1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
113 static struct value *make_array_descriptor (struct type *, struct value *,
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
121 static int is_nonfunction (struct ada_symbol_info *, int);
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
126 static int num_defns_collected (struct obstack *);
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
134 static struct symtab *symtab_for_sym (struct symbol *);
136 static struct value *resolve_subexp (struct expression **, int *, int,
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
144 static char *ada_op_name (enum exp_opcode);
146 static const char *ada_decoded_op_name (enum exp_opcode);
148 static int numeric_type_p (struct type *);
150 static int integer_type_p (struct type *);
152 static int scalar_type_p (struct type *);
154 static int discrete_type_p (struct type *);
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
161 static struct symbol *find_old_style_renaming_symbol (const char *,
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
167 static struct value *evaluate_subexp (struct type *, struct expression *,
170 static struct value *evaluate_subexp_type (struct expression *, int *);
172 static int is_dynamic_field (struct type *, int);
174 static struct type *to_fixed_variant_branch_type (struct type *,
176 CORE_ADDR, struct value *);
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
180 static struct type *to_fixed_range_type (char *, struct value *,
183 static struct type *to_static_fixed_type (struct type *);
185 static struct value *unwrap_value (struct value *);
187 static struct type *packed_array_type (struct type *, long *);
189 static struct type *decode_packed_array_type (struct type *);
191 static struct value *decode_packed_array (struct value *);
193 static struct value *value_subscript_packed (struct value *, int,
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198 static struct value *coerce_unspec_val_to_type (struct value *,
201 static struct value *get_var_value (char *, char *);
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
205 static int equiv_types (struct type *, struct type *);
207 static int is_name_suffix (const char *);
209 static int wild_match (const char *, int, const char *);
211 static struct value *ada_coerce_ref (struct value *);
213 static LONGEST pos_atr (struct value *);
215 static struct value *value_pos_atr (struct value *);
217 static struct value *value_val_atr (struct type *, struct value *);
219 static struct symbol *standard_lookup (const char *, const struct block *,
222 static struct value *ada_search_struct_field (char *, struct value *, int,
225 static struct value *ada_value_primitive_field (struct value *, int, int,
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 static struct value *ada_to_fixed_value (struct value *);
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
240 static struct value *ada_coerce_to_simple_array (struct value *);
242 static int ada_is_direct_array_type (struct type *);
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
247 static void check_size (const struct type *);
249 static struct value *ada_index_struct_field (int, struct value *, int,
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
255 static void aggregate_assign_from_choices (struct value *, struct value *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
260 static void aggregate_assign_positional (struct value *, struct value *,
262 int *, LONGEST *, int *, int,
266 static void aggregate_assign_others (struct value *, struct value *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 static void ada_forward_operator_length (struct expression *, int, int *,
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
320 ada_get_gdb_completer_word_break_characters (void)
322 return ada_completer_word_break_characters;
325 /* Print an array element index using the Ada syntax. */
328 ada_print_array_index (struct value *index_value, struct ui_file *stream,
329 int format, enum val_prettyprint pretty)
331 LA_VALUE_PRINT (index_value, stream, format, pretty);
332 fprintf_filtered (stream, " => ");
335 /* Read the string located at ADDR from the inferior and store the
339 extract_string (CORE_ADDR addr, char *buf)
343 /* Loop, reading one byte at a time, until we reach the '\000'
344 end-of-string marker. */
347 target_read_memory (addr + char_index * sizeof (char),
348 buf + char_index * sizeof (char), sizeof (char));
351 while (buf[char_index - 1] != '\000');
354 /* Assuming VECT points to an array of *SIZE objects of size
355 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
356 updating *SIZE as necessary and returning the (new) array. */
359 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 if (*size < min_size)
364 if (*size < min_size)
366 vect = xrealloc (vect, *size * element_size);
371 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
372 suffix of FIELD_NAME beginning "___". */
375 field_name_match (const char *field_name, const char *target)
377 int len = strlen (target);
379 (strncmp (field_name, target, len) == 0
380 && (field_name[len] == '\0'
381 || (strncmp (field_name + len, "___", 3) == 0
382 && strcmp (field_name + strlen (field_name) - 6,
387 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
388 FIELD_NAME, and return its index. This function also handles fields
389 whose name have ___ suffixes because the compiler sometimes alters
390 their name by adding such a suffix to represent fields with certain
391 constraints. If the field could not be found, return a negative
392 number if MAYBE_MISSING is set. Otherwise raise an error. */
395 ada_get_field_index (const struct type *type, const char *field_name,
399 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
400 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
404 error (_("Unable to find field %s in struct %s. Aborting"),
405 field_name, TYPE_NAME (type));
410 /* The length of the prefix of NAME prior to any "___" suffix. */
413 ada_name_prefix_len (const char *name)
419 const char *p = strstr (name, "___");
421 return strlen (name);
427 /* Return non-zero if SUFFIX is a suffix of STR.
428 Return zero if STR is null. */
431 is_suffix (const char *str, const char *suffix)
437 len2 = strlen (suffix);
438 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
441 /* Create a value of type TYPE whose contents come from VALADDR, if it
442 is non-null, and whose memory address (in the inferior) is
446 value_from_contents_and_address (struct type *type,
447 const gdb_byte *valaddr,
450 struct value *v = allocate_value (type);
452 set_value_lazy (v, 1);
454 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
455 VALUE_ADDRESS (v) = address;
457 VALUE_LVAL (v) = lval_memory;
461 /* The contents of value VAL, treated as a value of type TYPE. The
462 result is an lval in memory if VAL is. */
464 static struct value *
465 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 type = ada_check_typedef (type);
468 if (value_type (val) == type)
472 struct value *result;
474 /* Make sure that the object size is not unreasonable before
475 trying to allocate some memory for it. */
478 result = allocate_value (type);
479 VALUE_LVAL (result) = VALUE_LVAL (val);
480 set_value_bitsize (result, value_bitsize (val));
481 set_value_bitpos (result, value_bitpos (val));
482 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
485 set_value_lazy (result, 1);
487 memcpy (value_contents_raw (result), value_contents (val),
493 static const gdb_byte *
494 cond_offset_host (const gdb_byte *valaddr, long offset)
499 return valaddr + offset;
503 cond_offset_target (CORE_ADDR address, long offset)
508 return address + offset;
511 /* Issue a warning (as for the definition of warning in utils.c, but
512 with exactly one argument rather than ...), unless the limit on the
513 number of warnings has passed during the evaluation of the current
516 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
517 provided by "complaint". */
518 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
521 lim_warning (const char *format, ...)
524 va_start (args, format);
526 warnings_issued += 1;
527 if (warnings_issued <= warning_limit)
528 vwarning (format, args);
533 /* Issue an error if the size of an object of type T is unreasonable,
534 i.e. if it would be a bad idea to allocate a value of this type in
538 check_size (const struct type *type)
540 if (TYPE_LENGTH (type) > varsize_limit)
541 error (_("object size is larger than varsize-limit"));
545 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
546 gdbtypes.h, but some of the necessary definitions in that file
547 seem to have gone missing. */
549 /* Maximum value of a SIZE-byte signed integer type. */
551 max_of_size (int size)
553 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
554 return top_bit | (top_bit - 1);
557 /* Minimum value of a SIZE-byte signed integer type. */
559 min_of_size (int size)
561 return -max_of_size (size) - 1;
564 /* Maximum value of a SIZE-byte unsigned integer type. */
566 umax_of_size (int size)
568 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
569 return top_bit | (top_bit - 1);
572 /* Maximum value of integral type T, as a signed quantity. */
574 max_of_type (struct type *t)
576 if (TYPE_UNSIGNED (t))
577 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 return max_of_size (TYPE_LENGTH (t));
582 /* Minimum value of integral type T, as a signed quantity. */
584 min_of_type (struct type *t)
586 if (TYPE_UNSIGNED (t))
589 return min_of_size (TYPE_LENGTH (t));
592 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
593 static struct value *
594 discrete_type_high_bound (struct type *type)
596 switch (TYPE_CODE (type))
598 case TYPE_CODE_RANGE:
599 return value_from_longest (TYPE_TARGET_TYPE (type),
600 TYPE_HIGH_BOUND (type));
603 value_from_longest (type,
604 TYPE_FIELD_BITPOS (type,
605 TYPE_NFIELDS (type) - 1));
607 return value_from_longest (type, max_of_type (type));
609 error (_("Unexpected type in discrete_type_high_bound."));
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static struct value *
615 discrete_type_low_bound (struct type *type)
617 switch (TYPE_CODE (type))
619 case TYPE_CODE_RANGE:
620 return value_from_longest (TYPE_TARGET_TYPE (type),
621 TYPE_LOW_BOUND (type));
623 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 return value_from_longest (type, min_of_type (type));
627 error (_("Unexpected type in discrete_type_low_bound."));
631 /* The identity on non-range types. For range types, the underlying
632 non-range scalar type. */
635 base_type (struct type *type)
637 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 type = TYPE_TARGET_TYPE (type);
647 /* Language Selection */
649 /* If the main program is in Ada, return language_ada, otherwise return LANG
650 (the main program is in Ada iif the adainit symbol is found).
652 MAIN_PST is not used. */
655 ada_update_initial_language (enum language lang,
656 struct partial_symtab *main_pst)
658 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
659 (struct objfile *) NULL) != NULL)
665 /* If the main procedure is written in Ada, then return its name.
666 The result is good until the next call. Return NULL if the main
667 procedure doesn't appear to be in Ada. */
672 struct minimal_symbol *msym;
673 CORE_ADDR main_program_name_addr;
674 static char main_program_name[1024];
676 /* For Ada, the name of the main procedure is stored in a specific
677 string constant, generated by the binder. Look for that symbol,
678 extract its address, and then read that string. If we didn't find
679 that string, then most probably the main procedure is not written
681 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
686 if (main_program_name_addr == 0)
687 error (_("Invalid address for Ada main program name."));
689 extract_string (main_program_name_addr, main_program_name);
690 return main_program_name;
693 /* The main procedure doesn't seem to be in Ada. */
699 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
702 const struct ada_opname_map ada_opname_table[] = {
703 {"Oadd", "\"+\"", BINOP_ADD},
704 {"Osubtract", "\"-\"", BINOP_SUB},
705 {"Omultiply", "\"*\"", BINOP_MUL},
706 {"Odivide", "\"/\"", BINOP_DIV},
707 {"Omod", "\"mod\"", BINOP_MOD},
708 {"Orem", "\"rem\"", BINOP_REM},
709 {"Oexpon", "\"**\"", BINOP_EXP},
710 {"Olt", "\"<\"", BINOP_LESS},
711 {"Ole", "\"<=\"", BINOP_LEQ},
712 {"Ogt", "\">\"", BINOP_GTR},
713 {"Oge", "\">=\"", BINOP_GEQ},
714 {"Oeq", "\"=\"", BINOP_EQUAL},
715 {"One", "\"/=\"", BINOP_NOTEQUAL},
716 {"Oand", "\"and\"", BINOP_BITWISE_AND},
717 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
718 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
719 {"Oconcat", "\"&\"", BINOP_CONCAT},
720 {"Oabs", "\"abs\"", UNOP_ABS},
721 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
722 {"Oadd", "\"+\"", UNOP_PLUS},
723 {"Osubtract", "\"-\"", UNOP_NEG},
727 /* Return non-zero if STR should be suppressed in info listings. */
730 is_suppressed_name (const char *str)
732 if (strncmp (str, "_ada_", 5) == 0)
734 if (str[0] == '_' || str[0] == '\000')
739 const char *suffix = strstr (str, "___");
740 if (suffix != NULL && suffix[3] != 'X')
743 suffix = str + strlen (str);
744 for (p = suffix - 1; p != str; p -= 1)
748 if (p[0] == 'X' && p[-1] != '_')
752 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
753 if (strncmp (ada_opname_table[i].encoded, p,
754 strlen (ada_opname_table[i].encoded)) == 0)
763 /* The "encoded" form of DECODED, according to GNAT conventions.
764 The result is valid until the next call to ada_encode. */
767 ada_encode (const char *decoded)
769 static char *encoding_buffer = NULL;
770 static size_t encoding_buffer_size = 0;
777 GROW_VECT (encoding_buffer, encoding_buffer_size,
778 2 * strlen (decoded) + 10);
781 for (p = decoded; *p != '\0'; p += 1)
783 if (!ADA_RETAIN_DOTS && *p == '.')
785 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
790 const struct ada_opname_map *mapping;
792 for (mapping = ada_opname_table;
793 mapping->encoded != NULL
794 && strncmp (mapping->decoded, p,
795 strlen (mapping->decoded)) != 0; mapping += 1)
797 if (mapping->encoded == NULL)
798 error (_("invalid Ada operator name: %s"), p);
799 strcpy (encoding_buffer + k, mapping->encoded);
800 k += strlen (mapping->encoded);
805 encoding_buffer[k] = *p;
810 encoding_buffer[k] = '\0';
811 return encoding_buffer;
814 /* Return NAME folded to lower case, or, if surrounded by single
815 quotes, unfolded, but with the quotes stripped away. Result good
819 ada_fold_name (const char *name)
821 static char *fold_buffer = NULL;
822 static size_t fold_buffer_size = 0;
824 int len = strlen (name);
825 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
829 strncpy (fold_buffer, name + 1, len - 2);
830 fold_buffer[len - 2] = '\000';
835 for (i = 0; i <= len; i += 1)
836 fold_buffer[i] = tolower (name[i]);
842 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
845 is_lower_alphanum (const char c)
847 return (isdigit (c) || (isalpha (c) && islower (c)));
850 /* Remove either of these suffixes:
855 These are suffixes introduced by the compiler for entities such as
856 nested subprogram for instance, in order to avoid name clashes.
857 They do not serve any purpose for the debugger. */
860 ada_remove_trailing_digits (const char *encoded, int *len)
862 if (*len > 1 && isdigit (encoded[*len - 1]))
865 while (i > 0 && isdigit (encoded[i]))
867 if (i >= 0 && encoded[i] == '.')
869 else if (i >= 0 && encoded[i] == '$')
871 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
873 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
878 /* Remove the suffix introduced by the compiler for protected object
882 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
884 /* Remove trailing N. */
886 /* Protected entry subprograms are broken into two
887 separate subprograms: The first one is unprotected, and has
888 a 'N' suffix; the second is the protected version, and has
889 the 'P' suffix. The second calls the first one after handling
890 the protection. Since the P subprograms are internally generated,
891 we leave these names undecoded, giving the user a clue that this
892 entity is internal. */
895 && encoded[*len - 1] == 'N'
896 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
900 /* If ENCODED follows the GNAT entity encoding conventions, then return
901 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
904 The resulting string is valid until the next call of ada_decode.
905 If the string is unchanged by decoding, the original string pointer
909 ada_decode (const char *encoded)
916 static char *decoding_buffer = NULL;
917 static size_t decoding_buffer_size = 0;
919 /* The name of the Ada main procedure starts with "_ada_".
920 This prefix is not part of the decoded name, so skip this part
921 if we see this prefix. */
922 if (strncmp (encoded, "_ada_", 5) == 0)
925 /* If the name starts with '_', then it is not a properly encoded
926 name, so do not attempt to decode it. Similarly, if the name
927 starts with '<', the name should not be decoded. */
928 if (encoded[0] == '_' || encoded[0] == '<')
931 len0 = strlen (encoded);
933 ada_remove_trailing_digits (encoded, &len0);
934 ada_remove_po_subprogram_suffix (encoded, &len0);
936 /* Remove the ___X.* suffix if present. Do not forget to verify that
937 the suffix is located before the current "end" of ENCODED. We want
938 to avoid re-matching parts of ENCODED that have previously been
939 marked as discarded (by decrementing LEN0). */
940 p = strstr (encoded, "___");
941 if (p != NULL && p - encoded < len0 - 3)
949 /* Remove any trailing TKB suffix. It tells us that this symbol
950 is for the body of a task, but that information does not actually
951 appear in the decoded name. */
953 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
956 /* Remove trailing "B" suffixes. */
957 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
959 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
962 /* Make decoded big enough for possible expansion by operator name. */
964 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
965 decoded = decoding_buffer;
967 /* Remove trailing __{digit}+ or trailing ${digit}+. */
969 if (len0 > 1 && isdigit (encoded[len0 - 1]))
972 while ((i >= 0 && isdigit (encoded[i]))
973 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
975 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
977 else if (encoded[i] == '$')
981 /* The first few characters that are not alphabetic are not part
982 of any encoding we use, so we can copy them over verbatim. */
984 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
985 decoded[j] = encoded[i];
990 /* Is this a symbol function? */
991 if (at_start_name && encoded[i] == 'O')
994 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
996 int op_len = strlen (ada_opname_table[k].encoded);
997 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
999 && !isalnum (encoded[i + op_len]))
1001 strcpy (decoded + j, ada_opname_table[k].decoded);
1004 j += strlen (ada_opname_table[k].decoded);
1008 if (ada_opname_table[k].encoded != NULL)
1013 /* Replace "TK__" with "__", which will eventually be translated
1014 into "." (just below). */
1016 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1019 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1020 be translated into "." (just below). These are internal names
1021 generated for anonymous blocks inside which our symbol is nested. */
1023 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1024 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1025 && isdigit (encoded [i+4]))
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++; /* Skip any extra digit. */
1032 /* Double-check that the "__B_{DIGITS}+" sequence we found
1033 is indeed followed by "__". */
1034 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1038 /* Remove _E{DIGITS}+[sb] */
1040 /* Just as for protected object subprograms, there are 2 categories
1041 of subprograms created by the compiler for each entry. The first
1042 one implements the actual entry code, and has a suffix following
1043 the convention above; the second one implements the barrier and
1044 uses the same convention as above, except that the 'E' is replaced
1047 Just as above, we do not decode the name of barrier functions
1048 to give the user a clue that the code he is debugging has been
1049 internally generated. */
1051 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1052 && isdigit (encoded[i+2]))
1056 while (k < len0 && isdigit (encoded[k]))
1060 && (encoded[k] == 'b' || encoded[k] == 's'))
1063 /* Just as an extra precaution, make sure that if this
1064 suffix is followed by anything else, it is a '_'.
1065 Otherwise, we matched this sequence by accident. */
1067 || (k < len0 && encoded[k] == '_'))
1072 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1073 the GNAT front-end in protected object subprograms. */
1076 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1078 /* Backtrack a bit up until we reach either the begining of
1079 the encoded name, or "__". Make sure that we only find
1080 digits or lowercase characters. */
1081 const char *ptr = encoded + i - 1;
1083 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1086 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1090 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1092 /* This is a X[bn]* sequence not separated from the previous
1093 part of the name with a non-alpha-numeric character (in other
1094 words, immediately following an alpha-numeric character), then
1095 verify that it is placed at the end of the encoded name. If
1096 not, then the encoding is not valid and we should abort the
1097 decoding. Otherwise, just skip it, it is used in body-nested
1101 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1105 else if (!ADA_RETAIN_DOTS
1106 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1108 /* Replace '__' by '.'. */
1116 /* It's a character part of the decoded name, so just copy it
1118 decoded[j] = encoded[i];
1123 decoded[j] = '\000';
1125 /* Decoded names should never contain any uppercase character.
1126 Double-check this, and abort the decoding if we find one. */
1128 for (i = 0; decoded[i] != '\0'; i += 1)
1129 if (isupper (decoded[i]) || decoded[i] == ' ')
1132 if (strcmp (decoded, encoded) == 0)
1138 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1139 decoded = decoding_buffer;
1140 if (encoded[0] == '<')
1141 strcpy (decoded, encoded);
1143 sprintf (decoded, "<%s>", encoded);
1148 /* Table for keeping permanent unique copies of decoded names. Once
1149 allocated, names in this table are never released. While this is a
1150 storage leak, it should not be significant unless there are massive
1151 changes in the set of decoded names in successive versions of a
1152 symbol table loaded during a single session. */
1153 static struct htab *decoded_names_store;
1155 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1156 in the language-specific part of GSYMBOL, if it has not been
1157 previously computed. Tries to save the decoded name in the same
1158 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1159 in any case, the decoded symbol has a lifetime at least that of
1161 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1162 const, but nevertheless modified to a semantically equivalent form
1163 when a decoded name is cached in it.
1167 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1170 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1171 if (*resultp == NULL)
1173 const char *decoded = ada_decode (gsymbol->name);
1174 if (gsymbol->bfd_section != NULL)
1176 bfd *obfd = gsymbol->bfd_section->owner;
1179 struct objfile *objf;
1182 if (obfd == objf->obfd)
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
1191 /* Sometimes, we can't find a corresponding objfile, in which
1192 case, we put the result on the heap. Since we only decode
1193 when needed, we hope this usually does not cause a
1194 significant memory leak (FIXME). */
1195 if (*resultp == NULL)
1197 char **slot = (char **) htab_find_slot (decoded_names_store,
1200 *slot = xstrdup (decoded);
1209 ada_la_decode (const char *encoded, int options)
1211 return xstrdup (ada_decode (encoded));
1214 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1215 suffixes that encode debugging information or leading _ada_ on
1216 SYM_NAME (see is_name_suffix commentary for the debugging
1217 information that is ignored). If WILD, then NAME need only match a
1218 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1219 either argument is NULL. */
1222 ada_match_name (const char *sym_name, const char *name, int wild)
1224 if (sym_name == NULL || name == NULL)
1227 return wild_match (name, strlen (name), sym_name);
1230 int len_name = strlen (name);
1231 return (strncmp (sym_name, name, len_name) == 0
1232 && is_name_suffix (sym_name + len_name))
1233 || (strncmp (sym_name, "_ada_", 5) == 0
1234 && strncmp (sym_name + 5, name, len_name) == 0
1235 && is_name_suffix (sym_name + len_name + 5));
1239 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1240 suppressed in info listings. */
1243 ada_suppress_symbol_printing (struct symbol *sym)
1245 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1248 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1254 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1256 static char *bound_name[] = {
1257 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1258 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1261 /* Maximum number of array dimensions we are prepared to handle. */
1263 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1265 /* Like modify_field, but allows bitpos > wordlength. */
1268 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1270 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1274 /* The desc_* routines return primitive portions of array descriptors
1277 /* The descriptor or array type, if any, indicated by TYPE; removes
1278 level of indirection, if needed. */
1280 static struct type *
1281 desc_base_type (struct type *type)
1285 type = ada_check_typedef (type);
1287 && (TYPE_CODE (type) == TYPE_CODE_PTR
1288 || TYPE_CODE (type) == TYPE_CODE_REF))
1289 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1294 /* True iff TYPE indicates a "thin" array pointer type. */
1297 is_thin_pntr (struct type *type)
1300 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1301 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1304 /* The descriptor type for thin pointer type TYPE. */
1306 static struct type *
1307 thin_descriptor_type (struct type *type)
1309 struct type *base_type = desc_base_type (type);
1310 if (base_type == NULL)
1312 if (is_suffix (ada_type_name (base_type), "___XVE"))
1316 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1317 if (alt_type == NULL)
1324 /* A pointer to the array data for thin-pointer value VAL. */
1326 static struct value *
1327 thin_data_pntr (struct value *val)
1329 struct type *type = value_type (val);
1330 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1331 return value_cast (desc_data_type (thin_descriptor_type (type)),
1334 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1335 VALUE_ADDRESS (val) + value_offset (val));
1338 /* True iff TYPE indicates a "thick" array pointer type. */
1341 is_thick_pntr (struct type *type)
1343 type = desc_base_type (type);
1344 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1345 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1348 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1349 pointer to one, the type of its bounds data; otherwise, NULL. */
1351 static struct type *
1352 desc_bounds_type (struct type *type)
1356 type = desc_base_type (type);
1360 else if (is_thin_pntr (type))
1362 type = thin_descriptor_type (type);
1365 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1367 return ada_check_typedef (r);
1369 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1371 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1373 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1378 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1379 one, a pointer to its bounds data. Otherwise NULL. */
1381 static struct value *
1382 desc_bounds (struct value *arr)
1384 struct type *type = ada_check_typedef (value_type (arr));
1385 if (is_thin_pntr (type))
1387 struct type *bounds_type =
1388 desc_bounds_type (thin_descriptor_type (type));
1391 if (bounds_type == NULL)
1392 error (_("Bad GNAT array descriptor"));
1394 /* NOTE: The following calculation is not really kosher, but
1395 since desc_type is an XVE-encoded type (and shouldn't be),
1396 the correct calculation is a real pain. FIXME (and fix GCC). */
1397 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1398 addr = value_as_long (arr);
1400 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1403 value_from_longest (lookup_pointer_type (bounds_type),
1404 addr - TYPE_LENGTH (bounds_type));
1407 else if (is_thick_pntr (type))
1408 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1409 _("Bad GNAT array descriptor"));
1414 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1415 position of the field containing the address of the bounds data. */
1418 fat_pntr_bounds_bitpos (struct type *type)
1420 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1423 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1424 size of the field containing the address of the bounds data. */
1427 fat_pntr_bounds_bitsize (struct type *type)
1429 type = desc_base_type (type);
1431 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1432 return TYPE_FIELD_BITSIZE (type, 1);
1434 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1437 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1438 pointer to one, the type of its array data (a
1439 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1440 ada_type_of_array to get an array type with bounds data. */
1442 static struct type *
1443 desc_data_type (struct type *type)
1445 type = desc_base_type (type);
1447 /* NOTE: The following is bogus; see comment in desc_bounds. */
1448 if (is_thin_pntr (type))
1449 return lookup_pointer_type
1450 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1451 else if (is_thick_pntr (type))
1452 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1457 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1460 static struct value *
1461 desc_data (struct value *arr)
1463 struct type *type = value_type (arr);
1464 if (is_thin_pntr (type))
1465 return thin_data_pntr (arr);
1466 else if (is_thick_pntr (type))
1467 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1468 _("Bad GNAT array descriptor"));
1474 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1475 position of the field containing the address of the data. */
1478 fat_pntr_data_bitpos (struct type *type)
1480 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1483 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1484 size of the field containing the address of the data. */
1487 fat_pntr_data_bitsize (struct type *type)
1489 type = desc_base_type (type);
1491 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1492 return TYPE_FIELD_BITSIZE (type, 0);
1494 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1497 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1498 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1499 bound, if WHICH is 1. The first bound is I=1. */
1501 static struct value *
1502 desc_one_bound (struct value *bounds, int i, int which)
1504 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1505 _("Bad GNAT array descriptor bounds"));
1508 /* If BOUNDS is an array-bounds structure type, return the bit position
1509 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1510 bound, if WHICH is 1. The first bound is I=1. */
1513 desc_bound_bitpos (struct type *type, int i, int which)
1515 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1518 /* If BOUNDS is an array-bounds structure type, return the bit field size
1519 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1520 bound, if WHICH is 1. The first bound is I=1. */
1523 desc_bound_bitsize (struct type *type, int i, int which)
1525 type = desc_base_type (type);
1527 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1528 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1530 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1533 /* If TYPE is the type of an array-bounds structure, the type of its
1534 Ith bound (numbering from 1). Otherwise, NULL. */
1536 static struct type *
1537 desc_index_type (struct type *type, int i)
1539 type = desc_base_type (type);
1541 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1542 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1547 /* The number of index positions in the array-bounds type TYPE.
1548 Return 0 if TYPE is NULL. */
1551 desc_arity (struct type *type)
1553 type = desc_base_type (type);
1556 return TYPE_NFIELDS (type) / 2;
1560 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1561 an array descriptor type (representing an unconstrained array
1565 ada_is_direct_array_type (struct type *type)
1569 type = ada_check_typedef (type);
1570 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1571 || ada_is_array_descriptor_type (type));
1574 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1578 ada_is_array_type (struct type *type)
1581 && (TYPE_CODE (type) == TYPE_CODE_PTR
1582 || TYPE_CODE (type) == TYPE_CODE_REF))
1583 type = TYPE_TARGET_TYPE (type);
1584 return ada_is_direct_array_type (type);
1587 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1590 ada_is_simple_array_type (struct type *type)
1594 type = ada_check_typedef (type);
1595 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1596 || (TYPE_CODE (type) == TYPE_CODE_PTR
1597 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1600 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1603 ada_is_array_descriptor_type (struct type *type)
1605 struct type *data_type = desc_data_type (type);
1609 type = ada_check_typedef (type);
1612 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1613 && TYPE_TARGET_TYPE (data_type) != NULL
1614 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1615 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1616 && desc_arity (desc_bounds_type (type)) > 0;
1619 /* Non-zero iff type is a partially mal-formed GNAT array
1620 descriptor. FIXME: This is to compensate for some problems with
1621 debugging output from GNAT. Re-examine periodically to see if it
1625 ada_is_bogus_array_descriptor (struct type *type)
1629 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1630 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1631 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1632 && !ada_is_array_descriptor_type (type);
1636 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1637 (fat pointer) returns the type of the array data described---specifically,
1638 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1639 in from the descriptor; otherwise, they are left unspecified. If
1640 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1641 returns NULL. The result is simply the type of ARR if ARR is not
1644 ada_type_of_array (struct value *arr, int bounds)
1646 if (ada_is_packed_array_type (value_type (arr)))
1647 return decode_packed_array_type (value_type (arr));
1649 if (!ada_is_array_descriptor_type (value_type (arr)))
1650 return value_type (arr);
1654 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1657 struct type *elt_type;
1659 struct value *descriptor;
1660 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1662 elt_type = ada_array_element_type (value_type (arr), -1);
1663 arity = ada_array_arity (value_type (arr));
1665 if (elt_type == NULL || arity == 0)
1666 return ada_check_typedef (value_type (arr));
1668 descriptor = desc_bounds (arr);
1669 if (value_as_long (descriptor) == 0)
1673 struct type *range_type = alloc_type (objf);
1674 struct type *array_type = alloc_type (objf);
1675 struct value *low = desc_one_bound (descriptor, arity, 0);
1676 struct value *high = desc_one_bound (descriptor, arity, 1);
1679 create_range_type (range_type, value_type (low),
1680 longest_to_int (value_as_long (low)),
1681 longest_to_int (value_as_long (high)));
1682 elt_type = create_array_type (array_type, elt_type, range_type);
1685 return lookup_pointer_type (elt_type);
1689 /* If ARR does not represent an array, returns ARR unchanged.
1690 Otherwise, returns either a standard GDB array with bounds set
1691 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1692 GDB array. Returns NULL if ARR is a null fat pointer. */
1695 ada_coerce_to_simple_array_ptr (struct value *arr)
1697 if (ada_is_array_descriptor_type (value_type (arr)))
1699 struct type *arrType = ada_type_of_array (arr, 1);
1700 if (arrType == NULL)
1702 return value_cast (arrType, value_copy (desc_data (arr)));
1704 else if (ada_is_packed_array_type (value_type (arr)))
1705 return decode_packed_array (arr);
1710 /* If ARR does not represent an array, returns ARR unchanged.
1711 Otherwise, returns a standard GDB array describing ARR (which may
1712 be ARR itself if it already is in the proper form). */
1714 static struct value *
1715 ada_coerce_to_simple_array (struct value *arr)
1717 if (ada_is_array_descriptor_type (value_type (arr)))
1719 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1721 error (_("Bounds unavailable for null array pointer."));
1722 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1723 return value_ind (arrVal);
1725 else if (ada_is_packed_array_type (value_type (arr)))
1726 return decode_packed_array (arr);
1731 /* If TYPE represents a GNAT array type, return it translated to an
1732 ordinary GDB array type (possibly with BITSIZE fields indicating
1733 packing). For other types, is the identity. */
1736 ada_coerce_to_simple_array_type (struct type *type)
1738 struct value *mark = value_mark ();
1739 struct value *dummy = value_from_longest (builtin_type_long, 0);
1740 struct type *result;
1741 deprecated_set_value_type (dummy, type);
1742 result = ada_type_of_array (dummy, 0);
1743 value_free_to_mark (mark);
1747 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1750 ada_is_packed_array_type (struct type *type)
1754 type = desc_base_type (type);
1755 type = ada_check_typedef (type);
1757 ada_type_name (type) != NULL
1758 && strstr (ada_type_name (type), "___XP") != NULL;
1761 /* Given that TYPE is a standard GDB array type with all bounds filled
1762 in, and that the element size of its ultimate scalar constituents
1763 (that is, either its elements, or, if it is an array of arrays, its
1764 elements' elements, etc.) is *ELT_BITS, return an identical type,
1765 but with the bit sizes of its elements (and those of any
1766 constituent arrays) recorded in the BITSIZE components of its
1767 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1770 static struct type *
1771 packed_array_type (struct type *type, long *elt_bits)
1773 struct type *new_elt_type;
1774 struct type *new_type;
1775 LONGEST low_bound, high_bound;
1777 type = ada_check_typedef (type);
1778 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1781 new_type = alloc_type (TYPE_OBJFILE (type));
1782 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1784 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1785 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1786 TYPE_NAME (new_type) = ada_type_name (type);
1788 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1789 &low_bound, &high_bound) < 0)
1790 low_bound = high_bound = 0;
1791 if (high_bound < low_bound)
1792 *elt_bits = TYPE_LENGTH (new_type) = 0;
1795 *elt_bits *= (high_bound - low_bound + 1);
1796 TYPE_LENGTH (new_type) =
1797 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1800 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1804 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1806 static struct type *
1807 decode_packed_array_type (struct type *type)
1810 struct block **blocks;
1811 const char *raw_name = ada_type_name (ada_check_typedef (type));
1812 char *name = (char *) alloca (strlen (raw_name) + 1);
1813 char *tail = strstr (raw_name, "___XP");
1814 struct type *shadow_type;
1818 type = desc_base_type (type);
1820 memcpy (name, raw_name, tail - raw_name);
1821 name[tail - raw_name] = '\000';
1823 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1824 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1826 lim_warning (_("could not find bounds information on packed array"));
1829 shadow_type = SYMBOL_TYPE (sym);
1831 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1833 lim_warning (_("could not understand bounds information on packed array"));
1837 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1840 (_("could not understand bit size information on packed array"));
1844 return packed_array_type (shadow_type, &bits);
1847 /* Given that ARR is a struct value *indicating a GNAT packed array,
1848 returns a simple array that denotes that array. Its type is a
1849 standard GDB array type except that the BITSIZEs of the array
1850 target types are set to the number of bits in each element, and the
1851 type length is set appropriately. */
1853 static struct value *
1854 decode_packed_array (struct value *arr)
1858 arr = ada_coerce_ref (arr);
1859 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1860 arr = ada_value_ind (arr);
1862 type = decode_packed_array_type (value_type (arr));
1865 error (_("can't unpack array"));
1869 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1871 /* This is a (right-justified) modular type representing a packed
1872 array with no wrapper. In order to interpret the value through
1873 the (left-justified) packed array type we just built, we must
1874 first left-justify it. */
1875 int bit_size, bit_pos;
1878 mod = ada_modulus (value_type (arr)) - 1;
1885 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1886 arr = ada_value_primitive_packed_val (arr, NULL,
1887 bit_pos / HOST_CHAR_BIT,
1888 bit_pos % HOST_CHAR_BIT,
1893 return coerce_unspec_val_to_type (arr, type);
1897 /* The value of the element of packed array ARR at the ARITY indices
1898 given in IND. ARR must be a simple array. */
1900 static struct value *
1901 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1904 int bits, elt_off, bit_off;
1905 long elt_total_bit_offset;
1906 struct type *elt_type;
1910 elt_total_bit_offset = 0;
1911 elt_type = ada_check_typedef (value_type (arr));
1912 for (i = 0; i < arity; i += 1)
1914 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1915 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1917 (_("attempt to do packed indexing of something other than a packed array"));
1920 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1921 LONGEST lowerbound, upperbound;
1924 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1926 lim_warning (_("don't know bounds of array"));
1927 lowerbound = upperbound = 0;
1930 idx = value_as_long (value_pos_atr (ind[i]));
1931 if (idx < lowerbound || idx > upperbound)
1932 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1933 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1934 elt_total_bit_offset += (idx - lowerbound) * bits;
1935 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1938 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1939 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1941 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1946 /* Non-zero iff TYPE includes negative integer values. */
1949 has_negatives (struct type *type)
1951 switch (TYPE_CODE (type))
1956 return !TYPE_UNSIGNED (type);
1957 case TYPE_CODE_RANGE:
1958 return TYPE_LOW_BOUND (type) < 0;
1963 /* Create a new value of type TYPE from the contents of OBJ starting
1964 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1965 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1966 assigning through the result will set the field fetched from.
1967 VALADDR is ignored unless OBJ is NULL, in which case,
1968 VALADDR+OFFSET must address the start of storage containing the
1969 packed value. The value returned in this case is never an lval.
1970 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1973 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1974 long offset, int bit_offset, int bit_size,
1978 int src, /* Index into the source area */
1979 targ, /* Index into the target area */
1980 srcBitsLeft, /* Number of source bits left to move */
1981 nsrc, ntarg, /* Number of source and target bytes */
1982 unusedLS, /* Number of bits in next significant
1983 byte of source that are unused */
1984 accumSize; /* Number of meaningful bits in accum */
1985 unsigned char *bytes; /* First byte containing data to unpack */
1986 unsigned char *unpacked;
1987 unsigned long accum; /* Staging area for bits being transferred */
1989 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1990 /* Transmit bytes from least to most significant; delta is the direction
1991 the indices move. */
1992 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1994 type = ada_check_typedef (type);
1998 v = allocate_value (type);
1999 bytes = (unsigned char *) (valaddr + offset);
2001 else if (value_lazy (obj))
2004 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2005 bytes = (unsigned char *) alloca (len);
2006 read_memory (VALUE_ADDRESS (v), bytes, len);
2010 v = allocate_value (type);
2011 bytes = (unsigned char *) value_contents (obj) + offset;
2016 VALUE_LVAL (v) = VALUE_LVAL (obj);
2017 if (VALUE_LVAL (obj) == lval_internalvar)
2018 VALUE_LVAL (v) = lval_internalvar_component;
2019 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2020 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2021 set_value_bitsize (v, bit_size);
2022 if (value_bitpos (v) >= HOST_CHAR_BIT)
2024 VALUE_ADDRESS (v) += 1;
2025 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2029 set_value_bitsize (v, bit_size);
2030 unpacked = (unsigned char *) value_contents (v);
2032 srcBitsLeft = bit_size;
2034 ntarg = TYPE_LENGTH (type);
2038 memset (unpacked, 0, TYPE_LENGTH (type));
2041 else if (BITS_BIG_ENDIAN)
2044 if (has_negatives (type)
2045 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2049 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2052 switch (TYPE_CODE (type))
2054 case TYPE_CODE_ARRAY:
2055 case TYPE_CODE_UNION:
2056 case TYPE_CODE_STRUCT:
2057 /* Non-scalar values must be aligned at a byte boundary... */
2059 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2060 /* ... And are placed at the beginning (most-significant) bytes
2062 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2066 targ = TYPE_LENGTH (type) - 1;
2072 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2075 unusedLS = bit_offset;
2078 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2085 /* Mask for removing bits of the next source byte that are not
2086 part of the value. */
2087 unsigned int unusedMSMask =
2088 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2090 /* Sign-extend bits for this byte. */
2091 unsigned int signMask = sign & ~unusedMSMask;
2093 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2094 accumSize += HOST_CHAR_BIT - unusedLS;
2095 if (accumSize >= HOST_CHAR_BIT)
2097 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2098 accumSize -= HOST_CHAR_BIT;
2099 accum >>= HOST_CHAR_BIT;
2103 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2110 accum |= sign << accumSize;
2111 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2112 accumSize -= HOST_CHAR_BIT;
2113 accum >>= HOST_CHAR_BIT;
2121 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2122 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2125 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2126 int src_offset, int n)
2128 unsigned int accum, mask;
2129 int accum_bits, chunk_size;
2131 target += targ_offset / HOST_CHAR_BIT;
2132 targ_offset %= HOST_CHAR_BIT;
2133 source += src_offset / HOST_CHAR_BIT;
2134 src_offset %= HOST_CHAR_BIT;
2135 if (BITS_BIG_ENDIAN)
2137 accum = (unsigned char) *source;
2139 accum_bits = HOST_CHAR_BIT - src_offset;
2144 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2145 accum_bits += HOST_CHAR_BIT;
2147 chunk_size = HOST_CHAR_BIT - targ_offset;
2150 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2151 mask = ((1 << chunk_size) - 1) << unused_right;
2154 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2156 accum_bits -= chunk_size;
2163 accum = (unsigned char) *source >> src_offset;
2165 accum_bits = HOST_CHAR_BIT - src_offset;
2169 accum = accum + ((unsigned char) *source << accum_bits);
2170 accum_bits += HOST_CHAR_BIT;
2172 chunk_size = HOST_CHAR_BIT - targ_offset;
2175 mask = ((1 << chunk_size) - 1) << targ_offset;
2176 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2178 accum_bits -= chunk_size;
2179 accum >>= chunk_size;
2186 /* Store the contents of FROMVAL into the location of TOVAL.
2187 Return a new value with the location of TOVAL and contents of
2188 FROMVAL. Handles assignment into packed fields that have
2189 floating-point or non-scalar types. */
2191 static struct value *
2192 ada_value_assign (struct value *toval, struct value *fromval)
2194 struct type *type = value_type (toval);
2195 int bits = value_bitsize (toval);
2197 toval = ada_coerce_ref (toval);
2198 fromval = ada_coerce_ref (fromval);
2200 if (ada_is_direct_array_type (value_type (toval)))
2201 toval = ada_coerce_to_simple_array (toval);
2202 if (ada_is_direct_array_type (value_type (fromval)))
2203 fromval = ada_coerce_to_simple_array (fromval);
2205 if (!deprecated_value_modifiable (toval))
2206 error (_("Left operand of assignment is not a modifiable lvalue."));
2208 if (VALUE_LVAL (toval) == lval_memory
2210 && (TYPE_CODE (type) == TYPE_CODE_FLT
2211 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2213 int len = (value_bitpos (toval)
2214 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2215 char *buffer = (char *) alloca (len);
2217 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2219 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2220 fromval = value_cast (type, fromval);
2222 read_memory (to_addr, buffer, len);
2223 if (BITS_BIG_ENDIAN)
2224 move_bits (buffer, value_bitpos (toval),
2225 value_contents (fromval),
2226 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2229 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2231 write_memory (to_addr, buffer, len);
2232 if (deprecated_memory_changed_hook)
2233 deprecated_memory_changed_hook (to_addr, len);
2235 val = value_copy (toval);
2236 memcpy (value_contents_raw (val), value_contents (fromval),
2237 TYPE_LENGTH (type));
2238 deprecated_set_value_type (val, type);
2243 return value_assign (toval, fromval);
2247 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2248 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2249 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2250 * COMPONENT, and not the inferior's memory. The current contents
2251 * of COMPONENT are ignored. */
2253 value_assign_to_component (struct value *container, struct value *component,
2256 LONGEST offset_in_container =
2257 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2258 - VALUE_ADDRESS (container) - value_offset (container));
2259 int bit_offset_in_container =
2260 value_bitpos (component) - value_bitpos (container);
2263 val = value_cast (value_type (component), val);
2265 if (value_bitsize (component) == 0)
2266 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2268 bits = value_bitsize (component);
2270 if (BITS_BIG_ENDIAN)
2271 move_bits (value_contents_writeable (container) + offset_in_container,
2272 value_bitpos (container) + bit_offset_in_container,
2273 value_contents (val),
2274 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2277 move_bits (value_contents_writeable (container) + offset_in_container,
2278 value_bitpos (container) + bit_offset_in_container,
2279 value_contents (val), 0, bits);
2282 /* The value of the element of array ARR at the ARITY indices given in IND.
2283 ARR may be either a simple array, GNAT array descriptor, or pointer
2287 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2291 struct type *elt_type;
2293 elt = ada_coerce_to_simple_array (arr);
2295 elt_type = ada_check_typedef (value_type (elt));
2296 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2297 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2298 return value_subscript_packed (elt, arity, ind);
2300 for (k = 0; k < arity; k += 1)
2302 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2303 error (_("too many subscripts (%d expected)"), k);
2304 elt = value_subscript (elt, value_pos_atr (ind[k]));
2309 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2310 value of the element of *ARR at the ARITY indices given in
2311 IND. Does not read the entire array into memory. */
2314 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2319 for (k = 0; k < arity; k += 1)
2324 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2325 error (_("too many subscripts (%d expected)"), k);
2326 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2328 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2329 idx = value_pos_atr (ind[k]);
2331 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2332 arr = value_add (arr, idx);
2333 type = TYPE_TARGET_TYPE (type);
2336 return value_ind (arr);
2339 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2340 actual type of ARRAY_PTR is ignored), returns a reference to
2341 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2342 bound of this array is LOW, as per Ada rules. */
2343 static struct value *
2344 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2347 CORE_ADDR base = value_as_address (array_ptr)
2348 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2349 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2350 struct type *index_type =
2351 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2353 struct type *slice_type =
2354 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2355 return value_from_pointer (lookup_reference_type (slice_type), base);
2359 static struct value *
2360 ada_value_slice (struct value *array, int low, int high)
2362 struct type *type = value_type (array);
2363 struct type *index_type =
2364 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2365 struct type *slice_type =
2366 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2367 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2370 /* If type is a record type in the form of a standard GNAT array
2371 descriptor, returns the number of dimensions for type. If arr is a
2372 simple array, returns the number of "array of"s that prefix its
2373 type designation. Otherwise, returns 0. */
2376 ada_array_arity (struct type *type)
2383 type = desc_base_type (type);
2386 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2387 return desc_arity (desc_bounds_type (type));
2389 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2392 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2398 /* If TYPE is a record type in the form of a standard GNAT array
2399 descriptor or a simple array type, returns the element type for
2400 TYPE after indexing by NINDICES indices, or by all indices if
2401 NINDICES is -1. Otherwise, returns NULL. */
2404 ada_array_element_type (struct type *type, int nindices)
2406 type = desc_base_type (type);
2408 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2411 struct type *p_array_type;
2413 p_array_type = desc_data_type (type);
2415 k = ada_array_arity (type);
2419 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2420 if (nindices >= 0 && k > nindices)
2422 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2423 while (k > 0 && p_array_type != NULL)
2425 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2428 return p_array_type;
2430 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2432 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2434 type = TYPE_TARGET_TYPE (type);
2443 /* The type of nth index in arrays of given type (n numbering from 1).
2444 Does not examine memory. */
2447 ada_index_type (struct type *type, int n)
2449 struct type *result_type;
2451 type = desc_base_type (type);
2453 if (n > ada_array_arity (type))
2456 if (ada_is_simple_array_type (type))
2460 for (i = 1; i < n; i += 1)
2461 type = TYPE_TARGET_TYPE (type);
2462 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2463 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2464 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2465 perhaps stabsread.c would make more sense. */
2466 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2467 result_type = builtin_type_int;
2472 return desc_index_type (desc_bounds_type (type), n);
2475 /* Given that arr is an array type, returns the lower bound of the
2476 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2477 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2478 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2479 bounds type. It works for other arrays with bounds supplied by
2480 run-time quantities other than discriminants. */
2483 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2484 struct type ** typep)
2487 struct type *index_type_desc;
2489 if (ada_is_packed_array_type (arr_type))
2490 arr_type = decode_packed_array_type (arr_type);
2492 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2495 *typep = builtin_type_int;
2496 return (LONGEST) - which;
2499 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2500 type = TYPE_TARGET_TYPE (arr_type);
2504 index_type_desc = ada_find_parallel_type (type, "___XA");
2505 if (index_type_desc == NULL)
2507 struct type *range_type;
2508 struct type *index_type;
2512 type = TYPE_TARGET_TYPE (type);
2516 range_type = TYPE_INDEX_TYPE (type);
2517 index_type = TYPE_TARGET_TYPE (range_type);
2518 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2519 index_type = builtin_type_long;
2521 *typep = index_type;
2523 (LONGEST) (which == 0
2524 ? TYPE_LOW_BOUND (range_type)
2525 : TYPE_HIGH_BOUND (range_type));
2529 struct type *index_type =
2530 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2531 NULL, TYPE_OBJFILE (arr_type));
2533 *typep = TYPE_TARGET_TYPE (index_type);
2535 (LONGEST) (which == 0
2536 ? TYPE_LOW_BOUND (index_type)
2537 : TYPE_HIGH_BOUND (index_type));
2541 /* Given that arr is an array value, returns the lower bound of the
2542 nth index (numbering from 1) if which is 0, and the upper bound if
2543 which is 1. This routine will also work for arrays with bounds
2544 supplied by run-time quantities other than discriminants. */
2547 ada_array_bound (struct value *arr, int n, int which)
2549 struct type *arr_type = value_type (arr);
2551 if (ada_is_packed_array_type (arr_type))
2552 return ada_array_bound (decode_packed_array (arr), n, which);
2553 else if (ada_is_simple_array_type (arr_type))
2556 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2557 return value_from_longest (type, v);
2560 return desc_one_bound (desc_bounds (arr), n, which);
2563 /* Given that arr is an array value, returns the length of the
2564 nth index. This routine will also work for arrays with bounds
2565 supplied by run-time quantities other than discriminants.
2566 Does not work for arrays indexed by enumeration types with representation
2567 clauses at the moment. */
2570 ada_array_length (struct value *arr, int n)
2572 struct type *arr_type = ada_check_typedef (value_type (arr));
2574 if (ada_is_packed_array_type (arr_type))
2575 return ada_array_length (decode_packed_array (arr), n);
2577 if (ada_is_simple_array_type (arr_type))
2581 ada_array_bound_from_type (arr_type, n, 1, &type) -
2582 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2583 return value_from_longest (type, v);
2587 value_from_longest (builtin_type_int,
2588 value_as_long (desc_one_bound (desc_bounds (arr),
2590 - value_as_long (desc_one_bound (desc_bounds (arr),
2594 /* An empty array whose type is that of ARR_TYPE (an array type),
2595 with bounds LOW to LOW-1. */
2597 static struct value *
2598 empty_array (struct type *arr_type, int low)
2600 struct type *index_type =
2601 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 struct type *elt_type = ada_array_element_type (arr_type, 1);
2604 return allocate_value (create_array_type (NULL, elt_type, index_type));
2608 /* Name resolution */
2610 /* The "decoded" name for the user-definable Ada operator corresponding
2614 ada_decoded_op_name (enum exp_opcode op)
2618 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2620 if (ada_opname_table[i].op == op)
2621 return ada_opname_table[i].decoded;
2623 error (_("Could not find operator name for opcode"));
2627 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2628 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2629 undefined namespace) and converts operators that are
2630 user-defined into appropriate function calls. If CONTEXT_TYPE is
2631 non-null, it provides a preferred result type [at the moment, only
2632 type void has any effect---causing procedures to be preferred over
2633 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2634 return type is preferred. May change (expand) *EXP. */
2637 resolve (struct expression **expp, int void_context_p)
2641 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2644 /* Resolve the operator of the subexpression beginning at
2645 position *POS of *EXPP. "Resolving" consists of replacing
2646 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2647 with their resolutions, replacing built-in operators with
2648 function calls to user-defined operators, where appropriate, and,
2649 when DEPROCEDURE_P is non-zero, converting function-valued variables
2650 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2651 are as in ada_resolve, above. */
2653 static struct value *
2654 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2655 struct type *context_type)
2659 struct expression *exp; /* Convenience: == *expp. */
2660 enum exp_opcode op = (*expp)->elts[pc].opcode;
2661 struct value **argvec; /* Vector of operand types (alloca'ed). */
2662 int nargs; /* Number of operands. */
2669 /* Pass one: resolve operands, saving their types and updating *pos,
2674 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2675 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2680 resolve_subexp (expp, pos, 0, NULL);
2682 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2687 resolve_subexp (expp, pos, 0, NULL);
2692 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2695 case OP_ATR_MODULUS:
2705 case TERNOP_IN_RANGE:
2706 case BINOP_IN_BOUNDS:
2712 case OP_DISCRETE_RANGE:
2714 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2723 arg1 = resolve_subexp (expp, pos, 0, NULL);
2725 resolve_subexp (expp, pos, 1, NULL);
2727 resolve_subexp (expp, pos, 1, value_type (arg1));
2744 case BINOP_LOGICAL_AND:
2745 case BINOP_LOGICAL_OR:
2746 case BINOP_BITWISE_AND:
2747 case BINOP_BITWISE_IOR:
2748 case BINOP_BITWISE_XOR:
2751 case BINOP_NOTEQUAL:
2758 case BINOP_SUBSCRIPT:
2766 case UNOP_LOGICAL_NOT:
2782 case OP_INTERNALVAR:
2792 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2795 case STRUCTOP_STRUCT:
2796 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2809 error (_("Unexpected operator during name resolution"));
2812 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2813 for (i = 0; i < nargs; i += 1)
2814 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2818 /* Pass two: perform any resolution on principal operator. */
2825 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2827 struct ada_symbol_info *candidates;
2831 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2832 (exp->elts[pc + 2].symbol),
2833 exp->elts[pc + 1].block, VAR_DOMAIN,
2836 if (n_candidates > 1)
2838 /* Types tend to get re-introduced locally, so if there
2839 are any local symbols that are not types, first filter
2842 for (j = 0; j < n_candidates; j += 1)
2843 switch (SYMBOL_CLASS (candidates[j].sym))
2849 case LOC_REGPARM_ADDR:
2853 case LOC_BASEREG_ARG:
2855 case LOC_COMPUTED_ARG:
2861 if (j < n_candidates)
2864 while (j < n_candidates)
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2868 candidates[j] = candidates[n_candidates - 1];
2877 if (n_candidates == 0)
2878 error (_("No definition found for %s"),
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2890 error (_("Could not find a match for %s"),
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 printf_filtered (_("Multiple matches for %s\n"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2924 struct ada_symbol_info *candidates;
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2932 if (n_candidates == 1)
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2942 error (_("Could not find a match for %s"),
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2965 case BINOP_NOTEQUAL:
2973 case UNOP_LOGICAL_NOT:
2975 if (possible_user_operator_p (op, argvec))
2977 struct ada_symbol_info *candidates;
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2985 ada_decoded_op_name (op), NULL);
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
3000 return evaluate_subexp_type (exp, pos);
3003 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3004 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3005 a non-pointer. A type of 'void' (which is never a valid expression type)
3006 by convention matches anything. */
3007 /* The term "match" here is rather loose. The match is heuristic and
3008 liberal. FIXME: TOO liberal, in fact. */
3011 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3021 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3022 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3025 switch (TYPE_CODE (ftype))
3030 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3031 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3032 TYPE_TARGET_TYPE (atype), 0);
3035 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3037 case TYPE_CODE_ENUM:
3038 case TYPE_CODE_RANGE:
3039 switch (TYPE_CODE (atype))
3042 case TYPE_CODE_ENUM:
3043 case TYPE_CODE_RANGE:
3049 case TYPE_CODE_ARRAY:
3050 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3051 || ada_is_array_descriptor_type (atype));
3053 case TYPE_CODE_STRUCT:
3054 if (ada_is_array_descriptor_type (ftype))
3055 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3056 || ada_is_array_descriptor_type (atype));
3058 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3059 && !ada_is_array_descriptor_type (atype));
3061 case TYPE_CODE_UNION:
3063 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3067 /* Return non-zero if the formals of FUNC "sufficiently match" the
3068 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3069 may also be an enumeral, in which case it is treated as a 0-
3070 argument function. */
3073 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3076 struct type *func_type = SYMBOL_TYPE (func);
3078 if (SYMBOL_CLASS (func) == LOC_CONST
3079 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3080 return (n_actuals == 0);
3081 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3084 if (TYPE_NFIELDS (func_type) != n_actuals)
3087 for (i = 0; i < n_actuals; i += 1)
3089 if (actuals[i] == NULL)
3093 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3094 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3096 if (!ada_type_match (ftype, atype, 1))
3103 /* False iff function type FUNC_TYPE definitely does not produce a value
3104 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3105 FUNC_TYPE is not a valid function type with a non-null return type
3106 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3109 return_match (struct type *func_type, struct type *context_type)
3111 struct type *return_type;
3113 if (func_type == NULL)
3116 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3117 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3119 return_type = base_type (func_type);
3120 if (return_type == NULL)
3123 context_type = base_type (context_type);
3125 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3126 return context_type == NULL || return_type == context_type;
3127 else if (context_type == NULL)
3128 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3130 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3134 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3135 function (if any) that matches the types of the NARGS arguments in
3136 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3137 that returns that type, then eliminate matches that don't. If
3138 CONTEXT_TYPE is void and there is at least one match that does not
3139 return void, eliminate all matches that do.
3141 Asks the user if there is more than one match remaining. Returns -1
3142 if there is no such symbol or none is selected. NAME is used
3143 solely for messages. May re-arrange and modify SYMS in
3144 the process; the index returned is for the modified vector. */
3147 ada_resolve_function (struct ada_symbol_info syms[],
3148 int nsyms, struct value **args, int nargs,
3149 const char *name, struct type *context_type)
3152 int m; /* Number of hits */
3153 struct type *fallback;
3154 struct type *return_type;
3156 return_type = context_type;
3157 if (context_type == NULL)
3158 fallback = builtin_type_void;
3165 for (k = 0; k < nsyms; k += 1)
3167 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3169 if (ada_args_match (syms[k].sym, args, nargs)
3170 && return_match (type, return_type))
3176 if (m > 0 || return_type == fallback)
3179 return_type = fallback;
3186 printf_filtered (_("Multiple matches for %s\n"), name);
3187 user_select_syms (syms, m, 1);
3193 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3194 in a listing of choices during disambiguation (see sort_choices, below).
3195 The idea is that overloadings of a subprogram name from the
3196 same package should sort in their source order. We settle for ordering
3197 such symbols by their trailing number (__N or $N). */
3200 encoded_ordered_before (char *N0, char *N1)
3204 else if (N0 == NULL)
3209 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3211 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3213 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3214 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3218 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3221 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3223 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3224 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3226 return (strcmp (N0, N1) < 0);
3230 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3234 sort_choices (struct ada_symbol_info syms[], int nsyms)
3237 for (i = 1; i < nsyms; i += 1)
3239 struct ada_symbol_info sym = syms[i];
3242 for (j = i - 1; j >= 0; j -= 1)
3244 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3245 SYMBOL_LINKAGE_NAME (sym.sym)))
3247 syms[j + 1] = syms[j];
3253 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3254 by asking the user (if necessary), returning the number selected,
3255 and setting the first elements of SYMS items. Error if no symbols
3258 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3259 to be re-integrated one of these days. */
3262 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3265 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3267 int first_choice = (max_results == 1) ? 1 : 2;
3269 if (max_results < 1)
3270 error (_("Request to select 0 symbols!"));
3274 printf_unfiltered (_("[0] cancel\n"));
3275 if (max_results > 1)
3276 printf_unfiltered (_("[1] all\n"));
3278 sort_choices (syms, nsyms);
3280 for (i = 0; i < nsyms; i += 1)
3282 if (syms[i].sym == NULL)
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3306 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3316 printf_unfiltered (("[%d] "), i + first_choice);
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3330 printf_unfiltered (is_enumeral
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3341 for (i = 0; i < n_chosen; i += 1)
3342 syms[i] = syms[chosen[i]];
3347 /* Read and validate a set of numeric choices from the user in the
3348 range 0 .. N_CHOICES-1. Place the results in increasing
3349 order in CHOICES[0 .. N-1], and return N.
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3354 + A choice of 0 means to cancel the selection, throwing an error.
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3358 The user is not allowed to choose more than MAX_RESULTS values.
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
3361 prompts (for use with the -f switch). */
3364 get_selections (int *choices, int n_choices, int max_results,
3365 int is_all_choice, char *annotation_suffix)
3370 int first_choice = is_all_choice ? 2 : 1;
3372 prompt = getenv ("PS2");
3376 printf_unfiltered (("%s "), prompt);
3377 gdb_flush (gdb_stdout);
3379 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3382 error_no_arg (_("one or more choice numbers"));
3386 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3387 order, as given in args. Choices are validated. */
3393 while (isspace (*args))
3395 if (*args == '\0' && n_chosen == 0)
3396 error_no_arg (_("one or more choice numbers"));
3397 else if (*args == '\0')
3400 choice = strtol (args, &args2, 10);
3401 if (args == args2 || choice < 0
3402 || choice > n_choices + first_choice - 1)
3403 error (_("Argument must be choice number"));
3407 error (_("cancelled"));
3409 if (choice < first_choice)
3411 n_chosen = n_choices;
3412 for (j = 0; j < n_choices; j += 1)
3416 choice -= first_choice;
3418 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3422 if (j < 0 || choice != choices[j])
3425 for (k = n_chosen - 1; k > j; k -= 1)
3426 choices[k + 1] = choices[k];
3427 choices[j + 1] = choice;
3432 if (n_chosen > max_results)
3433 error (_("Select no more than %d of the above"), max_results);
3438 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3439 on the function identified by SYM and BLOCK, and taking NARGS
3440 arguments. Update *EXPP as needed to hold more space. */
3443 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3444 int oplen, struct symbol *sym,
3445 struct block *block)
3447 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3448 symbol, -oplen for operator being replaced). */
3449 struct expression *newexp = (struct expression *)
3450 xmalloc (sizeof (struct expression)
3451 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3452 struct expression *exp = *expp;
3454 newexp->nelts = exp->nelts + 7 - oplen;
3455 newexp->language_defn = exp->language_defn;
3456 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3457 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3458 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3460 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3461 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3463 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3464 newexp->elts[pc + 4].block = block;
3465 newexp->elts[pc + 5].symbol = sym;
3471 /* Type-class predicates */
3473 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3477 numeric_type_p (struct type *type)
3483 switch (TYPE_CODE (type))
3488 case TYPE_CODE_RANGE:
3489 return (type == TYPE_TARGET_TYPE (type)
3490 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3497 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3500 integer_type_p (struct type *type)
3506 switch (TYPE_CODE (type))
3510 case TYPE_CODE_RANGE:
3511 return (type == TYPE_TARGET_TYPE (type)
3512 || integer_type_p (TYPE_TARGET_TYPE (type)));
3519 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3522 scalar_type_p (struct type *type)
3528 switch (TYPE_CODE (type))
3531 case TYPE_CODE_RANGE:
3532 case TYPE_CODE_ENUM:
3541 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3544 discrete_type_p (struct type *type)
3550 switch (TYPE_CODE (type))
3553 case TYPE_CODE_RANGE:
3554 case TYPE_CODE_ENUM:
3562 /* Returns non-zero if OP with operands in the vector ARGS could be
3563 a user-defined function. Errs on the side of pre-defined operators
3564 (i.e., result 0). */
3567 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3569 struct type *type0 =
3570 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3571 struct type *type1 =
3572 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3586 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3590 case BINOP_BITWISE_AND:
3591 case BINOP_BITWISE_IOR:
3592 case BINOP_BITWISE_XOR:
3593 return (!(integer_type_p (type0) && integer_type_p (type1)));
3596 case BINOP_NOTEQUAL:
3601 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3604 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3607 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3611 case UNOP_LOGICAL_NOT:
3613 return (!numeric_type_p (type0));
3622 1. In the following, we assume that a renaming type's name may
3623 have an ___XD suffix. It would be nice if this went away at some
3625 2. We handle both the (old) purely type-based representation of
3626 renamings and the (new) variable-based encoding. At some point,
3627 it is devoutly to be hoped that the former goes away
3628 (FIXME: hilfinger-2007-07-09).
3629 3. Subprogram renamings are not implemented, although the XRS
3630 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3632 /* If SYM encodes a renaming,
3634 <renaming> renames <renamed entity>,
3636 sets *LEN to the length of the renamed entity's name,
3637 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3638 the string describing the subcomponent selected from the renamed
3639 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3640 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3641 are undefined). Otherwise, returns a value indicating the category
3642 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3643 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3644 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3645 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3646 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3647 may be NULL, in which case they are not assigned.
3649 [Currently, however, GCC does not generate subprogram renamings.] */
3651 enum ada_renaming_category
3652 ada_parse_renaming (struct symbol *sym,
3653 const char **renamed_entity, int *len,
3654 const char **renaming_expr)
3656 enum ada_renaming_category kind;
3661 return ADA_NOT_RENAMING;
3662 switch (SYMBOL_CLASS (sym))
3665 return ADA_NOT_RENAMING;
3667 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3668 renamed_entity, len, renaming_expr);
3672 case LOC_OPTIMIZED_OUT:
3673 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3675 return ADA_NOT_RENAMING;
3679 kind = ADA_OBJECT_RENAMING;
3683 kind = ADA_EXCEPTION_RENAMING;
3687 kind = ADA_PACKAGE_RENAMING;
3691 kind = ADA_SUBPROGRAM_RENAMING;
3695 return ADA_NOT_RENAMING;
3699 if (renamed_entity != NULL)
3700 *renamed_entity = info;
3701 suffix = strstr (info, "___XE");
3702 if (suffix == NULL || suffix == info)
3703 return ADA_NOT_RENAMING;
3705 *len = strlen (info) - strlen (suffix);
3707 if (renaming_expr != NULL)
3708 *renaming_expr = suffix;
3712 /* Assuming TYPE encodes a renaming according to the old encoding in
3713 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3714 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3715 ADA_NOT_RENAMING otherwise. */
3716 static enum ada_renaming_category
3717 parse_old_style_renaming (struct type *type,
3718 const char **renamed_entity, int *len,
3719 const char **renaming_expr)
3721 enum ada_renaming_category kind;
3726 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3727 || TYPE_NFIELDS (type) != 1)
3728 return ADA_NOT_RENAMING;
3730 name = type_name_no_tag (type);
3732 return ADA_NOT_RENAMING;
3734 name = strstr (name, "___XR");
3736 return ADA_NOT_RENAMING;
3741 kind = ADA_OBJECT_RENAMING;
3744 kind = ADA_EXCEPTION_RENAMING;
3747 kind = ADA_PACKAGE_RENAMING;
3750 kind = ADA_SUBPROGRAM_RENAMING;
3753 return ADA_NOT_RENAMING;
3756 info = TYPE_FIELD_NAME (type, 0);
3758 return ADA_NOT_RENAMING;
3759 if (renamed_entity != NULL)
3760 *renamed_entity = info;
3761 suffix = strstr (info, "___XE");
3762 if (renaming_expr != NULL)
3763 *renaming_expr = suffix + 5;
3764 if (suffix == NULL || suffix == info)
3765 return ADA_NOT_RENAMING;
3767 *len = suffix - info;
3773 /* Evaluation: Function Calls */
3775 /* Return an lvalue containing the value VAL. This is the identity on
3776 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3777 on the stack, using and updating *SP as the stack pointer, and
3778 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3780 static struct value *
3781 ensure_lval (struct value *val, CORE_ADDR *sp)
3783 if (! VALUE_LVAL (val))
3785 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3787 /* The following is taken from the structure-return code in
3788 call_function_by_hand. FIXME: Therefore, some refactoring seems
3790 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3792 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3793 reserving sufficient space. */
3795 if (gdbarch_frame_align_p (current_gdbarch))
3796 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3797 VALUE_ADDRESS (val) = *sp;
3801 /* Stack grows upward. Align the frame, allocate space, and
3802 then again, re-align the frame. */
3803 if (gdbarch_frame_align_p (current_gdbarch))
3804 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3805 VALUE_ADDRESS (val) = *sp;
3807 if (gdbarch_frame_align_p (current_gdbarch))
3808 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3811 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3817 /* Return the value ACTUAL, converted to be an appropriate value for a
3818 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3819 allocating any necessary descriptors (fat pointers), or copies of
3820 values not residing in memory, updating it as needed. */
3822 static struct value *
3823 convert_actual (struct value *actual, struct type *formal_type0,
3826 struct type *actual_type = ada_check_typedef (value_type (actual));
3827 struct type *formal_type = ada_check_typedef (formal_type0);
3828 struct type *formal_target =
3829 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3830 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3831 struct type *actual_target =
3832 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3833 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3835 if (ada_is_array_descriptor_type (formal_target)
3836 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3837 return make_array_descriptor (formal_type, actual, sp);
3838 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3840 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3841 && ada_is_array_descriptor_type (actual_target))
3842 return desc_data (actual);
3843 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3845 if (VALUE_LVAL (actual) != lval_memory)
3848 actual_type = ada_check_typedef (value_type (actual));
3849 val = allocate_value (actual_type);
3850 memcpy ((char *) value_contents_raw (val),
3851 (char *) value_contents (actual),
3852 TYPE_LENGTH (actual_type));
3853 actual = ensure_lval (val, sp);
3855 return value_addr (actual);
3858 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3859 return ada_value_ind (actual);
3865 /* Push a descriptor of type TYPE for array value ARR on the stack at
3866 *SP, updating *SP to reflect the new descriptor. Return either
3867 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3868 to-descriptor type rather than a descriptor type), a struct value *
3869 representing a pointer to this descriptor. */
3871 static struct value *
3872 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3874 struct type *bounds_type = desc_bounds_type (type);
3875 struct type *desc_type = desc_base_type (type);
3876 struct value *descriptor = allocate_value (desc_type);
3877 struct value *bounds = allocate_value (bounds_type);
3880 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3882 modify_general_field (value_contents_writeable (bounds),
3883 value_as_long (ada_array_bound (arr, i, 0)),
3884 desc_bound_bitpos (bounds_type, i, 0),
3885 desc_bound_bitsize (bounds_type, i, 0));
3886 modify_general_field (value_contents_writeable (bounds),
3887 value_as_long (ada_array_bound (arr, i, 1)),
3888 desc_bound_bitpos (bounds_type, i, 1),
3889 desc_bound_bitsize (bounds_type, i, 1));
3892 bounds = ensure_lval (bounds, sp);
3894 modify_general_field (value_contents_writeable (descriptor),
3895 VALUE_ADDRESS (ensure_lval (arr, sp)),
3896 fat_pntr_data_bitpos (desc_type),
3897 fat_pntr_data_bitsize (desc_type));
3899 modify_general_field (value_contents_writeable (descriptor),
3900 VALUE_ADDRESS (bounds),
3901 fat_pntr_bounds_bitpos (desc_type),
3902 fat_pntr_bounds_bitsize (desc_type));
3904 descriptor = ensure_lval (descriptor, sp);
3906 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3907 return value_addr (descriptor);
3913 /* Assuming a dummy frame has been established on the target, perform any
3914 conversions needed for calling function FUNC on the NARGS actual
3915 parameters in ARGS, other than standard C conversions. Does
3916 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3917 does not match the number of arguments expected. Use *SP as a
3918 stack pointer for additional data that must be pushed, updating its
3922 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3927 if (TYPE_NFIELDS (value_type (func)) == 0
3928 || nargs != TYPE_NFIELDS (value_type (func)))
3931 for (i = 0; i < nargs; i += 1)
3933 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3936 /* Dummy definitions for an experimental caching module that is not
3937 * used in the public sources. */
3940 lookup_cached_symbol (const char *name, domain_enum namespace,
3941 struct symbol **sym, struct block **block,
3942 struct symtab **symtab)
3948 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3949 struct block *block, struct symtab *symtab)
3955 /* Return the result of a standard (literal, C-like) lookup of NAME in
3956 given DOMAIN, visible from lexical block BLOCK. */
3958 static struct symbol *
3959 standard_lookup (const char *name, const struct block *block,
3963 struct symtab *symtab;
3965 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3968 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3969 cache_symbol (name, domain, sym, block_found, symtab);
3974 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3975 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3976 since they contend in overloading in the same way. */
3978 is_nonfunction (struct ada_symbol_info syms[], int n)
3982 for (i = 0; i < n; i += 1)
3983 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3984 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3985 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3991 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3992 struct types. Otherwise, they may not. */
3995 equiv_types (struct type *type0, struct type *type1)
3999 if (type0 == NULL || type1 == NULL
4000 || TYPE_CODE (type0) != TYPE_CODE (type1))
4002 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4003 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4004 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4005 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4011 /* True iff SYM0 represents the same entity as SYM1, or one that is
4012 no more defined than that of SYM1. */
4015 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4019 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4020 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4023 switch (SYMBOL_CLASS (sym0))
4029 struct type *type0 = SYMBOL_TYPE (sym0);
4030 struct type *type1 = SYMBOL_TYPE (sym1);
4031 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4032 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4033 int len0 = strlen (name0);
4035 TYPE_CODE (type0) == TYPE_CODE (type1)
4036 && (equiv_types (type0, type1)
4037 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4038 && strncmp (name1 + len0, "___XV", 5) == 0));
4041 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4042 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4048 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4049 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4052 add_defn_to_vec (struct obstack *obstackp,
4054 struct block *block, struct symtab *symtab)
4058 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4060 /* Do not try to complete stub types, as the debugger is probably
4061 already scanning all symbols matching a certain name at the
4062 time when this function is called. Trying to replace the stub
4063 type by its associated full type will cause us to restart a scan
4064 which may lead to an infinite recursion. Instead, the client
4065 collecting the matching symbols will end up collecting several
4066 matches, with at least one of them complete. It can then filter
4067 out the stub ones if needed. */
4069 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4071 if (lesseq_defined_than (sym, prevDefns[i].sym))
4073 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4075 prevDefns[i].sym = sym;
4076 prevDefns[i].block = block;
4077 prevDefns[i].symtab = symtab;
4083 struct ada_symbol_info info;
4087 info.symtab = symtab;
4088 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4092 /* Number of ada_symbol_info structures currently collected in
4093 current vector in *OBSTACKP. */
4096 num_defns_collected (struct obstack *obstackp)
4098 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4101 /* Vector of ada_symbol_info structures currently collected in current
4102 vector in *OBSTACKP. If FINISH, close off the vector and return
4103 its final address. */
4105 static struct ada_symbol_info *
4106 defns_collected (struct obstack *obstackp, int finish)
4109 return obstack_finish (obstackp);
4111 return (struct ada_symbol_info *) obstack_base (obstackp);
4114 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4115 Check the global symbols if GLOBAL, the static symbols if not.
4116 Do wild-card match if WILD. */
4118 static struct partial_symbol *
4119 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4120 int global, domain_enum namespace, int wild)
4122 struct partial_symbol **start;
4123 int name_len = strlen (name);
4124 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4133 pst->objfile->global_psymbols.list + pst->globals_offset :
4134 pst->objfile->static_psymbols.list + pst->statics_offset);
4138 for (i = 0; i < length; i += 1)
4140 struct partial_symbol *psym = start[i];
4142 if (SYMBOL_DOMAIN (psym) == namespace
4143 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4157 int M = (U + i) >> 1;
4158 struct partial_symbol *psym = start[M];
4159 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4161 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4163 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4174 struct partial_symbol *psym = start[i];
4176 if (SYMBOL_DOMAIN (psym) == namespace)
4178 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4186 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4200 int M = (U + i) >> 1;
4201 struct partial_symbol *psym = start[M];
4202 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4204 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4206 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4217 struct partial_symbol *psym = start[i];
4219 if (SYMBOL_DOMAIN (psym) == namespace)
4223 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4226 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4228 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4238 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4248 /* Find a symbol table containing symbol SYM or NULL if none. */
4250 static struct symtab *
4251 symtab_for_sym (struct symbol *sym)
4254 struct objfile *objfile;
4256 struct symbol *tmp_sym;
4257 struct dict_iterator iter;
4260 ALL_PRIMARY_SYMTABS (objfile, s)
4262 switch (SYMBOL_CLASS (sym))
4270 case LOC_CONST_BYTES:
4271 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4272 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4274 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4275 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4281 switch (SYMBOL_CLASS (sym))
4287 case LOC_REGPARM_ADDR:
4292 case LOC_BASEREG_ARG:
4294 case LOC_COMPUTED_ARG:
4295 for (j = FIRST_LOCAL_BLOCK;
4296 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4298 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4299 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4310 /* Return a minimal symbol matching NAME according to Ada decoding
4311 rules. Returns NULL if there is no such minimal symbol. Names
4312 prefixed with "standard__" are handled specially: "standard__" is
4313 first stripped off, and only static and global symbols are searched. */
4315 struct minimal_symbol *
4316 ada_lookup_simple_minsym (const char *name)
4318 struct objfile *objfile;
4319 struct minimal_symbol *msymbol;
4322 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4324 name += sizeof ("standard__") - 1;
4328 wild_match = (strstr (name, "__") == NULL);
4330 ALL_MSYMBOLS (objfile, msymbol)
4332 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4333 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4340 /* For all subprograms that statically enclose the subprogram of the
4341 selected frame, add symbols matching identifier NAME in DOMAIN
4342 and their blocks to the list of data in OBSTACKP, as for
4343 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4347 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4348 const char *name, domain_enum namespace,
4353 /* True if TYPE is definitely an artificial type supplied to a symbol
4354 for which no debugging information was given in the symbol file. */
4357 is_nondebugging_type (struct type *type)
4359 char *name = ada_type_name (type);
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4363 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4371 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4378 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4379 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4380 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4382 for (j = 0; j < nsyms; j += 1)
4385 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4387 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4388 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4389 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4390 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4393 for (k = i + 1; k < nsyms; k += 1)
4394 syms[k - 1] = syms[k];
4407 /* Given a type that corresponds to a renaming entity, use the type name
4408 to extract the scope (package name or function name, fully qualified,
4409 and following the GNAT encoding convention) where this renaming has been
4410 defined. The string returned needs to be deallocated after use. */
4413 xget_renaming_scope (struct type *renaming_type)
4415 /* The renaming types adhere to the following convention:
4416 <scope>__<rename>___<XR extension>.
4417 So, to extract the scope, we search for the "___XR" extension,
4418 and then backtrack until we find the first "__". */
4420 const char *name = type_name_no_tag (renaming_type);
4421 char *suffix = strstr (name, "___XR");
4426 /* Now, backtrack a bit until we find the first "__". Start looking
4427 at suffix - 3, as the <rename> part is at least one character long. */
4429 for (last = suffix - 3; last > name; last--)
4430 if (last[0] == '_' && last[1] == '_')
4433 /* Make a copy of scope and return it. */
4435 scope_len = last - name;
4436 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4438 strncpy (scope, name, scope_len);
4439 scope[scope_len] = '\0';
4444 /* Return nonzero if NAME corresponds to a package name. */
4447 is_package_name (const char *name)
4449 /* Here, We take advantage of the fact that no symbols are generated
4450 for packages, while symbols are generated for each function.
4451 So the condition for NAME represent a package becomes equivalent
4452 to NAME not existing in our list of symbols. There is only one
4453 small complication with library-level functions (see below). */
4457 /* If it is a function that has not been defined at library level,
4458 then we should be able to look it up in the symbols. */
4459 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4462 /* Library-level function names start with "_ada_". See if function
4463 "_ada_" followed by NAME can be found. */
4465 /* Do a quick check that NAME does not contain "__", since library-level
4466 functions names cannot contain "__" in them. */
4467 if (strstr (name, "__") != NULL)
4470 fun_name = xstrprintf ("_ada_%s", name);
4472 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4475 /* Return nonzero if SYM corresponds to a renaming entity that is
4476 not visible from FUNCTION_NAME. */
4479 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4483 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4486 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4488 make_cleanup (xfree, scope);
4490 /* If the rename has been defined in a package, then it is visible. */
4491 if (is_package_name (scope))
4494 /* Check that the rename is in the current function scope by checking
4495 that its name starts with SCOPE. */
4497 /* If the function name starts with "_ada_", it means that it is
4498 a library-level function. Strip this prefix before doing the
4499 comparison, as the encoding for the renaming does not contain
4501 if (strncmp (function_name, "_ada_", 5) == 0)
4504 return (strncmp (function_name, scope, strlen (scope)) != 0);
4507 /* Remove entries from SYMS that corresponds to a renaming entity that
4508 is not visible from the function associated with CURRENT_BLOCK or
4509 that is superfluous due to the presence of more specific renaming
4510 information. Places surviving symbols in the initial entries of
4511 SYMS and returns the number of surviving symbols.
4514 First, in cases where an object renaming is implemented as a
4515 reference variable, GNAT may produce both the actual reference
4516 variable and the renaming encoding. In this case, we discard the
4519 Second, GNAT emits a type following a specified encoding for each renaming
4520 entity. Unfortunately, STABS currently does not support the definition
4521 of types that are local to a given lexical block, so all renamings types
4522 are emitted at library level. As a consequence, if an application
4523 contains two renaming entities using the same name, and a user tries to
4524 print the value of one of these entities, the result of the ada symbol
4525 lookup will also contain the wrong renaming type.
4527 This function partially covers for this limitation by attempting to
4528 remove from the SYMS list renaming symbols that should be visible
4529 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4530 method with the current information available. The implementation
4531 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4533 - When the user tries to print a rename in a function while there
4534 is another rename entity defined in a package: Normally, the
4535 rename in the function has precedence over the rename in the
4536 package, so the latter should be removed from the list. This is
4537 currently not the case.
4539 - This function will incorrectly remove valid renames if
4540 the CURRENT_BLOCK corresponds to a function which symbol name
4541 has been changed by an "Export" pragma. As a consequence,
4542 the user will be unable to print such rename entities. */
4545 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4546 int nsyms, const struct block *current_block)
4548 struct symbol *current_function;
4549 char *current_function_name;
4551 int is_new_style_renaming;
4553 /* If there is both a renaming foo___XR... encoded as a variable and
4554 a simple variable foo in the same block, discard the latter.
4555 First, zero out such symbols, then compress. */
4556 is_new_style_renaming = 0;
4557 for (i = 0; i < nsyms; i += 1)
4559 struct symbol *sym = syms[i].sym;
4560 struct block *block = syms[i].block;
4564 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4566 name = SYMBOL_LINKAGE_NAME (sym);
4567 suffix = strstr (name, "___XR");
4571 int name_len = suffix - name;
4573 is_new_style_renaming = 1;
4574 for (j = 0; j < nsyms; j += 1)
4575 if (i != j && syms[j].sym != NULL
4576 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4578 && block == syms[j].block)
4582 if (is_new_style_renaming)
4586 for (j = k = 0; j < nsyms; j += 1)
4587 if (syms[j].sym != NULL)
4595 /* Extract the function name associated to CURRENT_BLOCK.
4596 Abort if unable to do so. */
4598 if (current_block == NULL)
4601 current_function = block_function (current_block);
4602 if (current_function == NULL)
4605 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4606 if (current_function_name == NULL)
4609 /* Check each of the symbols, and remove it from the list if it is
4610 a type corresponding to a renaming that is out of the scope of
4611 the current block. */
4616 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4617 == ADA_OBJECT_RENAMING
4618 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4621 for (j = i + 1; j < nsyms; j += 1)
4622 syms[j - 1] = syms[j];
4632 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4633 scope and in global scopes, returning the number of matches. Sets
4634 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4635 indicating the symbols found and the blocks and symbol tables (if
4636 any) in which they were found. This vector are transient---good only to
4637 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4638 symbol match within the nest of blocks whose innermost member is BLOCK0,
4639 is the one match returned (no other matches in that or
4640 enclosing blocks is returned). If there are any matches in or
4641 surrounding BLOCK0, then these alone are returned. Otherwise, the
4642 search extends to global and file-scope (static) symbol tables.
4643 Names prefixed with "standard__" are handled specially: "standard__"
4644 is first stripped off, and only static and global symbols are searched. */
4647 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4648 domain_enum namespace,
4649 struct ada_symbol_info **results)
4653 struct partial_symtab *ps;
4654 struct blockvector *bv;
4655 struct objfile *objfile;
4656 struct block *block;
4658 struct minimal_symbol *msymbol;
4664 obstack_free (&symbol_list_obstack, NULL);
4665 obstack_init (&symbol_list_obstack);
4669 /* Search specified block and its superiors. */
4671 wild_match = (strstr (name0, "__") == NULL);
4673 block = (struct block *) block0; /* FIXME: No cast ought to be
4674 needed, but adding const will
4675 have a cascade effect. */
4676 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4680 name = name0 + sizeof ("standard__") - 1;
4684 while (block != NULL)
4687 ada_add_block_symbols (&symbol_list_obstack, block, name,
4688 namespace, NULL, NULL, wild_match);
4690 /* If we found a non-function match, assume that's the one. */
4691 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4692 num_defns_collected (&symbol_list_obstack)))
4695 block = BLOCK_SUPERBLOCK (block);
4698 /* If no luck so far, try to find NAME as a local symbol in some lexically
4699 enclosing subprogram. */
4700 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4701 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4702 name, namespace, wild_match);
4704 /* If we found ANY matches among non-global symbols, we're done. */
4706 if (num_defns_collected (&symbol_list_obstack) > 0)
4710 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4713 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4717 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4718 tables, and psymtab's. */
4720 ALL_PRIMARY_SYMTABS (objfile, s)
4723 bv = BLOCKVECTOR (s);
4724 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4725 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4726 objfile, s, wild_match);
4729 if (namespace == VAR_DOMAIN)
4731 ALL_MSYMBOLS (objfile, msymbol)
4733 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4735 switch (MSYMBOL_TYPE (msymbol))
4737 case mst_solib_trampoline:
4740 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4743 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4745 bv = BLOCKVECTOR (s);
4746 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4747 ada_add_block_symbols (&symbol_list_obstack, block,
4748 SYMBOL_LINKAGE_NAME (msymbol),
4749 namespace, objfile, s, wild_match);
4751 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4753 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4754 ada_add_block_symbols (&symbol_list_obstack, block,
4755 SYMBOL_LINKAGE_NAME (msymbol),
4756 namespace, objfile, s,
4765 ALL_PSYMTABS (objfile, ps)
4769 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4771 s = PSYMTAB_TO_SYMTAB (ps);
4774 bv = BLOCKVECTOR (s);
4775 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4776 ada_add_block_symbols (&symbol_list_obstack, block, name,
4777 namespace, objfile, s, wild_match);
4781 /* Now add symbols from all per-file blocks if we've gotten no hits
4782 (Not strictly correct, but perhaps better than an error).
4783 Do the symtabs first, then check the psymtabs. */
4785 if (num_defns_collected (&symbol_list_obstack) == 0)
4788 ALL_PRIMARY_SYMTABS (objfile, s)
4791 bv = BLOCKVECTOR (s);
4792 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4793 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4794 objfile, s, wild_match);
4797 ALL_PSYMTABS (objfile, ps)
4801 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4803 s = PSYMTAB_TO_SYMTAB (ps);
4804 bv = BLOCKVECTOR (s);
4807 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4808 ada_add_block_symbols (&symbol_list_obstack, block, name,
4809 namespace, objfile, s, wild_match);
4815 ndefns = num_defns_collected (&symbol_list_obstack);
4816 *results = defns_collected (&symbol_list_obstack, 1);
4818 ndefns = remove_extra_symbols (*results, ndefns);
4821 cache_symbol (name0, namespace, NULL, NULL, NULL);
4823 if (ndefns == 1 && cacheIfUnique)
4824 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4825 (*results)[0].symtab);
4827 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4833 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4834 domain_enum namespace,
4835 struct block **block_found, struct symtab **symtab)
4837 struct ada_symbol_info *candidates;
4840 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4842 if (n_candidates == 0)
4845 if (block_found != NULL)
4846 *block_found = candidates[0].block;
4850 *symtab = candidates[0].symtab;
4851 if (*symtab == NULL && candidates[0].block != NULL)
4853 struct objfile *objfile;
4856 struct blockvector *bv;
4858 /* Search the list of symtabs for one which contains the
4859 address of the start of this block. */
4860 ALL_PRIMARY_SYMTABS (objfile, s)
4862 bv = BLOCKVECTOR (s);
4863 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4864 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4865 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4868 return fixup_symbol_section (candidates[0].sym, objfile);
4871 /* FIXME: brobecker/2004-11-12: I think that we should never
4872 reach this point. I don't see a reason why we would not
4873 find a symtab for a given block, so I suggest raising an
4874 internal_error exception here. Otherwise, we end up
4875 returning a symbol but no symtab, which certain parts of
4876 the code that rely (indirectly) on this function do not
4877 expect, eventually causing a SEGV. */
4878 return fixup_symbol_section (candidates[0].sym, NULL);
4881 return candidates[0].sym;
4884 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4885 scope and in global scopes, or NULL if none. NAME is folded and
4886 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4887 choosing the first symbol if there are multiple choices.
4888 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4889 table in which the symbol was found (in both cases, these
4890 assignments occur only if the pointers are non-null). */
4892 ada_lookup_symbol (const char *name, const struct block *block0,
4893 domain_enum namespace, int *is_a_field_of_this,
4894 struct symtab **symtab)
4896 if (is_a_field_of_this != NULL)
4897 *is_a_field_of_this = 0;
4900 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4901 block0, namespace, NULL, symtab);
4904 static struct symbol *
4905 ada_lookup_symbol_nonlocal (const char *name,
4906 const char *linkage_name,
4907 const struct block *block,
4908 const domain_enum domain, struct symtab **symtab)
4910 if (linkage_name == NULL)
4911 linkage_name = name;
4912 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4917 /* True iff STR is a possible encoded suffix of a normal Ada name
4918 that is to be ignored for matching purposes. Suffixes of parallel
4919 names (e.g., XVE) are not included here. Currently, the possible suffixes
4920 are given by either of the regular expression:
4922 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4924 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4925 _E[0-9]+[bs]$ [protected object entry suffixes]
4926 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4930 is_name_suffix (const char *str)
4933 const char *matching;
4934 const int len = strlen (str);
4936 /* (__[0-9]+)?\.[0-9]+ */
4938 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4941 while (isdigit (matching[0]))
4943 if (matching[0] == '\0')
4947 if (matching[0] == '.' || matching[0] == '$')
4950 while (isdigit (matching[0]))
4952 if (matching[0] == '\0')
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4960 while (isdigit (matching[0]))
4962 if (matching[0] == '\0')
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4987 while (isdigit (matching[0]))
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
5002 while (str[0] != '_' && str[0] != '\0')
5004 if (str[0] != 'n' && str[0] != 'b')
5009 if (str[0] == '\000')
5013 if (str[1] != '_' || str[2] == '\000')
5017 if (strcmp (str + 3, "JM") == 0)
5019 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5020 the LJM suffix in favor of the JM one. But we will
5021 still accept LJM as a valid suffix for a reasonable
5022 amount of time, just to allow ourselves to debug programs
5023 compiled using an older version of GNAT. */
5024 if (strcmp (str + 3, "LJM") == 0)
5028 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5029 || str[4] == 'U' || str[4] == 'P')
5031 if (str[4] == 'R' && str[5] != 'T')
5035 if (!isdigit (str[2]))
5037 for (k = 3; str[k] != '\0'; k += 1)
5038 if (!isdigit (str[k]) && str[k] != '_')
5042 if (str[0] == '$' && isdigit (str[1]))
5044 for (k = 2; str[k] != '\0'; k += 1)
5045 if (!isdigit (str[k]) && str[k] != '_')
5052 /* Return nonzero if the given string starts with a dot ('.')
5053 followed by zero or more digits.
5055 Note: brobecker/2003-11-10: A forward declaration has not been
5056 added at the begining of this file yet, because this function
5057 is only used to work around a problem found during wild matching
5058 when trying to match minimal symbol names against symbol names
5059 obtained from dwarf-2 data. This function is therefore currently
5060 only used in wild_match() and is likely to be deleted when the
5061 problem in dwarf-2 is fixed. */
5064 is_dot_digits_suffix (const char *str)
5070 while (isdigit (str[0]))
5072 return (str[0] == '\0');
5075 /* Return non-zero if the string starting at NAME and ending before
5076 NAME_END contains no capital letters. */
5079 is_valid_name_for_wild_match (const char *name0)
5081 const char *decoded_name = ada_decode (name0);
5084 for (i=0; decoded_name[i] != '\0'; i++)
5085 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5091 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5092 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5093 informational suffixes of NAME (i.e., for which is_name_suffix is
5097 wild_match (const char *patn0, int patn_len, const char *name0)
5104 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5105 stored in the symbol table for nested function names is sometimes
5106 different from the name of the associated entity stored in
5107 the dwarf-2 data: This is the case for nested subprograms, where
5108 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5109 while the symbol name from the dwarf-2 data does not.
5111 Although the DWARF-2 standard documents that entity names stored
5112 in the dwarf-2 data should be identical to the name as seen in
5113 the source code, GNAT takes a different approach as we already use
5114 a special encoding mechanism to convey the information so that
5115 a C debugger can still use the information generated to debug
5116 Ada programs. A corollary is that the symbol names in the dwarf-2
5117 data should match the names found in the symbol table. I therefore
5118 consider this issue as a compiler defect.
5120 Until the compiler is properly fixed, we work-around the problem
5121 by ignoring such suffixes during the match. We do so by making
5122 a copy of PATN0 and NAME0, and then by stripping such a suffix
5123 if present. We then perform the match on the resulting strings. */
5126 name_len = strlen (name0);
5128 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5129 strcpy (name, name0);
5130 dot = strrchr (name, '.');
5131 if (dot != NULL && is_dot_digits_suffix (dot))
5134 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5135 strncpy (patn, patn0, patn_len);
5136 patn[patn_len] = '\0';
5137 dot = strrchr (patn, '.');
5138 if (dot != NULL && is_dot_digits_suffix (dot))
5141 patn_len = dot - patn;
5145 /* Now perform the wild match. */
5147 name_len = strlen (name);
5148 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5149 && strncmp (patn, name + 5, patn_len) == 0
5150 && is_name_suffix (name + patn_len + 5))
5153 while (name_len >= patn_len)
5155 if (strncmp (patn, name, patn_len) == 0
5156 && is_name_suffix (name + patn_len))
5157 return (name == name_start || is_valid_name_for_wild_match (name0));
5164 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5169 if (!islower (name[2]))
5176 if (!islower (name[1]))
5187 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5188 vector *defn_symbols, updating the list of symbols in OBSTACKP
5189 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5190 OBJFILE is the section containing BLOCK.
5191 SYMTAB is recorded with each symbol added. */
5194 ada_add_block_symbols (struct obstack *obstackp,
5195 struct block *block, const char *name,
5196 domain_enum domain, struct objfile *objfile,
5197 struct symtab *symtab, int wild)
5199 struct dict_iterator iter;
5200 int name_len = strlen (name);
5201 /* A matching argument symbol, if any. */
5202 struct symbol *arg_sym;
5203 /* Set true when we find a matching non-argument symbol. */
5212 ALL_BLOCK_SYMBOLS (block, iter, sym)
5214 if (SYMBOL_DOMAIN (sym) == domain
5215 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5217 switch (SYMBOL_CLASS (sym))
5223 case LOC_REGPARM_ADDR:
5224 case LOC_BASEREG_ARG:
5225 case LOC_COMPUTED_ARG:
5228 case LOC_UNRESOLVED:
5232 add_defn_to_vec (obstackp,
5233 fixup_symbol_section (sym, objfile),
5242 ALL_BLOCK_SYMBOLS (block, iter, sym)
5244 if (SYMBOL_DOMAIN (sym) == domain)
5246 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5248 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5250 switch (SYMBOL_CLASS (sym))
5256 case LOC_REGPARM_ADDR:
5257 case LOC_BASEREG_ARG:
5258 case LOC_COMPUTED_ARG:
5261 case LOC_UNRESOLVED:
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (sym, objfile),
5275 if (!found_sym && arg_sym != NULL)
5277 add_defn_to_vec (obstackp,
5278 fixup_symbol_section (arg_sym, objfile),
5287 ALL_BLOCK_SYMBOLS (block, iter, sym)
5289 if (SYMBOL_DOMAIN (sym) == domain)
5293 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5296 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5298 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5303 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5305 switch (SYMBOL_CLASS (sym))
5311 case LOC_REGPARM_ADDR:
5312 case LOC_BASEREG_ARG:
5313 case LOC_COMPUTED_ARG:
5316 case LOC_UNRESOLVED:
5320 add_defn_to_vec (obstackp,
5321 fixup_symbol_section (sym, objfile),
5329 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5330 They aren't parameters, right? */
5331 if (!found_sym && arg_sym != NULL)
5333 add_defn_to_vec (obstackp,
5334 fixup_symbol_section (arg_sym, objfile),
5342 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5343 for tagged types. */
5346 ada_is_dispatch_table_ptr_type (struct type *type)
5350 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5353 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5357 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5360 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5361 to be invisible to users. */
5364 ada_is_ignored_field (struct type *type, int field_num)
5366 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5369 /* Check the name of that field. */
5371 const char *name = TYPE_FIELD_NAME (type, field_num);
5373 /* Anonymous field names should not be printed.
5374 brobecker/2007-02-20: I don't think this can actually happen
5375 but we don't want to print the value of annonymous fields anyway. */
5379 /* A field named "_parent" is internally generated by GNAT for
5380 tagged types, and should not be printed either. */
5381 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5385 /* If this is the dispatch table of a tagged type, then ignore. */
5386 if (ada_is_tagged_type (type, 1)
5387 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5390 /* Not a special field, so it should not be ignored. */
5394 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5395 pointer or reference type whose ultimate target has a tag field. */
5398 ada_is_tagged_type (struct type *type, int refok)
5400 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5403 /* True iff TYPE represents the type of X'Tag */
5406 ada_is_tag_type (struct type *type)
5408 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5412 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5413 return (name != NULL
5414 && strcmp (name, "ada__tags__dispatch_table") == 0);
5418 /* The type of the tag on VAL. */
5421 ada_tag_type (struct value *val)
5423 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5426 /* The value of the tag on VAL. */
5429 ada_value_tag (struct value *val)
5431 return ada_value_struct_elt (val, "_tag", 0);
5434 /* The value of the tag on the object of type TYPE whose contents are
5435 saved at VALADDR, if it is non-null, or is at memory address
5438 static struct value *
5439 value_tag_from_contents_and_address (struct type *type,
5440 const gdb_byte *valaddr,
5443 int tag_byte_offset, dummy1, dummy2;
5444 struct type *tag_type;
5445 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5448 const gdb_byte *valaddr1 = ((valaddr == NULL)
5450 : valaddr + tag_byte_offset);
5451 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5453 return value_from_contents_and_address (tag_type, valaddr1, address1);
5458 static struct type *
5459 type_from_tag (struct value *tag)
5461 const char *type_name = ada_tag_name (tag);
5462 if (type_name != NULL)
5463 return ada_find_any_type (ada_encode (type_name));
5474 static int ada_tag_name_1 (void *);
5475 static int ada_tag_name_2 (struct tag_args *);
5477 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5478 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5479 The value stored in ARGS->name is valid until the next call to
5483 ada_tag_name_1 (void *args0)
5485 struct tag_args *args = (struct tag_args *) args0;
5486 static char name[1024];
5490 val = ada_value_struct_elt (args->tag, "tsd", 1);
5492 return ada_tag_name_2 (args);
5493 val = ada_value_struct_elt (val, "expanded_name", 1);
5496 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5497 for (p = name; *p != '\0'; p += 1)
5504 /* Utility function for ada_tag_name_1 that tries the second
5505 representation for the dispatch table (in which there is no
5506 explicit 'tsd' field in the referent of the tag pointer, and instead
5507 the tsd pointer is stored just before the dispatch table. */
5510 ada_tag_name_2 (struct tag_args *args)
5512 struct type *info_type;
5513 static char name[1024];
5515 struct value *val, *valp;
5518 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5519 if (info_type == NULL)
5521 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5522 valp = value_cast (info_type, args->tag);
5525 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5528 val = ada_value_struct_elt (val, "expanded_name", 1);
5531 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5532 for (p = name; *p != '\0'; p += 1)
5539 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5543 ada_tag_name (struct value *tag)
5545 struct tag_args args;
5546 if (!ada_is_tag_type (value_type (tag)))
5550 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5554 /* The parent type of TYPE, or NULL if none. */
5557 ada_parent_type (struct type *type)
5561 type = ada_check_typedef (type);
5563 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5567 if (ada_is_parent_field (type, i))
5568 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5573 /* True iff field number FIELD_NUM of structure type TYPE contains the
5574 parent-type (inherited) fields of a derived type. Assumes TYPE is
5575 a structure type with at least FIELD_NUM+1 fields. */
5578 ada_is_parent_field (struct type *type, int field_num)
5580 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5581 return (name != NULL
5582 && (strncmp (name, "PARENT", 6) == 0
5583 || strncmp (name, "_parent", 7) == 0));
5586 /* True iff field number FIELD_NUM of structure type TYPE is a
5587 transparent wrapper field (which should be silently traversed when doing
5588 field selection and flattened when printing). Assumes TYPE is a
5589 structure type with at least FIELD_NUM+1 fields. Such fields are always
5593 ada_is_wrapper_field (struct type *type, int field_num)
5595 const char *name = TYPE_FIELD_NAME (type, field_num);
5596 return (name != NULL
5597 && (strncmp (name, "PARENT", 6) == 0
5598 || strcmp (name, "REP") == 0
5599 || strncmp (name, "_parent", 7) == 0
5600 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5603 /* True iff field number FIELD_NUM of structure or union type TYPE
5604 is a variant wrapper. Assumes TYPE is a structure type with at least
5605 FIELD_NUM+1 fields. */
5608 ada_is_variant_part (struct type *type, int field_num)
5610 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5611 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5612 || (is_dynamic_field (type, field_num)
5613 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5614 == TYPE_CODE_UNION)));
5617 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5618 whose discriminants are contained in the record type OUTER_TYPE,
5619 returns the type of the controlling discriminant for the variant. */
5622 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5624 char *name = ada_variant_discrim_name (var_type);
5626 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5628 return builtin_type_int;
5633 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5634 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5635 represents a 'when others' clause; otherwise 0. */
5638 ada_is_others_clause (struct type *type, int field_num)
5640 const char *name = TYPE_FIELD_NAME (type, field_num);
5641 return (name != NULL && name[0] == 'O');
5644 /* Assuming that TYPE0 is the type of the variant part of a record,
5645 returns the name of the discriminant controlling the variant.
5646 The value is valid until the next call to ada_variant_discrim_name. */
5649 ada_variant_discrim_name (struct type *type0)
5651 static char *result = NULL;
5652 static size_t result_len = 0;
5655 const char *discrim_end;
5656 const char *discrim_start;
5658 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5659 type = TYPE_TARGET_TYPE (type0);
5663 name = ada_type_name (type);
5665 if (name == NULL || name[0] == '\000')
5668 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5671 if (strncmp (discrim_end, "___XVN", 6) == 0)
5674 if (discrim_end == name)
5677 for (discrim_start = discrim_end; discrim_start != name + 3;
5680 if (discrim_start == name + 1)
5682 if ((discrim_start > name + 3
5683 && strncmp (discrim_start - 3, "___", 3) == 0)
5684 || discrim_start[-1] == '.')
5688 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5689 strncpy (result, discrim_start, discrim_end - discrim_start);
5690 result[discrim_end - discrim_start] = '\0';
5694 /* Scan STR for a subtype-encoded number, beginning at position K.
5695 Put the position of the character just past the number scanned in
5696 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5697 Return 1 if there was a valid number at the given position, and 0
5698 otherwise. A "subtype-encoded" number consists of the absolute value
5699 in decimal, followed by the letter 'm' to indicate a negative number.
5700 Assumes 0m does not occur. */
5703 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5707 if (!isdigit (str[k]))
5710 /* Do it the hard way so as not to make any assumption about
5711 the relationship of unsigned long (%lu scan format code) and
5714 while (isdigit (str[k]))
5716 RU = RU * 10 + (str[k] - '0');
5723 *R = (-(LONGEST) (RU - 1)) - 1;
5729 /* NOTE on the above: Technically, C does not say what the results of
5730 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5731 number representable as a LONGEST (although either would probably work
5732 in most implementations). When RU>0, the locution in the then branch
5733 above is always equivalent to the negative of RU. */
5740 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5741 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5742 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5745 ada_in_variant (LONGEST val, struct type *type, int field_num)
5747 const char *name = TYPE_FIELD_NAME (type, field_num);
5760 if (!ada_scan_number (name, p + 1, &W, &p))
5769 if (!ada_scan_number (name, p + 1, &L, &p)
5770 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5772 if (val >= L && val <= U)
5784 /* FIXME: Lots of redundancy below. Try to consolidate. */
5786 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5787 ARG_TYPE, extract and return the value of one of its (non-static)
5788 fields. FIELDNO says which field. Differs from value_primitive_field
5789 only in that it can handle packed values of arbitrary type. */
5791 static struct value *
5792 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5793 struct type *arg_type)
5797 arg_type = ada_check_typedef (arg_type);
5798 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5800 /* Handle packed fields. */
5802 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5804 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5805 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5807 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5808 offset + bit_pos / 8,
5809 bit_pos % 8, bit_size, type);
5812 return value_primitive_field (arg1, offset, fieldno, arg_type);
5815 /* Find field with name NAME in object of type TYPE. If found,
5816 set the following for each argument that is non-null:
5817 - *FIELD_TYPE_P to the field's type;
5818 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5819 an object of that type;
5820 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5821 - *BIT_SIZE_P to its size in bits if the field is packed, and
5823 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5824 fields up to but not including the desired field, or by the total
5825 number of fields if not found. A NULL value of NAME never
5826 matches; the function just counts visible fields in this case.
5828 Returns 1 if found, 0 otherwise. */
5831 find_struct_field (char *name, struct type *type, int offset,
5832 struct type **field_type_p,
5833 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5838 type = ada_check_typedef (type);
5840 if (field_type_p != NULL)
5841 *field_type_p = NULL;
5842 if (byte_offset_p != NULL)
5844 if (bit_offset_p != NULL)
5846 if (bit_size_p != NULL)
5849 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5851 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5852 int fld_offset = offset + bit_pos / 8;
5853 char *t_field_name = TYPE_FIELD_NAME (type, i);
5855 if (t_field_name == NULL)
5858 else if (name != NULL && field_name_match (t_field_name, name))
5860 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5861 if (field_type_p != NULL)
5862 *field_type_p = TYPE_FIELD_TYPE (type, i);
5863 if (byte_offset_p != NULL)
5864 *byte_offset_p = fld_offset;
5865 if (bit_offset_p != NULL)
5866 *bit_offset_p = bit_pos % 8;
5867 if (bit_size_p != NULL)
5868 *bit_size_p = bit_size;
5871 else if (ada_is_wrapper_field (type, i))
5873 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5874 field_type_p, byte_offset_p, bit_offset_p,
5875 bit_size_p, index_p))
5878 else if (ada_is_variant_part (type, i))
5880 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5883 struct type *field_type
5884 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5886 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5888 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5890 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5891 field_type_p, byte_offset_p,
5892 bit_offset_p, bit_size_p, index_p))
5896 else if (index_p != NULL)
5902 /* Number of user-visible fields in record type TYPE. */
5905 num_visible_fields (struct type *type)
5909 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5913 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5914 and search in it assuming it has (class) type TYPE.
5915 If found, return value, else return NULL.
5917 Searches recursively through wrapper fields (e.g., '_parent'). */
5919 static struct value *
5920 ada_search_struct_field (char *name, struct value *arg, int offset,
5924 type = ada_check_typedef (type);
5926 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5928 char *t_field_name = TYPE_FIELD_NAME (type, i);
5930 if (t_field_name == NULL)
5933 else if (field_name_match (t_field_name, name))
5934 return ada_value_primitive_field (arg, offset, i, type);
5936 else if (ada_is_wrapper_field (type, i))
5938 struct value *v = /* Do not let indent join lines here. */
5939 ada_search_struct_field (name, arg,
5940 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5941 TYPE_FIELD_TYPE (type, i));
5946 else if (ada_is_variant_part (type, i))
5948 /* PNH: Do we ever get here? See find_struct_field. */
5950 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5951 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5953 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5955 struct value *v = ada_search_struct_field /* Force line break. */
5957 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5958 TYPE_FIELD_TYPE (field_type, j));
5967 static struct value *ada_index_struct_field_1 (int *, struct value *,
5968 int, struct type *);
5971 /* Return field #INDEX in ARG, where the index is that returned by
5972 * find_struct_field through its INDEX_P argument. Adjust the address
5973 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5974 * If found, return value, else return NULL. */
5976 static struct value *
5977 ada_index_struct_field (int index, struct value *arg, int offset,
5980 return ada_index_struct_field_1 (&index, arg, offset, type);
5984 /* Auxiliary function for ada_index_struct_field. Like
5985 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5988 static struct value *
5989 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5993 type = ada_check_typedef (type);
5995 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5997 if (TYPE_FIELD_NAME (type, i) == NULL)
5999 else if (ada_is_wrapper_field (type, i))
6001 struct value *v = /* Do not let indent join lines here. */
6002 ada_index_struct_field_1 (index_p, arg,
6003 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6004 TYPE_FIELD_TYPE (type, i));
6009 else if (ada_is_variant_part (type, i))
6011 /* PNH: Do we ever get here? See ada_search_struct_field,
6012 find_struct_field. */
6013 error (_("Cannot assign this kind of variant record"));
6015 else if (*index_p == 0)
6016 return ada_value_primitive_field (arg, offset, i, type);
6023 /* Given ARG, a value of type (pointer or reference to a)*
6024 structure/union, extract the component named NAME from the ultimate
6025 target structure/union and return it as a value with its
6026 appropriate type. If ARG is a pointer or reference and the field
6027 is not packed, returns a reference to the field, otherwise the
6028 value of the field (an lvalue if ARG is an lvalue).
6030 The routine searches for NAME among all members of the structure itself
6031 and (recursively) among all members of any wrapper members
6034 If NO_ERR, then simply return NULL in case of error, rather than
6038 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6040 struct type *t, *t1;
6044 t1 = t = ada_check_typedef (value_type (arg));
6045 if (TYPE_CODE (t) == TYPE_CODE_REF)
6047 t1 = TYPE_TARGET_TYPE (t);
6050 t1 = ada_check_typedef (t1);
6051 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6053 arg = coerce_ref (arg);
6058 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6060 t1 = TYPE_TARGET_TYPE (t);
6063 t1 = ada_check_typedef (t1);
6064 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6066 arg = value_ind (arg);
6073 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6077 v = ada_search_struct_field (name, arg, 0, t);
6080 int bit_offset, bit_size, byte_offset;
6081 struct type *field_type;
6084 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6085 address = value_as_address (arg);
6087 address = unpack_pointer (t, value_contents (arg));
6089 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
6090 if (find_struct_field (name, t1, 0,
6091 &field_type, &byte_offset, &bit_offset,
6096 if (TYPE_CODE (t) == TYPE_CODE_REF)
6097 arg = ada_coerce_ref (arg);
6099 arg = ada_value_ind (arg);
6100 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6101 bit_offset, bit_size,
6105 v = value_from_pointer (lookup_reference_type (field_type),
6106 address + byte_offset);
6110 if (v != NULL || no_err)
6113 error (_("There is no member named %s."), name);
6119 error (_("Attempt to extract a component of a value that is not a record."));
6122 /* Given a type TYPE, look up the type of the component of type named NAME.
6123 If DISPP is non-null, add its byte displacement from the beginning of a
6124 structure (pointed to by a value) of type TYPE to *DISPP (does not
6125 work for packed fields).
6127 Matches any field whose name has NAME as a prefix, possibly
6130 TYPE can be either a struct or union. If REFOK, TYPE may also
6131 be a (pointer or reference)+ to a struct or union, and the
6132 ultimate target type will be searched.
6134 Looks recursively into variant clauses and parent types.
6136 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6137 TYPE is not a type of the right kind. */
6139 static struct type *
6140 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6141 int noerr, int *dispp)
6148 if (refok && type != NULL)
6151 type = ada_check_typedef (type);
6152 if (TYPE_CODE (type) != TYPE_CODE_PTR
6153 && TYPE_CODE (type) != TYPE_CODE_REF)
6155 type = TYPE_TARGET_TYPE (type);
6159 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6160 && TYPE_CODE (type) != TYPE_CODE_UNION))
6166 target_terminal_ours ();
6167 gdb_flush (gdb_stdout);
6169 error (_("Type (null) is not a structure or union type"));
6172 /* XXX: type_sprint */
6173 fprintf_unfiltered (gdb_stderr, _("Type "));
6174 type_print (type, "", gdb_stderr, -1);
6175 error (_(" is not a structure or union type"));
6180 type = to_static_fixed_type (type);
6182 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6184 char *t_field_name = TYPE_FIELD_NAME (type, i);
6188 if (t_field_name == NULL)
6191 else if (field_name_match (t_field_name, name))
6194 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6195 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6198 else if (ada_is_wrapper_field (type, i))
6201 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6206 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6211 else if (ada_is_variant_part (type, i))
6214 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6216 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6219 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6224 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6235 target_terminal_ours ();
6236 gdb_flush (gdb_stdout);
6239 /* XXX: type_sprint */
6240 fprintf_unfiltered (gdb_stderr, _("Type "));
6241 type_print (type, "", gdb_stderr, -1);
6242 error (_(" has no component named <null>"));
6246 /* XXX: type_sprint */
6247 fprintf_unfiltered (gdb_stderr, _("Type "));
6248 type_print (type, "", gdb_stderr, -1);
6249 error (_(" has no component named %s"), name);
6256 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6257 within a value of type OUTER_TYPE that is stored in GDB at
6258 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6259 numbering from 0) is applicable. Returns -1 if none are. */
6262 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6263 const gdb_byte *outer_valaddr)
6268 struct type *discrim_type;
6269 char *discrim_name = ada_variant_discrim_name (var_type);
6270 LONGEST discrim_val;
6274 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6275 if (discrim_type == NULL)
6277 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6280 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6282 if (ada_is_others_clause (var_type, i))
6284 else if (ada_in_variant (discrim_val, var_type, i))
6288 return others_clause;
6293 /* Dynamic-Sized Records */
6295 /* Strategy: The type ostensibly attached to a value with dynamic size
6296 (i.e., a size that is not statically recorded in the debugging
6297 data) does not accurately reflect the size or layout of the value.
6298 Our strategy is to convert these values to values with accurate,
6299 conventional types that are constructed on the fly. */
6301 /* There is a subtle and tricky problem here. In general, we cannot
6302 determine the size of dynamic records without its data. However,
6303 the 'struct value' data structure, which GDB uses to represent
6304 quantities in the inferior process (the target), requires the size
6305 of the type at the time of its allocation in order to reserve space
6306 for GDB's internal copy of the data. That's why the
6307 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6308 rather than struct value*s.
6310 However, GDB's internal history variables ($1, $2, etc.) are
6311 struct value*s containing internal copies of the data that are not, in
6312 general, the same as the data at their corresponding addresses in
6313 the target. Fortunately, the types we give to these values are all
6314 conventional, fixed-size types (as per the strategy described
6315 above), so that we don't usually have to perform the
6316 'to_fixed_xxx_type' conversions to look at their values.
6317 Unfortunately, there is one exception: if one of the internal
6318 history variables is an array whose elements are unconstrained
6319 records, then we will need to create distinct fixed types for each
6320 element selected. */
6322 /* The upshot of all of this is that many routines take a (type, host
6323 address, target address) triple as arguments to represent a value.
6324 The host address, if non-null, is supposed to contain an internal
6325 copy of the relevant data; otherwise, the program is to consult the
6326 target at the target address. */
6328 /* Assuming that VAL0 represents a pointer value, the result of
6329 dereferencing it. Differs from value_ind in its treatment of
6330 dynamic-sized types. */
6333 ada_value_ind (struct value *val0)
6335 struct value *val = unwrap_value (value_ind (val0));
6336 return ada_to_fixed_value (val);
6339 /* The value resulting from dereferencing any "reference to"
6340 qualifiers on VAL0. */
6342 static struct value *
6343 ada_coerce_ref (struct value *val0)
6345 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6347 struct value *val = val0;
6348 val = coerce_ref (val);
6349 val = unwrap_value (val);
6350 return ada_to_fixed_value (val);
6356 /* Return OFF rounded upward if necessary to a multiple of
6357 ALIGNMENT (a power of 2). */
6360 align_value (unsigned int off, unsigned int alignment)
6362 return (off + alignment - 1) & ~(alignment - 1);
6365 /* Return the bit alignment required for field #F of template type TYPE. */
6368 field_alignment (struct type *type, int f)
6370 const char *name = TYPE_FIELD_NAME (type, f);
6374 /* The field name should never be null, unless the debugging information
6375 is somehow malformed. In this case, we assume the field does not
6376 require any alignment. */
6380 len = strlen (name);
6382 if (!isdigit (name[len - 1]))
6385 if (isdigit (name[len - 2]))
6386 align_offset = len - 2;
6388 align_offset = len - 1;
6390 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6391 return TARGET_CHAR_BIT;
6393 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6396 /* Find a symbol named NAME. Ignores ambiguity. */
6399 ada_find_any_symbol (const char *name)
6403 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6404 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6407 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6411 /* Find a type named NAME. Ignores ambiguity. */
6414 ada_find_any_type (const char *name)
6416 struct symbol *sym = ada_find_any_symbol (name);
6419 return SYMBOL_TYPE (sym);
6424 /* Given NAME and an associated BLOCK, search all symbols for
6425 NAME suffixed with "___XR", which is the ``renaming'' symbol
6426 associated to NAME. Return this symbol if found, return
6430 ada_find_renaming_symbol (const char *name, struct block *block)
6434 sym = find_old_style_renaming_symbol (name, block);
6439 /* Not right yet. FIXME pnh 7/20/2007. */
6440 sym = ada_find_any_symbol (name);
6441 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6447 static struct symbol *
6448 find_old_style_renaming_symbol (const char *name, struct block *block)
6450 const struct symbol *function_sym = block_function (block);
6453 if (function_sym != NULL)
6455 /* If the symbol is defined inside a function, NAME is not fully
6456 qualified. This means we need to prepend the function name
6457 as well as adding the ``___XR'' suffix to build the name of
6458 the associated renaming symbol. */
6459 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6460 /* Function names sometimes contain suffixes used
6461 for instance to qualify nested subprograms. When building
6462 the XR type name, we need to make sure that this suffix is
6463 not included. So do not include any suffix in the function
6464 name length below. */
6465 const int function_name_len = ada_name_prefix_len (function_name);
6466 const int rename_len = function_name_len + 2 /* "__" */
6467 + strlen (name) + 6 /* "___XR\0" */ ;
6469 /* Strip the suffix if necessary. */
6470 function_name[function_name_len] = '\0';
6472 /* Library-level functions are a special case, as GNAT adds
6473 a ``_ada_'' prefix to the function name to avoid namespace
6474 pollution. However, the renaming symbols themselves do not
6475 have this prefix, so we need to skip this prefix if present. */
6476 if (function_name_len > 5 /* "_ada_" */
6477 && strstr (function_name, "_ada_") == function_name)
6478 function_name = function_name + 5;
6480 rename = (char *) alloca (rename_len * sizeof (char));
6481 sprintf (rename, "%s__%s___XR", function_name, name);
6485 const int rename_len = strlen (name) + 6;
6486 rename = (char *) alloca (rename_len * sizeof (char));
6487 sprintf (rename, "%s___XR", name);
6490 return ada_find_any_symbol (rename);
6493 /* Because of GNAT encoding conventions, several GDB symbols may match a
6494 given type name. If the type denoted by TYPE0 is to be preferred to
6495 that of TYPE1 for purposes of type printing, return non-zero;
6496 otherwise return 0. */
6499 ada_prefer_type (struct type *type0, struct type *type1)
6503 else if (type0 == NULL)
6505 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6507 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6509 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6511 else if (ada_is_packed_array_type (type0))
6513 else if (ada_is_array_descriptor_type (type0)
6514 && !ada_is_array_descriptor_type (type1))
6518 const char *type0_name = type_name_no_tag (type0);
6519 const char *type1_name = type_name_no_tag (type1);
6521 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6522 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6528 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6529 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6532 ada_type_name (struct type *type)
6536 else if (TYPE_NAME (type) != NULL)
6537 return TYPE_NAME (type);
6539 return TYPE_TAG_NAME (type);
6542 /* Find a parallel type to TYPE whose name is formed by appending
6543 SUFFIX to the name of TYPE. */
6546 ada_find_parallel_type (struct type *type, const char *suffix)
6549 static size_t name_len = 0;
6551 char *typename = ada_type_name (type);
6553 if (typename == NULL)
6556 len = strlen (typename);
6558 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6560 strcpy (name, typename);
6561 strcpy (name + len, suffix);
6563 return ada_find_any_type (name);
6567 /* If TYPE is a variable-size record type, return the corresponding template
6568 type describing its fields. Otherwise, return NULL. */
6570 static struct type *
6571 dynamic_template_type (struct type *type)
6573 type = ada_check_typedef (type);
6575 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6576 || ada_type_name (type) == NULL)
6580 int len = strlen (ada_type_name (type));
6581 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6584 return ada_find_parallel_type (type, "___XVE");
6588 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6589 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6592 is_dynamic_field (struct type *templ_type, int field_num)
6594 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6596 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6597 && strstr (name, "___XVL") != NULL;
6600 /* The index of the variant field of TYPE, or -1 if TYPE does not
6601 represent a variant record type. */
6604 variant_field_index (struct type *type)
6608 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6611 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6613 if (ada_is_variant_part (type, f))
6619 /* A record type with no fields. */
6621 static struct type *
6622 empty_record (struct objfile *objfile)
6624 struct type *type = alloc_type (objfile);
6625 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6626 TYPE_NFIELDS (type) = 0;
6627 TYPE_FIELDS (type) = NULL;
6628 TYPE_NAME (type) = "<empty>";
6629 TYPE_TAG_NAME (type) = NULL;
6630 TYPE_FLAGS (type) = 0;
6631 TYPE_LENGTH (type) = 0;
6635 /* An ordinary record type (with fixed-length fields) that describes
6636 the value of type TYPE at VALADDR or ADDRESS (see comments at
6637 the beginning of this section) VAL according to GNAT conventions.
6638 DVAL0 should describe the (portion of a) record that contains any
6639 necessary discriminants. It should be NULL if value_type (VAL) is
6640 an outer-level type (i.e., as opposed to a branch of a variant.) A
6641 variant field (unless unchecked) is replaced by a particular branch
6644 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6645 length are not statically known are discarded. As a consequence,
6646 VALADDR, ADDRESS and DVAL0 are ignored.
6648 NOTE: Limitations: For now, we assume that dynamic fields and
6649 variants occupy whole numbers of bytes. However, they need not be
6653 ada_template_to_fixed_record_type_1 (struct type *type,
6654 const gdb_byte *valaddr,
6655 CORE_ADDR address, struct value *dval0,
6656 int keep_dynamic_fields)
6658 struct value *mark = value_mark ();
6661 int nfields, bit_len;
6664 int fld_bit_len, bit_incr;
6667 /* Compute the number of fields in this record type that are going
6668 to be processed: unless keep_dynamic_fields, this includes only
6669 fields whose position and length are static will be processed. */
6670 if (keep_dynamic_fields)
6671 nfields = TYPE_NFIELDS (type);
6675 while (nfields < TYPE_NFIELDS (type)
6676 && !ada_is_variant_part (type, nfields)
6677 && !is_dynamic_field (type, nfields))
6681 rtype = alloc_type (TYPE_OBJFILE (type));
6682 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6683 INIT_CPLUS_SPECIFIC (rtype);
6684 TYPE_NFIELDS (rtype) = nfields;
6685 TYPE_FIELDS (rtype) = (struct field *)
6686 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6687 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6688 TYPE_NAME (rtype) = ada_type_name (type);
6689 TYPE_TAG_NAME (rtype) = NULL;
6690 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6696 for (f = 0; f < nfields; f += 1)
6698 off = align_value (off, field_alignment (type, f))
6699 + TYPE_FIELD_BITPOS (type, f);
6700 TYPE_FIELD_BITPOS (rtype, f) = off;
6701 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6703 if (ada_is_variant_part (type, f))
6706 fld_bit_len = bit_incr = 0;
6708 else if (is_dynamic_field (type, f))
6711 dval = value_from_contents_and_address (rtype, valaddr, address);
6715 TYPE_FIELD_TYPE (rtype, f) =
6718 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6719 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6720 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6721 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6722 bit_incr = fld_bit_len =
6723 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6727 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6728 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6729 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6730 bit_incr = fld_bit_len =
6731 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6733 bit_incr = fld_bit_len =
6734 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6736 if (off + fld_bit_len > bit_len)
6737 bit_len = off + fld_bit_len;
6739 TYPE_LENGTH (rtype) =
6740 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6743 /* We handle the variant part, if any, at the end because of certain
6744 odd cases in which it is re-ordered so as NOT the last field of
6745 the record. This can happen in the presence of representation
6747 if (variant_field >= 0)
6749 struct type *branch_type;
6751 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6754 dval = value_from_contents_and_address (rtype, valaddr, address);
6759 to_fixed_variant_branch_type
6760 (TYPE_FIELD_TYPE (type, variant_field),
6761 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6762 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6763 if (branch_type == NULL)
6765 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6766 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6767 TYPE_NFIELDS (rtype) -= 1;
6771 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6772 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6774 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6776 if (off + fld_bit_len > bit_len)
6777 bit_len = off + fld_bit_len;
6778 TYPE_LENGTH (rtype) =
6779 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6783 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6784 should contain the alignment of that record, which should be a strictly
6785 positive value. If null or negative, then something is wrong, most
6786 probably in the debug info. In that case, we don't round up the size
6787 of the resulting type. If this record is not part of another structure,
6788 the current RTYPE length might be good enough for our purposes. */
6789 if (TYPE_LENGTH (type) <= 0)
6791 if (TYPE_NAME (rtype))
6792 warning (_("Invalid type size for `%s' detected: %d."),
6793 TYPE_NAME (rtype), TYPE_LENGTH (type));
6795 warning (_("Invalid type size for <unnamed> detected: %d."),
6796 TYPE_LENGTH (type));
6800 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6801 TYPE_LENGTH (type));
6804 value_free_to_mark (mark);
6805 if (TYPE_LENGTH (rtype) > varsize_limit)
6806 error (_("record type with dynamic size is larger than varsize-limit"));
6810 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6813 static struct type *
6814 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6815 CORE_ADDR address, struct value *dval0)
6817 return ada_template_to_fixed_record_type_1 (type, valaddr,
6821 /* An ordinary record type in which ___XVL-convention fields and
6822 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6823 static approximations, containing all possible fields. Uses
6824 no runtime values. Useless for use in values, but that's OK,
6825 since the results are used only for type determinations. Works on both
6826 structs and unions. Representation note: to save space, we memorize
6827 the result of this function in the TYPE_TARGET_TYPE of the
6830 static struct type *
6831 template_to_static_fixed_type (struct type *type0)
6837 if (TYPE_TARGET_TYPE (type0) != NULL)
6838 return TYPE_TARGET_TYPE (type0);
6840 nfields = TYPE_NFIELDS (type0);
6843 for (f = 0; f < nfields; f += 1)
6845 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6846 struct type *new_type;
6848 if (is_dynamic_field (type0, f))
6849 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6851 new_type = to_static_fixed_type (field_type);
6852 if (type == type0 && new_type != field_type)
6854 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6855 TYPE_CODE (type) = TYPE_CODE (type0);
6856 INIT_CPLUS_SPECIFIC (type);
6857 TYPE_NFIELDS (type) = nfields;
6858 TYPE_FIELDS (type) = (struct field *)
6859 TYPE_ALLOC (type, nfields * sizeof (struct field));
6860 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6861 sizeof (struct field) * nfields);
6862 TYPE_NAME (type) = ada_type_name (type0);
6863 TYPE_TAG_NAME (type) = NULL;
6864 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6865 TYPE_LENGTH (type) = 0;
6867 TYPE_FIELD_TYPE (type, f) = new_type;
6868 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6873 /* Given an object of type TYPE whose contents are at VALADDR and
6874 whose address in memory is ADDRESS, returns a revision of TYPE --
6875 a non-dynamic-sized record with a variant part -- in which
6876 the variant part is replaced with the appropriate branch. Looks
6877 for discriminant values in DVAL0, which can be NULL if the record
6878 contains the necessary discriminant values. */
6880 static struct type *
6881 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6882 CORE_ADDR address, struct value *dval0)
6884 struct value *mark = value_mark ();
6887 struct type *branch_type;
6888 int nfields = TYPE_NFIELDS (type);
6889 int variant_field = variant_field_index (type);
6891 if (variant_field == -1)
6895 dval = value_from_contents_and_address (type, valaddr, address);
6899 rtype = alloc_type (TYPE_OBJFILE (type));
6900 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6901 INIT_CPLUS_SPECIFIC (rtype);
6902 TYPE_NFIELDS (rtype) = nfields;
6903 TYPE_FIELDS (rtype) =
6904 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6905 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6906 sizeof (struct field) * nfields);
6907 TYPE_NAME (rtype) = ada_type_name (type);
6908 TYPE_TAG_NAME (rtype) = NULL;
6909 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6910 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6912 branch_type = to_fixed_variant_branch_type
6913 (TYPE_FIELD_TYPE (type, variant_field),
6914 cond_offset_host (valaddr,
6915 TYPE_FIELD_BITPOS (type, variant_field)
6917 cond_offset_target (address,
6918 TYPE_FIELD_BITPOS (type, variant_field)
6919 / TARGET_CHAR_BIT), dval);
6920 if (branch_type == NULL)
6923 for (f = variant_field + 1; f < nfields; f += 1)
6924 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6925 TYPE_NFIELDS (rtype) -= 1;
6929 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6930 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6931 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6932 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6934 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6936 value_free_to_mark (mark);
6940 /* An ordinary record type (with fixed-length fields) that describes
6941 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6942 beginning of this section]. Any necessary discriminants' values
6943 should be in DVAL, a record value; it may be NULL if the object
6944 at ADDR itself contains any necessary discriminant values.
6945 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6946 values from the record are needed. Except in the case that DVAL,
6947 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6948 unchecked) is replaced by a particular branch of the variant.
6950 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6951 is questionable and may be removed. It can arise during the
6952 processing of an unconstrained-array-of-record type where all the
6953 variant branches have exactly the same size. This is because in
6954 such cases, the compiler does not bother to use the XVS convention
6955 when encoding the record. I am currently dubious of this
6956 shortcut and suspect the compiler should be altered. FIXME. */
6958 static struct type *
6959 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6960 CORE_ADDR address, struct value *dval)
6962 struct type *templ_type;
6964 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6967 templ_type = dynamic_template_type (type0);
6969 if (templ_type != NULL)
6970 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6971 else if (variant_field_index (type0) >= 0)
6973 if (dval == NULL && valaddr == NULL && address == 0)
6975 return to_record_with_fixed_variant_part (type0, valaddr, address,
6980 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6986 /* An ordinary record type (with fixed-length fields) that describes
6987 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6988 union type. Any necessary discriminants' values should be in DVAL,
6989 a record value. That is, this routine selects the appropriate
6990 branch of the union at ADDR according to the discriminant value
6991 indicated in the union's type name. */
6993 static struct type *
6994 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6995 CORE_ADDR address, struct value *dval)
6998 struct type *templ_type;
6999 struct type *var_type;
7001 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7002 var_type = TYPE_TARGET_TYPE (var_type0);
7004 var_type = var_type0;
7006 templ_type = ada_find_parallel_type (var_type, "___XVU");
7008 if (templ_type != NULL)
7009 var_type = templ_type;
7012 ada_which_variant_applies (var_type,
7013 value_type (dval), value_contents (dval));
7016 return empty_record (TYPE_OBJFILE (var_type));
7017 else if (is_dynamic_field (var_type, which))
7018 return to_fixed_record_type
7019 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7020 valaddr, address, dval);
7021 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7023 to_fixed_record_type
7024 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7026 return TYPE_FIELD_TYPE (var_type, which);
7029 /* Assuming that TYPE0 is an array type describing the type of a value
7030 at ADDR, and that DVAL describes a record containing any
7031 discriminants used in TYPE0, returns a type for the value that
7032 contains no dynamic components (that is, no components whose sizes
7033 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7034 true, gives an error message if the resulting type's size is over
7037 static struct type *
7038 to_fixed_array_type (struct type *type0, struct value *dval,
7041 struct type *index_type_desc;
7042 struct type *result;
7044 if (ada_is_packed_array_type (type0) /* revisit? */
7045 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7048 index_type_desc = ada_find_parallel_type (type0, "___XA");
7049 if (index_type_desc == NULL)
7051 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7052 /* NOTE: elt_type---the fixed version of elt_type0---should never
7053 depend on the contents of the array in properly constructed
7055 /* Create a fixed version of the array element type.
7056 We're not providing the address of an element here,
7057 and thus the actual object value cannot be inspected to do
7058 the conversion. This should not be a problem, since arrays of
7059 unconstrained objects are not allowed. In particular, all
7060 the elements of an array of a tagged type should all be of
7061 the same type specified in the debugging info. No need to
7062 consult the object tag. */
7063 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
7065 if (elt_type0 == elt_type)
7068 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7069 elt_type, TYPE_INDEX_TYPE (type0));
7074 struct type *elt_type0;
7077 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7078 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7080 /* NOTE: result---the fixed version of elt_type0---should never
7081 depend on the contents of the array in properly constructed
7083 /* Create a fixed version of the array element type.
7084 We're not providing the address of an element here,
7085 and thus the actual object value cannot be inspected to do
7086 the conversion. This should not be a problem, since arrays of
7087 unconstrained objects are not allowed. In particular, all
7088 the elements of an array of a tagged type should all be of
7089 the same type specified in the debugging info. No need to
7090 consult the object tag. */
7091 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
7092 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7094 struct type *range_type =
7095 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7096 dval, TYPE_OBJFILE (type0));
7097 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7098 result, range_type);
7100 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7101 error (_("array type with dynamic size is larger than varsize-limit"));
7104 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7109 /* A standard type (containing no dynamically sized components)
7110 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7111 DVAL describes a record containing any discriminants used in TYPE0,
7112 and may be NULL if there are none, or if the object of type TYPE at
7113 ADDRESS or in VALADDR contains these discriminants.
7115 In the case of tagged types, this function attempts to locate the object's
7116 tag and use it to compute the actual type. However, when ADDRESS is null,
7117 we cannot use it to determine the location of the tag, and therefore
7118 compute the tagged type's actual type. So we return the tagged type
7119 without consulting the tag. */
7122 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7123 CORE_ADDR address, struct value *dval)
7125 type = ada_check_typedef (type);
7126 switch (TYPE_CODE (type))
7130 case TYPE_CODE_STRUCT:
7132 struct type *static_type = to_static_fixed_type (type);
7134 /* If STATIC_TYPE is a tagged type and we know the object's address,
7135 then we can determine its tag, and compute the object's actual
7138 if (address != 0 && ada_is_tagged_type (static_type, 0))
7140 struct type *real_type =
7141 type_from_tag (value_tag_from_contents_and_address (static_type,
7144 if (real_type != NULL)
7147 return to_fixed_record_type (type, valaddr, address, NULL);
7149 case TYPE_CODE_ARRAY:
7150 return to_fixed_array_type (type, dval, 1);
7151 case TYPE_CODE_UNION:
7155 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7159 /* A standard (static-sized) type corresponding as well as possible to
7160 TYPE0, but based on no runtime data. */
7162 static struct type *
7163 to_static_fixed_type (struct type *type0)
7170 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7173 type0 = ada_check_typedef (type0);
7175 switch (TYPE_CODE (type0))
7179 case TYPE_CODE_STRUCT:
7180 type = dynamic_template_type (type0);
7182 return template_to_static_fixed_type (type);
7184 return template_to_static_fixed_type (type0);
7185 case TYPE_CODE_UNION:
7186 type = ada_find_parallel_type (type0, "___XVU");
7188 return template_to_static_fixed_type (type);
7190 return template_to_static_fixed_type (type0);
7194 /* A static approximation of TYPE with all type wrappers removed. */
7196 static struct type *
7197 static_unwrap_type (struct type *type)
7199 if (ada_is_aligner_type (type))
7201 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7202 if (ada_type_name (type1) == NULL)
7203 TYPE_NAME (type1) = ada_type_name (type);
7205 return static_unwrap_type (type1);
7209 struct type *raw_real_type = ada_get_base_type (type);
7210 if (raw_real_type == type)
7213 return to_static_fixed_type (raw_real_type);
7217 /* In some cases, incomplete and private types require
7218 cross-references that are not resolved as records (for example,
7220 type FooP is access Foo;
7222 type Foo is array ...;
7223 ). In these cases, since there is no mechanism for producing
7224 cross-references to such types, we instead substitute for FooP a
7225 stub enumeration type that is nowhere resolved, and whose tag is
7226 the name of the actual type. Call these types "non-record stubs". */
7228 /* A type equivalent to TYPE that is not a non-record stub, if one
7229 exists, otherwise TYPE. */
7232 ada_check_typedef (struct type *type)
7234 CHECK_TYPEDEF (type);
7235 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7236 || !TYPE_STUB (type)
7237 || TYPE_TAG_NAME (type) == NULL)
7241 char *name = TYPE_TAG_NAME (type);
7242 struct type *type1 = ada_find_any_type (name);
7243 return (type1 == NULL) ? type : type1;
7247 /* A value representing the data at VALADDR/ADDRESS as described by
7248 type TYPE0, but with a standard (static-sized) type that correctly
7249 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7250 type, then return VAL0 [this feature is simply to avoid redundant
7251 creation of struct values]. */
7253 static struct value *
7254 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7257 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7258 if (type == type0 && val0 != NULL)
7261 return value_from_contents_and_address (type, 0, address);
7264 /* A value representing VAL, but with a standard (static-sized) type
7265 that correctly describes it. Does not necessarily create a new
7268 static struct value *
7269 ada_to_fixed_value (struct value *val)
7271 return ada_to_fixed_value_create (value_type (val),
7272 VALUE_ADDRESS (val) + value_offset (val),
7276 /* A value representing VAL, but with a standard (static-sized) type
7277 chosen to approximate the real type of VAL as well as possible, but
7278 without consulting any runtime values. For Ada dynamic-sized
7279 types, therefore, the type of the result is likely to be inaccurate. */
7282 ada_to_static_fixed_value (struct value *val)
7285 to_static_fixed_type (static_unwrap_type (value_type (val)));
7286 if (type == value_type (val))
7289 return coerce_unspec_val_to_type (val, type);
7295 /* Table mapping attribute numbers to names.
7296 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7298 static const char *attribute_names[] = {
7316 ada_attribute_name (enum exp_opcode n)
7318 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7319 return attribute_names[n - OP_ATR_FIRST + 1];
7321 return attribute_names[0];
7324 /* Evaluate the 'POS attribute applied to ARG. */
7327 pos_atr (struct value *arg)
7329 struct type *type = value_type (arg);
7331 if (!discrete_type_p (type))
7332 error (_("'POS only defined on discrete types"));
7334 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7337 LONGEST v = value_as_long (arg);
7339 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7341 if (v == TYPE_FIELD_BITPOS (type, i))
7344 error (_("enumeration value is invalid: can't find 'POS"));
7347 return value_as_long (arg);
7350 static struct value *
7351 value_pos_atr (struct value *arg)
7353 return value_from_longest (builtin_type_int, pos_atr (arg));
7356 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7358 static struct value *
7359 value_val_atr (struct type *type, struct value *arg)
7361 if (!discrete_type_p (type))
7362 error (_("'VAL only defined on discrete types"));
7363 if (!integer_type_p (value_type (arg)))
7364 error (_("'VAL requires integral argument"));
7366 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7368 long pos = value_as_long (arg);
7369 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7370 error (_("argument to 'VAL out of range"));
7371 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7374 return value_from_longest (type, value_as_long (arg));
7380 /* True if TYPE appears to be an Ada character type.
7381 [At the moment, this is true only for Character and Wide_Character;
7382 It is a heuristic test that could stand improvement]. */
7385 ada_is_character_type (struct type *type)
7389 /* If the type code says it's a character, then assume it really is,
7390 and don't check any further. */
7391 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7394 /* Otherwise, assume it's a character type iff it is a discrete type
7395 with a known character type name. */
7396 name = ada_type_name (type);
7397 return (name != NULL
7398 && (TYPE_CODE (type) == TYPE_CODE_INT
7399 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7400 && (strcmp (name, "character") == 0
7401 || strcmp (name, "wide_character") == 0
7402 || strcmp (name, "wide_wide_character") == 0
7403 || strcmp (name, "unsigned char") == 0));
7406 /* True if TYPE appears to be an Ada string type. */
7409 ada_is_string_type (struct type *type)
7411 type = ada_check_typedef (type);
7413 && TYPE_CODE (type) != TYPE_CODE_PTR
7414 && (ada_is_simple_array_type (type)
7415 || ada_is_array_descriptor_type (type))
7416 && ada_array_arity (type) == 1)
7418 struct type *elttype = ada_array_element_type (type, 1);
7420 return ada_is_character_type (elttype);
7427 /* True if TYPE is a struct type introduced by the compiler to force the
7428 alignment of a value. Such types have a single field with a
7429 distinctive name. */
7432 ada_is_aligner_type (struct type *type)
7434 type = ada_check_typedef (type);
7436 /* If we can find a parallel XVS type, then the XVS type should
7437 be used instead of this type. And hence, this is not an aligner
7439 if (ada_find_parallel_type (type, "___XVS") != NULL)
7442 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7443 && TYPE_NFIELDS (type) == 1
7444 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7447 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7448 the parallel type. */
7451 ada_get_base_type (struct type *raw_type)
7453 struct type *real_type_namer;
7454 struct type *raw_real_type;
7456 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7459 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7460 if (real_type_namer == NULL
7461 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7462 || TYPE_NFIELDS (real_type_namer) != 1)
7465 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7466 if (raw_real_type == NULL)
7469 return raw_real_type;
7472 /* The type of value designated by TYPE, with all aligners removed. */
7475 ada_aligned_type (struct type *type)
7477 if (ada_is_aligner_type (type))
7478 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7480 return ada_get_base_type (type);
7484 /* The address of the aligned value in an object at address VALADDR
7485 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7488 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7490 if (ada_is_aligner_type (type))
7491 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7493 TYPE_FIELD_BITPOS (type,
7494 0) / TARGET_CHAR_BIT);
7501 /* The printed representation of an enumeration literal with encoded
7502 name NAME. The value is good to the next call of ada_enum_name. */
7504 ada_enum_name (const char *name)
7506 static char *result;
7507 static size_t result_len = 0;
7510 /* First, unqualify the enumeration name:
7511 1. Search for the last '.' character. If we find one, then skip
7512 all the preceeding characters, the unqualified name starts
7513 right after that dot.
7514 2. Otherwise, we may be debugging on a target where the compiler
7515 translates dots into "__". Search forward for double underscores,
7516 but stop searching when we hit an overloading suffix, which is
7517 of the form "__" followed by digits. */
7519 tmp = strrchr (name, '.');
7524 while ((tmp = strstr (name, "__")) != NULL)
7526 if (isdigit (tmp[2]))
7536 if (name[1] == 'U' || name[1] == 'W')
7538 if (sscanf (name + 2, "%x", &v) != 1)
7544 GROW_VECT (result, result_len, 16);
7545 if (isascii (v) && isprint (v))
7546 sprintf (result, "'%c'", v);
7547 else if (name[1] == 'U')
7548 sprintf (result, "[\"%02x\"]", v);
7550 sprintf (result, "[\"%04x\"]", v);
7556 tmp = strstr (name, "__");
7558 tmp = strstr (name, "$");
7561 GROW_VECT (result, result_len, tmp - name + 1);
7562 strncpy (result, name, tmp - name);
7563 result[tmp - name] = '\0';
7571 static struct value *
7572 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7575 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7576 (expect_type, exp, pos, noside);
7579 /* Evaluate the subexpression of EXP starting at *POS as for
7580 evaluate_type, updating *POS to point just past the evaluated
7583 static struct value *
7584 evaluate_subexp_type (struct expression *exp, int *pos)
7586 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7587 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7590 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7593 static struct value *
7594 unwrap_value (struct value *val)
7596 struct type *type = ada_check_typedef (value_type (val));
7597 if (ada_is_aligner_type (type))
7599 struct value *v = value_struct_elt (&val, NULL, "F",
7600 NULL, "internal structure");
7601 struct type *val_type = ada_check_typedef (value_type (v));
7602 if (ada_type_name (val_type) == NULL)
7603 TYPE_NAME (val_type) = ada_type_name (type);
7605 return unwrap_value (v);
7609 struct type *raw_real_type =
7610 ada_check_typedef (ada_get_base_type (type));
7612 if (type == raw_real_type)
7616 coerce_unspec_val_to_type
7617 (val, ada_to_fixed_type (raw_real_type, 0,
7618 VALUE_ADDRESS (val) + value_offset (val),
7623 static struct value *
7624 cast_to_fixed (struct type *type, struct value *arg)
7628 if (type == value_type (arg))
7630 else if (ada_is_fixed_point_type (value_type (arg)))
7631 val = ada_float_to_fixed (type,
7632 ada_fixed_to_float (value_type (arg),
7633 value_as_long (arg)));
7637 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7638 val = ada_float_to_fixed (type, argd);
7641 return value_from_longest (type, val);
7644 static struct value *
7645 cast_from_fixed_to_double (struct value *arg)
7647 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7648 value_as_long (arg));
7649 return value_from_double (builtin_type_double, val);
7652 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7653 return the converted value. */
7655 static struct value *
7656 coerce_for_assign (struct type *type, struct value *val)
7658 struct type *type2 = value_type (val);
7662 type2 = ada_check_typedef (type2);
7663 type = ada_check_typedef (type);
7665 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7666 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7668 val = ada_value_ind (val);
7669 type2 = value_type (val);
7672 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7673 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7675 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7676 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7677 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7678 error (_("Incompatible types in assignment"));
7679 deprecated_set_value_type (val, type);
7684 static struct value *
7685 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7688 struct type *type1, *type2;
7691 arg1 = coerce_ref (arg1);
7692 arg2 = coerce_ref (arg2);
7693 type1 = base_type (ada_check_typedef (value_type (arg1)));
7694 type2 = base_type (ada_check_typedef (value_type (arg2)));
7696 if (TYPE_CODE (type1) != TYPE_CODE_INT
7697 || TYPE_CODE (type2) != TYPE_CODE_INT)
7698 return value_binop (arg1, arg2, op);
7707 return value_binop (arg1, arg2, op);
7710 v2 = value_as_long (arg2);
7712 error (_("second operand of %s must not be zero."), op_string (op));
7714 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7715 return value_binop (arg1, arg2, op);
7717 v1 = value_as_long (arg1);
7722 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7723 v += v > 0 ? -1 : 1;
7731 /* Should not reach this point. */
7735 val = allocate_value (type1);
7736 store_unsigned_integer (value_contents_raw (val),
7737 TYPE_LENGTH (value_type (val)), v);
7742 ada_value_equal (struct value *arg1, struct value *arg2)
7744 if (ada_is_direct_array_type (value_type (arg1))
7745 || ada_is_direct_array_type (value_type (arg2)))
7747 /* Automatically dereference any array reference before
7748 we attempt to perform the comparison. */
7749 arg1 = ada_coerce_ref (arg1);
7750 arg2 = ada_coerce_ref (arg2);
7752 arg1 = ada_coerce_to_simple_array (arg1);
7753 arg2 = ada_coerce_to_simple_array (arg2);
7754 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7755 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7756 error (_("Attempt to compare array with non-array"));
7757 /* FIXME: The following works only for types whose
7758 representations use all bits (no padding or undefined bits)
7759 and do not have user-defined equality. */
7761 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7762 && memcmp (value_contents (arg1), value_contents (arg2),
7763 TYPE_LENGTH (value_type (arg1))) == 0;
7765 return value_equal (arg1, arg2);
7768 /* Total number of component associations in the aggregate starting at
7769 index PC in EXP. Assumes that index PC is the start of an
7773 num_component_specs (struct expression *exp, int pc)
7776 m = exp->elts[pc + 1].longconst;
7779 for (i = 0; i < m; i += 1)
7781 switch (exp->elts[pc].opcode)
7787 n += exp->elts[pc + 1].longconst;
7790 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7795 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7796 component of LHS (a simple array or a record), updating *POS past
7797 the expression, assuming that LHS is contained in CONTAINER. Does
7798 not modify the inferior's memory, nor does it modify LHS (unless
7799 LHS == CONTAINER). */
7802 assign_component (struct value *container, struct value *lhs, LONGEST index,
7803 struct expression *exp, int *pos)
7805 struct value *mark = value_mark ();
7807 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7809 struct value *index_val = value_from_longest (builtin_type_int, index);
7810 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7814 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7815 elt = ada_to_fixed_value (unwrap_value (elt));
7818 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7819 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7821 value_assign_to_component (container, elt,
7822 ada_evaluate_subexp (NULL, exp, pos,
7825 value_free_to_mark (mark);
7828 /* Assuming that LHS represents an lvalue having a record or array
7829 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7830 of that aggregate's value to LHS, advancing *POS past the
7831 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7832 lvalue containing LHS (possibly LHS itself). Does not modify
7833 the inferior's memory, nor does it modify the contents of
7834 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7836 static struct value *
7837 assign_aggregate (struct value *container,
7838 struct value *lhs, struct expression *exp,
7839 int *pos, enum noside noside)
7841 struct type *lhs_type;
7842 int n = exp->elts[*pos+1].longconst;
7843 LONGEST low_index, high_index;
7846 int max_indices, num_indices;
7847 int is_array_aggregate;
7849 struct value *mark = value_mark ();
7852 if (noside != EVAL_NORMAL)
7855 for (i = 0; i < n; i += 1)
7856 ada_evaluate_subexp (NULL, exp, pos, noside);
7860 container = ada_coerce_ref (container);
7861 if (ada_is_direct_array_type (value_type (container)))
7862 container = ada_coerce_to_simple_array (container);
7863 lhs = ada_coerce_ref (lhs);
7864 if (!deprecated_value_modifiable (lhs))
7865 error (_("Left operand of assignment is not a modifiable lvalue."));
7867 lhs_type = value_type (lhs);
7868 if (ada_is_direct_array_type (lhs_type))
7870 lhs = ada_coerce_to_simple_array (lhs);
7871 lhs_type = value_type (lhs);
7872 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7873 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7874 is_array_aggregate = 1;
7876 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7879 high_index = num_visible_fields (lhs_type) - 1;
7880 is_array_aggregate = 0;
7883 error (_("Left-hand side must be array or record."));
7885 num_specs = num_component_specs (exp, *pos - 3);
7886 max_indices = 4 * num_specs + 4;
7887 indices = alloca (max_indices * sizeof (indices[0]));
7888 indices[0] = indices[1] = low_index - 1;
7889 indices[2] = indices[3] = high_index + 1;
7892 for (i = 0; i < n; i += 1)
7894 switch (exp->elts[*pos].opcode)
7897 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7898 &num_indices, max_indices,
7899 low_index, high_index);
7902 aggregate_assign_positional (container, lhs, exp, pos, indices,
7903 &num_indices, max_indices,
7904 low_index, high_index);
7908 error (_("Misplaced 'others' clause"));
7909 aggregate_assign_others (container, lhs, exp, pos, indices,
7910 num_indices, low_index, high_index);
7913 error (_("Internal error: bad aggregate clause"));
7920 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7921 construct at *POS, updating *POS past the construct, given that
7922 the positions are relative to lower bound LOW, where HIGH is the
7923 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7924 updating *NUM_INDICES as needed. CONTAINER is as for
7925 assign_aggregate. */
7927 aggregate_assign_positional (struct value *container,
7928 struct value *lhs, struct expression *exp,
7929 int *pos, LONGEST *indices, int *num_indices,
7930 int max_indices, LONGEST low, LONGEST high)
7932 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7934 if (ind - 1 == high)
7935 warning (_("Extra components in aggregate ignored."));
7938 add_component_interval (ind, ind, indices, num_indices, max_indices);
7940 assign_component (container, lhs, ind, exp, pos);
7943 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7946 /* Assign into the components of LHS indexed by the OP_CHOICES
7947 construct at *POS, updating *POS past the construct, given that
7948 the allowable indices are LOW..HIGH. Record the indices assigned
7949 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7950 needed. CONTAINER is as for assign_aggregate. */
7952 aggregate_assign_from_choices (struct value *container,
7953 struct value *lhs, struct expression *exp,
7954 int *pos, LONGEST *indices, int *num_indices,
7955 int max_indices, LONGEST low, LONGEST high)
7958 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7959 int choice_pos, expr_pc;
7960 int is_array = ada_is_direct_array_type (value_type (lhs));
7962 choice_pos = *pos += 3;
7964 for (j = 0; j < n_choices; j += 1)
7965 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7967 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7969 for (j = 0; j < n_choices; j += 1)
7971 LONGEST lower, upper;
7972 enum exp_opcode op = exp->elts[choice_pos].opcode;
7973 if (op == OP_DISCRETE_RANGE)
7976 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7978 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7983 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7994 name = &exp->elts[choice_pos + 2].string;
7997 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8000 error (_("Invalid record component association."));
8002 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8004 if (! find_struct_field (name, value_type (lhs), 0,
8005 NULL, NULL, NULL, NULL, &ind))
8006 error (_("Unknown component name: %s."), name);
8007 lower = upper = ind;
8010 if (lower <= upper && (lower < low || upper > high))
8011 error (_("Index in component association out of bounds."));
8013 add_component_interval (lower, upper, indices, num_indices,
8015 while (lower <= upper)
8019 assign_component (container, lhs, lower, exp, &pos1);
8025 /* Assign the value of the expression in the OP_OTHERS construct in
8026 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8027 have not been previously assigned. The index intervals already assigned
8028 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8029 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8031 aggregate_assign_others (struct value *container,
8032 struct value *lhs, struct expression *exp,
8033 int *pos, LONGEST *indices, int num_indices,
8034 LONGEST low, LONGEST high)
8037 int expr_pc = *pos+1;
8039 for (i = 0; i < num_indices - 2; i += 2)
8042 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8046 assign_component (container, lhs, ind, exp, &pos);
8049 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8052 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8053 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8054 modifying *SIZE as needed. It is an error if *SIZE exceeds
8055 MAX_SIZE. The resulting intervals do not overlap. */
8057 add_component_interval (LONGEST low, LONGEST high,
8058 LONGEST* indices, int *size, int max_size)
8061 for (i = 0; i < *size; i += 2) {
8062 if (high >= indices[i] && low <= indices[i + 1])
8065 for (kh = i + 2; kh < *size; kh += 2)
8066 if (high < indices[kh])
8068 if (low < indices[i])
8070 indices[i + 1] = indices[kh - 1];
8071 if (high > indices[i + 1])
8072 indices[i + 1] = high;
8073 memcpy (indices + i + 2, indices + kh, *size - kh);
8074 *size -= kh - i - 2;
8077 else if (high < indices[i])
8081 if (*size == max_size)
8082 error (_("Internal error: miscounted aggregate components."));
8084 for (j = *size-1; j >= i+2; j -= 1)
8085 indices[j] = indices[j - 2];
8087 indices[i + 1] = high;
8090 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8093 static struct value *
8094 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8096 if (type == ada_check_typedef (value_type (arg2)))
8099 if (ada_is_fixed_point_type (type))
8100 return (cast_to_fixed (type, arg2));
8102 if (ada_is_fixed_point_type (value_type (arg2)))
8103 return value_cast (type, cast_from_fixed_to_double (arg2));
8105 return value_cast (type, arg2);
8108 static struct value *
8109 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8110 int *pos, enum noside noside)
8113 int tem, tem2, tem3;
8115 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8118 struct value **argvec;
8122 op = exp->elts[pc].opcode;
8128 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8129 arg1 = unwrap_value (arg1);
8131 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8132 then we need to perform the conversion manually, because
8133 evaluate_subexp_standard doesn't do it. This conversion is
8134 necessary in Ada because the different kinds of float/fixed
8135 types in Ada have different representations.
8137 Similarly, we need to perform the conversion from OP_LONG
8139 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8140 arg1 = ada_value_cast (expect_type, arg1, noside);
8146 struct value *result;
8148 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8149 /* The result type will have code OP_STRING, bashed there from
8150 OP_ARRAY. Bash it back. */
8151 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8152 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8158 type = exp->elts[pc + 1].type;
8159 arg1 = evaluate_subexp (type, exp, pos, noside);
8160 if (noside == EVAL_SKIP)
8162 arg1 = ada_value_cast (type, arg1, noside);
8167 type = exp->elts[pc + 1].type;
8168 return ada_evaluate_subexp (type, exp, pos, noside);
8171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8172 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8174 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8175 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8177 return ada_value_assign (arg1, arg1);
8179 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8180 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8182 if (ada_is_fixed_point_type (value_type (arg1)))
8183 arg2 = cast_to_fixed (value_type (arg1), arg2);
8184 else if (ada_is_fixed_point_type (value_type (arg2)))
8186 (_("Fixed-point values must be assigned to fixed-point variables"));
8188 arg2 = coerce_for_assign (value_type (arg1), arg2);
8189 return ada_value_assign (arg1, arg2);
8192 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8193 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8194 if (noside == EVAL_SKIP)
8196 if ((ada_is_fixed_point_type (value_type (arg1))
8197 || ada_is_fixed_point_type (value_type (arg2)))
8198 && value_type (arg1) != value_type (arg2))
8199 error (_("Operands of fixed-point addition must have the same type"));
8200 /* Do the addition, and cast the result to the type of the first
8201 argument. We cannot cast the result to a reference type, so if
8202 ARG1 is a reference type, find its underlying type. */
8203 type = value_type (arg1);
8204 while (TYPE_CODE (type) == TYPE_CODE_REF)
8205 type = TYPE_TARGET_TYPE (type);
8206 return value_cast (type, value_add (arg1, arg2));
8209 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8210 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8211 if (noside == EVAL_SKIP)
8213 if ((ada_is_fixed_point_type (value_type (arg1))
8214 || ada_is_fixed_point_type (value_type (arg2)))
8215 && value_type (arg1) != value_type (arg2))
8216 error (_("Operands of fixed-point subtraction must have the same type"));
8217 /* Do the substraction, and cast the result to the type of the first
8218 argument. We cannot cast the result to a reference type, so if
8219 ARG1 is a reference type, find its underlying type. */
8220 type = value_type (arg1);
8221 while (TYPE_CODE (type) == TYPE_CODE_REF)
8222 type = TYPE_TARGET_TYPE (type);
8223 return value_cast (type, value_sub (arg1, arg2));
8227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8228 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8229 if (noside == EVAL_SKIP)
8231 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8232 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8233 return value_zero (value_type (arg1), not_lval);
8236 if (ada_is_fixed_point_type (value_type (arg1)))
8237 arg1 = cast_from_fixed_to_double (arg1);
8238 if (ada_is_fixed_point_type (value_type (arg2)))
8239 arg2 = cast_from_fixed_to_double (arg2);
8240 return ada_value_binop (arg1, arg2, op);
8245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8246 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8247 if (noside == EVAL_SKIP)
8249 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8250 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8251 return value_zero (value_type (arg1), not_lval);
8253 return ada_value_binop (arg1, arg2, op);
8256 case BINOP_NOTEQUAL:
8257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8258 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8259 if (noside == EVAL_SKIP)
8261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8264 tem = ada_value_equal (arg1, arg2);
8265 if (op == BINOP_NOTEQUAL)
8267 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8271 if (noside == EVAL_SKIP)
8273 else if (ada_is_fixed_point_type (value_type (arg1)))
8274 return value_cast (value_type (arg1), value_neg (arg1));
8276 return value_neg (arg1);
8278 case BINOP_LOGICAL_AND:
8279 case BINOP_LOGICAL_OR:
8280 case UNOP_LOGICAL_NOT:
8285 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8286 return value_cast (LA_BOOL_TYPE, val);
8289 case BINOP_BITWISE_AND:
8290 case BINOP_BITWISE_IOR:
8291 case BINOP_BITWISE_XOR:
8295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8297 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8299 return value_cast (value_type (arg1), val);
8304 if (noside == EVAL_SKIP)
8309 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8310 /* Only encountered when an unresolved symbol occurs in a
8311 context other than a function call, in which case, it is
8313 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8314 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8319 (to_static_fixed_type
8320 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8326 unwrap_value (evaluate_subexp_standard
8327 (expect_type, exp, pos, noside));
8328 return ada_to_fixed_value (arg1);
8334 /* Allocate arg vector, including space for the function to be
8335 called in argvec[0] and a terminating NULL. */
8336 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8338 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8340 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8341 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8342 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8343 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8346 for (tem = 0; tem <= nargs; tem += 1)
8347 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8350 if (noside == EVAL_SKIP)
8354 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8355 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8356 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8357 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8358 && VALUE_LVAL (argvec[0]) == lval_memory))
8359 argvec[0] = value_addr (argvec[0]);
8361 type = ada_check_typedef (value_type (argvec[0]));
8362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8364 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8366 case TYPE_CODE_FUNC:
8367 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8369 case TYPE_CODE_ARRAY:
8371 case TYPE_CODE_STRUCT:
8372 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8373 argvec[0] = ada_value_ind (argvec[0]);
8374 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8377 error (_("cannot subscript or call something of type `%s'"),
8378 ada_type_name (value_type (argvec[0])));
8383 switch (TYPE_CODE (type))
8385 case TYPE_CODE_FUNC:
8386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8387 return allocate_value (TYPE_TARGET_TYPE (type));
8388 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8389 case TYPE_CODE_STRUCT:
8393 arity = ada_array_arity (type);
8394 type = ada_array_element_type (type, nargs);
8396 error (_("cannot subscript or call a record"));
8398 error (_("wrong number of subscripts; expecting %d"), arity);
8399 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8400 return value_zero (ada_aligned_type (type), lval_memory);
8402 unwrap_value (ada_value_subscript
8403 (argvec[0], nargs, argvec + 1));
8405 case TYPE_CODE_ARRAY:
8406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8408 type = ada_array_element_type (type, nargs);
8410 error (_("element type of array unknown"));
8412 return value_zero (ada_aligned_type (type), lval_memory);
8415 unwrap_value (ada_value_subscript
8416 (ada_coerce_to_simple_array (argvec[0]),
8417 nargs, argvec + 1));
8418 case TYPE_CODE_PTR: /* Pointer to array */
8419 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8420 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8422 type = ada_array_element_type (type, nargs);
8424 error (_("element type of array unknown"));
8426 return value_zero (ada_aligned_type (type), lval_memory);
8429 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8430 nargs, argvec + 1));
8433 error (_("Attempt to index or call something other than an "
8434 "array or function"));
8439 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8440 struct value *low_bound_val =
8441 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8442 struct value *high_bound_val =
8443 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 low_bound_val = coerce_ref (low_bound_val);
8447 high_bound_val = coerce_ref (high_bound_val);
8448 low_bound = pos_atr (low_bound_val);
8449 high_bound = pos_atr (high_bound_val);
8451 if (noside == EVAL_SKIP)
8454 /* If this is a reference to an aligner type, then remove all
8456 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8457 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8458 TYPE_TARGET_TYPE (value_type (array)) =
8459 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8461 if (ada_is_packed_array_type (value_type (array)))
8462 error (_("cannot slice a packed array"));
8464 /* If this is a reference to an array or an array lvalue,
8465 convert to a pointer. */
8466 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8467 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8468 && VALUE_LVAL (array) == lval_memory))
8469 array = value_addr (array);
8471 if (noside == EVAL_AVOID_SIDE_EFFECTS
8472 && ada_is_array_descriptor_type (ada_check_typedef
8473 (value_type (array))))
8474 return empty_array (ada_type_of_array (array, 0), low_bound);
8476 array = ada_coerce_to_simple_array_ptr (array);
8478 /* If we have more than one level of pointer indirection,
8479 dereference the value until we get only one level. */
8480 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8481 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8483 array = value_ind (array);
8485 /* Make sure we really do have an array type before going further,
8486 to avoid a SEGV when trying to get the index type or the target
8487 type later down the road if the debug info generated by
8488 the compiler is incorrect or incomplete. */
8489 if (!ada_is_simple_array_type (value_type (array)))
8490 error (_("cannot take slice of non-array"));
8492 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8494 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8495 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8499 struct type *arr_type0 =
8500 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8502 return ada_value_slice_ptr (array, arr_type0,
8503 longest_to_int (low_bound),
8504 longest_to_int (high_bound));
8507 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8509 else if (high_bound < low_bound)
8510 return empty_array (value_type (array), low_bound);
8512 return ada_value_slice (array, longest_to_int (low_bound),
8513 longest_to_int (high_bound));
8518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8519 type = exp->elts[pc + 1].type;
8521 if (noside == EVAL_SKIP)
8524 switch (TYPE_CODE (type))
8527 lim_warning (_("Membership test incompletely implemented; "
8528 "always returns true"));
8529 return value_from_longest (builtin_type_int, (LONGEST) 1);
8531 case TYPE_CODE_RANGE:
8532 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8533 arg3 = value_from_longest (builtin_type_int,
8534 TYPE_HIGH_BOUND (type));
8536 value_from_longest (builtin_type_int,
8537 (value_less (arg1, arg3)
8538 || value_equal (arg1, arg3))
8539 && (value_less (arg2, arg1)
8540 || value_equal (arg2, arg1)));
8543 case BINOP_IN_BOUNDS:
8545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8546 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8548 if (noside == EVAL_SKIP)
8551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8552 return value_zero (builtin_type_int, not_lval);
8554 tem = longest_to_int (exp->elts[pc + 1].longconst);
8556 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8557 error (_("invalid dimension number to 'range"));
8559 arg3 = ada_array_bound (arg2, tem, 1);
8560 arg2 = ada_array_bound (arg2, tem, 0);
8563 value_from_longest (builtin_type_int,
8564 (value_less (arg1, arg3)
8565 || value_equal (arg1, arg3))
8566 && (value_less (arg2, arg1)
8567 || value_equal (arg2, arg1)));
8569 case TERNOP_IN_RANGE:
8570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8571 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8572 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8574 if (noside == EVAL_SKIP)
8578 value_from_longest (builtin_type_int,
8579 (value_less (arg1, arg3)
8580 || value_equal (arg1, arg3))
8581 && (value_less (arg2, arg1)
8582 || value_equal (arg2, arg1)));
8588 struct type *type_arg;
8589 if (exp->elts[*pos].opcode == OP_TYPE)
8591 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8593 type_arg = exp->elts[pc + 2].type;
8597 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8601 if (exp->elts[*pos].opcode != OP_LONG)
8602 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8603 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8606 if (noside == EVAL_SKIP)
8609 if (type_arg == NULL)
8611 arg1 = ada_coerce_ref (arg1);
8613 if (ada_is_packed_array_type (value_type (arg1)))
8614 arg1 = ada_coerce_to_simple_array (arg1);
8616 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8617 error (_("invalid dimension number to '%s"),
8618 ada_attribute_name (op));
8620 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8622 type = ada_index_type (value_type (arg1), tem);
8625 (_("attempt to take bound of something that is not an array"));
8626 return allocate_value (type);
8631 default: /* Should never happen. */
8632 error (_("unexpected attribute encountered"));
8634 return ada_array_bound (arg1, tem, 0);
8636 return ada_array_bound (arg1, tem, 1);
8638 return ada_array_length (arg1, tem);
8641 else if (discrete_type_p (type_arg))
8643 struct type *range_type;
8644 char *name = ada_type_name (type_arg);
8646 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8648 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8649 if (range_type == NULL)
8650 range_type = type_arg;
8654 error (_("unexpected attribute encountered"));
8656 return discrete_type_low_bound (range_type);
8658 return discrete_type_high_bound (range_type);
8660 error (_("the 'length attribute applies only to array types"));
8663 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8664 error (_("unimplemented type attribute"));
8669 if (ada_is_packed_array_type (type_arg))
8670 type_arg = decode_packed_array_type (type_arg);
8672 if (tem < 1 || tem > ada_array_arity (type_arg))
8673 error (_("invalid dimension number to '%s"),
8674 ada_attribute_name (op));
8676 type = ada_index_type (type_arg, tem);
8679 (_("attempt to take bound of something that is not an array"));
8680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8681 return allocate_value (type);
8686 error (_("unexpected attribute encountered"));
8688 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8689 return value_from_longest (type, low);
8691 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8692 return value_from_longest (type, high);
8694 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8695 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8696 return value_from_longest (type, high - low + 1);
8702 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8703 if (noside == EVAL_SKIP)
8706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8707 return value_zero (ada_tag_type (arg1), not_lval);
8709 return ada_value_tag (arg1);
8713 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8715 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8716 if (noside == EVAL_SKIP)
8718 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8719 return value_zero (value_type (arg1), not_lval);
8721 return value_binop (arg1, arg2,
8722 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8724 case OP_ATR_MODULUS:
8726 struct type *type_arg = exp->elts[pc + 2].type;
8727 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8729 if (noside == EVAL_SKIP)
8732 if (!ada_is_modular_type (type_arg))
8733 error (_("'modulus must be applied to modular type"));
8735 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8736 ada_modulus (type_arg));
8741 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8743 if (noside == EVAL_SKIP)
8745 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8746 return value_zero (builtin_type_int, not_lval);
8748 return value_pos_atr (arg1);
8751 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8752 if (noside == EVAL_SKIP)
8754 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8755 return value_zero (builtin_type_int, not_lval);
8757 return value_from_longest (builtin_type_int,
8759 * TYPE_LENGTH (value_type (arg1)));
8762 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8764 type = exp->elts[pc + 2].type;
8765 if (noside == EVAL_SKIP)
8767 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8768 return value_zero (type, not_lval);
8770 return value_val_atr (type, arg1);
8773 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8774 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8775 if (noside == EVAL_SKIP)
8777 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8778 return value_zero (value_type (arg1), not_lval);
8780 return value_binop (arg1, arg2, op);
8783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8784 if (noside == EVAL_SKIP)
8790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8791 if (noside == EVAL_SKIP)
8793 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8794 return value_neg (arg1);
8799 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8800 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8801 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8802 if (noside == EVAL_SKIP)
8804 type = ada_check_typedef (value_type (arg1));
8805 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8807 if (ada_is_array_descriptor_type (type))
8808 /* GDB allows dereferencing GNAT array descriptors. */
8810 struct type *arrType = ada_type_of_array (arg1, 0);
8811 if (arrType == NULL)
8812 error (_("Attempt to dereference null array pointer."));
8813 return value_at_lazy (arrType, 0);
8815 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8816 || TYPE_CODE (type) == TYPE_CODE_REF
8817 /* In C you can dereference an array to get the 1st elt. */
8818 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8820 type = to_static_fixed_type
8822 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8824 return value_zero (type, lval_memory);
8826 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8827 /* GDB allows dereferencing an int. */
8828 return value_zero (builtin_type_int, lval_memory);
8830 error (_("Attempt to take contents of a non-pointer value."));
8832 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8833 type = ada_check_typedef (value_type (arg1));
8835 if (ada_is_array_descriptor_type (type))
8836 /* GDB allows dereferencing GNAT array descriptors. */
8837 return ada_coerce_to_simple_array (arg1);
8839 return ada_value_ind (arg1);
8841 case STRUCTOP_STRUCT:
8842 tem = longest_to_int (exp->elts[pc + 1].longconst);
8843 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8845 if (noside == EVAL_SKIP)
8847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8849 struct type *type1 = value_type (arg1);
8850 if (ada_is_tagged_type (type1, 1))
8852 type = ada_lookup_struct_elt_type (type1,
8853 &exp->elts[pc + 2].string,
8856 /* In this case, we assume that the field COULD exist
8857 in some extension of the type. Return an object of
8858 "type" void, which will match any formal
8859 (see ada_type_match). */
8860 return value_zero (builtin_type_void, lval_memory);
8864 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8867 return value_zero (ada_aligned_type (type), lval_memory);
8871 ada_to_fixed_value (unwrap_value
8872 (ada_value_struct_elt
8873 (arg1, &exp->elts[pc + 2].string, 0)));
8875 /* The value is not supposed to be used. This is here to make it
8876 easier to accommodate expressions that contain types. */
8878 if (noside == EVAL_SKIP)
8880 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8881 return allocate_value (exp->elts[pc + 1].type);
8883 error (_("Attempt to use a type name as an expression"));
8888 case OP_DISCRETE_RANGE:
8891 if (noside == EVAL_NORMAL)
8895 error (_("Undefined name, ambiguous name, or renaming used in "
8896 "component association: %s."), &exp->elts[pc+2].string);
8898 error (_("Aggregates only allowed on the right of an assignment"));
8900 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8903 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8905 for (tem = 0; tem < nargs; tem += 1)
8906 ada_evaluate_subexp (NULL, exp, pos, noside);
8911 return value_from_longest (builtin_type_long, (LONGEST) 1);
8917 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8918 type name that encodes the 'small and 'delta information.
8919 Otherwise, return NULL. */
8922 fixed_type_info (struct type *type)
8924 const char *name = ada_type_name (type);
8925 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8927 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8929 const char *tail = strstr (name, "___XF_");
8935 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8936 return fixed_type_info (TYPE_TARGET_TYPE (type));
8941 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8944 ada_is_fixed_point_type (struct type *type)
8946 return fixed_type_info (type) != NULL;
8949 /* Return non-zero iff TYPE represents a System.Address type. */
8952 ada_is_system_address_type (struct type *type)
8954 return (TYPE_NAME (type)
8955 && strcmp (TYPE_NAME (type), "system__address") == 0);
8958 /* Assuming that TYPE is the representation of an Ada fixed-point
8959 type, return its delta, or -1 if the type is malformed and the
8960 delta cannot be determined. */
8963 ada_delta (struct type *type)
8965 const char *encoding = fixed_type_info (type);
8968 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8971 return (DOUBLEST) num / (DOUBLEST) den;
8974 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8975 factor ('SMALL value) associated with the type. */
8978 scaling_factor (struct type *type)
8980 const char *encoding = fixed_type_info (type);
8981 unsigned long num0, den0, num1, den1;
8984 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8989 return (DOUBLEST) num1 / (DOUBLEST) den1;
8991 return (DOUBLEST) num0 / (DOUBLEST) den0;
8995 /* Assuming that X is the representation of a value of fixed-point
8996 type TYPE, return its floating-point equivalent. */
8999 ada_fixed_to_float (struct type *type, LONGEST x)
9001 return (DOUBLEST) x *scaling_factor (type);
9004 /* The representation of a fixed-point value of type TYPE
9005 corresponding to the value X. */
9008 ada_float_to_fixed (struct type *type, DOUBLEST x)
9010 return (LONGEST) (x / scaling_factor (type) + 0.5);
9014 /* VAX floating formats */
9016 /* Non-zero iff TYPE represents one of the special VAX floating-point
9020 ada_is_vax_floating_type (struct type *type)
9023 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9026 && (TYPE_CODE (type) == TYPE_CODE_INT
9027 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9028 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9031 /* The type of special VAX floating-point type this is, assuming
9032 ada_is_vax_floating_point. */
9035 ada_vax_float_type_suffix (struct type *type)
9037 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9040 /* A value representing the special debugging function that outputs
9041 VAX floating-point values of the type represented by TYPE. Assumes
9042 ada_is_vax_floating_type (TYPE). */
9045 ada_vax_float_print_function (struct type *type)
9047 switch (ada_vax_float_type_suffix (type))
9050 return get_var_value ("DEBUG_STRING_F", 0);
9052 return get_var_value ("DEBUG_STRING_D", 0);
9054 return get_var_value ("DEBUG_STRING_G", 0);
9056 error (_("invalid VAX floating-point type"));
9063 /* Scan STR beginning at position K for a discriminant name, and
9064 return the value of that discriminant field of DVAL in *PX. If
9065 PNEW_K is not null, put the position of the character beyond the
9066 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9067 not alter *PX and *PNEW_K if unsuccessful. */
9070 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9073 static char *bound_buffer = NULL;
9074 static size_t bound_buffer_len = 0;
9077 struct value *bound_val;
9079 if (dval == NULL || str == NULL || str[k] == '\0')
9082 pend = strstr (str + k, "__");
9086 k += strlen (bound);
9090 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9091 bound = bound_buffer;
9092 strncpy (bound_buffer, str + k, pend - (str + k));
9093 bound[pend - (str + k)] = '\0';
9097 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9098 if (bound_val == NULL)
9101 *px = value_as_long (bound_val);
9107 /* Value of variable named NAME in the current environment. If
9108 no such variable found, then if ERR_MSG is null, returns 0, and
9109 otherwise causes an error with message ERR_MSG. */
9111 static struct value *
9112 get_var_value (char *name, char *err_msg)
9114 struct ada_symbol_info *syms;
9117 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9122 if (err_msg == NULL)
9125 error (("%s"), err_msg);
9128 return value_of_variable (syms[0].sym, syms[0].block);
9131 /* Value of integer variable named NAME in the current environment. If
9132 no such variable found, returns 0, and sets *FLAG to 0. If
9133 successful, sets *FLAG to 1. */
9136 get_int_var_value (char *name, int *flag)
9138 struct value *var_val = get_var_value (name, 0);
9150 return value_as_long (var_val);
9155 /* Return a range type whose base type is that of the range type named
9156 NAME in the current environment, and whose bounds are calculated
9157 from NAME according to the GNAT range encoding conventions.
9158 Extract discriminant values, if needed, from DVAL. If a new type
9159 must be created, allocate in OBJFILE's space. The bounds
9160 information, in general, is encoded in NAME, the base type given in
9161 the named range type. */
9163 static struct type *
9164 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9166 struct type *raw_type = ada_find_any_type (name);
9167 struct type *base_type;
9170 if (raw_type == NULL)
9171 base_type = builtin_type_int;
9172 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9173 base_type = TYPE_TARGET_TYPE (raw_type);
9175 base_type = raw_type;
9177 subtype_info = strstr (name, "___XD");
9178 if (subtype_info == NULL)
9182 static char *name_buf = NULL;
9183 static size_t name_len = 0;
9184 int prefix_len = subtype_info - name;
9190 GROW_VECT (name_buf, name_len, prefix_len + 5);
9191 strncpy (name_buf, name, prefix_len);
9192 name_buf[prefix_len] = '\0';
9195 bounds_str = strchr (subtype_info, '_');
9198 if (*subtype_info == 'L')
9200 if (!ada_scan_number (bounds_str, n, &L, &n)
9201 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9203 if (bounds_str[n] == '_')
9205 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9212 strcpy (name_buf + prefix_len, "___L");
9213 L = get_int_var_value (name_buf, &ok);
9216 lim_warning (_("Unknown lower bound, using 1."));
9221 if (*subtype_info == 'U')
9223 if (!ada_scan_number (bounds_str, n, &U, &n)
9224 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9230 strcpy (name_buf + prefix_len, "___U");
9231 U = get_int_var_value (name_buf, &ok);
9234 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9239 if (objfile == NULL)
9240 objfile = TYPE_OBJFILE (base_type);
9241 type = create_range_type (alloc_type (objfile), base_type, L, U);
9242 TYPE_NAME (type) = name;
9247 /* True iff NAME is the name of a range type. */
9250 ada_is_range_type_name (const char *name)
9252 return (name != NULL && strstr (name, "___XD"));
9258 /* True iff TYPE is an Ada modular type. */
9261 ada_is_modular_type (struct type *type)
9263 struct type *subranged_type = base_type (type);
9265 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9266 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9267 && TYPE_UNSIGNED (subranged_type));
9270 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9273 ada_modulus (struct type * type)
9275 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9279 /* Ada exception catchpoint support:
9280 ---------------------------------
9282 We support 3 kinds of exception catchpoints:
9283 . catchpoints on Ada exceptions
9284 . catchpoints on unhandled Ada exceptions
9285 . catchpoints on failed assertions
9287 Exceptions raised during failed assertions, or unhandled exceptions
9288 could perfectly be caught with the general catchpoint on Ada exceptions.
9289 However, we can easily differentiate these two special cases, and having
9290 the option to distinguish these two cases from the rest can be useful
9291 to zero-in on certain situations.
9293 Exception catchpoints are a specialized form of breakpoint,
9294 since they rely on inserting breakpoints inside known routines
9295 of the GNAT runtime. The implementation therefore uses a standard
9296 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9299 Support in the runtime for exception catchpoints have been changed
9300 a few times already, and these changes affect the implementation
9301 of these catchpoints. In order to be able to support several
9302 variants of the runtime, we use a sniffer that will determine
9303 the runtime variant used by the program being debugged.
9305 At this time, we do not support the use of conditions on Ada exception
9306 catchpoints. The COND and COND_STRING fields are therefore set
9307 to NULL (most of the time, see below).
9309 Conditions where EXP_STRING, COND, and COND_STRING are used:
9311 When a user specifies the name of a specific exception in the case
9312 of catchpoints on Ada exceptions, we store the name of that exception
9313 in the EXP_STRING. We then translate this request into an actual
9314 condition stored in COND_STRING, and then parse it into an expression
9317 /* The different types of catchpoints that we introduced for catching
9320 enum exception_catchpoint_kind
9323 ex_catch_exception_unhandled,
9327 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9329 /* A structure that describes how to support exception catchpoints
9330 for a given executable. */
9332 struct exception_support_info
9334 /* The name of the symbol to break on in order to insert
9335 a catchpoint on exceptions. */
9336 const char *catch_exception_sym;
9338 /* The name of the symbol to break on in order to insert
9339 a catchpoint on unhandled exceptions. */
9340 const char *catch_exception_unhandled_sym;
9342 /* The name of the symbol to break on in order to insert
9343 a catchpoint on failed assertions. */
9344 const char *catch_assert_sym;
9346 /* Assuming that the inferior just triggered an unhandled exception
9347 catchpoint, this function is responsible for returning the address
9348 in inferior memory where the name of that exception is stored.
9349 Return zero if the address could not be computed. */
9350 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9353 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9354 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9356 /* The following exception support info structure describes how to
9357 implement exception catchpoints with the latest version of the
9358 Ada runtime (as of 2007-03-06). */
9360 static const struct exception_support_info default_exception_support_info =
9362 "__gnat_debug_raise_exception", /* catch_exception_sym */
9363 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9364 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9365 ada_unhandled_exception_name_addr
9368 /* The following exception support info structure describes how to
9369 implement exception catchpoints with a slightly older version
9370 of the Ada runtime. */
9372 static const struct exception_support_info exception_support_info_fallback =
9374 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9375 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9376 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9377 ada_unhandled_exception_name_addr_from_raise
9380 /* For each executable, we sniff which exception info structure to use
9381 and cache it in the following global variable. */
9383 static const struct exception_support_info *exception_info = NULL;
9385 /* Inspect the Ada runtime and determine which exception info structure
9386 should be used to provide support for exception catchpoints.
9388 This function will always set exception_info, or raise an error. */
9391 ada_exception_support_info_sniffer (void)
9395 /* If the exception info is already known, then no need to recompute it. */
9396 if (exception_info != NULL)
9399 /* Check the latest (default) exception support info. */
9400 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9404 exception_info = &default_exception_support_info;
9408 /* Try our fallback exception suport info. */
9409 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9413 exception_info = &exception_support_info_fallback;
9417 /* Sometimes, it is normal for us to not be able to find the routine
9418 we are looking for. This happens when the program is linked with
9419 the shared version of the GNAT runtime, and the program has not been
9420 started yet. Inform the user of these two possible causes if
9423 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9424 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9426 /* If the symbol does not exist, then check that the program is
9427 already started, to make sure that shared libraries have been
9428 loaded. If it is not started, this may mean that the symbol is
9429 in a shared library. */
9431 if (ptid_get_pid (inferior_ptid) == 0)
9432 error (_("Unable to insert catchpoint. Try to start the program first."));
9434 /* At this point, we know that we are debugging an Ada program and
9435 that the inferior has been started, but we still are not able to
9436 find the run-time symbols. That can mean that we are in
9437 configurable run time mode, or that a-except as been optimized
9438 out by the linker... In any case, at this point it is not worth
9439 supporting this feature. */
9441 error (_("Cannot insert catchpoints in this configuration."));
9444 /* An observer of "executable_changed" events.
9445 Its role is to clear certain cached values that need to be recomputed
9446 each time a new executable is loaded by GDB. */
9449 ada_executable_changed_observer (void *unused)
9451 /* If the executable changed, then it is possible that the Ada runtime
9452 is different. So we need to invalidate the exception support info
9454 exception_info = NULL;
9457 /* Return the name of the function at PC, NULL if could not find it.
9458 This function only checks the debugging information, not the symbol
9462 function_name_from_pc (CORE_ADDR pc)
9466 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9472 /* True iff FRAME is very likely to be that of a function that is
9473 part of the runtime system. This is all very heuristic, but is
9474 intended to be used as advice as to what frames are uninteresting
9478 is_known_support_routine (struct frame_info *frame)
9480 struct symtab_and_line sal;
9484 /* If this code does not have any debugging information (no symtab),
9485 This cannot be any user code. */
9487 find_frame_sal (frame, &sal);
9488 if (sal.symtab == NULL)
9491 /* If there is a symtab, but the associated source file cannot be
9492 located, then assume this is not user code: Selecting a frame
9493 for which we cannot display the code would not be very helpful
9494 for the user. This should also take care of case such as VxWorks
9495 where the kernel has some debugging info provided for a few units. */
9497 if (symtab_to_fullname (sal.symtab) == NULL)
9500 /* Check the unit filename againt the Ada runtime file naming.
9501 We also check the name of the objfile against the name of some
9502 known system libraries that sometimes come with debugging info
9505 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9507 re_comp (known_runtime_file_name_patterns[i]);
9508 if (re_exec (sal.symtab->filename))
9510 if (sal.symtab->objfile != NULL
9511 && re_exec (sal.symtab->objfile->name))
9515 /* Check whether the function is a GNAT-generated entity. */
9517 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9518 if (func_name == NULL)
9521 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9523 re_comp (known_auxiliary_function_name_patterns[i]);
9524 if (re_exec (func_name))
9531 /* Find the first frame that contains debugging information and that is not
9532 part of the Ada run-time, starting from FI and moving upward. */
9535 ada_find_printable_frame (struct frame_info *fi)
9537 for (; fi != NULL; fi = get_prev_frame (fi))
9539 if (!is_known_support_routine (fi))
9548 /* Assuming that the inferior just triggered an unhandled exception
9549 catchpoint, return the address in inferior memory where the name
9550 of the exception is stored.
9552 Return zero if the address could not be computed. */
9555 ada_unhandled_exception_name_addr (void)
9557 return parse_and_eval_address ("e.full_name");
9560 /* Same as ada_unhandled_exception_name_addr, except that this function
9561 should be used when the inferior uses an older version of the runtime,
9562 where the exception name needs to be extracted from a specific frame
9563 several frames up in the callstack. */
9566 ada_unhandled_exception_name_addr_from_raise (void)
9569 struct frame_info *fi;
9571 /* To determine the name of this exception, we need to select
9572 the frame corresponding to RAISE_SYM_NAME. This frame is
9573 at least 3 levels up, so we simply skip the first 3 frames
9574 without checking the name of their associated function. */
9575 fi = get_current_frame ();
9576 for (frame_level = 0; frame_level < 3; frame_level += 1)
9578 fi = get_prev_frame (fi);
9582 const char *func_name =
9583 function_name_from_pc (get_frame_address_in_block (fi));
9584 if (func_name != NULL
9585 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9586 break; /* We found the frame we were looking for... */
9587 fi = get_prev_frame (fi);
9594 return parse_and_eval_address ("id.full_name");
9597 /* Assuming the inferior just triggered an Ada exception catchpoint
9598 (of any type), return the address in inferior memory where the name
9599 of the exception is stored, if applicable.
9601 Return zero if the address could not be computed, or if not relevant. */
9604 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9605 struct breakpoint *b)
9609 case ex_catch_exception:
9610 return (parse_and_eval_address ("e.full_name"));
9613 case ex_catch_exception_unhandled:
9614 return exception_info->unhandled_exception_name_addr ();
9617 case ex_catch_assert:
9618 return 0; /* Exception name is not relevant in this case. */
9622 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9626 return 0; /* Should never be reached. */
9629 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9630 any error that ada_exception_name_addr_1 might cause to be thrown.
9631 When an error is intercepted, a warning with the error message is printed,
9632 and zero is returned. */
9635 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9636 struct breakpoint *b)
9638 struct gdb_exception e;
9639 CORE_ADDR result = 0;
9641 TRY_CATCH (e, RETURN_MASK_ERROR)
9643 result = ada_exception_name_addr_1 (ex, b);
9648 warning (_("failed to get exception name: %s"), e.message);
9655 /* Implement the PRINT_IT method in the breakpoint_ops structure
9656 for all exception catchpoint kinds. */
9658 static enum print_stop_action
9659 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9661 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9662 char exception_name[256];
9666 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9667 exception_name [sizeof (exception_name) - 1] = '\0';
9670 ada_find_printable_frame (get_current_frame ());
9672 annotate_catchpoint (b->number);
9675 case ex_catch_exception:
9677 printf_filtered (_("\nCatchpoint %d, %s at "),
9678 b->number, exception_name);
9680 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9682 case ex_catch_exception_unhandled:
9684 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9685 b->number, exception_name);
9687 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9690 case ex_catch_assert:
9691 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9696 return PRINT_SRC_AND_LOC;
9699 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9700 for all exception catchpoint kinds. */
9703 print_one_exception (enum exception_catchpoint_kind ex,
9704 struct breakpoint *b, CORE_ADDR *last_addr)
9709 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9713 *last_addr = b->loc->address;
9716 case ex_catch_exception:
9717 if (b->exp_string != NULL)
9719 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9721 ui_out_field_string (uiout, "what", msg);
9725 ui_out_field_string (uiout, "what", "all Ada exceptions");
9729 case ex_catch_exception_unhandled:
9730 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9733 case ex_catch_assert:
9734 ui_out_field_string (uiout, "what", "failed Ada assertions");
9738 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9743 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9744 for all exception catchpoint kinds. */
9747 print_mention_exception (enum exception_catchpoint_kind ex,
9748 struct breakpoint *b)
9752 case ex_catch_exception:
9753 if (b->exp_string != NULL)
9754 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9755 b->number, b->exp_string);
9757 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9761 case ex_catch_exception_unhandled:
9762 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9766 case ex_catch_assert:
9767 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9771 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9776 /* Virtual table for "catch exception" breakpoints. */
9778 static enum print_stop_action
9779 print_it_catch_exception (struct breakpoint *b)
9781 return print_it_exception (ex_catch_exception, b);
9785 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9787 print_one_exception (ex_catch_exception, b, last_addr);
9791 print_mention_catch_exception (struct breakpoint *b)
9793 print_mention_exception (ex_catch_exception, b);
9796 static struct breakpoint_ops catch_exception_breakpoint_ops =
9798 print_it_catch_exception,
9799 print_one_catch_exception,
9800 print_mention_catch_exception
9803 /* Virtual table for "catch exception unhandled" breakpoints. */
9805 static enum print_stop_action
9806 print_it_catch_exception_unhandled (struct breakpoint *b)
9808 return print_it_exception (ex_catch_exception_unhandled, b);
9812 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9814 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9818 print_mention_catch_exception_unhandled (struct breakpoint *b)
9820 print_mention_exception (ex_catch_exception_unhandled, b);
9823 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9824 print_it_catch_exception_unhandled,
9825 print_one_catch_exception_unhandled,
9826 print_mention_catch_exception_unhandled
9829 /* Virtual table for "catch assert" breakpoints. */
9831 static enum print_stop_action
9832 print_it_catch_assert (struct breakpoint *b)
9834 return print_it_exception (ex_catch_assert, b);
9838 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9840 print_one_exception (ex_catch_assert, b, last_addr);
9844 print_mention_catch_assert (struct breakpoint *b)
9846 print_mention_exception (ex_catch_assert, b);
9849 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9850 print_it_catch_assert,
9851 print_one_catch_assert,
9852 print_mention_catch_assert
9855 /* Return non-zero if B is an Ada exception catchpoint. */
9858 ada_exception_catchpoint_p (struct breakpoint *b)
9860 return (b->ops == &catch_exception_breakpoint_ops
9861 || b->ops == &catch_exception_unhandled_breakpoint_ops
9862 || b->ops == &catch_assert_breakpoint_ops);
9865 /* Return a newly allocated copy of the first space-separated token
9866 in ARGSP, and then adjust ARGSP to point immediately after that
9869 Return NULL if ARGPS does not contain any more tokens. */
9872 ada_get_next_arg (char **argsp)
9874 char *args = *argsp;
9878 /* Skip any leading white space. */
9880 while (isspace (*args))
9883 if (args[0] == '\0')
9884 return NULL; /* No more arguments. */
9886 /* Find the end of the current argument. */
9889 while (*end != '\0' && !isspace (*end))
9892 /* Adjust ARGSP to point to the start of the next argument. */
9896 /* Make a copy of the current argument and return it. */
9898 result = xmalloc (end - args + 1);
9899 strncpy (result, args, end - args);
9900 result[end - args] = '\0';
9905 /* Split the arguments specified in a "catch exception" command.
9906 Set EX to the appropriate catchpoint type.
9907 Set EXP_STRING to the name of the specific exception if
9908 specified by the user. */
9911 catch_ada_exception_command_split (char *args,
9912 enum exception_catchpoint_kind *ex,
9915 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9916 char *exception_name;
9918 exception_name = ada_get_next_arg (&args);
9919 make_cleanup (xfree, exception_name);
9921 /* Check that we do not have any more arguments. Anything else
9924 while (isspace (*args))
9927 if (args[0] != '\0')
9928 error (_("Junk at end of expression"));
9930 discard_cleanups (old_chain);
9932 if (exception_name == NULL)
9934 /* Catch all exceptions. */
9935 *ex = ex_catch_exception;
9938 else if (strcmp (exception_name, "unhandled") == 0)
9940 /* Catch unhandled exceptions. */
9941 *ex = ex_catch_exception_unhandled;
9946 /* Catch a specific exception. */
9947 *ex = ex_catch_exception;
9948 *exp_string = exception_name;
9952 /* Return the name of the symbol on which we should break in order to
9953 implement a catchpoint of the EX kind. */
9956 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9958 gdb_assert (exception_info != NULL);
9962 case ex_catch_exception:
9963 return (exception_info->catch_exception_sym);
9965 case ex_catch_exception_unhandled:
9966 return (exception_info->catch_exception_unhandled_sym);
9968 case ex_catch_assert:
9969 return (exception_info->catch_assert_sym);
9972 internal_error (__FILE__, __LINE__,
9973 _("unexpected catchpoint kind (%d)"), ex);
9977 /* Return the breakpoint ops "virtual table" used for catchpoints
9980 static struct breakpoint_ops *
9981 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9985 case ex_catch_exception:
9986 return (&catch_exception_breakpoint_ops);
9988 case ex_catch_exception_unhandled:
9989 return (&catch_exception_unhandled_breakpoint_ops);
9991 case ex_catch_assert:
9992 return (&catch_assert_breakpoint_ops);
9995 internal_error (__FILE__, __LINE__,
9996 _("unexpected catchpoint kind (%d)"), ex);
10000 /* Return the condition that will be used to match the current exception
10001 being raised with the exception that the user wants to catch. This
10002 assumes that this condition is used when the inferior just triggered
10003 an exception catchpoint.
10005 The string returned is a newly allocated string that needs to be
10006 deallocated later. */
10009 ada_exception_catchpoint_cond_string (const char *exp_string)
10011 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10014 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10016 static struct expression *
10017 ada_parse_catchpoint_condition (char *cond_string,
10018 struct symtab_and_line sal)
10020 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10023 /* Return the symtab_and_line that should be used to insert an exception
10024 catchpoint of the TYPE kind.
10026 EX_STRING should contain the name of a specific exception
10027 that the catchpoint should catch, or NULL otherwise.
10029 The idea behind all the remaining parameters is that their names match
10030 the name of certain fields in the breakpoint structure that are used to
10031 handle exception catchpoints. This function returns the value to which
10032 these fields should be set, depending on the type of catchpoint we need
10035 If COND and COND_STRING are both non-NULL, any value they might
10036 hold will be free'ed, and then replaced by newly allocated ones.
10037 These parameters are left untouched otherwise. */
10039 static struct symtab_and_line
10040 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10041 char **addr_string, char **cond_string,
10042 struct expression **cond, struct breakpoint_ops **ops)
10044 const char *sym_name;
10045 struct symbol *sym;
10046 struct symtab_and_line sal;
10048 /* First, find out which exception support info to use. */
10049 ada_exception_support_info_sniffer ();
10051 /* Then lookup the function on which we will break in order to catch
10052 the Ada exceptions requested by the user. */
10054 sym_name = ada_exception_sym_name (ex);
10055 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10057 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10058 that should be compiled with debugging information. As a result, we
10059 expect to find that symbol in the symtabs. If we don't find it, then
10060 the target most likely does not support Ada exceptions, or we cannot
10061 insert exception breakpoints yet, because the GNAT runtime hasn't been
10064 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10065 in such a way that no debugging information is produced for the symbol
10066 we are looking for. In this case, we could search the minimal symbols
10067 as a fall-back mechanism. This would still be operating in degraded
10068 mode, however, as we would still be missing the debugging information
10069 that is needed in order to extract the name of the exception being
10070 raised (this name is printed in the catchpoint message, and is also
10071 used when trying to catch a specific exception). We do not handle
10072 this case for now. */
10075 error (_("Unable to break on '%s' in this configuration."), sym_name);
10077 /* Make sure that the symbol we found corresponds to a function. */
10078 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10079 error (_("Symbol \"%s\" is not a function (class = %d)"),
10080 sym_name, SYMBOL_CLASS (sym));
10082 sal = find_function_start_sal (sym, 1);
10084 /* Set ADDR_STRING. */
10086 *addr_string = xstrdup (sym_name);
10088 /* Set the COND and COND_STRING (if not NULL). */
10090 if (cond_string != NULL && cond != NULL)
10092 if (*cond_string != NULL)
10094 xfree (*cond_string);
10095 *cond_string = NULL;
10102 if (exp_string != NULL)
10104 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10105 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10110 *ops = ada_exception_breakpoint_ops (ex);
10115 /* Parse the arguments (ARGS) of the "catch exception" command.
10117 Set TYPE to the appropriate exception catchpoint type.
10118 If the user asked the catchpoint to catch only a specific
10119 exception, then save the exception name in ADDR_STRING.
10121 See ada_exception_sal for a description of all the remaining
10122 function arguments of this function. */
10124 struct symtab_and_line
10125 ada_decode_exception_location (char *args, char **addr_string,
10126 char **exp_string, char **cond_string,
10127 struct expression **cond,
10128 struct breakpoint_ops **ops)
10130 enum exception_catchpoint_kind ex;
10132 catch_ada_exception_command_split (args, &ex, exp_string);
10133 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10137 struct symtab_and_line
10138 ada_decode_assert_location (char *args, char **addr_string,
10139 struct breakpoint_ops **ops)
10141 /* Check that no argument where provided at the end of the command. */
10145 while (isspace (*args))
10148 error (_("Junk at end of arguments."));
10151 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10156 /* Information about operators given special treatment in functions
10158 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10160 #define ADA_OPERATORS \
10161 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10162 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10163 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10164 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10165 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10166 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10167 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10168 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10169 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10170 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10171 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10172 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10173 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10174 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10175 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10176 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10177 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10178 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10179 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10182 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10184 switch (exp->elts[pc - 1].opcode)
10187 operator_length_standard (exp, pc, oplenp, argsp);
10190 #define OP_DEFN(op, len, args, binop) \
10191 case op: *oplenp = len; *argsp = args; break;
10197 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10202 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10208 ada_op_name (enum exp_opcode opcode)
10213 return op_name_standard (opcode);
10215 #define OP_DEFN(op, len, args, binop) case op: return #op;
10220 return "OP_AGGREGATE";
10222 return "OP_CHOICES";
10228 /* As for operator_length, but assumes PC is pointing at the first
10229 element of the operator, and gives meaningful results only for the
10230 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10233 ada_forward_operator_length (struct expression *exp, int pc,
10234 int *oplenp, int *argsp)
10236 switch (exp->elts[pc].opcode)
10239 *oplenp = *argsp = 0;
10242 #define OP_DEFN(op, len, args, binop) \
10243 case op: *oplenp = len; *argsp = args; break;
10249 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10254 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10260 int len = longest_to_int (exp->elts[pc + 1].longconst);
10261 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10269 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10271 enum exp_opcode op = exp->elts[elt].opcode;
10276 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10280 /* Ada attributes ('Foo). */
10283 case OP_ATR_LENGTH:
10287 case OP_ATR_MODULUS:
10294 case UNOP_IN_RANGE:
10296 /* XXX: gdb_sprint_host_address, type_sprint */
10297 fprintf_filtered (stream, _("Type @"));
10298 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10299 fprintf_filtered (stream, " (");
10300 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10301 fprintf_filtered (stream, ")");
10303 case BINOP_IN_BOUNDS:
10304 fprintf_filtered (stream, " (%d)",
10305 longest_to_int (exp->elts[pc + 2].longconst));
10307 case TERNOP_IN_RANGE:
10312 case OP_DISCRETE_RANGE:
10313 case OP_POSITIONAL:
10320 char *name = &exp->elts[elt + 2].string;
10321 int len = longest_to_int (exp->elts[elt + 1].longconst);
10322 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10327 return dump_subexp_body_standard (exp, stream, elt);
10331 for (i = 0; i < nargs; i += 1)
10332 elt = dump_subexp (exp, stream, elt);
10337 /* The Ada extension of print_subexp (q.v.). */
10340 ada_print_subexp (struct expression *exp, int *pos,
10341 struct ui_file *stream, enum precedence prec)
10343 int oplen, nargs, i;
10345 enum exp_opcode op = exp->elts[pc].opcode;
10347 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10354 print_subexp_standard (exp, pos, stream, prec);
10358 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10361 case BINOP_IN_BOUNDS:
10362 /* XXX: sprint_subexp */
10363 print_subexp (exp, pos, stream, PREC_SUFFIX);
10364 fputs_filtered (" in ", stream);
10365 print_subexp (exp, pos, stream, PREC_SUFFIX);
10366 fputs_filtered ("'range", stream);
10367 if (exp->elts[pc + 1].longconst > 1)
10368 fprintf_filtered (stream, "(%ld)",
10369 (long) exp->elts[pc + 1].longconst);
10372 case TERNOP_IN_RANGE:
10373 if (prec >= PREC_EQUAL)
10374 fputs_filtered ("(", stream);
10375 /* XXX: sprint_subexp */
10376 print_subexp (exp, pos, stream, PREC_SUFFIX);
10377 fputs_filtered (" in ", stream);
10378 print_subexp (exp, pos, stream, PREC_EQUAL);
10379 fputs_filtered (" .. ", stream);
10380 print_subexp (exp, pos, stream, PREC_EQUAL);
10381 if (prec >= PREC_EQUAL)
10382 fputs_filtered (")", stream);
10387 case OP_ATR_LENGTH:
10391 case OP_ATR_MODULUS:
10396 if (exp->elts[*pos].opcode == OP_TYPE)
10398 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10399 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10403 print_subexp (exp, pos, stream, PREC_SUFFIX);
10404 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10408 for (tem = 1; tem < nargs; tem += 1)
10410 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10411 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10413 fputs_filtered (")", stream);
10418 type_print (exp->elts[pc + 1].type, "", stream, 0);
10419 fputs_filtered ("'(", stream);
10420 print_subexp (exp, pos, stream, PREC_PREFIX);
10421 fputs_filtered (")", stream);
10424 case UNOP_IN_RANGE:
10425 /* XXX: sprint_subexp */
10426 print_subexp (exp, pos, stream, PREC_SUFFIX);
10427 fputs_filtered (" in ", stream);
10428 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10431 case OP_DISCRETE_RANGE:
10432 print_subexp (exp, pos, stream, PREC_SUFFIX);
10433 fputs_filtered ("..", stream);
10434 print_subexp (exp, pos, stream, PREC_SUFFIX);
10438 fputs_filtered ("others => ", stream);
10439 print_subexp (exp, pos, stream, PREC_SUFFIX);
10443 for (i = 0; i < nargs-1; i += 1)
10446 fputs_filtered ("|", stream);
10447 print_subexp (exp, pos, stream, PREC_SUFFIX);
10449 fputs_filtered (" => ", stream);
10450 print_subexp (exp, pos, stream, PREC_SUFFIX);
10453 case OP_POSITIONAL:
10454 print_subexp (exp, pos, stream, PREC_SUFFIX);
10458 fputs_filtered ("(", stream);
10459 for (i = 0; i < nargs; i += 1)
10462 fputs_filtered (", ", stream);
10463 print_subexp (exp, pos, stream, PREC_SUFFIX);
10465 fputs_filtered (")", stream);
10470 /* Table mapping opcodes into strings for printing operators
10471 and precedences of the operators. */
10473 static const struct op_print ada_op_print_tab[] = {
10474 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10475 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10476 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10477 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10478 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10479 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10480 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10481 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10482 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10483 {">=", BINOP_GEQ, PREC_ORDER, 0},
10484 {">", BINOP_GTR, PREC_ORDER, 0},
10485 {"<", BINOP_LESS, PREC_ORDER, 0},
10486 {">>", BINOP_RSH, PREC_SHIFT, 0},
10487 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10488 {"+", BINOP_ADD, PREC_ADD, 0},
10489 {"-", BINOP_SUB, PREC_ADD, 0},
10490 {"&", BINOP_CONCAT, PREC_ADD, 0},
10491 {"*", BINOP_MUL, PREC_MUL, 0},
10492 {"/", BINOP_DIV, PREC_MUL, 0},
10493 {"rem", BINOP_REM, PREC_MUL, 0},
10494 {"mod", BINOP_MOD, PREC_MUL, 0},
10495 {"**", BINOP_EXP, PREC_REPEAT, 0},
10496 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10497 {"-", UNOP_NEG, PREC_PREFIX, 0},
10498 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10499 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10500 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10501 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10502 {".all", UNOP_IND, PREC_SUFFIX, 1},
10503 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10504 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10508 enum ada_primitive_types {
10509 ada_primitive_type_int,
10510 ada_primitive_type_long,
10511 ada_primitive_type_short,
10512 ada_primitive_type_char,
10513 ada_primitive_type_float,
10514 ada_primitive_type_double,
10515 ada_primitive_type_void,
10516 ada_primitive_type_long_long,
10517 ada_primitive_type_long_double,
10518 ada_primitive_type_natural,
10519 ada_primitive_type_positive,
10520 ada_primitive_type_system_address,
10521 nr_ada_primitive_types
10525 ada_language_arch_info (struct gdbarch *gdbarch,
10526 struct language_arch_info *lai)
10528 const struct builtin_type *builtin = builtin_type (gdbarch);
10529 lai->primitive_type_vector
10530 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10532 lai->primitive_type_vector [ada_primitive_type_int] =
10533 init_type (TYPE_CODE_INT,
10534 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10535 0, "integer", (struct objfile *) NULL);
10536 lai->primitive_type_vector [ada_primitive_type_long] =
10537 init_type (TYPE_CODE_INT,
10538 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10539 0, "long_integer", (struct objfile *) NULL);
10540 lai->primitive_type_vector [ada_primitive_type_short] =
10541 init_type (TYPE_CODE_INT,
10542 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10543 0, "short_integer", (struct objfile *) NULL);
10544 lai->string_char_type =
10545 lai->primitive_type_vector [ada_primitive_type_char] =
10546 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10547 0, "character", (struct objfile *) NULL);
10548 lai->primitive_type_vector [ada_primitive_type_float] =
10549 init_type (TYPE_CODE_FLT,
10550 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10551 0, "float", (struct objfile *) NULL);
10552 lai->primitive_type_vector [ada_primitive_type_double] =
10553 init_type (TYPE_CODE_FLT,
10554 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10555 0, "long_float", (struct objfile *) NULL);
10556 lai->primitive_type_vector [ada_primitive_type_long_long] =
10557 init_type (TYPE_CODE_INT,
10558 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10559 0, "long_long_integer", (struct objfile *) NULL);
10560 lai->primitive_type_vector [ada_primitive_type_long_double] =
10561 init_type (TYPE_CODE_FLT,
10562 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10563 0, "long_long_float", (struct objfile *) NULL);
10564 lai->primitive_type_vector [ada_primitive_type_natural] =
10565 init_type (TYPE_CODE_INT,
10566 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10567 0, "natural", (struct objfile *) NULL);
10568 lai->primitive_type_vector [ada_primitive_type_positive] =
10569 init_type (TYPE_CODE_INT,
10570 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10571 0, "positive", (struct objfile *) NULL);
10572 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10574 lai->primitive_type_vector [ada_primitive_type_system_address] =
10575 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10576 (struct objfile *) NULL));
10577 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10578 = "system__address";
10581 /* Language vector */
10583 /* Not really used, but needed in the ada_language_defn. */
10586 emit_char (int c, struct ui_file *stream, int quoter)
10588 ada_emit_char (c, stream, quoter, 1);
10594 warnings_issued = 0;
10595 return ada_parse ();
10598 static const struct exp_descriptor ada_exp_descriptor = {
10600 ada_operator_length,
10602 ada_dump_subexp_body,
10603 ada_evaluate_subexp
10606 const struct language_defn ada_language_defn = {
10607 "ada", /* Language name */
10611 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10612 that's not quite what this means. */
10614 &ada_exp_descriptor,
10618 ada_printchar, /* Print a character constant */
10619 ada_printstr, /* Function to print string constant */
10620 emit_char, /* Function to print single char (not used) */
10621 ada_print_type, /* Print a type using appropriate syntax */
10622 ada_val_print, /* Print a value using appropriate syntax */
10623 ada_value_print, /* Print a top-level value */
10624 NULL, /* Language specific skip_trampoline */
10625 NULL, /* value_of_this */
10626 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10627 basic_lookup_transparent_type, /* lookup_transparent_type */
10628 ada_la_decode, /* Language specific symbol demangler */
10629 NULL, /* Language specific class_name_from_physname */
10630 ada_op_print_tab, /* expression operators for printing */
10631 0, /* c-style arrays */
10632 1, /* String lower bound */
10633 ada_get_gdb_completer_word_break_characters,
10634 ada_language_arch_info,
10635 ada_print_array_index,
10636 default_pass_by_reference,
10641 _initialize_ada_language (void)
10643 add_language (&ada_language_defn);
10645 varsize_limit = 65536;
10647 obstack_init (&symbol_list_obstack);
10649 decoded_names_store = htab_create_alloc
10650 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10651 NULL, xcalloc, xfree);
10653 observer_attach_executable_changed (ada_executable_changed_observer);