1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
27 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "parser-defs.h"
39 #include "breakpoint.h"
42 #include "gdb_obstack.h"
44 #include "completer.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
60 #include "typeprint.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
77 static struct type *desc_base_type (struct type *);
79 static struct type *desc_bounds_type (struct type *);
81 static struct value *desc_bounds (struct value *);
83 static int fat_pntr_bounds_bitpos (struct type *);
85 static int fat_pntr_bounds_bitsize (struct type *);
87 static struct type *desc_data_target_type (struct type *);
89 static struct value *desc_data (struct value *);
91 static int fat_pntr_data_bitpos (struct type *);
93 static int fat_pntr_data_bitsize (struct type *);
95 static struct value *desc_one_bound (struct value *, int, int);
97 static int desc_bound_bitpos (struct type *, int, int);
99 static int desc_bound_bitsize (struct type *, int, int);
101 static struct type *desc_index_type (struct type *, int);
103 static int desc_arity (struct type *);
105 static int ada_type_match (struct type *, struct type *, int);
107 static int ada_args_match (struct symbol *, struct value **, int);
109 static int full_match (const char *, const char *);
111 static struct value *make_array_descriptor (struct type *, struct value *);
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
117 static int is_nonfunction (struct ada_symbol_info *, int);
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 static int num_defns_collected (struct obstack *);
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126 static struct value *resolve_subexp (struct expression **, int *, int,
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 static char *ada_op_name (enum exp_opcode);
136 static const char *ada_decoded_op_name (enum exp_opcode);
138 static int numeric_type_p (struct type *);
140 static int integer_type_p (struct type *);
142 static int scalar_type_p (struct type *);
144 static int discrete_type_p (struct type *);
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
157 static struct value *evaluate_subexp_type (struct expression *, int *);
159 static struct type *ada_find_parallel_type_with_name (struct type *,
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (struct type *, struct value *);
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
175 static struct value *unwrap_value (struct value *);
177 static struct type *constrained_packed_array_type (struct type *, long *);
179 static struct type *decode_constrained_packed_array_type (struct type *);
181 static long decode_packed_array_bitsize (struct type *);
183 static struct value *decode_constrained_packed_array (struct value *);
185 static int ada_is_packed_array_type (struct type *);
187 static int ada_is_unconstrained_packed_array_type (struct type *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int advance_wild_match (const char **, const char *, int);
207 static int wild_match (const char *, const char *);
209 static struct value *ada_coerce_ref (struct value *);
211 static LONGEST pos_atr (struct value *);
213 static struct value *value_pos_atr (struct type *, struct value *);
215 static struct value *value_val_atr (struct type *, struct value *);
217 static struct symbol *standard_lookup (const char *, const struct block *,
220 static struct value *ada_search_struct_field (char *, struct value *, int,
223 static struct value *ada_value_primitive_field (struct value *, int, int,
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
236 static int ada_is_direct_array_type (struct type *);
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
241 static void check_size (const struct type *);
243 static struct value *ada_index_struct_field (int, struct value *, int,
246 static struct value *assign_aggregate (struct value *, struct value *,
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
275 static struct type *ada_find_any_type (const char *name);
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
313 /* Inferior-specific data. */
315 /* Per-inferior data for this module. */
317 struct ada_inferior_data
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
328 const struct exception_support_info *exception_info;
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
334 /* A cleanup routine for our inferior data. */
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 struct ada_inferior_data *data;
340 data = inferior_data (inf, ada_inferior_data);
345 /* Return our inferior data for the given inferior (INF).
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
356 struct ada_inferior_data *data;
358 data = inferior_data (inf, ada_inferior_data);
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
372 ada_inferior_exit (struct inferior *inf)
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
408 ada_typedef_target_type (struct type *type)
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
420 ada_unqualified_name (const char *decoded_name)
422 const char *result = strrchr (decoded_name, '.');
425 result++; /* Skip the dot... */
427 result = decoded_name;
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
436 add_angle_brackets (const char *str)
438 static char *result = NULL;
441 result = xstrprintf ("<%s>", str);
446 ada_get_gdb_completer_word_break_characters (void)
448 return ada_completer_word_break_characters;
451 /* Print an array element index using the Ada syntax. */
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 if (*size < min_size)
471 if (*size < min_size)
473 vect = xrealloc (vect, *size * element_size);
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
482 field_name_match (const char *field_name, const char *target)
484 int len = strlen (target);
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
504 ada_get_field_index (const struct type *type, const char *field_name,
508 struct type *struct_type = check_typedef ((struct type *) type);
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
521 /* The length of the prefix of NAME prior to any "___" suffix. */
524 ada_name_prefix_len (const char *name)
530 const char *p = strstr (name, "___");
533 return strlen (name);
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
543 is_suffix (const char *str, const char *suffix)
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
565 struct value *result;
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out_const (val));
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
595 return valaddr + offset;
599 cond_offset_target (CORE_ADDR address, long offset)
604 return address + offset;
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
617 lim_warning (const char *format, ...)
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
634 check_size (const struct type *type)
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
640 /* Maximum value of a SIZE-byte signed integer type. */
642 max_of_size (int size)
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646 return top_bit | (top_bit - 1);
649 /* Minimum value of a SIZE-byte signed integer type. */
651 min_of_size (int size)
653 return -max_of_size (size) - 1;
656 /* Maximum value of a SIZE-byte unsigned integer type. */
658 umax_of_size (int size)
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662 return top_bit | (top_bit - 1);
665 /* Maximum value of integral type T, as a signed quantity. */
667 max_of_type (struct type *t)
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 return max_of_size (TYPE_LENGTH (t));
675 /* Minimum value of integral type T, as a signed quantity. */
677 min_of_type (struct type *t)
679 if (TYPE_UNSIGNED (t))
682 return min_of_size (TYPE_LENGTH (t));
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 ada_discrete_type_high_bound (struct type *type)
689 switch (TYPE_CODE (type))
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
699 return max_of_type (type);
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 ada_discrete_type_low_bound (struct type *type)
709 switch (TYPE_CODE (type))
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
714 return TYPE_FIELD_ENUMVAL (type, 0);
719 return min_of_type (type);
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
729 get_base_type (struct type *type)
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 type = TYPE_TARGET_TYPE (type);
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
746 ada_get_decoded_value (struct value *value)
748 struct type *type = ada_check_typedef (value_type (value));
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
757 value = ada_coerce_to_simple_array (value);
760 value = ada_to_fixed_value (value);
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
771 ada_get_decoded_type (struct type *type)
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
781 /* Language Selection */
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
787 ada_update_initial_language (enum language lang)
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
815 CORE_ADDR main_program_name_addr;
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
828 return main_program_name;
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
869 ada_encode (const char *decoded)
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
883 for (p = decoded; *p != '\0'; p += 1)
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
892 const struct ada_opname_map *mapping;
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
907 encoding_buffer[k] = *p;
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
921 ada_fold_name (const char *name)
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
948 is_lower_alphanum (const char c)
950 return (isdigit (c) || (isalpha (c) && islower (c)));
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
966 ada_remove_trailing_digits (const char *encoded, int *len)
968 if (*len > 1 && isdigit (encoded[*len - 1]))
972 while (i > 0 && isdigit (encoded[i]))
974 if (i >= 0 && encoded[i] == '.')
976 else if (i >= 0 && encoded[i] == '$')
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
985 /* Remove the suffix introduced by the compiler for protected object
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 /* Remove trailing N. */
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1017 if (encoded[i] != 'X')
1023 if (isalnum (encoded[i-1]))
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1036 ada_decode (const char *encoded)
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1058 len0 = strlen (encoded);
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1096 /* Make decoded big enough for possible expansion by operator name. */
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 else if (encoded[i] == '$')
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 && !isalnum (encoded[i + op_len]))
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1139 j += strlen (ada_opname_table[k].decoded);
1143 if (ada_opname_table[k].encoded != NULL)
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1173 /* Remove _E{DIGITS}+[sb] */
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1191 while (k < len0 && isdigit (encoded[k]))
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1202 || (k < len0 && encoded[k] == '_'))
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 /* Replace '__' by '.'. */
1250 /* It's a character part of the decoded name, so just copy it
1252 decoded[j] = encoded[i];
1257 decoded[j] = '\000';
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1266 if (strcmp (decoded, encoded) == 0)
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1306 if (!gsymbol->ada_mangled)
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1311 gsymbol->ada_mangled = 1;
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1326 *slot = xstrdup (decoded);
1335 ada_la_decode (const char *encoded, int options)
1337 return xstrdup (ada_decode (encoded));
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1348 match_name (const char *sym_name, const char *name, int wild)
1350 if (sym_name == NULL || name == NULL)
1353 return wild_match (sym_name, name) == 0;
1356 int len_name = strlen (name);
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1397 if (index_desc_type == NULL)
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1431 /* Maximum number of array dimensions we are prepared to handle. */
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1436 /* The desc_* routines return primitive portions of array descriptors
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1442 static struct type *
1443 desc_base_type (struct type *type)
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1462 is_thin_pntr (struct type *type)
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1469 /* The descriptor type for thin pointer type TYPE. */
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1474 struct type *base_type = desc_base_type (type);
1476 if (base_type == NULL)
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484 if (alt_type == NULL)
1491 /* A pointer to the array data for thin-pointer value VAL. */
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499 data_type = lookup_pointer_type (data_type);
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1504 return value_from_longest (data_type, value_address (val));
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1510 is_thick_pntr (struct type *type)
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1525 type = desc_base_type (type);
1529 else if (is_thin_pntr (type))
1531 type = thin_descriptor_type (type);
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 return ada_check_typedef (r);
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1550 static struct value *
1551 desc_bounds (struct value *arr)
1553 struct type *type = ada_check_typedef (value_type (arr));
1555 if (is_thin_pntr (type))
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1570 addr = value_address (arr);
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1577 else if (is_thick_pntr (type))
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1594 error (_("Bad GNAT array descriptor"));
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1606 fat_pntr_bounds_bitpos (struct type *type)
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1615 fat_pntr_bounds_bitsize (struct type *type)
1617 type = desc_base_type (type);
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1633 type = desc_base_type (type);
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1653 static struct value *
1654 desc_data (struct value *arr)
1656 struct type *type = value_type (arr);
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1672 fat_pntr_data_bitpos (struct type *type)
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1681 fat_pntr_data_bitsize (struct type *type)
1683 type = desc_base_type (type);
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1707 desc_bound_bitpos (struct type *type, int i, int which)
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1717 desc_bound_bitsize (struct type *type, int i, int which)
1719 type = desc_base_type (type);
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1733 type = desc_base_type (type);
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1745 desc_arity (struct type *type)
1747 type = desc_base_type (type);
1750 return TYPE_NFIELDS (type) / 2;
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1759 ada_is_direct_array_type (struct type *type)
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1772 ada_is_array_type (struct type *type)
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1784 ada_is_simple_array_type (struct type *type)
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1798 ada_is_array_descriptor_type (struct type *type)
1800 struct type *data_type = desc_data_target_type (type);
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1816 ada_is_bogus_array_descriptor (struct type *type)
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1835 ada_type_of_array (struct value *arr, int bounds)
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1856 struct type *elt_type;
1858 struct value *descriptor;
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1904 return lookup_pointer_type (elt_type);
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1918 struct type *arrType = ada_type_of_array (arr, 1);
1920 if (arrType == NULL)
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1935 ada_coerce_to_simple_array (struct value *arr)
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1957 ada_coerce_to_simple_array_type (struct type *type)
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1971 ada_is_packed_array_type (struct type *type)
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1986 ada_is_constrained_packed_array_type (struct type *type)
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2006 decode_packed_array_bitsize (struct type *type)
2008 const char *raw_name;
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2018 raw_name = ada_type_name (ada_check_typedef (type));
2020 raw_name = ada_type_name (desc_base_type (type));
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2031 (_("could not understand bit size information on packed array"));
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2065 index_type = TYPE_INDEX_TYPE (type);
2067 new_type = alloc_type_copy (type);
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2099 struct type *shadow_type;
2103 raw_name = ada_type_name (desc_base_type (type));
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2117 if (shadow_type == NULL)
2119 lim_warning (_("could not find bounds information on packed array"));
2122 CHECK_TYPEDEF (shadow_type);
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2146 arr = ada_coerce_ref (arr);
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2157 type = decode_constrained_packed_array_type (value_type (arr));
2160 error (_("can't unpack array"));
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2174 mod = ada_modulus (value_type (arr)) - 1;
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2189 return coerce_unspec_val_to_type (arr, type);
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2244 /* Non-zero iff TYPE includes negative integer values. */
2247 has_negatives (struct type *type)
2249 switch (TYPE_CODE (type))
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292 type = ada_check_typedef (type);
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2313 long new_offset = offset;
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 set_value_offset (v, new_offset);
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2333 srcBitsLeft = bit_size;
2335 ntarg = TYPE_LENGTH (type);
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 switch (TYPE_CODE (type))
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2368 targ = TYPE_LENGTH (type) - 1;
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377 unusedLS = bit_offset;
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2440 accum = (unsigned char) *source;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 accum_bits -= chunk_size;
2467 accum = (unsigned char) *source >> src_offset;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2512 if (VALUE_LVAL (toval) == lval_memory
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 gdb_byte *buffer = alloca (len);
2522 CORE_ADDR to_addr = value_address (toval);
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2547 return value_assign (toval, fromval);
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2557 value_assign_to_component (struct value *container, struct value *component,
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2566 val = value_cast (value_type (component), val);
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 bits = value_bitsize (component);
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2594 struct type *elt_type;
2596 elt = ada_coerce_to_simple_array (arr);
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2603 for (k = 0; k < arity; k += 1)
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2622 for (k = 0; k < arity; k += 1)
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2635 return value_ind (arr);
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656 return value_at_lazy (slice_type, base);
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2678 ada_array_arity (struct type *type)
2685 type = desc_base_type (type);
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2706 ada_array_element_type (struct type *type, int nindices)
2708 type = desc_base_type (type);
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2713 struct type *p_array_type;
2715 p_array_type = desc_data_target_type (type);
2717 k = ada_array_arity (type);
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2724 while (k > 0 && p_array_type != NULL)
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2729 return p_array_type;
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 type = TYPE_TARGET_TYPE (type);
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2753 struct type *result_type;
2755 type = desc_base_type (type);
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2760 if (ada_is_simple_array_type (type))
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2790 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 struct type *type, *elt_type, *index_type_desc, *index_type;
2795 gdb_assert (which == 0 || which == 1);
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2812 index_type_desc = ada_find_parallel_type (type, "___XA");
2813 ada_fixup_array_indexes_type (index_type_desc);
2814 if (index_type_desc != NULL)
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 index_type = TYPE_INDEX_TYPE (elt_type);
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
2826 /* Given that arr is an array value, returns the lower bound of the
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
2829 supplied by run-time quantities other than discriminants. */
2832 ada_array_bound (struct value *arr, int n, int which)
2834 struct type *arr_type = value_type (arr);
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2838 else if (ada_is_simple_array_type (arr_type))
2839 return ada_array_bound_from_type (arr_type, n, which);
2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2844 /* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
2851 ada_array_length (struct value *arr, int n)
2853 struct type *arr_type = ada_check_typedef (value_type (arr));
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
2858 if (ada_is_simple_array_type (arr_type))
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2866 /* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2869 static struct value *
2870 empty_array (struct type *arr_type, int low)
2872 struct type *arr_type0 = ada_check_typedef (arr_type);
2873 struct type *index_type =
2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
2882 /* Name resolution */
2884 /* The "decoded" name for the user-definable Ada operator corresponding
2888 ada_decoded_op_name (enum exp_opcode op)
2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 if (ada_opname_table[i].op == op)
2895 return ada_opname_table[i].decoded;
2897 error (_("Could not find operator name for opcode"));
2901 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2908 return type is preferred. May change (expand) *EXP. */
2911 resolve (struct expression **expp, int void_context_p)
2913 struct type *context_type = NULL;
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919 resolve_subexp (expp, &pc, 1, context_type);
2922 /* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
2931 static struct value *
2932 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2933 struct type *context_type)
2937 struct expression *exp; /* Convenience: == *expp. */
2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2958 resolve_subexp (expp, pos, 0, NULL);
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2965 resolve_subexp (expp, pos, 0, NULL);
2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2973 case OP_ATR_MODULUS:
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2990 case OP_DISCRETE_RANGE:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 resolve_subexp (expp, pos, 1, NULL);
3005 resolve_subexp (expp, pos, 1, value_type (arg1));
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
3029 case BINOP_NOTEQUAL:
3036 case BINOP_SUBSCRIPT:
3044 case UNOP_LOGICAL_NOT:
3060 case OP_INTERNALVAR:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3087 error (_("Unexpected operator during name resolution"));
3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3096 /* Pass two: perform any resolution on principal operator. */
3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 struct ada_symbol_info *candidates;
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
3114 if (n_candidates > 1)
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3126 case LOC_REGPARM_ADDR:
3134 if (j < n_candidates)
3137 while (j < n_candidates)
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 candidates[j] = candidates[n_candidates - 1];
3150 if (n_candidates == 0)
3151 error (_("No definition found for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 printf_filtered (_("Multiple matches for %s\n"),
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
3178 innermost_block = candidates[i].block;
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 struct ada_symbol_info *candidates;
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 if (n_candidates == 1)
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 error (_("Could not find a match for %s"),
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
3223 innermost_block = candidates[i].block;
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3238 case BINOP_NOTEQUAL:
3246 case UNOP_LOGICAL_NOT:
3248 if (possible_user_operator_p (op, argvec))
3250 struct ada_symbol_info *candidates;
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3258 ada_decoded_op_name (op), NULL);
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
3274 return evaluate_subexp_type (exp, pos);
3277 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 /* The term "match" here is rather loose. The match is heuristic and
3284 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3294 switch (TYPE_CODE (ftype))
3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3318 case TYPE_CODE_ARRAY:
3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3320 || ada_is_array_descriptor_type (atype));
3322 case TYPE_CODE_STRUCT:
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
3330 case TYPE_CODE_UNION:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3336 /* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
3339 argument function. */
3342 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3345 struct type *func_type = SYMBOL_TYPE (func);
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 for (i = 0; i < n_actuals; i += 1)
3358 if (actuals[i] == NULL)
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366 if (!ada_type_match (ftype, atype, 1))
3373 /* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379 return_match (struct type *func_type, struct type *context_type)
3381 struct type *return_type;
3383 if (func_type == NULL)
3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 return_type = get_base_type (func_type);
3390 if (return_type == NULL)
3393 context_type = get_base_type (context_type);
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3404 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3405 function (if any) that matches the types of the NARGS arguments in
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
3417 ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
3423 int m; /* Number of hits */
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 for (k = 0; k < nsyms; k += 1)
3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435 if (ada_args_match (syms[k].sym, args, nargs)
3436 && (fallback || return_match (type, context_type)))
3448 printf_filtered (_("Multiple matches for %s\n"), name);
3449 user_select_syms (syms, m, 1);
3455 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3462 encoded_ordered_before (const char *N0, const char *N1)
3466 else if (N0 == NULL)
3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 return (strcmp (N0, N1) < 0);
3494 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3498 sort_choices (struct ada_symbol_info syms[], int nsyms)
3502 for (i = 1; i < nsyms; i += 1)
3504 struct ada_symbol_info sym = syms[i];
3507 for (j = i - 1; j >= 0; j -= 1)
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 syms[j + 1] = syms[j];
3518 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3523 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3524 to be re-integrated one of these days. */
3527 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int first_choice = (max_results == 1) ? 1 : 2;
3533 const char *select_mode = multiple_symbols_select_mode ();
3535 if (max_results < 1)
3536 error (_("Request to select 0 symbols!"));
3540 if (select_mode == multiple_symbols_cancel)
3542 canceled because the command is ambiguous\n\
3543 See set/show multiple-symbol."));
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3551 printf_unfiltered (_("[0] cancel\n"));
3552 if (max_results > 1)
3553 printf_unfiltered (_("[1] all\n"));
3555 sort_choices (syms, nsyms);
3557 for (i = 0; i < nsyms; i += 1)
3559 if (syms[i].sym == NULL)
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 symtab_to_filename_for_display (sal.symtab),
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab_to_filename_for_display (symtab));
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638 The user is not allowed to choose more than MAX_RESULTS values.
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3650 int first_choice = is_all_choice ? 2 : 1;
3652 prompt = getenv ("PS2");
3656 args = command_line_input (prompt, 0, annotation_suffix);
3659 error_no_arg (_("one or more choice numbers"));
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3683 error (_("cancelled"));
3685 if (choice < first_choice)
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3692 choice -= first_choice;
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3698 if (j < 0 || choice != choices[j])
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3749 /* Type-class predicates */
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3755 numeric_type_p (struct type *type)
3761 switch (TYPE_CODE (type))
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3778 integer_type_p (struct type *type)
3784 switch (TYPE_CODE (type))
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3800 scalar_type_p (struct type *type)
3806 switch (TYPE_CODE (type))
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3822 discrete_type_p (struct type *type)
3828 switch (TYPE_CODE (type))
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3875 case BINOP_NOTEQUAL:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3890 case UNOP_LOGICAL_NOT:
3892 return (!numeric_type_p (type0));
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911 /* If SYM encodes a renaming,
3913 <renaming> renames <renamed entity>,
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3935 enum ada_renaming_category kind;
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3944 return ADA_NOT_RENAMING;
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 return ADA_NOT_RENAMING;
3958 kind = ADA_OBJECT_RENAMING;
3962 kind = ADA_EXCEPTION_RENAMING;
3966 kind = ADA_PACKAGE_RENAMING;
3970 kind = ADA_SUBPROGRAM_RENAMING;
3974 return ADA_NOT_RENAMING;
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3984 *len = strlen (info) - strlen (suffix);
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
4000 enum ada_renaming_category kind;
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4009 name = type_name_no_tag (type);
4011 return ADA_NOT_RENAMING;
4013 name = strstr (name, "___XR");
4015 return ADA_NOT_RENAMING;
4020 kind = ADA_OBJECT_RENAMING;
4023 kind = ADA_EXCEPTION_RENAMING;
4026 kind = ADA_PACKAGE_RENAMING;
4029 kind = ADA_SUBPROGRAM_RENAMING;
4032 return ADA_NOT_RENAMING;
4035 info = TYPE_FIELD_NAME (type, 0);
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4046 *len = suffix - info;
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4058 const char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 old_chain = make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4068 do_cleanups (old_chain);
4073 /* Evaluation: Function Calls */
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4079 static struct value *
4080 ensure_lval (struct value *val)
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 struct value *result;
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 if (VALUE_LVAL (actual) != lval_memory)
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4138 result = value_addr (actual);
4142 return value_cast_pointers (formal_type, result, 0);
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4156 value_pointer (struct value *value, struct type *type)
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4198 bounds = ensure_lval (bounds);
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4214 descriptor = ensure_lval (descriptor);
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 const struct block *block)
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4247 should_use_wild_match (const char *lookup_name)
4249 return (strstr (lookup_name, "__") == NULL);
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4291 equiv_types (struct type *type0, struct type *type1)
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4319 switch (SYMBOL_CLASS (sym0))
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4349 add_defn_to_vec (struct obstack *obstackp,
4351 struct block *block)
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4378 struct ada_symbol_info info;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4390 num_defns_collected (struct obstack *obstackp)
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4403 return obstack_finish (obstackp);
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4408 /* Return a minimal symbol matching NAME according to Ada decoding
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
4411 first stripped off, and only static and global symbols are searched. */
4413 struct minimal_symbol *
4414 ada_lookup_simple_minsym (const char *name)
4416 struct objfile *objfile;
4417 struct minimal_symbol *msymbol;
4418 const int wild_match_p = should_use_wild_match (name);
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4428 name += sizeof ("standard__") - 1;
4430 ALL_MSYMBOLS (objfile, msymbol)
4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4440 /* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4447 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4448 const char *name, domain_enum namespace,
4453 /* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
4457 is_nondebugging_type (struct type *type)
4459 const char *name = ada_type_name (type);
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4464 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4472 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4486 /* All enumerals should also have the same name (modulo any numerical
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4507 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4512 For instance, consider the following code:
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4528 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4566 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4574 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 for (j = 0; j < nsyms; j++)
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 for (j = 0; j < nsyms; j += 1)
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4654 /* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4660 xget_renaming_scope (struct type *renaming_type)
4662 /* The renaming types adhere to the following convention:
4663 <scope>__<rename>___<XR extension>.
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4680 /* Make a copy of scope and return it. */
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4691 /* Return nonzero if NAME corresponds to a package name. */
4694 is_package_name (const char *name)
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
4712 /* Do a quick check that NAME does not contain "__", since library-level
4713 functions names cannot contain "__" in them. */
4714 if (strstr (name, "__") != NULL)
4717 fun_name = xstrprintf ("_ada_%s", name);
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4722 /* Return nonzero if SYM corresponds to a renaming entity that is
4723 not visible from FUNCTION_NAME. */
4726 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4729 struct cleanup *old_chain;
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735 old_chain = make_cleanup (xfree, scope);
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
4740 do_cleanups (old_chain);
4744 /* Check that the rename is in the current function scope by checking
4745 that its name starts with SCOPE. */
4747 /* If the function name starts with "_ada_", it means that it is
4748 a library-level function. Strip this prefix before doing the
4749 comparison, as the encoding for the renaming does not contain
4751 if (strncmp (function_name, "_ada_", 5) == 0)
4755 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4757 do_cleanups (old_chain);
4758 return is_invisible;
4762 /* Remove entries from SYMS that corresponds to a renaming entity that
4763 is not visible from the function associated with CURRENT_BLOCK or
4764 that is superfluous due to the presence of more specific renaming
4765 information. Places surviving symbols in the initial entries of
4766 SYMS and returns the number of surviving symbols.
4769 First, in cases where an object renaming is implemented as a
4770 reference variable, GNAT may produce both the actual reference
4771 variable and the renaming encoding. In this case, we discard the
4774 Second, GNAT emits a type following a specified encoding for each renaming
4775 entity. Unfortunately, STABS currently does not support the definition
4776 of types that are local to a given lexical block, so all renamings types
4777 are emitted at library level. As a consequence, if an application
4778 contains two renaming entities using the same name, and a user tries to
4779 print the value of one of these entities, the result of the ada symbol
4780 lookup will also contain the wrong renaming type.
4782 This function partially covers for this limitation by attempting to
4783 remove from the SYMS list renaming symbols that should be visible
4784 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4785 method with the current information available. The implementation
4786 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4788 - When the user tries to print a rename in a function while there
4789 is another rename entity defined in a package: Normally, the
4790 rename in the function has precedence over the rename in the
4791 package, so the latter should be removed from the list. This is
4792 currently not the case.
4794 - This function will incorrectly remove valid renames if
4795 the CURRENT_BLOCK corresponds to a function which symbol name
4796 has been changed by an "Export" pragma. As a consequence,
4797 the user will be unable to print such rename entities. */
4800 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4801 int nsyms, const struct block *current_block)
4803 struct symbol *current_function;
4804 const char *current_function_name;
4806 int is_new_style_renaming;
4808 /* If there is both a renaming foo___XR... encoded as a variable and
4809 a simple variable foo in the same block, discard the latter.
4810 First, zero out such symbols, then compress. */
4811 is_new_style_renaming = 0;
4812 for (i = 0; i < nsyms; i += 1)
4814 struct symbol *sym = syms[i].sym;
4815 const struct block *block = syms[i].block;
4819 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4821 name = SYMBOL_LINKAGE_NAME (sym);
4822 suffix = strstr (name, "___XR");
4826 int name_len = suffix - name;
4829 is_new_style_renaming = 1;
4830 for (j = 0; j < nsyms; j += 1)
4831 if (i != j && syms[j].sym != NULL
4832 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4834 && block == syms[j].block)
4838 if (is_new_style_renaming)
4842 for (j = k = 0; j < nsyms; j += 1)
4843 if (syms[j].sym != NULL)
4851 /* Extract the function name associated to CURRENT_BLOCK.
4852 Abort if unable to do so. */
4854 if (current_block == NULL)
4857 current_function = block_linkage_function (current_block);
4858 if (current_function == NULL)
4861 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4862 if (current_function_name == NULL)
4865 /* Check each of the symbols, and remove it from the list if it is
4866 a type corresponding to a renaming that is out of the scope of
4867 the current block. */
4872 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4873 == ADA_OBJECT_RENAMING
4874 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4878 for (j = i + 1; j < nsyms; j += 1)
4879 syms[j - 1] = syms[j];
4889 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4890 whose name and domain match NAME and DOMAIN respectively.
4891 If no match was found, then extend the search to "enclosing"
4892 routines (in other words, if we're inside a nested function,
4893 search the symbols defined inside the enclosing functions).
4894 If WILD_MATCH_P is nonzero, perform the naming matching in
4895 "wild" mode (see function "wild_match" for more info).
4897 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4900 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4901 struct block *block, domain_enum domain,
4904 int block_depth = 0;
4906 while (block != NULL)
4909 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4912 /* If we found a non-function match, assume that's the one. */
4913 if (is_nonfunction (defns_collected (obstackp, 0),
4914 num_defns_collected (obstackp)))
4917 block = BLOCK_SUPERBLOCK (block);
4920 /* If no luck so far, try to find NAME as a local symbol in some lexically
4921 enclosing subprogram. */
4922 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4923 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4926 /* An object of this type is used as the user_data argument when
4927 calling the map_matching_symbols method. */
4931 struct objfile *objfile;
4932 struct obstack *obstackp;
4933 struct symbol *arg_sym;
4937 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4938 to a list of symbols. DATA0 is a pointer to a struct match_data *
4939 containing the obstack that collects the symbol list, the file that SYM
4940 must come from, a flag indicating whether a non-argument symbol has
4941 been found in the current block, and the last argument symbol
4942 passed in SYM within the current block (if any). When SYM is null,
4943 marking the end of a block, the argument symbol is added if no
4944 other has been found. */
4947 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4949 struct match_data *data = (struct match_data *) data0;
4953 if (!data->found_sym && data->arg_sym != NULL)
4954 add_defn_to_vec (data->obstackp,
4955 fixup_symbol_section (data->arg_sym, data->objfile),
4957 data->found_sym = 0;
4958 data->arg_sym = NULL;
4962 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4964 else if (SYMBOL_IS_ARGUMENT (sym))
4965 data->arg_sym = sym;
4968 data->found_sym = 1;
4969 add_defn_to_vec (data->obstackp,
4970 fixup_symbol_section (sym, data->objfile),
4977 /* Compare STRING1 to STRING2, with results as for strcmp.
4978 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4979 implies compare_names (STRING1, STRING2) (they may differ as to
4980 what symbols compare equal). */
4983 compare_names (const char *string1, const char *string2)
4985 while (*string1 != '\0' && *string2 != '\0')
4987 if (isspace (*string1) || isspace (*string2))
4988 return strcmp_iw_ordered (string1, string2);
4989 if (*string1 != *string2)
4997 return strcmp_iw_ordered (string1, string2);
4999 if (*string2 == '\0')
5001 if (is_name_suffix (string1))
5008 if (*string2 == '(')
5009 return strcmp_iw_ordered (string1, string2);
5011 return *string1 - *string2;
5015 /* Add to OBSTACKP all non-local symbols whose name and domain match
5016 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5017 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5020 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5021 domain_enum domain, int global,
5024 struct objfile *objfile;
5025 struct match_data data;
5027 memset (&data, 0, sizeof data);
5028 data.obstackp = obstackp;
5030 ALL_OBJFILES (objfile)
5032 data.objfile = objfile;
5035 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5036 aux_add_nonlocal_symbols, &data,
5039 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5040 aux_add_nonlocal_symbols, &data,
5041 full_match, compare_names);
5044 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5046 ALL_OBJFILES (objfile)
5048 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5049 strcpy (name1, "_ada_");
5050 strcpy (name1 + sizeof ("_ada_") - 1, name);
5051 data.objfile = objfile;
5052 objfile->sf->qf->map_matching_symbols (name1, domain,
5054 aux_add_nonlocal_symbols,
5056 full_match, compare_names);
5061 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5062 non-zero, enclosing scope and in global scopes, returning the number of
5064 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5065 indicating the symbols found and the blocks and symbol tables (if
5066 any) in which they were found. This vector is transient---good only to
5067 the next call of ada_lookup_symbol_list.
5069 When full_search is non-zero, any non-function/non-enumeral
5070 symbol match within the nest of blocks whose innermost member is BLOCK0,
5071 is the one match returned (no other matches in that or
5072 enclosing blocks is returned). If there are any matches in or
5073 surrounding BLOCK0, then these alone are returned.
5075 Names prefixed with "standard__" are handled specially: "standard__"
5076 is first stripped off, and only static and global symbols are searched. */
5079 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5080 domain_enum namespace,
5081 struct ada_symbol_info **results,
5085 struct block *block;
5087 const int wild_match_p = should_use_wild_match (name0);
5091 obstack_free (&symbol_list_obstack, NULL);
5092 obstack_init (&symbol_list_obstack);
5096 /* Search specified block and its superiors. */
5099 block = (struct block *) block0; /* FIXME: No cast ought to be
5100 needed, but adding const will
5101 have a cascade effect. */
5103 /* Special case: If the user specifies a symbol name inside package
5104 Standard, do a non-wild matching of the symbol name without
5105 the "standard__" prefix. This was primarily introduced in order
5106 to allow the user to specifically access the standard exceptions
5107 using, for instance, Standard.Constraint_Error when Constraint_Error
5108 is ambiguous (due to the user defining its own Constraint_Error
5109 entity inside its program). */
5110 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5113 name = name0 + sizeof ("standard__") - 1;
5116 /* Check the non-global symbols. If we have ANY match, then we're done. */
5122 ada_add_local_symbols (&symbol_list_obstack, name, block,
5123 namespace, wild_match_p);
5127 /* In the !full_search case we're are being called by
5128 ada_iterate_over_symbols, and we don't want to search
5130 ada_add_block_symbols (&symbol_list_obstack, block, name,
5131 namespace, NULL, wild_match_p);
5133 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5137 /* No non-global symbols found. Check our cache to see if we have
5138 already performed this search before. If we have, then return
5142 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5145 add_defn_to_vec (&symbol_list_obstack, sym, block);
5149 /* Search symbols from all global blocks. */
5151 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5154 /* Now add symbols from all per-file blocks if we've gotten no hits
5155 (not strictly correct, but perhaps better than an error). */
5157 if (num_defns_collected (&symbol_list_obstack) == 0)
5158 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5162 ndefns = num_defns_collected (&symbol_list_obstack);
5163 *results = defns_collected (&symbol_list_obstack, 1);
5165 ndefns = remove_extra_symbols (*results, ndefns);
5167 if (ndefns == 0 && full_search)
5168 cache_symbol (name0, namespace, NULL, NULL);
5170 if (ndefns == 1 && full_search && cacheIfUnique)
5171 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5173 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5178 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5179 in global scopes, returning the number of matches, and setting *RESULTS
5180 to a vector of (SYM,BLOCK) tuples.
5181 See ada_lookup_symbol_list_worker for further details. */
5184 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5185 domain_enum domain, struct ada_symbol_info **results)
5187 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5190 /* Implementation of the la_iterate_over_symbols method. */
5193 ada_iterate_over_symbols (const struct block *block,
5194 const char *name, domain_enum domain,
5195 symbol_found_callback_ftype *callback,
5199 struct ada_symbol_info *results;
5201 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5202 for (i = 0; i < ndefs; ++i)
5204 if (! (*callback) (results[i].sym, data))
5209 /* If NAME is the name of an entity, return a string that should
5210 be used to look that entity up in Ada units. This string should
5211 be deallocated after use using xfree.
5213 NAME can have any form that the "break" or "print" commands might
5214 recognize. In other words, it does not have to be the "natural"
5215 name, or the "encoded" name. */
5218 ada_name_for_lookup (const char *name)
5221 int nlen = strlen (name);
5223 if (name[0] == '<' && name[nlen - 1] == '>')
5225 canon = xmalloc (nlen - 1);
5226 memcpy (canon, name + 1, nlen - 2);
5227 canon[nlen - 2] = '\0';
5230 canon = xstrdup (ada_encode (ada_fold_name (name)));
5234 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5235 to 1, but choosing the first symbol found if there are multiple
5238 The result is stored in *INFO, which must be non-NULL.
5239 If no match is found, INFO->SYM is set to NULL. */
5242 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5243 domain_enum namespace,
5244 struct ada_symbol_info *info)
5246 struct ada_symbol_info *candidates;
5249 gdb_assert (info != NULL);
5250 memset (info, 0, sizeof (struct ada_symbol_info));
5252 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5253 if (n_candidates == 0)
5256 *info = candidates[0];
5257 info->sym = fixup_symbol_section (info->sym, NULL);
5260 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5261 scope and in global scopes, or NULL if none. NAME is folded and
5262 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5263 choosing the first symbol if there are multiple choices.
5264 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5267 ada_lookup_symbol (const char *name, const struct block *block0,
5268 domain_enum namespace, int *is_a_field_of_this)
5270 struct ada_symbol_info info;
5272 if (is_a_field_of_this != NULL)
5273 *is_a_field_of_this = 0;
5275 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5276 block0, namespace, &info);
5280 static struct symbol *
5281 ada_lookup_symbol_nonlocal (const char *name,
5282 const struct block *block,
5283 const domain_enum domain)
5285 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5289 /* True iff STR is a possible encoded suffix of a normal Ada name
5290 that is to be ignored for matching purposes. Suffixes of parallel
5291 names (e.g., XVE) are not included here. Currently, the possible suffixes
5292 are given by any of the regular expressions:
5294 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5295 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5296 TKB [subprogram suffix for task bodies]
5297 _E[0-9]+[bs]$ [protected object entry suffixes]
5298 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5300 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5301 match is performed. This sequence is used to differentiate homonyms,
5302 is an optional part of a valid name suffix. */
5305 is_name_suffix (const char *str)
5308 const char *matching;
5309 const int len = strlen (str);
5311 /* Skip optional leading __[0-9]+. */
5313 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5316 while (isdigit (str[0]))
5322 if (str[0] == '.' || str[0] == '$')
5325 while (isdigit (matching[0]))
5327 if (matching[0] == '\0')
5333 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5336 while (isdigit (matching[0]))
5338 if (matching[0] == '\0')
5342 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5344 if (strcmp (str, "TKB") == 0)
5348 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5349 with a N at the end. Unfortunately, the compiler uses the same
5350 convention for other internal types it creates. So treating
5351 all entity names that end with an "N" as a name suffix causes
5352 some regressions. For instance, consider the case of an enumerated
5353 type. To support the 'Image attribute, it creates an array whose
5355 Having a single character like this as a suffix carrying some
5356 information is a bit risky. Perhaps we should change the encoding
5357 to be something like "_N" instead. In the meantime, do not do
5358 the following check. */
5359 /* Protected Object Subprograms */
5360 if (len == 1 && str [0] == 'N')
5365 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5368 while (isdigit (matching[0]))
5370 if ((matching[0] == 'b' || matching[0] == 's')
5371 && matching [1] == '\0')
5375 /* ??? We should not modify STR directly, as we are doing below. This
5376 is fine in this case, but may become problematic later if we find
5377 that this alternative did not work, and want to try matching
5378 another one from the begining of STR. Since we modified it, we
5379 won't be able to find the begining of the string anymore! */
5383 while (str[0] != '_' && str[0] != '\0')
5385 if (str[0] != 'n' && str[0] != 'b')
5391 if (str[0] == '\000')
5396 if (str[1] != '_' || str[2] == '\000')
5400 if (strcmp (str + 3, "JM") == 0)
5402 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5403 the LJM suffix in favor of the JM one. But we will
5404 still accept LJM as a valid suffix for a reasonable
5405 amount of time, just to allow ourselves to debug programs
5406 compiled using an older version of GNAT. */
5407 if (strcmp (str + 3, "LJM") == 0)
5411 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5412 || str[4] == 'U' || str[4] == 'P')
5414 if (str[4] == 'R' && str[5] != 'T')
5418 if (!isdigit (str[2]))
5420 for (k = 3; str[k] != '\0'; k += 1)
5421 if (!isdigit (str[k]) && str[k] != '_')
5425 if (str[0] == '$' && isdigit (str[1]))
5427 for (k = 2; str[k] != '\0'; k += 1)
5428 if (!isdigit (str[k]) && str[k] != '_')
5435 /* Return non-zero if the string starting at NAME and ending before
5436 NAME_END contains no capital letters. */
5439 is_valid_name_for_wild_match (const char *name0)
5441 const char *decoded_name = ada_decode (name0);
5444 /* If the decoded name starts with an angle bracket, it means that
5445 NAME0 does not follow the GNAT encoding format. It should then
5446 not be allowed as a possible wild match. */
5447 if (decoded_name[0] == '<')
5450 for (i=0; decoded_name[i] != '\0'; i++)
5451 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5457 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5458 that could start a simple name. Assumes that *NAMEP points into
5459 the string beginning at NAME0. */
5462 advance_wild_match (const char **namep, const char *name0, int target0)
5464 const char *name = *namep;
5474 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5477 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5482 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5483 || name[2] == target0))
5491 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5501 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5502 informational suffixes of NAME (i.e., for which is_name_suffix is
5503 true). Assumes that PATN is a lower-cased Ada simple name. */
5506 wild_match (const char *name, const char *patn)
5509 const char *name0 = name;
5513 const char *match = name;
5517 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5520 if (*p == '\0' && is_name_suffix (name))
5521 return match != name0 && !is_valid_name_for_wild_match (name0);
5523 if (name[-1] == '_')
5526 if (!advance_wild_match (&name, name0, *patn))
5531 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5532 informational suffix. */
5535 full_match (const char *sym_name, const char *search_name)
5537 return !match_name (sym_name, search_name, 0);
5541 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5542 vector *defn_symbols, updating the list of symbols in OBSTACKP
5543 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5544 OBJFILE is the section containing BLOCK. */
5547 ada_add_block_symbols (struct obstack *obstackp,
5548 struct block *block, const char *name,
5549 domain_enum domain, struct objfile *objfile,
5552 struct block_iterator iter;
5553 int name_len = strlen (name);
5554 /* A matching argument symbol, if any. */
5555 struct symbol *arg_sym;
5556 /* Set true when we find a matching non-argument symbol. */
5564 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5565 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5567 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5568 SYMBOL_DOMAIN (sym), domain)
5569 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5571 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5573 else if (SYMBOL_IS_ARGUMENT (sym))
5578 add_defn_to_vec (obstackp,
5579 fixup_symbol_section (sym, objfile),
5587 for (sym = block_iter_match_first (block, name, full_match, &iter);
5588 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5590 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5591 SYMBOL_DOMAIN (sym), domain))
5593 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5595 if (SYMBOL_IS_ARGUMENT (sym))
5600 add_defn_to_vec (obstackp,
5601 fixup_symbol_section (sym, objfile),
5609 if (!found_sym && arg_sym != NULL)
5611 add_defn_to_vec (obstackp,
5612 fixup_symbol_section (arg_sym, objfile),
5621 ALL_BLOCK_SYMBOLS (block, iter, sym)
5623 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5624 SYMBOL_DOMAIN (sym), domain))
5628 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5631 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5633 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5638 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5640 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5642 if (SYMBOL_IS_ARGUMENT (sym))
5647 add_defn_to_vec (obstackp,
5648 fixup_symbol_section (sym, objfile),
5656 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5657 They aren't parameters, right? */
5658 if (!found_sym && arg_sym != NULL)
5660 add_defn_to_vec (obstackp,
5661 fixup_symbol_section (arg_sym, objfile),
5668 /* Symbol Completion */
5670 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5671 name in a form that's appropriate for the completion. The result
5672 does not need to be deallocated, but is only good until the next call.
5674 TEXT_LEN is equal to the length of TEXT.
5675 Perform a wild match if WILD_MATCH_P is set.
5676 ENCODED_P should be set if TEXT represents the start of a symbol name
5677 in its encoded form. */
5680 symbol_completion_match (const char *sym_name,
5681 const char *text, int text_len,
5682 int wild_match_p, int encoded_p)
5684 const int verbatim_match = (text[0] == '<');
5689 /* Strip the leading angle bracket. */
5694 /* First, test against the fully qualified name of the symbol. */
5696 if (strncmp (sym_name, text, text_len) == 0)
5699 if (match && !encoded_p)
5701 /* One needed check before declaring a positive match is to verify
5702 that iff we are doing a verbatim match, the decoded version
5703 of the symbol name starts with '<'. Otherwise, this symbol name
5704 is not a suitable completion. */
5705 const char *sym_name_copy = sym_name;
5706 int has_angle_bracket;
5708 sym_name = ada_decode (sym_name);
5709 has_angle_bracket = (sym_name[0] == '<');
5710 match = (has_angle_bracket == verbatim_match);
5711 sym_name = sym_name_copy;
5714 if (match && !verbatim_match)
5716 /* When doing non-verbatim match, another check that needs to
5717 be done is to verify that the potentially matching symbol name
5718 does not include capital letters, because the ada-mode would
5719 not be able to understand these symbol names without the
5720 angle bracket notation. */
5723 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5728 /* Second: Try wild matching... */
5730 if (!match && wild_match_p)
5732 /* Since we are doing wild matching, this means that TEXT
5733 may represent an unqualified symbol name. We therefore must
5734 also compare TEXT against the unqualified name of the symbol. */
5735 sym_name = ada_unqualified_name (ada_decode (sym_name));
5737 if (strncmp (sym_name, text, text_len) == 0)
5741 /* Finally: If we found a mach, prepare the result to return. */
5747 sym_name = add_angle_brackets (sym_name);
5750 sym_name = ada_decode (sym_name);
5755 /* A companion function to ada_make_symbol_completion_list().
5756 Check if SYM_NAME represents a symbol which name would be suitable
5757 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5758 it is appended at the end of the given string vector SV.
5760 ORIG_TEXT is the string original string from the user command
5761 that needs to be completed. WORD is the entire command on which
5762 completion should be performed. These two parameters are used to
5763 determine which part of the symbol name should be added to the
5765 if WILD_MATCH_P is set, then wild matching is performed.
5766 ENCODED_P should be set if TEXT represents a symbol name in its
5767 encoded formed (in which case the completion should also be
5771 symbol_completion_add (VEC(char_ptr) **sv,
5772 const char *sym_name,
5773 const char *text, int text_len,
5774 const char *orig_text, const char *word,
5775 int wild_match_p, int encoded_p)
5777 const char *match = symbol_completion_match (sym_name, text, text_len,
5778 wild_match_p, encoded_p);
5784 /* We found a match, so add the appropriate completion to the given
5787 if (word == orig_text)
5789 completion = xmalloc (strlen (match) + 5);
5790 strcpy (completion, match);
5792 else if (word > orig_text)
5794 /* Return some portion of sym_name. */
5795 completion = xmalloc (strlen (match) + 5);
5796 strcpy (completion, match + (word - orig_text));
5800 /* Return some of ORIG_TEXT plus sym_name. */
5801 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5802 strncpy (completion, word, orig_text - word);
5803 completion[orig_text - word] = '\0';
5804 strcat (completion, match);
5807 VEC_safe_push (char_ptr, *sv, completion);
5810 /* An object of this type is passed as the user_data argument to the
5811 expand_partial_symbol_names method. */
5812 struct add_partial_datum
5814 VEC(char_ptr) **completions;
5823 /* A callback for expand_partial_symbol_names. */
5825 ada_expand_partial_symbol_name (const char *name, void *user_data)
5827 struct add_partial_datum *data = user_data;
5829 return symbol_completion_match (name, data->text, data->text_len,
5830 data->wild_match, data->encoded) != NULL;
5833 /* Return a list of possible symbol names completing TEXT0. WORD is
5834 the entire command on which completion is made. */
5836 static VEC (char_ptr) *
5837 ada_make_symbol_completion_list (const char *text0, const char *word,
5838 enum type_code code)
5844 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5847 struct minimal_symbol *msymbol;
5848 struct objfile *objfile;
5849 struct block *b, *surrounding_static_block = 0;
5851 struct block_iterator iter;
5852 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5854 gdb_assert (code == TYPE_CODE_UNDEF);
5856 if (text0[0] == '<')
5858 text = xstrdup (text0);
5859 make_cleanup (xfree, text);
5860 text_len = strlen (text);
5866 text = xstrdup (ada_encode (text0));
5867 make_cleanup (xfree, text);
5868 text_len = strlen (text);
5869 for (i = 0; i < text_len; i++)
5870 text[i] = tolower (text[i]);
5872 encoded_p = (strstr (text0, "__") != NULL);
5873 /* If the name contains a ".", then the user is entering a fully
5874 qualified entity name, and the match must not be done in wild
5875 mode. Similarly, if the user wants to complete what looks like
5876 an encoded name, the match must not be done in wild mode. */
5877 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5880 /* First, look at the partial symtab symbols. */
5882 struct add_partial_datum data;
5884 data.completions = &completions;
5886 data.text_len = text_len;
5889 data.wild_match = wild_match_p;
5890 data.encoded = encoded_p;
5891 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5894 /* At this point scan through the misc symbol vectors and add each
5895 symbol you find to the list. Eventually we want to ignore
5896 anything that isn't a text symbol (everything else will be
5897 handled by the psymtab code above). */
5899 ALL_MSYMBOLS (objfile, msymbol)
5902 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5903 text, text_len, text0, word, wild_match_p,
5907 /* Search upwards from currently selected frame (so that we can
5908 complete on local vars. */
5910 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5912 if (!BLOCK_SUPERBLOCK (b))
5913 surrounding_static_block = b; /* For elmin of dups */
5915 ALL_BLOCK_SYMBOLS (b, iter, sym)
5917 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5918 text, text_len, text0, word,
5919 wild_match_p, encoded_p);
5923 /* Go through the symtabs and check the externs and statics for
5924 symbols which match. */
5926 ALL_SYMTABS (objfile, s)
5929 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5930 ALL_BLOCK_SYMBOLS (b, iter, sym)
5932 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5933 text, text_len, text0, word,
5934 wild_match_p, encoded_p);
5938 ALL_SYMTABS (objfile, s)
5941 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5942 /* Don't do this block twice. */
5943 if (b == surrounding_static_block)
5945 ALL_BLOCK_SYMBOLS (b, iter, sym)
5947 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5948 text, text_len, text0, word,
5949 wild_match_p, encoded_p);
5953 do_cleanups (old_chain);
5959 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5960 for tagged types. */
5963 ada_is_dispatch_table_ptr_type (struct type *type)
5967 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5970 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5974 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5977 /* Return non-zero if TYPE is an interface tag. */
5980 ada_is_interface_tag (struct type *type)
5982 const char *name = TYPE_NAME (type);
5987 return (strcmp (name, "ada__tags__interface_tag") == 0);
5990 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5991 to be invisible to users. */
5994 ada_is_ignored_field (struct type *type, int field_num)
5996 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5999 /* Check the name of that field. */
6001 const char *name = TYPE_FIELD_NAME (type, field_num);
6003 /* Anonymous field names should not be printed.
6004 brobecker/2007-02-20: I don't think this can actually happen
6005 but we don't want to print the value of annonymous fields anyway. */
6009 /* Normally, fields whose name start with an underscore ("_")
6010 are fields that have been internally generated by the compiler,
6011 and thus should not be printed. The "_parent" field is special,
6012 however: This is a field internally generated by the compiler
6013 for tagged types, and it contains the components inherited from
6014 the parent type. This field should not be printed as is, but
6015 should not be ignored either. */
6016 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6020 /* If this is the dispatch table of a tagged type or an interface tag,
6022 if (ada_is_tagged_type (type, 1)
6023 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6024 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6027 /* Not a special field, so it should not be ignored. */
6031 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6032 pointer or reference type whose ultimate target has a tag field. */
6035 ada_is_tagged_type (struct type *type, int refok)
6037 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6040 /* True iff TYPE represents the type of X'Tag */
6043 ada_is_tag_type (struct type *type)
6045 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6049 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6051 return (name != NULL
6052 && strcmp (name, "ada__tags__dispatch_table") == 0);
6056 /* The type of the tag on VAL. */
6059 ada_tag_type (struct value *val)
6061 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6064 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6065 retired at Ada 05). */
6068 is_ada95_tag (struct value *tag)
6070 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6073 /* The value of the tag on VAL. */
6076 ada_value_tag (struct value *val)
6078 return ada_value_struct_elt (val, "_tag", 0);
6081 /* The value of the tag on the object of type TYPE whose contents are
6082 saved at VALADDR, if it is non-null, or is at memory address
6085 static struct value *
6086 value_tag_from_contents_and_address (struct type *type,
6087 const gdb_byte *valaddr,
6090 int tag_byte_offset;
6091 struct type *tag_type;
6093 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6096 const gdb_byte *valaddr1 = ((valaddr == NULL)
6098 : valaddr + tag_byte_offset);
6099 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6101 return value_from_contents_and_address (tag_type, valaddr1, address1);
6106 static struct type *
6107 type_from_tag (struct value *tag)
6109 const char *type_name = ada_tag_name (tag);
6111 if (type_name != NULL)
6112 return ada_find_any_type (ada_encode (type_name));
6116 /* Given a value OBJ of a tagged type, return a value of this
6117 type at the base address of the object. The base address, as
6118 defined in Ada.Tags, it is the address of the primary tag of
6119 the object, and therefore where the field values of its full
6120 view can be fetched. */
6123 ada_tag_value_at_base_address (struct value *obj)
6125 volatile struct gdb_exception e;
6127 LONGEST offset_to_top = 0;
6128 struct type *ptr_type, *obj_type;
6130 CORE_ADDR base_address;
6132 obj_type = value_type (obj);
6134 /* It is the responsability of the caller to deref pointers. */
6136 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6137 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6140 tag = ada_value_tag (obj);
6144 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6146 if (is_ada95_tag (tag))
6149 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6150 ptr_type = lookup_pointer_type (ptr_type);
6151 val = value_cast (ptr_type, tag);
6155 /* It is perfectly possible that an exception be raised while
6156 trying to determine the base address, just like for the tag;
6157 see ada_tag_name for more details. We do not print the error
6158 message for the same reason. */
6160 TRY_CATCH (e, RETURN_MASK_ERROR)
6162 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6168 /* If offset is null, nothing to do. */
6170 if (offset_to_top == 0)
6173 /* -1 is a special case in Ada.Tags; however, what should be done
6174 is not quite clear from the documentation. So do nothing for
6177 if (offset_to_top == -1)
6180 base_address = value_address (obj) - offset_to_top;
6181 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6183 /* Make sure that we have a proper tag at the new address.
6184 Otherwise, offset_to_top is bogus (which can happen when
6185 the object is not initialized yet). */
6190 obj_type = type_from_tag (tag);
6195 return value_from_contents_and_address (obj_type, NULL, base_address);
6198 /* Return the "ada__tags__type_specific_data" type. */
6200 static struct type *
6201 ada_get_tsd_type (struct inferior *inf)
6203 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6205 if (data->tsd_type == 0)
6206 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6207 return data->tsd_type;
6210 /* Return the TSD (type-specific data) associated to the given TAG.
6211 TAG is assumed to be the tag of a tagged-type entity.
6213 May return NULL if we are unable to get the TSD. */
6215 static struct value *
6216 ada_get_tsd_from_tag (struct value *tag)
6221 /* First option: The TSD is simply stored as a field of our TAG.
6222 Only older versions of GNAT would use this format, but we have
6223 to test it first, because there are no visible markers for
6224 the current approach except the absence of that field. */
6226 val = ada_value_struct_elt (tag, "tsd", 1);
6230 /* Try the second representation for the dispatch table (in which
6231 there is no explicit 'tsd' field in the referent of the tag pointer,
6232 and instead the tsd pointer is stored just before the dispatch
6235 type = ada_get_tsd_type (current_inferior());
6238 type = lookup_pointer_type (lookup_pointer_type (type));
6239 val = value_cast (type, tag);
6242 return value_ind (value_ptradd (val, -1));
6245 /* Given the TSD of a tag (type-specific data), return a string
6246 containing the name of the associated type.
6248 The returned value is good until the next call. May return NULL
6249 if we are unable to determine the tag name. */
6252 ada_tag_name_from_tsd (struct value *tsd)
6254 static char name[1024];
6258 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6261 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6262 for (p = name; *p != '\0'; p += 1)
6268 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6271 Return NULL if the TAG is not an Ada tag, or if we were unable to
6272 determine the name of that tag. The result is good until the next
6276 ada_tag_name (struct value *tag)
6278 volatile struct gdb_exception e;
6281 if (!ada_is_tag_type (value_type (tag)))
6284 /* It is perfectly possible that an exception be raised while trying
6285 to determine the TAG's name, even under normal circumstances:
6286 The associated variable may be uninitialized or corrupted, for
6287 instance. We do not let any exception propagate past this point.
6288 instead we return NULL.
6290 We also do not print the error message either (which often is very
6291 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6292 the caller print a more meaningful message if necessary. */
6293 TRY_CATCH (e, RETURN_MASK_ERROR)
6295 struct value *tsd = ada_get_tsd_from_tag (tag);
6298 name = ada_tag_name_from_tsd (tsd);
6304 /* The parent type of TYPE, or NULL if none. */
6307 ada_parent_type (struct type *type)
6311 type = ada_check_typedef (type);
6313 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6316 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6317 if (ada_is_parent_field (type, i))
6319 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6321 /* If the _parent field is a pointer, then dereference it. */
6322 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6323 parent_type = TYPE_TARGET_TYPE (parent_type);
6324 /* If there is a parallel XVS type, get the actual base type. */
6325 parent_type = ada_get_base_type (parent_type);
6327 return ada_check_typedef (parent_type);
6333 /* True iff field number FIELD_NUM of structure type TYPE contains the
6334 parent-type (inherited) fields of a derived type. Assumes TYPE is
6335 a structure type with at least FIELD_NUM+1 fields. */
6338 ada_is_parent_field (struct type *type, int field_num)
6340 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6342 return (name != NULL
6343 && (strncmp (name, "PARENT", 6) == 0
6344 || strncmp (name, "_parent", 7) == 0));
6347 /* True iff field number FIELD_NUM of structure type TYPE is a
6348 transparent wrapper field (which should be silently traversed when doing
6349 field selection and flattened when printing). Assumes TYPE is a
6350 structure type with at least FIELD_NUM+1 fields. Such fields are always
6354 ada_is_wrapper_field (struct type *type, int field_num)
6356 const char *name = TYPE_FIELD_NAME (type, field_num);
6358 return (name != NULL
6359 && (strncmp (name, "PARENT", 6) == 0
6360 || strcmp (name, "REP") == 0
6361 || strncmp (name, "_parent", 7) == 0
6362 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6365 /* True iff field number FIELD_NUM of structure or union type TYPE
6366 is a variant wrapper. Assumes TYPE is a structure type with at least
6367 FIELD_NUM+1 fields. */
6370 ada_is_variant_part (struct type *type, int field_num)
6372 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6374 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6375 || (is_dynamic_field (type, field_num)
6376 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6377 == TYPE_CODE_UNION)));
6380 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6381 whose discriminants are contained in the record type OUTER_TYPE,
6382 returns the type of the controlling discriminant for the variant.
6383 May return NULL if the type could not be found. */
6386 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6388 char *name = ada_variant_discrim_name (var_type);
6390 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6393 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6394 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6395 represents a 'when others' clause; otherwise 0. */
6398 ada_is_others_clause (struct type *type, int field_num)
6400 const char *name = TYPE_FIELD_NAME (type, field_num);
6402 return (name != NULL && name[0] == 'O');
6405 /* Assuming that TYPE0 is the type of the variant part of a record,
6406 returns the name of the discriminant controlling the variant.
6407 The value is valid until the next call to ada_variant_discrim_name. */
6410 ada_variant_discrim_name (struct type *type0)
6412 static char *result = NULL;
6413 static size_t result_len = 0;
6416 const char *discrim_end;
6417 const char *discrim_start;
6419 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6420 type = TYPE_TARGET_TYPE (type0);
6424 name = ada_type_name (type);
6426 if (name == NULL || name[0] == '\000')
6429 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6432 if (strncmp (discrim_end, "___XVN", 6) == 0)
6435 if (discrim_end == name)
6438 for (discrim_start = discrim_end; discrim_start != name + 3;
6441 if (discrim_start == name + 1)
6443 if ((discrim_start > name + 3
6444 && strncmp (discrim_start - 3, "___", 3) == 0)
6445 || discrim_start[-1] == '.')
6449 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6450 strncpy (result, discrim_start, discrim_end - discrim_start);
6451 result[discrim_end - discrim_start] = '\0';
6455 /* Scan STR for a subtype-encoded number, beginning at position K.
6456 Put the position of the character just past the number scanned in
6457 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6458 Return 1 if there was a valid number at the given position, and 0
6459 otherwise. A "subtype-encoded" number consists of the absolute value
6460 in decimal, followed by the letter 'm' to indicate a negative number.
6461 Assumes 0m does not occur. */
6464 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6468 if (!isdigit (str[k]))
6471 /* Do it the hard way so as not to make any assumption about
6472 the relationship of unsigned long (%lu scan format code) and
6475 while (isdigit (str[k]))
6477 RU = RU * 10 + (str[k] - '0');
6484 *R = (-(LONGEST) (RU - 1)) - 1;
6490 /* NOTE on the above: Technically, C does not say what the results of
6491 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6492 number representable as a LONGEST (although either would probably work
6493 in most implementations). When RU>0, the locution in the then branch
6494 above is always equivalent to the negative of RU. */
6501 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6502 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6503 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6506 ada_in_variant (LONGEST val, struct type *type, int field_num)
6508 const char *name = TYPE_FIELD_NAME (type, field_num);
6522 if (!ada_scan_number (name, p + 1, &W, &p))
6532 if (!ada_scan_number (name, p + 1, &L, &p)
6533 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6535 if (val >= L && val <= U)
6547 /* FIXME: Lots of redundancy below. Try to consolidate. */
6549 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6550 ARG_TYPE, extract and return the value of one of its (non-static)
6551 fields. FIELDNO says which field. Differs from value_primitive_field
6552 only in that it can handle packed values of arbitrary type. */
6554 static struct value *
6555 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6556 struct type *arg_type)
6560 arg_type = ada_check_typedef (arg_type);
6561 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6563 /* Handle packed fields. */
6565 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6567 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6568 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6570 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6571 offset + bit_pos / 8,
6572 bit_pos % 8, bit_size, type);
6575 return value_primitive_field (arg1, offset, fieldno, arg_type);
6578 /* Find field with name NAME in object of type TYPE. If found,
6579 set the following for each argument that is non-null:
6580 - *FIELD_TYPE_P to the field's type;
6581 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6582 an object of that type;
6583 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6584 - *BIT_SIZE_P to its size in bits if the field is packed, and
6586 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6587 fields up to but not including the desired field, or by the total
6588 number of fields if not found. A NULL value of NAME never
6589 matches; the function just counts visible fields in this case.
6591 Returns 1 if found, 0 otherwise. */
6594 find_struct_field (const char *name, struct type *type, int offset,
6595 struct type **field_type_p,
6596 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6601 type = ada_check_typedef (type);
6603 if (field_type_p != NULL)
6604 *field_type_p = NULL;
6605 if (byte_offset_p != NULL)
6607 if (bit_offset_p != NULL)
6609 if (bit_size_p != NULL)
6612 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6614 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6615 int fld_offset = offset + bit_pos / 8;
6616 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6618 if (t_field_name == NULL)
6621 else if (name != NULL && field_name_match (t_field_name, name))
6623 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6625 if (field_type_p != NULL)
6626 *field_type_p = TYPE_FIELD_TYPE (type, i);
6627 if (byte_offset_p != NULL)
6628 *byte_offset_p = fld_offset;
6629 if (bit_offset_p != NULL)
6630 *bit_offset_p = bit_pos % 8;
6631 if (bit_size_p != NULL)
6632 *bit_size_p = bit_size;
6635 else if (ada_is_wrapper_field (type, i))
6637 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6638 field_type_p, byte_offset_p, bit_offset_p,
6639 bit_size_p, index_p))
6642 else if (ada_is_variant_part (type, i))
6644 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6647 struct type *field_type
6648 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6650 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6652 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6654 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6655 field_type_p, byte_offset_p,
6656 bit_offset_p, bit_size_p, index_p))
6660 else if (index_p != NULL)
6666 /* Number of user-visible fields in record type TYPE. */
6669 num_visible_fields (struct type *type)
6674 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6678 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6679 and search in it assuming it has (class) type TYPE.
6680 If found, return value, else return NULL.
6682 Searches recursively through wrapper fields (e.g., '_parent'). */
6684 static struct value *
6685 ada_search_struct_field (char *name, struct value *arg, int offset,
6690 type = ada_check_typedef (type);
6691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6693 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6695 if (t_field_name == NULL)
6698 else if (field_name_match (t_field_name, name))
6699 return ada_value_primitive_field (arg, offset, i, type);
6701 else if (ada_is_wrapper_field (type, i))
6703 struct value *v = /* Do not let indent join lines here. */
6704 ada_search_struct_field (name, arg,
6705 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6706 TYPE_FIELD_TYPE (type, i));
6712 else if (ada_is_variant_part (type, i))
6714 /* PNH: Do we ever get here? See find_struct_field. */
6716 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6718 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6720 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6722 struct value *v = ada_search_struct_field /* Force line
6725 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6726 TYPE_FIELD_TYPE (field_type, j));
6736 static struct value *ada_index_struct_field_1 (int *, struct value *,
6737 int, struct type *);
6740 /* Return field #INDEX in ARG, where the index is that returned by
6741 * find_struct_field through its INDEX_P argument. Adjust the address
6742 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6743 * If found, return value, else return NULL. */
6745 static struct value *
6746 ada_index_struct_field (int index, struct value *arg, int offset,
6749 return ada_index_struct_field_1 (&index, arg, offset, type);
6753 /* Auxiliary function for ada_index_struct_field. Like
6754 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6757 static struct value *
6758 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6762 type = ada_check_typedef (type);
6764 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6766 if (TYPE_FIELD_NAME (type, i) == NULL)
6768 else if (ada_is_wrapper_field (type, i))
6770 struct value *v = /* Do not let indent join lines here. */
6771 ada_index_struct_field_1 (index_p, arg,
6772 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6773 TYPE_FIELD_TYPE (type, i));
6779 else if (ada_is_variant_part (type, i))
6781 /* PNH: Do we ever get here? See ada_search_struct_field,
6782 find_struct_field. */
6783 error (_("Cannot assign this kind of variant record"));
6785 else if (*index_p == 0)
6786 return ada_value_primitive_field (arg, offset, i, type);
6793 /* Given ARG, a value of type (pointer or reference to a)*
6794 structure/union, extract the component named NAME from the ultimate
6795 target structure/union and return it as a value with its
6798 The routine searches for NAME among all members of the structure itself
6799 and (recursively) among all members of any wrapper members
6802 If NO_ERR, then simply return NULL in case of error, rather than
6806 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6808 struct type *t, *t1;
6812 t1 = t = ada_check_typedef (value_type (arg));
6813 if (TYPE_CODE (t) == TYPE_CODE_REF)
6815 t1 = TYPE_TARGET_TYPE (t);
6818 t1 = ada_check_typedef (t1);
6819 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6821 arg = coerce_ref (arg);
6826 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6828 t1 = TYPE_TARGET_TYPE (t);
6831 t1 = ada_check_typedef (t1);
6832 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6834 arg = value_ind (arg);
6841 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6845 v = ada_search_struct_field (name, arg, 0, t);
6848 int bit_offset, bit_size, byte_offset;
6849 struct type *field_type;
6852 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6853 address = value_address (ada_value_ind (arg));
6855 address = value_address (ada_coerce_ref (arg));
6857 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6858 if (find_struct_field (name, t1, 0,
6859 &field_type, &byte_offset, &bit_offset,
6864 if (TYPE_CODE (t) == TYPE_CODE_REF)
6865 arg = ada_coerce_ref (arg);
6867 arg = ada_value_ind (arg);
6868 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6869 bit_offset, bit_size,
6873 v = value_at_lazy (field_type, address + byte_offset);
6877 if (v != NULL || no_err)
6880 error (_("There is no member named %s."), name);
6886 error (_("Attempt to extract a component of "
6887 "a value that is not a record."));
6890 /* Given a type TYPE, look up the type of the component of type named NAME.
6891 If DISPP is non-null, add its byte displacement from the beginning of a
6892 structure (pointed to by a value) of type TYPE to *DISPP (does not
6893 work for packed fields).
6895 Matches any field whose name has NAME as a prefix, possibly
6898 TYPE can be either a struct or union. If REFOK, TYPE may also
6899 be a (pointer or reference)+ to a struct or union, and the
6900 ultimate target type will be searched.
6902 Looks recursively into variant clauses and parent types.
6904 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6905 TYPE is not a type of the right kind. */
6907 static struct type *
6908 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6909 int noerr, int *dispp)
6916 if (refok && type != NULL)
6919 type = ada_check_typedef (type);
6920 if (TYPE_CODE (type) != TYPE_CODE_PTR
6921 && TYPE_CODE (type) != TYPE_CODE_REF)
6923 type = TYPE_TARGET_TYPE (type);
6927 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6928 && TYPE_CODE (type) != TYPE_CODE_UNION))
6934 target_terminal_ours ();
6935 gdb_flush (gdb_stdout);
6937 error (_("Type (null) is not a structure or union type"));
6940 /* XXX: type_sprint */
6941 fprintf_unfiltered (gdb_stderr, _("Type "));
6942 type_print (type, "", gdb_stderr, -1);
6943 error (_(" is not a structure or union type"));
6948 type = to_static_fixed_type (type);
6950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6952 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6956 if (t_field_name == NULL)
6959 else if (field_name_match (t_field_name, name))
6962 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6963 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6966 else if (ada_is_wrapper_field (type, i))
6969 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6974 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6979 else if (ada_is_variant_part (type, i))
6982 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6985 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6987 /* FIXME pnh 2008/01/26: We check for a field that is
6988 NOT wrapped in a struct, since the compiler sometimes
6989 generates these for unchecked variant types. Revisit
6990 if the compiler changes this practice. */
6991 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6993 if (v_field_name != NULL
6994 && field_name_match (v_field_name, name))
6995 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6997 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7004 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7015 target_terminal_ours ();
7016 gdb_flush (gdb_stdout);
7019 /* XXX: type_sprint */
7020 fprintf_unfiltered (gdb_stderr, _("Type "));
7021 type_print (type, "", gdb_stderr, -1);
7022 error (_(" has no component named <null>"));
7026 /* XXX: type_sprint */
7027 fprintf_unfiltered (gdb_stderr, _("Type "));
7028 type_print (type, "", gdb_stderr, -1);
7029 error (_(" has no component named %s"), name);
7036 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7037 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7038 represents an unchecked union (that is, the variant part of a
7039 record that is named in an Unchecked_Union pragma). */
7042 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7044 char *discrim_name = ada_variant_discrim_name (var_type);
7046 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7051 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7052 within a value of type OUTER_TYPE that is stored in GDB at
7053 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7054 numbering from 0) is applicable. Returns -1 if none are. */
7057 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7058 const gdb_byte *outer_valaddr)
7062 char *discrim_name = ada_variant_discrim_name (var_type);
7063 struct value *outer;
7064 struct value *discrim;
7065 LONGEST discrim_val;
7067 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7068 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7069 if (discrim == NULL)
7071 discrim_val = value_as_long (discrim);
7074 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7076 if (ada_is_others_clause (var_type, i))
7078 else if (ada_in_variant (discrim_val, var_type, i))
7082 return others_clause;
7087 /* Dynamic-Sized Records */
7089 /* Strategy: The type ostensibly attached to a value with dynamic size
7090 (i.e., a size that is not statically recorded in the debugging
7091 data) does not accurately reflect the size or layout of the value.
7092 Our strategy is to convert these values to values with accurate,
7093 conventional types that are constructed on the fly. */
7095 /* There is a subtle and tricky problem here. In general, we cannot
7096 determine the size of dynamic records without its data. However,
7097 the 'struct value' data structure, which GDB uses to represent
7098 quantities in the inferior process (the target), requires the size
7099 of the type at the time of its allocation in order to reserve space
7100 for GDB's internal copy of the data. That's why the
7101 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7102 rather than struct value*s.
7104 However, GDB's internal history variables ($1, $2, etc.) are
7105 struct value*s containing internal copies of the data that are not, in
7106 general, the same as the data at their corresponding addresses in
7107 the target. Fortunately, the types we give to these values are all
7108 conventional, fixed-size types (as per the strategy described
7109 above), so that we don't usually have to perform the
7110 'to_fixed_xxx_type' conversions to look at their values.
7111 Unfortunately, there is one exception: if one of the internal
7112 history variables is an array whose elements are unconstrained
7113 records, then we will need to create distinct fixed types for each
7114 element selected. */
7116 /* The upshot of all of this is that many routines take a (type, host
7117 address, target address) triple as arguments to represent a value.
7118 The host address, if non-null, is supposed to contain an internal
7119 copy of the relevant data; otherwise, the program is to consult the
7120 target at the target address. */
7122 /* Assuming that VAL0 represents a pointer value, the result of
7123 dereferencing it. Differs from value_ind in its treatment of
7124 dynamic-sized types. */
7127 ada_value_ind (struct value *val0)
7129 struct value *val = value_ind (val0);
7131 if (ada_is_tagged_type (value_type (val), 0))
7132 val = ada_tag_value_at_base_address (val);
7134 return ada_to_fixed_value (val);
7137 /* The value resulting from dereferencing any "reference to"
7138 qualifiers on VAL0. */
7140 static struct value *
7141 ada_coerce_ref (struct value *val0)
7143 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7145 struct value *val = val0;
7147 val = coerce_ref (val);
7149 if (ada_is_tagged_type (value_type (val), 0))
7150 val = ada_tag_value_at_base_address (val);
7152 return ada_to_fixed_value (val);
7158 /* Return OFF rounded upward if necessary to a multiple of
7159 ALIGNMENT (a power of 2). */
7162 align_value (unsigned int off, unsigned int alignment)
7164 return (off + alignment - 1) & ~(alignment - 1);
7167 /* Return the bit alignment required for field #F of template type TYPE. */
7170 field_alignment (struct type *type, int f)
7172 const char *name = TYPE_FIELD_NAME (type, f);
7176 /* The field name should never be null, unless the debugging information
7177 is somehow malformed. In this case, we assume the field does not
7178 require any alignment. */
7182 len = strlen (name);
7184 if (!isdigit (name[len - 1]))
7187 if (isdigit (name[len - 2]))
7188 align_offset = len - 2;
7190 align_offset = len - 1;
7192 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7193 return TARGET_CHAR_BIT;
7195 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7198 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7200 static struct symbol *
7201 ada_find_any_type_symbol (const char *name)
7205 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7206 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7209 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7213 /* Find a type named NAME. Ignores ambiguity. This routine will look
7214 solely for types defined by debug info, it will not search the GDB
7217 static struct type *
7218 ada_find_any_type (const char *name)
7220 struct symbol *sym = ada_find_any_type_symbol (name);
7223 return SYMBOL_TYPE (sym);
7228 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7229 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7230 symbol, in which case it is returned. Otherwise, this looks for
7231 symbols whose name is that of NAME_SYM suffixed with "___XR".
7232 Return symbol if found, and NULL otherwise. */
7235 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7237 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7240 if (strstr (name, "___XR") != NULL)
7243 sym = find_old_style_renaming_symbol (name, block);
7248 /* Not right yet. FIXME pnh 7/20/2007. */
7249 sym = ada_find_any_type_symbol (name);
7250 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7256 static struct symbol *
7257 find_old_style_renaming_symbol (const char *name, const struct block *block)
7259 const struct symbol *function_sym = block_linkage_function (block);
7262 if (function_sym != NULL)
7264 /* If the symbol is defined inside a function, NAME is not fully
7265 qualified. This means we need to prepend the function name
7266 as well as adding the ``___XR'' suffix to build the name of
7267 the associated renaming symbol. */
7268 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7269 /* Function names sometimes contain suffixes used
7270 for instance to qualify nested subprograms. When building
7271 the XR type name, we need to make sure that this suffix is
7272 not included. So do not include any suffix in the function
7273 name length below. */
7274 int function_name_len = ada_name_prefix_len (function_name);
7275 const int rename_len = function_name_len + 2 /* "__" */
7276 + strlen (name) + 6 /* "___XR\0" */ ;
7278 /* Strip the suffix if necessary. */
7279 ada_remove_trailing_digits (function_name, &function_name_len);
7280 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7281 ada_remove_Xbn_suffix (function_name, &function_name_len);
7283 /* Library-level functions are a special case, as GNAT adds
7284 a ``_ada_'' prefix to the function name to avoid namespace
7285 pollution. However, the renaming symbols themselves do not
7286 have this prefix, so we need to skip this prefix if present. */
7287 if (function_name_len > 5 /* "_ada_" */
7288 && strstr (function_name, "_ada_") == function_name)
7291 function_name_len -= 5;
7294 rename = (char *) alloca (rename_len * sizeof (char));
7295 strncpy (rename, function_name, function_name_len);
7296 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7301 const int rename_len = strlen (name) + 6;
7303 rename = (char *) alloca (rename_len * sizeof (char));
7304 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7307 return ada_find_any_type_symbol (rename);
7310 /* Because of GNAT encoding conventions, several GDB symbols may match a
7311 given type name. If the type denoted by TYPE0 is to be preferred to
7312 that of TYPE1 for purposes of type printing, return non-zero;
7313 otherwise return 0. */
7316 ada_prefer_type (struct type *type0, struct type *type1)
7320 else if (type0 == NULL)
7322 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7324 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7326 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7328 else if (ada_is_constrained_packed_array_type (type0))
7330 else if (ada_is_array_descriptor_type (type0)
7331 && !ada_is_array_descriptor_type (type1))
7335 const char *type0_name = type_name_no_tag (type0);
7336 const char *type1_name = type_name_no_tag (type1);
7338 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7339 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7345 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7346 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7349 ada_type_name (struct type *type)
7353 else if (TYPE_NAME (type) != NULL)
7354 return TYPE_NAME (type);
7356 return TYPE_TAG_NAME (type);
7359 /* Search the list of "descriptive" types associated to TYPE for a type
7360 whose name is NAME. */
7362 static struct type *
7363 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7365 struct type *result;
7367 /* If there no descriptive-type info, then there is no parallel type
7369 if (!HAVE_GNAT_AUX_INFO (type))
7372 result = TYPE_DESCRIPTIVE_TYPE (type);
7373 while (result != NULL)
7375 const char *result_name = ada_type_name (result);
7377 if (result_name == NULL)
7379 warning (_("unexpected null name on descriptive type"));
7383 /* If the names match, stop. */
7384 if (strcmp (result_name, name) == 0)
7387 /* Otherwise, look at the next item on the list, if any. */
7388 if (HAVE_GNAT_AUX_INFO (result))
7389 result = TYPE_DESCRIPTIVE_TYPE (result);
7394 /* If we didn't find a match, see whether this is a packed array. With
7395 older compilers, the descriptive type information is either absent or
7396 irrelevant when it comes to packed arrays so the above lookup fails.
7397 Fall back to using a parallel lookup by name in this case. */
7398 if (result == NULL && ada_is_constrained_packed_array_type (type))
7399 return ada_find_any_type (name);
7404 /* Find a parallel type to TYPE with the specified NAME, using the
7405 descriptive type taken from the debugging information, if available,
7406 and otherwise using the (slower) name-based method. */
7408 static struct type *
7409 ada_find_parallel_type_with_name (struct type *type, const char *name)
7411 struct type *result = NULL;
7413 if (HAVE_GNAT_AUX_INFO (type))
7414 result = find_parallel_type_by_descriptive_type (type, name);
7416 result = ada_find_any_type (name);
7421 /* Same as above, but specify the name of the parallel type by appending
7422 SUFFIX to the name of TYPE. */
7425 ada_find_parallel_type (struct type *type, const char *suffix)
7428 const char *typename = ada_type_name (type);
7431 if (typename == NULL)
7434 len = strlen (typename);
7436 name = (char *) alloca (len + strlen (suffix) + 1);
7438 strcpy (name, typename);
7439 strcpy (name + len, suffix);
7441 return ada_find_parallel_type_with_name (type, name);
7444 /* If TYPE is a variable-size record type, return the corresponding template
7445 type describing its fields. Otherwise, return NULL. */
7447 static struct type *
7448 dynamic_template_type (struct type *type)
7450 type = ada_check_typedef (type);
7452 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7453 || ada_type_name (type) == NULL)
7457 int len = strlen (ada_type_name (type));
7459 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7462 return ada_find_parallel_type (type, "___XVE");
7466 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7467 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7470 is_dynamic_field (struct type *templ_type, int field_num)
7472 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7475 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7476 && strstr (name, "___XVL") != NULL;
7479 /* The index of the variant field of TYPE, or -1 if TYPE does not
7480 represent a variant record type. */
7483 variant_field_index (struct type *type)
7487 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7490 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7492 if (ada_is_variant_part (type, f))
7498 /* A record type with no fields. */
7500 static struct type *
7501 empty_record (struct type *template)
7503 struct type *type = alloc_type_copy (template);
7505 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7506 TYPE_NFIELDS (type) = 0;
7507 TYPE_FIELDS (type) = NULL;
7508 INIT_CPLUS_SPECIFIC (type);
7509 TYPE_NAME (type) = "<empty>";
7510 TYPE_TAG_NAME (type) = NULL;
7511 TYPE_LENGTH (type) = 0;
7515 /* An ordinary record type (with fixed-length fields) that describes
7516 the value of type TYPE at VALADDR or ADDRESS (see comments at
7517 the beginning of this section) VAL according to GNAT conventions.
7518 DVAL0 should describe the (portion of a) record that contains any
7519 necessary discriminants. It should be NULL if value_type (VAL) is
7520 an outer-level type (i.e., as opposed to a branch of a variant.) A
7521 variant field (unless unchecked) is replaced by a particular branch
7524 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7525 length are not statically known are discarded. As a consequence,
7526 VALADDR, ADDRESS and DVAL0 are ignored.
7528 NOTE: Limitations: For now, we assume that dynamic fields and
7529 variants occupy whole numbers of bytes. However, they need not be
7533 ada_template_to_fixed_record_type_1 (struct type *type,
7534 const gdb_byte *valaddr,
7535 CORE_ADDR address, struct value *dval0,
7536 int keep_dynamic_fields)
7538 struct value *mark = value_mark ();
7541 int nfields, bit_len;
7547 /* Compute the number of fields in this record type that are going
7548 to be processed: unless keep_dynamic_fields, this includes only
7549 fields whose position and length are static will be processed. */
7550 if (keep_dynamic_fields)
7551 nfields = TYPE_NFIELDS (type);
7555 while (nfields < TYPE_NFIELDS (type)
7556 && !ada_is_variant_part (type, nfields)
7557 && !is_dynamic_field (type, nfields))
7561 rtype = alloc_type_copy (type);
7562 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7563 INIT_CPLUS_SPECIFIC (rtype);
7564 TYPE_NFIELDS (rtype) = nfields;
7565 TYPE_FIELDS (rtype) = (struct field *)
7566 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7567 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7568 TYPE_NAME (rtype) = ada_type_name (type);
7569 TYPE_TAG_NAME (rtype) = NULL;
7570 TYPE_FIXED_INSTANCE (rtype) = 1;
7576 for (f = 0; f < nfields; f += 1)
7578 off = align_value (off, field_alignment (type, f))
7579 + TYPE_FIELD_BITPOS (type, f);
7580 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7581 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7583 if (ada_is_variant_part (type, f))
7588 else if (is_dynamic_field (type, f))
7590 const gdb_byte *field_valaddr = valaddr;
7591 CORE_ADDR field_address = address;
7592 struct type *field_type =
7593 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7597 /* rtype's length is computed based on the run-time
7598 value of discriminants. If the discriminants are not
7599 initialized, the type size may be completely bogus and
7600 GDB may fail to allocate a value for it. So check the
7601 size first before creating the value. */
7603 dval = value_from_contents_and_address (rtype, valaddr, address);
7608 /* If the type referenced by this field is an aligner type, we need
7609 to unwrap that aligner type, because its size might not be set.
7610 Keeping the aligner type would cause us to compute the wrong
7611 size for this field, impacting the offset of the all the fields
7612 that follow this one. */
7613 if (ada_is_aligner_type (field_type))
7615 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7617 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7618 field_address = cond_offset_target (field_address, field_offset);
7619 field_type = ada_aligned_type (field_type);
7622 field_valaddr = cond_offset_host (field_valaddr,
7623 off / TARGET_CHAR_BIT);
7624 field_address = cond_offset_target (field_address,
7625 off / TARGET_CHAR_BIT);
7627 /* Get the fixed type of the field. Note that, in this case,
7628 we do not want to get the real type out of the tag: if
7629 the current field is the parent part of a tagged record,
7630 we will get the tag of the object. Clearly wrong: the real
7631 type of the parent is not the real type of the child. We
7632 would end up in an infinite loop. */
7633 field_type = ada_get_base_type (field_type);
7634 field_type = ada_to_fixed_type (field_type, field_valaddr,
7635 field_address, dval, 0);
7636 /* If the field size is already larger than the maximum
7637 object size, then the record itself will necessarily
7638 be larger than the maximum object size. We need to make
7639 this check now, because the size might be so ridiculously
7640 large (due to an uninitialized variable in the inferior)
7641 that it would cause an overflow when adding it to the
7643 check_size (field_type);
7645 TYPE_FIELD_TYPE (rtype, f) = field_type;
7646 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7647 /* The multiplication can potentially overflow. But because
7648 the field length has been size-checked just above, and
7649 assuming that the maximum size is a reasonable value,
7650 an overflow should not happen in practice. So rather than
7651 adding overflow recovery code to this already complex code,
7652 we just assume that it's not going to happen. */
7654 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7658 /* Note: If this field's type is a typedef, it is important
7659 to preserve the typedef layer.
7661 Otherwise, we might be transforming a typedef to a fat
7662 pointer (encoding a pointer to an unconstrained array),
7663 into a basic fat pointer (encoding an unconstrained
7664 array). As both types are implemented using the same
7665 structure, the typedef is the only clue which allows us
7666 to distinguish between the two options. Stripping it
7667 would prevent us from printing this field appropriately. */
7668 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7669 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7670 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7672 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7675 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7677 /* We need to be careful of typedefs when computing
7678 the length of our field. If this is a typedef,
7679 get the length of the target type, not the length
7681 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7682 field_type = ada_typedef_target_type (field_type);
7685 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7688 if (off + fld_bit_len > bit_len)
7689 bit_len = off + fld_bit_len;
7691 TYPE_LENGTH (rtype) =
7692 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7695 /* We handle the variant part, if any, at the end because of certain
7696 odd cases in which it is re-ordered so as NOT to be the last field of
7697 the record. This can happen in the presence of representation
7699 if (variant_field >= 0)
7701 struct type *branch_type;
7703 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7706 dval = value_from_contents_and_address (rtype, valaddr, address);
7711 to_fixed_variant_branch_type
7712 (TYPE_FIELD_TYPE (type, variant_field),
7713 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7714 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7715 if (branch_type == NULL)
7717 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7718 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7719 TYPE_NFIELDS (rtype) -= 1;
7723 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7724 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7726 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7728 if (off + fld_bit_len > bit_len)
7729 bit_len = off + fld_bit_len;
7730 TYPE_LENGTH (rtype) =
7731 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7735 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7736 should contain the alignment of that record, which should be a strictly
7737 positive value. If null or negative, then something is wrong, most
7738 probably in the debug info. In that case, we don't round up the size
7739 of the resulting type. If this record is not part of another structure,
7740 the current RTYPE length might be good enough for our purposes. */
7741 if (TYPE_LENGTH (type) <= 0)
7743 if (TYPE_NAME (rtype))
7744 warning (_("Invalid type size for `%s' detected: %d."),
7745 TYPE_NAME (rtype), TYPE_LENGTH (type));
7747 warning (_("Invalid type size for <unnamed> detected: %d."),
7748 TYPE_LENGTH (type));
7752 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7753 TYPE_LENGTH (type));
7756 value_free_to_mark (mark);
7757 if (TYPE_LENGTH (rtype) > varsize_limit)
7758 error (_("record type with dynamic size is larger than varsize-limit"));
7762 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7765 static struct type *
7766 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7767 CORE_ADDR address, struct value *dval0)
7769 return ada_template_to_fixed_record_type_1 (type, valaddr,
7773 /* An ordinary record type in which ___XVL-convention fields and
7774 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7775 static approximations, containing all possible fields. Uses
7776 no runtime values. Useless for use in values, but that's OK,
7777 since the results are used only for type determinations. Works on both
7778 structs and unions. Representation note: to save space, we memorize
7779 the result of this function in the TYPE_TARGET_TYPE of the
7782 static struct type *
7783 template_to_static_fixed_type (struct type *type0)
7789 if (TYPE_TARGET_TYPE (type0) != NULL)
7790 return TYPE_TARGET_TYPE (type0);
7792 nfields = TYPE_NFIELDS (type0);
7795 for (f = 0; f < nfields; f += 1)
7797 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7798 struct type *new_type;
7800 if (is_dynamic_field (type0, f))
7801 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7803 new_type = static_unwrap_type (field_type);
7804 if (type == type0 && new_type != field_type)
7806 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7807 TYPE_CODE (type) = TYPE_CODE (type0);
7808 INIT_CPLUS_SPECIFIC (type);
7809 TYPE_NFIELDS (type) = nfields;
7810 TYPE_FIELDS (type) = (struct field *)
7811 TYPE_ALLOC (type, nfields * sizeof (struct field));
7812 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7813 sizeof (struct field) * nfields);
7814 TYPE_NAME (type) = ada_type_name (type0);
7815 TYPE_TAG_NAME (type) = NULL;
7816 TYPE_FIXED_INSTANCE (type) = 1;
7817 TYPE_LENGTH (type) = 0;
7819 TYPE_FIELD_TYPE (type, f) = new_type;
7820 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7825 /* Given an object of type TYPE whose contents are at VALADDR and
7826 whose address in memory is ADDRESS, returns a revision of TYPE,
7827 which should be a non-dynamic-sized record, in which the variant
7828 part, if any, is replaced with the appropriate branch. Looks
7829 for discriminant values in DVAL0, which can be NULL if the record
7830 contains the necessary discriminant values. */
7832 static struct type *
7833 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7834 CORE_ADDR address, struct value *dval0)
7836 struct value *mark = value_mark ();
7839 struct type *branch_type;
7840 int nfields = TYPE_NFIELDS (type);
7841 int variant_field = variant_field_index (type);
7843 if (variant_field == -1)
7847 dval = value_from_contents_and_address (type, valaddr, address);
7851 rtype = alloc_type_copy (type);
7852 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7853 INIT_CPLUS_SPECIFIC (rtype);
7854 TYPE_NFIELDS (rtype) = nfields;
7855 TYPE_FIELDS (rtype) =
7856 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7857 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7858 sizeof (struct field) * nfields);
7859 TYPE_NAME (rtype) = ada_type_name (type);
7860 TYPE_TAG_NAME (rtype) = NULL;
7861 TYPE_FIXED_INSTANCE (rtype) = 1;
7862 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7864 branch_type = to_fixed_variant_branch_type
7865 (TYPE_FIELD_TYPE (type, variant_field),
7866 cond_offset_host (valaddr,
7867 TYPE_FIELD_BITPOS (type, variant_field)
7869 cond_offset_target (address,
7870 TYPE_FIELD_BITPOS (type, variant_field)
7871 / TARGET_CHAR_BIT), dval);
7872 if (branch_type == NULL)
7876 for (f = variant_field + 1; f < nfields; f += 1)
7877 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7878 TYPE_NFIELDS (rtype) -= 1;
7882 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7883 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7884 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7885 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7887 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7889 value_free_to_mark (mark);
7893 /* An ordinary record type (with fixed-length fields) that describes
7894 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7895 beginning of this section]. Any necessary discriminants' values
7896 should be in DVAL, a record value; it may be NULL if the object
7897 at ADDR itself contains any necessary discriminant values.
7898 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7899 values from the record are needed. Except in the case that DVAL,
7900 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7901 unchecked) is replaced by a particular branch of the variant.
7903 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7904 is questionable and may be removed. It can arise during the
7905 processing of an unconstrained-array-of-record type where all the
7906 variant branches have exactly the same size. This is because in
7907 such cases, the compiler does not bother to use the XVS convention
7908 when encoding the record. I am currently dubious of this
7909 shortcut and suspect the compiler should be altered. FIXME. */
7911 static struct type *
7912 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7913 CORE_ADDR address, struct value *dval)
7915 struct type *templ_type;
7917 if (TYPE_FIXED_INSTANCE (type0))
7920 templ_type = dynamic_template_type (type0);
7922 if (templ_type != NULL)
7923 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7924 else if (variant_field_index (type0) >= 0)
7926 if (dval == NULL && valaddr == NULL && address == 0)
7928 return to_record_with_fixed_variant_part (type0, valaddr, address,
7933 TYPE_FIXED_INSTANCE (type0) = 1;
7939 /* An ordinary record type (with fixed-length fields) that describes
7940 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7941 union type. Any necessary discriminants' values should be in DVAL,
7942 a record value. That is, this routine selects the appropriate
7943 branch of the union at ADDR according to the discriminant value
7944 indicated in the union's type name. Returns VAR_TYPE0 itself if
7945 it represents a variant subject to a pragma Unchecked_Union. */
7947 static struct type *
7948 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7949 CORE_ADDR address, struct value *dval)
7952 struct type *templ_type;
7953 struct type *var_type;
7955 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7956 var_type = TYPE_TARGET_TYPE (var_type0);
7958 var_type = var_type0;
7960 templ_type = ada_find_parallel_type (var_type, "___XVU");
7962 if (templ_type != NULL)
7963 var_type = templ_type;
7965 if (is_unchecked_variant (var_type, value_type (dval)))
7968 ada_which_variant_applies (var_type,
7969 value_type (dval), value_contents (dval));
7972 return empty_record (var_type);
7973 else if (is_dynamic_field (var_type, which))
7974 return to_fixed_record_type
7975 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7976 valaddr, address, dval);
7977 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7979 to_fixed_record_type
7980 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7982 return TYPE_FIELD_TYPE (var_type, which);
7985 /* Assuming that TYPE0 is an array type describing the type of a value
7986 at ADDR, and that DVAL describes a record containing any
7987 discriminants used in TYPE0, returns a type for the value that
7988 contains no dynamic components (that is, no components whose sizes
7989 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7990 true, gives an error message if the resulting type's size is over
7993 static struct type *
7994 to_fixed_array_type (struct type *type0, struct value *dval,
7997 struct type *index_type_desc;
7998 struct type *result;
7999 int constrained_packed_array_p;
8001 type0 = ada_check_typedef (type0);
8002 if (TYPE_FIXED_INSTANCE (type0))
8005 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8006 if (constrained_packed_array_p)
8007 type0 = decode_constrained_packed_array_type (type0);
8009 index_type_desc = ada_find_parallel_type (type0, "___XA");
8010 ada_fixup_array_indexes_type (index_type_desc);
8011 if (index_type_desc == NULL)
8013 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8015 /* NOTE: elt_type---the fixed version of elt_type0---should never
8016 depend on the contents of the array in properly constructed
8018 /* Create a fixed version of the array element type.
8019 We're not providing the address of an element here,
8020 and thus the actual object value cannot be inspected to do
8021 the conversion. This should not be a problem, since arrays of
8022 unconstrained objects are not allowed. In particular, all
8023 the elements of an array of a tagged type should all be of
8024 the same type specified in the debugging info. No need to
8025 consult the object tag. */
8026 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8028 /* Make sure we always create a new array type when dealing with
8029 packed array types, since we're going to fix-up the array
8030 type length and element bitsize a little further down. */
8031 if (elt_type0 == elt_type && !constrained_packed_array_p)
8034 result = create_array_type (alloc_type_copy (type0),
8035 elt_type, TYPE_INDEX_TYPE (type0));
8040 struct type *elt_type0;
8043 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8044 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8046 /* NOTE: result---the fixed version of elt_type0---should never
8047 depend on the contents of the array in properly constructed
8049 /* Create a fixed version of the array element type.
8050 We're not providing the address of an element here,
8051 and thus the actual object value cannot be inspected to do
8052 the conversion. This should not be a problem, since arrays of
8053 unconstrained objects are not allowed. In particular, all
8054 the elements of an array of a tagged type should all be of
8055 the same type specified in the debugging info. No need to
8056 consult the object tag. */
8058 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8061 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8063 struct type *range_type =
8064 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8066 result = create_array_type (alloc_type_copy (elt_type0),
8067 result, range_type);
8068 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8070 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8071 error (_("array type with dynamic size is larger than varsize-limit"));
8074 /* We want to preserve the type name. This can be useful when
8075 trying to get the type name of a value that has already been
8076 printed (for instance, if the user did "print VAR; whatis $". */
8077 TYPE_NAME (result) = TYPE_NAME (type0);
8079 if (constrained_packed_array_p)
8081 /* So far, the resulting type has been created as if the original
8082 type was a regular (non-packed) array type. As a result, the
8083 bitsize of the array elements needs to be set again, and the array
8084 length needs to be recomputed based on that bitsize. */
8085 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8086 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8088 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8089 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8090 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8091 TYPE_LENGTH (result)++;
8094 TYPE_FIXED_INSTANCE (result) = 1;
8099 /* A standard type (containing no dynamically sized components)
8100 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8101 DVAL describes a record containing any discriminants used in TYPE0,
8102 and may be NULL if there are none, or if the object of type TYPE at
8103 ADDRESS or in VALADDR contains these discriminants.
8105 If CHECK_TAG is not null, in the case of tagged types, this function
8106 attempts to locate the object's tag and use it to compute the actual
8107 type. However, when ADDRESS is null, we cannot use it to determine the
8108 location of the tag, and therefore compute the tagged type's actual type.
8109 So we return the tagged type without consulting the tag. */
8111 static struct type *
8112 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8113 CORE_ADDR address, struct value *dval, int check_tag)
8115 type = ada_check_typedef (type);
8116 switch (TYPE_CODE (type))
8120 case TYPE_CODE_STRUCT:
8122 struct type *static_type = to_static_fixed_type (type);
8123 struct type *fixed_record_type =
8124 to_fixed_record_type (type, valaddr, address, NULL);
8126 /* If STATIC_TYPE is a tagged type and we know the object's address,
8127 then we can determine its tag, and compute the object's actual
8128 type from there. Note that we have to use the fixed record
8129 type (the parent part of the record may have dynamic fields
8130 and the way the location of _tag is expressed may depend on
8133 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8136 value_tag_from_contents_and_address
8140 struct type *real_type = type_from_tag (tag);
8142 value_from_contents_and_address (fixed_record_type,
8145 if (real_type != NULL)
8146 return to_fixed_record_type
8148 value_address (ada_tag_value_at_base_address (obj)), NULL);
8151 /* Check to see if there is a parallel ___XVZ variable.
8152 If there is, then it provides the actual size of our type. */
8153 else if (ada_type_name (fixed_record_type) != NULL)
8155 const char *name = ada_type_name (fixed_record_type);
8156 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8160 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8161 size = get_int_var_value (xvz_name, &xvz_found);
8162 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8164 fixed_record_type = copy_type (fixed_record_type);
8165 TYPE_LENGTH (fixed_record_type) = size;
8167 /* The FIXED_RECORD_TYPE may have be a stub. We have
8168 observed this when the debugging info is STABS, and
8169 apparently it is something that is hard to fix.
8171 In practice, we don't need the actual type definition
8172 at all, because the presence of the XVZ variable allows us
8173 to assume that there must be a XVS type as well, which we
8174 should be able to use later, when we need the actual type
8177 In the meantime, pretend that the "fixed" type we are
8178 returning is NOT a stub, because this can cause trouble
8179 when using this type to create new types targeting it.
8180 Indeed, the associated creation routines often check
8181 whether the target type is a stub and will try to replace
8182 it, thus using a type with the wrong size. This, in turn,
8183 might cause the new type to have the wrong size too.
8184 Consider the case of an array, for instance, where the size
8185 of the array is computed from the number of elements in
8186 our array multiplied by the size of its element. */
8187 TYPE_STUB (fixed_record_type) = 0;
8190 return fixed_record_type;
8192 case TYPE_CODE_ARRAY:
8193 return to_fixed_array_type (type, dval, 1);
8194 case TYPE_CODE_UNION:
8198 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8202 /* The same as ada_to_fixed_type_1, except that it preserves the type
8203 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8205 The typedef layer needs be preserved in order to differentiate between
8206 arrays and array pointers when both types are implemented using the same
8207 fat pointer. In the array pointer case, the pointer is encoded as
8208 a typedef of the pointer type. For instance, considering:
8210 type String_Access is access String;
8211 S1 : String_Access := null;
8213 To the debugger, S1 is defined as a typedef of type String. But
8214 to the user, it is a pointer. So if the user tries to print S1,
8215 we should not dereference the array, but print the array address
8218 If we didn't preserve the typedef layer, we would lose the fact that
8219 the type is to be presented as a pointer (needs de-reference before
8220 being printed). And we would also use the source-level type name. */
8223 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8224 CORE_ADDR address, struct value *dval, int check_tag)
8227 struct type *fixed_type =
8228 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8230 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8231 then preserve the typedef layer.
8233 Implementation note: We can only check the main-type portion of
8234 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8235 from TYPE now returns a type that has the same instance flags
8236 as TYPE. For instance, if TYPE is a "typedef const", and its
8237 target type is a "struct", then the typedef elimination will return
8238 a "const" version of the target type. See check_typedef for more
8239 details about how the typedef layer elimination is done.
8241 brobecker/2010-11-19: It seems to me that the only case where it is
8242 useful to preserve the typedef layer is when dealing with fat pointers.
8243 Perhaps, we could add a check for that and preserve the typedef layer
8244 only in that situation. But this seems unecessary so far, probably
8245 because we call check_typedef/ada_check_typedef pretty much everywhere.
8247 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8248 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8249 == TYPE_MAIN_TYPE (fixed_type)))
8255 /* A standard (static-sized) type corresponding as well as possible to
8256 TYPE0, but based on no runtime data. */
8258 static struct type *
8259 to_static_fixed_type (struct type *type0)
8266 if (TYPE_FIXED_INSTANCE (type0))
8269 type0 = ada_check_typedef (type0);
8271 switch (TYPE_CODE (type0))
8275 case TYPE_CODE_STRUCT:
8276 type = dynamic_template_type (type0);
8278 return template_to_static_fixed_type (type);
8280 return template_to_static_fixed_type (type0);
8281 case TYPE_CODE_UNION:
8282 type = ada_find_parallel_type (type0, "___XVU");
8284 return template_to_static_fixed_type (type);
8286 return template_to_static_fixed_type (type0);
8290 /* A static approximation of TYPE with all type wrappers removed. */
8292 static struct type *
8293 static_unwrap_type (struct type *type)
8295 if (ada_is_aligner_type (type))
8297 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8298 if (ada_type_name (type1) == NULL)
8299 TYPE_NAME (type1) = ada_type_name (type);
8301 return static_unwrap_type (type1);
8305 struct type *raw_real_type = ada_get_base_type (type);
8307 if (raw_real_type == type)
8310 return to_static_fixed_type (raw_real_type);
8314 /* In some cases, incomplete and private types require
8315 cross-references that are not resolved as records (for example,
8317 type FooP is access Foo;
8319 type Foo is array ...;
8320 ). In these cases, since there is no mechanism for producing
8321 cross-references to such types, we instead substitute for FooP a
8322 stub enumeration type that is nowhere resolved, and whose tag is
8323 the name of the actual type. Call these types "non-record stubs". */
8325 /* A type equivalent to TYPE that is not a non-record stub, if one
8326 exists, otherwise TYPE. */
8329 ada_check_typedef (struct type *type)
8334 /* If our type is a typedef type of a fat pointer, then we're done.
8335 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8336 what allows us to distinguish between fat pointers that represent
8337 array types, and fat pointers that represent array access types
8338 (in both cases, the compiler implements them as fat pointers). */
8339 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8340 && is_thick_pntr (ada_typedef_target_type (type)))
8343 CHECK_TYPEDEF (type);
8344 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8345 || !TYPE_STUB (type)
8346 || TYPE_TAG_NAME (type) == NULL)
8350 const char *name = TYPE_TAG_NAME (type);
8351 struct type *type1 = ada_find_any_type (name);
8356 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8357 stubs pointing to arrays, as we don't create symbols for array
8358 types, only for the typedef-to-array types). If that's the case,
8359 strip the typedef layer. */
8360 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8361 type1 = ada_check_typedef (type1);
8367 /* A value representing the data at VALADDR/ADDRESS as described by
8368 type TYPE0, but with a standard (static-sized) type that correctly
8369 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8370 type, then return VAL0 [this feature is simply to avoid redundant
8371 creation of struct values]. */
8373 static struct value *
8374 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8377 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8379 if (type == type0 && val0 != NULL)
8382 return value_from_contents_and_address (type, 0, address);
8385 /* A value representing VAL, but with a standard (static-sized) type
8386 that correctly describes it. Does not necessarily create a new
8390 ada_to_fixed_value (struct value *val)
8392 val = unwrap_value (val);
8393 val = ada_to_fixed_value_create (value_type (val),
8394 value_address (val),
8402 /* Table mapping attribute numbers to names.
8403 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8405 static const char *attribute_names[] = {
8423 ada_attribute_name (enum exp_opcode n)
8425 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8426 return attribute_names[n - OP_ATR_FIRST + 1];
8428 return attribute_names[0];
8431 /* Evaluate the 'POS attribute applied to ARG. */
8434 pos_atr (struct value *arg)
8436 struct value *val = coerce_ref (arg);
8437 struct type *type = value_type (val);
8439 if (!discrete_type_p (type))
8440 error (_("'POS only defined on discrete types"));
8442 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8445 LONGEST v = value_as_long (val);
8447 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8449 if (v == TYPE_FIELD_ENUMVAL (type, i))
8452 error (_("enumeration value is invalid: can't find 'POS"));
8455 return value_as_long (val);
8458 static struct value *
8459 value_pos_atr (struct type *type, struct value *arg)
8461 return value_from_longest (type, pos_atr (arg));
8464 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8466 static struct value *
8467 value_val_atr (struct type *type, struct value *arg)
8469 if (!discrete_type_p (type))
8470 error (_("'VAL only defined on discrete types"));
8471 if (!integer_type_p (value_type (arg)))
8472 error (_("'VAL requires integral argument"));
8474 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8476 long pos = value_as_long (arg);
8478 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8479 error (_("argument to 'VAL out of range"));
8480 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8483 return value_from_longest (type, value_as_long (arg));
8489 /* True if TYPE appears to be an Ada character type.
8490 [At the moment, this is true only for Character and Wide_Character;
8491 It is a heuristic test that could stand improvement]. */
8494 ada_is_character_type (struct type *type)
8498 /* If the type code says it's a character, then assume it really is,
8499 and don't check any further. */
8500 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8503 /* Otherwise, assume it's a character type iff it is a discrete type
8504 with a known character type name. */
8505 name = ada_type_name (type);
8506 return (name != NULL
8507 && (TYPE_CODE (type) == TYPE_CODE_INT
8508 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8509 && (strcmp (name, "character") == 0
8510 || strcmp (name, "wide_character") == 0
8511 || strcmp (name, "wide_wide_character") == 0
8512 || strcmp (name, "unsigned char") == 0));
8515 /* True if TYPE appears to be an Ada string type. */
8518 ada_is_string_type (struct type *type)
8520 type = ada_check_typedef (type);
8522 && TYPE_CODE (type) != TYPE_CODE_PTR
8523 && (ada_is_simple_array_type (type)
8524 || ada_is_array_descriptor_type (type))
8525 && ada_array_arity (type) == 1)
8527 struct type *elttype = ada_array_element_type (type, 1);
8529 return ada_is_character_type (elttype);
8535 /* The compiler sometimes provides a parallel XVS type for a given
8536 PAD type. Normally, it is safe to follow the PAD type directly,
8537 but older versions of the compiler have a bug that causes the offset
8538 of its "F" field to be wrong. Following that field in that case
8539 would lead to incorrect results, but this can be worked around
8540 by ignoring the PAD type and using the associated XVS type instead.
8542 Set to True if the debugger should trust the contents of PAD types.
8543 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8544 static int trust_pad_over_xvs = 1;
8546 /* True if TYPE is a struct type introduced by the compiler to force the
8547 alignment of a value. Such types have a single field with a
8548 distinctive name. */
8551 ada_is_aligner_type (struct type *type)
8553 type = ada_check_typedef (type);
8555 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8558 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8559 && TYPE_NFIELDS (type) == 1
8560 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8563 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8564 the parallel type. */
8567 ada_get_base_type (struct type *raw_type)
8569 struct type *real_type_namer;
8570 struct type *raw_real_type;
8572 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8575 if (ada_is_aligner_type (raw_type))
8576 /* The encoding specifies that we should always use the aligner type.
8577 So, even if this aligner type has an associated XVS type, we should
8580 According to the compiler gurus, an XVS type parallel to an aligner
8581 type may exist because of a stabs limitation. In stabs, aligner
8582 types are empty because the field has a variable-sized type, and
8583 thus cannot actually be used as an aligner type. As a result,
8584 we need the associated parallel XVS type to decode the type.
8585 Since the policy in the compiler is to not change the internal
8586 representation based on the debugging info format, we sometimes
8587 end up having a redundant XVS type parallel to the aligner type. */
8590 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8591 if (real_type_namer == NULL
8592 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8593 || TYPE_NFIELDS (real_type_namer) != 1)
8596 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8598 /* This is an older encoding form where the base type needs to be
8599 looked up by name. We prefer the newer enconding because it is
8601 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8602 if (raw_real_type == NULL)
8605 return raw_real_type;
8608 /* The field in our XVS type is a reference to the base type. */
8609 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8612 /* The type of value designated by TYPE, with all aligners removed. */
8615 ada_aligned_type (struct type *type)
8617 if (ada_is_aligner_type (type))
8618 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8620 return ada_get_base_type (type);
8624 /* The address of the aligned value in an object at address VALADDR
8625 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8628 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8630 if (ada_is_aligner_type (type))
8631 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8633 TYPE_FIELD_BITPOS (type,
8634 0) / TARGET_CHAR_BIT);
8641 /* The printed representation of an enumeration literal with encoded
8642 name NAME. The value is good to the next call of ada_enum_name. */
8644 ada_enum_name (const char *name)
8646 static char *result;
8647 static size_t result_len = 0;
8650 /* First, unqualify the enumeration name:
8651 1. Search for the last '.' character. If we find one, then skip
8652 all the preceding characters, the unqualified name starts
8653 right after that dot.
8654 2. Otherwise, we may be debugging on a target where the compiler
8655 translates dots into "__". Search forward for double underscores,
8656 but stop searching when we hit an overloading suffix, which is
8657 of the form "__" followed by digits. */
8659 tmp = strrchr (name, '.');
8664 while ((tmp = strstr (name, "__")) != NULL)
8666 if (isdigit (tmp[2]))
8677 if (name[1] == 'U' || name[1] == 'W')
8679 if (sscanf (name + 2, "%x", &v) != 1)
8685 GROW_VECT (result, result_len, 16);
8686 if (isascii (v) && isprint (v))
8687 xsnprintf (result, result_len, "'%c'", v);
8688 else if (name[1] == 'U')
8689 xsnprintf (result, result_len, "[\"%02x\"]", v);
8691 xsnprintf (result, result_len, "[\"%04x\"]", v);
8697 tmp = strstr (name, "__");
8699 tmp = strstr (name, "$");
8702 GROW_VECT (result, result_len, tmp - name + 1);
8703 strncpy (result, name, tmp - name);
8704 result[tmp - name] = '\0';
8712 /* Evaluate the subexpression of EXP starting at *POS as for
8713 evaluate_type, updating *POS to point just past the evaluated
8716 static struct value *
8717 evaluate_subexp_type (struct expression *exp, int *pos)
8719 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8722 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8725 static struct value *
8726 unwrap_value (struct value *val)
8728 struct type *type = ada_check_typedef (value_type (val));
8730 if (ada_is_aligner_type (type))
8732 struct value *v = ada_value_struct_elt (val, "F", 0);
8733 struct type *val_type = ada_check_typedef (value_type (v));
8735 if (ada_type_name (val_type) == NULL)
8736 TYPE_NAME (val_type) = ada_type_name (type);
8738 return unwrap_value (v);
8742 struct type *raw_real_type =
8743 ada_check_typedef (ada_get_base_type (type));
8745 /* If there is no parallel XVS or XVE type, then the value is
8746 already unwrapped. Return it without further modification. */
8747 if ((type == raw_real_type)
8748 && ada_find_parallel_type (type, "___XVE") == NULL)
8752 coerce_unspec_val_to_type
8753 (val, ada_to_fixed_type (raw_real_type, 0,
8754 value_address (val),
8759 static struct value *
8760 cast_to_fixed (struct type *type, struct value *arg)
8764 if (type == value_type (arg))
8766 else if (ada_is_fixed_point_type (value_type (arg)))
8767 val = ada_float_to_fixed (type,
8768 ada_fixed_to_float (value_type (arg),
8769 value_as_long (arg)));
8772 DOUBLEST argd = value_as_double (arg);
8774 val = ada_float_to_fixed (type, argd);
8777 return value_from_longest (type, val);
8780 static struct value *
8781 cast_from_fixed (struct type *type, struct value *arg)
8783 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8784 value_as_long (arg));
8786 return value_from_double (type, val);
8789 /* Given two array types T1 and T2, return nonzero iff both arrays
8790 contain the same number of elements. */
8793 ada_same_array_size_p (struct type *t1, struct type *t2)
8795 LONGEST lo1, hi1, lo2, hi2;
8797 /* Get the array bounds in order to verify that the size of
8798 the two arrays match. */
8799 if (!get_array_bounds (t1, &lo1, &hi1)
8800 || !get_array_bounds (t2, &lo2, &hi2))
8801 error (_("unable to determine array bounds"));
8803 /* To make things easier for size comparison, normalize a bit
8804 the case of empty arrays by making sure that the difference
8805 between upper bound and lower bound is always -1. */
8811 return (hi1 - lo1 == hi2 - lo2);
8814 /* Assuming that VAL is an array of integrals, and TYPE represents
8815 an array with the same number of elements, but with wider integral
8816 elements, return an array "casted" to TYPE. In practice, this
8817 means that the returned array is built by casting each element
8818 of the original array into TYPE's (wider) element type. */
8820 static struct value *
8821 ada_promote_array_of_integrals (struct type *type, struct value *val)
8823 struct type *elt_type = TYPE_TARGET_TYPE (type);
8828 /* Verify that both val and type are arrays of scalars, and
8829 that the size of val's elements is smaller than the size
8830 of type's element. */
8831 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8832 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8833 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8834 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8835 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8836 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8838 if (!get_array_bounds (type, &lo, &hi))
8839 error (_("unable to determine array bounds"));
8841 res = allocate_value (type);
8843 /* Promote each array element. */
8844 for (i = 0; i < hi - lo + 1; i++)
8846 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8848 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8849 value_contents_all (elt), TYPE_LENGTH (elt_type));
8855 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8856 return the converted value. */
8858 static struct value *
8859 coerce_for_assign (struct type *type, struct value *val)
8861 struct type *type2 = value_type (val);
8866 type2 = ada_check_typedef (type2);
8867 type = ada_check_typedef (type);
8869 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8870 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8872 val = ada_value_ind (val);
8873 type2 = value_type (val);
8876 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8877 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8879 if (!ada_same_array_size_p (type, type2))
8880 error (_("cannot assign arrays of different length"));
8882 if (is_integral_type (TYPE_TARGET_TYPE (type))
8883 && is_integral_type (TYPE_TARGET_TYPE (type2))
8884 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8885 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8887 /* Allow implicit promotion of the array elements to
8889 return ada_promote_array_of_integrals (type, val);
8892 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8893 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8894 error (_("Incompatible types in assignment"));
8895 deprecated_set_value_type (val, type);
8900 static struct value *
8901 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8904 struct type *type1, *type2;
8907 arg1 = coerce_ref (arg1);
8908 arg2 = coerce_ref (arg2);
8909 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8910 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8912 if (TYPE_CODE (type1) != TYPE_CODE_INT
8913 || TYPE_CODE (type2) != TYPE_CODE_INT)
8914 return value_binop (arg1, arg2, op);
8923 return value_binop (arg1, arg2, op);
8926 v2 = value_as_long (arg2);
8928 error (_("second operand of %s must not be zero."), op_string (op));
8930 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8931 return value_binop (arg1, arg2, op);
8933 v1 = value_as_long (arg1);
8938 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8939 v += v > 0 ? -1 : 1;
8947 /* Should not reach this point. */
8951 val = allocate_value (type1);
8952 store_unsigned_integer (value_contents_raw (val),
8953 TYPE_LENGTH (value_type (val)),
8954 gdbarch_byte_order (get_type_arch (type1)), v);
8959 ada_value_equal (struct value *arg1, struct value *arg2)
8961 if (ada_is_direct_array_type (value_type (arg1))
8962 || ada_is_direct_array_type (value_type (arg2)))
8964 /* Automatically dereference any array reference before
8965 we attempt to perform the comparison. */
8966 arg1 = ada_coerce_ref (arg1);
8967 arg2 = ada_coerce_ref (arg2);
8969 arg1 = ada_coerce_to_simple_array (arg1);
8970 arg2 = ada_coerce_to_simple_array (arg2);
8971 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8972 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8973 error (_("Attempt to compare array with non-array"));
8974 /* FIXME: The following works only for types whose
8975 representations use all bits (no padding or undefined bits)
8976 and do not have user-defined equality. */
8978 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8979 && memcmp (value_contents (arg1), value_contents (arg2),
8980 TYPE_LENGTH (value_type (arg1))) == 0;
8982 return value_equal (arg1, arg2);
8985 /* Total number of component associations in the aggregate starting at
8986 index PC in EXP. Assumes that index PC is the start of an
8990 num_component_specs (struct expression *exp, int pc)
8994 m = exp->elts[pc + 1].longconst;
8997 for (i = 0; i < m; i += 1)
8999 switch (exp->elts[pc].opcode)
9005 n += exp->elts[pc + 1].longconst;
9008 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9013 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9014 component of LHS (a simple array or a record), updating *POS past
9015 the expression, assuming that LHS is contained in CONTAINER. Does
9016 not modify the inferior's memory, nor does it modify LHS (unless
9017 LHS == CONTAINER). */
9020 assign_component (struct value *container, struct value *lhs, LONGEST index,
9021 struct expression *exp, int *pos)
9023 struct value *mark = value_mark ();
9026 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9028 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9029 struct value *index_val = value_from_longest (index_type, index);
9031 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9035 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9036 elt = ada_to_fixed_value (elt);
9039 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9040 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9042 value_assign_to_component (container, elt,
9043 ada_evaluate_subexp (NULL, exp, pos,
9046 value_free_to_mark (mark);
9049 /* Assuming that LHS represents an lvalue having a record or array
9050 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9051 of that aggregate's value to LHS, advancing *POS past the
9052 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9053 lvalue containing LHS (possibly LHS itself). Does not modify
9054 the inferior's memory, nor does it modify the contents of
9055 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9057 static struct value *
9058 assign_aggregate (struct value *container,
9059 struct value *lhs, struct expression *exp,
9060 int *pos, enum noside noside)
9062 struct type *lhs_type;
9063 int n = exp->elts[*pos+1].longconst;
9064 LONGEST low_index, high_index;
9067 int max_indices, num_indices;
9071 if (noside != EVAL_NORMAL)
9073 for (i = 0; i < n; i += 1)
9074 ada_evaluate_subexp (NULL, exp, pos, noside);
9078 container = ada_coerce_ref (container);
9079 if (ada_is_direct_array_type (value_type (container)))
9080 container = ada_coerce_to_simple_array (container);
9081 lhs = ada_coerce_ref (lhs);
9082 if (!deprecated_value_modifiable (lhs))
9083 error (_("Left operand of assignment is not a modifiable lvalue."));
9085 lhs_type = value_type (lhs);
9086 if (ada_is_direct_array_type (lhs_type))
9088 lhs = ada_coerce_to_simple_array (lhs);
9089 lhs_type = value_type (lhs);
9090 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9091 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9093 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9096 high_index = num_visible_fields (lhs_type) - 1;
9099 error (_("Left-hand side must be array or record."));
9101 num_specs = num_component_specs (exp, *pos - 3);
9102 max_indices = 4 * num_specs + 4;
9103 indices = alloca (max_indices * sizeof (indices[0]));
9104 indices[0] = indices[1] = low_index - 1;
9105 indices[2] = indices[3] = high_index + 1;
9108 for (i = 0; i < n; i += 1)
9110 switch (exp->elts[*pos].opcode)
9113 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9114 &num_indices, max_indices,
9115 low_index, high_index);
9118 aggregate_assign_positional (container, lhs, exp, pos, indices,
9119 &num_indices, max_indices,
9120 low_index, high_index);
9124 error (_("Misplaced 'others' clause"));
9125 aggregate_assign_others (container, lhs, exp, pos, indices,
9126 num_indices, low_index, high_index);
9129 error (_("Internal error: bad aggregate clause"));
9136 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9137 construct at *POS, updating *POS past the construct, given that
9138 the positions are relative to lower bound LOW, where HIGH is the
9139 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9140 updating *NUM_INDICES as needed. CONTAINER is as for
9141 assign_aggregate. */
9143 aggregate_assign_positional (struct value *container,
9144 struct value *lhs, struct expression *exp,
9145 int *pos, LONGEST *indices, int *num_indices,
9146 int max_indices, LONGEST low, LONGEST high)
9148 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9150 if (ind - 1 == high)
9151 warning (_("Extra components in aggregate ignored."));
9154 add_component_interval (ind, ind, indices, num_indices, max_indices);
9156 assign_component (container, lhs, ind, exp, pos);
9159 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9162 /* Assign into the components of LHS indexed by the OP_CHOICES
9163 construct at *POS, updating *POS past the construct, given that
9164 the allowable indices are LOW..HIGH. Record the indices assigned
9165 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9166 needed. CONTAINER is as for assign_aggregate. */
9168 aggregate_assign_from_choices (struct value *container,
9169 struct value *lhs, struct expression *exp,
9170 int *pos, LONGEST *indices, int *num_indices,
9171 int max_indices, LONGEST low, LONGEST high)
9174 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9175 int choice_pos, expr_pc;
9176 int is_array = ada_is_direct_array_type (value_type (lhs));
9178 choice_pos = *pos += 3;
9180 for (j = 0; j < n_choices; j += 1)
9181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9183 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9185 for (j = 0; j < n_choices; j += 1)
9187 LONGEST lower, upper;
9188 enum exp_opcode op = exp->elts[choice_pos].opcode;
9190 if (op == OP_DISCRETE_RANGE)
9193 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9195 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9200 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9212 name = &exp->elts[choice_pos + 2].string;
9215 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9218 error (_("Invalid record component association."));
9220 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9222 if (! find_struct_field (name, value_type (lhs), 0,
9223 NULL, NULL, NULL, NULL, &ind))
9224 error (_("Unknown component name: %s."), name);
9225 lower = upper = ind;
9228 if (lower <= upper && (lower < low || upper > high))
9229 error (_("Index in component association out of bounds."));
9231 add_component_interval (lower, upper, indices, num_indices,
9233 while (lower <= upper)
9238 assign_component (container, lhs, lower, exp, &pos1);
9244 /* Assign the value of the expression in the OP_OTHERS construct in
9245 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9246 have not been previously assigned. The index intervals already assigned
9247 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9248 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9250 aggregate_assign_others (struct value *container,
9251 struct value *lhs, struct expression *exp,
9252 int *pos, LONGEST *indices, int num_indices,
9253 LONGEST low, LONGEST high)
9256 int expr_pc = *pos + 1;
9258 for (i = 0; i < num_indices - 2; i += 2)
9262 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9267 assign_component (container, lhs, ind, exp, &localpos);
9270 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9273 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9274 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9275 modifying *SIZE as needed. It is an error if *SIZE exceeds
9276 MAX_SIZE. The resulting intervals do not overlap. */
9278 add_component_interval (LONGEST low, LONGEST high,
9279 LONGEST* indices, int *size, int max_size)
9283 for (i = 0; i < *size; i += 2) {
9284 if (high >= indices[i] && low <= indices[i + 1])
9288 for (kh = i + 2; kh < *size; kh += 2)
9289 if (high < indices[kh])
9291 if (low < indices[i])
9293 indices[i + 1] = indices[kh - 1];
9294 if (high > indices[i + 1])
9295 indices[i + 1] = high;
9296 memcpy (indices + i + 2, indices + kh, *size - kh);
9297 *size -= kh - i - 2;
9300 else if (high < indices[i])
9304 if (*size == max_size)
9305 error (_("Internal error: miscounted aggregate components."));
9307 for (j = *size-1; j >= i+2; j -= 1)
9308 indices[j] = indices[j - 2];
9310 indices[i + 1] = high;
9313 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9316 static struct value *
9317 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9319 if (type == ada_check_typedef (value_type (arg2)))
9322 if (ada_is_fixed_point_type (type))
9323 return (cast_to_fixed (type, arg2));
9325 if (ada_is_fixed_point_type (value_type (arg2)))
9326 return cast_from_fixed (type, arg2);
9328 return value_cast (type, arg2);
9331 /* Evaluating Ada expressions, and printing their result.
9332 ------------------------------------------------------
9337 We usually evaluate an Ada expression in order to print its value.
9338 We also evaluate an expression in order to print its type, which
9339 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9340 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9341 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9342 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9345 Evaluating expressions is a little more complicated for Ada entities
9346 than it is for entities in languages such as C. The main reason for
9347 this is that Ada provides types whose definition might be dynamic.
9348 One example of such types is variant records. Or another example
9349 would be an array whose bounds can only be known at run time.
9351 The following description is a general guide as to what should be
9352 done (and what should NOT be done) in order to evaluate an expression
9353 involving such types, and when. This does not cover how the semantic
9354 information is encoded by GNAT as this is covered separatly. For the
9355 document used as the reference for the GNAT encoding, see exp_dbug.ads
9356 in the GNAT sources.
9358 Ideally, we should embed each part of this description next to its
9359 associated code. Unfortunately, the amount of code is so vast right
9360 now that it's hard to see whether the code handling a particular
9361 situation might be duplicated or not. One day, when the code is
9362 cleaned up, this guide might become redundant with the comments
9363 inserted in the code, and we might want to remove it.
9365 2. ``Fixing'' an Entity, the Simple Case:
9366 -----------------------------------------
9368 When evaluating Ada expressions, the tricky issue is that they may
9369 reference entities whose type contents and size are not statically
9370 known. Consider for instance a variant record:
9372 type Rec (Empty : Boolean := True) is record
9375 when False => Value : Integer;
9378 Yes : Rec := (Empty => False, Value => 1);
9379 No : Rec := (empty => True);
9381 The size and contents of that record depends on the value of the
9382 descriminant (Rec.Empty). At this point, neither the debugging
9383 information nor the associated type structure in GDB are able to
9384 express such dynamic types. So what the debugger does is to create
9385 "fixed" versions of the type that applies to the specific object.
9386 We also informally refer to this opperation as "fixing" an object,
9387 which means creating its associated fixed type.
9389 Example: when printing the value of variable "Yes" above, its fixed
9390 type would look like this:
9397 On the other hand, if we printed the value of "No", its fixed type
9404 Things become a little more complicated when trying to fix an entity
9405 with a dynamic type that directly contains another dynamic type,
9406 such as an array of variant records, for instance. There are
9407 two possible cases: Arrays, and records.
9409 3. ``Fixing'' Arrays:
9410 ---------------------
9412 The type structure in GDB describes an array in terms of its bounds,
9413 and the type of its elements. By design, all elements in the array
9414 have the same type and we cannot represent an array of variant elements
9415 using the current type structure in GDB. When fixing an array,
9416 we cannot fix the array element, as we would potentially need one
9417 fixed type per element of the array. As a result, the best we can do
9418 when fixing an array is to produce an array whose bounds and size
9419 are correct (allowing us to read it from memory), but without having
9420 touched its element type. Fixing each element will be done later,
9421 when (if) necessary.
9423 Arrays are a little simpler to handle than records, because the same
9424 amount of memory is allocated for each element of the array, even if
9425 the amount of space actually used by each element differs from element
9426 to element. Consider for instance the following array of type Rec:
9428 type Rec_Array is array (1 .. 2) of Rec;
9430 The actual amount of memory occupied by each element might be different
9431 from element to element, depending on the value of their discriminant.
9432 But the amount of space reserved for each element in the array remains
9433 fixed regardless. So we simply need to compute that size using
9434 the debugging information available, from which we can then determine
9435 the array size (we multiply the number of elements of the array by
9436 the size of each element).
9438 The simplest case is when we have an array of a constrained element
9439 type. For instance, consider the following type declarations:
9441 type Bounded_String (Max_Size : Integer) is
9443 Buffer : String (1 .. Max_Size);
9445 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9447 In this case, the compiler describes the array as an array of
9448 variable-size elements (identified by its XVS suffix) for which
9449 the size can be read in the parallel XVZ variable.
9451 In the case of an array of an unconstrained element type, the compiler
9452 wraps the array element inside a private PAD type. This type should not
9453 be shown to the user, and must be "unwrap"'ed before printing. Note
9454 that we also use the adjective "aligner" in our code to designate
9455 these wrapper types.
9457 In some cases, the size allocated for each element is statically
9458 known. In that case, the PAD type already has the correct size,
9459 and the array element should remain unfixed.
9461 But there are cases when this size is not statically known.
9462 For instance, assuming that "Five" is an integer variable:
9464 type Dynamic is array (1 .. Five) of Integer;
9465 type Wrapper (Has_Length : Boolean := False) is record
9468 when True => Length : Integer;
9472 type Wrapper_Array is array (1 .. 2) of Wrapper;
9474 Hello : Wrapper_Array := (others => (Has_Length => True,
9475 Data => (others => 17),
9479 The debugging info would describe variable Hello as being an
9480 array of a PAD type. The size of that PAD type is not statically
9481 known, but can be determined using a parallel XVZ variable.
9482 In that case, a copy of the PAD type with the correct size should
9483 be used for the fixed array.
9485 3. ``Fixing'' record type objects:
9486 ----------------------------------
9488 Things are slightly different from arrays in the case of dynamic
9489 record types. In this case, in order to compute the associated
9490 fixed type, we need to determine the size and offset of each of
9491 its components. This, in turn, requires us to compute the fixed
9492 type of each of these components.
9494 Consider for instance the example:
9496 type Bounded_String (Max_Size : Natural) is record
9497 Str : String (1 .. Max_Size);
9500 My_String : Bounded_String (Max_Size => 10);
9502 In that case, the position of field "Length" depends on the size
9503 of field Str, which itself depends on the value of the Max_Size
9504 discriminant. In order to fix the type of variable My_String,
9505 we need to fix the type of field Str. Therefore, fixing a variant
9506 record requires us to fix each of its components.
9508 However, if a component does not have a dynamic size, the component
9509 should not be fixed. In particular, fields that use a PAD type
9510 should not fixed. Here is an example where this might happen
9511 (assuming type Rec above):
9513 type Container (Big : Boolean) is record
9517 when True => Another : Integer;
9521 My_Container : Container := (Big => False,
9522 First => (Empty => True),
9525 In that example, the compiler creates a PAD type for component First,
9526 whose size is constant, and then positions the component After just
9527 right after it. The offset of component After is therefore constant
9530 The debugger computes the position of each field based on an algorithm
9531 that uses, among other things, the actual position and size of the field
9532 preceding it. Let's now imagine that the user is trying to print
9533 the value of My_Container. If the type fixing was recursive, we would
9534 end up computing the offset of field After based on the size of the
9535 fixed version of field First. And since in our example First has
9536 only one actual field, the size of the fixed type is actually smaller
9537 than the amount of space allocated to that field, and thus we would
9538 compute the wrong offset of field After.
9540 To make things more complicated, we need to watch out for dynamic
9541 components of variant records (identified by the ___XVL suffix in
9542 the component name). Even if the target type is a PAD type, the size
9543 of that type might not be statically known. So the PAD type needs
9544 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9545 we might end up with the wrong size for our component. This can be
9546 observed with the following type declarations:
9548 type Octal is new Integer range 0 .. 7;
9549 type Octal_Array is array (Positive range <>) of Octal;
9550 pragma Pack (Octal_Array);
9552 type Octal_Buffer (Size : Positive) is record
9553 Buffer : Octal_Array (1 .. Size);
9557 In that case, Buffer is a PAD type whose size is unset and needs
9558 to be computed by fixing the unwrapped type.
9560 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9561 ----------------------------------------------------------
9563 Lastly, when should the sub-elements of an entity that remained unfixed
9564 thus far, be actually fixed?
9566 The answer is: Only when referencing that element. For instance
9567 when selecting one component of a record, this specific component
9568 should be fixed at that point in time. Or when printing the value
9569 of a record, each component should be fixed before its value gets
9570 printed. Similarly for arrays, the element of the array should be
9571 fixed when printing each element of the array, or when extracting
9572 one element out of that array. On the other hand, fixing should
9573 not be performed on the elements when taking a slice of an array!
9575 Note that one of the side-effects of miscomputing the offset and
9576 size of each field is that we end up also miscomputing the size
9577 of the containing type. This can have adverse results when computing
9578 the value of an entity. GDB fetches the value of an entity based
9579 on the size of its type, and thus a wrong size causes GDB to fetch
9580 the wrong amount of memory. In the case where the computed size is
9581 too small, GDB fetches too little data to print the value of our
9582 entiry. Results in this case as unpredicatble, as we usually read
9583 past the buffer containing the data =:-o. */
9585 /* Implement the evaluate_exp routine in the exp_descriptor structure
9586 for the Ada language. */
9588 static struct value *
9589 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9590 int *pos, enum noside noside)
9595 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9598 struct value **argvec;
9602 op = exp->elts[pc].opcode;
9608 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9610 if (noside == EVAL_NORMAL)
9611 arg1 = unwrap_value (arg1);
9613 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9614 then we need to perform the conversion manually, because
9615 evaluate_subexp_standard doesn't do it. This conversion is
9616 necessary in Ada because the different kinds of float/fixed
9617 types in Ada have different representations.
9619 Similarly, we need to perform the conversion from OP_LONG
9621 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9622 arg1 = ada_value_cast (expect_type, arg1, noside);
9628 struct value *result;
9631 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9632 /* The result type will have code OP_STRING, bashed there from
9633 OP_ARRAY. Bash it back. */
9634 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9635 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9641 type = exp->elts[pc + 1].type;
9642 arg1 = evaluate_subexp (type, exp, pos, noside);
9643 if (noside == EVAL_SKIP)
9645 arg1 = ada_value_cast (type, arg1, noside);
9650 type = exp->elts[pc + 1].type;
9651 return ada_evaluate_subexp (type, exp, pos, noside);
9654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9655 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9657 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9660 return ada_value_assign (arg1, arg1);
9662 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9663 except if the lhs of our assignment is a convenience variable.
9664 In the case of assigning to a convenience variable, the lhs
9665 should be exactly the result of the evaluation of the rhs. */
9666 type = value_type (arg1);
9667 if (VALUE_LVAL (arg1) == lval_internalvar)
9669 arg2 = evaluate_subexp (type, exp, pos, noside);
9670 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9672 if (ada_is_fixed_point_type (value_type (arg1)))
9673 arg2 = cast_to_fixed (value_type (arg1), arg2);
9674 else if (ada_is_fixed_point_type (value_type (arg2)))
9676 (_("Fixed-point values must be assigned to fixed-point variables"));
9678 arg2 = coerce_for_assign (value_type (arg1), arg2);
9679 return ada_value_assign (arg1, arg2);
9682 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9683 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9684 if (noside == EVAL_SKIP)
9686 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9687 return (value_from_longest
9689 value_as_long (arg1) + value_as_long (arg2)));
9690 if ((ada_is_fixed_point_type (value_type (arg1))
9691 || ada_is_fixed_point_type (value_type (arg2)))
9692 && value_type (arg1) != value_type (arg2))
9693 error (_("Operands of fixed-point addition must have the same type"));
9694 /* Do the addition, and cast the result to the type of the first
9695 argument. We cannot cast the result to a reference type, so if
9696 ARG1 is a reference type, find its underlying type. */
9697 type = value_type (arg1);
9698 while (TYPE_CODE (type) == TYPE_CODE_REF)
9699 type = TYPE_TARGET_TYPE (type);
9700 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9701 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9704 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9705 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9706 if (noside == EVAL_SKIP)
9708 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9709 return (value_from_longest
9711 value_as_long (arg1) - value_as_long (arg2)));
9712 if ((ada_is_fixed_point_type (value_type (arg1))
9713 || ada_is_fixed_point_type (value_type (arg2)))
9714 && value_type (arg1) != value_type (arg2))
9715 error (_("Operands of fixed-point subtraction "
9716 "must have the same type"));
9717 /* Do the substraction, and cast the result to the type of the first
9718 argument. We cannot cast the result to a reference type, so if
9719 ARG1 is a reference type, find its underlying type. */
9720 type = value_type (arg1);
9721 while (TYPE_CODE (type) == TYPE_CODE_REF)
9722 type = TYPE_TARGET_TYPE (type);
9723 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9724 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9730 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9731 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9732 if (noside == EVAL_SKIP)
9734 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 return value_zero (value_type (arg1), not_lval);
9741 type = builtin_type (exp->gdbarch)->builtin_double;
9742 if (ada_is_fixed_point_type (value_type (arg1)))
9743 arg1 = cast_from_fixed (type, arg1);
9744 if (ada_is_fixed_point_type (value_type (arg2)))
9745 arg2 = cast_from_fixed (type, arg2);
9746 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9747 return ada_value_binop (arg1, arg2, op);
9751 case BINOP_NOTEQUAL:
9752 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9753 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9754 if (noside == EVAL_SKIP)
9756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9761 tem = ada_value_equal (arg1, arg2);
9763 if (op == BINOP_NOTEQUAL)
9765 type = language_bool_type (exp->language_defn, exp->gdbarch);
9766 return value_from_longest (type, (LONGEST) tem);
9769 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9770 if (noside == EVAL_SKIP)
9772 else if (ada_is_fixed_point_type (value_type (arg1)))
9773 return value_cast (value_type (arg1), value_neg (arg1));
9776 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9777 return value_neg (arg1);
9780 case BINOP_LOGICAL_AND:
9781 case BINOP_LOGICAL_OR:
9782 case UNOP_LOGICAL_NOT:
9787 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9788 type = language_bool_type (exp->language_defn, exp->gdbarch);
9789 return value_cast (type, val);
9792 case BINOP_BITWISE_AND:
9793 case BINOP_BITWISE_IOR:
9794 case BINOP_BITWISE_XOR:
9798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9800 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9802 return value_cast (value_type (arg1), val);
9808 if (noside == EVAL_SKIP)
9813 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9814 /* Only encountered when an unresolved symbol occurs in a
9815 context other than a function call, in which case, it is
9817 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9818 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9819 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9821 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9822 /* Check to see if this is a tagged type. We also need to handle
9823 the case where the type is a reference to a tagged type, but
9824 we have to be careful to exclude pointers to tagged types.
9825 The latter should be shown as usual (as a pointer), whereas
9826 a reference should mostly be transparent to the user. */
9827 if (ada_is_tagged_type (type, 0)
9828 || (TYPE_CODE(type) == TYPE_CODE_REF
9829 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9831 /* Tagged types are a little special in the fact that the real
9832 type is dynamic and can only be determined by inspecting the
9833 object's tag. This means that we need to get the object's
9834 value first (EVAL_NORMAL) and then extract the actual object
9837 Note that we cannot skip the final step where we extract
9838 the object type from its tag, because the EVAL_NORMAL phase
9839 results in dynamic components being resolved into fixed ones.
9840 This can cause problems when trying to print the type
9841 description of tagged types whose parent has a dynamic size:
9842 We use the type name of the "_parent" component in order
9843 to print the name of the ancestor type in the type description.
9844 If that component had a dynamic size, the resolution into
9845 a fixed type would result in the loss of that type name,
9846 thus preventing us from printing the name of the ancestor
9847 type in the type description. */
9848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9850 if (TYPE_CODE (type) != TYPE_CODE_REF)
9852 struct type *actual_type;
9854 actual_type = type_from_tag (ada_value_tag (arg1));
9855 if (actual_type == NULL)
9856 /* If, for some reason, we were unable to determine
9857 the actual type from the tag, then use the static
9858 approximation that we just computed as a fallback.
9859 This can happen if the debugging information is
9860 incomplete, for instance. */
9862 return value_zero (actual_type, not_lval);
9866 /* In the case of a ref, ada_coerce_ref takes care
9867 of determining the actual type. But the evaluation
9868 should return a ref as it should be valid to ask
9869 for its address; so rebuild a ref after coerce. */
9870 arg1 = ada_coerce_ref (arg1);
9871 return value_ref (arg1);
9877 (to_static_fixed_type
9878 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9883 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9884 return ada_to_fixed_value (arg1);
9890 /* Allocate arg vector, including space for the function to be
9891 called in argvec[0] and a terminating NULL. */
9892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9894 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9896 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9897 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9898 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9899 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9902 for (tem = 0; tem <= nargs; tem += 1)
9903 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9906 if (noside == EVAL_SKIP)
9910 if (ada_is_constrained_packed_array_type
9911 (desc_base_type (value_type (argvec[0]))))
9912 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9913 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9914 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9915 /* This is a packed array that has already been fixed, and
9916 therefore already coerced to a simple array. Nothing further
9919 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9920 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9921 && VALUE_LVAL (argvec[0]) == lval_memory))
9922 argvec[0] = value_addr (argvec[0]);
9924 type = ada_check_typedef (value_type (argvec[0]));
9926 /* Ada allows us to implicitly dereference arrays when subscripting
9927 them. So, if this is an array typedef (encoding use for array
9928 access types encoded as fat pointers), strip it now. */
9929 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9930 type = ada_typedef_target_type (type);
9932 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9934 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9936 case TYPE_CODE_FUNC:
9937 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9939 case TYPE_CODE_ARRAY:
9941 case TYPE_CODE_STRUCT:
9942 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9943 argvec[0] = ada_value_ind (argvec[0]);
9944 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9947 error (_("cannot subscript or call something of type `%s'"),
9948 ada_type_name (value_type (argvec[0])));
9953 switch (TYPE_CODE (type))
9955 case TYPE_CODE_FUNC:
9956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 struct type *rtype = TYPE_TARGET_TYPE (type);
9960 if (TYPE_GNU_IFUNC (type))
9961 return allocate_value (TYPE_TARGET_TYPE (rtype));
9962 return allocate_value (rtype);
9964 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9965 case TYPE_CODE_INTERNAL_FUNCTION:
9966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9967 /* We don't know anything about what the internal
9968 function might return, but we have to return
9970 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9973 return call_internal_function (exp->gdbarch, exp->language_defn,
9974 argvec[0], nargs, argvec + 1);
9976 case TYPE_CODE_STRUCT:
9980 arity = ada_array_arity (type);
9981 type = ada_array_element_type (type, nargs);
9983 error (_("cannot subscript or call a record"));
9985 error (_("wrong number of subscripts; expecting %d"), arity);
9986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9987 return value_zero (ada_aligned_type (type), lval_memory);
9989 unwrap_value (ada_value_subscript
9990 (argvec[0], nargs, argvec + 1));
9992 case TYPE_CODE_ARRAY:
9993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9995 type = ada_array_element_type (type, nargs);
9997 error (_("element type of array unknown"));
9999 return value_zero (ada_aligned_type (type), lval_memory);
10002 unwrap_value (ada_value_subscript
10003 (ada_coerce_to_simple_array (argvec[0]),
10004 nargs, argvec + 1));
10005 case TYPE_CODE_PTR: /* Pointer to array */
10006 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10009 type = ada_array_element_type (type, nargs);
10011 error (_("element type of array unknown"));
10013 return value_zero (ada_aligned_type (type), lval_memory);
10016 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10017 nargs, argvec + 1));
10020 error (_("Attempt to index or call something other than an "
10021 "array or function"));
10026 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10027 struct value *low_bound_val =
10028 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10029 struct value *high_bound_val =
10030 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10032 LONGEST high_bound;
10034 low_bound_val = coerce_ref (low_bound_val);
10035 high_bound_val = coerce_ref (high_bound_val);
10036 low_bound = pos_atr (low_bound_val);
10037 high_bound = pos_atr (high_bound_val);
10039 if (noside == EVAL_SKIP)
10042 /* If this is a reference to an aligner type, then remove all
10044 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10045 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10046 TYPE_TARGET_TYPE (value_type (array)) =
10047 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10049 if (ada_is_constrained_packed_array_type (value_type (array)))
10050 error (_("cannot slice a packed array"));
10052 /* If this is a reference to an array or an array lvalue,
10053 convert to a pointer. */
10054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10055 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10056 && VALUE_LVAL (array) == lval_memory))
10057 array = value_addr (array);
10059 if (noside == EVAL_AVOID_SIDE_EFFECTS
10060 && ada_is_array_descriptor_type (ada_check_typedef
10061 (value_type (array))))
10062 return empty_array (ada_type_of_array (array, 0), low_bound);
10064 array = ada_coerce_to_simple_array_ptr (array);
10066 /* If we have more than one level of pointer indirection,
10067 dereference the value until we get only one level. */
10068 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10069 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10071 array = value_ind (array);
10073 /* Make sure we really do have an array type before going further,
10074 to avoid a SEGV when trying to get the index type or the target
10075 type later down the road if the debug info generated by
10076 the compiler is incorrect or incomplete. */
10077 if (!ada_is_simple_array_type (value_type (array)))
10078 error (_("cannot take slice of non-array"));
10080 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10083 struct type *type0 = ada_check_typedef (value_type (array));
10085 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10086 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10089 struct type *arr_type0 =
10090 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10092 return ada_value_slice_from_ptr (array, arr_type0,
10093 longest_to_int (low_bound),
10094 longest_to_int (high_bound));
10097 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10099 else if (high_bound < low_bound)
10100 return empty_array (value_type (array), low_bound);
10102 return ada_value_slice (array, longest_to_int (low_bound),
10103 longest_to_int (high_bound));
10106 case UNOP_IN_RANGE:
10108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10109 type = check_typedef (exp->elts[pc + 1].type);
10111 if (noside == EVAL_SKIP)
10114 switch (TYPE_CODE (type))
10117 lim_warning (_("Membership test incompletely implemented; "
10118 "always returns true"));
10119 type = language_bool_type (exp->language_defn, exp->gdbarch);
10120 return value_from_longest (type, (LONGEST) 1);
10122 case TYPE_CODE_RANGE:
10123 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10124 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10129 value_from_longest (type,
10130 (value_less (arg1, arg3)
10131 || value_equal (arg1, arg3))
10132 && (value_less (arg2, arg1)
10133 || value_equal (arg2, arg1)));
10136 case BINOP_IN_BOUNDS:
10138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10141 if (noside == EVAL_SKIP)
10144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10146 type = language_bool_type (exp->language_defn, exp->gdbarch);
10147 return value_zero (type, not_lval);
10150 tem = longest_to_int (exp->elts[pc + 1].longconst);
10152 type = ada_index_type (value_type (arg2), tem, "range");
10154 type = value_type (arg1);
10156 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10157 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10161 type = language_bool_type (exp->language_defn, exp->gdbarch);
10163 value_from_longest (type,
10164 (value_less (arg1, arg3)
10165 || value_equal (arg1, arg3))
10166 && (value_less (arg2, arg1)
10167 || value_equal (arg2, arg1)));
10169 case TERNOP_IN_RANGE:
10170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10171 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10172 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10174 if (noside == EVAL_SKIP)
10177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10179 type = language_bool_type (exp->language_defn, exp->gdbarch);
10181 value_from_longest (type,
10182 (value_less (arg1, arg3)
10183 || value_equal (arg1, arg3))
10184 && (value_less (arg2, arg1)
10185 || value_equal (arg2, arg1)));
10189 case OP_ATR_LENGTH:
10191 struct type *type_arg;
10193 if (exp->elts[*pos].opcode == OP_TYPE)
10195 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10197 type_arg = check_typedef (exp->elts[pc + 2].type);
10201 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10205 if (exp->elts[*pos].opcode != OP_LONG)
10206 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10207 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10210 if (noside == EVAL_SKIP)
10213 if (type_arg == NULL)
10215 arg1 = ada_coerce_ref (arg1);
10217 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10218 arg1 = ada_coerce_to_simple_array (arg1);
10220 type = ada_index_type (value_type (arg1), tem,
10221 ada_attribute_name (op));
10223 type = builtin_type (exp->gdbarch)->builtin_int;
10225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10226 return allocate_value (type);
10230 default: /* Should never happen. */
10231 error (_("unexpected attribute encountered"));
10233 return value_from_longest
10234 (type, ada_array_bound (arg1, tem, 0));
10236 return value_from_longest
10237 (type, ada_array_bound (arg1, tem, 1));
10238 case OP_ATR_LENGTH:
10239 return value_from_longest
10240 (type, ada_array_length (arg1, tem));
10243 else if (discrete_type_p (type_arg))
10245 struct type *range_type;
10246 const char *name = ada_type_name (type_arg);
10249 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10250 range_type = to_fixed_range_type (type_arg, NULL);
10251 if (range_type == NULL)
10252 range_type = type_arg;
10256 error (_("unexpected attribute encountered"));
10258 return value_from_longest
10259 (range_type, ada_discrete_type_low_bound (range_type));
10261 return value_from_longest
10262 (range_type, ada_discrete_type_high_bound (range_type));
10263 case OP_ATR_LENGTH:
10264 error (_("the 'length attribute applies only to array types"));
10267 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10268 error (_("unimplemented type attribute"));
10273 if (ada_is_constrained_packed_array_type (type_arg))
10274 type_arg = decode_constrained_packed_array_type (type_arg);
10276 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10278 type = builtin_type (exp->gdbarch)->builtin_int;
10280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10281 return allocate_value (type);
10286 error (_("unexpected attribute encountered"));
10288 low = ada_array_bound_from_type (type_arg, tem, 0);
10289 return value_from_longest (type, low);
10291 high = ada_array_bound_from_type (type_arg, tem, 1);
10292 return value_from_longest (type, high);
10293 case OP_ATR_LENGTH:
10294 low = ada_array_bound_from_type (type_arg, tem, 0);
10295 high = ada_array_bound_from_type (type_arg, tem, 1);
10296 return value_from_longest (type, high - low + 1);
10302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10303 if (noside == EVAL_SKIP)
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10307 return value_zero (ada_tag_type (arg1), not_lval);
10309 return ada_value_tag (arg1);
10313 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10314 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10315 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10316 if (noside == EVAL_SKIP)
10318 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10319 return value_zero (value_type (arg1), not_lval);
10322 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10323 return value_binop (arg1, arg2,
10324 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10327 case OP_ATR_MODULUS:
10329 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10331 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10332 if (noside == EVAL_SKIP)
10335 if (!ada_is_modular_type (type_arg))
10336 error (_("'modulus must be applied to modular type"));
10338 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10339 ada_modulus (type_arg));
10344 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10346 if (noside == EVAL_SKIP)
10348 type = builtin_type (exp->gdbarch)->builtin_int;
10349 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10350 return value_zero (type, not_lval);
10352 return value_pos_atr (type, arg1);
10355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10356 type = value_type (arg1);
10358 /* If the argument is a reference, then dereference its type, since
10359 the user is really asking for the size of the actual object,
10360 not the size of the pointer. */
10361 if (TYPE_CODE (type) == TYPE_CODE_REF)
10362 type = TYPE_TARGET_TYPE (type);
10364 if (noside == EVAL_SKIP)
10366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10369 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10370 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 type = exp->elts[pc + 2].type;
10376 if (noside == EVAL_SKIP)
10378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return value_zero (type, not_lval);
10381 return value_val_atr (type, arg1);
10384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10385 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10386 if (noside == EVAL_SKIP)
10388 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10389 return value_zero (value_type (arg1), not_lval);
10392 /* For integer exponentiation operations,
10393 only promote the first argument. */
10394 if (is_integral_type (value_type (arg2)))
10395 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10397 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10399 return value_binop (arg1, arg2, op);
10403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10404 if (noside == EVAL_SKIP)
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 if (noside == EVAL_SKIP)
10413 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10414 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10415 return value_neg (arg1);
10420 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10421 if (noside == EVAL_SKIP)
10423 type = ada_check_typedef (value_type (arg1));
10424 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10426 if (ada_is_array_descriptor_type (type))
10427 /* GDB allows dereferencing GNAT array descriptors. */
10429 struct type *arrType = ada_type_of_array (arg1, 0);
10431 if (arrType == NULL)
10432 error (_("Attempt to dereference null array pointer."));
10433 return value_at_lazy (arrType, 0);
10435 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10436 || TYPE_CODE (type) == TYPE_CODE_REF
10437 /* In C you can dereference an array to get the 1st elt. */
10438 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10440 type = to_static_fixed_type
10442 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10444 return value_zero (type, lval_memory);
10446 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10448 /* GDB allows dereferencing an int. */
10449 if (expect_type == NULL)
10450 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10455 to_static_fixed_type (ada_aligned_type (expect_type));
10456 return value_zero (expect_type, lval_memory);
10460 error (_("Attempt to take contents of a non-pointer value."));
10462 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10463 type = ada_check_typedef (value_type (arg1));
10465 if (TYPE_CODE (type) == TYPE_CODE_INT)
10466 /* GDB allows dereferencing an int. If we were given
10467 the expect_type, then use that as the target type.
10468 Otherwise, assume that the target type is an int. */
10470 if (expect_type != NULL)
10471 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10474 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10475 (CORE_ADDR) value_as_address (arg1));
10478 if (ada_is_array_descriptor_type (type))
10479 /* GDB allows dereferencing GNAT array descriptors. */
10480 return ada_coerce_to_simple_array (arg1);
10482 return ada_value_ind (arg1);
10484 case STRUCTOP_STRUCT:
10485 tem = longest_to_int (exp->elts[pc + 1].longconst);
10486 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10488 if (noside == EVAL_SKIP)
10490 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10492 struct type *type1 = value_type (arg1);
10494 if (ada_is_tagged_type (type1, 1))
10496 type = ada_lookup_struct_elt_type (type1,
10497 &exp->elts[pc + 2].string,
10500 /* In this case, we assume that the field COULD exist
10501 in some extension of the type. Return an object of
10502 "type" void, which will match any formal
10503 (see ada_type_match). */
10504 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10509 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10512 return value_zero (ada_aligned_type (type), lval_memory);
10515 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10516 arg1 = unwrap_value (arg1);
10517 return ada_to_fixed_value (arg1);
10520 /* The value is not supposed to be used. This is here to make it
10521 easier to accommodate expressions that contain types. */
10523 if (noside == EVAL_SKIP)
10525 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10526 return allocate_value (exp->elts[pc + 1].type);
10528 error (_("Attempt to use a type name as an expression"));
10533 case OP_DISCRETE_RANGE:
10534 case OP_POSITIONAL:
10536 if (noside == EVAL_NORMAL)
10540 error (_("Undefined name, ambiguous name, or renaming used in "
10541 "component association: %s."), &exp->elts[pc+2].string);
10543 error (_("Aggregates only allowed on the right of an assignment"));
10545 internal_error (__FILE__, __LINE__,
10546 _("aggregate apparently mangled"));
10549 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10551 for (tem = 0; tem < nargs; tem += 1)
10552 ada_evaluate_subexp (NULL, exp, pos, noside);
10557 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10563 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10564 type name that encodes the 'small and 'delta information.
10565 Otherwise, return NULL. */
10567 static const char *
10568 fixed_type_info (struct type *type)
10570 const char *name = ada_type_name (type);
10571 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10573 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10575 const char *tail = strstr (name, "___XF_");
10582 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10583 return fixed_type_info (TYPE_TARGET_TYPE (type));
10588 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10591 ada_is_fixed_point_type (struct type *type)
10593 return fixed_type_info (type) != NULL;
10596 /* Return non-zero iff TYPE represents a System.Address type. */
10599 ada_is_system_address_type (struct type *type)
10601 return (TYPE_NAME (type)
10602 && strcmp (TYPE_NAME (type), "system__address") == 0);
10605 /* Assuming that TYPE is the representation of an Ada fixed-point
10606 type, return its delta, or -1 if the type is malformed and the
10607 delta cannot be determined. */
10610 ada_delta (struct type *type)
10612 const char *encoding = fixed_type_info (type);
10615 /* Strictly speaking, num and den are encoded as integer. However,
10616 they may not fit into a long, and they will have to be converted
10617 to DOUBLEST anyway. So scan them as DOUBLEST. */
10618 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10625 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10626 factor ('SMALL value) associated with the type. */
10629 scaling_factor (struct type *type)
10631 const char *encoding = fixed_type_info (type);
10632 DOUBLEST num0, den0, num1, den1;
10635 /* Strictly speaking, num's and den's are encoded as integer. However,
10636 they may not fit into a long, and they will have to be converted
10637 to DOUBLEST anyway. So scan them as DOUBLEST. */
10638 n = sscanf (encoding,
10639 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10640 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10641 &num0, &den0, &num1, &den1);
10646 return num1 / den1;
10648 return num0 / den0;
10652 /* Assuming that X is the representation of a value of fixed-point
10653 type TYPE, return its floating-point equivalent. */
10656 ada_fixed_to_float (struct type *type, LONGEST x)
10658 return (DOUBLEST) x *scaling_factor (type);
10661 /* The representation of a fixed-point value of type TYPE
10662 corresponding to the value X. */
10665 ada_float_to_fixed (struct type *type, DOUBLEST x)
10667 return (LONGEST) (x / scaling_factor (type) + 0.5);
10674 /* Scan STR beginning at position K for a discriminant name, and
10675 return the value of that discriminant field of DVAL in *PX. If
10676 PNEW_K is not null, put the position of the character beyond the
10677 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10678 not alter *PX and *PNEW_K if unsuccessful. */
10681 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10684 static char *bound_buffer = NULL;
10685 static size_t bound_buffer_len = 0;
10688 struct value *bound_val;
10690 if (dval == NULL || str == NULL || str[k] == '\0')
10693 pend = strstr (str + k, "__");
10697 k += strlen (bound);
10701 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10702 bound = bound_buffer;
10703 strncpy (bound_buffer, str + k, pend - (str + k));
10704 bound[pend - (str + k)] = '\0';
10708 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10709 if (bound_val == NULL)
10712 *px = value_as_long (bound_val);
10713 if (pnew_k != NULL)
10718 /* Value of variable named NAME in the current environment. If
10719 no such variable found, then if ERR_MSG is null, returns 0, and
10720 otherwise causes an error with message ERR_MSG. */
10722 static struct value *
10723 get_var_value (char *name, char *err_msg)
10725 struct ada_symbol_info *syms;
10728 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10733 if (err_msg == NULL)
10736 error (("%s"), err_msg);
10739 return value_of_variable (syms[0].sym, syms[0].block);
10742 /* Value of integer variable named NAME in the current environment. If
10743 no such variable found, returns 0, and sets *FLAG to 0. If
10744 successful, sets *FLAG to 1. */
10747 get_int_var_value (char *name, int *flag)
10749 struct value *var_val = get_var_value (name, 0);
10761 return value_as_long (var_val);
10766 /* Return a range type whose base type is that of the range type named
10767 NAME in the current environment, and whose bounds are calculated
10768 from NAME according to the GNAT range encoding conventions.
10769 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10770 corresponding range type from debug information; fall back to using it
10771 if symbol lookup fails. If a new type must be created, allocate it
10772 like ORIG_TYPE was. The bounds information, in general, is encoded
10773 in NAME, the base type given in the named range type. */
10775 static struct type *
10776 to_fixed_range_type (struct type *raw_type, struct value *dval)
10779 struct type *base_type;
10780 char *subtype_info;
10782 gdb_assert (raw_type != NULL);
10783 gdb_assert (TYPE_NAME (raw_type) != NULL);
10785 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10786 base_type = TYPE_TARGET_TYPE (raw_type);
10788 base_type = raw_type;
10790 name = TYPE_NAME (raw_type);
10791 subtype_info = strstr (name, "___XD");
10792 if (subtype_info == NULL)
10794 LONGEST L = ada_discrete_type_low_bound (raw_type);
10795 LONGEST U = ada_discrete_type_high_bound (raw_type);
10797 if (L < INT_MIN || U > INT_MAX)
10800 return create_range_type (alloc_type_copy (raw_type), raw_type,
10801 ada_discrete_type_low_bound (raw_type),
10802 ada_discrete_type_high_bound (raw_type));
10806 static char *name_buf = NULL;
10807 static size_t name_len = 0;
10808 int prefix_len = subtype_info - name;
10814 GROW_VECT (name_buf, name_len, prefix_len + 5);
10815 strncpy (name_buf, name, prefix_len);
10816 name_buf[prefix_len] = '\0';
10819 bounds_str = strchr (subtype_info, '_');
10822 if (*subtype_info == 'L')
10824 if (!ada_scan_number (bounds_str, n, &L, &n)
10825 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10827 if (bounds_str[n] == '_')
10829 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10837 strcpy (name_buf + prefix_len, "___L");
10838 L = get_int_var_value (name_buf, &ok);
10841 lim_warning (_("Unknown lower bound, using 1."));
10846 if (*subtype_info == 'U')
10848 if (!ada_scan_number (bounds_str, n, &U, &n)
10849 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10856 strcpy (name_buf + prefix_len, "___U");
10857 U = get_int_var_value (name_buf, &ok);
10860 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10865 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10866 TYPE_NAME (type) = name;
10871 /* True iff NAME is the name of a range type. */
10874 ada_is_range_type_name (const char *name)
10876 return (name != NULL && strstr (name, "___XD"));
10880 /* Modular types */
10882 /* True iff TYPE is an Ada modular type. */
10885 ada_is_modular_type (struct type *type)
10887 struct type *subranged_type = get_base_type (type);
10889 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10890 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10891 && TYPE_UNSIGNED (subranged_type));
10894 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10897 ada_modulus (struct type *type)
10899 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10903 /* Ada exception catchpoint support:
10904 ---------------------------------
10906 We support 3 kinds of exception catchpoints:
10907 . catchpoints on Ada exceptions
10908 . catchpoints on unhandled Ada exceptions
10909 . catchpoints on failed assertions
10911 Exceptions raised during failed assertions, or unhandled exceptions
10912 could perfectly be caught with the general catchpoint on Ada exceptions.
10913 However, we can easily differentiate these two special cases, and having
10914 the option to distinguish these two cases from the rest can be useful
10915 to zero-in on certain situations.
10917 Exception catchpoints are a specialized form of breakpoint,
10918 since they rely on inserting breakpoints inside known routines
10919 of the GNAT runtime. The implementation therefore uses a standard
10920 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10923 Support in the runtime for exception catchpoints have been changed
10924 a few times already, and these changes affect the implementation
10925 of these catchpoints. In order to be able to support several
10926 variants of the runtime, we use a sniffer that will determine
10927 the runtime variant used by the program being debugged. */
10929 /* The different types of catchpoints that we introduced for catching
10932 enum exception_catchpoint_kind
10934 ex_catch_exception,
10935 ex_catch_exception_unhandled,
10939 /* Ada's standard exceptions. */
10941 static char *standard_exc[] = {
10942 "constraint_error",
10948 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10950 /* A structure that describes how to support exception catchpoints
10951 for a given executable. */
10953 struct exception_support_info
10955 /* The name of the symbol to break on in order to insert
10956 a catchpoint on exceptions. */
10957 const char *catch_exception_sym;
10959 /* The name of the symbol to break on in order to insert
10960 a catchpoint on unhandled exceptions. */
10961 const char *catch_exception_unhandled_sym;
10963 /* The name of the symbol to break on in order to insert
10964 a catchpoint on failed assertions. */
10965 const char *catch_assert_sym;
10967 /* Assuming that the inferior just triggered an unhandled exception
10968 catchpoint, this function is responsible for returning the address
10969 in inferior memory where the name of that exception is stored.
10970 Return zero if the address could not be computed. */
10971 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10974 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10975 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10977 /* The following exception support info structure describes how to
10978 implement exception catchpoints with the latest version of the
10979 Ada runtime (as of 2007-03-06). */
10981 static const struct exception_support_info default_exception_support_info =
10983 "__gnat_debug_raise_exception", /* catch_exception_sym */
10984 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10985 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10986 ada_unhandled_exception_name_addr
10989 /* The following exception support info structure describes how to
10990 implement exception catchpoints with a slightly older version
10991 of the Ada runtime. */
10993 static const struct exception_support_info exception_support_info_fallback =
10995 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10997 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10998 ada_unhandled_exception_name_addr_from_raise
11001 /* Return nonzero if we can detect the exception support routines
11002 described in EINFO.
11004 This function errors out if an abnormal situation is detected
11005 (for instance, if we find the exception support routines, but
11006 that support is found to be incomplete). */
11009 ada_has_this_exception_support (const struct exception_support_info *einfo)
11011 struct symbol *sym;
11013 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11014 that should be compiled with debugging information. As a result, we
11015 expect to find that symbol in the symtabs. */
11017 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11020 /* Perhaps we did not find our symbol because the Ada runtime was
11021 compiled without debugging info, or simply stripped of it.
11022 It happens on some GNU/Linux distributions for instance, where
11023 users have to install a separate debug package in order to get
11024 the runtime's debugging info. In that situation, let the user
11025 know why we cannot insert an Ada exception catchpoint.
11027 Note: Just for the purpose of inserting our Ada exception
11028 catchpoint, we could rely purely on the associated minimal symbol.
11029 But we would be operating in degraded mode anyway, since we are
11030 still lacking the debugging info needed later on to extract
11031 the name of the exception being raised (this name is printed in
11032 the catchpoint message, and is also used when trying to catch
11033 a specific exception). We do not handle this case for now. */
11034 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11035 error (_("Your Ada runtime appears to be missing some debugging "
11036 "information.\nCannot insert Ada exception catchpoint "
11037 "in this configuration."));
11042 /* Make sure that the symbol we found corresponds to a function. */
11044 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11045 error (_("Symbol \"%s\" is not a function (class = %d)"),
11046 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11051 /* Inspect the Ada runtime and determine which exception info structure
11052 should be used to provide support for exception catchpoints.
11054 This function will always set the per-inferior exception_info,
11055 or raise an error. */
11058 ada_exception_support_info_sniffer (void)
11060 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11062 /* If the exception info is already known, then no need to recompute it. */
11063 if (data->exception_info != NULL)
11066 /* Check the latest (default) exception support info. */
11067 if (ada_has_this_exception_support (&default_exception_support_info))
11069 data->exception_info = &default_exception_support_info;
11073 /* Try our fallback exception suport info. */
11074 if (ada_has_this_exception_support (&exception_support_info_fallback))
11076 data->exception_info = &exception_support_info_fallback;
11080 /* Sometimes, it is normal for us to not be able to find the routine
11081 we are looking for. This happens when the program is linked with
11082 the shared version of the GNAT runtime, and the program has not been
11083 started yet. Inform the user of these two possible causes if
11086 if (ada_update_initial_language (language_unknown) != language_ada)
11087 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11089 /* If the symbol does not exist, then check that the program is
11090 already started, to make sure that shared libraries have been
11091 loaded. If it is not started, this may mean that the symbol is
11092 in a shared library. */
11094 if (ptid_get_pid (inferior_ptid) == 0)
11095 error (_("Unable to insert catchpoint. Try to start the program first."));
11097 /* At this point, we know that we are debugging an Ada program and
11098 that the inferior has been started, but we still are not able to
11099 find the run-time symbols. That can mean that we are in
11100 configurable run time mode, or that a-except as been optimized
11101 out by the linker... In any case, at this point it is not worth
11102 supporting this feature. */
11104 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11107 /* True iff FRAME is very likely to be that of a function that is
11108 part of the runtime system. This is all very heuristic, but is
11109 intended to be used as advice as to what frames are uninteresting
11113 is_known_support_routine (struct frame_info *frame)
11115 struct symtab_and_line sal;
11117 enum language func_lang;
11119 const char *fullname;
11121 /* If this code does not have any debugging information (no symtab),
11122 This cannot be any user code. */
11124 find_frame_sal (frame, &sal);
11125 if (sal.symtab == NULL)
11128 /* If there is a symtab, but the associated source file cannot be
11129 located, then assume this is not user code: Selecting a frame
11130 for which we cannot display the code would not be very helpful
11131 for the user. This should also take care of case such as VxWorks
11132 where the kernel has some debugging info provided for a few units. */
11134 fullname = symtab_to_fullname (sal.symtab);
11135 if (access (fullname, R_OK) != 0)
11138 /* Check the unit filename againt the Ada runtime file naming.
11139 We also check the name of the objfile against the name of some
11140 known system libraries that sometimes come with debugging info
11143 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11145 re_comp (known_runtime_file_name_patterns[i]);
11146 if (re_exec (lbasename (sal.symtab->filename)))
11148 if (sal.symtab->objfile != NULL
11149 && re_exec (sal.symtab->objfile->name))
11153 /* Check whether the function is a GNAT-generated entity. */
11155 find_frame_funname (frame, &func_name, &func_lang, NULL);
11156 if (func_name == NULL)
11159 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11161 re_comp (known_auxiliary_function_name_patterns[i]);
11162 if (re_exec (func_name))
11173 /* Find the first frame that contains debugging information and that is not
11174 part of the Ada run-time, starting from FI and moving upward. */
11177 ada_find_printable_frame (struct frame_info *fi)
11179 for (; fi != NULL; fi = get_prev_frame (fi))
11181 if (!is_known_support_routine (fi))
11190 /* Assuming that the inferior just triggered an unhandled exception
11191 catchpoint, return the address in inferior memory where the name
11192 of the exception is stored.
11194 Return zero if the address could not be computed. */
11197 ada_unhandled_exception_name_addr (void)
11199 return parse_and_eval_address ("e.full_name");
11202 /* Same as ada_unhandled_exception_name_addr, except that this function
11203 should be used when the inferior uses an older version of the runtime,
11204 where the exception name needs to be extracted from a specific frame
11205 several frames up in the callstack. */
11208 ada_unhandled_exception_name_addr_from_raise (void)
11211 struct frame_info *fi;
11212 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11213 struct cleanup *old_chain;
11215 /* To determine the name of this exception, we need to select
11216 the frame corresponding to RAISE_SYM_NAME. This frame is
11217 at least 3 levels up, so we simply skip the first 3 frames
11218 without checking the name of their associated function. */
11219 fi = get_current_frame ();
11220 for (frame_level = 0; frame_level < 3; frame_level += 1)
11222 fi = get_prev_frame (fi);
11224 old_chain = make_cleanup (null_cleanup, NULL);
11228 enum language func_lang;
11230 find_frame_funname (fi, &func_name, &func_lang, NULL);
11231 if (func_name != NULL)
11233 make_cleanup (xfree, func_name);
11235 if (strcmp (func_name,
11236 data->exception_info->catch_exception_sym) == 0)
11237 break; /* We found the frame we were looking for... */
11238 fi = get_prev_frame (fi);
11241 do_cleanups (old_chain);
11247 return parse_and_eval_address ("id.full_name");
11250 /* Assuming the inferior just triggered an Ada exception catchpoint
11251 (of any type), return the address in inferior memory where the name
11252 of the exception is stored, if applicable.
11254 Return zero if the address could not be computed, or if not relevant. */
11257 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11258 struct breakpoint *b)
11260 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11264 case ex_catch_exception:
11265 return (parse_and_eval_address ("e.full_name"));
11268 case ex_catch_exception_unhandled:
11269 return data->exception_info->unhandled_exception_name_addr ();
11272 case ex_catch_assert:
11273 return 0; /* Exception name is not relevant in this case. */
11277 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11281 return 0; /* Should never be reached. */
11284 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11285 any error that ada_exception_name_addr_1 might cause to be thrown.
11286 When an error is intercepted, a warning with the error message is printed,
11287 and zero is returned. */
11290 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11291 struct breakpoint *b)
11293 volatile struct gdb_exception e;
11294 CORE_ADDR result = 0;
11296 TRY_CATCH (e, RETURN_MASK_ERROR)
11298 result = ada_exception_name_addr_1 (ex, b);
11303 warning (_("failed to get exception name: %s"), e.message);
11310 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11312 const struct breakpoint_ops **);
11313 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11315 /* Ada catchpoints.
11317 In the case of catchpoints on Ada exceptions, the catchpoint will
11318 stop the target on every exception the program throws. When a user
11319 specifies the name of a specific exception, we translate this
11320 request into a condition expression (in text form), and then parse
11321 it into an expression stored in each of the catchpoint's locations.
11322 We then use this condition to check whether the exception that was
11323 raised is the one the user is interested in. If not, then the
11324 target is resumed again. We store the name of the requested
11325 exception, in order to be able to re-set the condition expression
11326 when symbols change. */
11328 /* An instance of this type is used to represent an Ada catchpoint
11329 breakpoint location. It includes a "struct bp_location" as a kind
11330 of base class; users downcast to "struct bp_location *" when
11333 struct ada_catchpoint_location
11335 /* The base class. */
11336 struct bp_location base;
11338 /* The condition that checks whether the exception that was raised
11339 is the specific exception the user specified on catchpoint
11341 struct expression *excep_cond_expr;
11344 /* Implement the DTOR method in the bp_location_ops structure for all
11345 Ada exception catchpoint kinds. */
11348 ada_catchpoint_location_dtor (struct bp_location *bl)
11350 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11352 xfree (al->excep_cond_expr);
11355 /* The vtable to be used in Ada catchpoint locations. */
11357 static const struct bp_location_ops ada_catchpoint_location_ops =
11359 ada_catchpoint_location_dtor
11362 /* An instance of this type is used to represent an Ada catchpoint.
11363 It includes a "struct breakpoint" as a kind of base class; users
11364 downcast to "struct breakpoint *" when needed. */
11366 struct ada_catchpoint
11368 /* The base class. */
11369 struct breakpoint base;
11371 /* The name of the specific exception the user specified. */
11372 char *excep_string;
11375 /* Parse the exception condition string in the context of each of the
11376 catchpoint's locations, and store them for later evaluation. */
11379 create_excep_cond_exprs (struct ada_catchpoint *c)
11381 struct cleanup *old_chain;
11382 struct bp_location *bl;
11385 /* Nothing to do if there's no specific exception to catch. */
11386 if (c->excep_string == NULL)
11389 /* Same if there are no locations... */
11390 if (c->base.loc == NULL)
11393 /* Compute the condition expression in text form, from the specific
11394 expection we want to catch. */
11395 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11396 old_chain = make_cleanup (xfree, cond_string);
11398 /* Iterate over all the catchpoint's locations, and parse an
11399 expression for each. */
11400 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11402 struct ada_catchpoint_location *ada_loc
11403 = (struct ada_catchpoint_location *) bl;
11404 struct expression *exp = NULL;
11406 if (!bl->shlib_disabled)
11408 volatile struct gdb_exception e;
11412 TRY_CATCH (e, RETURN_MASK_ERROR)
11414 exp = parse_exp_1 (&s, bl->address,
11415 block_for_pc (bl->address), 0);
11418 warning (_("failed to reevaluate internal exception condition "
11419 "for catchpoint %d: %s"),
11420 c->base.number, e.message);
11423 ada_loc->excep_cond_expr = exp;
11426 do_cleanups (old_chain);
11429 /* Implement the DTOR method in the breakpoint_ops structure for all
11430 exception catchpoint kinds. */
11433 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11435 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11437 xfree (c->excep_string);
11439 bkpt_breakpoint_ops.dtor (b);
11442 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11443 structure for all exception catchpoint kinds. */
11445 static struct bp_location *
11446 allocate_location_exception (enum exception_catchpoint_kind ex,
11447 struct breakpoint *self)
11449 struct ada_catchpoint_location *loc;
11451 loc = XNEW (struct ada_catchpoint_location);
11452 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11453 loc->excep_cond_expr = NULL;
11457 /* Implement the RE_SET method in the breakpoint_ops structure for all
11458 exception catchpoint kinds. */
11461 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11463 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11465 /* Call the base class's method. This updates the catchpoint's
11467 bkpt_breakpoint_ops.re_set (b);
11469 /* Reparse the exception conditional expressions. One for each
11471 create_excep_cond_exprs (c);
11474 /* Returns true if we should stop for this breakpoint hit. If the
11475 user specified a specific exception, we only want to cause a stop
11476 if the program thrown that exception. */
11479 should_stop_exception (const struct bp_location *bl)
11481 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11482 const struct ada_catchpoint_location *ada_loc
11483 = (const struct ada_catchpoint_location *) bl;
11484 volatile struct gdb_exception ex;
11487 /* With no specific exception, should always stop. */
11488 if (c->excep_string == NULL)
11491 if (ada_loc->excep_cond_expr == NULL)
11493 /* We will have a NULL expression if back when we were creating
11494 the expressions, this location's had failed to parse. */
11499 TRY_CATCH (ex, RETURN_MASK_ALL)
11501 struct value *mark;
11503 mark = value_mark ();
11504 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11505 value_free_to_mark (mark);
11508 exception_fprintf (gdb_stderr, ex,
11509 _("Error in testing exception condition:\n"));
11513 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11514 for all exception catchpoint kinds. */
11517 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11519 bs->stop = should_stop_exception (bs->bp_location_at);
11522 /* Implement the PRINT_IT method in the breakpoint_ops structure
11523 for all exception catchpoint kinds. */
11525 static enum print_stop_action
11526 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11528 struct ui_out *uiout = current_uiout;
11529 struct breakpoint *b = bs->breakpoint_at;
11531 annotate_catchpoint (b->number);
11533 if (ui_out_is_mi_like_p (uiout))
11535 ui_out_field_string (uiout, "reason",
11536 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11537 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11540 ui_out_text (uiout,
11541 b->disposition == disp_del ? "\nTemporary catchpoint "
11542 : "\nCatchpoint ");
11543 ui_out_field_int (uiout, "bkptno", b->number);
11544 ui_out_text (uiout, ", ");
11548 case ex_catch_exception:
11549 case ex_catch_exception_unhandled:
11551 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11552 char exception_name[256];
11556 read_memory (addr, (gdb_byte *) exception_name,
11557 sizeof (exception_name) - 1);
11558 exception_name [sizeof (exception_name) - 1] = '\0';
11562 /* For some reason, we were unable to read the exception
11563 name. This could happen if the Runtime was compiled
11564 without debugging info, for instance. In that case,
11565 just replace the exception name by the generic string
11566 "exception" - it will read as "an exception" in the
11567 notification we are about to print. */
11568 memcpy (exception_name, "exception", sizeof ("exception"));
11570 /* In the case of unhandled exception breakpoints, we print
11571 the exception name as "unhandled EXCEPTION_NAME", to make
11572 it clearer to the user which kind of catchpoint just got
11573 hit. We used ui_out_text to make sure that this extra
11574 info does not pollute the exception name in the MI case. */
11575 if (ex == ex_catch_exception_unhandled)
11576 ui_out_text (uiout, "unhandled ");
11577 ui_out_field_string (uiout, "exception-name", exception_name);
11580 case ex_catch_assert:
11581 /* In this case, the name of the exception is not really
11582 important. Just print "failed assertion" to make it clearer
11583 that his program just hit an assertion-failure catchpoint.
11584 We used ui_out_text because this info does not belong in
11586 ui_out_text (uiout, "failed assertion");
11589 ui_out_text (uiout, " at ");
11590 ada_find_printable_frame (get_current_frame ());
11592 return PRINT_SRC_AND_LOC;
11595 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11596 for all exception catchpoint kinds. */
11599 print_one_exception (enum exception_catchpoint_kind ex,
11600 struct breakpoint *b, struct bp_location **last_loc)
11602 struct ui_out *uiout = current_uiout;
11603 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11604 struct value_print_options opts;
11606 get_user_print_options (&opts);
11607 if (opts.addressprint)
11609 annotate_field (4);
11610 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11613 annotate_field (5);
11614 *last_loc = b->loc;
11617 case ex_catch_exception:
11618 if (c->excep_string != NULL)
11620 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11622 ui_out_field_string (uiout, "what", msg);
11626 ui_out_field_string (uiout, "what", "all Ada exceptions");
11630 case ex_catch_exception_unhandled:
11631 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11634 case ex_catch_assert:
11635 ui_out_field_string (uiout, "what", "failed Ada assertions");
11639 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11644 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11645 for all exception catchpoint kinds. */
11648 print_mention_exception (enum exception_catchpoint_kind ex,
11649 struct breakpoint *b)
11651 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11652 struct ui_out *uiout = current_uiout;
11654 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11655 : _("Catchpoint "));
11656 ui_out_field_int (uiout, "bkptno", b->number);
11657 ui_out_text (uiout, ": ");
11661 case ex_catch_exception:
11662 if (c->excep_string != NULL)
11664 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11665 struct cleanup *old_chain = make_cleanup (xfree, info);
11667 ui_out_text (uiout, info);
11668 do_cleanups (old_chain);
11671 ui_out_text (uiout, _("all Ada exceptions"));
11674 case ex_catch_exception_unhandled:
11675 ui_out_text (uiout, _("unhandled Ada exceptions"));
11678 case ex_catch_assert:
11679 ui_out_text (uiout, _("failed Ada assertions"));
11683 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11688 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11689 for all exception catchpoint kinds. */
11692 print_recreate_exception (enum exception_catchpoint_kind ex,
11693 struct breakpoint *b, struct ui_file *fp)
11695 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11699 case ex_catch_exception:
11700 fprintf_filtered (fp, "catch exception");
11701 if (c->excep_string != NULL)
11702 fprintf_filtered (fp, " %s", c->excep_string);
11705 case ex_catch_exception_unhandled:
11706 fprintf_filtered (fp, "catch exception unhandled");
11709 case ex_catch_assert:
11710 fprintf_filtered (fp, "catch assert");
11714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11716 print_recreate_thread (b, fp);
11719 /* Virtual table for "catch exception" breakpoints. */
11722 dtor_catch_exception (struct breakpoint *b)
11724 dtor_exception (ex_catch_exception, b);
11727 static struct bp_location *
11728 allocate_location_catch_exception (struct breakpoint *self)
11730 return allocate_location_exception (ex_catch_exception, self);
11734 re_set_catch_exception (struct breakpoint *b)
11736 re_set_exception (ex_catch_exception, b);
11740 check_status_catch_exception (bpstat bs)
11742 check_status_exception (ex_catch_exception, bs);
11745 static enum print_stop_action
11746 print_it_catch_exception (bpstat bs)
11748 return print_it_exception (ex_catch_exception, bs);
11752 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11754 print_one_exception (ex_catch_exception, b, last_loc);
11758 print_mention_catch_exception (struct breakpoint *b)
11760 print_mention_exception (ex_catch_exception, b);
11764 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11766 print_recreate_exception (ex_catch_exception, b, fp);
11769 static struct breakpoint_ops catch_exception_breakpoint_ops;
11771 /* Virtual table for "catch exception unhandled" breakpoints. */
11774 dtor_catch_exception_unhandled (struct breakpoint *b)
11776 dtor_exception (ex_catch_exception_unhandled, b);
11779 static struct bp_location *
11780 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11782 return allocate_location_exception (ex_catch_exception_unhandled, self);
11786 re_set_catch_exception_unhandled (struct breakpoint *b)
11788 re_set_exception (ex_catch_exception_unhandled, b);
11792 check_status_catch_exception_unhandled (bpstat bs)
11794 check_status_exception (ex_catch_exception_unhandled, bs);
11797 static enum print_stop_action
11798 print_it_catch_exception_unhandled (bpstat bs)
11800 return print_it_exception (ex_catch_exception_unhandled, bs);
11804 print_one_catch_exception_unhandled (struct breakpoint *b,
11805 struct bp_location **last_loc)
11807 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11811 print_mention_catch_exception_unhandled (struct breakpoint *b)
11813 print_mention_exception (ex_catch_exception_unhandled, b);
11817 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11818 struct ui_file *fp)
11820 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11823 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11825 /* Virtual table for "catch assert" breakpoints. */
11828 dtor_catch_assert (struct breakpoint *b)
11830 dtor_exception (ex_catch_assert, b);
11833 static struct bp_location *
11834 allocate_location_catch_assert (struct breakpoint *self)
11836 return allocate_location_exception (ex_catch_assert, self);
11840 re_set_catch_assert (struct breakpoint *b)
11842 re_set_exception (ex_catch_assert, b);
11846 check_status_catch_assert (bpstat bs)
11848 check_status_exception (ex_catch_assert, bs);
11851 static enum print_stop_action
11852 print_it_catch_assert (bpstat bs)
11854 return print_it_exception (ex_catch_assert, bs);
11858 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11860 print_one_exception (ex_catch_assert, b, last_loc);
11864 print_mention_catch_assert (struct breakpoint *b)
11866 print_mention_exception (ex_catch_assert, b);
11870 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11872 print_recreate_exception (ex_catch_assert, b, fp);
11875 static struct breakpoint_ops catch_assert_breakpoint_ops;
11877 /* Return a newly allocated copy of the first space-separated token
11878 in ARGSP, and then adjust ARGSP to point immediately after that
11881 Return NULL if ARGPS does not contain any more tokens. */
11884 ada_get_next_arg (char **argsp)
11886 char *args = *argsp;
11890 args = skip_spaces (args);
11891 if (args[0] == '\0')
11892 return NULL; /* No more arguments. */
11894 /* Find the end of the current argument. */
11896 end = skip_to_space (args);
11898 /* Adjust ARGSP to point to the start of the next argument. */
11902 /* Make a copy of the current argument and return it. */
11904 result = xmalloc (end - args + 1);
11905 strncpy (result, args, end - args);
11906 result[end - args] = '\0';
11911 /* Split the arguments specified in a "catch exception" command.
11912 Set EX to the appropriate catchpoint type.
11913 Set EXCEP_STRING to the name of the specific exception if
11914 specified by the user.
11915 If a condition is found at the end of the arguments, the condition
11916 expression is stored in COND_STRING (memory must be deallocated
11917 after use). Otherwise COND_STRING is set to NULL. */
11920 catch_ada_exception_command_split (char *args,
11921 enum exception_catchpoint_kind *ex,
11922 char **excep_string,
11923 char **cond_string)
11925 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11926 char *exception_name;
11929 exception_name = ada_get_next_arg (&args);
11930 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11932 /* This is not an exception name; this is the start of a condition
11933 expression for a catchpoint on all exceptions. So, "un-get"
11934 this token, and set exception_name to NULL. */
11935 xfree (exception_name);
11936 exception_name = NULL;
11939 make_cleanup (xfree, exception_name);
11941 /* Check to see if we have a condition. */
11943 args = skip_spaces (args);
11944 if (strncmp (args, "if", 2) == 0
11945 && (isspace (args[2]) || args[2] == '\0'))
11948 args = skip_spaces (args);
11950 if (args[0] == '\0')
11951 error (_("Condition missing after `if' keyword"));
11952 cond = xstrdup (args);
11953 make_cleanup (xfree, cond);
11955 args += strlen (args);
11958 /* Check that we do not have any more arguments. Anything else
11961 if (args[0] != '\0')
11962 error (_("Junk at end of expression"));
11964 discard_cleanups (old_chain);
11966 if (exception_name == NULL)
11968 /* Catch all exceptions. */
11969 *ex = ex_catch_exception;
11970 *excep_string = NULL;
11972 else if (strcmp (exception_name, "unhandled") == 0)
11974 /* Catch unhandled exceptions. */
11975 *ex = ex_catch_exception_unhandled;
11976 *excep_string = NULL;
11980 /* Catch a specific exception. */
11981 *ex = ex_catch_exception;
11982 *excep_string = exception_name;
11984 *cond_string = cond;
11987 /* Return the name of the symbol on which we should break in order to
11988 implement a catchpoint of the EX kind. */
11990 static const char *
11991 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11993 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11995 gdb_assert (data->exception_info != NULL);
11999 case ex_catch_exception:
12000 return (data->exception_info->catch_exception_sym);
12002 case ex_catch_exception_unhandled:
12003 return (data->exception_info->catch_exception_unhandled_sym);
12005 case ex_catch_assert:
12006 return (data->exception_info->catch_assert_sym);
12009 internal_error (__FILE__, __LINE__,
12010 _("unexpected catchpoint kind (%d)"), ex);
12014 /* Return the breakpoint ops "virtual table" used for catchpoints
12017 static const struct breakpoint_ops *
12018 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
12022 case ex_catch_exception:
12023 return (&catch_exception_breakpoint_ops);
12025 case ex_catch_exception_unhandled:
12026 return (&catch_exception_unhandled_breakpoint_ops);
12028 case ex_catch_assert:
12029 return (&catch_assert_breakpoint_ops);
12032 internal_error (__FILE__, __LINE__,
12033 _("unexpected catchpoint kind (%d)"), ex);
12037 /* Return the condition that will be used to match the current exception
12038 being raised with the exception that the user wants to catch. This
12039 assumes that this condition is used when the inferior just triggered
12040 an exception catchpoint.
12042 The string returned is a newly allocated string that needs to be
12043 deallocated later. */
12046 ada_exception_catchpoint_cond_string (const char *excep_string)
12050 /* The standard exceptions are a special case. They are defined in
12051 runtime units that have been compiled without debugging info; if
12052 EXCEP_STRING is the not-fully-qualified name of a standard
12053 exception (e.g. "constraint_error") then, during the evaluation
12054 of the condition expression, the symbol lookup on this name would
12055 *not* return this standard exception. The catchpoint condition
12056 may then be set only on user-defined exceptions which have the
12057 same not-fully-qualified name (e.g. my_package.constraint_error).
12059 To avoid this unexcepted behavior, these standard exceptions are
12060 systematically prefixed by "standard". This means that "catch
12061 exception constraint_error" is rewritten into "catch exception
12062 standard.constraint_error".
12064 If an exception named contraint_error is defined in another package of
12065 the inferior program, then the only way to specify this exception as a
12066 breakpoint condition is to use its fully-qualified named:
12067 e.g. my_package.constraint_error. */
12069 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12071 if (strcmp (standard_exc [i], excep_string) == 0)
12073 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12077 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12080 /* Return the symtab_and_line that should be used to insert an exception
12081 catchpoint of the TYPE kind.
12083 EXCEP_STRING should contain the name of a specific exception that
12084 the catchpoint should catch, or NULL otherwise.
12086 ADDR_STRING returns the name of the function where the real
12087 breakpoint that implements the catchpoints is set, depending on the
12088 type of catchpoint we need to create. */
12090 static struct symtab_and_line
12091 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12092 char **addr_string, const struct breakpoint_ops **ops)
12094 const char *sym_name;
12095 struct symbol *sym;
12097 /* First, find out which exception support info to use. */
12098 ada_exception_support_info_sniffer ();
12100 /* Then lookup the function on which we will break in order to catch
12101 the Ada exceptions requested by the user. */
12102 sym_name = ada_exception_sym_name (ex);
12103 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12105 /* We can assume that SYM is not NULL at this stage. If the symbol
12106 did not exist, ada_exception_support_info_sniffer would have
12107 raised an exception.
12109 Also, ada_exception_support_info_sniffer should have already
12110 verified that SYM is a function symbol. */
12111 gdb_assert (sym != NULL);
12112 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12114 /* Set ADDR_STRING. */
12115 *addr_string = xstrdup (sym_name);
12118 *ops = ada_exception_breakpoint_ops (ex);
12120 return find_function_start_sal (sym, 1);
12123 /* Parse the arguments (ARGS) of the "catch exception" command.
12125 If the user asked the catchpoint to catch only a specific
12126 exception, then save the exception name in ADDR_STRING.
12128 If the user provided a condition, then set COND_STRING to
12129 that condition expression (the memory must be deallocated
12130 after use). Otherwise, set COND_STRING to NULL.
12132 See ada_exception_sal for a description of all the remaining
12133 function arguments of this function. */
12135 static struct symtab_and_line
12136 ada_decode_exception_location (char *args, char **addr_string,
12137 char **excep_string,
12138 char **cond_string,
12139 const struct breakpoint_ops **ops)
12141 enum exception_catchpoint_kind ex;
12143 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12144 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12147 /* Create an Ada exception catchpoint. */
12150 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12151 struct symtab_and_line sal,
12153 char *excep_string,
12155 const struct breakpoint_ops *ops,
12159 struct ada_catchpoint *c;
12161 c = XNEW (struct ada_catchpoint);
12162 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12163 ops, tempflag, from_tty);
12164 c->excep_string = excep_string;
12165 create_excep_cond_exprs (c);
12166 if (cond_string != NULL)
12167 set_breakpoint_condition (&c->base, cond_string, from_tty);
12168 install_breakpoint (0, &c->base, 1);
12171 /* Implement the "catch exception" command. */
12174 catch_ada_exception_command (char *arg, int from_tty,
12175 struct cmd_list_element *command)
12177 struct gdbarch *gdbarch = get_current_arch ();
12179 struct symtab_and_line sal;
12180 char *addr_string = NULL;
12181 char *excep_string = NULL;
12182 char *cond_string = NULL;
12183 const struct breakpoint_ops *ops = NULL;
12185 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12189 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12190 &cond_string, &ops);
12191 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12192 excep_string, cond_string, ops,
12193 tempflag, from_tty);
12196 /* Assuming that ARGS contains the arguments of a "catch assert"
12197 command, parse those arguments and return a symtab_and_line object
12198 for a failed assertion catchpoint.
12200 Set ADDR_STRING to the name of the function where the real
12201 breakpoint that implements the catchpoint is set.
12203 If ARGS contains a condition, set COND_STRING to that condition
12204 (the memory needs to be deallocated after use). Otherwise, set
12205 COND_STRING to NULL. */
12207 static struct symtab_and_line
12208 ada_decode_assert_location (char *args, char **addr_string,
12209 char **cond_string,
12210 const struct breakpoint_ops **ops)
12212 args = skip_spaces (args);
12214 /* Check whether a condition was provided. */
12215 if (strncmp (args, "if", 2) == 0
12216 && (isspace (args[2]) || args[2] == '\0'))
12219 args = skip_spaces (args);
12220 if (args[0] == '\0')
12221 error (_("condition missing after `if' keyword"));
12222 *cond_string = xstrdup (args);
12225 /* Otherwise, there should be no other argument at the end of
12227 else if (args[0] != '\0')
12228 error (_("Junk at end of arguments."));
12230 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12233 /* Implement the "catch assert" command. */
12236 catch_assert_command (char *arg, int from_tty,
12237 struct cmd_list_element *command)
12239 struct gdbarch *gdbarch = get_current_arch ();
12241 struct symtab_and_line sal;
12242 char *addr_string = NULL;
12243 char *cond_string = NULL;
12244 const struct breakpoint_ops *ops = NULL;
12246 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12250 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12251 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12252 NULL, cond_string, ops, tempflag,
12256 /* Information about operators given special treatment in functions
12258 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12260 #define ADA_OPERATORS \
12261 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12262 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12263 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12264 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12265 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12266 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12267 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12268 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12269 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12270 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12271 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12272 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12273 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12274 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12275 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12276 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12277 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12278 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12279 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12282 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12285 switch (exp->elts[pc - 1].opcode)
12288 operator_length_standard (exp, pc, oplenp, argsp);
12291 #define OP_DEFN(op, len, args, binop) \
12292 case op: *oplenp = len; *argsp = args; break;
12298 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12303 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12308 /* Implementation of the exp_descriptor method operator_check. */
12311 ada_operator_check (struct expression *exp, int pos,
12312 int (*objfile_func) (struct objfile *objfile, void *data),
12315 const union exp_element *const elts = exp->elts;
12316 struct type *type = NULL;
12318 switch (elts[pos].opcode)
12320 case UNOP_IN_RANGE:
12322 type = elts[pos + 1].type;
12326 return operator_check_standard (exp, pos, objfile_func, data);
12329 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12331 if (type && TYPE_OBJFILE (type)
12332 && (*objfile_func) (TYPE_OBJFILE (type), data))
12339 ada_op_name (enum exp_opcode opcode)
12344 return op_name_standard (opcode);
12346 #define OP_DEFN(op, len, args, binop) case op: return #op;
12351 return "OP_AGGREGATE";
12353 return "OP_CHOICES";
12359 /* As for operator_length, but assumes PC is pointing at the first
12360 element of the operator, and gives meaningful results only for the
12361 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12364 ada_forward_operator_length (struct expression *exp, int pc,
12365 int *oplenp, int *argsp)
12367 switch (exp->elts[pc].opcode)
12370 *oplenp = *argsp = 0;
12373 #define OP_DEFN(op, len, args, binop) \
12374 case op: *oplenp = len; *argsp = args; break;
12380 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12385 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12391 int len = longest_to_int (exp->elts[pc + 1].longconst);
12393 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12401 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12403 enum exp_opcode op = exp->elts[elt].opcode;
12408 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12412 /* Ada attributes ('Foo). */
12415 case OP_ATR_LENGTH:
12419 case OP_ATR_MODULUS:
12426 case UNOP_IN_RANGE:
12428 /* XXX: gdb_sprint_host_address, type_sprint */
12429 fprintf_filtered (stream, _("Type @"));
12430 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12431 fprintf_filtered (stream, " (");
12432 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12433 fprintf_filtered (stream, ")");
12435 case BINOP_IN_BOUNDS:
12436 fprintf_filtered (stream, " (%d)",
12437 longest_to_int (exp->elts[pc + 2].longconst));
12439 case TERNOP_IN_RANGE:
12444 case OP_DISCRETE_RANGE:
12445 case OP_POSITIONAL:
12452 char *name = &exp->elts[elt + 2].string;
12453 int len = longest_to_int (exp->elts[elt + 1].longconst);
12455 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12460 return dump_subexp_body_standard (exp, stream, elt);
12464 for (i = 0; i < nargs; i += 1)
12465 elt = dump_subexp (exp, stream, elt);
12470 /* The Ada extension of print_subexp (q.v.). */
12473 ada_print_subexp (struct expression *exp, int *pos,
12474 struct ui_file *stream, enum precedence prec)
12476 int oplen, nargs, i;
12478 enum exp_opcode op = exp->elts[pc].opcode;
12480 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12487 print_subexp_standard (exp, pos, stream, prec);
12491 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12494 case BINOP_IN_BOUNDS:
12495 /* XXX: sprint_subexp */
12496 print_subexp (exp, pos, stream, PREC_SUFFIX);
12497 fputs_filtered (" in ", stream);
12498 print_subexp (exp, pos, stream, PREC_SUFFIX);
12499 fputs_filtered ("'range", stream);
12500 if (exp->elts[pc + 1].longconst > 1)
12501 fprintf_filtered (stream, "(%ld)",
12502 (long) exp->elts[pc + 1].longconst);
12505 case TERNOP_IN_RANGE:
12506 if (prec >= PREC_EQUAL)
12507 fputs_filtered ("(", stream);
12508 /* XXX: sprint_subexp */
12509 print_subexp (exp, pos, stream, PREC_SUFFIX);
12510 fputs_filtered (" in ", stream);
12511 print_subexp (exp, pos, stream, PREC_EQUAL);
12512 fputs_filtered (" .. ", stream);
12513 print_subexp (exp, pos, stream, PREC_EQUAL);
12514 if (prec >= PREC_EQUAL)
12515 fputs_filtered (")", stream);
12520 case OP_ATR_LENGTH:
12524 case OP_ATR_MODULUS:
12529 if (exp->elts[*pos].opcode == OP_TYPE)
12531 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12532 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12533 &type_print_raw_options);
12537 print_subexp (exp, pos, stream, PREC_SUFFIX);
12538 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12543 for (tem = 1; tem < nargs; tem += 1)
12545 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12546 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12548 fputs_filtered (")", stream);
12553 type_print (exp->elts[pc + 1].type, "", stream, 0);
12554 fputs_filtered ("'(", stream);
12555 print_subexp (exp, pos, stream, PREC_PREFIX);
12556 fputs_filtered (")", stream);
12559 case UNOP_IN_RANGE:
12560 /* XXX: sprint_subexp */
12561 print_subexp (exp, pos, stream, PREC_SUFFIX);
12562 fputs_filtered (" in ", stream);
12563 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12564 &type_print_raw_options);
12567 case OP_DISCRETE_RANGE:
12568 print_subexp (exp, pos, stream, PREC_SUFFIX);
12569 fputs_filtered ("..", stream);
12570 print_subexp (exp, pos, stream, PREC_SUFFIX);
12574 fputs_filtered ("others => ", stream);
12575 print_subexp (exp, pos, stream, PREC_SUFFIX);
12579 for (i = 0; i < nargs-1; i += 1)
12582 fputs_filtered ("|", stream);
12583 print_subexp (exp, pos, stream, PREC_SUFFIX);
12585 fputs_filtered (" => ", stream);
12586 print_subexp (exp, pos, stream, PREC_SUFFIX);
12589 case OP_POSITIONAL:
12590 print_subexp (exp, pos, stream, PREC_SUFFIX);
12594 fputs_filtered ("(", stream);
12595 for (i = 0; i < nargs; i += 1)
12598 fputs_filtered (", ", stream);
12599 print_subexp (exp, pos, stream, PREC_SUFFIX);
12601 fputs_filtered (")", stream);
12606 /* Table mapping opcodes into strings for printing operators
12607 and precedences of the operators. */
12609 static const struct op_print ada_op_print_tab[] = {
12610 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12611 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12612 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12613 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12614 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12615 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12616 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12617 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12618 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12619 {">=", BINOP_GEQ, PREC_ORDER, 0},
12620 {">", BINOP_GTR, PREC_ORDER, 0},
12621 {"<", BINOP_LESS, PREC_ORDER, 0},
12622 {">>", BINOP_RSH, PREC_SHIFT, 0},
12623 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12624 {"+", BINOP_ADD, PREC_ADD, 0},
12625 {"-", BINOP_SUB, PREC_ADD, 0},
12626 {"&", BINOP_CONCAT, PREC_ADD, 0},
12627 {"*", BINOP_MUL, PREC_MUL, 0},
12628 {"/", BINOP_DIV, PREC_MUL, 0},
12629 {"rem", BINOP_REM, PREC_MUL, 0},
12630 {"mod", BINOP_MOD, PREC_MUL, 0},
12631 {"**", BINOP_EXP, PREC_REPEAT, 0},
12632 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12633 {"-", UNOP_NEG, PREC_PREFIX, 0},
12634 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12635 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12636 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12637 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12638 {".all", UNOP_IND, PREC_SUFFIX, 1},
12639 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12640 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12644 enum ada_primitive_types {
12645 ada_primitive_type_int,
12646 ada_primitive_type_long,
12647 ada_primitive_type_short,
12648 ada_primitive_type_char,
12649 ada_primitive_type_float,
12650 ada_primitive_type_double,
12651 ada_primitive_type_void,
12652 ada_primitive_type_long_long,
12653 ada_primitive_type_long_double,
12654 ada_primitive_type_natural,
12655 ada_primitive_type_positive,
12656 ada_primitive_type_system_address,
12657 nr_ada_primitive_types
12661 ada_language_arch_info (struct gdbarch *gdbarch,
12662 struct language_arch_info *lai)
12664 const struct builtin_type *builtin = builtin_type (gdbarch);
12666 lai->primitive_type_vector
12667 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12670 lai->primitive_type_vector [ada_primitive_type_int]
12671 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12673 lai->primitive_type_vector [ada_primitive_type_long]
12674 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12675 0, "long_integer");
12676 lai->primitive_type_vector [ada_primitive_type_short]
12677 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12678 0, "short_integer");
12679 lai->string_char_type
12680 = lai->primitive_type_vector [ada_primitive_type_char]
12681 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12682 lai->primitive_type_vector [ada_primitive_type_float]
12683 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12685 lai->primitive_type_vector [ada_primitive_type_double]
12686 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12687 "long_float", NULL);
12688 lai->primitive_type_vector [ada_primitive_type_long_long]
12689 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12690 0, "long_long_integer");
12691 lai->primitive_type_vector [ada_primitive_type_long_double]
12692 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12693 "long_long_float", NULL);
12694 lai->primitive_type_vector [ada_primitive_type_natural]
12695 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12697 lai->primitive_type_vector [ada_primitive_type_positive]
12698 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12700 lai->primitive_type_vector [ada_primitive_type_void]
12701 = builtin->builtin_void;
12703 lai->primitive_type_vector [ada_primitive_type_system_address]
12704 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12705 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12706 = "system__address";
12708 lai->bool_type_symbol = NULL;
12709 lai->bool_type_default = builtin->builtin_bool;
12712 /* Language vector */
12714 /* Not really used, but needed in the ada_language_defn. */
12717 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12719 ada_emit_char (c, type, stream, quoter, 1);
12725 warnings_issued = 0;
12726 return ada_parse ();
12729 static const struct exp_descriptor ada_exp_descriptor = {
12731 ada_operator_length,
12732 ada_operator_check,
12734 ada_dump_subexp_body,
12735 ada_evaluate_subexp
12738 /* Implement the "la_get_symbol_name_cmp" language_defn method
12741 static symbol_name_cmp_ftype
12742 ada_get_symbol_name_cmp (const char *lookup_name)
12744 if (should_use_wild_match (lookup_name))
12747 return compare_names;
12750 /* Implement the "la_read_var_value" language_defn method for Ada. */
12752 static struct value *
12753 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12755 struct block *frame_block = NULL;
12756 struct symbol *renaming_sym = NULL;
12758 /* The only case where default_read_var_value is not sufficient
12759 is when VAR is a renaming... */
12761 frame_block = get_frame_block (frame, NULL);
12763 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12764 if (renaming_sym != NULL)
12765 return ada_read_renaming_var_value (renaming_sym, frame_block);
12767 /* This is a typical case where we expect the default_read_var_value
12768 function to work. */
12769 return default_read_var_value (var, frame);
12772 const struct language_defn ada_language_defn = {
12773 "ada", /* Language name */
12776 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12777 that's not quite what this means. */
12779 macro_expansion_no,
12780 &ada_exp_descriptor,
12784 ada_printchar, /* Print a character constant */
12785 ada_printstr, /* Function to print string constant */
12786 emit_char, /* Function to print single char (not used) */
12787 ada_print_type, /* Print a type using appropriate syntax */
12788 ada_print_typedef, /* Print a typedef using appropriate syntax */
12789 ada_val_print, /* Print a value using appropriate syntax */
12790 ada_value_print, /* Print a top-level value */
12791 ada_read_var_value, /* la_read_var_value */
12792 NULL, /* Language specific skip_trampoline */
12793 NULL, /* name_of_this */
12794 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12795 basic_lookup_transparent_type, /* lookup_transparent_type */
12796 ada_la_decode, /* Language specific symbol demangler */
12797 NULL, /* Language specific
12798 class_name_from_physname */
12799 ada_op_print_tab, /* expression operators for printing */
12800 0, /* c-style arrays */
12801 1, /* String lower bound */
12802 ada_get_gdb_completer_word_break_characters,
12803 ada_make_symbol_completion_list,
12804 ada_language_arch_info,
12805 ada_print_array_index,
12806 default_pass_by_reference,
12808 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12809 ada_iterate_over_symbols,
12813 /* Provide a prototype to silence -Wmissing-prototypes. */
12814 extern initialize_file_ftype _initialize_ada_language;
12816 /* Command-list for the "set/show ada" prefix command. */
12817 static struct cmd_list_element *set_ada_list;
12818 static struct cmd_list_element *show_ada_list;
12820 /* Implement the "set ada" prefix command. */
12823 set_ada_command (char *arg, int from_tty)
12825 printf_unfiltered (_(\
12826 "\"set ada\" must be followed by the name of a setting.\n"));
12827 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12830 /* Implement the "show ada" prefix command. */
12833 show_ada_command (char *args, int from_tty)
12835 cmd_show_list (show_ada_list, from_tty, "");
12839 initialize_ada_catchpoint_ops (void)
12841 struct breakpoint_ops *ops;
12843 initialize_breakpoint_ops ();
12845 ops = &catch_exception_breakpoint_ops;
12846 *ops = bkpt_breakpoint_ops;
12847 ops->dtor = dtor_catch_exception;
12848 ops->allocate_location = allocate_location_catch_exception;
12849 ops->re_set = re_set_catch_exception;
12850 ops->check_status = check_status_catch_exception;
12851 ops->print_it = print_it_catch_exception;
12852 ops->print_one = print_one_catch_exception;
12853 ops->print_mention = print_mention_catch_exception;
12854 ops->print_recreate = print_recreate_catch_exception;
12856 ops = &catch_exception_unhandled_breakpoint_ops;
12857 *ops = bkpt_breakpoint_ops;
12858 ops->dtor = dtor_catch_exception_unhandled;
12859 ops->allocate_location = allocate_location_catch_exception_unhandled;
12860 ops->re_set = re_set_catch_exception_unhandled;
12861 ops->check_status = check_status_catch_exception_unhandled;
12862 ops->print_it = print_it_catch_exception_unhandled;
12863 ops->print_one = print_one_catch_exception_unhandled;
12864 ops->print_mention = print_mention_catch_exception_unhandled;
12865 ops->print_recreate = print_recreate_catch_exception_unhandled;
12867 ops = &catch_assert_breakpoint_ops;
12868 *ops = bkpt_breakpoint_ops;
12869 ops->dtor = dtor_catch_assert;
12870 ops->allocate_location = allocate_location_catch_assert;
12871 ops->re_set = re_set_catch_assert;
12872 ops->check_status = check_status_catch_assert;
12873 ops->print_it = print_it_catch_assert;
12874 ops->print_one = print_one_catch_assert;
12875 ops->print_mention = print_mention_catch_assert;
12876 ops->print_recreate = print_recreate_catch_assert;
12880 _initialize_ada_language (void)
12882 add_language (&ada_language_defn);
12884 initialize_ada_catchpoint_ops ();
12886 add_prefix_cmd ("ada", no_class, set_ada_command,
12887 _("Prefix command for changing Ada-specfic settings"),
12888 &set_ada_list, "set ada ", 0, &setlist);
12890 add_prefix_cmd ("ada", no_class, show_ada_command,
12891 _("Generic command for showing Ada-specific settings."),
12892 &show_ada_list, "show ada ", 0, &showlist);
12894 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12895 &trust_pad_over_xvs, _("\
12896 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12897 Show whether an optimization trusting PAD types over XVS types is activated"),
12899 This is related to the encoding used by the GNAT compiler. The debugger\n\
12900 should normally trust the contents of PAD types, but certain older versions\n\
12901 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12902 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12903 work around this bug. It is always safe to turn this option \"off\", but\n\
12904 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12905 this option to \"off\" unless necessary."),
12906 NULL, NULL, &set_ada_list, &show_ada_list);
12908 add_catch_command ("exception", _("\
12909 Catch Ada exceptions, when raised.\n\
12910 With an argument, catch only exceptions with the given name."),
12911 catch_ada_exception_command,
12915 add_catch_command ("assert", _("\
12916 Catch failed Ada assertions, when raised.\n\
12917 With an argument, catch only exceptions with the given name."),
12918 catch_assert_command,
12923 varsize_limit = 65536;
12925 obstack_init (&symbol_list_obstack);
12927 decoded_names_store = htab_create_alloc
12928 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12929 NULL, xcalloc, xfree);
12931 /* Setup per-inferior data. */
12932 observer_attach_inferior_exit (ada_inferior_exit);
12934 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);