1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
113 static struct value *make_array_descriptor (struct type *, struct value *,
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
121 static int is_nonfunction (struct ada_symbol_info *, int);
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
126 static int num_defns_collected (struct obstack *);
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
134 static struct symtab *symtab_for_sym (struct symbol *);
136 static struct value *resolve_subexp (struct expression **, int *, int,
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
144 static char *ada_op_name (enum exp_opcode);
146 static const char *ada_decoded_op_name (enum exp_opcode);
148 static int numeric_type_p (struct type *);
150 static int integer_type_p (struct type *);
152 static int scalar_type_p (struct type *);
154 static int discrete_type_p (struct type *);
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
161 static struct symbol *find_old_style_renaming_symbol (const char *,
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
167 static struct value *evaluate_subexp (struct type *, struct expression *,
170 static struct value *evaluate_subexp_type (struct expression *, int *);
172 static int is_dynamic_field (struct type *, int);
174 static struct type *to_fixed_variant_branch_type (struct type *,
176 CORE_ADDR, struct value *);
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
180 static struct type *to_fixed_range_type (char *, struct value *,
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
186 static struct value *unwrap_value (struct value *);
188 static struct type *packed_array_type (struct type *, long *);
190 static struct type *decode_packed_array_type (struct type *);
192 static struct value *decode_packed_array (struct value *);
194 static struct value *value_subscript_packed (struct value *, int,
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
199 static struct value *coerce_unspec_val_to_type (struct value *,
202 static struct value *get_var_value (char *, char *);
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
206 static int equiv_types (struct type *, struct type *);
208 static int is_name_suffix (const char *);
210 static int wild_match (const char *, int, const char *);
212 static struct value *ada_coerce_ref (struct value *);
214 static LONGEST pos_atr (struct value *);
216 static struct value *value_pos_atr (struct value *);
218 static struct value *value_val_atr (struct type *, struct value *);
220 static struct symbol *standard_lookup (const char *, const struct block *,
223 static struct value *ada_search_struct_field (char *, struct value *, int,
226 static struct value *ada_value_primitive_field (struct value *, int, int,
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
235 static struct value *ada_to_fixed_value (struct value *);
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
241 static struct value *ada_coerce_to_simple_array (struct value *);
243 static int ada_is_direct_array_type (struct type *);
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
248 static void check_size (const struct type *);
250 static struct value *ada_index_struct_field (int, struct value *, int,
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
256 static void aggregate_assign_from_choices (struct value *, struct value *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
261 static void aggregate_assign_positional (struct value *, struct value *,
263 int *, LONGEST *, int *, int,
267 static void aggregate_assign_others (struct value *, struct value *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
278 static void ada_forward_operator_length (struct expression *, int, int *,
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
324 ada_unqualified_name (const char *decoded_name)
326 const char *result = strrchr (decoded_name, '.');
329 result++; /* Skip the dot... */
331 result = decoded_name;
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
340 add_angle_brackets (const char *str)
342 static char *result = NULL;
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347 sprintf (result, "<%s>", str);
352 ada_get_gdb_completer_word_break_characters (void)
354 return ada_completer_word_break_characters;
357 /* Print an array element index using the Ada syntax. */
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
367 /* Read the string located at ADDR from the inferior and store the
371 extract_string (CORE_ADDR addr, char *buf)
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
383 while (buf[char_index - 1] != '\000');
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
393 if (*size < min_size)
396 if (*size < min_size)
398 vect = xrealloc (vect, *size * element_size);
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
407 field_name_match (const char *field_name, const char *target)
409 int len = strlen (target);
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
427 ada_get_field_index (const struct type *type, const char *field_name,
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
442 /* The length of the prefix of NAME prior to any "___" suffix. */
445 ada_name_prefix_len (const char *name)
451 const char *p = strstr (name, "___");
453 return strlen (name);
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
463 is_suffix (const char *str, const char *suffix)
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
482 struct value *v = allocate_value (type);
484 set_value_lazy (v, 1);
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
489 VALUE_LVAL (v) = lval_memory;
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
504 struct value *result;
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
519 memcpy (value_contents_raw (result), value_contents (val),
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
531 return valaddr + offset;
535 cond_offset_target (CORE_ADDR address, long offset)
540 return address + offset;
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
553 lim_warning (const char *format, ...)
556 va_start (args, format);
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
570 check_size (const struct type *type)
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
581 /* Maximum value of a SIZE-byte signed integer type. */
583 max_of_size (int size)
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
589 /* Minimum value of a SIZE-byte signed integer type. */
591 min_of_size (int size)
593 return -max_of_size (size) - 1;
596 /* Maximum value of a SIZE-byte unsigned integer type. */
598 umax_of_size (int size)
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
604 /* Maximum value of integral type T, as a signed quantity. */
606 max_of_type (struct type *t)
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
611 return max_of_size (TYPE_LENGTH (t));
614 /* Minimum value of integral type T, as a signed quantity. */
616 min_of_type (struct type *t)
618 if (TYPE_UNSIGNED (t))
621 return min_of_size (TYPE_LENGTH (t));
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
628 switch (TYPE_CODE (type))
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
639 return value_from_longest (type, max_of_type (type));
641 error (_("Unexpected type in discrete_type_high_bound."));
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
649 switch (TYPE_CODE (type))
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
657 return value_from_longest (type, min_of_type (type));
659 error (_("Unexpected type in discrete_type_low_bound."));
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
667 base_type (struct type *type)
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
673 type = TYPE_TARGET_TYPE (type);
679 /* Language Selection */
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
684 MAIN_PST is not used. */
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
725 /* The main procedure doesn't seem to be in Ada. */
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
759 /* Return non-zero if STR should be suppressed in info listings. */
762 is_suppressed_name (const char *str)
764 if (strncmp (str, "_ada_", 5) == 0)
766 if (str[0] == '_' || str[0] == '\000')
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
780 if (p[0] == 'X' && p[-1] != '_')
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
799 ada_encode (const char *decoded)
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
813 for (p = decoded; *p != '\0'; p += 1)
815 if (!ADA_RETAIN_DOTS && *p == '.')
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
822 const struct ada_opname_map *mapping;
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
837 encoding_buffer[k] = *p;
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
851 ada_fold_name (const char *name)
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
877 is_lower_alphanum (const char c)
879 return (isdigit (c) || (isalpha (c) && islower (c)));
882 /* Remove either of these suffixes:
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
892 ada_remove_trailing_digits (const char *encoded, int *len)
894 if (*len > 1 && isdigit (encoded[*len - 1]))
897 while (i > 0 && isdigit (encoded[i]))
899 if (i >= 0 && encoded[i] == '.')
901 else if (i >= 0 && encoded[i] == '$')
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
910 /* Remove the suffix introduced by the compiler for protected object
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
916 /* Remove trailing N. */
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
941 ada_decode (const char *encoded)
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
963 len0 = strlen (encoded);
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
994 /* Make decoded big enough for possible expansion by operator name. */
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1009 else if (encoded[i] == '$')
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1031 && !isalnum (encoded[i + op_len]))
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1036 j += strlen (ada_opname_table[k].decoded);
1040 if (ada_opname_table[k].encoded != NULL)
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1070 /* Remove _E{DIGITS}+[sb] */
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1088 while (k < len0 && isdigit (encoded[k]))
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1099 || (k < len0 && encoded[k] == '_'))
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1140 /* Replace '__' by '.'. */
1148 /* It's a character part of the decoded name, so just copy it
1150 decoded[j] = encoded[i];
1155 decoded[j] = '\000';
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1164 if (strcmp (decoded, encoded) == 0)
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1175 sprintf (decoded, "<%s>", encoded);
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1208 bfd *obfd = gsymbol->bfd_section->owner;
1211 struct objfile *objf;
1214 if (obfd == objf->obfd)
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1232 *slot = xstrdup (decoded);
1241 ada_la_decode (const char *encoded, int options)
1243 return xstrdup (ada_decode (encoded));
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1256 if (sym_name == NULL || name == NULL)
1259 return wild_match (name, strlen (name), sym_name);
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1275 ada_suppress_symbol_printing (struct symbol *sym)
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1293 /* Maximum number of array dimensions we are prepared to handle. */
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1297 /* Like modify_field, but allows bitpos > wordlength. */
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1306 /* The desc_* routines return primitive portions of array descriptors
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1312 static struct type *
1313 desc_base_type (struct type *type)
1317 type = ada_check_typedef (type);
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1329 is_thin_pntr (struct type *type)
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1336 /* The descriptor type for thin pointer type TYPE. */
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1356 /* A pointer to the array data for thin-pointer value VAL. */
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1373 is_thick_pntr (struct type *type)
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1388 type = desc_base_type (type);
1392 else if (is_thin_pntr (type))
1394 type = thin_descriptor_type (type);
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1399 return ada_check_typedef (r);
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1413 static struct value *
1414 desc_bounds (struct value *arr)
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1450 fat_pntr_bounds_bitpos (struct type *type)
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1459 fat_pntr_bounds_bitsize (struct type *type)
1461 type = desc_base_type (type);
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1474 static struct type *
1475 desc_data_type (struct type *type)
1477 type = desc_base_type (type);
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1492 static struct value *
1493 desc_data (struct value *arr)
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1510 fat_pntr_data_bitpos (struct type *type)
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1519 fat_pntr_data_bitsize (struct type *type)
1521 type = desc_base_type (type);
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1545 desc_bound_bitpos (struct type *type, int i, int which)
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1555 desc_bound_bitsize (struct type *type, int i, int which)
1557 type = desc_base_type (type);
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1571 type = desc_base_type (type);
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1583 desc_arity (struct type *type)
1585 type = desc_base_type (type);
1588 return TYPE_NFIELDS (type) / 2;
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1597 ada_is_direct_array_type (struct type *type)
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1610 ada_is_array_type (struct type *type)
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1622 ada_is_simple_array_type (struct type *type)
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1635 ada_is_array_descriptor_type (struct type *type)
1637 struct type *data_type = desc_data_type (type);
1641 type = ada_check_typedef (type);
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1657 ada_is_bogus_array_descriptor (struct type *type)
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1676 ada_type_of_array (struct value *arr, int bounds)
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1689 struct type *elt_type;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1717 return lookup_pointer_type (elt_type);
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1768 ada_coerce_to_simple_array_type (struct type *type)
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1782 ada_is_packed_array_type (struct type *type)
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1846 struct type *shadow_type;
1851 raw_name = ada_type_name (desc_base_type (type));
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1866 lim_warning (_("could not find bounds information on packed array"));
1869 shadow_type = SYMBOL_TYPE (sym);
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1873 lim_warning (_("could not understand bounds information on packed array"));
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1880 (_("could not understand bit size information on packed array"));
1884 return packed_array_type (shadow_type, &bits);
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1902 type = decode_packed_array_type (value_type (arr));
1905 error (_("can't unpack array"));
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1919 mod = ada_modulus (value_type (arr)) - 1;
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1934 return coerce_unspec_val_to_type (arr, type);
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1958 (_("attempt to do packed indexing of something other than a packed array"));
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1987 /* Non-zero iff TYPE includes negative integer values. */
1990 has_negatives (struct type *type)
1992 switch (TYPE_CODE (type))
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2035 type = ada_check_typedef (type);
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2042 else if (value_lazy (obj))
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2073 srcBitsLeft = bit_size;
2075 ntarg = TYPE_LENGTH (type);
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2093 switch (TYPE_CODE (type))
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2107 targ = TYPE_LENGTH (type) - 1;
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2116 unusedLS = bit_offset;
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2178 accum = (unsigned char) *source;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2197 accum_bits -= chunk_size;
2204 accum = (unsigned char) *source >> src_offset;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2249 if (VALUE_LVAL (toval) == lval_memory
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2284 return value_assign (toval, fromval);
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2294 value_assign_to_component (struct value *container, struct value *component,
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2304 val = value_cast (value_type (component), val);
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2309 bits = value_bitsize (component);
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2332 struct type *elt_type;
2334 elt = ada_coerce_to_simple_array (arr);
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2341 for (k = 0; k < arity; k += 1)
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2360 for (k = 0; k < arity; k += 1)
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2377 return value_ind (arr);
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2417 ada_array_arity (struct type *type)
2424 type = desc_base_type (type);
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2445 ada_array_element_type (struct type *type, int nindices)
2447 type = desc_base_type (type);
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2452 struct type *p_array_type;
2454 p_array_type = desc_data_type (type);
2456 k = ada_array_arity (type);
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2469 return p_array_type;
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2475 type = TYPE_TARGET_TYPE (type);
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2488 ada_index_type (struct type *type, int n)
2490 struct type *result_type;
2492 type = desc_base_type (type);
2494 if (n > ada_array_arity (type))
2497 if (ada_is_simple_array_type (type))
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2513 return desc_index_type (desc_bounds_type (type), n);
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2528 struct type *index_type_desc;
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2548 struct type *index_type;
2552 type = TYPE_TARGET_TYPE (type);
2556 index_type = TYPE_INDEX_TYPE (type);
2558 *typep = index_type;
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2578 *typep = index_type;
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2593 ada_array_bound (struct value *arr, int n, int which)
2595 struct type *arr_type = value_type (arr);
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2606 return desc_one_bound (desc_bounds (arr), n, which);
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2616 ada_array_length (struct value *arr, int n)
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2623 if (ada_is_simple_array_type (arr_type))
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2654 /* Name resolution */
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2660 ada_decoded_op_name (enum exp_opcode op)
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2669 error (_("Could not find operator name for opcode"));
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2683 resolve (struct expression **expp, int void_context_p)
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2726 resolve_subexp (expp, pos, 0, NULL);
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2733 resolve_subexp (expp, pos, 0, NULL);
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2741 case OP_ATR_MODULUS:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2758 case OP_DISCRETE_RANGE:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2771 resolve_subexp (expp, pos, 1, NULL);
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2797 case BINOP_NOTEQUAL:
2804 case BINOP_SUBSCRIPT:
2812 case UNOP_LOGICAL_NOT:
2828 case OP_INTERNALVAR:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2855 error (_("Unexpected operator during name resolution"));
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2864 /* Pass two: perform any resolution on principal operator. */
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2873 struct ada_symbol_info *candidates;
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2882 if (n_candidates > 1)
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2895 case LOC_REGPARM_ADDR:
2899 case LOC_BASEREG_ARG:
2901 case LOC_COMPUTED_ARG:
2907 if (j < n_candidates)
2910 while (j < n_candidates)
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2914 candidates[j] = candidates[n_candidates - 1];
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2970 struct ada_symbol_info *candidates;
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2978 if (n_candidates == 1)
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3011 case BINOP_NOTEQUAL:
3019 case UNOP_LOGICAL_NOT:
3021 if (possible_user_operator_p (op, argvec))
3023 struct ada_symbol_info *candidates;
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3047 return evaluate_subexp_type (exp, pos);
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3072 switch (TYPE_CODE (ftype))
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3108 case TYPE_CODE_UNION:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3123 struct type *func_type = SYMBOL_TYPE (func);
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3134 for (i = 0; i < n_actuals; i += 1)
3136 if (actuals[i] == NULL)
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3143 if (!ada_type_match (ftype, atype, 1))
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3156 return_match (struct type *func_type, struct type *context_type)
3158 struct type *return_type;
3160 if (func_type == NULL)
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3170 context_type = base_type (context_type);
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3212 for (k = 0; k < nsyms; k += 1)
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3223 if (m > 0 || return_type == fallback)
3226 return_type = fallback;
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3247 encoded_ordered_before (char *N0, char *N1)
3251 else if (N0 == NULL)
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3273 return (strcmp (N0, N1) < 0);
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3284 for (i = 1; i < nsyms; i += 1)
3286 struct ada_symbol_info sym = syms[i];
3289 for (j = i - 1; j >= 0; j -= 1)
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3294 syms[j + 1] = syms[j];
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315 const char *select_mode = multiple_symbols_select_mode ();
3317 if (max_results < 1)
3318 error (_("Request to select 0 symbols!"));
3322 if (select_mode == multiple_symbols_cancel)
3324 canceled because the command is ambiguous\n\
3325 See set/show multiple-symbol."));
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3333 printf_unfiltered (_("[0] cancel\n"));
3334 if (max_results > 1)
3335 printf_unfiltered (_("[1] all\n"));
3337 sort_choices (syms, nsyms);
3339 for (i = 0; i < nsyms; i += 1)
3341 if (syms[i].sym == NULL)
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3375 printf_unfiltered (("[%d] "), i + first_choice);
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3389 printf_unfiltered (is_enumeral
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3400 for (i = 0; i < n_chosen; i += 1)
3401 syms[i] = syms[chosen[i]];
3406 /* Read and validate a set of numeric choices from the user in the
3407 range 0 .. N_CHOICES-1. Place the results in increasing
3408 order in CHOICES[0 .. N-1], and return N.
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3413 + A choice of 0 means to cancel the selection, throwing an error.
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3417 The user is not allowed to choose more than MAX_RESULTS values.
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
3420 prompts (for use with the -f switch). */
3423 get_selections (int *choices, int n_choices, int max_results,
3424 int is_all_choice, char *annotation_suffix)
3429 int first_choice = is_all_choice ? 2 : 1;
3431 prompt = getenv ("PS2");
3435 args = command_line_input (prompt, 0, annotation_suffix);
3438 error_no_arg (_("one or more choice numbers"));
3442 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3443 order, as given in args. Choices are validated. */
3449 while (isspace (*args))
3451 if (*args == '\0' && n_chosen == 0)
3452 error_no_arg (_("one or more choice numbers"));
3453 else if (*args == '\0')
3456 choice = strtol (args, &args2, 10);
3457 if (args == args2 || choice < 0
3458 || choice > n_choices + first_choice - 1)
3459 error (_("Argument must be choice number"));
3463 error (_("cancelled"));
3465 if (choice < first_choice)
3467 n_chosen = n_choices;
3468 for (j = 0; j < n_choices; j += 1)
3472 choice -= first_choice;
3474 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3478 if (j < 0 || choice != choices[j])
3481 for (k = n_chosen - 1; k > j; k -= 1)
3482 choices[k + 1] = choices[k];
3483 choices[j + 1] = choice;
3488 if (n_chosen > max_results)
3489 error (_("Select no more than %d of the above"), max_results);
3494 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3495 on the function identified by SYM and BLOCK, and taking NARGS
3496 arguments. Update *EXPP as needed to hold more space. */
3499 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3500 int oplen, struct symbol *sym,
3501 struct block *block)
3503 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3504 symbol, -oplen for operator being replaced). */
3505 struct expression *newexp = (struct expression *)
3506 xmalloc (sizeof (struct expression)
3507 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3508 struct expression *exp = *expp;
3510 newexp->nelts = exp->nelts + 7 - oplen;
3511 newexp->language_defn = exp->language_defn;
3512 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3513 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3514 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3516 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3517 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3519 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3520 newexp->elts[pc + 4].block = block;
3521 newexp->elts[pc + 5].symbol = sym;
3527 /* Type-class predicates */
3529 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3533 numeric_type_p (struct type *type)
3539 switch (TYPE_CODE (type))
3544 case TYPE_CODE_RANGE:
3545 return (type == TYPE_TARGET_TYPE (type)
3546 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3553 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3556 integer_type_p (struct type *type)
3562 switch (TYPE_CODE (type))
3566 case TYPE_CODE_RANGE:
3567 return (type == TYPE_TARGET_TYPE (type)
3568 || integer_type_p (TYPE_TARGET_TYPE (type)));
3575 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3578 scalar_type_p (struct type *type)
3584 switch (TYPE_CODE (type))
3587 case TYPE_CODE_RANGE:
3588 case TYPE_CODE_ENUM:
3597 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3600 discrete_type_p (struct type *type)
3606 switch (TYPE_CODE (type))
3609 case TYPE_CODE_RANGE:
3610 case TYPE_CODE_ENUM:
3618 /* Returns non-zero if OP with operands in the vector ARGS could be
3619 a user-defined function. Errs on the side of pre-defined operators
3620 (i.e., result 0). */
3623 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3625 struct type *type0 =
3626 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3627 struct type *type1 =
3628 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3642 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3646 case BINOP_BITWISE_AND:
3647 case BINOP_BITWISE_IOR:
3648 case BINOP_BITWISE_XOR:
3649 return (!(integer_type_p (type0) && integer_type_p (type1)));
3652 case BINOP_NOTEQUAL:
3657 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3660 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3663 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3667 case UNOP_LOGICAL_NOT:
3669 return (!numeric_type_p (type0));
3678 1. In the following, we assume that a renaming type's name may
3679 have an ___XD suffix. It would be nice if this went away at some
3681 2. We handle both the (old) purely type-based representation of
3682 renamings and the (new) variable-based encoding. At some point,
3683 it is devoutly to be hoped that the former goes away
3684 (FIXME: hilfinger-2007-07-09).
3685 3. Subprogram renamings are not implemented, although the XRS
3686 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3688 /* If SYM encodes a renaming,
3690 <renaming> renames <renamed entity>,
3692 sets *LEN to the length of the renamed entity's name,
3693 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3694 the string describing the subcomponent selected from the renamed
3695 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3696 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3697 are undefined). Otherwise, returns a value indicating the category
3698 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3699 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3700 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3701 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3702 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3703 may be NULL, in which case they are not assigned.
3705 [Currently, however, GCC does not generate subprogram renamings.] */
3707 enum ada_renaming_category
3708 ada_parse_renaming (struct symbol *sym,
3709 const char **renamed_entity, int *len,
3710 const char **renaming_expr)
3712 enum ada_renaming_category kind;
3717 return ADA_NOT_RENAMING;
3718 switch (SYMBOL_CLASS (sym))
3721 return ADA_NOT_RENAMING;
3723 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3724 renamed_entity, len, renaming_expr);
3728 case LOC_OPTIMIZED_OUT:
3729 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3731 return ADA_NOT_RENAMING;
3735 kind = ADA_OBJECT_RENAMING;
3739 kind = ADA_EXCEPTION_RENAMING;
3743 kind = ADA_PACKAGE_RENAMING;
3747 kind = ADA_SUBPROGRAM_RENAMING;
3751 return ADA_NOT_RENAMING;
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (suffix == NULL || suffix == info)
3759 return ADA_NOT_RENAMING;
3761 *len = strlen (info) - strlen (suffix);
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix;
3768 /* Assuming TYPE encodes a renaming according to the old encoding in
3769 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3770 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3771 ADA_NOT_RENAMING otherwise. */
3772 static enum ada_renaming_category
3773 parse_old_style_renaming (struct type *type,
3774 const char **renamed_entity, int *len,
3775 const char **renaming_expr)
3777 enum ada_renaming_category kind;
3782 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3783 || TYPE_NFIELDS (type) != 1)
3784 return ADA_NOT_RENAMING;
3786 name = type_name_no_tag (type);
3788 return ADA_NOT_RENAMING;
3790 name = strstr (name, "___XR");
3792 return ADA_NOT_RENAMING;
3797 kind = ADA_OBJECT_RENAMING;
3800 kind = ADA_EXCEPTION_RENAMING;
3803 kind = ADA_PACKAGE_RENAMING;
3806 kind = ADA_SUBPROGRAM_RENAMING;
3809 return ADA_NOT_RENAMING;
3812 info = TYPE_FIELD_NAME (type, 0);
3814 return ADA_NOT_RENAMING;
3815 if (renamed_entity != NULL)
3816 *renamed_entity = info;
3817 suffix = strstr (info, "___XE");
3818 if (renaming_expr != NULL)
3819 *renaming_expr = suffix + 5;
3820 if (suffix == NULL || suffix == info)
3821 return ADA_NOT_RENAMING;
3823 *len = suffix - info;
3829 /* Evaluation: Function Calls */
3831 /* Return an lvalue containing the value VAL. This is the identity on
3832 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3833 on the stack, using and updating *SP as the stack pointer, and
3834 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3836 static struct value *
3837 ensure_lval (struct value *val, CORE_ADDR *sp)
3839 if (! VALUE_LVAL (val))
3841 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3843 /* The following is taken from the structure-return code in
3844 call_function_by_hand. FIXME: Therefore, some refactoring seems
3846 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3848 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3849 reserving sufficient space. */
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 VALUE_ADDRESS (val) = *sp;
3857 /* Stack grows upward. Align the frame, allocate space, and
3858 then again, re-align the frame. */
3859 if (gdbarch_frame_align_p (current_gdbarch))
3860 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3861 VALUE_ADDRESS (val) = *sp;
3863 if (gdbarch_frame_align_p (current_gdbarch))
3864 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3866 VALUE_LVAL (val) = lval_memory;
3868 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3874 /* Return the value ACTUAL, converted to be an appropriate value for a
3875 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3876 allocating any necessary descriptors (fat pointers), or copies of
3877 values not residing in memory, updating it as needed. */
3880 ada_convert_actual (struct value *actual, struct type *formal_type0,
3883 struct type *actual_type = ada_check_typedef (value_type (actual));
3884 struct type *formal_type = ada_check_typedef (formal_type0);
3885 struct type *formal_target =
3886 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3888 struct type *actual_target =
3889 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3890 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3892 if (ada_is_array_descriptor_type (formal_target)
3893 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3894 return make_array_descriptor (formal_type, actual, sp);
3895 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3896 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3898 struct value *result;
3899 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3900 && ada_is_array_descriptor_type (actual_target))
3901 result = desc_data (actual);
3902 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3904 if (VALUE_LVAL (actual) != lval_memory)
3907 actual_type = ada_check_typedef (value_type (actual));
3908 val = allocate_value (actual_type);
3909 memcpy ((char *) value_contents_raw (val),
3910 (char *) value_contents (actual),
3911 TYPE_LENGTH (actual_type));
3912 actual = ensure_lval (val, sp);
3914 result = value_addr (actual);
3918 return value_cast_pointers (formal_type, result);
3920 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3921 return ada_value_ind (actual);
3927 /* Push a descriptor of type TYPE for array value ARR on the stack at
3928 *SP, updating *SP to reflect the new descriptor. Return either
3929 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3930 to-descriptor type rather than a descriptor type), a struct value *
3931 representing a pointer to this descriptor. */
3933 static struct value *
3934 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3936 struct type *bounds_type = desc_bounds_type (type);
3937 struct type *desc_type = desc_base_type (type);
3938 struct value *descriptor = allocate_value (desc_type);
3939 struct value *bounds = allocate_value (bounds_type);
3942 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3944 modify_general_field (value_contents_writeable (bounds),
3945 value_as_long (ada_array_bound (arr, i, 0)),
3946 desc_bound_bitpos (bounds_type, i, 0),
3947 desc_bound_bitsize (bounds_type, i, 0));
3948 modify_general_field (value_contents_writeable (bounds),
3949 value_as_long (ada_array_bound (arr, i, 1)),
3950 desc_bound_bitpos (bounds_type, i, 1),
3951 desc_bound_bitsize (bounds_type, i, 1));
3954 bounds = ensure_lval (bounds, sp);
3956 modify_general_field (value_contents_writeable (descriptor),
3957 VALUE_ADDRESS (ensure_lval (arr, sp)),
3958 fat_pntr_data_bitpos (desc_type),
3959 fat_pntr_data_bitsize (desc_type));
3961 modify_general_field (value_contents_writeable (descriptor),
3962 VALUE_ADDRESS (bounds),
3963 fat_pntr_bounds_bitpos (desc_type),
3964 fat_pntr_bounds_bitsize (desc_type));
3966 descriptor = ensure_lval (descriptor, sp);
3968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3969 return value_addr (descriptor);
3974 /* Dummy definitions for an experimental caching module that is not
3975 * used in the public sources. */
3978 lookup_cached_symbol (const char *name, domain_enum namespace,
3979 struct symbol **sym, struct block **block,
3980 struct symtab **symtab)
3986 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3987 struct block *block, struct symtab *symtab)
3993 /* Return the result of a standard (literal, C-like) lookup of NAME in
3994 given DOMAIN, visible from lexical block BLOCK. */
3996 static struct symbol *
3997 standard_lookup (const char *name, const struct block *block,
4001 struct symtab *symtab;
4003 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4006 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4007 cache_symbol (name, domain, sym, block_found, symtab);
4012 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4013 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4014 since they contend in overloading in the same way. */
4016 is_nonfunction (struct ada_symbol_info syms[], int n)
4020 for (i = 0; i < n; i += 1)
4021 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4022 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4023 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4029 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4030 struct types. Otherwise, they may not. */
4033 equiv_types (struct type *type0, struct type *type1)
4037 if (type0 == NULL || type1 == NULL
4038 || TYPE_CODE (type0) != TYPE_CODE (type1))
4040 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4041 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4042 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4043 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4049 /* True iff SYM0 represents the same entity as SYM1, or one that is
4050 no more defined than that of SYM1. */
4053 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4057 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4058 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4061 switch (SYMBOL_CLASS (sym0))
4067 struct type *type0 = SYMBOL_TYPE (sym0);
4068 struct type *type1 = SYMBOL_TYPE (sym1);
4069 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4070 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4071 int len0 = strlen (name0);
4073 TYPE_CODE (type0) == TYPE_CODE (type1)
4074 && (equiv_types (type0, type1)
4075 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4076 && strncmp (name1 + len0, "___XV", 5) == 0));
4079 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4080 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4086 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4087 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4090 add_defn_to_vec (struct obstack *obstackp,
4092 struct block *block, struct symtab *symtab)
4096 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4098 /* Do not try to complete stub types, as the debugger is probably
4099 already scanning all symbols matching a certain name at the
4100 time when this function is called. Trying to replace the stub
4101 type by its associated full type will cause us to restart a scan
4102 which may lead to an infinite recursion. Instead, the client
4103 collecting the matching symbols will end up collecting several
4104 matches, with at least one of them complete. It can then filter
4105 out the stub ones if needed. */
4107 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4109 if (lesseq_defined_than (sym, prevDefns[i].sym))
4111 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4113 prevDefns[i].sym = sym;
4114 prevDefns[i].block = block;
4115 prevDefns[i].symtab = symtab;
4121 struct ada_symbol_info info;
4125 info.symtab = symtab;
4126 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4130 /* Number of ada_symbol_info structures currently collected in
4131 current vector in *OBSTACKP. */
4134 num_defns_collected (struct obstack *obstackp)
4136 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4139 /* Vector of ada_symbol_info structures currently collected in current
4140 vector in *OBSTACKP. If FINISH, close off the vector and return
4141 its final address. */
4143 static struct ada_symbol_info *
4144 defns_collected (struct obstack *obstackp, int finish)
4147 return obstack_finish (obstackp);
4149 return (struct ada_symbol_info *) obstack_base (obstackp);
4152 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4153 Check the global symbols if GLOBAL, the static symbols if not.
4154 Do wild-card match if WILD. */
4156 static struct partial_symbol *
4157 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4158 int global, domain_enum namespace, int wild)
4160 struct partial_symbol **start;
4161 int name_len = strlen (name);
4162 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4171 pst->objfile->global_psymbols.list + pst->globals_offset :
4172 pst->objfile->static_psymbols.list + pst->statics_offset);
4176 for (i = 0; i < length; i += 1)
4178 struct partial_symbol *psym = start[i];
4180 if (SYMBOL_DOMAIN (psym) == namespace
4181 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4195 int M = (U + i) >> 1;
4196 struct partial_symbol *psym = start[M];
4197 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4199 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4201 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4212 struct partial_symbol *psym = start[i];
4214 if (SYMBOL_DOMAIN (psym) == namespace)
4216 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4224 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4238 int M = (U + i) >> 1;
4239 struct partial_symbol *psym = start[M];
4240 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4242 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4244 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4255 struct partial_symbol *psym = start[i];
4257 if (SYMBOL_DOMAIN (psym) == namespace)
4261 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4264 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4266 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4276 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4286 /* Find a symbol table containing symbol SYM or NULL if none. */
4288 static struct symtab *
4289 symtab_for_sym (struct symbol *sym)
4292 struct objfile *objfile;
4294 struct symbol *tmp_sym;
4295 struct dict_iterator iter;
4298 ALL_PRIMARY_SYMTABS (objfile, s)
4300 switch (SYMBOL_CLASS (sym))
4308 case LOC_CONST_BYTES:
4309 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4310 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4319 switch (SYMBOL_CLASS (sym))
4325 case LOC_REGPARM_ADDR:
4330 case LOC_BASEREG_ARG:
4332 case LOC_COMPUTED_ARG:
4333 for (j = FIRST_LOCAL_BLOCK;
4334 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4336 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4337 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4348 /* Return a minimal symbol matching NAME according to Ada decoding
4349 rules. Returns NULL if there is no such minimal symbol. Names
4350 prefixed with "standard__" are handled specially: "standard__" is
4351 first stripped off, and only static and global symbols are searched. */
4353 struct minimal_symbol *
4354 ada_lookup_simple_minsym (const char *name)
4356 struct objfile *objfile;
4357 struct minimal_symbol *msymbol;
4360 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4362 name += sizeof ("standard__") - 1;
4366 wild_match = (strstr (name, "__") == NULL);
4368 ALL_MSYMBOLS (objfile, msymbol)
4370 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4371 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4378 /* For all subprograms that statically enclose the subprogram of the
4379 selected frame, add symbols matching identifier NAME in DOMAIN
4380 and their blocks to the list of data in OBSTACKP, as for
4381 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4385 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4386 const char *name, domain_enum namespace,
4391 /* True if TYPE is definitely an artificial type supplied to a symbol
4392 for which no debugging information was given in the symbol file. */
4395 is_nondebugging_type (struct type *type)
4397 char *name = ada_type_name (type);
4398 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4401 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4402 duplicate other symbols in the list (The only case I know of where
4403 this happens is when object files containing stabs-in-ecoff are
4404 linked with files containing ordinary ecoff debugging symbols (or no
4405 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4406 Returns the number of items in the modified list. */
4409 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4416 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4417 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4418 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4420 for (j = 0; j < nsyms; j += 1)
4423 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4424 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4425 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4426 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4427 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4428 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4431 for (k = i + 1; k < nsyms; k += 1)
4432 syms[k - 1] = syms[k];
4445 /* Given a type that corresponds to a renaming entity, use the type name
4446 to extract the scope (package name or function name, fully qualified,
4447 and following the GNAT encoding convention) where this renaming has been
4448 defined. The string returned needs to be deallocated after use. */
4451 xget_renaming_scope (struct type *renaming_type)
4453 /* The renaming types adhere to the following convention:
4454 <scope>__<rename>___<XR extension>.
4455 So, to extract the scope, we search for the "___XR" extension,
4456 and then backtrack until we find the first "__". */
4458 const char *name = type_name_no_tag (renaming_type);
4459 char *suffix = strstr (name, "___XR");
4464 /* Now, backtrack a bit until we find the first "__". Start looking
4465 at suffix - 3, as the <rename> part is at least one character long. */
4467 for (last = suffix - 3; last > name; last--)
4468 if (last[0] == '_' && last[1] == '_')
4471 /* Make a copy of scope and return it. */
4473 scope_len = last - name;
4474 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4476 strncpy (scope, name, scope_len);
4477 scope[scope_len] = '\0';
4482 /* Return nonzero if NAME corresponds to a package name. */
4485 is_package_name (const char *name)
4487 /* Here, We take advantage of the fact that no symbols are generated
4488 for packages, while symbols are generated for each function.
4489 So the condition for NAME represent a package becomes equivalent
4490 to NAME not existing in our list of symbols. There is only one
4491 small complication with library-level functions (see below). */
4495 /* If it is a function that has not been defined at library level,
4496 then we should be able to look it up in the symbols. */
4497 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4500 /* Library-level function names start with "_ada_". See if function
4501 "_ada_" followed by NAME can be found. */
4503 /* Do a quick check that NAME does not contain "__", since library-level
4504 functions names cannot contain "__" in them. */
4505 if (strstr (name, "__") != NULL)
4508 fun_name = xstrprintf ("_ada_%s", name);
4510 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4513 /* Return nonzero if SYM corresponds to a renaming entity that is
4514 not visible from FUNCTION_NAME. */
4517 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4521 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4524 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4526 make_cleanup (xfree, scope);
4528 /* If the rename has been defined in a package, then it is visible. */
4529 if (is_package_name (scope))
4532 /* Check that the rename is in the current function scope by checking
4533 that its name starts with SCOPE. */
4535 /* If the function name starts with "_ada_", it means that it is
4536 a library-level function. Strip this prefix before doing the
4537 comparison, as the encoding for the renaming does not contain
4539 if (strncmp (function_name, "_ada_", 5) == 0)
4542 return (strncmp (function_name, scope, strlen (scope)) != 0);
4545 /* Remove entries from SYMS that corresponds to a renaming entity that
4546 is not visible from the function associated with CURRENT_BLOCK or
4547 that is superfluous due to the presence of more specific renaming
4548 information. Places surviving symbols in the initial entries of
4549 SYMS and returns the number of surviving symbols.
4552 First, in cases where an object renaming is implemented as a
4553 reference variable, GNAT may produce both the actual reference
4554 variable and the renaming encoding. In this case, we discard the
4557 Second, GNAT emits a type following a specified encoding for each renaming
4558 entity. Unfortunately, STABS currently does not support the definition
4559 of types that are local to a given lexical block, so all renamings types
4560 are emitted at library level. As a consequence, if an application
4561 contains two renaming entities using the same name, and a user tries to
4562 print the value of one of these entities, the result of the ada symbol
4563 lookup will also contain the wrong renaming type.
4565 This function partially covers for this limitation by attempting to
4566 remove from the SYMS list renaming symbols that should be visible
4567 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4568 method with the current information available. The implementation
4569 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4571 - When the user tries to print a rename in a function while there
4572 is another rename entity defined in a package: Normally, the
4573 rename in the function has precedence over the rename in the
4574 package, so the latter should be removed from the list. This is
4575 currently not the case.
4577 - This function will incorrectly remove valid renames if
4578 the CURRENT_BLOCK corresponds to a function which symbol name
4579 has been changed by an "Export" pragma. As a consequence,
4580 the user will be unable to print such rename entities. */
4583 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4584 int nsyms, const struct block *current_block)
4586 struct symbol *current_function;
4587 char *current_function_name;
4589 int is_new_style_renaming;
4591 /* If there is both a renaming foo___XR... encoded as a variable and
4592 a simple variable foo in the same block, discard the latter.
4593 First, zero out such symbols, then compress. */
4594 is_new_style_renaming = 0;
4595 for (i = 0; i < nsyms; i += 1)
4597 struct symbol *sym = syms[i].sym;
4598 struct block *block = syms[i].block;
4602 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4604 name = SYMBOL_LINKAGE_NAME (sym);
4605 suffix = strstr (name, "___XR");
4609 int name_len = suffix - name;
4611 is_new_style_renaming = 1;
4612 for (j = 0; j < nsyms; j += 1)
4613 if (i != j && syms[j].sym != NULL
4614 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4616 && block == syms[j].block)
4620 if (is_new_style_renaming)
4624 for (j = k = 0; j < nsyms; j += 1)
4625 if (syms[j].sym != NULL)
4633 /* Extract the function name associated to CURRENT_BLOCK.
4634 Abort if unable to do so. */
4636 if (current_block == NULL)
4639 current_function = block_function (current_block);
4640 if (current_function == NULL)
4643 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4644 if (current_function_name == NULL)
4647 /* Check each of the symbols, and remove it from the list if it is
4648 a type corresponding to a renaming that is out of the scope of
4649 the current block. */
4654 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4655 == ADA_OBJECT_RENAMING
4656 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4659 for (j = i + 1; j < nsyms; j += 1)
4660 syms[j - 1] = syms[j];
4670 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4671 scope and in global scopes, returning the number of matches. Sets
4672 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4673 indicating the symbols found and the blocks and symbol tables (if
4674 any) in which they were found. This vector are transient---good only to
4675 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4676 symbol match within the nest of blocks whose innermost member is BLOCK0,
4677 is the one match returned (no other matches in that or
4678 enclosing blocks is returned). If there are any matches in or
4679 surrounding BLOCK0, then these alone are returned. Otherwise, the
4680 search extends to global and file-scope (static) symbol tables.
4681 Names prefixed with "standard__" are handled specially: "standard__"
4682 is first stripped off, and only static and global symbols are searched. */
4685 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4686 domain_enum namespace,
4687 struct ada_symbol_info **results)
4691 struct partial_symtab *ps;
4692 struct blockvector *bv;
4693 struct objfile *objfile;
4694 struct block *block;
4696 struct minimal_symbol *msymbol;
4702 obstack_free (&symbol_list_obstack, NULL);
4703 obstack_init (&symbol_list_obstack);
4707 /* Search specified block and its superiors. */
4709 wild_match = (strstr (name0, "__") == NULL);
4711 block = (struct block *) block0; /* FIXME: No cast ought to be
4712 needed, but adding const will
4713 have a cascade effect. */
4714 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4718 name = name0 + sizeof ("standard__") - 1;
4722 while (block != NULL)
4725 ada_add_block_symbols (&symbol_list_obstack, block, name,
4726 namespace, NULL, NULL, wild_match);
4728 /* If we found a non-function match, assume that's the one. */
4729 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4730 num_defns_collected (&symbol_list_obstack)))
4733 block = BLOCK_SUPERBLOCK (block);
4736 /* If no luck so far, try to find NAME as a local symbol in some lexically
4737 enclosing subprogram. */
4738 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4739 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4740 name, namespace, wild_match);
4742 /* If we found ANY matches among non-global symbols, we're done. */
4744 if (num_defns_collected (&symbol_list_obstack) > 0)
4748 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4751 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4755 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4756 tables, and psymtab's. */
4758 ALL_PRIMARY_SYMTABS (objfile, s)
4761 bv = BLOCKVECTOR (s);
4762 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4763 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4764 objfile, s, wild_match);
4767 if (namespace == VAR_DOMAIN)
4769 ALL_MSYMBOLS (objfile, msymbol)
4771 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4773 switch (MSYMBOL_TYPE (msymbol))
4775 case mst_solib_trampoline:
4778 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4781 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4783 bv = BLOCKVECTOR (s);
4784 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4785 ada_add_block_symbols (&symbol_list_obstack, block,
4786 SYMBOL_LINKAGE_NAME (msymbol),
4787 namespace, objfile, s, wild_match);
4789 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4791 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4792 ada_add_block_symbols (&symbol_list_obstack, block,
4793 SYMBOL_LINKAGE_NAME (msymbol),
4794 namespace, objfile, s,
4803 ALL_PSYMTABS (objfile, ps)
4807 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4809 s = PSYMTAB_TO_SYMTAB (ps);
4812 bv = BLOCKVECTOR (s);
4813 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4814 ada_add_block_symbols (&symbol_list_obstack, block, name,
4815 namespace, objfile, s, wild_match);
4819 /* Now add symbols from all per-file blocks if we've gotten no hits
4820 (Not strictly correct, but perhaps better than an error).
4821 Do the symtabs first, then check the psymtabs. */
4823 if (num_defns_collected (&symbol_list_obstack) == 0)
4826 ALL_PRIMARY_SYMTABS (objfile, s)
4829 bv = BLOCKVECTOR (s);
4830 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4831 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4832 objfile, s, wild_match);
4835 ALL_PSYMTABS (objfile, ps)
4839 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4841 s = PSYMTAB_TO_SYMTAB (ps);
4842 bv = BLOCKVECTOR (s);
4845 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4846 ada_add_block_symbols (&symbol_list_obstack, block, name,
4847 namespace, objfile, s, wild_match);
4853 ndefns = num_defns_collected (&symbol_list_obstack);
4854 *results = defns_collected (&symbol_list_obstack, 1);
4856 ndefns = remove_extra_symbols (*results, ndefns);
4859 cache_symbol (name0, namespace, NULL, NULL, NULL);
4861 if (ndefns == 1 && cacheIfUnique)
4862 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4863 (*results)[0].symtab);
4865 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4871 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4872 domain_enum namespace,
4873 struct block **block_found, struct symtab **symtab)
4875 struct ada_symbol_info *candidates;
4878 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4880 if (n_candidates == 0)
4883 if (block_found != NULL)
4884 *block_found = candidates[0].block;
4888 *symtab = candidates[0].symtab;
4889 if (*symtab == NULL && candidates[0].block != NULL)
4891 struct objfile *objfile;
4894 struct blockvector *bv;
4896 /* Search the list of symtabs for one which contains the
4897 address of the start of this block. */
4898 ALL_PRIMARY_SYMTABS (objfile, s)
4900 bv = BLOCKVECTOR (s);
4901 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4902 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4903 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4906 return fixup_symbol_section (candidates[0].sym, objfile);
4909 /* FIXME: brobecker/2004-11-12: I think that we should never
4910 reach this point. I don't see a reason why we would not
4911 find a symtab for a given block, so I suggest raising an
4912 internal_error exception here. Otherwise, we end up
4913 returning a symbol but no symtab, which certain parts of
4914 the code that rely (indirectly) on this function do not
4915 expect, eventually causing a SEGV. */
4916 return fixup_symbol_section (candidates[0].sym, NULL);
4919 return candidates[0].sym;
4922 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4923 scope and in global scopes, or NULL if none. NAME is folded and
4924 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4925 choosing the first symbol if there are multiple choices.
4926 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4927 table in which the symbol was found (in both cases, these
4928 assignments occur only if the pointers are non-null). */
4930 ada_lookup_symbol (const char *name, const struct block *block0,
4931 domain_enum namespace, int *is_a_field_of_this,
4932 struct symtab **symtab)
4934 if (is_a_field_of_this != NULL)
4935 *is_a_field_of_this = 0;
4938 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4939 block0, namespace, NULL, symtab);
4942 static struct symbol *
4943 ada_lookup_symbol_nonlocal (const char *name,
4944 const char *linkage_name,
4945 const struct block *block,
4946 const domain_enum domain, struct symtab **symtab)
4948 if (linkage_name == NULL)
4949 linkage_name = name;
4950 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4955 /* True iff STR is a possible encoded suffix of a normal Ada name
4956 that is to be ignored for matching purposes. Suffixes of parallel
4957 names (e.g., XVE) are not included here. Currently, the possible suffixes
4958 are given by either of the regular expression:
4960 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4961 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4962 _E[0-9]+[bs]$ [protected object entry suffixes]
4963 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4965 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4966 match is performed. This sequence is used to differentiate homonyms,
4967 is an optional part of a valid name suffix. */
4970 is_name_suffix (const char *str)
4973 const char *matching;
4974 const int len = strlen (str);
4976 /* Skip optional leading __[0-9]+. */
4978 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4981 while (isdigit (str[0]))
4987 if (str[0] == '.' || str[0] == '$')
4990 while (isdigit (matching[0]))
4992 if (matching[0] == '\0')
4998 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5001 while (isdigit (matching[0]))
5003 if (matching[0] == '\0')
5008 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5009 with a N at the end. Unfortunately, the compiler uses the same
5010 convention for other internal types it creates. So treating
5011 all entity names that end with an "N" as a name suffix causes
5012 some regressions. For instance, consider the case of an enumerated
5013 type. To support the 'Image attribute, it creates an array whose
5015 Having a single character like this as a suffix carrying some
5016 information is a bit risky. Perhaps we should change the encoding
5017 to be something like "_N" instead. In the meantime, do not do
5018 the following check. */
5019 /* Protected Object Subprograms */
5020 if (len == 1 && str [0] == 'N')
5025 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5028 while (isdigit (matching[0]))
5030 if ((matching[0] == 'b' || matching[0] == 's')
5031 && matching [1] == '\0')
5035 /* ??? We should not modify STR directly, as we are doing below. This
5036 is fine in this case, but may become problematic later if we find
5037 that this alternative did not work, and want to try matching
5038 another one from the begining of STR. Since we modified it, we
5039 won't be able to find the begining of the string anymore! */
5043 while (str[0] != '_' && str[0] != '\0')
5045 if (str[0] != 'n' && str[0] != 'b')
5051 if (str[0] == '\000')
5056 if (str[1] != '_' || str[2] == '\000')
5060 if (strcmp (str + 3, "JM") == 0)
5062 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5063 the LJM suffix in favor of the JM one. But we will
5064 still accept LJM as a valid suffix for a reasonable
5065 amount of time, just to allow ourselves to debug programs
5066 compiled using an older version of GNAT. */
5067 if (strcmp (str + 3, "LJM") == 0)
5071 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5072 || str[4] == 'U' || str[4] == 'P')
5074 if (str[4] == 'R' && str[5] != 'T')
5078 if (!isdigit (str[2]))
5080 for (k = 3; str[k] != '\0'; k += 1)
5081 if (!isdigit (str[k]) && str[k] != '_')
5085 if (str[0] == '$' && isdigit (str[1]))
5087 for (k = 2; str[k] != '\0'; k += 1)
5088 if (!isdigit (str[k]) && str[k] != '_')
5095 /* Return nonzero if the given string starts with a dot ('.')
5096 followed by zero or more digits.
5098 Note: brobecker/2003-11-10: A forward declaration has not been
5099 added at the begining of this file yet, because this function
5100 is only used to work around a problem found during wild matching
5101 when trying to match minimal symbol names against symbol names
5102 obtained from dwarf-2 data. This function is therefore currently
5103 only used in wild_match() and is likely to be deleted when the
5104 problem in dwarf-2 is fixed. */
5107 is_dot_digits_suffix (const char *str)
5113 while (isdigit (str[0]))
5115 return (str[0] == '\0');
5118 /* Return non-zero if the string starting at NAME and ending before
5119 NAME_END contains no capital letters. */
5122 is_valid_name_for_wild_match (const char *name0)
5124 const char *decoded_name = ada_decode (name0);
5127 for (i=0; decoded_name[i] != '\0'; i++)
5128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5134 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5135 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5136 informational suffixes of NAME (i.e., for which is_name_suffix is
5140 wild_match (const char *patn0, int patn_len, const char *name0)
5147 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5148 stored in the symbol table for nested function names is sometimes
5149 different from the name of the associated entity stored in
5150 the dwarf-2 data: This is the case for nested subprograms, where
5151 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5152 while the symbol name from the dwarf-2 data does not.
5154 Although the DWARF-2 standard documents that entity names stored
5155 in the dwarf-2 data should be identical to the name as seen in
5156 the source code, GNAT takes a different approach as we already use
5157 a special encoding mechanism to convey the information so that
5158 a C debugger can still use the information generated to debug
5159 Ada programs. A corollary is that the symbol names in the dwarf-2
5160 data should match the names found in the symbol table. I therefore
5161 consider this issue as a compiler defect.
5163 Until the compiler is properly fixed, we work-around the problem
5164 by ignoring such suffixes during the match. We do so by making
5165 a copy of PATN0 and NAME0, and then by stripping such a suffix
5166 if present. We then perform the match on the resulting strings. */
5169 name_len = strlen (name0);
5171 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5172 strcpy (name, name0);
5173 dot = strrchr (name, '.');
5174 if (dot != NULL && is_dot_digits_suffix (dot))
5177 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5178 strncpy (patn, patn0, patn_len);
5179 patn[patn_len] = '\0';
5180 dot = strrchr (patn, '.');
5181 if (dot != NULL && is_dot_digits_suffix (dot))
5184 patn_len = dot - patn;
5188 /* Now perform the wild match. */
5190 name_len = strlen (name);
5191 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5192 && strncmp (patn, name + 5, patn_len) == 0
5193 && is_name_suffix (name + patn_len + 5))
5196 while (name_len >= patn_len)
5198 if (strncmp (patn, name, patn_len) == 0
5199 && is_name_suffix (name + patn_len))
5200 return (name == name_start || is_valid_name_for_wild_match (name0));
5207 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5212 if (!islower (name[2]))
5219 if (!islower (name[1]))
5230 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5231 vector *defn_symbols, updating the list of symbols in OBSTACKP
5232 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5233 OBJFILE is the section containing BLOCK.
5234 SYMTAB is recorded with each symbol added. */
5237 ada_add_block_symbols (struct obstack *obstackp,
5238 struct block *block, const char *name,
5239 domain_enum domain, struct objfile *objfile,
5240 struct symtab *symtab, int wild)
5242 struct dict_iterator iter;
5243 int name_len = strlen (name);
5244 /* A matching argument symbol, if any. */
5245 struct symbol *arg_sym;
5246 /* Set true when we find a matching non-argument symbol. */
5255 ALL_BLOCK_SYMBOLS (block, iter, sym)
5257 if (SYMBOL_DOMAIN (sym) == domain
5258 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5260 switch (SYMBOL_CLASS (sym))
5266 case LOC_REGPARM_ADDR:
5267 case LOC_BASEREG_ARG:
5268 case LOC_COMPUTED_ARG:
5271 case LOC_UNRESOLVED:
5275 add_defn_to_vec (obstackp,
5276 fixup_symbol_section (sym, objfile),
5285 ALL_BLOCK_SYMBOLS (block, iter, sym)
5287 if (SYMBOL_DOMAIN (sym) == domain)
5289 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5291 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5293 switch (SYMBOL_CLASS (sym))
5299 case LOC_REGPARM_ADDR:
5300 case LOC_BASEREG_ARG:
5301 case LOC_COMPUTED_ARG:
5304 case LOC_UNRESOLVED:
5308 add_defn_to_vec (obstackp,
5309 fixup_symbol_section (sym, objfile),
5318 if (!found_sym && arg_sym != NULL)
5320 add_defn_to_vec (obstackp,
5321 fixup_symbol_section (arg_sym, objfile),
5330 ALL_BLOCK_SYMBOLS (block, iter, sym)
5332 if (SYMBOL_DOMAIN (sym) == domain)
5336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5339 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5348 switch (SYMBOL_CLASS (sym))
5354 case LOC_REGPARM_ADDR:
5355 case LOC_BASEREG_ARG:
5356 case LOC_COMPUTED_ARG:
5359 case LOC_UNRESOLVED:
5363 add_defn_to_vec (obstackp,
5364 fixup_symbol_section (sym, objfile),
5372 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5373 They aren't parameters, right? */
5374 if (!found_sym && arg_sym != NULL)
5376 add_defn_to_vec (obstackp,
5377 fixup_symbol_section (arg_sym, objfile),
5384 /* Symbol Completion */
5386 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5387 name in a form that's appropriate for the completion. The result
5388 does not need to be deallocated, but is only good until the next call.
5390 TEXT_LEN is equal to the length of TEXT.
5391 Perform a wild match if WILD_MATCH is set.
5392 ENCODED should be set if TEXT represents the start of a symbol name
5393 in its encoded form. */
5396 symbol_completion_match (const char *sym_name,
5397 const char *text, int text_len,
5398 int wild_match, int encoded)
5401 const int verbatim_match = (text[0] == '<');
5406 /* Strip the leading angle bracket. */
5411 /* First, test against the fully qualified name of the symbol. */
5413 if (strncmp (sym_name, text, text_len) == 0)
5416 if (match && !encoded)
5418 /* One needed check before declaring a positive match is to verify
5419 that iff we are doing a verbatim match, the decoded version
5420 of the symbol name starts with '<'. Otherwise, this symbol name
5421 is not a suitable completion. */
5422 const char *sym_name_copy = sym_name;
5423 int has_angle_bracket;
5425 sym_name = ada_decode (sym_name);
5426 has_angle_bracket = (sym_name[0] == '<');
5427 match = (has_angle_bracket == verbatim_match);
5428 sym_name = sym_name_copy;
5431 if (match && !verbatim_match)
5433 /* When doing non-verbatim match, another check that needs to
5434 be done is to verify that the potentially matching symbol name
5435 does not include capital letters, because the ada-mode would
5436 not be able to understand these symbol names without the
5437 angle bracket notation. */
5440 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5445 /* Second: Try wild matching... */
5447 if (!match && wild_match)
5449 /* Since we are doing wild matching, this means that TEXT
5450 may represent an unqualified symbol name. We therefore must
5451 also compare TEXT against the unqualified name of the symbol. */
5452 sym_name = ada_unqualified_name (ada_decode (sym_name));
5454 if (strncmp (sym_name, text, text_len) == 0)
5458 /* Finally: If we found a mach, prepare the result to return. */
5464 sym_name = add_angle_brackets (sym_name);
5467 sym_name = ada_decode (sym_name);
5472 typedef char *char_ptr;
5473 DEF_VEC_P (char_ptr);
5475 /* A companion function to ada_make_symbol_completion_list().
5476 Check if SYM_NAME represents a symbol which name would be suitable
5477 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5478 it is appended at the end of the given string vector SV.
5480 ORIG_TEXT is the string original string from the user command
5481 that needs to be completed. WORD is the entire command on which
5482 completion should be performed. These two parameters are used to
5483 determine which part of the symbol name should be added to the
5485 if WILD_MATCH is set, then wild matching is performed.
5486 ENCODED should be set if TEXT represents a symbol name in its
5487 encoded formed (in which case the completion should also be
5491 symbol_completion_add (VEC(char_ptr) **sv,
5492 const char *sym_name,
5493 const char *text, int text_len,
5494 const char *orig_text, const char *word,
5495 int wild_match, int encoded)
5497 const char *match = symbol_completion_match (sym_name, text, text_len,
5498 wild_match, encoded);
5504 /* We found a match, so add the appropriate completion to the given
5507 if (word == orig_text)
5509 completion = xmalloc (strlen (match) + 5);
5510 strcpy (completion, match);
5512 else if (word > orig_text)
5514 /* Return some portion of sym_name. */
5515 completion = xmalloc (strlen (match) + 5);
5516 strcpy (completion, match + (word - orig_text));
5520 /* Return some of ORIG_TEXT plus sym_name. */
5521 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5522 strncpy (completion, word, orig_text - word);
5523 completion[orig_text - word] = '\0';
5524 strcat (completion, match);
5527 VEC_safe_push (char_ptr, *sv, completion);
5530 /* Return a list of possible symbol names completing TEXT0. The list
5531 is NULL terminated. WORD is the entire command on which completion
5535 ada_make_symbol_completion_list (char *text0, char *word)
5541 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5544 struct partial_symtab *ps;
5545 struct minimal_symbol *msymbol;
5546 struct objfile *objfile;
5547 struct block *b, *surrounding_static_block = 0;
5549 struct dict_iterator iter;
5551 if (text0[0] == '<')
5553 text = xstrdup (text0);
5554 make_cleanup (xfree, text);
5555 text_len = strlen (text);
5561 text = xstrdup (ada_encode (text0));
5562 make_cleanup (xfree, text);
5563 text_len = strlen (text);
5564 for (i = 0; i < text_len; i++)
5565 text[i] = tolower (text[i]);
5567 encoded = (strstr (text0, "__") != NULL);
5568 /* If the name contains a ".", then the user is entering a fully
5569 qualified entity name, and the match must not be done in wild
5570 mode. Similarly, if the user wants to complete what looks like
5571 an encoded name, the match must not be done in wild mode. */
5572 wild_match = (strchr (text0, '.') == NULL && !encoded);
5575 /* First, look at the partial symtab symbols. */
5576 ALL_PSYMTABS (objfile, ps)
5578 struct partial_symbol **psym;
5580 /* If the psymtab's been read in we'll get it when we search
5581 through the blockvector. */
5585 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5586 psym < (objfile->global_psymbols.list + ps->globals_offset
5587 + ps->n_global_syms); psym++)
5590 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5591 text, text_len, text0, word,
5592 wild_match, encoded);
5595 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5596 psym < (objfile->static_psymbols.list + ps->statics_offset
5597 + ps->n_static_syms); psym++)
5600 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5601 text, text_len, text0, word,
5602 wild_match, encoded);
5606 /* At this point scan through the misc symbol vectors and add each
5607 symbol you find to the list. Eventually we want to ignore
5608 anything that isn't a text symbol (everything else will be
5609 handled by the psymtab code above). */
5611 ALL_MSYMBOLS (objfile, msymbol)
5614 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5615 text, text_len, text0, word, wild_match, encoded);
5618 /* Search upwards from currently selected frame (so that we can
5619 complete on local vars. */
5621 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5623 if (!BLOCK_SUPERBLOCK (b))
5624 surrounding_static_block = b; /* For elmin of dups */
5626 ALL_BLOCK_SYMBOLS (b, iter, sym)
5628 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5629 text, text_len, text0, word,
5630 wild_match, encoded);
5634 /* Go through the symtabs and check the externs and statics for
5635 symbols which match. */
5637 ALL_SYMTABS (objfile, s)
5640 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5641 ALL_BLOCK_SYMBOLS (b, iter, sym)
5643 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5644 text, text_len, text0, word,
5645 wild_match, encoded);
5649 ALL_SYMTABS (objfile, s)
5652 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5653 /* Don't do this block twice. */
5654 if (b == surrounding_static_block)
5656 ALL_BLOCK_SYMBOLS (b, iter, sym)
5658 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5659 text, text_len, text0, word,
5660 wild_match, encoded);
5664 /* Append the closing NULL entry. */
5665 VEC_safe_push (char_ptr, completions, NULL);
5667 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5668 return the copy. It's unfortunate that we have to make a copy
5669 of an array that we're about to destroy, but there is nothing much
5670 we can do about it. Fortunately, it's typically not a very large
5673 const size_t completions_size =
5674 VEC_length (char_ptr, completions) * sizeof (char *);
5675 char **result = malloc (completions_size);
5677 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5679 VEC_free (char_ptr, completions);
5686 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5687 for tagged types. */
5690 ada_is_dispatch_table_ptr_type (struct type *type)
5694 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5697 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5701 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5704 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5705 to be invisible to users. */
5708 ada_is_ignored_field (struct type *type, int field_num)
5710 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5713 /* Check the name of that field. */
5715 const char *name = TYPE_FIELD_NAME (type, field_num);
5717 /* Anonymous field names should not be printed.
5718 brobecker/2007-02-20: I don't think this can actually happen
5719 but we don't want to print the value of annonymous fields anyway. */
5723 /* A field named "_parent" is internally generated by GNAT for
5724 tagged types, and should not be printed either. */
5725 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5729 /* If this is the dispatch table of a tagged type, then ignore. */
5730 if (ada_is_tagged_type (type, 1)
5731 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5734 /* Not a special field, so it should not be ignored. */
5738 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5739 pointer or reference type whose ultimate target has a tag field. */
5742 ada_is_tagged_type (struct type *type, int refok)
5744 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5747 /* True iff TYPE represents the type of X'Tag */
5750 ada_is_tag_type (struct type *type)
5752 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5756 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5757 return (name != NULL
5758 && strcmp (name, "ada__tags__dispatch_table") == 0);
5762 /* The type of the tag on VAL. */
5765 ada_tag_type (struct value *val)
5767 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5770 /* The value of the tag on VAL. */
5773 ada_value_tag (struct value *val)
5775 return ada_value_struct_elt (val, "_tag", 0);
5778 /* The value of the tag on the object of type TYPE whose contents are
5779 saved at VALADDR, if it is non-null, or is at memory address
5782 static struct value *
5783 value_tag_from_contents_and_address (struct type *type,
5784 const gdb_byte *valaddr,
5787 int tag_byte_offset, dummy1, dummy2;
5788 struct type *tag_type;
5789 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5792 const gdb_byte *valaddr1 = ((valaddr == NULL)
5794 : valaddr + tag_byte_offset);
5795 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5797 return value_from_contents_and_address (tag_type, valaddr1, address1);
5802 static struct type *
5803 type_from_tag (struct value *tag)
5805 const char *type_name = ada_tag_name (tag);
5806 if (type_name != NULL)
5807 return ada_find_any_type (ada_encode (type_name));
5818 static int ada_tag_name_1 (void *);
5819 static int ada_tag_name_2 (struct tag_args *);
5821 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5822 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5823 The value stored in ARGS->name is valid until the next call to
5827 ada_tag_name_1 (void *args0)
5829 struct tag_args *args = (struct tag_args *) args0;
5830 static char name[1024];
5834 val = ada_value_struct_elt (args->tag, "tsd", 1);
5836 return ada_tag_name_2 (args);
5837 val = ada_value_struct_elt (val, "expanded_name", 1);
5840 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5841 for (p = name; *p != '\0'; p += 1)
5848 /* Utility function for ada_tag_name_1 that tries the second
5849 representation for the dispatch table (in which there is no
5850 explicit 'tsd' field in the referent of the tag pointer, and instead
5851 the tsd pointer is stored just before the dispatch table. */
5854 ada_tag_name_2 (struct tag_args *args)
5856 struct type *info_type;
5857 static char name[1024];
5859 struct value *val, *valp;
5862 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5863 if (info_type == NULL)
5865 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5866 valp = value_cast (info_type, args->tag);
5869 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5872 val = ada_value_struct_elt (val, "expanded_name", 1);
5875 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5876 for (p = name; *p != '\0'; p += 1)
5883 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5887 ada_tag_name (struct value *tag)
5889 struct tag_args args;
5890 if (!ada_is_tag_type (value_type (tag)))
5894 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5898 /* The parent type of TYPE, or NULL if none. */
5901 ada_parent_type (struct type *type)
5905 type = ada_check_typedef (type);
5907 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5910 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5911 if (ada_is_parent_field (type, i))
5912 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5917 /* True iff field number FIELD_NUM of structure type TYPE contains the
5918 parent-type (inherited) fields of a derived type. Assumes TYPE is
5919 a structure type with at least FIELD_NUM+1 fields. */
5922 ada_is_parent_field (struct type *type, int field_num)
5924 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5925 return (name != NULL
5926 && (strncmp (name, "PARENT", 6) == 0
5927 || strncmp (name, "_parent", 7) == 0));
5930 /* True iff field number FIELD_NUM of structure type TYPE is a
5931 transparent wrapper field (which should be silently traversed when doing
5932 field selection and flattened when printing). Assumes TYPE is a
5933 structure type with at least FIELD_NUM+1 fields. Such fields are always
5937 ada_is_wrapper_field (struct type *type, int field_num)
5939 const char *name = TYPE_FIELD_NAME (type, field_num);
5940 return (name != NULL
5941 && (strncmp (name, "PARENT", 6) == 0
5942 || strcmp (name, "REP") == 0
5943 || strncmp (name, "_parent", 7) == 0
5944 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5947 /* True iff field number FIELD_NUM of structure or union type TYPE
5948 is a variant wrapper. Assumes TYPE is a structure type with at least
5949 FIELD_NUM+1 fields. */
5952 ada_is_variant_part (struct type *type, int field_num)
5954 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5955 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5956 || (is_dynamic_field (type, field_num)
5957 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5958 == TYPE_CODE_UNION)));
5961 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5962 whose discriminants are contained in the record type OUTER_TYPE,
5963 returns the type of the controlling discriminant for the variant. */
5966 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5968 char *name = ada_variant_discrim_name (var_type);
5970 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5972 return builtin_type_int;
5977 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5978 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5979 represents a 'when others' clause; otherwise 0. */
5982 ada_is_others_clause (struct type *type, int field_num)
5984 const char *name = TYPE_FIELD_NAME (type, field_num);
5985 return (name != NULL && name[0] == 'O');
5988 /* Assuming that TYPE0 is the type of the variant part of a record,
5989 returns the name of the discriminant controlling the variant.
5990 The value is valid until the next call to ada_variant_discrim_name. */
5993 ada_variant_discrim_name (struct type *type0)
5995 static char *result = NULL;
5996 static size_t result_len = 0;
5999 const char *discrim_end;
6000 const char *discrim_start;
6002 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6003 type = TYPE_TARGET_TYPE (type0);
6007 name = ada_type_name (type);
6009 if (name == NULL || name[0] == '\000')
6012 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6015 if (strncmp (discrim_end, "___XVN", 6) == 0)
6018 if (discrim_end == name)
6021 for (discrim_start = discrim_end; discrim_start != name + 3;
6024 if (discrim_start == name + 1)
6026 if ((discrim_start > name + 3
6027 && strncmp (discrim_start - 3, "___", 3) == 0)
6028 || discrim_start[-1] == '.')
6032 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6033 strncpy (result, discrim_start, discrim_end - discrim_start);
6034 result[discrim_end - discrim_start] = '\0';
6038 /* Scan STR for a subtype-encoded number, beginning at position K.
6039 Put the position of the character just past the number scanned in
6040 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6041 Return 1 if there was a valid number at the given position, and 0
6042 otherwise. A "subtype-encoded" number consists of the absolute value
6043 in decimal, followed by the letter 'm' to indicate a negative number.
6044 Assumes 0m does not occur. */
6047 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6051 if (!isdigit (str[k]))
6054 /* Do it the hard way so as not to make any assumption about
6055 the relationship of unsigned long (%lu scan format code) and
6058 while (isdigit (str[k]))
6060 RU = RU * 10 + (str[k] - '0');
6067 *R = (-(LONGEST) (RU - 1)) - 1;
6073 /* NOTE on the above: Technically, C does not say what the results of
6074 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6075 number representable as a LONGEST (although either would probably work
6076 in most implementations). When RU>0, the locution in the then branch
6077 above is always equivalent to the negative of RU. */
6084 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6085 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6086 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6089 ada_in_variant (LONGEST val, struct type *type, int field_num)
6091 const char *name = TYPE_FIELD_NAME (type, field_num);
6104 if (!ada_scan_number (name, p + 1, &W, &p))
6113 if (!ada_scan_number (name, p + 1, &L, &p)
6114 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6116 if (val >= L && val <= U)
6128 /* FIXME: Lots of redundancy below. Try to consolidate. */
6130 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6131 ARG_TYPE, extract and return the value of one of its (non-static)
6132 fields. FIELDNO says which field. Differs from value_primitive_field
6133 only in that it can handle packed values of arbitrary type. */
6135 static struct value *
6136 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6137 struct type *arg_type)
6141 arg_type = ada_check_typedef (arg_type);
6142 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6144 /* Handle packed fields. */
6146 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6148 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6149 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6151 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6152 offset + bit_pos / 8,
6153 bit_pos % 8, bit_size, type);
6156 return value_primitive_field (arg1, offset, fieldno, arg_type);
6159 /* Find field with name NAME in object of type TYPE. If found,
6160 set the following for each argument that is non-null:
6161 - *FIELD_TYPE_P to the field's type;
6162 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6163 an object of that type;
6164 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6165 - *BIT_SIZE_P to its size in bits if the field is packed, and
6167 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6168 fields up to but not including the desired field, or by the total
6169 number of fields if not found. A NULL value of NAME never
6170 matches; the function just counts visible fields in this case.
6172 Returns 1 if found, 0 otherwise. */
6175 find_struct_field (char *name, struct type *type, int offset,
6176 struct type **field_type_p,
6177 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6182 type = ada_check_typedef (type);
6184 if (field_type_p != NULL)
6185 *field_type_p = NULL;
6186 if (byte_offset_p != NULL)
6188 if (bit_offset_p != NULL)
6190 if (bit_size_p != NULL)
6193 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6195 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6196 int fld_offset = offset + bit_pos / 8;
6197 char *t_field_name = TYPE_FIELD_NAME (type, i);
6199 if (t_field_name == NULL)
6202 else if (name != NULL && field_name_match (t_field_name, name))
6204 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6205 if (field_type_p != NULL)
6206 *field_type_p = TYPE_FIELD_TYPE (type, i);
6207 if (byte_offset_p != NULL)
6208 *byte_offset_p = fld_offset;
6209 if (bit_offset_p != NULL)
6210 *bit_offset_p = bit_pos % 8;
6211 if (bit_size_p != NULL)
6212 *bit_size_p = bit_size;
6215 else if (ada_is_wrapper_field (type, i))
6217 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6218 field_type_p, byte_offset_p, bit_offset_p,
6219 bit_size_p, index_p))
6222 else if (ada_is_variant_part (type, i))
6224 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6227 struct type *field_type
6228 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6230 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6232 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6234 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6235 field_type_p, byte_offset_p,
6236 bit_offset_p, bit_size_p, index_p))
6240 else if (index_p != NULL)
6246 /* Number of user-visible fields in record type TYPE. */
6249 num_visible_fields (struct type *type)
6253 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6257 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6258 and search in it assuming it has (class) type TYPE.
6259 If found, return value, else return NULL.
6261 Searches recursively through wrapper fields (e.g., '_parent'). */
6263 static struct value *
6264 ada_search_struct_field (char *name, struct value *arg, int offset,
6268 type = ada_check_typedef (type);
6270 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6272 char *t_field_name = TYPE_FIELD_NAME (type, i);
6274 if (t_field_name == NULL)
6277 else if (field_name_match (t_field_name, name))
6278 return ada_value_primitive_field (arg, offset, i, type);
6280 else if (ada_is_wrapper_field (type, i))
6282 struct value *v = /* Do not let indent join lines here. */
6283 ada_search_struct_field (name, arg,
6284 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6285 TYPE_FIELD_TYPE (type, i));
6290 else if (ada_is_variant_part (type, i))
6292 /* PNH: Do we ever get here? See find_struct_field. */
6294 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6295 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6297 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6299 struct value *v = ada_search_struct_field /* Force line break. */
6301 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6302 TYPE_FIELD_TYPE (field_type, j));
6311 static struct value *ada_index_struct_field_1 (int *, struct value *,
6312 int, struct type *);
6315 /* Return field #INDEX in ARG, where the index is that returned by
6316 * find_struct_field through its INDEX_P argument. Adjust the address
6317 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6318 * If found, return value, else return NULL. */
6320 static struct value *
6321 ada_index_struct_field (int index, struct value *arg, int offset,
6324 return ada_index_struct_field_1 (&index, arg, offset, type);
6328 /* Auxiliary function for ada_index_struct_field. Like
6329 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6332 static struct value *
6333 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6337 type = ada_check_typedef (type);
6339 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6341 if (TYPE_FIELD_NAME (type, i) == NULL)
6343 else if (ada_is_wrapper_field (type, i))
6345 struct value *v = /* Do not let indent join lines here. */
6346 ada_index_struct_field_1 (index_p, arg,
6347 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6348 TYPE_FIELD_TYPE (type, i));
6353 else if (ada_is_variant_part (type, i))
6355 /* PNH: Do we ever get here? See ada_search_struct_field,
6356 find_struct_field. */
6357 error (_("Cannot assign this kind of variant record"));
6359 else if (*index_p == 0)
6360 return ada_value_primitive_field (arg, offset, i, type);
6367 /* Given ARG, a value of type (pointer or reference to a)*
6368 structure/union, extract the component named NAME from the ultimate
6369 target structure/union and return it as a value with its
6370 appropriate type. If ARG is a pointer or reference and the field
6371 is not packed, returns a reference to the field, otherwise the
6372 value of the field (an lvalue if ARG is an lvalue).
6374 The routine searches for NAME among all members of the structure itself
6375 and (recursively) among all members of any wrapper members
6378 If NO_ERR, then simply return NULL in case of error, rather than
6382 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6384 struct type *t, *t1;
6388 t1 = t = ada_check_typedef (value_type (arg));
6389 if (TYPE_CODE (t) == TYPE_CODE_REF)
6391 t1 = TYPE_TARGET_TYPE (t);
6394 t1 = ada_check_typedef (t1);
6395 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6397 arg = coerce_ref (arg);
6402 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6404 t1 = TYPE_TARGET_TYPE (t);
6407 t1 = ada_check_typedef (t1);
6408 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6410 arg = value_ind (arg);
6417 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6421 v = ada_search_struct_field (name, arg, 0, t);
6424 int bit_offset, bit_size, byte_offset;
6425 struct type *field_type;
6428 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6429 address = value_as_address (arg);
6431 address = unpack_pointer (t, value_contents (arg));
6433 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6434 if (find_struct_field (name, t1, 0,
6435 &field_type, &byte_offset, &bit_offset,
6440 if (TYPE_CODE (t) == TYPE_CODE_REF)
6441 arg = ada_coerce_ref (arg);
6443 arg = ada_value_ind (arg);
6444 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6445 bit_offset, bit_size,
6449 v = value_from_pointer (lookup_reference_type (field_type),
6450 address + byte_offset);
6454 if (v != NULL || no_err)
6457 error (_("There is no member named %s."), name);
6463 error (_("Attempt to extract a component of a value that is not a record."));
6466 /* Given a type TYPE, look up the type of the component of type named NAME.
6467 If DISPP is non-null, add its byte displacement from the beginning of a
6468 structure (pointed to by a value) of type TYPE to *DISPP (does not
6469 work for packed fields).
6471 Matches any field whose name has NAME as a prefix, possibly
6474 TYPE can be either a struct or union. If REFOK, TYPE may also
6475 be a (pointer or reference)+ to a struct or union, and the
6476 ultimate target type will be searched.
6478 Looks recursively into variant clauses and parent types.
6480 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6481 TYPE is not a type of the right kind. */
6483 static struct type *
6484 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6485 int noerr, int *dispp)
6492 if (refok && type != NULL)
6495 type = ada_check_typedef (type);
6496 if (TYPE_CODE (type) != TYPE_CODE_PTR
6497 && TYPE_CODE (type) != TYPE_CODE_REF)
6499 type = TYPE_TARGET_TYPE (type);
6503 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6504 && TYPE_CODE (type) != TYPE_CODE_UNION))
6510 target_terminal_ours ();
6511 gdb_flush (gdb_stdout);
6513 error (_("Type (null) is not a structure or union type"));
6516 /* XXX: type_sprint */
6517 fprintf_unfiltered (gdb_stderr, _("Type "));
6518 type_print (type, "", gdb_stderr, -1);
6519 error (_(" is not a structure or union type"));
6524 type = to_static_fixed_type (type);
6526 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6528 char *t_field_name = TYPE_FIELD_NAME (type, i);
6532 if (t_field_name == NULL)
6535 else if (field_name_match (t_field_name, name))
6538 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6539 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6542 else if (ada_is_wrapper_field (type, i))
6545 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6550 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6555 else if (ada_is_variant_part (type, i))
6558 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6560 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6563 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6568 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6579 target_terminal_ours ();
6580 gdb_flush (gdb_stdout);
6583 /* XXX: type_sprint */
6584 fprintf_unfiltered (gdb_stderr, _("Type "));
6585 type_print (type, "", gdb_stderr, -1);
6586 error (_(" has no component named <null>"));
6590 /* XXX: type_sprint */
6591 fprintf_unfiltered (gdb_stderr, _("Type "));
6592 type_print (type, "", gdb_stderr, -1);
6593 error (_(" has no component named %s"), name);
6600 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6601 within a value of type OUTER_TYPE that is stored in GDB at
6602 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6603 numbering from 0) is applicable. Returns -1 if none are. */
6606 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6607 const gdb_byte *outer_valaddr)
6611 char *discrim_name = ada_variant_discrim_name (var_type);
6612 struct value *outer;
6613 struct value *discrim;
6614 LONGEST discrim_val;
6616 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6617 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6618 if (discrim == NULL)
6620 discrim_val = value_as_long (discrim);
6623 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6625 if (ada_is_others_clause (var_type, i))
6627 else if (ada_in_variant (discrim_val, var_type, i))
6631 return others_clause;
6636 /* Dynamic-Sized Records */
6638 /* Strategy: The type ostensibly attached to a value with dynamic size
6639 (i.e., a size that is not statically recorded in the debugging
6640 data) does not accurately reflect the size or layout of the value.
6641 Our strategy is to convert these values to values with accurate,
6642 conventional types that are constructed on the fly. */
6644 /* There is a subtle and tricky problem here. In general, we cannot
6645 determine the size of dynamic records without its data. However,
6646 the 'struct value' data structure, which GDB uses to represent
6647 quantities in the inferior process (the target), requires the size
6648 of the type at the time of its allocation in order to reserve space
6649 for GDB's internal copy of the data. That's why the
6650 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6651 rather than struct value*s.
6653 However, GDB's internal history variables ($1, $2, etc.) are
6654 struct value*s containing internal copies of the data that are not, in
6655 general, the same as the data at their corresponding addresses in
6656 the target. Fortunately, the types we give to these values are all
6657 conventional, fixed-size types (as per the strategy described
6658 above), so that we don't usually have to perform the
6659 'to_fixed_xxx_type' conversions to look at their values.
6660 Unfortunately, there is one exception: if one of the internal
6661 history variables is an array whose elements are unconstrained
6662 records, then we will need to create distinct fixed types for each
6663 element selected. */
6665 /* The upshot of all of this is that many routines take a (type, host
6666 address, target address) triple as arguments to represent a value.
6667 The host address, if non-null, is supposed to contain an internal
6668 copy of the relevant data; otherwise, the program is to consult the
6669 target at the target address. */
6671 /* Assuming that VAL0 represents a pointer value, the result of
6672 dereferencing it. Differs from value_ind in its treatment of
6673 dynamic-sized types. */
6676 ada_value_ind (struct value *val0)
6678 struct value *val = unwrap_value (value_ind (val0));
6679 return ada_to_fixed_value (val);
6682 /* The value resulting from dereferencing any "reference to"
6683 qualifiers on VAL0. */
6685 static struct value *
6686 ada_coerce_ref (struct value *val0)
6688 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6690 struct value *val = val0;
6691 val = coerce_ref (val);
6692 val = unwrap_value (val);
6693 return ada_to_fixed_value (val);
6699 /* Return OFF rounded upward if necessary to a multiple of
6700 ALIGNMENT (a power of 2). */
6703 align_value (unsigned int off, unsigned int alignment)
6705 return (off + alignment - 1) & ~(alignment - 1);
6708 /* Return the bit alignment required for field #F of template type TYPE. */
6711 field_alignment (struct type *type, int f)
6713 const char *name = TYPE_FIELD_NAME (type, f);
6717 /* The field name should never be null, unless the debugging information
6718 is somehow malformed. In this case, we assume the field does not
6719 require any alignment. */
6723 len = strlen (name);
6725 if (!isdigit (name[len - 1]))
6728 if (isdigit (name[len - 2]))
6729 align_offset = len - 2;
6731 align_offset = len - 1;
6733 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6734 return TARGET_CHAR_BIT;
6736 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6739 /* Find a symbol named NAME. Ignores ambiguity. */
6742 ada_find_any_symbol (const char *name)
6746 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6747 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6750 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6754 /* Find a type named NAME. Ignores ambiguity. */
6757 ada_find_any_type (const char *name)
6759 struct symbol *sym = ada_find_any_symbol (name);
6762 return SYMBOL_TYPE (sym);
6767 /* Given NAME and an associated BLOCK, search all symbols for
6768 NAME suffixed with "___XR", which is the ``renaming'' symbol
6769 associated to NAME. Return this symbol if found, return
6773 ada_find_renaming_symbol (const char *name, struct block *block)
6777 sym = find_old_style_renaming_symbol (name, block);
6782 /* Not right yet. FIXME pnh 7/20/2007. */
6783 sym = ada_find_any_symbol (name);
6784 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6790 static struct symbol *
6791 find_old_style_renaming_symbol (const char *name, struct block *block)
6793 const struct symbol *function_sym = block_function (block);
6796 if (function_sym != NULL)
6798 /* If the symbol is defined inside a function, NAME is not fully
6799 qualified. This means we need to prepend the function name
6800 as well as adding the ``___XR'' suffix to build the name of
6801 the associated renaming symbol. */
6802 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6803 /* Function names sometimes contain suffixes used
6804 for instance to qualify nested subprograms. When building
6805 the XR type name, we need to make sure that this suffix is
6806 not included. So do not include any suffix in the function
6807 name length below. */
6808 const int function_name_len = ada_name_prefix_len (function_name);
6809 const int rename_len = function_name_len + 2 /* "__" */
6810 + strlen (name) + 6 /* "___XR\0" */ ;
6812 /* Strip the suffix if necessary. */
6813 function_name[function_name_len] = '\0';
6815 /* Library-level functions are a special case, as GNAT adds
6816 a ``_ada_'' prefix to the function name to avoid namespace
6817 pollution. However, the renaming symbols themselves do not
6818 have this prefix, so we need to skip this prefix if present. */
6819 if (function_name_len > 5 /* "_ada_" */
6820 && strstr (function_name, "_ada_") == function_name)
6821 function_name = function_name + 5;
6823 rename = (char *) alloca (rename_len * sizeof (char));
6824 sprintf (rename, "%s__%s___XR", function_name, name);
6828 const int rename_len = strlen (name) + 6;
6829 rename = (char *) alloca (rename_len * sizeof (char));
6830 sprintf (rename, "%s___XR", name);
6833 return ada_find_any_symbol (rename);
6836 /* Because of GNAT encoding conventions, several GDB symbols may match a
6837 given type name. If the type denoted by TYPE0 is to be preferred to
6838 that of TYPE1 for purposes of type printing, return non-zero;
6839 otherwise return 0. */
6842 ada_prefer_type (struct type *type0, struct type *type1)
6846 else if (type0 == NULL)
6848 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6850 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6852 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6854 else if (ada_is_packed_array_type (type0))
6856 else if (ada_is_array_descriptor_type (type0)
6857 && !ada_is_array_descriptor_type (type1))
6861 const char *type0_name = type_name_no_tag (type0);
6862 const char *type1_name = type_name_no_tag (type1);
6864 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6865 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6871 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6872 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6875 ada_type_name (struct type *type)
6879 else if (TYPE_NAME (type) != NULL)
6880 return TYPE_NAME (type);
6882 return TYPE_TAG_NAME (type);
6885 /* Find a parallel type to TYPE whose name is formed by appending
6886 SUFFIX to the name of TYPE. */
6889 ada_find_parallel_type (struct type *type, const char *suffix)
6892 static size_t name_len = 0;
6894 char *typename = ada_type_name (type);
6896 if (typename == NULL)
6899 len = strlen (typename);
6901 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6903 strcpy (name, typename);
6904 strcpy (name + len, suffix);
6906 return ada_find_any_type (name);
6910 /* If TYPE is a variable-size record type, return the corresponding template
6911 type describing its fields. Otherwise, return NULL. */
6913 static struct type *
6914 dynamic_template_type (struct type *type)
6916 type = ada_check_typedef (type);
6918 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6919 || ada_type_name (type) == NULL)
6923 int len = strlen (ada_type_name (type));
6924 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6927 return ada_find_parallel_type (type, "___XVE");
6931 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6932 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6935 is_dynamic_field (struct type *templ_type, int field_num)
6937 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6939 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6940 && strstr (name, "___XVL") != NULL;
6943 /* The index of the variant field of TYPE, or -1 if TYPE does not
6944 represent a variant record type. */
6947 variant_field_index (struct type *type)
6951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6954 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6956 if (ada_is_variant_part (type, f))
6962 /* A record type with no fields. */
6964 static struct type *
6965 empty_record (struct objfile *objfile)
6967 struct type *type = alloc_type (objfile);
6968 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6969 TYPE_NFIELDS (type) = 0;
6970 TYPE_FIELDS (type) = NULL;
6971 TYPE_NAME (type) = "<empty>";
6972 TYPE_TAG_NAME (type) = NULL;
6973 TYPE_FLAGS (type) = 0;
6974 TYPE_LENGTH (type) = 0;
6978 /* An ordinary record type (with fixed-length fields) that describes
6979 the value of type TYPE at VALADDR or ADDRESS (see comments at
6980 the beginning of this section) VAL according to GNAT conventions.
6981 DVAL0 should describe the (portion of a) record that contains any
6982 necessary discriminants. It should be NULL if value_type (VAL) is
6983 an outer-level type (i.e., as opposed to a branch of a variant.) A
6984 variant field (unless unchecked) is replaced by a particular branch
6987 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6988 length are not statically known are discarded. As a consequence,
6989 VALADDR, ADDRESS and DVAL0 are ignored.
6991 NOTE: Limitations: For now, we assume that dynamic fields and
6992 variants occupy whole numbers of bytes. However, they need not be
6996 ada_template_to_fixed_record_type_1 (struct type *type,
6997 const gdb_byte *valaddr,
6998 CORE_ADDR address, struct value *dval0,
6999 int keep_dynamic_fields)
7001 struct value *mark = value_mark ();
7004 int nfields, bit_len;
7007 int fld_bit_len, bit_incr;
7010 /* Compute the number of fields in this record type that are going
7011 to be processed: unless keep_dynamic_fields, this includes only
7012 fields whose position and length are static will be processed. */
7013 if (keep_dynamic_fields)
7014 nfields = TYPE_NFIELDS (type);
7018 while (nfields < TYPE_NFIELDS (type)
7019 && !ada_is_variant_part (type, nfields)
7020 && !is_dynamic_field (type, nfields))
7024 rtype = alloc_type (TYPE_OBJFILE (type));
7025 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7026 INIT_CPLUS_SPECIFIC (rtype);
7027 TYPE_NFIELDS (rtype) = nfields;
7028 TYPE_FIELDS (rtype) = (struct field *)
7029 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7030 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7031 TYPE_NAME (rtype) = ada_type_name (type);
7032 TYPE_TAG_NAME (rtype) = NULL;
7033 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7039 for (f = 0; f < nfields; f += 1)
7041 off = align_value (off, field_alignment (type, f))
7042 + TYPE_FIELD_BITPOS (type, f);
7043 TYPE_FIELD_BITPOS (rtype, f) = off;
7044 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7046 if (ada_is_variant_part (type, f))
7049 fld_bit_len = bit_incr = 0;
7051 else if (is_dynamic_field (type, f))
7054 dval = value_from_contents_and_address (rtype, valaddr, address);
7058 /* Get the fixed type of the field. Note that, in this case, we
7059 do not want to get the real type out of the tag: if the current
7060 field is the parent part of a tagged record, we will get the
7061 tag of the object. Clearly wrong: the real type of the parent
7062 is not the real type of the child. We would end up in an infinite
7064 TYPE_FIELD_TYPE (rtype, f) =
7067 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7068 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7069 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7070 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7071 bit_incr = fld_bit_len =
7072 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7076 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7077 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7078 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7079 bit_incr = fld_bit_len =
7080 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7082 bit_incr = fld_bit_len =
7083 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7085 if (off + fld_bit_len > bit_len)
7086 bit_len = off + fld_bit_len;
7088 TYPE_LENGTH (rtype) =
7089 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7092 /* We handle the variant part, if any, at the end because of certain
7093 odd cases in which it is re-ordered so as NOT the last field of
7094 the record. This can happen in the presence of representation
7096 if (variant_field >= 0)
7098 struct type *branch_type;
7100 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7103 dval = value_from_contents_and_address (rtype, valaddr, address);
7108 to_fixed_variant_branch_type
7109 (TYPE_FIELD_TYPE (type, variant_field),
7110 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7111 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7112 if (branch_type == NULL)
7114 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7115 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7116 TYPE_NFIELDS (rtype) -= 1;
7120 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7121 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7123 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7125 if (off + fld_bit_len > bit_len)
7126 bit_len = off + fld_bit_len;
7127 TYPE_LENGTH (rtype) =
7128 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7132 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7133 should contain the alignment of that record, which should be a strictly
7134 positive value. If null or negative, then something is wrong, most
7135 probably in the debug info. In that case, we don't round up the size
7136 of the resulting type. If this record is not part of another structure,
7137 the current RTYPE length might be good enough for our purposes. */
7138 if (TYPE_LENGTH (type) <= 0)
7140 if (TYPE_NAME (rtype))
7141 warning (_("Invalid type size for `%s' detected: %d."),
7142 TYPE_NAME (rtype), TYPE_LENGTH (type));
7144 warning (_("Invalid type size for <unnamed> detected: %d."),
7145 TYPE_LENGTH (type));
7149 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7150 TYPE_LENGTH (type));
7153 value_free_to_mark (mark);
7154 if (TYPE_LENGTH (rtype) > varsize_limit)
7155 error (_("record type with dynamic size is larger than varsize-limit"));
7159 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7162 static struct type *
7163 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7164 CORE_ADDR address, struct value *dval0)
7166 return ada_template_to_fixed_record_type_1 (type, valaddr,
7170 /* An ordinary record type in which ___XVL-convention fields and
7171 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7172 static approximations, containing all possible fields. Uses
7173 no runtime values. Useless for use in values, but that's OK,
7174 since the results are used only for type determinations. Works on both
7175 structs and unions. Representation note: to save space, we memorize
7176 the result of this function in the TYPE_TARGET_TYPE of the
7179 static struct type *
7180 template_to_static_fixed_type (struct type *type0)
7186 if (TYPE_TARGET_TYPE (type0) != NULL)
7187 return TYPE_TARGET_TYPE (type0);
7189 nfields = TYPE_NFIELDS (type0);
7192 for (f = 0; f < nfields; f += 1)
7194 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7195 struct type *new_type;
7197 if (is_dynamic_field (type0, f))
7198 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7200 new_type = static_unwrap_type (field_type);
7201 if (type == type0 && new_type != field_type)
7203 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7204 TYPE_CODE (type) = TYPE_CODE (type0);
7205 INIT_CPLUS_SPECIFIC (type);
7206 TYPE_NFIELDS (type) = nfields;
7207 TYPE_FIELDS (type) = (struct field *)
7208 TYPE_ALLOC (type, nfields * sizeof (struct field));
7209 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7210 sizeof (struct field) * nfields);
7211 TYPE_NAME (type) = ada_type_name (type0);
7212 TYPE_TAG_NAME (type) = NULL;
7213 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7214 TYPE_LENGTH (type) = 0;
7216 TYPE_FIELD_TYPE (type, f) = new_type;
7217 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7222 /* Given an object of type TYPE whose contents are at VALADDR and
7223 whose address in memory is ADDRESS, returns a revision of TYPE --
7224 a non-dynamic-sized record with a variant part -- in which
7225 the variant part is replaced with the appropriate branch. Looks
7226 for discriminant values in DVAL0, which can be NULL if the record
7227 contains the necessary discriminant values. */
7229 static struct type *
7230 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7231 CORE_ADDR address, struct value *dval0)
7233 struct value *mark = value_mark ();
7236 struct type *branch_type;
7237 int nfields = TYPE_NFIELDS (type);
7238 int variant_field = variant_field_index (type);
7240 if (variant_field == -1)
7244 dval = value_from_contents_and_address (type, valaddr, address);
7248 rtype = alloc_type (TYPE_OBJFILE (type));
7249 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7250 INIT_CPLUS_SPECIFIC (rtype);
7251 TYPE_NFIELDS (rtype) = nfields;
7252 TYPE_FIELDS (rtype) =
7253 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7254 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7255 sizeof (struct field) * nfields);
7256 TYPE_NAME (rtype) = ada_type_name (type);
7257 TYPE_TAG_NAME (rtype) = NULL;
7258 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7259 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7261 branch_type = to_fixed_variant_branch_type
7262 (TYPE_FIELD_TYPE (type, variant_field),
7263 cond_offset_host (valaddr,
7264 TYPE_FIELD_BITPOS (type, variant_field)
7266 cond_offset_target (address,
7267 TYPE_FIELD_BITPOS (type, variant_field)
7268 / TARGET_CHAR_BIT), dval);
7269 if (branch_type == NULL)
7272 for (f = variant_field + 1; f < nfields; f += 1)
7273 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7274 TYPE_NFIELDS (rtype) -= 1;
7278 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7279 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7280 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7281 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7283 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7285 value_free_to_mark (mark);
7289 /* An ordinary record type (with fixed-length fields) that describes
7290 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7291 beginning of this section]. Any necessary discriminants' values
7292 should be in DVAL, a record value; it may be NULL if the object
7293 at ADDR itself contains any necessary discriminant values.
7294 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7295 values from the record are needed. Except in the case that DVAL,
7296 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7297 unchecked) is replaced by a particular branch of the variant.
7299 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7300 is questionable and may be removed. It can arise during the
7301 processing of an unconstrained-array-of-record type where all the
7302 variant branches have exactly the same size. This is because in
7303 such cases, the compiler does not bother to use the XVS convention
7304 when encoding the record. I am currently dubious of this
7305 shortcut and suspect the compiler should be altered. FIXME. */
7307 static struct type *
7308 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7309 CORE_ADDR address, struct value *dval)
7311 struct type *templ_type;
7313 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7316 templ_type = dynamic_template_type (type0);
7318 if (templ_type != NULL)
7319 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7320 else if (variant_field_index (type0) >= 0)
7322 if (dval == NULL && valaddr == NULL && address == 0)
7324 return to_record_with_fixed_variant_part (type0, valaddr, address,
7329 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7335 /* An ordinary record type (with fixed-length fields) that describes
7336 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7337 union type. Any necessary discriminants' values should be in DVAL,
7338 a record value. That is, this routine selects the appropriate
7339 branch of the union at ADDR according to the discriminant value
7340 indicated in the union's type name. */
7342 static struct type *
7343 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7344 CORE_ADDR address, struct value *dval)
7347 struct type *templ_type;
7348 struct type *var_type;
7350 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7351 var_type = TYPE_TARGET_TYPE (var_type0);
7353 var_type = var_type0;
7355 templ_type = ada_find_parallel_type (var_type, "___XVU");
7357 if (templ_type != NULL)
7358 var_type = templ_type;
7361 ada_which_variant_applies (var_type,
7362 value_type (dval), value_contents (dval));
7365 return empty_record (TYPE_OBJFILE (var_type));
7366 else if (is_dynamic_field (var_type, which))
7367 return to_fixed_record_type
7368 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7369 valaddr, address, dval);
7370 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7372 to_fixed_record_type
7373 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7375 return TYPE_FIELD_TYPE (var_type, which);
7378 /* Assuming that TYPE0 is an array type describing the type of a value
7379 at ADDR, and that DVAL describes a record containing any
7380 discriminants used in TYPE0, returns a type for the value that
7381 contains no dynamic components (that is, no components whose sizes
7382 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7383 true, gives an error message if the resulting type's size is over
7386 static struct type *
7387 to_fixed_array_type (struct type *type0, struct value *dval,
7390 struct type *index_type_desc;
7391 struct type *result;
7393 if (ada_is_packed_array_type (type0) /* revisit? */
7394 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7397 index_type_desc = ada_find_parallel_type (type0, "___XA");
7398 if (index_type_desc == NULL)
7400 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7401 /* NOTE: elt_type---the fixed version of elt_type0---should never
7402 depend on the contents of the array in properly constructed
7404 /* Create a fixed version of the array element type.
7405 We're not providing the address of an element here,
7406 and thus the actual object value cannot be inspected to do
7407 the conversion. This should not be a problem, since arrays of
7408 unconstrained objects are not allowed. In particular, all
7409 the elements of an array of a tagged type should all be of
7410 the same type specified in the debugging info. No need to
7411 consult the object tag. */
7412 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7414 if (elt_type0 == elt_type)
7417 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7418 elt_type, TYPE_INDEX_TYPE (type0));
7423 struct type *elt_type0;
7426 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7427 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7429 /* NOTE: result---the fixed version of elt_type0---should never
7430 depend on the contents of the array in properly constructed
7432 /* Create a fixed version of the array element type.
7433 We're not providing the address of an element here,
7434 and thus the actual object value cannot be inspected to do
7435 the conversion. This should not be a problem, since arrays of
7436 unconstrained objects are not allowed. In particular, all
7437 the elements of an array of a tagged type should all be of
7438 the same type specified in the debugging info. No need to
7439 consult the object tag. */
7441 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7442 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7444 struct type *range_type =
7445 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7446 dval, TYPE_OBJFILE (type0));
7447 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7448 result, range_type);
7450 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7451 error (_("array type with dynamic size is larger than varsize-limit"));
7454 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7459 /* A standard type (containing no dynamically sized components)
7460 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7461 DVAL describes a record containing any discriminants used in TYPE0,
7462 and may be NULL if there are none, or if the object of type TYPE at
7463 ADDRESS or in VALADDR contains these discriminants.
7465 If CHECK_TAG is not null, in the case of tagged types, this function
7466 attempts to locate the object's tag and use it to compute the actual
7467 type. However, when ADDRESS is null, we cannot use it to determine the
7468 location of the tag, and therefore compute the tagged type's actual type.
7469 So we return the tagged type without consulting the tag. */
7471 static struct type *
7472 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7473 CORE_ADDR address, struct value *dval, int check_tag)
7475 type = ada_check_typedef (type);
7476 switch (TYPE_CODE (type))
7480 case TYPE_CODE_STRUCT:
7482 struct type *static_type = to_static_fixed_type (type);
7483 struct type *fixed_record_type =
7484 to_fixed_record_type (type, valaddr, address, NULL);
7485 /* If STATIC_TYPE is a tagged type and we know the object's address,
7486 then we can determine its tag, and compute the object's actual
7487 type from there. Note that we have to use the fixed record
7488 type (the parent part of the record may have dynamic fields
7489 and the way the location of _tag is expressed may depend on
7492 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7494 struct type *real_type =
7495 type_from_tag (value_tag_from_contents_and_address
7499 if (real_type != NULL)
7500 return to_fixed_record_type (real_type, valaddr, address, NULL);
7502 return fixed_record_type;
7504 case TYPE_CODE_ARRAY:
7505 return to_fixed_array_type (type, dval, 1);
7506 case TYPE_CODE_UNION:
7510 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7514 /* The same as ada_to_fixed_type_1, except that it preserves the type
7515 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7516 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7519 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7520 CORE_ADDR address, struct value *dval, int check_tag)
7523 struct type *fixed_type =
7524 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7526 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7527 && TYPE_TARGET_TYPE (type) == fixed_type)
7533 /* A standard (static-sized) type corresponding as well as possible to
7534 TYPE0, but based on no runtime data. */
7536 static struct type *
7537 to_static_fixed_type (struct type *type0)
7544 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7547 type0 = ada_check_typedef (type0);
7549 switch (TYPE_CODE (type0))
7553 case TYPE_CODE_STRUCT:
7554 type = dynamic_template_type (type0);
7556 return template_to_static_fixed_type (type);
7558 return template_to_static_fixed_type (type0);
7559 case TYPE_CODE_UNION:
7560 type = ada_find_parallel_type (type0, "___XVU");
7562 return template_to_static_fixed_type (type);
7564 return template_to_static_fixed_type (type0);
7568 /* A static approximation of TYPE with all type wrappers removed. */
7570 static struct type *
7571 static_unwrap_type (struct type *type)
7573 if (ada_is_aligner_type (type))
7575 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7576 if (ada_type_name (type1) == NULL)
7577 TYPE_NAME (type1) = ada_type_name (type);
7579 return static_unwrap_type (type1);
7583 struct type *raw_real_type = ada_get_base_type (type);
7584 if (raw_real_type == type)
7587 return to_static_fixed_type (raw_real_type);
7591 /* In some cases, incomplete and private types require
7592 cross-references that are not resolved as records (for example,
7594 type FooP is access Foo;
7596 type Foo is array ...;
7597 ). In these cases, since there is no mechanism for producing
7598 cross-references to such types, we instead substitute for FooP a
7599 stub enumeration type that is nowhere resolved, and whose tag is
7600 the name of the actual type. Call these types "non-record stubs". */
7602 /* A type equivalent to TYPE that is not a non-record stub, if one
7603 exists, otherwise TYPE. */
7606 ada_check_typedef (struct type *type)
7611 CHECK_TYPEDEF (type);
7612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7613 || !TYPE_STUB (type)
7614 || TYPE_TAG_NAME (type) == NULL)
7618 char *name = TYPE_TAG_NAME (type);
7619 struct type *type1 = ada_find_any_type (name);
7620 return (type1 == NULL) ? type : type1;
7624 /* A value representing the data at VALADDR/ADDRESS as described by
7625 type TYPE0, but with a standard (static-sized) type that correctly
7626 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7627 type, then return VAL0 [this feature is simply to avoid redundant
7628 creation of struct values]. */
7630 static struct value *
7631 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7634 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7635 if (type == type0 && val0 != NULL)
7638 return value_from_contents_and_address (type, 0, address);
7641 /* A value representing VAL, but with a standard (static-sized) type
7642 that correctly describes it. Does not necessarily create a new
7645 static struct value *
7646 ada_to_fixed_value (struct value *val)
7648 return ada_to_fixed_value_create (value_type (val),
7649 VALUE_ADDRESS (val) + value_offset (val),
7653 /* A value representing VAL, but with a standard (static-sized) type
7654 chosen to approximate the real type of VAL as well as possible, but
7655 without consulting any runtime values. For Ada dynamic-sized
7656 types, therefore, the type of the result is likely to be inaccurate. */
7659 ada_to_static_fixed_value (struct value *val)
7662 to_static_fixed_type (static_unwrap_type (value_type (val)));
7663 if (type == value_type (val))
7666 return coerce_unspec_val_to_type (val, type);
7672 /* Table mapping attribute numbers to names.
7673 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7675 static const char *attribute_names[] = {
7693 ada_attribute_name (enum exp_opcode n)
7695 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7696 return attribute_names[n - OP_ATR_FIRST + 1];
7698 return attribute_names[0];
7701 /* Evaluate the 'POS attribute applied to ARG. */
7704 pos_atr (struct value *arg)
7706 struct type *type = value_type (arg);
7708 if (!discrete_type_p (type))
7709 error (_("'POS only defined on discrete types"));
7711 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7714 LONGEST v = value_as_long (arg);
7716 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7718 if (v == TYPE_FIELD_BITPOS (type, i))
7721 error (_("enumeration value is invalid: can't find 'POS"));
7724 return value_as_long (arg);
7727 static struct value *
7728 value_pos_atr (struct value *arg)
7730 return value_from_longest (builtin_type_int, pos_atr (arg));
7733 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7735 static struct value *
7736 value_val_atr (struct type *type, struct value *arg)
7738 if (!discrete_type_p (type))
7739 error (_("'VAL only defined on discrete types"));
7740 if (!integer_type_p (value_type (arg)))
7741 error (_("'VAL requires integral argument"));
7743 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7745 long pos = value_as_long (arg);
7746 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7747 error (_("argument to 'VAL out of range"));
7748 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7751 return value_from_longest (type, value_as_long (arg));
7757 /* True if TYPE appears to be an Ada character type.
7758 [At the moment, this is true only for Character and Wide_Character;
7759 It is a heuristic test that could stand improvement]. */
7762 ada_is_character_type (struct type *type)
7766 /* If the type code says it's a character, then assume it really is,
7767 and don't check any further. */
7768 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7771 /* Otherwise, assume it's a character type iff it is a discrete type
7772 with a known character type name. */
7773 name = ada_type_name (type);
7774 return (name != NULL
7775 && (TYPE_CODE (type) == TYPE_CODE_INT
7776 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7777 && (strcmp (name, "character") == 0
7778 || strcmp (name, "wide_character") == 0
7779 || strcmp (name, "wide_wide_character") == 0
7780 || strcmp (name, "unsigned char") == 0));
7783 /* True if TYPE appears to be an Ada string type. */
7786 ada_is_string_type (struct type *type)
7788 type = ada_check_typedef (type);
7790 && TYPE_CODE (type) != TYPE_CODE_PTR
7791 && (ada_is_simple_array_type (type)
7792 || ada_is_array_descriptor_type (type))
7793 && ada_array_arity (type) == 1)
7795 struct type *elttype = ada_array_element_type (type, 1);
7797 return ada_is_character_type (elttype);
7804 /* True if TYPE is a struct type introduced by the compiler to force the
7805 alignment of a value. Such types have a single field with a
7806 distinctive name. */
7809 ada_is_aligner_type (struct type *type)
7811 type = ada_check_typedef (type);
7813 /* If we can find a parallel XVS type, then the XVS type should
7814 be used instead of this type. And hence, this is not an aligner
7816 if (ada_find_parallel_type (type, "___XVS") != NULL)
7819 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7820 && TYPE_NFIELDS (type) == 1
7821 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7824 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7825 the parallel type. */
7828 ada_get_base_type (struct type *raw_type)
7830 struct type *real_type_namer;
7831 struct type *raw_real_type;
7833 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7836 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7837 if (real_type_namer == NULL
7838 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7839 || TYPE_NFIELDS (real_type_namer) != 1)
7842 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7843 if (raw_real_type == NULL)
7846 return raw_real_type;
7849 /* The type of value designated by TYPE, with all aligners removed. */
7852 ada_aligned_type (struct type *type)
7854 if (ada_is_aligner_type (type))
7855 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7857 return ada_get_base_type (type);
7861 /* The address of the aligned value in an object at address VALADDR
7862 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7865 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7867 if (ada_is_aligner_type (type))
7868 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7870 TYPE_FIELD_BITPOS (type,
7871 0) / TARGET_CHAR_BIT);
7878 /* The printed representation of an enumeration literal with encoded
7879 name NAME. The value is good to the next call of ada_enum_name. */
7881 ada_enum_name (const char *name)
7883 static char *result;
7884 static size_t result_len = 0;
7887 /* First, unqualify the enumeration name:
7888 1. Search for the last '.' character. If we find one, then skip
7889 all the preceeding characters, the unqualified name starts
7890 right after that dot.
7891 2. Otherwise, we may be debugging on a target where the compiler
7892 translates dots into "__". Search forward for double underscores,
7893 but stop searching when we hit an overloading suffix, which is
7894 of the form "__" followed by digits. */
7896 tmp = strrchr (name, '.');
7901 while ((tmp = strstr (name, "__")) != NULL)
7903 if (isdigit (tmp[2]))
7913 if (name[1] == 'U' || name[1] == 'W')
7915 if (sscanf (name + 2, "%x", &v) != 1)
7921 GROW_VECT (result, result_len, 16);
7922 if (isascii (v) && isprint (v))
7923 sprintf (result, "'%c'", v);
7924 else if (name[1] == 'U')
7925 sprintf (result, "[\"%02x\"]", v);
7927 sprintf (result, "[\"%04x\"]", v);
7933 tmp = strstr (name, "__");
7935 tmp = strstr (name, "$");
7938 GROW_VECT (result, result_len, tmp - name + 1);
7939 strncpy (result, name, tmp - name);
7940 result[tmp - name] = '\0';
7948 static struct value *
7949 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7952 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7953 (expect_type, exp, pos, noside);
7956 /* Evaluate the subexpression of EXP starting at *POS as for
7957 evaluate_type, updating *POS to point just past the evaluated
7960 static struct value *
7961 evaluate_subexp_type (struct expression *exp, int *pos)
7963 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7964 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7967 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7970 static struct value *
7971 unwrap_value (struct value *val)
7973 struct type *type = ada_check_typedef (value_type (val));
7974 if (ada_is_aligner_type (type))
7976 struct value *v = value_struct_elt (&val, NULL, "F",
7977 NULL, "internal structure");
7978 struct type *val_type = ada_check_typedef (value_type (v));
7979 if (ada_type_name (val_type) == NULL)
7980 TYPE_NAME (val_type) = ada_type_name (type);
7982 return unwrap_value (v);
7986 struct type *raw_real_type =
7987 ada_check_typedef (ada_get_base_type (type));
7989 if (type == raw_real_type)
7993 coerce_unspec_val_to_type
7994 (val, ada_to_fixed_type (raw_real_type, 0,
7995 VALUE_ADDRESS (val) + value_offset (val),
8000 static struct value *
8001 cast_to_fixed (struct type *type, struct value *arg)
8005 if (type == value_type (arg))
8007 else if (ada_is_fixed_point_type (value_type (arg)))
8008 val = ada_float_to_fixed (type,
8009 ada_fixed_to_float (value_type (arg),
8010 value_as_long (arg)));
8014 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8015 val = ada_float_to_fixed (type, argd);
8018 return value_from_longest (type, val);
8021 static struct value *
8022 cast_from_fixed_to_double (struct value *arg)
8024 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8025 value_as_long (arg));
8026 return value_from_double (builtin_type_double, val);
8029 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8030 return the converted value. */
8032 static struct value *
8033 coerce_for_assign (struct type *type, struct value *val)
8035 struct type *type2 = value_type (val);
8039 type2 = ada_check_typedef (type2);
8040 type = ada_check_typedef (type);
8042 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8043 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8045 val = ada_value_ind (val);
8046 type2 = value_type (val);
8049 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8050 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8052 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8053 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8054 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8055 error (_("Incompatible types in assignment"));
8056 deprecated_set_value_type (val, type);
8061 static struct value *
8062 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8065 struct type *type1, *type2;
8068 arg1 = coerce_ref (arg1);
8069 arg2 = coerce_ref (arg2);
8070 type1 = base_type (ada_check_typedef (value_type (arg1)));
8071 type2 = base_type (ada_check_typedef (value_type (arg2)));
8073 if (TYPE_CODE (type1) != TYPE_CODE_INT
8074 || TYPE_CODE (type2) != TYPE_CODE_INT)
8075 return value_binop (arg1, arg2, op);
8084 return value_binop (arg1, arg2, op);
8087 v2 = value_as_long (arg2);
8089 error (_("second operand of %s must not be zero."), op_string (op));
8091 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8092 return value_binop (arg1, arg2, op);
8094 v1 = value_as_long (arg1);
8099 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8100 v += v > 0 ? -1 : 1;
8108 /* Should not reach this point. */
8112 val = allocate_value (type1);
8113 store_unsigned_integer (value_contents_raw (val),
8114 TYPE_LENGTH (value_type (val)), v);
8119 ada_value_equal (struct value *arg1, struct value *arg2)
8121 if (ada_is_direct_array_type (value_type (arg1))
8122 || ada_is_direct_array_type (value_type (arg2)))
8124 /* Automatically dereference any array reference before
8125 we attempt to perform the comparison. */
8126 arg1 = ada_coerce_ref (arg1);
8127 arg2 = ada_coerce_ref (arg2);
8129 arg1 = ada_coerce_to_simple_array (arg1);
8130 arg2 = ada_coerce_to_simple_array (arg2);
8131 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8132 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8133 error (_("Attempt to compare array with non-array"));
8134 /* FIXME: The following works only for types whose
8135 representations use all bits (no padding or undefined bits)
8136 and do not have user-defined equality. */
8138 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8139 && memcmp (value_contents (arg1), value_contents (arg2),
8140 TYPE_LENGTH (value_type (arg1))) == 0;
8142 return value_equal (arg1, arg2);
8145 /* Total number of component associations in the aggregate starting at
8146 index PC in EXP. Assumes that index PC is the start of an
8150 num_component_specs (struct expression *exp, int pc)
8153 m = exp->elts[pc + 1].longconst;
8156 for (i = 0; i < m; i += 1)
8158 switch (exp->elts[pc].opcode)
8164 n += exp->elts[pc + 1].longconst;
8167 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8172 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8173 component of LHS (a simple array or a record), updating *POS past
8174 the expression, assuming that LHS is contained in CONTAINER. Does
8175 not modify the inferior's memory, nor does it modify LHS (unless
8176 LHS == CONTAINER). */
8179 assign_component (struct value *container, struct value *lhs, LONGEST index,
8180 struct expression *exp, int *pos)
8182 struct value *mark = value_mark ();
8184 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8186 struct value *index_val = value_from_longest (builtin_type_int, index);
8187 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8191 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8192 elt = ada_to_fixed_value (unwrap_value (elt));
8195 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8196 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8198 value_assign_to_component (container, elt,
8199 ada_evaluate_subexp (NULL, exp, pos,
8202 value_free_to_mark (mark);
8205 /* Assuming that LHS represents an lvalue having a record or array
8206 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8207 of that aggregate's value to LHS, advancing *POS past the
8208 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8209 lvalue containing LHS (possibly LHS itself). Does not modify
8210 the inferior's memory, nor does it modify the contents of
8211 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8213 static struct value *
8214 assign_aggregate (struct value *container,
8215 struct value *lhs, struct expression *exp,
8216 int *pos, enum noside noside)
8218 struct type *lhs_type;
8219 int n = exp->elts[*pos+1].longconst;
8220 LONGEST low_index, high_index;
8223 int max_indices, num_indices;
8224 int is_array_aggregate;
8226 struct value *mark = value_mark ();
8229 if (noside != EVAL_NORMAL)
8232 for (i = 0; i < n; i += 1)
8233 ada_evaluate_subexp (NULL, exp, pos, noside);
8237 container = ada_coerce_ref (container);
8238 if (ada_is_direct_array_type (value_type (container)))
8239 container = ada_coerce_to_simple_array (container);
8240 lhs = ada_coerce_ref (lhs);
8241 if (!deprecated_value_modifiable (lhs))
8242 error (_("Left operand of assignment is not a modifiable lvalue."));
8244 lhs_type = value_type (lhs);
8245 if (ada_is_direct_array_type (lhs_type))
8247 lhs = ada_coerce_to_simple_array (lhs);
8248 lhs_type = value_type (lhs);
8249 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8250 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8251 is_array_aggregate = 1;
8253 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8256 high_index = num_visible_fields (lhs_type) - 1;
8257 is_array_aggregate = 0;
8260 error (_("Left-hand side must be array or record."));
8262 num_specs = num_component_specs (exp, *pos - 3);
8263 max_indices = 4 * num_specs + 4;
8264 indices = alloca (max_indices * sizeof (indices[0]));
8265 indices[0] = indices[1] = low_index - 1;
8266 indices[2] = indices[3] = high_index + 1;
8269 for (i = 0; i < n; i += 1)
8271 switch (exp->elts[*pos].opcode)
8274 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8275 &num_indices, max_indices,
8276 low_index, high_index);
8279 aggregate_assign_positional (container, lhs, exp, pos, indices,
8280 &num_indices, max_indices,
8281 low_index, high_index);
8285 error (_("Misplaced 'others' clause"));
8286 aggregate_assign_others (container, lhs, exp, pos, indices,
8287 num_indices, low_index, high_index);
8290 error (_("Internal error: bad aggregate clause"));
8297 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8298 construct at *POS, updating *POS past the construct, given that
8299 the positions are relative to lower bound LOW, where HIGH is the
8300 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8301 updating *NUM_INDICES as needed. CONTAINER is as for
8302 assign_aggregate. */
8304 aggregate_assign_positional (struct value *container,
8305 struct value *lhs, struct expression *exp,
8306 int *pos, LONGEST *indices, int *num_indices,
8307 int max_indices, LONGEST low, LONGEST high)
8309 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8311 if (ind - 1 == high)
8312 warning (_("Extra components in aggregate ignored."));
8315 add_component_interval (ind, ind, indices, num_indices, max_indices);
8317 assign_component (container, lhs, ind, exp, pos);
8320 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8323 /* Assign into the components of LHS indexed by the OP_CHOICES
8324 construct at *POS, updating *POS past the construct, given that
8325 the allowable indices are LOW..HIGH. Record the indices assigned
8326 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8327 needed. CONTAINER is as for assign_aggregate. */
8329 aggregate_assign_from_choices (struct value *container,
8330 struct value *lhs, struct expression *exp,
8331 int *pos, LONGEST *indices, int *num_indices,
8332 int max_indices, LONGEST low, LONGEST high)
8335 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8336 int choice_pos, expr_pc;
8337 int is_array = ada_is_direct_array_type (value_type (lhs));
8339 choice_pos = *pos += 3;
8341 for (j = 0; j < n_choices; j += 1)
8342 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8344 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8346 for (j = 0; j < n_choices; j += 1)
8348 LONGEST lower, upper;
8349 enum exp_opcode op = exp->elts[choice_pos].opcode;
8350 if (op == OP_DISCRETE_RANGE)
8353 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8355 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8360 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8371 name = &exp->elts[choice_pos + 2].string;
8374 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8377 error (_("Invalid record component association."));
8379 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8381 if (! find_struct_field (name, value_type (lhs), 0,
8382 NULL, NULL, NULL, NULL, &ind))
8383 error (_("Unknown component name: %s."), name);
8384 lower = upper = ind;
8387 if (lower <= upper && (lower < low || upper > high))
8388 error (_("Index in component association out of bounds."));
8390 add_component_interval (lower, upper, indices, num_indices,
8392 while (lower <= upper)
8396 assign_component (container, lhs, lower, exp, &pos1);
8402 /* Assign the value of the expression in the OP_OTHERS construct in
8403 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8404 have not been previously assigned. The index intervals already assigned
8405 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8406 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8408 aggregate_assign_others (struct value *container,
8409 struct value *lhs, struct expression *exp,
8410 int *pos, LONGEST *indices, int num_indices,
8411 LONGEST low, LONGEST high)
8414 int expr_pc = *pos+1;
8416 for (i = 0; i < num_indices - 2; i += 2)
8419 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8423 assign_component (container, lhs, ind, exp, &pos);
8426 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8429 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8430 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8431 modifying *SIZE as needed. It is an error if *SIZE exceeds
8432 MAX_SIZE. The resulting intervals do not overlap. */
8434 add_component_interval (LONGEST low, LONGEST high,
8435 LONGEST* indices, int *size, int max_size)
8438 for (i = 0; i < *size; i += 2) {
8439 if (high >= indices[i] && low <= indices[i + 1])
8442 for (kh = i + 2; kh < *size; kh += 2)
8443 if (high < indices[kh])
8445 if (low < indices[i])
8447 indices[i + 1] = indices[kh - 1];
8448 if (high > indices[i + 1])
8449 indices[i + 1] = high;
8450 memcpy (indices + i + 2, indices + kh, *size - kh);
8451 *size -= kh - i - 2;
8454 else if (high < indices[i])
8458 if (*size == max_size)
8459 error (_("Internal error: miscounted aggregate components."));
8461 for (j = *size-1; j >= i+2; j -= 1)
8462 indices[j] = indices[j - 2];
8464 indices[i + 1] = high;
8467 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8470 static struct value *
8471 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8473 if (type == ada_check_typedef (value_type (arg2)))
8476 if (ada_is_fixed_point_type (type))
8477 return (cast_to_fixed (type, arg2));
8479 if (ada_is_fixed_point_type (value_type (arg2)))
8480 return value_cast (type, cast_from_fixed_to_double (arg2));
8482 return value_cast (type, arg2);
8485 static struct value *
8486 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8487 int *pos, enum noside noside)
8490 int tem, tem2, tem3;
8492 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8495 struct value **argvec;
8499 op = exp->elts[pc].opcode;
8505 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8506 arg1 = unwrap_value (arg1);
8508 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8509 then we need to perform the conversion manually, because
8510 evaluate_subexp_standard doesn't do it. This conversion is
8511 necessary in Ada because the different kinds of float/fixed
8512 types in Ada have different representations.
8514 Similarly, we need to perform the conversion from OP_LONG
8516 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8517 arg1 = ada_value_cast (expect_type, arg1, noside);
8523 struct value *result;
8525 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8526 /* The result type will have code OP_STRING, bashed there from
8527 OP_ARRAY. Bash it back. */
8528 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8529 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8535 type = exp->elts[pc + 1].type;
8536 arg1 = evaluate_subexp (type, exp, pos, noside);
8537 if (noside == EVAL_SKIP)
8539 arg1 = ada_value_cast (type, arg1, noside);
8544 type = exp->elts[pc + 1].type;
8545 return ada_evaluate_subexp (type, exp, pos, noside);
8548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8549 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8551 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8552 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8554 return ada_value_assign (arg1, arg1);
8556 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8557 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8559 if (ada_is_fixed_point_type (value_type (arg1)))
8560 arg2 = cast_to_fixed (value_type (arg1), arg2);
8561 else if (ada_is_fixed_point_type (value_type (arg2)))
8563 (_("Fixed-point values must be assigned to fixed-point variables"));
8565 arg2 = coerce_for_assign (value_type (arg1), arg2);
8566 return ada_value_assign (arg1, arg2);
8569 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8570 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8571 if (noside == EVAL_SKIP)
8573 if ((ada_is_fixed_point_type (value_type (arg1))
8574 || ada_is_fixed_point_type (value_type (arg2)))
8575 && value_type (arg1) != value_type (arg2))
8576 error (_("Operands of fixed-point addition must have the same type"));
8577 /* Do the addition, and cast the result to the type of the first
8578 argument. We cannot cast the result to a reference type, so if
8579 ARG1 is a reference type, find its underlying type. */
8580 type = value_type (arg1);
8581 while (TYPE_CODE (type) == TYPE_CODE_REF)
8582 type = TYPE_TARGET_TYPE (type);
8583 return value_cast (type, value_add (arg1, arg2));
8586 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8587 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8588 if (noside == EVAL_SKIP)
8590 if ((ada_is_fixed_point_type (value_type (arg1))
8591 || ada_is_fixed_point_type (value_type (arg2)))
8592 && value_type (arg1) != value_type (arg2))
8593 error (_("Operands of fixed-point subtraction must have the same type"));
8594 /* Do the substraction, and cast the result to the type of the first
8595 argument. We cannot cast the result to a reference type, so if
8596 ARG1 is a reference type, find its underlying type. */
8597 type = value_type (arg1);
8598 while (TYPE_CODE (type) == TYPE_CODE_REF)
8599 type = TYPE_TARGET_TYPE (type);
8600 return value_cast (type, value_sub (arg1, arg2));
8604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8606 if (noside == EVAL_SKIP)
8608 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8609 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8610 return value_zero (value_type (arg1), not_lval);
8613 if (ada_is_fixed_point_type (value_type (arg1)))
8614 arg1 = cast_from_fixed_to_double (arg1);
8615 if (ada_is_fixed_point_type (value_type (arg2)))
8616 arg2 = cast_from_fixed_to_double (arg2);
8617 return ada_value_binop (arg1, arg2, op);
8622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8623 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8624 if (noside == EVAL_SKIP)
8626 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8627 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8628 return value_zero (value_type (arg1), not_lval);
8630 return ada_value_binop (arg1, arg2, op);
8633 case BINOP_NOTEQUAL:
8634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8635 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8636 if (noside == EVAL_SKIP)
8638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8641 tem = ada_value_equal (arg1, arg2);
8642 if (op == BINOP_NOTEQUAL)
8644 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8647 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8648 if (noside == EVAL_SKIP)
8650 else if (ada_is_fixed_point_type (value_type (arg1)))
8651 return value_cast (value_type (arg1), value_neg (arg1));
8653 return value_neg (arg1);
8655 case BINOP_LOGICAL_AND:
8656 case BINOP_LOGICAL_OR:
8657 case UNOP_LOGICAL_NOT:
8662 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8663 return value_cast (LA_BOOL_TYPE, val);
8666 case BINOP_BITWISE_AND:
8667 case BINOP_BITWISE_IOR:
8668 case BINOP_BITWISE_XOR:
8672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8674 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8676 return value_cast (value_type (arg1), val);
8682 /* Tagged types are a little special in the fact that the real type
8683 is dynamic and can only be determined by inspecting the object
8684 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8685 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS
8687 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8688 noside = EVAL_NORMAL;
8690 if (noside == EVAL_SKIP)
8695 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8696 /* Only encountered when an unresolved symbol occurs in a
8697 context other than a function call, in which case, it is
8699 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8700 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8705 (to_static_fixed_type
8706 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8712 unwrap_value (evaluate_subexp_standard
8713 (expect_type, exp, pos, noside));
8714 return ada_to_fixed_value (arg1);
8720 /* Allocate arg vector, including space for the function to be
8721 called in argvec[0] and a terminating NULL. */
8722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8724 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8726 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8727 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8728 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8729 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8732 for (tem = 0; tem <= nargs; tem += 1)
8733 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8736 if (noside == EVAL_SKIP)
8740 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8741 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8743 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8744 && VALUE_LVAL (argvec[0]) == lval_memory))
8745 argvec[0] = value_addr (argvec[0]);
8747 type = ada_check_typedef (value_type (argvec[0]));
8748 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8750 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8752 case TYPE_CODE_FUNC:
8753 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8755 case TYPE_CODE_ARRAY:
8757 case TYPE_CODE_STRUCT:
8758 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8759 argvec[0] = ada_value_ind (argvec[0]);
8760 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8763 error (_("cannot subscript or call something of type `%s'"),
8764 ada_type_name (value_type (argvec[0])));
8769 switch (TYPE_CODE (type))
8771 case TYPE_CODE_FUNC:
8772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8773 return allocate_value (TYPE_TARGET_TYPE (type));
8774 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8775 case TYPE_CODE_STRUCT:
8779 arity = ada_array_arity (type);
8780 type = ada_array_element_type (type, nargs);
8782 error (_("cannot subscript or call a record"));
8784 error (_("wrong number of subscripts; expecting %d"), arity);
8785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8786 return value_zero (ada_aligned_type (type), lval_memory);
8788 unwrap_value (ada_value_subscript
8789 (argvec[0], nargs, argvec + 1));
8791 case TYPE_CODE_ARRAY:
8792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8794 type = ada_array_element_type (type, nargs);
8796 error (_("element type of array unknown"));
8798 return value_zero (ada_aligned_type (type), lval_memory);
8801 unwrap_value (ada_value_subscript
8802 (ada_coerce_to_simple_array (argvec[0]),
8803 nargs, argvec + 1));
8804 case TYPE_CODE_PTR: /* Pointer to array */
8805 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8808 type = ada_array_element_type (type, nargs);
8810 error (_("element type of array unknown"));
8812 return value_zero (ada_aligned_type (type), lval_memory);
8815 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8816 nargs, argvec + 1));
8819 error (_("Attempt to index or call something other than an "
8820 "array or function"));
8825 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8826 struct value *low_bound_val =
8827 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 struct value *high_bound_val =
8829 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8832 low_bound_val = coerce_ref (low_bound_val);
8833 high_bound_val = coerce_ref (high_bound_val);
8834 low_bound = pos_atr (low_bound_val);
8835 high_bound = pos_atr (high_bound_val);
8837 if (noside == EVAL_SKIP)
8840 /* If this is a reference to an aligner type, then remove all
8842 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8843 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8844 TYPE_TARGET_TYPE (value_type (array)) =
8845 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8847 if (ada_is_packed_array_type (value_type (array)))
8848 error (_("cannot slice a packed array"));
8850 /* If this is a reference to an array or an array lvalue,
8851 convert to a pointer. */
8852 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8853 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8854 && VALUE_LVAL (array) == lval_memory))
8855 array = value_addr (array);
8857 if (noside == EVAL_AVOID_SIDE_EFFECTS
8858 && ada_is_array_descriptor_type (ada_check_typedef
8859 (value_type (array))))
8860 return empty_array (ada_type_of_array (array, 0), low_bound);
8862 array = ada_coerce_to_simple_array_ptr (array);
8864 /* If we have more than one level of pointer indirection,
8865 dereference the value until we get only one level. */
8866 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8867 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8869 array = value_ind (array);
8871 /* Make sure we really do have an array type before going further,
8872 to avoid a SEGV when trying to get the index type or the target
8873 type later down the road if the debug info generated by
8874 the compiler is incorrect or incomplete. */
8875 if (!ada_is_simple_array_type (value_type (array)))
8876 error (_("cannot take slice of non-array"));
8878 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8880 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8881 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8885 struct type *arr_type0 =
8886 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8888 return ada_value_slice_ptr (array, arr_type0,
8889 longest_to_int (low_bound),
8890 longest_to_int (high_bound));
8893 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8895 else if (high_bound < low_bound)
8896 return empty_array (value_type (array), low_bound);
8898 return ada_value_slice (array, longest_to_int (low_bound),
8899 longest_to_int (high_bound));
8904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8905 type = exp->elts[pc + 1].type;
8907 if (noside == EVAL_SKIP)
8910 switch (TYPE_CODE (type))
8913 lim_warning (_("Membership test incompletely implemented; "
8914 "always returns true"));
8915 return value_from_longest (builtin_type_int, (LONGEST) 1);
8917 case TYPE_CODE_RANGE:
8918 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8919 arg3 = value_from_longest (builtin_type_int,
8920 TYPE_HIGH_BOUND (type));
8922 value_from_longest (builtin_type_int,
8923 (value_less (arg1, arg3)
8924 || value_equal (arg1, arg3))
8925 && (value_less (arg2, arg1)
8926 || value_equal (arg2, arg1)));
8929 case BINOP_IN_BOUNDS:
8931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8932 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8934 if (noside == EVAL_SKIP)
8937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8938 return value_zero (builtin_type_int, not_lval);
8940 tem = longest_to_int (exp->elts[pc + 1].longconst);
8942 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8943 error (_("invalid dimension number to 'range"));
8945 arg3 = ada_array_bound (arg2, tem, 1);
8946 arg2 = ada_array_bound (arg2, tem, 0);
8949 value_from_longest (builtin_type_int,
8950 (value_less (arg1, arg3)
8951 || value_equal (arg1, arg3))
8952 && (value_less (arg2, arg1)
8953 || value_equal (arg2, arg1)));
8955 case TERNOP_IN_RANGE:
8956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8957 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8958 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8960 if (noside == EVAL_SKIP)
8964 value_from_longest (builtin_type_int,
8965 (value_less (arg1, arg3)
8966 || value_equal (arg1, arg3))
8967 && (value_less (arg2, arg1)
8968 || value_equal (arg2, arg1)));
8974 struct type *type_arg;
8975 if (exp->elts[*pos].opcode == OP_TYPE)
8977 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8979 type_arg = exp->elts[pc + 2].type;
8983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8987 if (exp->elts[*pos].opcode != OP_LONG)
8988 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8989 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8992 if (noside == EVAL_SKIP)
8995 if (type_arg == NULL)
8997 arg1 = ada_coerce_ref (arg1);
8999 if (ada_is_packed_array_type (value_type (arg1)))
9000 arg1 = ada_coerce_to_simple_array (arg1);
9002 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
9003 error (_("invalid dimension number to '%s"),
9004 ada_attribute_name (op));
9006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9008 type = ada_index_type (value_type (arg1), tem);
9011 (_("attempt to take bound of something that is not an array"));
9012 return allocate_value (type);
9017 default: /* Should never happen. */
9018 error (_("unexpected attribute encountered"));
9020 return ada_array_bound (arg1, tem, 0);
9022 return ada_array_bound (arg1, tem, 1);
9024 return ada_array_length (arg1, tem);
9027 else if (discrete_type_p (type_arg))
9029 struct type *range_type;
9030 char *name = ada_type_name (type_arg);
9032 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9034 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9035 if (range_type == NULL)
9036 range_type = type_arg;
9040 error (_("unexpected attribute encountered"));
9042 return discrete_type_low_bound (range_type);
9044 return discrete_type_high_bound (range_type);
9046 error (_("the 'length attribute applies only to array types"));
9049 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9050 error (_("unimplemented type attribute"));
9055 if (ada_is_packed_array_type (type_arg))
9056 type_arg = decode_packed_array_type (type_arg);
9058 if (tem < 1 || tem > ada_array_arity (type_arg))
9059 error (_("invalid dimension number to '%s"),
9060 ada_attribute_name (op));
9062 type = ada_index_type (type_arg, tem);
9065 (_("attempt to take bound of something that is not an array"));
9066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9067 return allocate_value (type);
9072 error (_("unexpected attribute encountered"));
9074 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9075 return value_from_longest (type, low);
9077 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9078 return value_from_longest (type, high);
9080 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9081 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9082 return value_from_longest (type, high - low + 1);
9088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9089 if (noside == EVAL_SKIP)
9092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return value_zero (ada_tag_type (arg1), not_lval);
9095 return ada_value_tag (arg1);
9099 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102 if (noside == EVAL_SKIP)
9104 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9105 return value_zero (value_type (arg1), not_lval);
9107 return value_binop (arg1, arg2,
9108 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9110 case OP_ATR_MODULUS:
9112 struct type *type_arg = exp->elts[pc + 2].type;
9113 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9115 if (noside == EVAL_SKIP)
9118 if (!ada_is_modular_type (type_arg))
9119 error (_("'modulus must be applied to modular type"));
9121 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9122 ada_modulus (type_arg));
9127 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9129 if (noside == EVAL_SKIP)
9131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9132 return value_zero (builtin_type_int, not_lval);
9134 return value_pos_atr (arg1);
9137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9138 if (noside == EVAL_SKIP)
9140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9141 return value_zero (builtin_type_int, not_lval);
9143 return value_from_longest (builtin_type_int,
9145 * TYPE_LENGTH (value_type (arg1)));
9148 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9150 type = exp->elts[pc + 2].type;
9151 if (noside == EVAL_SKIP)
9153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9154 return value_zero (type, not_lval);
9156 return value_val_atr (type, arg1);
9159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9160 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9161 if (noside == EVAL_SKIP)
9163 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9164 return value_zero (value_type (arg1), not_lval);
9166 return value_binop (arg1, arg2, op);
9169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9170 if (noside == EVAL_SKIP)
9176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9177 if (noside == EVAL_SKIP)
9179 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9180 return value_neg (arg1);
9185 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9186 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9187 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9188 if (noside == EVAL_SKIP)
9190 type = ada_check_typedef (value_type (arg1));
9191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9193 if (ada_is_array_descriptor_type (type))
9194 /* GDB allows dereferencing GNAT array descriptors. */
9196 struct type *arrType = ada_type_of_array (arg1, 0);
9197 if (arrType == NULL)
9198 error (_("Attempt to dereference null array pointer."));
9199 return value_at_lazy (arrType, 0);
9201 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9202 || TYPE_CODE (type) == TYPE_CODE_REF
9203 /* In C you can dereference an array to get the 1st elt. */
9204 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9206 type = to_static_fixed_type
9208 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9210 return value_zero (type, lval_memory);
9212 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9213 /* GDB allows dereferencing an int. */
9214 return value_zero (builtin_type_int, lval_memory);
9216 error (_("Attempt to take contents of a non-pointer value."));
9218 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9219 type = ada_check_typedef (value_type (arg1));
9221 if (ada_is_array_descriptor_type (type))
9222 /* GDB allows dereferencing GNAT array descriptors. */
9223 return ada_coerce_to_simple_array (arg1);
9225 return ada_value_ind (arg1);
9227 case STRUCTOP_STRUCT:
9228 tem = longest_to_int (exp->elts[pc + 1].longconst);
9229 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9231 if (noside == EVAL_SKIP)
9233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9235 struct type *type1 = value_type (arg1);
9236 if (ada_is_tagged_type (type1, 1))
9238 type = ada_lookup_struct_elt_type (type1,
9239 &exp->elts[pc + 2].string,
9242 /* In this case, we assume that the field COULD exist
9243 in some extension of the type. Return an object of
9244 "type" void, which will match any formal
9245 (see ada_type_match). */
9246 return value_zero (builtin_type_void, lval_memory);
9250 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9253 return value_zero (ada_aligned_type (type), lval_memory);
9257 ada_to_fixed_value (unwrap_value
9258 (ada_value_struct_elt
9259 (arg1, &exp->elts[pc + 2].string, 0)));
9261 /* The value is not supposed to be used. This is here to make it
9262 easier to accommodate expressions that contain types. */
9264 if (noside == EVAL_SKIP)
9266 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9267 return allocate_value (exp->elts[pc + 1].type);
9269 error (_("Attempt to use a type name as an expression"));
9274 case OP_DISCRETE_RANGE:
9277 if (noside == EVAL_NORMAL)
9281 error (_("Undefined name, ambiguous name, or renaming used in "
9282 "component association: %s."), &exp->elts[pc+2].string);
9284 error (_("Aggregates only allowed on the right of an assignment"));
9286 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9289 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9291 for (tem = 0; tem < nargs; tem += 1)
9292 ada_evaluate_subexp (NULL, exp, pos, noside);
9297 return value_from_longest (builtin_type_long, (LONGEST) 1);
9303 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9304 type name that encodes the 'small and 'delta information.
9305 Otherwise, return NULL. */
9308 fixed_type_info (struct type *type)
9310 const char *name = ada_type_name (type);
9311 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9313 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9315 const char *tail = strstr (name, "___XF_");
9321 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9322 return fixed_type_info (TYPE_TARGET_TYPE (type));
9327 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9330 ada_is_fixed_point_type (struct type *type)
9332 return fixed_type_info (type) != NULL;
9335 /* Return non-zero iff TYPE represents a System.Address type. */
9338 ada_is_system_address_type (struct type *type)
9340 return (TYPE_NAME (type)
9341 && strcmp (TYPE_NAME (type), "system__address") == 0);
9344 /* Assuming that TYPE is the representation of an Ada fixed-point
9345 type, return its delta, or -1 if the type is malformed and the
9346 delta cannot be determined. */
9349 ada_delta (struct type *type)
9351 const char *encoding = fixed_type_info (type);
9354 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9357 return (DOUBLEST) num / (DOUBLEST) den;
9360 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9361 factor ('SMALL value) associated with the type. */
9364 scaling_factor (struct type *type)
9366 const char *encoding = fixed_type_info (type);
9367 unsigned long num0, den0, num1, den1;
9370 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9375 return (DOUBLEST) num1 / (DOUBLEST) den1;
9377 return (DOUBLEST) num0 / (DOUBLEST) den0;
9381 /* Assuming that X is the representation of a value of fixed-point
9382 type TYPE, return its floating-point equivalent. */
9385 ada_fixed_to_float (struct type *type, LONGEST x)
9387 return (DOUBLEST) x *scaling_factor (type);
9390 /* The representation of a fixed-point value of type TYPE
9391 corresponding to the value X. */
9394 ada_float_to_fixed (struct type *type, DOUBLEST x)
9396 return (LONGEST) (x / scaling_factor (type) + 0.5);
9400 /* VAX floating formats */
9402 /* Non-zero iff TYPE represents one of the special VAX floating-point
9406 ada_is_vax_floating_type (struct type *type)
9409 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9412 && (TYPE_CODE (type) == TYPE_CODE_INT
9413 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9414 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9417 /* The type of special VAX floating-point type this is, assuming
9418 ada_is_vax_floating_point. */
9421 ada_vax_float_type_suffix (struct type *type)
9423 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9426 /* A value representing the special debugging function that outputs
9427 VAX floating-point values of the type represented by TYPE. Assumes
9428 ada_is_vax_floating_type (TYPE). */
9431 ada_vax_float_print_function (struct type *type)
9433 switch (ada_vax_float_type_suffix (type))
9436 return get_var_value ("DEBUG_STRING_F", 0);
9438 return get_var_value ("DEBUG_STRING_D", 0);
9440 return get_var_value ("DEBUG_STRING_G", 0);
9442 error (_("invalid VAX floating-point type"));
9449 /* Scan STR beginning at position K for a discriminant name, and
9450 return the value of that discriminant field of DVAL in *PX. If
9451 PNEW_K is not null, put the position of the character beyond the
9452 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9453 not alter *PX and *PNEW_K if unsuccessful. */
9456 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9459 static char *bound_buffer = NULL;
9460 static size_t bound_buffer_len = 0;
9463 struct value *bound_val;
9465 if (dval == NULL || str == NULL || str[k] == '\0')
9468 pend = strstr (str + k, "__");
9472 k += strlen (bound);
9476 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9477 bound = bound_buffer;
9478 strncpy (bound_buffer, str + k, pend - (str + k));
9479 bound[pend - (str + k)] = '\0';
9483 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9484 if (bound_val == NULL)
9487 *px = value_as_long (bound_val);
9493 /* Value of variable named NAME in the current environment. If
9494 no such variable found, then if ERR_MSG is null, returns 0, and
9495 otherwise causes an error with message ERR_MSG. */
9497 static struct value *
9498 get_var_value (char *name, char *err_msg)
9500 struct ada_symbol_info *syms;
9503 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9508 if (err_msg == NULL)
9511 error (("%s"), err_msg);
9514 return value_of_variable (syms[0].sym, syms[0].block);
9517 /* Value of integer variable named NAME in the current environment. If
9518 no such variable found, returns 0, and sets *FLAG to 0. If
9519 successful, sets *FLAG to 1. */
9522 get_int_var_value (char *name, int *flag)
9524 struct value *var_val = get_var_value (name, 0);
9536 return value_as_long (var_val);
9541 /* Return a range type whose base type is that of the range type named
9542 NAME in the current environment, and whose bounds are calculated
9543 from NAME according to the GNAT range encoding conventions.
9544 Extract discriminant values, if needed, from DVAL. If a new type
9545 must be created, allocate in OBJFILE's space. The bounds
9546 information, in general, is encoded in NAME, the base type given in
9547 the named range type. */
9549 static struct type *
9550 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9552 struct type *raw_type = ada_find_any_type (name);
9553 struct type *base_type;
9556 if (raw_type == NULL)
9557 base_type = builtin_type_int;
9558 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9559 base_type = TYPE_TARGET_TYPE (raw_type);
9561 base_type = raw_type;
9563 subtype_info = strstr (name, "___XD");
9564 if (subtype_info == NULL)
9568 static char *name_buf = NULL;
9569 static size_t name_len = 0;
9570 int prefix_len = subtype_info - name;
9576 GROW_VECT (name_buf, name_len, prefix_len + 5);
9577 strncpy (name_buf, name, prefix_len);
9578 name_buf[prefix_len] = '\0';
9581 bounds_str = strchr (subtype_info, '_');
9584 if (*subtype_info == 'L')
9586 if (!ada_scan_number (bounds_str, n, &L, &n)
9587 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9589 if (bounds_str[n] == '_')
9591 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9598 strcpy (name_buf + prefix_len, "___L");
9599 L = get_int_var_value (name_buf, &ok);
9602 lim_warning (_("Unknown lower bound, using 1."));
9607 if (*subtype_info == 'U')
9609 if (!ada_scan_number (bounds_str, n, &U, &n)
9610 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9616 strcpy (name_buf + prefix_len, "___U");
9617 U = get_int_var_value (name_buf, &ok);
9620 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9625 if (objfile == NULL)
9626 objfile = TYPE_OBJFILE (base_type);
9627 type = create_range_type (alloc_type (objfile), base_type, L, U);
9628 TYPE_NAME (type) = name;
9633 /* True iff NAME is the name of a range type. */
9636 ada_is_range_type_name (const char *name)
9638 return (name != NULL && strstr (name, "___XD"));
9644 /* True iff TYPE is an Ada modular type. */
9647 ada_is_modular_type (struct type *type)
9649 struct type *subranged_type = base_type (type);
9651 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9652 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9653 && TYPE_UNSIGNED (subranged_type));
9656 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9659 ada_modulus (struct type * type)
9661 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9665 /* Ada exception catchpoint support:
9666 ---------------------------------
9668 We support 3 kinds of exception catchpoints:
9669 . catchpoints on Ada exceptions
9670 . catchpoints on unhandled Ada exceptions
9671 . catchpoints on failed assertions
9673 Exceptions raised during failed assertions, or unhandled exceptions
9674 could perfectly be caught with the general catchpoint on Ada exceptions.
9675 However, we can easily differentiate these two special cases, and having
9676 the option to distinguish these two cases from the rest can be useful
9677 to zero-in on certain situations.
9679 Exception catchpoints are a specialized form of breakpoint,
9680 since they rely on inserting breakpoints inside known routines
9681 of the GNAT runtime. The implementation therefore uses a standard
9682 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9685 Support in the runtime for exception catchpoints have been changed
9686 a few times already, and these changes affect the implementation
9687 of these catchpoints. In order to be able to support several
9688 variants of the runtime, we use a sniffer that will determine
9689 the runtime variant used by the program being debugged.
9691 At this time, we do not support the use of conditions on Ada exception
9692 catchpoints. The COND and COND_STRING fields are therefore set
9693 to NULL (most of the time, see below).
9695 Conditions where EXP_STRING, COND, and COND_STRING are used:
9697 When a user specifies the name of a specific exception in the case
9698 of catchpoints on Ada exceptions, we store the name of that exception
9699 in the EXP_STRING. We then translate this request into an actual
9700 condition stored in COND_STRING, and then parse it into an expression
9703 /* The different types of catchpoints that we introduced for catching
9706 enum exception_catchpoint_kind
9709 ex_catch_exception_unhandled,
9713 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9715 /* A structure that describes how to support exception catchpoints
9716 for a given executable. */
9718 struct exception_support_info
9720 /* The name of the symbol to break on in order to insert
9721 a catchpoint on exceptions. */
9722 const char *catch_exception_sym;
9724 /* The name of the symbol to break on in order to insert
9725 a catchpoint on unhandled exceptions. */
9726 const char *catch_exception_unhandled_sym;
9728 /* The name of the symbol to break on in order to insert
9729 a catchpoint on failed assertions. */
9730 const char *catch_assert_sym;
9732 /* Assuming that the inferior just triggered an unhandled exception
9733 catchpoint, this function is responsible for returning the address
9734 in inferior memory where the name of that exception is stored.
9735 Return zero if the address could not be computed. */
9736 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9739 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9740 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9742 /* The following exception support info structure describes how to
9743 implement exception catchpoints with the latest version of the
9744 Ada runtime (as of 2007-03-06). */
9746 static const struct exception_support_info default_exception_support_info =
9748 "__gnat_debug_raise_exception", /* catch_exception_sym */
9749 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9750 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9751 ada_unhandled_exception_name_addr
9754 /* The following exception support info structure describes how to
9755 implement exception catchpoints with a slightly older version
9756 of the Ada runtime. */
9758 static const struct exception_support_info exception_support_info_fallback =
9760 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9761 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9762 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9763 ada_unhandled_exception_name_addr_from_raise
9766 /* For each executable, we sniff which exception info structure to use
9767 and cache it in the following global variable. */
9769 static const struct exception_support_info *exception_info = NULL;
9771 /* Inspect the Ada runtime and determine which exception info structure
9772 should be used to provide support for exception catchpoints.
9774 This function will always set exception_info, or raise an error. */
9777 ada_exception_support_info_sniffer (void)
9781 /* If the exception info is already known, then no need to recompute it. */
9782 if (exception_info != NULL)
9785 /* Check the latest (default) exception support info. */
9786 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9790 exception_info = &default_exception_support_info;
9794 /* Try our fallback exception suport info. */
9795 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9799 exception_info = &exception_support_info_fallback;
9803 /* Sometimes, it is normal for us to not be able to find the routine
9804 we are looking for. This happens when the program is linked with
9805 the shared version of the GNAT runtime, and the program has not been
9806 started yet. Inform the user of these two possible causes if
9809 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9810 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9812 /* If the symbol does not exist, then check that the program is
9813 already started, to make sure that shared libraries have been
9814 loaded. If it is not started, this may mean that the symbol is
9815 in a shared library. */
9817 if (ptid_get_pid (inferior_ptid) == 0)
9818 error (_("Unable to insert catchpoint. Try to start the program first."));
9820 /* At this point, we know that we are debugging an Ada program and
9821 that the inferior has been started, but we still are not able to
9822 find the run-time symbols. That can mean that we are in
9823 configurable run time mode, or that a-except as been optimized
9824 out by the linker... In any case, at this point it is not worth
9825 supporting this feature. */
9827 error (_("Cannot insert catchpoints in this configuration."));
9830 /* An observer of "executable_changed" events.
9831 Its role is to clear certain cached values that need to be recomputed
9832 each time a new executable is loaded by GDB. */
9835 ada_executable_changed_observer (void *unused)
9837 /* If the executable changed, then it is possible that the Ada runtime
9838 is different. So we need to invalidate the exception support info
9840 exception_info = NULL;
9843 /* Return the name of the function at PC, NULL if could not find it.
9844 This function only checks the debugging information, not the symbol
9848 function_name_from_pc (CORE_ADDR pc)
9852 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9858 /* True iff FRAME is very likely to be that of a function that is
9859 part of the runtime system. This is all very heuristic, but is
9860 intended to be used as advice as to what frames are uninteresting
9864 is_known_support_routine (struct frame_info *frame)
9866 struct symtab_and_line sal;
9870 /* If this code does not have any debugging information (no symtab),
9871 This cannot be any user code. */
9873 find_frame_sal (frame, &sal);
9874 if (sal.symtab == NULL)
9877 /* If there is a symtab, but the associated source file cannot be
9878 located, then assume this is not user code: Selecting a frame
9879 for which we cannot display the code would not be very helpful
9880 for the user. This should also take care of case such as VxWorks
9881 where the kernel has some debugging info provided for a few units. */
9883 if (symtab_to_fullname (sal.symtab) == NULL)
9886 /* Check the unit filename againt the Ada runtime file naming.
9887 We also check the name of the objfile against the name of some
9888 known system libraries that sometimes come with debugging info
9891 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9893 re_comp (known_runtime_file_name_patterns[i]);
9894 if (re_exec (sal.symtab->filename))
9896 if (sal.symtab->objfile != NULL
9897 && re_exec (sal.symtab->objfile->name))
9901 /* Check whether the function is a GNAT-generated entity. */
9903 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9904 if (func_name == NULL)
9907 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9909 re_comp (known_auxiliary_function_name_patterns[i]);
9910 if (re_exec (func_name))
9917 /* Find the first frame that contains debugging information and that is not
9918 part of the Ada run-time, starting from FI and moving upward. */
9921 ada_find_printable_frame (struct frame_info *fi)
9923 for (; fi != NULL; fi = get_prev_frame (fi))
9925 if (!is_known_support_routine (fi))
9934 /* Assuming that the inferior just triggered an unhandled exception
9935 catchpoint, return the address in inferior memory where the name
9936 of the exception is stored.
9938 Return zero if the address could not be computed. */
9941 ada_unhandled_exception_name_addr (void)
9943 return parse_and_eval_address ("e.full_name");
9946 /* Same as ada_unhandled_exception_name_addr, except that this function
9947 should be used when the inferior uses an older version of the runtime,
9948 where the exception name needs to be extracted from a specific frame
9949 several frames up in the callstack. */
9952 ada_unhandled_exception_name_addr_from_raise (void)
9955 struct frame_info *fi;
9957 /* To determine the name of this exception, we need to select
9958 the frame corresponding to RAISE_SYM_NAME. This frame is
9959 at least 3 levels up, so we simply skip the first 3 frames
9960 without checking the name of their associated function. */
9961 fi = get_current_frame ();
9962 for (frame_level = 0; frame_level < 3; frame_level += 1)
9964 fi = get_prev_frame (fi);
9968 const char *func_name =
9969 function_name_from_pc (get_frame_address_in_block (fi));
9970 if (func_name != NULL
9971 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9972 break; /* We found the frame we were looking for... */
9973 fi = get_prev_frame (fi);
9980 return parse_and_eval_address ("id.full_name");
9983 /* Assuming the inferior just triggered an Ada exception catchpoint
9984 (of any type), return the address in inferior memory where the name
9985 of the exception is stored, if applicable.
9987 Return zero if the address could not be computed, or if not relevant. */
9990 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9991 struct breakpoint *b)
9995 case ex_catch_exception:
9996 return (parse_and_eval_address ("e.full_name"));
9999 case ex_catch_exception_unhandled:
10000 return exception_info->unhandled_exception_name_addr ();
10003 case ex_catch_assert:
10004 return 0; /* Exception name is not relevant in this case. */
10008 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10012 return 0; /* Should never be reached. */
10015 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10016 any error that ada_exception_name_addr_1 might cause to be thrown.
10017 When an error is intercepted, a warning with the error message is printed,
10018 and zero is returned. */
10021 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10022 struct breakpoint *b)
10024 struct gdb_exception e;
10025 CORE_ADDR result = 0;
10027 TRY_CATCH (e, RETURN_MASK_ERROR)
10029 result = ada_exception_name_addr_1 (ex, b);
10034 warning (_("failed to get exception name: %s"), e.message);
10041 /* Implement the PRINT_IT method in the breakpoint_ops structure
10042 for all exception catchpoint kinds. */
10044 static enum print_stop_action
10045 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10047 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10048 char exception_name[256];
10052 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10053 exception_name [sizeof (exception_name) - 1] = '\0';
10056 ada_find_printable_frame (get_current_frame ());
10058 annotate_catchpoint (b->number);
10061 case ex_catch_exception:
10063 printf_filtered (_("\nCatchpoint %d, %s at "),
10064 b->number, exception_name);
10066 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10068 case ex_catch_exception_unhandled:
10070 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10071 b->number, exception_name);
10073 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10076 case ex_catch_assert:
10077 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10082 return PRINT_SRC_AND_LOC;
10085 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10086 for all exception catchpoint kinds. */
10089 print_one_exception (enum exception_catchpoint_kind ex,
10090 struct breakpoint *b, CORE_ADDR *last_addr)
10094 annotate_field (4);
10095 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10098 annotate_field (5);
10099 *last_addr = b->loc->address;
10102 case ex_catch_exception:
10103 if (b->exp_string != NULL)
10105 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10107 ui_out_field_string (uiout, "what", msg);
10111 ui_out_field_string (uiout, "what", "all Ada exceptions");
10115 case ex_catch_exception_unhandled:
10116 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10119 case ex_catch_assert:
10120 ui_out_field_string (uiout, "what", "failed Ada assertions");
10124 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10129 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10130 for all exception catchpoint kinds. */
10133 print_mention_exception (enum exception_catchpoint_kind ex,
10134 struct breakpoint *b)
10138 case ex_catch_exception:
10139 if (b->exp_string != NULL)
10140 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10141 b->number, b->exp_string);
10143 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10147 case ex_catch_exception_unhandled:
10148 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10152 case ex_catch_assert:
10153 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10157 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10162 /* Virtual table for "catch exception" breakpoints. */
10164 static enum print_stop_action
10165 print_it_catch_exception (struct breakpoint *b)
10167 return print_it_exception (ex_catch_exception, b);
10171 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10173 print_one_exception (ex_catch_exception, b, last_addr);
10177 print_mention_catch_exception (struct breakpoint *b)
10179 print_mention_exception (ex_catch_exception, b);
10182 static struct breakpoint_ops catch_exception_breakpoint_ops =
10184 print_it_catch_exception,
10185 print_one_catch_exception,
10186 print_mention_catch_exception
10189 /* Virtual table for "catch exception unhandled" breakpoints. */
10191 static enum print_stop_action
10192 print_it_catch_exception_unhandled (struct breakpoint *b)
10194 return print_it_exception (ex_catch_exception_unhandled, b);
10198 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10200 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10204 print_mention_catch_exception_unhandled (struct breakpoint *b)
10206 print_mention_exception (ex_catch_exception_unhandled, b);
10209 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10210 print_it_catch_exception_unhandled,
10211 print_one_catch_exception_unhandled,
10212 print_mention_catch_exception_unhandled
10215 /* Virtual table for "catch assert" breakpoints. */
10217 static enum print_stop_action
10218 print_it_catch_assert (struct breakpoint *b)
10220 return print_it_exception (ex_catch_assert, b);
10224 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10226 print_one_exception (ex_catch_assert, b, last_addr);
10230 print_mention_catch_assert (struct breakpoint *b)
10232 print_mention_exception (ex_catch_assert, b);
10235 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10236 print_it_catch_assert,
10237 print_one_catch_assert,
10238 print_mention_catch_assert
10241 /* Return non-zero if B is an Ada exception catchpoint. */
10244 ada_exception_catchpoint_p (struct breakpoint *b)
10246 return (b->ops == &catch_exception_breakpoint_ops
10247 || b->ops == &catch_exception_unhandled_breakpoint_ops
10248 || b->ops == &catch_assert_breakpoint_ops);
10251 /* Return a newly allocated copy of the first space-separated token
10252 in ARGSP, and then adjust ARGSP to point immediately after that
10255 Return NULL if ARGPS does not contain any more tokens. */
10258 ada_get_next_arg (char **argsp)
10260 char *args = *argsp;
10264 /* Skip any leading white space. */
10266 while (isspace (*args))
10269 if (args[0] == '\0')
10270 return NULL; /* No more arguments. */
10272 /* Find the end of the current argument. */
10275 while (*end != '\0' && !isspace (*end))
10278 /* Adjust ARGSP to point to the start of the next argument. */
10282 /* Make a copy of the current argument and return it. */
10284 result = xmalloc (end - args + 1);
10285 strncpy (result, args, end - args);
10286 result[end - args] = '\0';
10291 /* Split the arguments specified in a "catch exception" command.
10292 Set EX to the appropriate catchpoint type.
10293 Set EXP_STRING to the name of the specific exception if
10294 specified by the user. */
10297 catch_ada_exception_command_split (char *args,
10298 enum exception_catchpoint_kind *ex,
10301 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10302 char *exception_name;
10304 exception_name = ada_get_next_arg (&args);
10305 make_cleanup (xfree, exception_name);
10307 /* Check that we do not have any more arguments. Anything else
10310 while (isspace (*args))
10313 if (args[0] != '\0')
10314 error (_("Junk at end of expression"));
10316 discard_cleanups (old_chain);
10318 if (exception_name == NULL)
10320 /* Catch all exceptions. */
10321 *ex = ex_catch_exception;
10322 *exp_string = NULL;
10324 else if (strcmp (exception_name, "unhandled") == 0)
10326 /* Catch unhandled exceptions. */
10327 *ex = ex_catch_exception_unhandled;
10328 *exp_string = NULL;
10332 /* Catch a specific exception. */
10333 *ex = ex_catch_exception;
10334 *exp_string = exception_name;
10338 /* Return the name of the symbol on which we should break in order to
10339 implement a catchpoint of the EX kind. */
10341 static const char *
10342 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10344 gdb_assert (exception_info != NULL);
10348 case ex_catch_exception:
10349 return (exception_info->catch_exception_sym);
10351 case ex_catch_exception_unhandled:
10352 return (exception_info->catch_exception_unhandled_sym);
10354 case ex_catch_assert:
10355 return (exception_info->catch_assert_sym);
10358 internal_error (__FILE__, __LINE__,
10359 _("unexpected catchpoint kind (%d)"), ex);
10363 /* Return the breakpoint ops "virtual table" used for catchpoints
10366 static struct breakpoint_ops *
10367 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10371 case ex_catch_exception:
10372 return (&catch_exception_breakpoint_ops);
10374 case ex_catch_exception_unhandled:
10375 return (&catch_exception_unhandled_breakpoint_ops);
10377 case ex_catch_assert:
10378 return (&catch_assert_breakpoint_ops);
10381 internal_error (__FILE__, __LINE__,
10382 _("unexpected catchpoint kind (%d)"), ex);
10386 /* Return the condition that will be used to match the current exception
10387 being raised with the exception that the user wants to catch. This
10388 assumes that this condition is used when the inferior just triggered
10389 an exception catchpoint.
10391 The string returned is a newly allocated string that needs to be
10392 deallocated later. */
10395 ada_exception_catchpoint_cond_string (const char *exp_string)
10397 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10400 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10402 static struct expression *
10403 ada_parse_catchpoint_condition (char *cond_string,
10404 struct symtab_and_line sal)
10406 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10409 /* Return the symtab_and_line that should be used to insert an exception
10410 catchpoint of the TYPE kind.
10412 EX_STRING should contain the name of a specific exception
10413 that the catchpoint should catch, or NULL otherwise.
10415 The idea behind all the remaining parameters is that their names match
10416 the name of certain fields in the breakpoint structure that are used to
10417 handle exception catchpoints. This function returns the value to which
10418 these fields should be set, depending on the type of catchpoint we need
10421 If COND and COND_STRING are both non-NULL, any value they might
10422 hold will be free'ed, and then replaced by newly allocated ones.
10423 These parameters are left untouched otherwise. */
10425 static struct symtab_and_line
10426 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10427 char **addr_string, char **cond_string,
10428 struct expression **cond, struct breakpoint_ops **ops)
10430 const char *sym_name;
10431 struct symbol *sym;
10432 struct symtab_and_line sal;
10434 /* First, find out which exception support info to use. */
10435 ada_exception_support_info_sniffer ();
10437 /* Then lookup the function on which we will break in order to catch
10438 the Ada exceptions requested by the user. */
10440 sym_name = ada_exception_sym_name (ex);
10441 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10443 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10444 that should be compiled with debugging information. As a result, we
10445 expect to find that symbol in the symtabs. If we don't find it, then
10446 the target most likely does not support Ada exceptions, or we cannot
10447 insert exception breakpoints yet, because the GNAT runtime hasn't been
10450 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10451 in such a way that no debugging information is produced for the symbol
10452 we are looking for. In this case, we could search the minimal symbols
10453 as a fall-back mechanism. This would still be operating in degraded
10454 mode, however, as we would still be missing the debugging information
10455 that is needed in order to extract the name of the exception being
10456 raised (this name is printed in the catchpoint message, and is also
10457 used when trying to catch a specific exception). We do not handle
10458 this case for now. */
10461 error (_("Unable to break on '%s' in this configuration."), sym_name);
10463 /* Make sure that the symbol we found corresponds to a function. */
10464 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10465 error (_("Symbol \"%s\" is not a function (class = %d)"),
10466 sym_name, SYMBOL_CLASS (sym));
10468 sal = find_function_start_sal (sym, 1);
10470 /* Set ADDR_STRING. */
10472 *addr_string = xstrdup (sym_name);
10474 /* Set the COND and COND_STRING (if not NULL). */
10476 if (cond_string != NULL && cond != NULL)
10478 if (*cond_string != NULL)
10480 xfree (*cond_string);
10481 *cond_string = NULL;
10488 if (exp_string != NULL)
10490 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10491 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10496 *ops = ada_exception_breakpoint_ops (ex);
10501 /* Parse the arguments (ARGS) of the "catch exception" command.
10503 Set TYPE to the appropriate exception catchpoint type.
10504 If the user asked the catchpoint to catch only a specific
10505 exception, then save the exception name in ADDR_STRING.
10507 See ada_exception_sal for a description of all the remaining
10508 function arguments of this function. */
10510 struct symtab_and_line
10511 ada_decode_exception_location (char *args, char **addr_string,
10512 char **exp_string, char **cond_string,
10513 struct expression **cond,
10514 struct breakpoint_ops **ops)
10516 enum exception_catchpoint_kind ex;
10518 catch_ada_exception_command_split (args, &ex, exp_string);
10519 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10523 struct symtab_and_line
10524 ada_decode_assert_location (char *args, char **addr_string,
10525 struct breakpoint_ops **ops)
10527 /* Check that no argument where provided at the end of the command. */
10531 while (isspace (*args))
10534 error (_("Junk at end of arguments."));
10537 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10542 /* Information about operators given special treatment in functions
10544 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10546 #define ADA_OPERATORS \
10547 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10548 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10549 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10550 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10551 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10552 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10553 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10554 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10555 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10556 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10557 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10558 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10559 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10560 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10561 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10562 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10563 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10564 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10565 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10568 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10570 switch (exp->elts[pc - 1].opcode)
10573 operator_length_standard (exp, pc, oplenp, argsp);
10576 #define OP_DEFN(op, len, args, binop) \
10577 case op: *oplenp = len; *argsp = args; break;
10583 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10588 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10594 ada_op_name (enum exp_opcode opcode)
10599 return op_name_standard (opcode);
10601 #define OP_DEFN(op, len, args, binop) case op: return #op;
10606 return "OP_AGGREGATE";
10608 return "OP_CHOICES";
10614 /* As for operator_length, but assumes PC is pointing at the first
10615 element of the operator, and gives meaningful results only for the
10616 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10619 ada_forward_operator_length (struct expression *exp, int pc,
10620 int *oplenp, int *argsp)
10622 switch (exp->elts[pc].opcode)
10625 *oplenp = *argsp = 0;
10628 #define OP_DEFN(op, len, args, binop) \
10629 case op: *oplenp = len; *argsp = args; break;
10635 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10640 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10646 int len = longest_to_int (exp->elts[pc + 1].longconst);
10647 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10655 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10657 enum exp_opcode op = exp->elts[elt].opcode;
10662 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10666 /* Ada attributes ('Foo). */
10669 case OP_ATR_LENGTH:
10673 case OP_ATR_MODULUS:
10680 case UNOP_IN_RANGE:
10682 /* XXX: gdb_sprint_host_address, type_sprint */
10683 fprintf_filtered (stream, _("Type @"));
10684 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10685 fprintf_filtered (stream, " (");
10686 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10687 fprintf_filtered (stream, ")");
10689 case BINOP_IN_BOUNDS:
10690 fprintf_filtered (stream, " (%d)",
10691 longest_to_int (exp->elts[pc + 2].longconst));
10693 case TERNOP_IN_RANGE:
10698 case OP_DISCRETE_RANGE:
10699 case OP_POSITIONAL:
10706 char *name = &exp->elts[elt + 2].string;
10707 int len = longest_to_int (exp->elts[elt + 1].longconst);
10708 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10713 return dump_subexp_body_standard (exp, stream, elt);
10717 for (i = 0; i < nargs; i += 1)
10718 elt = dump_subexp (exp, stream, elt);
10723 /* The Ada extension of print_subexp (q.v.). */
10726 ada_print_subexp (struct expression *exp, int *pos,
10727 struct ui_file *stream, enum precedence prec)
10729 int oplen, nargs, i;
10731 enum exp_opcode op = exp->elts[pc].opcode;
10733 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10740 print_subexp_standard (exp, pos, stream, prec);
10744 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10747 case BINOP_IN_BOUNDS:
10748 /* XXX: sprint_subexp */
10749 print_subexp (exp, pos, stream, PREC_SUFFIX);
10750 fputs_filtered (" in ", stream);
10751 print_subexp (exp, pos, stream, PREC_SUFFIX);
10752 fputs_filtered ("'range", stream);
10753 if (exp->elts[pc + 1].longconst > 1)
10754 fprintf_filtered (stream, "(%ld)",
10755 (long) exp->elts[pc + 1].longconst);
10758 case TERNOP_IN_RANGE:
10759 if (prec >= PREC_EQUAL)
10760 fputs_filtered ("(", stream);
10761 /* XXX: sprint_subexp */
10762 print_subexp (exp, pos, stream, PREC_SUFFIX);
10763 fputs_filtered (" in ", stream);
10764 print_subexp (exp, pos, stream, PREC_EQUAL);
10765 fputs_filtered (" .. ", stream);
10766 print_subexp (exp, pos, stream, PREC_EQUAL);
10767 if (prec >= PREC_EQUAL)
10768 fputs_filtered (")", stream);
10773 case OP_ATR_LENGTH:
10777 case OP_ATR_MODULUS:
10782 if (exp->elts[*pos].opcode == OP_TYPE)
10784 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10785 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10789 print_subexp (exp, pos, stream, PREC_SUFFIX);
10790 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10794 for (tem = 1; tem < nargs; tem += 1)
10796 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10797 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10799 fputs_filtered (")", stream);
10804 type_print (exp->elts[pc + 1].type, "", stream, 0);
10805 fputs_filtered ("'(", stream);
10806 print_subexp (exp, pos, stream, PREC_PREFIX);
10807 fputs_filtered (")", stream);
10810 case UNOP_IN_RANGE:
10811 /* XXX: sprint_subexp */
10812 print_subexp (exp, pos, stream, PREC_SUFFIX);
10813 fputs_filtered (" in ", stream);
10814 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10817 case OP_DISCRETE_RANGE:
10818 print_subexp (exp, pos, stream, PREC_SUFFIX);
10819 fputs_filtered ("..", stream);
10820 print_subexp (exp, pos, stream, PREC_SUFFIX);
10824 fputs_filtered ("others => ", stream);
10825 print_subexp (exp, pos, stream, PREC_SUFFIX);
10829 for (i = 0; i < nargs-1; i += 1)
10832 fputs_filtered ("|", stream);
10833 print_subexp (exp, pos, stream, PREC_SUFFIX);
10835 fputs_filtered (" => ", stream);
10836 print_subexp (exp, pos, stream, PREC_SUFFIX);
10839 case OP_POSITIONAL:
10840 print_subexp (exp, pos, stream, PREC_SUFFIX);
10844 fputs_filtered ("(", stream);
10845 for (i = 0; i < nargs; i += 1)
10848 fputs_filtered (", ", stream);
10849 print_subexp (exp, pos, stream, PREC_SUFFIX);
10851 fputs_filtered (")", stream);
10856 /* Table mapping opcodes into strings for printing operators
10857 and precedences of the operators. */
10859 static const struct op_print ada_op_print_tab[] = {
10860 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10861 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10862 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10863 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10864 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10865 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10866 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10867 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10868 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10869 {">=", BINOP_GEQ, PREC_ORDER, 0},
10870 {">", BINOP_GTR, PREC_ORDER, 0},
10871 {"<", BINOP_LESS, PREC_ORDER, 0},
10872 {">>", BINOP_RSH, PREC_SHIFT, 0},
10873 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10874 {"+", BINOP_ADD, PREC_ADD, 0},
10875 {"-", BINOP_SUB, PREC_ADD, 0},
10876 {"&", BINOP_CONCAT, PREC_ADD, 0},
10877 {"*", BINOP_MUL, PREC_MUL, 0},
10878 {"/", BINOP_DIV, PREC_MUL, 0},
10879 {"rem", BINOP_REM, PREC_MUL, 0},
10880 {"mod", BINOP_MOD, PREC_MUL, 0},
10881 {"**", BINOP_EXP, PREC_REPEAT, 0},
10882 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10883 {"-", UNOP_NEG, PREC_PREFIX, 0},
10884 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10885 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10886 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10887 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10888 {".all", UNOP_IND, PREC_SUFFIX, 1},
10889 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10890 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10894 enum ada_primitive_types {
10895 ada_primitive_type_int,
10896 ada_primitive_type_long,
10897 ada_primitive_type_short,
10898 ada_primitive_type_char,
10899 ada_primitive_type_float,
10900 ada_primitive_type_double,
10901 ada_primitive_type_void,
10902 ada_primitive_type_long_long,
10903 ada_primitive_type_long_double,
10904 ada_primitive_type_natural,
10905 ada_primitive_type_positive,
10906 ada_primitive_type_system_address,
10907 nr_ada_primitive_types
10911 ada_language_arch_info (struct gdbarch *gdbarch,
10912 struct language_arch_info *lai)
10914 const struct builtin_type *builtin = builtin_type (gdbarch);
10915 lai->primitive_type_vector
10916 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10918 lai->primitive_type_vector [ada_primitive_type_int] =
10919 init_type (TYPE_CODE_INT,
10920 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10921 0, "integer", (struct objfile *) NULL);
10922 lai->primitive_type_vector [ada_primitive_type_long] =
10923 init_type (TYPE_CODE_INT,
10924 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10925 0, "long_integer", (struct objfile *) NULL);
10926 lai->primitive_type_vector [ada_primitive_type_short] =
10927 init_type (TYPE_CODE_INT,
10928 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10929 0, "short_integer", (struct objfile *) NULL);
10930 lai->string_char_type =
10931 lai->primitive_type_vector [ada_primitive_type_char] =
10932 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10933 0, "character", (struct objfile *) NULL);
10934 lai->primitive_type_vector [ada_primitive_type_float] =
10935 init_type (TYPE_CODE_FLT,
10936 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10937 0, "float", (struct objfile *) NULL);
10938 lai->primitive_type_vector [ada_primitive_type_double] =
10939 init_type (TYPE_CODE_FLT,
10940 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10941 0, "long_float", (struct objfile *) NULL);
10942 lai->primitive_type_vector [ada_primitive_type_long_long] =
10943 init_type (TYPE_CODE_INT,
10944 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10945 0, "long_long_integer", (struct objfile *) NULL);
10946 lai->primitive_type_vector [ada_primitive_type_long_double] =
10947 init_type (TYPE_CODE_FLT,
10948 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10949 0, "long_long_float", (struct objfile *) NULL);
10950 lai->primitive_type_vector [ada_primitive_type_natural] =
10951 init_type (TYPE_CODE_INT,
10952 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10953 0, "natural", (struct objfile *) NULL);
10954 lai->primitive_type_vector [ada_primitive_type_positive] =
10955 init_type (TYPE_CODE_INT,
10956 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10957 0, "positive", (struct objfile *) NULL);
10958 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10960 lai->primitive_type_vector [ada_primitive_type_system_address] =
10961 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10962 (struct objfile *) NULL));
10963 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10964 = "system__address";
10967 /* Language vector */
10969 /* Not really used, but needed in the ada_language_defn. */
10972 emit_char (int c, struct ui_file *stream, int quoter)
10974 ada_emit_char (c, stream, quoter, 1);
10980 warnings_issued = 0;
10981 return ada_parse ();
10984 static const struct exp_descriptor ada_exp_descriptor = {
10986 ada_operator_length,
10988 ada_dump_subexp_body,
10989 ada_evaluate_subexp
10992 const struct language_defn ada_language_defn = {
10993 "ada", /* Language name */
10997 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10998 that's not quite what this means. */
11000 &ada_exp_descriptor,
11004 ada_printchar, /* Print a character constant */
11005 ada_printstr, /* Function to print string constant */
11006 emit_char, /* Function to print single char (not used) */
11007 ada_print_type, /* Print a type using appropriate syntax */
11008 ada_val_print, /* Print a value using appropriate syntax */
11009 ada_value_print, /* Print a top-level value */
11010 NULL, /* Language specific skip_trampoline */
11011 NULL, /* name_of_this */
11012 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11013 basic_lookup_transparent_type, /* lookup_transparent_type */
11014 ada_la_decode, /* Language specific symbol demangler */
11015 NULL, /* Language specific class_name_from_physname */
11016 ada_op_print_tab, /* expression operators for printing */
11017 0, /* c-style arrays */
11018 1, /* String lower bound */
11019 ada_get_gdb_completer_word_break_characters,
11020 ada_make_symbol_completion_list,
11021 ada_language_arch_info,
11022 ada_print_array_index,
11023 default_pass_by_reference,
11028 _initialize_ada_language (void)
11030 add_language (&ada_language_defn);
11032 varsize_limit = 65536;
11034 obstack_init (&symbol_list_obstack);
11036 decoded_names_store = htab_create_alloc
11037 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11038 NULL, xcalloc, xfree);
11040 observer_attach_executable_changed (ada_executable_changed_observer);