, b);
9507 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9508 print_it_catch_assert,
9509 print_one_catch_assert,
9510 print_mention_catch_assert
9513 /* Return non-zero if B is an Ada exception catchpoint. */
9516 ada_exception_catchpoint_p (struct breakpoint *b)
9518 return (b->ops == &catch_exception_breakpoint_ops
9519 || b->ops == &catch_exception_unhandled_breakpoint_ops
9520 || b->ops == &catch_assert_breakpoint_ops);
9523 /* Return a newly allocated copy of the first space-separated token
9524 in ARGSP, and then adjust ARGSP to point immediately after that
9527 Return NULL if ARGPS does not contain any more tokens. */
9530 ada_get_next_arg (char **argsp)
9532 char *args = *argsp;
9536 /* Skip any leading white space. */
9538 while (isspace (*args))
9541 if (args[0] == '\0')
9542 return NULL; /* No more arguments. */
9544 /* Find the end of the current argument. */
9547 while (*end != '\0' && !isspace (*end))
9550 /* Adjust ARGSP to point to the start of the next argument. */
9554 /* Make a copy of the current argument and return it. */
9556 result = xmalloc (end - args + 1);
9557 strncpy (result, args, end - args);
9558 result[end - args] = '\0';
9563 /* Split the arguments specified in a "catch exception" command.
9564 Set EX to the appropriate catchpoint type.
9565 Set EXP_STRING to the name of the specific exception if
9566 specified by the user. */
9569 catch_ada_exception_command_split (char *args,
9570 enum exception_catchpoint_kind *ex,
9573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9574 char *exception_name;
9576 exception_name = ada_get_next_arg (&args);
9577 make_cleanup (xfree, exception_name);
9579 /* Check that we do not have any more arguments. Anything else
9582 while (isspace (*args))
9585 if (args[0] != '\0')
9586 error (_("Junk at end of expression"));
9588 discard_cleanups (old_chain);
9590 if (exception_name == NULL)
9592 /* Catch all exceptions. */
9593 *ex = ex_catch_exception;
9596 else if (strcmp (exception_name, "unhandled") == 0)
9598 /* Catch unhandled exceptions. */
9599 *ex = ex_catch_exception_unhandled;
9604 /* Catch a specific exception. */
9605 *ex = ex_catch_exception;
9606 *exp_string = exception_name;
9610 /* Return the name of the symbol on which we should break in order to
9611 implement a catchpoint of the EX kind. */
9614 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9616 gdb_assert (exception_info != NULL);
9620 case ex_catch_exception:
9621 return (exception_info->catch_exception_sym);
9623 case ex_catch_exception_unhandled:
9624 return (exception_info->catch_exception_unhandled_sym);
9626 case ex_catch_assert:
9627 return (exception_info->catch_assert_sym);
9630 internal_error (__FILE__, __LINE__,
9631 _("unexpected catchpoint kind (%d)"), ex);
9635 /* Return the breakpoint ops "virtual table" used for catchpoints
9638 static struct breakpoint_ops *
9639 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9643 case ex_catch_exception:
9644 return (&catch_exception_breakpoint_ops);
9646 case ex_catch_exception_unhandled:
9647 return (&catch_exception_unhandled_breakpoint_ops);
9649 case ex_catch_assert:
9650 return (&catch_assert_breakpoint_ops);
9653 internal_error (__FILE__, __LINE__,
9654 _("unexpected catchpoint kind (%d)"), ex);
9658 /* Return the condition that will be used to match the current exception
9659 being raised with the exception that the user wants to catch. This
9660 assumes that this condition is used when the inferior just triggered
9661 an exception catchpoint.
9663 The string returned is a newly allocated string that needs to be
9664 deallocated later. */
9667 ada_exception_catchpoint_cond_string (const char *exp_string)
9669 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9672 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9674 static struct expression *
9675 ada_parse_catchpoint_condition (char *cond_string,
9676 struct symtab_and_line sal)
9678 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9681 /* Return the symtab_and_line that should be used to insert an exception
9682 catchpoint of the TYPE kind.
9684 EX_STRING should contain the name of a specific exception
9685 that the catchpoint should catch, or NULL otherwise.
9687 The idea behind all the remaining parameters is that their names match
9688 the name of certain fields in the breakpoint structure that are used to
9689 handle exception catchpoints. This function returns the value to which
9690 these fields should be set, depending on the type of catchpoint we need
9693 If COND and COND_STRING are both non-NULL, any value they might
9694 hold will be free'ed, and then replaced by newly allocated ones.
9695 These parameters are left untouched otherwise. */
9697 static struct symtab_and_line
9698 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9699 char **addr_string, char **cond_string,
9700 struct expression **cond, struct breakpoint_ops **ops)
9702 const char *sym_name;
9704 struct symtab_and_line sal;
9706 /* First, find out which exception support info to use. */
9707 ada_exception_support_info_sniffer ();
9709 /* Then lookup the function on which we will break in order to catch
9710 the Ada exceptions requested by the user. */
9712 sym_name = ada_exception_sym_name (ex);
9713 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9715 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9716 that should be compiled with debugging information. As a result, we
9717 expect to find that symbol in the symtabs. If we don't find it, then
9718 the target most likely does not support Ada exceptions, or we cannot
9719 insert exception breakpoints yet, because the GNAT runtime hasn't been
9722 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9723 in such a way that no debugging information is produced for the symbol
9724 we are looking for. In this case, we could search the minimal symbols
9725 as a fall-back mechanism. This would still be operating in degraded
9726 mode, however, as we would still be missing the debugging information
9727 that is needed in order to extract the name of the exception being
9728 raised (this name is printed in the catchpoint message, and is also
9729 used when trying to catch a specific exception). We do not handle
9730 this case for now. */
9733 error (_("Unable to break on '%s' in this configuration."), sym_name);
9735 /* Make sure that the symbol we found corresponds to a function. */
9736 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9737 error (_("Symbol \"%s\" is not a function (class = %d)"),
9738 sym_name, SYMBOL_CLASS (sym));
9740 sal = find_function_start_sal (sym, 1);
9742 /* Set ADDR_STRING. */
9744 *addr_string = xstrdup (sym_name);
9746 /* Set the COND and COND_STRING (if not NULL). */
9748 if (cond_string != NULL && cond != NULL)
9750 if (*cond_string != NULL)
9752 xfree (*cond_string);
9753 *cond_string = NULL;
9760 if (exp_string != NULL)
9762 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9763 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9768 *ops = ada_exception_breakpoint_ops (ex);
9773 /* Parse the arguments (ARGS) of the "catch exception" command.
9775 Set TYPE to the appropriate exception catchpoint type.
9776 If the user asked the catchpoint to catch only a specific
9777 exception, then save the exception name in ADDR_STRING.
9779 See ada_exception_sal for a description of all the remaining
9780 function arguments of this function. */
9782 struct symtab_and_line
9783 ada_decode_exception_location (char *args, char **addr_string,
9784 char **exp_string, char **cond_string,
9785 struct expression **cond,
9786 struct breakpoint_ops **ops)
9788 enum exception_catchpoint_kind ex;
9790 catch_ada_exception_command_split (args, &ex, exp_string);
9791 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9795 struct symtab_and_line
9796 ada_decode_assert_location (char *args, char **addr_string,
9797 struct breakpoint_ops **ops)
9799 /* Check that no argument where provided at the end of the command. */
9803 while (isspace (*args))
9806 error (_("Junk at end of arguments."));
9809 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9814 /* Information about operators given special treatment in functions
9816 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9818 #define ADA_OPERATORS \
9819 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9820 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9821 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9822 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9823 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9824 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9827 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9828 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9829 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9830 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9831 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9832 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9833 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9834 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9835 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9836 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9837 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9840 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9842 switch (exp->elts[pc - 1].opcode)
9845 operator_length_standard (exp, pc, oplenp, argsp);
9848 #define OP_DEFN(op, len, args, binop) \
9849 case op: *oplenp = len; *argsp = args; break;
9855 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9860 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9866 ada_op_name (enum exp_opcode opcode)
9871 return op_name_standard (opcode);
9873 #define OP_DEFN(op, len, args, binop) case op: return #op;
9878 return "OP_AGGREGATE";
9880 return "OP_CHOICES";
9886 /* As for operator_length, but assumes PC is pointing at the first
9887 element of the operator, and gives meaningful results only for the
9888 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9891 ada_forward_operator_length (struct expression *exp, int pc,
9892 int *oplenp, int *argsp)
9894 switch (exp->elts[pc].opcode)
9897 *oplenp = *argsp = 0;
9900 #define OP_DEFN(op, len, args, binop) \
9901 case op: *oplenp = len; *argsp = args; break;
9907 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9912 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9918 int len = longest_to_int (exp->elts[pc + 1].longconst);
9919 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9927 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9929 enum exp_opcode op = exp->elts[elt].opcode;
9934 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9938 /* Ada attributes ('Foo). */
9945 case OP_ATR_MODULUS:
9954 /* XXX: gdb_sprint_host_address, type_sprint */
9955 fprintf_filtered (stream, _("Type @"));
9956 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9957 fprintf_filtered (stream, " (");
9958 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9959 fprintf_filtered (stream, ")");
9961 case BINOP_IN_BOUNDS:
9962 fprintf_filtered (stream, " (%d)",
9963 longest_to_int (exp->elts[pc + 2].longconst));
9965 case TERNOP_IN_RANGE:
9970 case OP_DISCRETE_RANGE:
9978 char *name = &exp->elts[elt + 2].string;
9979 int len = longest_to_int (exp->elts[elt + 1].longconst);
9980 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9985 return dump_subexp_body_standard (exp, stream, elt);
9989 for (i = 0; i < nargs; i += 1)
9990 elt = dump_subexp (exp, stream, elt);
9995 /* The Ada extension of print_subexp (q.v.). */
9998 ada_print_subexp (struct expression *exp, int *pos,
9999 struct ui_file *stream, enum precedence prec)
10001 int oplen, nargs, i;
10003 enum exp_opcode op = exp->elts[pc].opcode;
10005 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10012 print_subexp_standard (exp, pos, stream, prec);
10016 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10019 case BINOP_IN_BOUNDS:
10020 /* XXX: sprint_subexp */
10021 print_subexp (exp, pos, stream, PREC_SUFFIX);
10022 fputs_filtered (" in ", stream);
10023 print_subexp (exp, pos, stream, PREC_SUFFIX);
10024 fputs_filtered ("'range", stream);
10025 if (exp->elts[pc + 1].longconst > 1)
10026 fprintf_filtered (stream, "(%ld)",
10027 (long) exp->elts[pc + 1].longconst);
10030 case TERNOP_IN_RANGE:
10031 if (prec >= PREC_EQUAL)
10032 fputs_filtered ("(", stream);
10033 /* XXX: sprint_subexp */
10034 print_subexp (exp, pos, stream, PREC_SUFFIX);
10035 fputs_filtered (" in ", stream);
10036 print_subexp (exp, pos, stream, PREC_EQUAL);
10037 fputs_filtered (" .. ", stream);
10038 print_subexp (exp, pos, stream, PREC_EQUAL);
10039 if (prec >= PREC_EQUAL)
10040 fputs_filtered (")", stream);
10045 case OP_ATR_LENGTH:
10049 case OP_ATR_MODULUS:
10054 if (exp->elts[*pos].opcode == OP_TYPE)
10056 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10057 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10061 print_subexp (exp, pos, stream, PREC_SUFFIX);
10062 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10066 for (tem = 1; tem < nargs; tem += 1)
10068 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10069 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10071 fputs_filtered (")", stream);
10076 type_print (exp->elts[pc + 1].type, "", stream, 0);
10077 fputs_filtered ("'(", stream);
10078 print_subexp (exp, pos, stream, PREC_PREFIX);
10079 fputs_filtered (")", stream);
10082 case UNOP_IN_RANGE:
10083 /* XXX: sprint_subexp */
10084 print_subexp (exp, pos, stream, PREC_SUFFIX);
10085 fputs_filtered (" in ", stream);
10086 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10089 case OP_DISCRETE_RANGE:
10090 print_subexp (exp, pos, stream, PREC_SUFFIX);
10091 fputs_filtered ("..", stream);
10092 print_subexp (exp, pos, stream, PREC_SUFFIX);
10096 fputs_filtered ("others => ", stream);
10097 print_subexp (exp, pos, stream, PREC_SUFFIX);
10101 for (i = 0; i < nargs-1; i += 1)
10104 fputs_filtered ("|", stream);
10105 print_subexp (exp, pos, stream, PREC_SUFFIX);
10107 fputs_filtered (" => ", stream);
10108 print_subexp (exp, pos, stream, PREC_SUFFIX);
10111 case OP_POSITIONAL:
10112 print_subexp (exp, pos, stream, PREC_SUFFIX);
10116 fputs_filtered ("(", stream);
10117 for (i = 0; i < nargs; i += 1)
10120 fputs_filtered (", ", stream);
10121 print_subexp (exp, pos, stream, PREC_SUFFIX);
10123 fputs_filtered (")", stream);
10128 /* Table mapping opcodes into strings for printing operators
10129 and precedences of the operators. */
10131 static const struct op_print ada_op_print_tab[] = {
10132 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10133 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10134 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10135 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10136 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10137 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10138 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10139 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10140 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10141 {">=", BINOP_GEQ, PREC_ORDER, 0},
10142 {">", BINOP_GTR, PREC_ORDER, 0},
10143 {"<", BINOP_LESS, PREC_ORDER, 0},
10144 {">>", BINOP_RSH, PREC_SHIFT, 0},
10145 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10146 {"+", BINOP_ADD, PREC_ADD, 0},
10147 {"-", BINOP_SUB, PREC_ADD, 0},
10148 {"&", BINOP_CONCAT, PREC_ADD, 0},
10149 {"*", BINOP_MUL, PREC_MUL, 0},
10150 {"/", BINOP_DIV, PREC_MUL, 0},
10151 {"rem", BINOP_REM, PREC_MUL, 0},
10152 {"mod", BINOP_MOD, PREC_MUL, 0},
10153 {"**", BINOP_EXP, PREC_REPEAT, 0},
10154 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10155 {"-", UNOP_NEG, PREC_PREFIX, 0},
10156 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10157 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10158 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10159 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10160 {".all", UNOP_IND, PREC_SUFFIX, 1},
10161 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10162 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10166 /* Fundamental Ada Types */
10168 /* Create a fundamental Ada type using default reasonable for the current
10171 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10172 define fundamental types such as "int" or "double". Others (stabs or
10173 DWARF version 2, etc) do define fundamental types. For the formats which
10174 don't provide fundamental types, gdb can create such types using this
10177 FIXME: Some compilers distinguish explicitly signed integral types
10178 (signed short, signed int, signed long) from "regular" integral types
10179 (short, int, long) in the debugging information. There is some dis-
10180 agreement as to how useful this feature is. In particular, gcc does
10181 not support this. Also, only some debugging formats allow the
10182 distinction to be passed on to a debugger. For now, we always just
10183 use "short", "int", or "long" as the type name, for both the implicit
10184 and explicitly signed types. This also makes life easier for the
10185 gdb test suite since we don't have to account for the differences
10186 in output depending upon what the compiler and debugging format
10187 support. We will probably have to re-examine the issue when gdb
10188 starts taking it's fundamental type information directly from the
10189 debugging information supplied by the compiler. fnf@cygnus.com */
10191 static struct type *
10192 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10194 struct type *type = NULL;
10199 /* FIXME: For now, if we are asked to produce a type not in this
10200 language, create the equivalent of a C integer type with the
10201 name "<?type?>". When all the dust settles from the type
10202 reconstruction work, this should probably become an error. */
10203 type = init_type (TYPE_CODE_INT,
10204 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10205 0, "<?type?>", objfile);
10206 warning (_("internal error: no Ada fundamental type %d"), typeid);
10209 type = init_type (TYPE_CODE_VOID,
10210 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10211 0, "void", objfile);
10214 type = init_type (TYPE_CODE_INT,
10215 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10216 0, "character", objfile);
10218 case FT_SIGNED_CHAR:
10219 type = init_type (TYPE_CODE_INT,
10220 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10221 0, "signed char", objfile);
10223 case FT_UNSIGNED_CHAR:
10224 type = init_type (TYPE_CODE_INT,
10225 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10226 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10229 type = init_type (TYPE_CODE_INT,
10230 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10231 0, "short_integer", objfile);
10233 case FT_SIGNED_SHORT:
10234 type = init_type (TYPE_CODE_INT,
10235 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10236 0, "short_integer", objfile);
10238 case FT_UNSIGNED_SHORT:
10239 type = init_type (TYPE_CODE_INT,
10240 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10241 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10244 type = init_type (TYPE_CODE_INT,
10245 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10246 0, "integer", objfile);
10248 case FT_SIGNED_INTEGER:
10249 type = init_type (TYPE_CODE_INT,
10250 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10251 0, "integer", objfile); /* FIXME -fnf */
10253 case FT_UNSIGNED_INTEGER:
10254 type = init_type (TYPE_CODE_INT,
10255 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10256 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10259 type = init_type (TYPE_CODE_INT,
10260 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10261 0, "long_integer", objfile);
10263 case FT_SIGNED_LONG:
10264 type = init_type (TYPE_CODE_INT,
10265 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10266 0, "long_integer", objfile);
10268 case FT_UNSIGNED_LONG:
10269 type = init_type (TYPE_CODE_INT,
10270 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10271 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10274 type = init_type (TYPE_CODE_INT,
10275 gdbarch_long_long_bit (current_gdbarch)
10277 0, "long_long_integer", objfile);
10279 case FT_SIGNED_LONG_LONG:
10280 type = init_type (TYPE_CODE_INT,
10281 gdbarch_long_long_bit (current_gdbarch)
10283 0, "long_long_integer", objfile);
10285 case FT_UNSIGNED_LONG_LONG:
10286 type = init_type (TYPE_CODE_INT,
10287 gdbarch_long_long_bit (current_gdbarch)
10289 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10292 type = init_type (TYPE_CODE_FLT,
10293 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10294 0, "float", objfile);
10296 case FT_DBL_PREC_FLOAT:
10297 type = init_type (TYPE_CODE_FLT,
10298 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10299 0, "long_float", objfile);
10301 case FT_EXT_PREC_FLOAT:
10302 type = init_type (TYPE_CODE_FLT,
10303 gdbarch_long_double_bit (current_gdbarch)
10305 0, "long_long_float", objfile);
10311 enum ada_primitive_types {
10312 ada_primitive_type_int,
10313 ada_primitive_type_long,
10314 ada_primitive_type_short,
10315 ada_primitive_type_char,
10316 ada_primitive_type_float,
10317 ada_primitive_type_double,
10318 ada_primitive_type_void,
10319 ada_primitive_type_long_long,
10320 ada_primitive_type_long_double,
10321 ada_primitive_type_natural,
10322 ada_primitive_type_positive,
10323 ada_primitive_type_system_address,
10324 nr_ada_primitive_types
10328 ada_language_arch_info (struct gdbarch *current_gdbarch,
10329 struct language_arch_info *lai)
10331 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10332 lai->primitive_type_vector
10333 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10335 lai->primitive_type_vector [ada_primitive_type_int] =
10336 init_type (TYPE_CODE_INT,
10337 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10338 0, "integer", (struct objfile *) NULL);
10339 lai->primitive_type_vector [ada_primitive_type_long] =
10340 init_type (TYPE_CODE_INT,
10341 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10342 0, "long_integer", (struct objfile *) NULL);
10343 lai->primitive_type_vector [ada_primitive_type_short] =
10344 init_type (TYPE_CODE_INT,
10345 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10346 0, "short_integer", (struct objfile *) NULL);
10347 lai->string_char_type =
10348 lai->primitive_type_vector [ada_primitive_type_char] =
10349 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10350 0, "character", (struct objfile *) NULL);
10351 lai->primitive_type_vector [ada_primitive_type_float] =
10352 init_type (TYPE_CODE_FLT,
10353 gdbarch_float_bit (current_gdbarch)/ TARGET_CHAR_BIT,
10354 0, "float", (struct objfile *) NULL);
10355 lai->primitive_type_vector [ada_primitive_type_double] =
10356 init_type (TYPE_CODE_FLT,
10357 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10358 0, "long_float", (struct objfile *) NULL);
10359 lai->primitive_type_vector [ada_primitive_type_long_long] =
10360 init_type (TYPE_CODE_INT,
10361 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10362 0, "long_long_integer", (struct objfile *) NULL);
10363 lai->primitive_type_vector [ada_primitive_type_long_double] =
10364 init_type (TYPE_CODE_FLT,
10365 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10366 0, "long_long_float", (struct objfile *) NULL);
10367 lai->primitive_type_vector [ada_primitive_type_natural] =
10368 init_type (TYPE_CODE_INT,
10369 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10370 0, "natural", (struct objfile *) NULL);
10371 lai->primitive_type_vector [ada_primitive_type_positive] =
10372 init_type (TYPE_CODE_INT,
10373 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10374 0, "positive", (struct objfile *) NULL);
10375 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10377 lai->primitive_type_vector [ada_primitive_type_system_address] =
10378 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10379 (struct objfile *) NULL));
10380 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10381 = "system__address";
10384 /* Language vector */
10386 /* Not really used, but needed in the ada_language_defn. */
10389 emit_char (int c, struct ui_file *stream, int quoter)
10391 ada_emit_char (c, stream, quoter, 1);
10397 warnings_issued = 0;
10398 return ada_parse ();
10401 static const struct exp_descriptor ada_exp_descriptor = {
10403 ada_operator_length,
10405 ada_dump_subexp_body,
10406 ada_evaluate_subexp
10409 const struct language_defn ada_language_defn = {
10410 "ada", /* Language name */
10415 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10416 that's not quite what this means. */
10418 &ada_exp_descriptor,
10422 ada_printchar, /* Print a character constant */
10423 ada_printstr, /* Function to print string constant */
10424 emit_char, /* Function to print single char (not used) */
10425 ada_create_fundamental_type, /* Create fundamental type in this language */
10426 ada_print_type, /* Print a type using appropriate syntax */
10427 ada_val_print, /* Print a value using appropriate syntax */
10428 ada_value_print, /* Print a top-level value */
10429 NULL, /* Language specific skip_trampoline */
10430 NULL, /* value_of_this */
10431 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10432 basic_lookup_transparent_type, /* lookup_transparent_type */
10433 ada_la_decode, /* Language specific symbol demangler */
10434 NULL, /* Language specific class_name_from_physname */
10435 ada_op_print_tab, /* expression operators for printing */
10436 0, /* c-style arrays */
10437 1, /* String lower bound */
10439 ada_get_gdb_completer_word_break_characters,
10440 ada_language_arch_info,
10441 ada_print_array_index,
10446 _initialize_ada_language (void)
10448 add_language (&ada_language_defn);
10450 varsize_limit = 65536;
10452 obstack_init (&symbol_list_obstack);
10454 decoded_names_store = htab_create_alloc
10455 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10456 NULL, xcalloc, xfree);