1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_type_match (struct type *, struct type *, int);
102 static int ada_args_match (struct symbol *, struct value **, int);
104 static int full_match (const char *, const char *);
106 static struct value *make_array_descriptor (struct type *, struct value *);
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
115 static int is_nonfunction (struct block_symbol *, int);
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
120 static int num_defns_collected (struct obstack *);
122 static struct block_symbol *defns_collected (struct obstack *, int);
124 static struct value *resolve_subexp (struct expression **, int *, int,
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
132 static char *ada_op_name (enum exp_opcode);
134 static const char *ada_decoded_op_name (enum exp_opcode);
136 static int numeric_type_p (struct type *);
138 static int integer_type_p (struct type *);
140 static int scalar_type_p (struct type *);
142 static int discrete_type_p (struct type *);
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 static struct value *evaluate_subexp_type (struct expression *, int *);
157 static struct type *ada_find_parallel_type_with_name (struct type *,
160 static int is_dynamic_field (struct type *, int);
162 static struct type *to_fixed_variant_branch_type (struct type *,
164 CORE_ADDR, struct value *);
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168 static struct type *to_fixed_range_type (struct type *, struct value *);
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
173 static struct value *unwrap_value (struct value *);
175 static struct type *constrained_packed_array_type (struct type *, long *);
177 static struct type *decode_constrained_packed_array_type (struct type *);
179 static long decode_packed_array_bitsize (struct type *);
181 static struct value *decode_constrained_packed_array (struct value *);
183 static int ada_is_packed_array_type (struct type *);
185 static int ada_is_unconstrained_packed_array_type (struct type *);
187 static struct value *value_subscript_packed (struct value *, int,
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192 static struct value *coerce_unspec_val_to_type (struct value *,
195 static struct value *get_var_value (char *, char *);
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
199 static int equiv_types (struct type *, struct type *);
201 static int is_name_suffix (const char *);
203 static int advance_wild_match (const char **, const char *, int);
205 static int wild_match (const char *, const char *);
207 static struct value *ada_coerce_ref (struct value *);
209 static LONGEST pos_atr (struct value *);
211 static struct value *value_pos_atr (struct type *, struct value *);
213 static struct value *value_val_atr (struct type *, struct value *);
215 static struct symbol *standard_lookup (const char *, const struct block *,
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
221 static struct value *ada_value_primitive_field (struct value *, int, int,
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
234 static int ada_is_direct_array_type (struct type *);
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
239 static struct value *ada_index_struct_field (int, struct value *, int,
242 static struct value *assign_aggregate (struct value *, struct value *,
246 static void aggregate_assign_from_choices (struct value *, struct value *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
251 static void aggregate_assign_positional (struct value *, struct value *,
253 int *, LONGEST *, int *, int,
257 static void aggregate_assign_others (struct value *, struct value *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 static void ada_forward_operator_length (struct expression *, int, int *,
271 static struct type *ada_find_any_type (const char *name);
274 /* The result of a symbol lookup to be stored in our symbol cache. */
278 /* The name used to perform the lookup. */
280 /* The namespace used during the lookup. */
282 /* The symbol returned by the lookup, or NULL if no matching symbol
285 /* The block where the symbol was found, or NULL if no matching
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
301 #define HASH_SIZE 1009
303 struct ada_symbol_cache
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
348 /* Maintenance-related settings for this module. */
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
353 /* Implement the "maintenance set ada" (prefix) command. */
356 maint_set_ada_cmd (char *args, int from_tty)
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 /* Implement the "maintenance show ada" (prefix) command. */
365 maint_show_ada_cmd (char *args, int from_tty)
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372 static int ada_ignore_descriptive_types_p = 0;
374 /* Inferior-specific data. */
376 /* Per-inferior data for this module. */
378 struct ada_inferior_data
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
389 const struct exception_support_info *exception_info;
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
395 /* A cleanup routine for our inferior data. */
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 struct ada_inferior_data *data;
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
406 /* Return our inferior data for the given inferior (INF).
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
417 struct ada_inferior_data *data;
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
433 ada_inferior_exit (struct inferior *inf)
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
440 /* program-space-specific data. */
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
455 This function always returns a valid object. */
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
460 struct ada_pspace_data *data;
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
473 /* The cleanup callback for this module's per-program-space data. */
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
515 ada_typedef_target_type (struct type *type)
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
527 ada_unqualified_name (const char *decoded_name)
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
538 result = strrchr (decoded_name, '.');
540 result++; /* Skip the dot... */
542 result = decoded_name;
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
551 add_angle_brackets (const char *str)
553 static char *result = NULL;
556 result = xstrprintf ("<%s>", str);
561 ada_get_gdb_completer_word_break_characters (void)
563 return ada_completer_word_break_characters;
566 /* Print an array element index using the Ada syntax. */
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 if (*size < min_size)
586 if (*size < min_size)
588 vect = xrealloc (vect, *size * element_size);
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
597 field_name_match (const char *field_name, const char *target)
599 int len = strlen (target);
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
619 ada_get_field_index (const struct type *type, const char *field_name,
623 struct type *struct_type = check_typedef ((struct type *) type);
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
636 /* The length of the prefix of NAME prior to any "___" suffix. */
639 ada_name_prefix_len (const char *name)
645 const char *p = strstr (name, "___");
648 return strlen (name);
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
658 is_suffix (const char *str, const char *suffix)
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
680 struct value *result;
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
708 return valaddr + offset;
712 cond_offset_target (CORE_ADDR address, long offset)
717 return address + offset;
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730 lim_warning (const char *format, ...)
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
747 ada_ensure_varsize_limit (const struct type *type)
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
753 /* Maximum value of a SIZE-byte signed integer type. */
755 max_of_size (int size)
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759 return top_bit | (top_bit - 1);
762 /* Minimum value of a SIZE-byte signed integer type. */
764 min_of_size (int size)
766 return -max_of_size (size) - 1;
769 /* Maximum value of a SIZE-byte unsigned integer type. */
771 umax_of_size (int size)
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775 return top_bit | (top_bit - 1);
778 /* Maximum value of integral type T, as a signed quantity. */
780 max_of_type (struct type *t)
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 return max_of_size (TYPE_LENGTH (t));
788 /* Minimum value of integral type T, as a signed quantity. */
790 min_of_type (struct type *t)
792 if (TYPE_UNSIGNED (t))
795 return min_of_size (TYPE_LENGTH (t));
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 ada_discrete_type_high_bound (struct type *type)
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
813 return max_of_type (type);
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 ada_discrete_type_low_bound (struct type *type)
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
829 return TYPE_FIELD_ENUMVAL (type, 0);
834 return min_of_type (type);
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
844 get_base_type (struct type *type)
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 type = TYPE_TARGET_TYPE (type);
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
861 ada_get_decoded_value (struct value *value)
863 struct type *type = ada_check_typedef (value_type (value));
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
872 value = ada_coerce_to_simple_array (value);
875 value = ada_to_fixed_value (value);
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
886 ada_get_decoded_type (struct type *type)
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
896 /* Language Selection */
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
902 ada_update_initial_language (enum language lang)
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928 if (msym.minsym != NULL)
930 CORE_ADDR main_program_name_addr;
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
943 return main_program_name;
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
984 ada_encode (const char *decoded)
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
998 for (p = decoded; *p != '\0'; p += 1)
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1007 const struct ada_opname_map *mapping;
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1021 encoding_buffer[k] = *p;
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1035 ada_fold_name (const char *name)
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1043 if (name[0] == '\'')
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1062 is_lower_alphanum (const char c)
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1086 while (i > 0 && isdigit (encoded[i]))
1088 if (i >= 0 && encoded[i] == '.')
1090 else if (i >= 0 && encoded[i] == '$')
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1099 /* Remove the suffix introduced by the compiler for protected object
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1105 /* Remove trailing N. */
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1131 if (encoded[i] != 'X')
1137 if (isalnum (encoded[i-1]))
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1150 ada_decode (const char *encoded)
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1172 len0 = strlen (encoded);
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1210 /* Make decoded big enough for possible expansion by operator name. */
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1225 else if (encoded[i] == '$')
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1248 && !isalnum (encoded[i + op_len]))
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1253 j += strlen (ada_opname_table[k].decoded);
1257 if (ada_opname_table[k].encoded != NULL)
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1287 /* Remove _E{DIGITS}+[sb] */
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1305 while (k < len0 && isdigit (encoded[k]))
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1316 || (k < len0 && encoded[k] == '_'))
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1356 /* Replace '__' by '.'. */
1364 /* It's a character part of the decoded name, so just copy it
1366 decoded[j] = encoded[i];
1371 decoded[j] = '\000';
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1380 if (strcmp (decoded, encoded) == 0)
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1420 if (!gsymbol->ada_mangled)
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1425 gsymbol->ada_mangled = 1;
1427 if (obstack != NULL)
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1441 *slot = xstrdup (decoded);
1450 ada_la_decode (const char *encoded, int options)
1452 return xstrdup (ada_decode (encoded));
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1463 match_name (const char *sym_name, const char *name, int wild)
1465 if (sym_name == NULL || name == NULL)
1468 return wild_match (sym_name, name) == 0;
1471 int len_name = strlen (name);
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1512 if (index_desc_type == NULL)
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1546 /* Maximum number of array dimensions we are prepared to handle. */
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1551 /* The desc_* routines return primitive portions of array descriptors
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1557 static struct type *
1558 desc_base_type (struct type *type)
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1577 is_thin_pntr (struct type *type)
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1584 /* The descriptor type for thin pointer type TYPE. */
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1589 struct type *base_type = desc_base_type (type);
1591 if (base_type == NULL)
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1599 if (alt_type == NULL)
1606 /* A pointer to the array data for thin-pointer value VAL. */
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1614 data_type = lookup_pointer_type (data_type);
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1619 return value_from_longest (data_type, value_address (val));
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1625 is_thick_pntr (struct type *type)
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1640 type = desc_base_type (type);
1644 else if (is_thin_pntr (type))
1646 type = thin_descriptor_type (type);
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1651 return ada_check_typedef (r);
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1665 static struct value *
1666 desc_bounds (struct value *arr)
1668 struct type *type = ada_check_typedef (value_type (arr));
1670 if (is_thin_pntr (type))
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1685 addr = value_address (arr);
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1692 else if (is_thick_pntr (type))
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1709 error (_("Bad GNAT array descriptor"));
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1721 fat_pntr_bounds_bitpos (struct type *type)
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1730 fat_pntr_bounds_bitsize (struct type *type)
1732 type = desc_base_type (type);
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1748 type = desc_base_type (type);
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1768 static struct value *
1769 desc_data (struct value *arr)
1771 struct type *type = value_type (arr);
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1787 fat_pntr_data_bitpos (struct type *type)
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1796 fat_pntr_data_bitsize (struct type *type)
1798 type = desc_base_type (type);
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1822 desc_bound_bitpos (struct type *type, int i, int which)
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1832 desc_bound_bitsize (struct type *type, int i, int which)
1834 type = desc_base_type (type);
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1848 type = desc_base_type (type);
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1860 desc_arity (struct type *type)
1862 type = desc_base_type (type);
1865 return TYPE_NFIELDS (type) / 2;
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1874 ada_is_direct_array_type (struct type *type)
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1887 ada_is_array_type (struct type *type)
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1899 ada_is_simple_array_type (struct type *type)
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1913 ada_is_array_descriptor_type (struct type *type)
1915 struct type *data_type = desc_data_target_type (type);
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1931 ada_is_bogus_array_descriptor (struct type *type)
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1950 ada_type_of_array (struct value *arr, int bounds)
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1971 struct type *elt_type;
1973 struct value *descriptor;
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2019 return lookup_pointer_type (elt_type);
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2033 struct type *arrType = ada_type_of_array (arr, 1);
2035 if (arrType == NULL)
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2050 ada_coerce_to_simple_array (struct value *arr)
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2072 ada_coerce_to_simple_array_type (struct type *type)
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2086 ada_is_packed_array_type (struct type *type)
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2101 ada_is_constrained_packed_array_type (struct type *type)
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2121 decode_packed_array_bitsize (struct type *type)
2123 const char *raw_name;
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2133 raw_name = ada_type_name (ada_check_typedef (type));
2135 raw_name = ada_type_name (desc_base_type (type));
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2146 (_("could not understand bit size information on packed array"));
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2188 index_type = TYPE_INDEX_TYPE (type);
2190 new_type = alloc_type_copy (type);
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2224 struct type *shadow_type;
2228 raw_name = ada_type_name (desc_base_type (type));
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2242 if (shadow_type == NULL)
2244 lim_warning (_("could not find bounds information on packed array"));
2247 shadow_type = check_typedef (shadow_type);
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2282 type = decode_constrained_packed_array_type (value_type (arr));
2285 error (_("can't unpack array"));
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2299 mod = ada_modulus (value_type (arr)) - 1;
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2314 return coerce_unspec_val_to_type (arr, type);
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2369 /* Non-zero iff TYPE includes negative integer values. */
2372 has_negatives (struct type *type)
2374 switch (TYPE_CODE (type))
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2385 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2400 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2415 unsigned long accum; /* Staging area for bits being transferred */
2416 int accumSize; /* Number of meaningful bits in accum */
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
2421 int delta = is_big_endian ? -1 : 1;
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2429 srcBitsLeft = bit_size;
2430 src_bytes_left = src_len;
2431 unpacked_bytes_left = unpacked_len;
2436 src_idx = src_len - 1;
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2448 unpacked_idx = unpacked_len - 1;
2452 /* Non-scalar values must be aligned at a byte boundary... */
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2465 src_idx = unpacked_idx = 0;
2466 unusedLS = bit_offset;
2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2474 while (src_bytes_left > 0)
2476 /* Mask for removing bits of the next source byte that are not
2477 part of the value. */
2478 unsigned int unusedMSMask =
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2481 /* Sign-extend bits for this byte. */
2482 unsigned int signMask = sign & ~unusedMSMask;
2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2486 accumSize += HOST_CHAR_BIT - unusedLS;
2487 if (accumSize >= HOST_CHAR_BIT)
2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2497 src_bytes_left -= 1;
2500 while (unpacked_bytes_left > 0)
2502 accum |= sign << accumSize;
2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2504 accumSize -= HOST_CHAR_BIT;
2507 accum >>= HOST_CHAR_BIT;
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
2513 /* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2523 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2528 const gdb_byte *src; /* First byte containing data to unpack */
2530 const int is_scalar = is_scalar_type (type);
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2536 type = ada_check_typedef (type);
2539 src = valaddr + offset;
2541 src = value_contents (obj) + offset;
2543 if (is_dynamic_type (type))
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2553 staging = (gdb_byte *) malloc (staging_len);
2554 make_cleanup (xfree, staging);
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2560 type = resolve_dynamic_type (type, staging, 0);
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2576 v = allocate_value (type);
2577 src = valaddr + offset;
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2584 v = value_at (type, value_address (obj) + offset);
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2591 v = allocate_value (type);
2592 src = value_contents (obj) + offset;
2597 long new_offset = offset;
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2607 set_value_offset (v, new_offset);
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2614 set_value_bitsize (v, bit_size);
2615 unpacked = value_contents_writeable (v);
2619 memset (unpacked, 0, TYPE_LENGTH (type));
2620 do_cleanups (old_chain);
2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
2636 do_cleanups (old_chain);
2640 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2644 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2645 int src_offset, int n, int bits_big_endian_p)
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
2654 if (bits_big_endian_p)
2656 accum = (unsigned char) *source;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2676 accum_bits -= chunk_size;
2683 accum = (unsigned char) *source >> src_offset;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2706 /* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
2709 floating-point or non-scalar types. */
2711 static struct value *
2712 ada_value_assign (struct value *toval, struct value *fromval)
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2725 if (!deprecated_value_modifiable (toval))
2726 error (_("Left operand of assignment is not a modifiable lvalue."));
2728 if (VALUE_LVAL (toval) == lval_memory
2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
2738 CORE_ADDR to_addr = value_address (toval);
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2741 fromval = value_cast (type, fromval);
2743 read_memory (to_addr, buffer, len);
2744 from_size = value_bitsize (fromval);
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
2748 move_bits (buffer, value_bitpos (toval),
2749 value_contents (fromval), from_size - bits, bits, 1);
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
2753 write_memory_with_notification (to_addr, buffer, len);
2755 val = value_copy (toval);
2756 memcpy (value_contents_raw (val), value_contents (fromval),
2757 TYPE_LENGTH (type));
2758 deprecated_set_value_type (val, type);
2763 return value_assign (toval, fromval);
2767 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2779 value_assign_to_component (struct value *container, struct value *component,
2782 LONGEST offset_in_container =
2783 (LONGEST) (value_address (component) - value_address (container));
2784 int bit_offset_in_container =
2785 value_bitpos (component) - value_bitpos (container);
2788 val = value_cast (value_type (component), val);
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2793 bits = value_bitsize (component);
2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2796 move_bits (value_contents_writeable (container) + offset_in_container,
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2802 move_bits (value_contents_writeable (container) + offset_in_container,
2803 value_bitpos (container) + bit_offset_in_container,
2804 value_contents (val), 0, bits, 0);
2807 /* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
2812 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2816 struct type *elt_type;
2818 elt = ada_coerce_to_simple_array (arr);
2820 elt_type = ada_check_typedef (value_type (elt));
2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2825 for (k = 0; k < arity; k += 1)
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2828 error (_("too many subscripts (%d expected)"), k);
2829 elt = value_subscript (elt, pos_atr (ind[k]));
2834 /* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
2836 Does not read the entire array into memory.
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
2846 static struct value *
2847 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2850 struct value *array_ind = ada_value_ind (arr);
2852 = check_typedef (value_enclosing_type (array_ind));
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
2858 for (k = 0; k < arity; k += 1)
2861 struct value *lwb_value;
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2864 error (_("too many subscripts (%d expected)"), k);
2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2870 type = TYPE_TARGET_TYPE (type);
2873 return value_ind (arr);
2876 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
2880 static struct value *
2881 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2884 struct type *type0 = ada_check_typedef (type);
2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2886 struct type *index_type
2887 = create_static_range_type (NULL, base_index_type, low, high);
2888 struct type *slice_type =
2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2897 warning (_("unable to get positions in slice, use bounds instead"));
2899 base_low_pos = base_low;
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2905 return value_at_lazy (slice_type, base);
2909 static struct value *
2910 ada_value_slice (struct value *array, int low, int high)
2912 struct type *type = ada_check_typedef (value_type (array));
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2918 LONGEST low_pos, high_pos;
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2923 warning (_("unable to get positions in slice, use bounds instead"));
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
2932 /* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
2935 type designation. Otherwise, returns 0. */
2938 ada_array_arity (struct type *type)
2945 type = desc_base_type (type);
2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2949 return desc_arity (desc_bounds_type (type));
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2960 /* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
2963 NINDICES is -1. Otherwise, returns NULL. */
2966 ada_array_element_type (struct type *type, int nindices)
2968 type = desc_base_type (type);
2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2973 struct type *p_array_type;
2975 p_array_type = desc_data_target_type (type);
2977 k = ada_array_arity (type);
2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2982 if (nindices >= 0 && k > nindices)
2984 while (k > 0 && p_array_type != NULL)
2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2989 return p_array_type;
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2995 type = TYPE_TARGET_TYPE (type);
3004 /* The type of nth index in arrays of given type (n numbering from 1).
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
3010 static struct type *
3011 ada_index_type (struct type *type, int n, const char *name)
3013 struct type *result_type;
3015 type = desc_base_type (type);
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
3020 if (ada_is_simple_array_type (type))
3024 for (i = 1; i < n; i += 1)
3025 type = TYPE_TARGET_TYPE (type);
3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3029 perhaps stabsread.c would make more sense. */
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3043 /* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
3050 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3052 struct type *type, *index_type_desc, *index_type;
3055 gdb_assert (which == 0 || which == 1);
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3061 return (LONGEST) - which;
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3068 if (TYPE_FIXED_INSTANCE (type))
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3081 if (index_type_desc != NULL)
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3086 struct type *elt_type = check_typedef (type);
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
3100 /* Given that arr is an array value, returns the lower bound of the
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
3103 supplied by run-time quantities other than discriminants. */
3106 ada_array_bound (struct value *arr, int n, int which)
3108 struct type *arr_type;
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3116 else if (ada_is_simple_array_type (arr_type))
3117 return ada_array_bound_from_type (arr_type, n, which);
3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3122 /* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
3129 ada_array_length (struct value *arr, int n)
3131 struct type *arr_type, *index_type;
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
3141 if (ada_is_simple_array_type (arr_type))
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3152 arr_type = check_typedef (arr_type);
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3160 base_type = index_type;
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3165 return high - low + 1;
3168 /* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3171 static struct value *
3172 empty_array (struct type *arr_type, int low)
3174 struct type *arr_type0 = ada_check_typedef (arr_type);
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
3184 /* Name resolution */
3186 /* The "decoded" name for the user-definable Ada operator corresponding
3190 ada_decoded_op_name (enum exp_opcode op)
3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3196 if (ada_opname_table[i].op == op)
3197 return ada_opname_table[i].decoded;
3199 error (_("Could not find operator name for opcode"));
3203 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3210 return type is preferred. May change (expand) *EXP. */
3213 resolve (struct expression **expp, int void_context_p)
3215 struct type *context_type = NULL;
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3221 resolve_subexp (expp, &pc, 1, context_type);
3224 /* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
3233 static struct value *
3234 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3235 struct type *context_type)
3239 struct expression *exp; /* Convenience: == *expp. */
3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3260 resolve_subexp (expp, pos, 0, NULL);
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3267 resolve_subexp (expp, pos, 0, NULL);
3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3275 case OP_ATR_MODULUS:
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3292 case OP_DISCRETE_RANGE:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3305 resolve_subexp (expp, pos, 1, NULL);
3307 resolve_subexp (expp, pos, 1, value_type (arg1));
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
3331 case BINOP_NOTEQUAL:
3338 case BINOP_SUBSCRIPT:
3346 case UNOP_LOGICAL_NOT:
3362 case OP_INTERNALVAR:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 error (_("Unexpected operator during name resolution"));
3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3398 /* Pass two: perform any resolution on principal operator. */
3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3407 struct block_symbol *candidates;
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
3416 if (n_candidates > 1)
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3422 for (j = 0; j < n_candidates; j += 1)
3423 switch (SYMBOL_CLASS (candidates[j].symbol))
3428 case LOC_REGPARM_ADDR:
3436 if (j < n_candidates)
3439 while (j < n_candidates)
3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3443 candidates[j] = candidates[n_candidates - 1];
3452 if (n_candidates == 0)
3453 error (_("No definition found for %s"),
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3465 error (_("Could not find a match for %s"),
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3470 printf_filtered (_("Multiple matches for %s\n"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3476 exp->elts[pc + 1].block = candidates[i].block;
3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
3480 innermost_block = candidates[i].block;
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3499 struct block_symbol *candidates;
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
3507 if (n_candidates == 1)
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3517 error (_("Could not find a match for %s"),
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3521 exp->elts[pc + 4].block = candidates[i].block;
3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
3525 innermost_block = candidates[i].block;
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3540 case BINOP_NOTEQUAL:
3548 case UNOP_LOGICAL_NOT:
3550 if (possible_user_operator_p (op, argvec))
3552 struct block_symbol *candidates;
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3560 ada_decoded_op_name (op), NULL);
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
3577 return evaluate_subexp_type (exp, pos);
3580 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3583 /* The term "match" here is rather loose. The match is heuristic and
3587 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3597 switch (TYPE_CODE (ftype))
3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3621 case TYPE_CODE_ARRAY:
3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype));
3625 case TYPE_CODE_STRUCT:
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
3633 case TYPE_CODE_UNION:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3639 /* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
3642 argument function. */
3645 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3648 struct type *func_type = SYMBOL_TYPE (func);
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3659 for (i = 0; i < n_actuals; i += 1)
3661 if (actuals[i] == NULL)
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3669 if (!ada_type_match (ftype, atype, 1))
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3682 return_match (struct type *func_type, struct type *context_type)
3684 struct type *return_type;
3686 if (func_type == NULL)
3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3696 context_type = get_base_type (context_type);
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3707 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3720 ada_resolve_function (struct block_symbol syms[],
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
3726 int m; /* Number of hits */
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3734 for (k = 0; k < nsyms; k += 1)
3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3738 if (ada_args_match (syms[k].symbol, args, nargs)
3739 && (fallback || return_match (type, context_type)))
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
3753 else if (m > 1 && !parse_completion)
3755 printf_filtered (_("Multiple matches for %s\n"), name);
3756 user_select_syms (syms, m, 1);
3762 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3769 encoded_ordered_before (const char *N0, const char *N1)
3773 else if (N0 == NULL)
3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3797 return (strcmp (N0, N1) < 0);
3801 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3805 sort_choices (struct block_symbol syms[], int nsyms)
3809 for (i = 1; i < nsyms; i += 1)
3811 struct block_symbol sym = syms[i];
3814 for (j = i - 1; j >= 0; j -= 1)
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
3819 syms[j + 1] = syms[j];
3825 /* Whether GDB should display formals and return types for functions in the
3826 overloads selection menu. */
3827 static int print_signatures = 1;
3829 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3830 all but functions, the signature is just the name of the symbol. For
3831 functions, this is the name of the function, the list of types for formals
3832 and the return type (if any). */
3835 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3836 const struct type_print_options *flags)
3838 struct type *type = SYMBOL_TYPE (sym);
3840 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3841 if (!print_signatures
3843 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3846 if (TYPE_NFIELDS (type) > 0)
3850 fprintf_filtered (stream, " (");
3851 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3854 fprintf_filtered (stream, "; ");
3855 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3858 fprintf_filtered (stream, ")");
3860 if (TYPE_TARGET_TYPE (type) != NULL
3861 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3863 fprintf_filtered (stream, " return ");
3864 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3868 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3869 by asking the user (if necessary), returning the number selected,
3870 and setting the first elements of SYMS items. Error if no symbols
3873 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3874 to be re-integrated one of these days. */
3877 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3880 int *chosen = XALLOCAVEC (int , nsyms);
3882 int first_choice = (max_results == 1) ? 1 : 2;
3883 const char *select_mode = multiple_symbols_select_mode ();
3885 if (max_results < 1)
3886 error (_("Request to select 0 symbols!"));
3890 if (select_mode == multiple_symbols_cancel)
3892 canceled because the command is ambiguous\n\
3893 See set/show multiple-symbol."));
3895 /* If select_mode is "all", then return all possible symbols.
3896 Only do that if more than one symbol can be selected, of course.
3897 Otherwise, display the menu as usual. */
3898 if (select_mode == multiple_symbols_all && max_results > 1)
3901 printf_unfiltered (_("[0] cancel\n"));
3902 if (max_results > 1)
3903 printf_unfiltered (_("[1] all\n"));
3905 sort_choices (syms, nsyms);
3907 for (i = 0; i < nsyms; i += 1)
3909 if (syms[i].symbol == NULL)
3912 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3914 struct symtab_and_line sal =
3915 find_function_start_sal (syms[i].symbol, 1);
3917 printf_unfiltered ("[%d] ", i + first_choice);
3918 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3919 &type_print_raw_options);
3920 if (sal.symtab == NULL)
3921 printf_unfiltered (_(" at <no source file available>:%d\n"),
3924 printf_unfiltered (_(" at %s:%d\n"),
3925 symtab_to_filename_for_display (sal.symtab),
3932 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3933 && SYMBOL_TYPE (syms[i].symbol) != NULL
3934 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3935 struct symtab *symtab = NULL;
3937 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3938 symtab = symbol_symtab (syms[i].symbol);
3940 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3942 printf_unfiltered ("[%d] ", i + first_choice);
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
3945 printf_unfiltered (_(" at %s:%d\n"),
3946 symtab_to_filename_for_display (symtab),
3947 SYMBOL_LINE (syms[i].symbol));
3949 else if (is_enumeral
3950 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3952 printf_unfiltered (("[%d] "), i + first_choice);
3953 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3954 gdb_stdout, -1, 0, &type_print_raw_options);
3955 printf_unfiltered (_("'(%s) (enumeral)\n"),
3956 SYMBOL_PRINT_NAME (syms[i].symbol));
3960 printf_unfiltered ("[%d] ", i + first_choice);
3961 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3962 &type_print_raw_options);
3965 printf_unfiltered (is_enumeral
3966 ? _(" in %s (enumeral)\n")
3968 symtab_to_filename_for_display (symtab));
3970 printf_unfiltered (is_enumeral
3971 ? _(" (enumeral)\n")
3977 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3980 for (i = 0; i < n_chosen; i += 1)
3981 syms[i] = syms[chosen[i]];
3986 /* Read and validate a set of numeric choices from the user in the
3987 range 0 .. N_CHOICES-1. Place the results in increasing
3988 order in CHOICES[0 .. N-1], and return N.
3990 The user types choices as a sequence of numbers on one line
3991 separated by blanks, encoding them as follows:
3993 + A choice of 0 means to cancel the selection, throwing an error.
3994 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3995 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3997 The user is not allowed to choose more than MAX_RESULTS values.
3999 ANNOTATION_SUFFIX, if present, is used to annotate the input
4000 prompts (for use with the -f switch). */
4003 get_selections (int *choices, int n_choices, int max_results,
4004 int is_all_choice, char *annotation_suffix)
4009 int first_choice = is_all_choice ? 2 : 1;
4011 prompt = getenv ("PS2");
4015 args = command_line_input (prompt, 0, annotation_suffix);
4018 error_no_arg (_("one or more choice numbers"));
4022 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4023 order, as given in args. Choices are validated. */
4029 args = skip_spaces (args);
4030 if (*args == '\0' && n_chosen == 0)
4031 error_no_arg (_("one or more choice numbers"));
4032 else if (*args == '\0')
4035 choice = strtol (args, &args2, 10);
4036 if (args == args2 || choice < 0
4037 || choice > n_choices + first_choice - 1)
4038 error (_("Argument must be choice number"));
4042 error (_("cancelled"));
4044 if (choice < first_choice)
4046 n_chosen = n_choices;
4047 for (j = 0; j < n_choices; j += 1)
4051 choice -= first_choice;
4053 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4057 if (j < 0 || choice != choices[j])
4061 for (k = n_chosen - 1; k > j; k -= 1)
4062 choices[k + 1] = choices[k];
4063 choices[j + 1] = choice;
4068 if (n_chosen > max_results)
4069 error (_("Select no more than %d of the above"), max_results);
4074 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4075 on the function identified by SYM and BLOCK, and taking NARGS
4076 arguments. Update *EXPP as needed to hold more space. */
4079 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4080 int oplen, struct symbol *sym,
4081 const struct block *block)
4083 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4084 symbol, -oplen for operator being replaced). */
4085 struct expression *newexp = (struct expression *)
4086 xzalloc (sizeof (struct expression)
4087 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4088 struct expression *exp = *expp;
4090 newexp->nelts = exp->nelts + 7 - oplen;
4091 newexp->language_defn = exp->language_defn;
4092 newexp->gdbarch = exp->gdbarch;
4093 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4094 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4095 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4097 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4098 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4100 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4101 newexp->elts[pc + 4].block = block;
4102 newexp->elts[pc + 5].symbol = sym;
4108 /* Type-class predicates */
4110 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4114 numeric_type_p (struct type *type)
4120 switch (TYPE_CODE (type))
4125 case TYPE_CODE_RANGE:
4126 return (type == TYPE_TARGET_TYPE (type)
4127 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4134 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4137 integer_type_p (struct type *type)
4143 switch (TYPE_CODE (type))
4147 case TYPE_CODE_RANGE:
4148 return (type == TYPE_TARGET_TYPE (type)
4149 || integer_type_p (TYPE_TARGET_TYPE (type)));
4156 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4159 scalar_type_p (struct type *type)
4165 switch (TYPE_CODE (type))
4168 case TYPE_CODE_RANGE:
4169 case TYPE_CODE_ENUM:
4178 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4181 discrete_type_p (struct type *type)
4187 switch (TYPE_CODE (type))
4190 case TYPE_CODE_RANGE:
4191 case TYPE_CODE_ENUM:
4192 case TYPE_CODE_BOOL:
4200 /* Returns non-zero if OP with operands in the vector ARGS could be
4201 a user-defined function. Errs on the side of pre-defined operators
4202 (i.e., result 0). */
4205 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4207 struct type *type0 =
4208 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4209 struct type *type1 =
4210 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4224 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4228 case BINOP_BITWISE_AND:
4229 case BINOP_BITWISE_IOR:
4230 case BINOP_BITWISE_XOR:
4231 return (!(integer_type_p (type0) && integer_type_p (type1)));
4234 case BINOP_NOTEQUAL:
4239 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4242 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4245 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4249 case UNOP_LOGICAL_NOT:
4251 return (!numeric_type_p (type0));
4260 1. In the following, we assume that a renaming type's name may
4261 have an ___XD suffix. It would be nice if this went away at some
4263 2. We handle both the (old) purely type-based representation of
4264 renamings and the (new) variable-based encoding. At some point,
4265 it is devoutly to be hoped that the former goes away
4266 (FIXME: hilfinger-2007-07-09).
4267 3. Subprogram renamings are not implemented, although the XRS
4268 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4270 /* If SYM encodes a renaming,
4272 <renaming> renames <renamed entity>,
4274 sets *LEN to the length of the renamed entity's name,
4275 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4276 the string describing the subcomponent selected from the renamed
4277 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4278 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4279 are undefined). Otherwise, returns a value indicating the category
4280 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4281 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4282 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4283 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4284 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4285 may be NULL, in which case they are not assigned.
4287 [Currently, however, GCC does not generate subprogram renamings.] */
4289 enum ada_renaming_category
4290 ada_parse_renaming (struct symbol *sym,
4291 const char **renamed_entity, int *len,
4292 const char **renaming_expr)
4294 enum ada_renaming_category kind;
4299 return ADA_NOT_RENAMING;
4300 switch (SYMBOL_CLASS (sym))
4303 return ADA_NOT_RENAMING;
4305 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4306 renamed_entity, len, renaming_expr);
4310 case LOC_OPTIMIZED_OUT:
4311 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4313 return ADA_NOT_RENAMING;
4317 kind = ADA_OBJECT_RENAMING;
4321 kind = ADA_EXCEPTION_RENAMING;
4325 kind = ADA_PACKAGE_RENAMING;
4329 kind = ADA_SUBPROGRAM_RENAMING;
4333 return ADA_NOT_RENAMING;
4337 if (renamed_entity != NULL)
4338 *renamed_entity = info;
4339 suffix = strstr (info, "___XE");
4340 if (suffix == NULL || suffix == info)
4341 return ADA_NOT_RENAMING;
4343 *len = strlen (info) - strlen (suffix);
4345 if (renaming_expr != NULL)
4346 *renaming_expr = suffix;
4350 /* Assuming TYPE encodes a renaming according to the old encoding in
4351 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4352 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4353 ADA_NOT_RENAMING otherwise. */
4354 static enum ada_renaming_category
4355 parse_old_style_renaming (struct type *type,
4356 const char **renamed_entity, int *len,
4357 const char **renaming_expr)
4359 enum ada_renaming_category kind;
4364 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4365 || TYPE_NFIELDS (type) != 1)
4366 return ADA_NOT_RENAMING;
4368 name = type_name_no_tag (type);
4370 return ADA_NOT_RENAMING;
4372 name = strstr (name, "___XR");
4374 return ADA_NOT_RENAMING;
4379 kind = ADA_OBJECT_RENAMING;
4382 kind = ADA_EXCEPTION_RENAMING;
4385 kind = ADA_PACKAGE_RENAMING;
4388 kind = ADA_SUBPROGRAM_RENAMING;
4391 return ADA_NOT_RENAMING;
4394 info = TYPE_FIELD_NAME (type, 0);
4396 return ADA_NOT_RENAMING;
4397 if (renamed_entity != NULL)
4398 *renamed_entity = info;
4399 suffix = strstr (info, "___XE");
4400 if (renaming_expr != NULL)
4401 *renaming_expr = suffix + 5;
4402 if (suffix == NULL || suffix == info)
4403 return ADA_NOT_RENAMING;
4405 *len = suffix - info;
4409 /* Compute the value of the given RENAMING_SYM, which is expected to
4410 be a symbol encoding a renaming expression. BLOCK is the block
4411 used to evaluate the renaming. */
4413 static struct value *
4414 ada_read_renaming_var_value (struct symbol *renaming_sym,
4415 const struct block *block)
4417 const char *sym_name;
4418 struct expression *expr;
4419 struct value *value;
4420 struct cleanup *old_chain = NULL;
4422 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4423 expr = parse_exp_1 (&sym_name, 0, block, 0);
4424 old_chain = make_cleanup (free_current_contents, &expr);
4425 value = evaluate_expression (expr);
4427 do_cleanups (old_chain);
4432 /* Evaluation: Function Calls */
4434 /* Return an lvalue containing the value VAL. This is the identity on
4435 lvalues, and otherwise has the side-effect of allocating memory
4436 in the inferior where a copy of the value contents is copied. */
4438 static struct value *
4439 ensure_lval (struct value *val)
4441 if (VALUE_LVAL (val) == not_lval
4442 || VALUE_LVAL (val) == lval_internalvar)
4444 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4445 const CORE_ADDR addr =
4446 value_as_long (value_allocate_space_in_inferior (len));
4448 set_value_address (val, addr);
4449 VALUE_LVAL (val) = lval_memory;
4450 write_memory (addr, value_contents (val), len);
4456 /* Return the value ACTUAL, converted to be an appropriate value for a
4457 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4458 allocating any necessary descriptors (fat pointers), or copies of
4459 values not residing in memory, updating it as needed. */
4462 ada_convert_actual (struct value *actual, struct type *formal_type0)
4464 struct type *actual_type = ada_check_typedef (value_type (actual));
4465 struct type *formal_type = ada_check_typedef (formal_type0);
4466 struct type *formal_target =
4467 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4468 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4469 struct type *actual_target =
4470 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4471 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4473 if (ada_is_array_descriptor_type (formal_target)
4474 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4475 return make_array_descriptor (formal_type, actual);
4476 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4477 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4479 struct value *result;
4481 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4482 && ada_is_array_descriptor_type (actual_target))
4483 result = desc_data (actual);
4484 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4486 if (VALUE_LVAL (actual) != lval_memory)
4490 actual_type = ada_check_typedef (value_type (actual));
4491 val = allocate_value (actual_type);
4492 memcpy ((char *) value_contents_raw (val),
4493 (char *) value_contents (actual),
4494 TYPE_LENGTH (actual_type));
4495 actual = ensure_lval (val);
4497 result = value_addr (actual);
4501 return value_cast_pointers (formal_type, result, 0);
4503 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4504 return ada_value_ind (actual);
4505 else if (ada_is_aligner_type (formal_type))
4507 /* We need to turn this parameter into an aligner type
4509 struct value *aligner = allocate_value (formal_type);
4510 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4512 value_assign_to_component (aligner, component, actual);
4519 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4520 type TYPE. This is usually an inefficient no-op except on some targets
4521 (such as AVR) where the representation of a pointer and an address
4525 value_pointer (struct value *value, struct type *type)
4527 struct gdbarch *gdbarch = get_type_arch (type);
4528 unsigned len = TYPE_LENGTH (type);
4529 gdb_byte *buf = (gdb_byte *) alloca (len);
4532 addr = value_address (value);
4533 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4534 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4539 /* Push a descriptor of type TYPE for array value ARR on the stack at
4540 *SP, updating *SP to reflect the new descriptor. Return either
4541 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4542 to-descriptor type rather than a descriptor type), a struct value *
4543 representing a pointer to this descriptor. */
4545 static struct value *
4546 make_array_descriptor (struct type *type, struct value *arr)
4548 struct type *bounds_type = desc_bounds_type (type);
4549 struct type *desc_type = desc_base_type (type);
4550 struct value *descriptor = allocate_value (desc_type);
4551 struct value *bounds = allocate_value (bounds_type);
4554 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4557 modify_field (value_type (bounds), value_contents_writeable (bounds),
4558 ada_array_bound (arr, i, 0),
4559 desc_bound_bitpos (bounds_type, i, 0),
4560 desc_bound_bitsize (bounds_type, i, 0));
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 1),
4563 desc_bound_bitpos (bounds_type, i, 1),
4564 desc_bound_bitsize (bounds_type, i, 1));
4567 bounds = ensure_lval (bounds);
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (ensure_lval (arr),
4572 TYPE_FIELD_TYPE (desc_type, 0)),
4573 fat_pntr_data_bitpos (desc_type),
4574 fat_pntr_data_bitsize (desc_type));
4576 modify_field (value_type (descriptor),
4577 value_contents_writeable (descriptor),
4578 value_pointer (bounds,
4579 TYPE_FIELD_TYPE (desc_type, 1)),
4580 fat_pntr_bounds_bitpos (desc_type),
4581 fat_pntr_bounds_bitsize (desc_type));
4583 descriptor = ensure_lval (descriptor);
4585 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4586 return value_addr (descriptor);
4591 /* Symbol Cache Module */
4593 /* Performance measurements made as of 2010-01-15 indicate that
4594 this cache does bring some noticeable improvements. Depending
4595 on the type of entity being printed, the cache can make it as much
4596 as an order of magnitude faster than without it.
4598 The descriptive type DWARF extension has significantly reduced
4599 the need for this cache, at least when DWARF is being used. However,
4600 even in this case, some expensive name-based symbol searches are still
4601 sometimes necessary - to find an XVZ variable, mostly. */
4603 /* Initialize the contents of SYM_CACHE. */
4606 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4608 obstack_init (&sym_cache->cache_space);
4609 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4612 /* Free the memory used by SYM_CACHE. */
4615 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4617 obstack_free (&sym_cache->cache_space, NULL);
4621 /* Return the symbol cache associated to the given program space PSPACE.
4622 If not allocated for this PSPACE yet, allocate and initialize one. */
4624 static struct ada_symbol_cache *
4625 ada_get_symbol_cache (struct program_space *pspace)
4627 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4629 if (pspace_data->sym_cache == NULL)
4631 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4632 ada_init_symbol_cache (pspace_data->sym_cache);
4635 return pspace_data->sym_cache;
4638 /* Clear all entries from the symbol cache. */
4641 ada_clear_symbol_cache (void)
4643 struct ada_symbol_cache *sym_cache
4644 = ada_get_symbol_cache (current_program_space);
4646 obstack_free (&sym_cache->cache_space, NULL);
4647 ada_init_symbol_cache (sym_cache);
4650 /* Search our cache for an entry matching NAME and DOMAIN.
4651 Return it if found, or NULL otherwise. */
4653 static struct cache_entry **
4654 find_entry (const char *name, domain_enum domain)
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658 int h = msymbol_hash (name) % HASH_SIZE;
4659 struct cache_entry **e;
4661 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4663 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4669 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4670 Return 1 if found, 0 otherwise.
4672 If an entry was found and SYM is not NULL, set *SYM to the entry's
4673 SYM. Same principle for BLOCK if not NULL. */
4676 lookup_cached_symbol (const char *name, domain_enum domain,
4677 struct symbol **sym, const struct block **block)
4679 struct cache_entry **e = find_entry (name, domain);
4686 *block = (*e)->block;
4690 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4691 in domain DOMAIN, save this result in our symbol cache. */
4694 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4695 const struct block *block)
4697 struct ada_symbol_cache *sym_cache
4698 = ada_get_symbol_cache (current_program_space);
4701 struct cache_entry *e;
4703 /* Symbols for builtin types don't have a block.
4704 For now don't cache such symbols. */
4705 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4708 /* If the symbol is a local symbol, then do not cache it, as a search
4709 for that symbol depends on the context. To determine whether
4710 the symbol is local or not, we check the block where we found it
4711 against the global and static blocks of its associated symtab. */
4713 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4714 GLOBAL_BLOCK) != block
4715 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4716 STATIC_BLOCK) != block)
4719 h = msymbol_hash (name) % HASH_SIZE;
4720 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4722 e->next = sym_cache->root[h];
4723 sym_cache->root[h] = e;
4725 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4726 strcpy (copy, name);
4734 /* Return nonzero if wild matching should be used when searching for
4735 all symbols matching LOOKUP_NAME.
4737 LOOKUP_NAME is expected to be a symbol name after transformation
4738 for Ada lookups (see ada_name_for_lookup). */
4741 should_use_wild_match (const char *lookup_name)
4743 return (strstr (lookup_name, "__") == NULL);
4746 /* Return the result of a standard (literal, C-like) lookup of NAME in
4747 given DOMAIN, visible from lexical block BLOCK. */
4749 static struct symbol *
4750 standard_lookup (const char *name, const struct block *block,
4753 /* Initialize it just to avoid a GCC false warning. */
4754 struct block_symbol sym = {NULL, NULL};
4756 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4758 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4759 cache_symbol (name, domain, sym.symbol, sym.block);
4764 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4765 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4766 since they contend in overloading in the same way. */
4768 is_nonfunction (struct block_symbol syms[], int n)
4772 for (i = 0; i < n; i += 1)
4773 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4774 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4775 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4781 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4782 struct types. Otherwise, they may not. */
4785 equiv_types (struct type *type0, struct type *type1)
4789 if (type0 == NULL || type1 == NULL
4790 || TYPE_CODE (type0) != TYPE_CODE (type1))
4792 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4793 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4794 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4795 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4801 /* True iff SYM0 represents the same entity as SYM1, or one that is
4802 no more defined than that of SYM1. */
4805 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4809 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4810 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4813 switch (SYMBOL_CLASS (sym0))
4819 struct type *type0 = SYMBOL_TYPE (sym0);
4820 struct type *type1 = SYMBOL_TYPE (sym1);
4821 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4822 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4823 int len0 = strlen (name0);
4826 TYPE_CODE (type0) == TYPE_CODE (type1)
4827 && (equiv_types (type0, type1)
4828 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4829 && startswith (name1 + len0, "___XV")));
4832 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4833 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4839 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4840 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4843 add_defn_to_vec (struct obstack *obstackp,
4845 const struct block *block)
4848 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4850 /* Do not try to complete stub types, as the debugger is probably
4851 already scanning all symbols matching a certain name at the
4852 time when this function is called. Trying to replace the stub
4853 type by its associated full type will cause us to restart a scan
4854 which may lead to an infinite recursion. Instead, the client
4855 collecting the matching symbols will end up collecting several
4856 matches, with at least one of them complete. It can then filter
4857 out the stub ones if needed. */
4859 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4861 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4863 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4865 prevDefns[i].symbol = sym;
4866 prevDefns[i].block = block;
4872 struct block_symbol info;
4876 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4880 /* Number of block_symbol structures currently collected in current vector in
4884 num_defns_collected (struct obstack *obstackp)
4886 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4889 /* Vector of block_symbol structures currently collected in current vector in
4890 OBSTACKP. If FINISH, close off the vector and return its final address. */
4892 static struct block_symbol *
4893 defns_collected (struct obstack *obstackp, int finish)
4896 return (struct block_symbol *) obstack_finish (obstackp);
4898 return (struct block_symbol *) obstack_base (obstackp);
4901 /* Return a bound minimal symbol matching NAME according to Ada
4902 decoding rules. Returns an invalid symbol if there is no such
4903 minimal symbol. Names prefixed with "standard__" are handled
4904 specially: "standard__" is first stripped off, and only static and
4905 global symbols are searched. */
4907 struct bound_minimal_symbol
4908 ada_lookup_simple_minsym (const char *name)
4910 struct bound_minimal_symbol result;
4911 struct objfile *objfile;
4912 struct minimal_symbol *msymbol;
4913 const int wild_match_p = should_use_wild_match (name);
4915 memset (&result, 0, sizeof (result));
4917 /* Special case: If the user specifies a symbol name inside package
4918 Standard, do a non-wild matching of the symbol name without
4919 the "standard__" prefix. This was primarily introduced in order
4920 to allow the user to specifically access the standard exceptions
4921 using, for instance, Standard.Constraint_Error when Constraint_Error
4922 is ambiguous (due to the user defining its own Constraint_Error
4923 entity inside its program). */
4924 if (startswith (name, "standard__"))
4925 name += sizeof ("standard__") - 1;
4927 ALL_MSYMBOLS (objfile, msymbol)
4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4941 /* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4948 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4949 const char *name, domain_enum domain,
4954 /* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
4958 is_nondebugging_type (struct type *type)
4960 const char *name = ada_type_name (type);
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4965 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4973 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4987 /* All enumerals should also have the same name (modulo any numerical
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5008 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5013 For instance, consider the following code:
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5029 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5040 /* Quick check: All symbols should have an enum type. */
5041 for (i = 0; i < nsyms; i++)
5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5045 /* Quick check: They should all have the same value. */
5046 for (i = 1; i < nsyms; i++)
5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5050 /* Quick check: They should all have the same number of enumerals. */
5051 for (i = 1; i < nsyms; i++)
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
5059 for (i = 1; i < nsyms; i++)
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
5067 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
5075 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5093 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5094 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5096 for (j = 0; j < nsyms; j++)
5099 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5100 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5102 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5110 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5111 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5114 for (j = 0; j < nsyms; j += 1)
5117 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5119 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5120 && SYMBOL_CLASS (syms[i].symbol)
5121 == SYMBOL_CLASS (syms[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5130 for (j = i + 1; j < nsyms; j += 1)
5131 syms[j - 1] = syms[j];
5138 /* If all the remaining symbols are identical enumerals, then
5139 just keep the first one and discard the rest.
5141 Unlike what we did previously, we do not discard any entry
5142 unless they are ALL identical. This is because the symbol
5143 comparison is not a strict comparison, but rather a practical
5144 comparison. If all symbols are considered identical, then
5145 we can just go ahead and use the first one and discard the rest.
5146 But if we cannot reduce the list to a single element, we have
5147 to ask the user to disambiguate anyways. And if we have to
5148 present a multiple-choice menu, it's less confusing if the list
5149 isn't missing some choices that were identical and yet distinct. */
5150 if (symbols_are_identical_enums (syms, nsyms))
5156 /* Given a type that corresponds to a renaming entity, use the type name
5157 to extract the scope (package name or function name, fully qualified,
5158 and following the GNAT encoding convention) where this renaming has been
5159 defined. The string returned needs to be deallocated after use. */
5162 xget_renaming_scope (struct type *renaming_type)
5164 /* The renaming types adhere to the following convention:
5165 <scope>__<rename>___<XR extension>.
5166 So, to extract the scope, we search for the "___XR" extension,
5167 and then backtrack until we find the first "__". */
5169 const char *name = type_name_no_tag (renaming_type);
5170 const char *suffix = strstr (name, "___XR");
5175 /* Now, backtrack a bit until we find the first "__". Start looking
5176 at suffix - 3, as the <rename> part is at least one character long. */
5178 for (last = suffix - 3; last > name; last--)
5179 if (last[0] == '_' && last[1] == '_')
5182 /* Make a copy of scope and return it. */
5184 scope_len = last - name;
5185 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5187 strncpy (scope, name, scope_len);
5188 scope[scope_len] = '\0';
5193 /* Return nonzero if NAME corresponds to a package name. */
5196 is_package_name (const char *name)
5198 /* Here, We take advantage of the fact that no symbols are generated
5199 for packages, while symbols are generated for each function.
5200 So the condition for NAME represent a package becomes equivalent
5201 to NAME not existing in our list of symbols. There is only one
5202 small complication with library-level functions (see below). */
5206 /* If it is a function that has not been defined at library level,
5207 then we should be able to look it up in the symbols. */
5208 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5211 /* Library-level function names start with "_ada_". See if function
5212 "_ada_" followed by NAME can be found. */
5214 /* Do a quick check that NAME does not contain "__", since library-level
5215 functions names cannot contain "__" in them. */
5216 if (strstr (name, "__") != NULL)
5219 fun_name = xstrprintf ("_ada_%s", name);
5221 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5224 /* Return nonzero if SYM corresponds to a renaming entity that is
5225 not visible from FUNCTION_NAME. */
5228 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5231 struct cleanup *old_chain;
5233 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5236 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5237 old_chain = make_cleanup (xfree, scope);
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope))
5242 do_cleanups (old_chain);
5246 /* Check that the rename is in the current function scope by checking
5247 that its name starts with SCOPE. */
5249 /* If the function name starts with "_ada_", it means that it is
5250 a library-level function. Strip this prefix before doing the
5251 comparison, as the encoding for the renaming does not contain
5253 if (startswith (function_name, "_ada_"))
5257 int is_invisible = !startswith (function_name, scope);
5259 do_cleanups (old_chain);
5260 return is_invisible;
5264 /* Remove entries from SYMS that corresponds to a renaming entity that
5265 is not visible from the function associated with CURRENT_BLOCK or
5266 that is superfluous due to the presence of more specific renaming
5267 information. Places surviving symbols in the initial entries of
5268 SYMS and returns the number of surviving symbols.
5271 First, in cases where an object renaming is implemented as a
5272 reference variable, GNAT may produce both the actual reference
5273 variable and the renaming encoding. In this case, we discard the
5276 Second, GNAT emits a type following a specified encoding for each renaming
5277 entity. Unfortunately, STABS currently does not support the definition
5278 of types that are local to a given lexical block, so all renamings types
5279 are emitted at library level. As a consequence, if an application
5280 contains two renaming entities using the same name, and a user tries to
5281 print the value of one of these entities, the result of the ada symbol
5282 lookup will also contain the wrong renaming type.
5284 This function partially covers for this limitation by attempting to
5285 remove from the SYMS list renaming symbols that should be visible
5286 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5287 method with the current information available. The implementation
5288 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5290 - When the user tries to print a rename in a function while there
5291 is another rename entity defined in a package: Normally, the
5292 rename in the function has precedence over the rename in the
5293 package, so the latter should be removed from the list. This is
5294 currently not the case.
5296 - This function will incorrectly remove valid renames if
5297 the CURRENT_BLOCK corresponds to a function which symbol name
5298 has been changed by an "Export" pragma. As a consequence,
5299 the user will be unable to print such rename entities. */
5302 remove_irrelevant_renamings (struct block_symbol *syms,
5303 int nsyms, const struct block *current_block)
5305 struct symbol *current_function;
5306 const char *current_function_name;
5308 int is_new_style_renaming;
5310 /* If there is both a renaming foo___XR... encoded as a variable and
5311 a simple variable foo in the same block, discard the latter.
5312 First, zero out such symbols, then compress. */
5313 is_new_style_renaming = 0;
5314 for (i = 0; i < nsyms; i += 1)
5316 struct symbol *sym = syms[i].symbol;
5317 const struct block *block = syms[i].block;
5321 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5323 name = SYMBOL_LINKAGE_NAME (sym);
5324 suffix = strstr (name, "___XR");
5328 int name_len = suffix - name;
5331 is_new_style_renaming = 1;
5332 for (j = 0; j < nsyms; j += 1)
5333 if (i != j && syms[j].symbol != NULL
5334 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5336 && block == syms[j].block)
5337 syms[j].symbol = NULL;
5340 if (is_new_style_renaming)
5344 for (j = k = 0; j < nsyms; j += 1)
5345 if (syms[j].symbol != NULL)
5353 /* Extract the function name associated to CURRENT_BLOCK.
5354 Abort if unable to do so. */
5356 if (current_block == NULL)
5359 current_function = block_linkage_function (current_block);
5360 if (current_function == NULL)
5363 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5364 if (current_function_name == NULL)
5367 /* Check each of the symbols, and remove it from the list if it is
5368 a type corresponding to a renaming that is out of the scope of
5369 the current block. */
5374 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5375 == ADA_OBJECT_RENAMING
5376 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5380 for (j = i + 1; j < nsyms; j += 1)
5381 syms[j - 1] = syms[j];
5391 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5392 whose name and domain match NAME and DOMAIN respectively.
5393 If no match was found, then extend the search to "enclosing"
5394 routines (in other words, if we're inside a nested function,
5395 search the symbols defined inside the enclosing functions).
5396 If WILD_MATCH_P is nonzero, perform the naming matching in
5397 "wild" mode (see function "wild_match" for more info).
5399 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5402 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5403 const struct block *block, domain_enum domain,
5406 int block_depth = 0;
5408 while (block != NULL)
5411 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5414 /* If we found a non-function match, assume that's the one. */
5415 if (is_nonfunction (defns_collected (obstackp, 0),
5416 num_defns_collected (obstackp)))
5419 block = BLOCK_SUPERBLOCK (block);
5422 /* If no luck so far, try to find NAME as a local symbol in some lexically
5423 enclosing subprogram. */
5424 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5425 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5428 /* An object of this type is used as the user_data argument when
5429 calling the map_matching_symbols method. */
5433 struct objfile *objfile;
5434 struct obstack *obstackp;
5435 struct symbol *arg_sym;
5439 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5440 to a list of symbols. DATA0 is a pointer to a struct match_data *
5441 containing the obstack that collects the symbol list, the file that SYM
5442 must come from, a flag indicating whether a non-argument symbol has
5443 been found in the current block, and the last argument symbol
5444 passed in SYM within the current block (if any). When SYM is null,
5445 marking the end of a block, the argument symbol is added if no
5446 other has been found. */
5449 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5451 struct match_data *data = (struct match_data *) data0;
5455 if (!data->found_sym && data->arg_sym != NULL)
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (data->arg_sym, data->objfile),
5459 data->found_sym = 0;
5460 data->arg_sym = NULL;
5464 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5466 else if (SYMBOL_IS_ARGUMENT (sym))
5467 data->arg_sym = sym;
5470 data->found_sym = 1;
5471 add_defn_to_vec (data->obstackp,
5472 fixup_symbol_section (sym, data->objfile),
5479 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5480 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5481 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5482 function "wild_match" for more information). Return whether we found such
5486 ada_add_block_renamings (struct obstack *obstackp,
5487 const struct block *block,
5492 struct using_direct *renaming;
5493 int defns_mark = num_defns_collected (obstackp);
5495 for (renaming = block_using (block);
5497 renaming = renaming->next)
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5513 renaming->searched = 1;
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5524 : renaming->declaration);
5526 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5527 if (name_match == 0)
5528 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5530 renaming->searched = 0;
5532 return num_defns_collected (obstackp) != defns_mark;
5535 /* Implements compare_names, but only applying the comparision using
5536 the given CASING. */
5539 compare_names_with_case (const char *string1, const char *string2,
5540 enum case_sensitivity casing)
5542 while (*string1 != '\0' && *string2 != '\0')
5546 if (isspace (*string1) || isspace (*string2))
5547 return strcmp_iw_ordered (string1, string2);
5549 if (casing == case_sensitive_off)
5551 c1 = tolower (*string1);
5552 c2 = tolower (*string2);
5569 return strcmp_iw_ordered (string1, string2);
5571 if (*string2 == '\0')
5573 if (is_name_suffix (string1))
5580 if (*string2 == '(')
5581 return strcmp_iw_ordered (string1, string2);
5584 if (casing == case_sensitive_off)
5585 return tolower (*string1) - tolower (*string2);
5587 return *string1 - *string2;
5592 /* Compare STRING1 to STRING2, with results as for strcmp.
5593 Compatible with strcmp_iw_ordered in that...
5595 strcmp_iw_ordered (STRING1, STRING2) <= 0
5599 compare_names (STRING1, STRING2) <= 0
5601 (they may differ as to what symbols compare equal). */
5604 compare_names (const char *string1, const char *string2)
5608 /* Similar to what strcmp_iw_ordered does, we need to perform
5609 a case-insensitive comparison first, and only resort to
5610 a second, case-sensitive, comparison if the first one was
5611 not sufficient to differentiate the two strings. */
5613 result = compare_names_with_case (string1, string2, case_sensitive_off);
5615 result = compare_names_with_case (string1, string2, case_sensitive_on);
5620 /* Add to OBSTACKP all non-local symbols whose name and domain match
5621 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5622 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5625 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5626 domain_enum domain, int global,
5629 struct objfile *objfile;
5630 struct compunit_symtab *cu;
5631 struct match_data data;
5633 memset (&data, 0, sizeof data);
5634 data.obstackp = obstackp;
5636 ALL_OBJFILES (objfile)
5638 data.objfile = objfile;
5641 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5642 aux_add_nonlocal_symbols, &data,
5645 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5646 aux_add_nonlocal_symbols, &data,
5647 full_match, compare_names);
5649 ALL_OBJFILE_COMPUNITS (objfile, cu)
5651 const struct block *global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5654 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5660 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5662 ALL_OBJFILES (objfile)
5664 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5665 strcpy (name1, "_ada_");
5666 strcpy (name1 + sizeof ("_ada_") - 1, name);
5667 data.objfile = objfile;
5668 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5670 aux_add_nonlocal_symbols,
5672 full_match, compare_names);
5677 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5678 non-zero, enclosing scope and in global scopes, returning the number of
5679 matches. Add these to OBSTACKP.
5681 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5682 symbol match within the nest of blocks whose innermost member is BLOCK,
5683 is the one match returned (no other matches in that or
5684 enclosing blocks is returned). If there are any matches in or
5685 surrounding BLOCK, then these alone are returned.
5687 Names prefixed with "standard__" are handled specially: "standard__"
5688 is first stripped off, and only static and global symbols are searched.
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5694 ada_add_all_symbols (struct obstack *obstackp,
5695 const struct block *block,
5699 int *made_global_lookup_p)
5702 const int wild_match_p = should_use_wild_match (name);
5704 if (made_global_lookup_p)
5705 *made_global_lookup_p = 0;
5707 /* Special case: If the user specifies a symbol name inside package
5708 Standard, do a non-wild matching of the symbol name without
5709 the "standard__" prefix. This was primarily introduced in order
5710 to allow the user to specifically access the standard exceptions
5711 using, for instance, Standard.Constraint_Error when Constraint_Error
5712 is ambiguous (due to the user defining its own Constraint_Error
5713 entity inside its program). */
5714 if (startswith (name, "standard__"))
5717 name = name + sizeof ("standard__") - 1;
5720 /* Check the non-global symbols. If we have ANY match, then we're done. */
5725 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5728 /* In the !full_search case we're are being called by
5729 ada_iterate_over_symbols, and we don't want to search
5731 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5742 if (lookup_cached_symbol (name, domain, &sym, &block))
5745 add_defn_to_vec (obstackp, sym, block);
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 1;
5752 /* Search symbols from all global blocks. */
5754 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5756 /* Now add symbols from all per-file blocks if we've gotten no hits
5757 (not strictly correct, but perhaps better than an error). */
5759 if (num_defns_collected (obstackp) == 0)
5760 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5763 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5764 non-zero, enclosing scope and in global scopes, returning the number of
5766 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5767 indicating the symbols found and the blocks and symbol tables (if
5768 any) in which they were found. This vector is transient---good only to
5769 the next call of ada_lookup_symbol_list.
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5781 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5783 struct block_symbol **results,
5786 const int wild_match_p = should_use_wild_match (name);
5787 int syms_from_global_search;
5790 obstack_free (&symbol_list_obstack, NULL);
5791 obstack_init (&symbol_list_obstack);
5792 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5793 full_search, &syms_from_global_search);
5795 ndefns = num_defns_collected (&symbol_list_obstack);
5796 *results = defns_collected (&symbol_list_obstack, 1);
5798 ndefns = remove_extra_symbols (*results, ndefns);
5800 if (ndefns == 0 && full_search && syms_from_global_search)
5801 cache_symbol (name, domain, NULL, NULL);
5803 if (ndefns == 1 && full_search && syms_from_global_search)
5804 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5806 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5810 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5811 in global scopes, returning the number of matches, and setting *RESULTS
5812 to a vector of (SYM,BLOCK) tuples.
5813 See ada_lookup_symbol_list_worker for further details. */
5816 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5817 domain_enum domain, struct block_symbol **results)
5819 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5822 /* Implementation of the la_iterate_over_symbols method. */
5825 ada_iterate_over_symbols (const struct block *block,
5826 const char *name, domain_enum domain,
5827 symbol_found_callback_ftype *callback,
5831 struct block_symbol *results;
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5834 for (i = 0; i < ndefs; ++i)
5836 if (! (*callback) (results[i].symbol, data))
5841 /* If NAME is the name of an entity, return a string that should
5842 be used to look that entity up in Ada units. This string should
5843 be deallocated after use using xfree.
5845 NAME can have any form that the "break" or "print" commands might
5846 recognize. In other words, it does not have to be the "natural"
5847 name, or the "encoded" name. */
5850 ada_name_for_lookup (const char *name)
5853 int nlen = strlen (name);
5855 if (name[0] == '<' && name[nlen - 1] == '>')
5857 canon = (char *) xmalloc (nlen - 1);
5858 memcpy (canon, name + 1, nlen - 2);
5859 canon[nlen - 2] = '\0';
5862 canon = xstrdup (ada_encode (ada_fold_name (name)));
5866 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5867 to 1, but choosing the first symbol found if there are multiple
5870 The result is stored in *INFO, which must be non-NULL.
5871 If no match is found, INFO->SYM is set to NULL. */
5874 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5876 struct block_symbol *info)
5878 struct block_symbol *candidates;
5881 gdb_assert (info != NULL);
5882 memset (info, 0, sizeof (struct block_symbol));
5884 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5885 if (n_candidates == 0)
5888 *info = candidates[0];
5889 info->symbol = fixup_symbol_section (info->symbol, NULL);
5892 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5893 scope and in global scopes, or NULL if none. NAME is folded and
5894 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5895 choosing the first symbol if there are multiple choices.
5896 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5899 ada_lookup_symbol (const char *name, const struct block *block0,
5900 domain_enum domain, int *is_a_field_of_this)
5902 struct block_symbol info;
5904 if (is_a_field_of_this != NULL)
5905 *is_a_field_of_this = 0;
5907 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5908 block0, domain, &info);
5912 static struct block_symbol
5913 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5915 const struct block *block,
5916 const domain_enum domain)
5918 struct block_symbol sym;
5920 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5921 if (sym.symbol != NULL)
5924 /* If we haven't found a match at this point, try the primitive
5925 types. In other languages, this search is performed before
5926 searching for global symbols in order to short-circuit that
5927 global-symbol search if it happens that the name corresponds
5928 to a primitive type. But we cannot do the same in Ada, because
5929 it is perfectly legitimate for a program to declare a type which
5930 has the same name as a standard type. If looking up a type in
5931 that situation, we have traditionally ignored the primitive type
5932 in favor of user-defined types. This is why, unlike most other
5933 languages, we search the primitive types this late and only after
5934 having searched the global symbols without success. */
5936 if (domain == VAR_DOMAIN)
5938 struct gdbarch *gdbarch;
5941 gdbarch = target_gdbarch ();
5943 gdbarch = block_gdbarch (block);
5944 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5945 if (sym.symbol != NULL)
5949 return (struct block_symbol) {NULL, NULL};
5953 /* True iff STR is a possible encoded suffix of a normal Ada name
5954 that is to be ignored for matching purposes. Suffixes of parallel
5955 names (e.g., XVE) are not included here. Currently, the possible suffixes
5956 are given by any of the regular expressions:
5958 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5959 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5960 TKB [subprogram suffix for task bodies]
5961 _E[0-9]+[bs]$ [protected object entry suffixes]
5962 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5964 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5965 match is performed. This sequence is used to differentiate homonyms,
5966 is an optional part of a valid name suffix. */
5969 is_name_suffix (const char *str)
5972 const char *matching;
5973 const int len = strlen (str);
5975 /* Skip optional leading __[0-9]+. */
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5980 while (isdigit (str[0]))
5986 if (str[0] == '.' || str[0] == '$')
5989 while (isdigit (matching[0]))
5991 if (matching[0] == '\0')
5997 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6000 while (isdigit (matching[0]))
6002 if (matching[0] == '\0')
6006 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6008 if (strcmp (str, "TKB") == 0)
6012 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6013 with a N at the end. Unfortunately, the compiler uses the same
6014 convention for other internal types it creates. So treating
6015 all entity names that end with an "N" as a name suffix causes
6016 some regressions. For instance, consider the case of an enumerated
6017 type. To support the 'Image attribute, it creates an array whose
6019 Having a single character like this as a suffix carrying some
6020 information is a bit risky. Perhaps we should change the encoding
6021 to be something like "_N" instead. In the meantime, do not do
6022 the following check. */
6023 /* Protected Object Subprograms */
6024 if (len == 1 && str [0] == 'N')
6029 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6032 while (isdigit (matching[0]))
6034 if ((matching[0] == 'b' || matching[0] == 's')
6035 && matching [1] == '\0')
6039 /* ??? We should not modify STR directly, as we are doing below. This
6040 is fine in this case, but may become problematic later if we find
6041 that this alternative did not work, and want to try matching
6042 another one from the begining of STR. Since we modified it, we
6043 won't be able to find the begining of the string anymore! */
6047 while (str[0] != '_' && str[0] != '\0')
6049 if (str[0] != 'n' && str[0] != 'b')
6055 if (str[0] == '\000')
6060 if (str[1] != '_' || str[2] == '\000')
6064 if (strcmp (str + 3, "JM") == 0)
6066 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6067 the LJM suffix in favor of the JM one. But we will
6068 still accept LJM as a valid suffix for a reasonable
6069 amount of time, just to allow ourselves to debug programs
6070 compiled using an older version of GNAT. */
6071 if (strcmp (str + 3, "LJM") == 0)
6075 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6076 || str[4] == 'U' || str[4] == 'P')
6078 if (str[4] == 'R' && str[5] != 'T')
6082 if (!isdigit (str[2]))
6084 for (k = 3; str[k] != '\0'; k += 1)
6085 if (!isdigit (str[k]) && str[k] != '_')
6089 if (str[0] == '$' && isdigit (str[1]))
6091 for (k = 2; str[k] != '\0'; k += 1)
6092 if (!isdigit (str[k]) && str[k] != '_')
6099 /* Return non-zero if the string starting at NAME and ending before
6100 NAME_END contains no capital letters. */
6103 is_valid_name_for_wild_match (const char *name0)
6105 const char *decoded_name = ada_decode (name0);
6108 /* If the decoded name starts with an angle bracket, it means that
6109 NAME0 does not follow the GNAT encoding format. It should then
6110 not be allowed as a possible wild match. */
6111 if (decoded_name[0] == '<')
6114 for (i=0; decoded_name[i] != '\0'; i++)
6115 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6121 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6122 that could start a simple name. Assumes that *NAMEP points into
6123 the string beginning at NAME0. */
6126 advance_wild_match (const char **namep, const char *name0, int target0)
6128 const char *name = *namep;
6138 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6141 if (name == name0 + 5 && startswith (name0, "_ada"))
6146 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6147 || name[2] == target0))
6155 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6165 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6166 informational suffixes of NAME (i.e., for which is_name_suffix is
6167 true). Assumes that PATN is a lower-cased Ada simple name. */
6170 wild_match (const char *name, const char *patn)
6173 const char *name0 = name;
6177 const char *match = name;
6181 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6184 if (*p == '\0' && is_name_suffix (name))
6185 return match != name0 && !is_valid_name_for_wild_match (name0);
6187 if (name[-1] == '_')
6190 if (!advance_wild_match (&name, name0, *patn))
6195 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6196 informational suffix. */
6199 full_match (const char *sym_name, const char *search_name)
6201 return !match_name (sym_name, search_name, 0);
6205 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6206 vector *defn_symbols, updating the list of symbols in OBSTACKP
6207 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6208 OBJFILE is the section containing BLOCK. */
6211 ada_add_block_symbols (struct obstack *obstackp,
6212 const struct block *block, const char *name,
6213 domain_enum domain, struct objfile *objfile,
6216 struct block_iterator iter;
6217 int name_len = strlen (name);
6218 /* A matching argument symbol, if any. */
6219 struct symbol *arg_sym;
6220 /* Set true when we find a matching non-argument symbol. */
6228 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6229 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6231 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6232 SYMBOL_DOMAIN (sym), domain)
6233 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6235 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6237 else if (SYMBOL_IS_ARGUMENT (sym))
6242 add_defn_to_vec (obstackp,
6243 fixup_symbol_section (sym, objfile),
6251 for (sym = block_iter_match_first (block, name, full_match, &iter);
6252 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6254 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6255 SYMBOL_DOMAIN (sym), domain))
6257 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6259 if (SYMBOL_IS_ARGUMENT (sym))
6264 add_defn_to_vec (obstackp,
6265 fixup_symbol_section (sym, objfile),
6273 /* Handle renamings. */
6275 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6278 if (!found_sym && arg_sym != NULL)
6280 add_defn_to_vec (obstackp,
6281 fixup_symbol_section (arg_sym, objfile),
6290 ALL_BLOCK_SYMBOLS (block, iter, sym)
6292 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6293 SYMBOL_DOMAIN (sym), domain))
6297 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6300 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6302 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6307 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6309 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6311 if (SYMBOL_IS_ARGUMENT (sym))
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (sym, objfile),
6325 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6326 They aren't parameters, right? */
6327 if (!found_sym && arg_sym != NULL)
6329 add_defn_to_vec (obstackp,
6330 fixup_symbol_section (arg_sym, objfile),
6337 /* Symbol Completion */
6339 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6340 name in a form that's appropriate for the completion. The result
6341 does not need to be deallocated, but is only good until the next call.
6343 TEXT_LEN is equal to the length of TEXT.
6344 Perform a wild match if WILD_MATCH_P is set.
6345 ENCODED_P should be set if TEXT represents the start of a symbol name
6346 in its encoded form. */
6349 symbol_completion_match (const char *sym_name,
6350 const char *text, int text_len,
6351 int wild_match_p, int encoded_p)
6353 const int verbatim_match = (text[0] == '<');
6358 /* Strip the leading angle bracket. */
6363 /* First, test against the fully qualified name of the symbol. */
6365 if (strncmp (sym_name, text, text_len) == 0)
6368 if (match && !encoded_p)
6370 /* One needed check before declaring a positive match is to verify
6371 that iff we are doing a verbatim match, the decoded version
6372 of the symbol name starts with '<'. Otherwise, this symbol name
6373 is not a suitable completion. */
6374 const char *sym_name_copy = sym_name;
6375 int has_angle_bracket;
6377 sym_name = ada_decode (sym_name);
6378 has_angle_bracket = (sym_name[0] == '<');
6379 match = (has_angle_bracket == verbatim_match);
6380 sym_name = sym_name_copy;
6383 if (match && !verbatim_match)
6385 /* When doing non-verbatim match, another check that needs to
6386 be done is to verify that the potentially matching symbol name
6387 does not include capital letters, because the ada-mode would
6388 not be able to understand these symbol names without the
6389 angle bracket notation. */
6392 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6397 /* Second: Try wild matching... */
6399 if (!match && wild_match_p)
6401 /* Since we are doing wild matching, this means that TEXT
6402 may represent an unqualified symbol name. We therefore must
6403 also compare TEXT against the unqualified name of the symbol. */
6404 sym_name = ada_unqualified_name (ada_decode (sym_name));
6406 if (strncmp (sym_name, text, text_len) == 0)
6410 /* Finally: If we found a mach, prepare the result to return. */
6416 sym_name = add_angle_brackets (sym_name);
6419 sym_name = ada_decode (sym_name);
6424 /* A companion function to ada_make_symbol_completion_list().
6425 Check if SYM_NAME represents a symbol which name would be suitable
6426 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6427 it is appended at the end of the given string vector SV.
6429 ORIG_TEXT is the string original string from the user command
6430 that needs to be completed. WORD is the entire command on which
6431 completion should be performed. These two parameters are used to
6432 determine which part of the symbol name should be added to the
6434 if WILD_MATCH_P is set, then wild matching is performed.
6435 ENCODED_P should be set if TEXT represents a symbol name in its
6436 encoded formed (in which case the completion should also be
6440 symbol_completion_add (VEC(char_ptr) **sv,
6441 const char *sym_name,
6442 const char *text, int text_len,
6443 const char *orig_text, const char *word,
6444 int wild_match_p, int encoded_p)
6446 const char *match = symbol_completion_match (sym_name, text, text_len,
6447 wild_match_p, encoded_p);
6453 /* We found a match, so add the appropriate completion to the given
6456 if (word == orig_text)
6458 completion = (char *) xmalloc (strlen (match) + 5);
6459 strcpy (completion, match);
6461 else if (word > orig_text)
6463 /* Return some portion of sym_name. */
6464 completion = (char *) xmalloc (strlen (match) + 5);
6465 strcpy (completion, match + (word - orig_text));
6469 /* Return some of ORIG_TEXT plus sym_name. */
6470 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6471 strncpy (completion, word, orig_text - word);
6472 completion[orig_text - word] = '\0';
6473 strcat (completion, match);
6476 VEC_safe_push (char_ptr, *sv, completion);
6479 /* An object of this type is passed as the user_data argument to the
6480 expand_symtabs_matching method. */
6481 struct add_partial_datum
6483 VEC(char_ptr) **completions;
6492 /* A callback for expand_symtabs_matching. */
6495 ada_complete_symbol_matcher (const char *name, void *user_data)
6497 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6499 return symbol_completion_match (name, data->text, data->text_len,
6500 data->wild_match, data->encoded) != NULL;
6503 /* Return a list of possible symbol names completing TEXT0. WORD is
6504 the entire command on which completion is made. */
6506 static VEC (char_ptr) *
6507 ada_make_symbol_completion_list (const char *text0, const char *word,
6508 enum type_code code)
6514 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6516 struct compunit_symtab *s;
6517 struct minimal_symbol *msymbol;
6518 struct objfile *objfile;
6519 const struct block *b, *surrounding_static_block = 0;
6521 struct block_iterator iter;
6522 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6524 gdb_assert (code == TYPE_CODE_UNDEF);
6526 if (text0[0] == '<')
6528 text = xstrdup (text0);
6529 make_cleanup (xfree, text);
6530 text_len = strlen (text);
6536 text = xstrdup (ada_encode (text0));
6537 make_cleanup (xfree, text);
6538 text_len = strlen (text);
6539 for (i = 0; i < text_len; i++)
6540 text[i] = tolower (text[i]);
6542 encoded_p = (strstr (text0, "__") != NULL);
6543 /* If the name contains a ".", then the user is entering a fully
6544 qualified entity name, and the match must not be done in wild
6545 mode. Similarly, if the user wants to complete what looks like
6546 an encoded name, the match must not be done in wild mode. */
6547 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6550 /* First, look at the partial symtab symbols. */
6552 struct add_partial_datum data;
6554 data.completions = &completions;
6556 data.text_len = text_len;
6559 data.wild_match = wild_match_p;
6560 data.encoded = encoded_p;
6561 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6565 /* At this point scan through the misc symbol vectors and add each
6566 symbol you find to the list. Eventually we want to ignore
6567 anything that isn't a text symbol (everything else will be
6568 handled by the psymtab code above). */
6570 ALL_MSYMBOLS (objfile, msymbol)
6573 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6574 text, text_len, text0, word, wild_match_p,
6578 /* Search upwards from currently selected frame (so that we can
6579 complete on local vars. */
6581 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6583 if (!BLOCK_SUPERBLOCK (b))
6584 surrounding_static_block = b; /* For elmin of dups */
6586 ALL_BLOCK_SYMBOLS (b, iter, sym)
6588 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6589 text, text_len, text0, word,
6590 wild_match_p, encoded_p);
6594 /* Go through the symtabs and check the externs and statics for
6595 symbols which match. */
6597 ALL_COMPUNITS (objfile, s)
6600 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6601 ALL_BLOCK_SYMBOLS (b, iter, sym)
6603 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6604 text, text_len, text0, word,
6605 wild_match_p, encoded_p);
6609 ALL_COMPUNITS (objfile, s)
6612 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6613 /* Don't do this block twice. */
6614 if (b == surrounding_static_block)
6616 ALL_BLOCK_SYMBOLS (b, iter, sym)
6618 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6619 text, text_len, text0, word,
6620 wild_match_p, encoded_p);
6624 do_cleanups (old_chain);
6630 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6631 for tagged types. */
6634 ada_is_dispatch_table_ptr_type (struct type *type)
6638 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6641 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6645 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6648 /* Return non-zero if TYPE is an interface tag. */
6651 ada_is_interface_tag (struct type *type)
6653 const char *name = TYPE_NAME (type);
6658 return (strcmp (name, "ada__tags__interface_tag") == 0);
6661 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6662 to be invisible to users. */
6665 ada_is_ignored_field (struct type *type, int field_num)
6667 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6670 /* Check the name of that field. */
6672 const char *name = TYPE_FIELD_NAME (type, field_num);
6674 /* Anonymous field names should not be printed.
6675 brobecker/2007-02-20: I don't think this can actually happen
6676 but we don't want to print the value of annonymous fields anyway. */
6680 /* Normally, fields whose name start with an underscore ("_")
6681 are fields that have been internally generated by the compiler,
6682 and thus should not be printed. The "_parent" field is special,
6683 however: This is a field internally generated by the compiler
6684 for tagged types, and it contains the components inherited from
6685 the parent type. This field should not be printed as is, but
6686 should not be ignored either. */
6687 if (name[0] == '_' && !startswith (name, "_parent"))
6691 /* If this is the dispatch table of a tagged type or an interface tag,
6693 if (ada_is_tagged_type (type, 1)
6694 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6695 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6698 /* Not a special field, so it should not be ignored. */
6702 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6703 pointer or reference type whose ultimate target has a tag field. */
6706 ada_is_tagged_type (struct type *type, int refok)
6708 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6711 /* True iff TYPE represents the type of X'Tag */
6714 ada_is_tag_type (struct type *type)
6716 type = ada_check_typedef (type);
6718 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6722 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6724 return (name != NULL
6725 && strcmp (name, "ada__tags__dispatch_table") == 0);
6729 /* The type of the tag on VAL. */
6732 ada_tag_type (struct value *val)
6734 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6737 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6738 retired at Ada 05). */
6741 is_ada95_tag (struct value *tag)
6743 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6746 /* The value of the tag on VAL. */
6749 ada_value_tag (struct value *val)
6751 return ada_value_struct_elt (val, "_tag", 0);
6754 /* The value of the tag on the object of type TYPE whose contents are
6755 saved at VALADDR, if it is non-null, or is at memory address
6758 static struct value *
6759 value_tag_from_contents_and_address (struct type *type,
6760 const gdb_byte *valaddr,
6763 int tag_byte_offset;
6764 struct type *tag_type;
6766 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6769 const gdb_byte *valaddr1 = ((valaddr == NULL)
6771 : valaddr + tag_byte_offset);
6772 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6774 return value_from_contents_and_address (tag_type, valaddr1, address1);
6779 static struct type *
6780 type_from_tag (struct value *tag)
6782 const char *type_name = ada_tag_name (tag);
6784 if (type_name != NULL)
6785 return ada_find_any_type (ada_encode (type_name));
6789 /* Given a value OBJ of a tagged type, return a value of this
6790 type at the base address of the object. The base address, as
6791 defined in Ada.Tags, it is the address of the primary tag of
6792 the object, and therefore where the field values of its full
6793 view can be fetched. */
6796 ada_tag_value_at_base_address (struct value *obj)
6799 LONGEST offset_to_top = 0;
6800 struct type *ptr_type, *obj_type;
6802 CORE_ADDR base_address;
6804 obj_type = value_type (obj);
6806 /* It is the responsability of the caller to deref pointers. */
6808 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6809 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6812 tag = ada_value_tag (obj);
6816 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6818 if (is_ada95_tag (tag))
6821 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6822 ptr_type = lookup_pointer_type (ptr_type);
6823 val = value_cast (ptr_type, tag);
6827 /* It is perfectly possible that an exception be raised while
6828 trying to determine the base address, just like for the tag;
6829 see ada_tag_name for more details. We do not print the error
6830 message for the same reason. */
6834 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6837 CATCH (e, RETURN_MASK_ERROR)
6843 /* If offset is null, nothing to do. */
6845 if (offset_to_top == 0)
6848 /* -1 is a special case in Ada.Tags; however, what should be done
6849 is not quite clear from the documentation. So do nothing for
6852 if (offset_to_top == -1)
6855 base_address = value_address (obj) - offset_to_top;
6856 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6858 /* Make sure that we have a proper tag at the new address.
6859 Otherwise, offset_to_top is bogus (which can happen when
6860 the object is not initialized yet). */
6865 obj_type = type_from_tag (tag);
6870 return value_from_contents_and_address (obj_type, NULL, base_address);
6873 /* Return the "ada__tags__type_specific_data" type. */
6875 static struct type *
6876 ada_get_tsd_type (struct inferior *inf)
6878 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6880 if (data->tsd_type == 0)
6881 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6882 return data->tsd_type;
6885 /* Return the TSD (type-specific data) associated to the given TAG.
6886 TAG is assumed to be the tag of a tagged-type entity.
6888 May return NULL if we are unable to get the TSD. */
6890 static struct value *
6891 ada_get_tsd_from_tag (struct value *tag)
6896 /* First option: The TSD is simply stored as a field of our TAG.
6897 Only older versions of GNAT would use this format, but we have
6898 to test it first, because there are no visible markers for
6899 the current approach except the absence of that field. */
6901 val = ada_value_struct_elt (tag, "tsd", 1);
6905 /* Try the second representation for the dispatch table (in which
6906 there is no explicit 'tsd' field in the referent of the tag pointer,
6907 and instead the tsd pointer is stored just before the dispatch
6910 type = ada_get_tsd_type (current_inferior());
6913 type = lookup_pointer_type (lookup_pointer_type (type));
6914 val = value_cast (type, tag);
6917 return value_ind (value_ptradd (val, -1));
6920 /* Given the TSD of a tag (type-specific data), return a string
6921 containing the name of the associated type.
6923 The returned value is good until the next call. May return NULL
6924 if we are unable to determine the tag name. */
6927 ada_tag_name_from_tsd (struct value *tsd)
6929 static char name[1024];
6933 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6936 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6937 for (p = name; *p != '\0'; p += 1)
6943 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6946 Return NULL if the TAG is not an Ada tag, or if we were unable to
6947 determine the name of that tag. The result is good until the next
6951 ada_tag_name (struct value *tag)
6955 if (!ada_is_tag_type (value_type (tag)))
6958 /* It is perfectly possible that an exception be raised while trying
6959 to determine the TAG's name, even under normal circumstances:
6960 The associated variable may be uninitialized or corrupted, for
6961 instance. We do not let any exception propagate past this point.
6962 instead we return NULL.
6964 We also do not print the error message either (which often is very
6965 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6966 the caller print a more meaningful message if necessary. */
6969 struct value *tsd = ada_get_tsd_from_tag (tag);
6972 name = ada_tag_name_from_tsd (tsd);
6974 CATCH (e, RETURN_MASK_ERROR)
6982 /* The parent type of TYPE, or NULL if none. */
6985 ada_parent_type (struct type *type)
6989 type = ada_check_typedef (type);
6991 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6994 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6995 if (ada_is_parent_field (type, i))
6997 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6999 /* If the _parent field is a pointer, then dereference it. */
7000 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7001 parent_type = TYPE_TARGET_TYPE (parent_type);
7002 /* If there is a parallel XVS type, get the actual base type. */
7003 parent_type = ada_get_base_type (parent_type);
7005 return ada_check_typedef (parent_type);
7011 /* True iff field number FIELD_NUM of structure type TYPE contains the
7012 parent-type (inherited) fields of a derived type. Assumes TYPE is
7013 a structure type with at least FIELD_NUM+1 fields. */
7016 ada_is_parent_field (struct type *type, int field_num)
7018 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7020 return (name != NULL
7021 && (startswith (name, "PARENT")
7022 || startswith (name, "_parent")));
7025 /* True iff field number FIELD_NUM of structure type TYPE is a
7026 transparent wrapper field (which should be silently traversed when doing
7027 field selection and flattened when printing). Assumes TYPE is a
7028 structure type with at least FIELD_NUM+1 fields. Such fields are always
7032 ada_is_wrapper_field (struct type *type, int field_num)
7034 const char *name = TYPE_FIELD_NAME (type, field_num);
7036 if (name != NULL && strcmp (name, "RETVAL") == 0)
7038 /* This happens in functions with "out" or "in out" parameters
7039 which are passed by copy. For such functions, GNAT describes
7040 the function's return type as being a struct where the return
7041 value is in a field called RETVAL, and where the other "out"
7042 or "in out" parameters are fields of that struct. This is not
7047 return (name != NULL
7048 && (startswith (name, "PARENT")
7049 || strcmp (name, "REP") == 0
7050 || startswith (name, "_parent")
7051 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7054 /* True iff field number FIELD_NUM of structure or union type TYPE
7055 is a variant wrapper. Assumes TYPE is a structure type with at least
7056 FIELD_NUM+1 fields. */
7059 ada_is_variant_part (struct type *type, int field_num)
7061 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7063 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7064 || (is_dynamic_field (type, field_num)
7065 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7066 == TYPE_CODE_UNION)));
7069 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7070 whose discriminants are contained in the record type OUTER_TYPE,
7071 returns the type of the controlling discriminant for the variant.
7072 May return NULL if the type could not be found. */
7075 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7077 char *name = ada_variant_discrim_name (var_type);
7079 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7082 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7083 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7084 represents a 'when others' clause; otherwise 0. */
7087 ada_is_others_clause (struct type *type, int field_num)
7089 const char *name = TYPE_FIELD_NAME (type, field_num);
7091 return (name != NULL && name[0] == 'O');
7094 /* Assuming that TYPE0 is the type of the variant part of a record,
7095 returns the name of the discriminant controlling the variant.
7096 The value is valid until the next call to ada_variant_discrim_name. */
7099 ada_variant_discrim_name (struct type *type0)
7101 static char *result = NULL;
7102 static size_t result_len = 0;
7105 const char *discrim_end;
7106 const char *discrim_start;
7108 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7109 type = TYPE_TARGET_TYPE (type0);
7113 name = ada_type_name (type);
7115 if (name == NULL || name[0] == '\000')
7118 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7121 if (startswith (discrim_end, "___XVN"))
7124 if (discrim_end == name)
7127 for (discrim_start = discrim_end; discrim_start != name + 3;
7130 if (discrim_start == name + 1)
7132 if ((discrim_start > name + 3
7133 && startswith (discrim_start - 3, "___"))
7134 || discrim_start[-1] == '.')
7138 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7139 strncpy (result, discrim_start, discrim_end - discrim_start);
7140 result[discrim_end - discrim_start] = '\0';
7144 /* Scan STR for a subtype-encoded number, beginning at position K.
7145 Put the position of the character just past the number scanned in
7146 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7147 Return 1 if there was a valid number at the given position, and 0
7148 otherwise. A "subtype-encoded" number consists of the absolute value
7149 in decimal, followed by the letter 'm' to indicate a negative number.
7150 Assumes 0m does not occur. */
7153 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7157 if (!isdigit (str[k]))
7160 /* Do it the hard way so as not to make any assumption about
7161 the relationship of unsigned long (%lu scan format code) and
7164 while (isdigit (str[k]))
7166 RU = RU * 10 + (str[k] - '0');
7173 *R = (-(LONGEST) (RU - 1)) - 1;
7179 /* NOTE on the above: Technically, C does not say what the results of
7180 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7181 number representable as a LONGEST (although either would probably work
7182 in most implementations). When RU>0, the locution in the then branch
7183 above is always equivalent to the negative of RU. */
7190 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7191 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7192 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7195 ada_in_variant (LONGEST val, struct type *type, int field_num)
7197 const char *name = TYPE_FIELD_NAME (type, field_num);
7211 if (!ada_scan_number (name, p + 1, &W, &p))
7221 if (!ada_scan_number (name, p + 1, &L, &p)
7222 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7224 if (val >= L && val <= U)
7236 /* FIXME: Lots of redundancy below. Try to consolidate. */
7238 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7239 ARG_TYPE, extract and return the value of one of its (non-static)
7240 fields. FIELDNO says which field. Differs from value_primitive_field
7241 only in that it can handle packed values of arbitrary type. */
7243 static struct value *
7244 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7245 struct type *arg_type)
7249 arg_type = ada_check_typedef (arg_type);
7250 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7252 /* Handle packed fields. */
7254 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7256 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7257 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7259 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7260 offset + bit_pos / 8,
7261 bit_pos % 8, bit_size, type);
7264 return value_primitive_field (arg1, offset, fieldno, arg_type);
7267 /* Find field with name NAME in object of type TYPE. If found,
7268 set the following for each argument that is non-null:
7269 - *FIELD_TYPE_P to the field's type;
7270 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7271 an object of that type;
7272 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7273 - *BIT_SIZE_P to its size in bits if the field is packed, and
7275 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7276 fields up to but not including the desired field, or by the total
7277 number of fields if not found. A NULL value of NAME never
7278 matches; the function just counts visible fields in this case.
7280 Returns 1 if found, 0 otherwise. */
7283 find_struct_field (const char *name, struct type *type, int offset,
7284 struct type **field_type_p,
7285 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7290 type = ada_check_typedef (type);
7292 if (field_type_p != NULL)
7293 *field_type_p = NULL;
7294 if (byte_offset_p != NULL)
7296 if (bit_offset_p != NULL)
7298 if (bit_size_p != NULL)
7301 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7303 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7304 int fld_offset = offset + bit_pos / 8;
7305 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7307 if (t_field_name == NULL)
7310 else if (name != NULL && field_name_match (t_field_name, name))
7312 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7314 if (field_type_p != NULL)
7315 *field_type_p = TYPE_FIELD_TYPE (type, i);
7316 if (byte_offset_p != NULL)
7317 *byte_offset_p = fld_offset;
7318 if (bit_offset_p != NULL)
7319 *bit_offset_p = bit_pos % 8;
7320 if (bit_size_p != NULL)
7321 *bit_size_p = bit_size;
7324 else if (ada_is_wrapper_field (type, i))
7326 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7327 field_type_p, byte_offset_p, bit_offset_p,
7328 bit_size_p, index_p))
7331 else if (ada_is_variant_part (type, i))
7333 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7336 struct type *field_type
7337 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7339 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7341 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7343 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7344 field_type_p, byte_offset_p,
7345 bit_offset_p, bit_size_p, index_p))
7349 else if (index_p != NULL)
7355 /* Number of user-visible fields in record type TYPE. */
7358 num_visible_fields (struct type *type)
7363 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7367 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7368 and search in it assuming it has (class) type TYPE.
7369 If found, return value, else return NULL.
7371 Searches recursively through wrapper fields (e.g., '_parent'). */
7373 static struct value *
7374 ada_search_struct_field (const char *name, struct value *arg, int offset,
7379 type = ada_check_typedef (type);
7380 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7382 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7384 if (t_field_name == NULL)
7387 else if (field_name_match (t_field_name, name))
7388 return ada_value_primitive_field (arg, offset, i, type);
7390 else if (ada_is_wrapper_field (type, i))
7392 struct value *v = /* Do not let indent join lines here. */
7393 ada_search_struct_field (name, arg,
7394 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7395 TYPE_FIELD_TYPE (type, i));
7401 else if (ada_is_variant_part (type, i))
7403 /* PNH: Do we ever get here? See find_struct_field. */
7405 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7407 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7409 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7411 struct value *v = ada_search_struct_field /* Force line
7414 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7415 TYPE_FIELD_TYPE (field_type, j));
7425 static struct value *ada_index_struct_field_1 (int *, struct value *,
7426 int, struct type *);
7429 /* Return field #INDEX in ARG, where the index is that returned by
7430 * find_struct_field through its INDEX_P argument. Adjust the address
7431 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7432 * If found, return value, else return NULL. */
7434 static struct value *
7435 ada_index_struct_field (int index, struct value *arg, int offset,
7438 return ada_index_struct_field_1 (&index, arg, offset, type);
7442 /* Auxiliary function for ada_index_struct_field. Like
7443 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7446 static struct value *
7447 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7451 type = ada_check_typedef (type);
7453 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7455 if (TYPE_FIELD_NAME (type, i) == NULL)
7457 else if (ada_is_wrapper_field (type, i))
7459 struct value *v = /* Do not let indent join lines here. */
7460 ada_index_struct_field_1 (index_p, arg,
7461 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7462 TYPE_FIELD_TYPE (type, i));
7468 else if (ada_is_variant_part (type, i))
7470 /* PNH: Do we ever get here? See ada_search_struct_field,
7471 find_struct_field. */
7472 error (_("Cannot assign this kind of variant record"));
7474 else if (*index_p == 0)
7475 return ada_value_primitive_field (arg, offset, i, type);
7482 /* Given ARG, a value of type (pointer or reference to a)*
7483 structure/union, extract the component named NAME from the ultimate
7484 target structure/union and return it as a value with its
7487 The routine searches for NAME among all members of the structure itself
7488 and (recursively) among all members of any wrapper members
7491 If NO_ERR, then simply return NULL in case of error, rather than
7495 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7497 struct type *t, *t1;
7501 t1 = t = ada_check_typedef (value_type (arg));
7502 if (TYPE_CODE (t) == TYPE_CODE_REF)
7504 t1 = TYPE_TARGET_TYPE (t);
7507 t1 = ada_check_typedef (t1);
7508 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7510 arg = coerce_ref (arg);
7515 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7517 t1 = TYPE_TARGET_TYPE (t);
7520 t1 = ada_check_typedef (t1);
7521 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7523 arg = value_ind (arg);
7530 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7534 v = ada_search_struct_field (name, arg, 0, t);
7537 int bit_offset, bit_size, byte_offset;
7538 struct type *field_type;
7541 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7542 address = value_address (ada_value_ind (arg));
7544 address = value_address (ada_coerce_ref (arg));
7546 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7547 if (find_struct_field (name, t1, 0,
7548 &field_type, &byte_offset, &bit_offset,
7553 if (TYPE_CODE (t) == TYPE_CODE_REF)
7554 arg = ada_coerce_ref (arg);
7556 arg = ada_value_ind (arg);
7557 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7558 bit_offset, bit_size,
7562 v = value_at_lazy (field_type, address + byte_offset);
7566 if (v != NULL || no_err)
7569 error (_("There is no member named %s."), name);
7575 error (_("Attempt to extract a component of "
7576 "a value that is not a record."));
7579 /* Given a type TYPE, look up the type of the component of type named NAME.
7580 If DISPP is non-null, add its byte displacement from the beginning of a
7581 structure (pointed to by a value) of type TYPE to *DISPP (does not
7582 work for packed fields).
7584 Matches any field whose name has NAME as a prefix, possibly
7587 TYPE can be either a struct or union. If REFOK, TYPE may also
7588 be a (pointer or reference)+ to a struct or union, and the
7589 ultimate target type will be searched.
7591 Looks recursively into variant clauses and parent types.
7593 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7594 TYPE is not a type of the right kind. */
7596 static struct type *
7597 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7598 int noerr, int *dispp)
7605 if (refok && type != NULL)
7608 type = ada_check_typedef (type);
7609 if (TYPE_CODE (type) != TYPE_CODE_PTR
7610 && TYPE_CODE (type) != TYPE_CODE_REF)
7612 type = TYPE_TARGET_TYPE (type);
7616 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7617 && TYPE_CODE (type) != TYPE_CODE_UNION))
7623 target_terminal_ours ();
7624 gdb_flush (gdb_stdout);
7626 error (_("Type (null) is not a structure or union type"));
7629 /* XXX: type_sprint */
7630 fprintf_unfiltered (gdb_stderr, _("Type "));
7631 type_print (type, "", gdb_stderr, -1);
7632 error (_(" is not a structure or union type"));
7637 type = to_static_fixed_type (type);
7639 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7641 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7645 if (t_field_name == NULL)
7648 else if (field_name_match (t_field_name, name))
7651 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7652 return TYPE_FIELD_TYPE (type, i);
7655 else if (ada_is_wrapper_field (type, i))
7658 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7663 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7668 else if (ada_is_variant_part (type, i))
7671 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7674 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7676 /* FIXME pnh 2008/01/26: We check for a field that is
7677 NOT wrapped in a struct, since the compiler sometimes
7678 generates these for unchecked variant types. Revisit
7679 if the compiler changes this practice. */
7680 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7682 if (v_field_name != NULL
7683 && field_name_match (v_field_name, name))
7684 t = TYPE_FIELD_TYPE (field_type, j);
7686 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7693 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7704 target_terminal_ours ();
7705 gdb_flush (gdb_stdout);
7708 /* XXX: type_sprint */
7709 fprintf_unfiltered (gdb_stderr, _("Type "));
7710 type_print (type, "", gdb_stderr, -1);
7711 error (_(" has no component named <null>"));
7715 /* XXX: type_sprint */
7716 fprintf_unfiltered (gdb_stderr, _("Type "));
7717 type_print (type, "", gdb_stderr, -1);
7718 error (_(" has no component named %s"), name);
7725 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7726 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7727 represents an unchecked union (that is, the variant part of a
7728 record that is named in an Unchecked_Union pragma). */
7731 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7733 char *discrim_name = ada_variant_discrim_name (var_type);
7735 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7740 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7741 within a value of type OUTER_TYPE that is stored in GDB at
7742 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7743 numbering from 0) is applicable. Returns -1 if none are. */
7746 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7747 const gdb_byte *outer_valaddr)
7751 char *discrim_name = ada_variant_discrim_name (var_type);
7752 struct value *outer;
7753 struct value *discrim;
7754 LONGEST discrim_val;
7756 /* Using plain value_from_contents_and_address here causes problems
7757 because we will end up trying to resolve a type that is currently
7758 being constructed. */
7759 outer = value_from_contents_and_address_unresolved (outer_type,
7761 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7762 if (discrim == NULL)
7764 discrim_val = value_as_long (discrim);
7767 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7769 if (ada_is_others_clause (var_type, i))
7771 else if (ada_in_variant (discrim_val, var_type, i))
7775 return others_clause;
7780 /* Dynamic-Sized Records */
7782 /* Strategy: The type ostensibly attached to a value with dynamic size
7783 (i.e., a size that is not statically recorded in the debugging
7784 data) does not accurately reflect the size or layout of the value.
7785 Our strategy is to convert these values to values with accurate,
7786 conventional types that are constructed on the fly. */
7788 /* There is a subtle and tricky problem here. In general, we cannot
7789 determine the size of dynamic records without its data. However,
7790 the 'struct value' data structure, which GDB uses to represent
7791 quantities in the inferior process (the target), requires the size
7792 of the type at the time of its allocation in order to reserve space
7793 for GDB's internal copy of the data. That's why the
7794 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7795 rather than struct value*s.
7797 However, GDB's internal history variables ($1, $2, etc.) are
7798 struct value*s containing internal copies of the data that are not, in
7799 general, the same as the data at their corresponding addresses in
7800 the target. Fortunately, the types we give to these values are all
7801 conventional, fixed-size types (as per the strategy described
7802 above), so that we don't usually have to perform the
7803 'to_fixed_xxx_type' conversions to look at their values.
7804 Unfortunately, there is one exception: if one of the internal
7805 history variables is an array whose elements are unconstrained
7806 records, then we will need to create distinct fixed types for each
7807 element selected. */
7809 /* The upshot of all of this is that many routines take a (type, host
7810 address, target address) triple as arguments to represent a value.
7811 The host address, if non-null, is supposed to contain an internal
7812 copy of the relevant data; otherwise, the program is to consult the
7813 target at the target address. */
7815 /* Assuming that VAL0 represents a pointer value, the result of
7816 dereferencing it. Differs from value_ind in its treatment of
7817 dynamic-sized types. */
7820 ada_value_ind (struct value *val0)
7822 struct value *val = value_ind (val0);
7824 if (ada_is_tagged_type (value_type (val), 0))
7825 val = ada_tag_value_at_base_address (val);
7827 return ada_to_fixed_value (val);
7830 /* The value resulting from dereferencing any "reference to"
7831 qualifiers on VAL0. */
7833 static struct value *
7834 ada_coerce_ref (struct value *val0)
7836 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7838 struct value *val = val0;
7840 val = coerce_ref (val);
7842 if (ada_is_tagged_type (value_type (val), 0))
7843 val = ada_tag_value_at_base_address (val);
7845 return ada_to_fixed_value (val);
7851 /* Return OFF rounded upward if necessary to a multiple of
7852 ALIGNMENT (a power of 2). */
7855 align_value (unsigned int off, unsigned int alignment)
7857 return (off + alignment - 1) & ~(alignment - 1);
7860 /* Return the bit alignment required for field #F of template type TYPE. */
7863 field_alignment (struct type *type, int f)
7865 const char *name = TYPE_FIELD_NAME (type, f);
7869 /* The field name should never be null, unless the debugging information
7870 is somehow malformed. In this case, we assume the field does not
7871 require any alignment. */
7875 len = strlen (name);
7877 if (!isdigit (name[len - 1]))
7880 if (isdigit (name[len - 2]))
7881 align_offset = len - 2;
7883 align_offset = len - 1;
7885 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7886 return TARGET_CHAR_BIT;
7888 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7891 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7893 static struct symbol *
7894 ada_find_any_type_symbol (const char *name)
7898 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7899 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7902 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7906 /* Find a type named NAME. Ignores ambiguity. This routine will look
7907 solely for types defined by debug info, it will not search the GDB
7910 static struct type *
7911 ada_find_any_type (const char *name)
7913 struct symbol *sym = ada_find_any_type_symbol (name);
7916 return SYMBOL_TYPE (sym);
7921 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7922 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7923 symbol, in which case it is returned. Otherwise, this looks for
7924 symbols whose name is that of NAME_SYM suffixed with "___XR".
7925 Return symbol if found, and NULL otherwise. */
7928 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7930 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7933 if (strstr (name, "___XR") != NULL)
7936 sym = find_old_style_renaming_symbol (name, block);
7941 /* Not right yet. FIXME pnh 7/20/2007. */
7942 sym = ada_find_any_type_symbol (name);
7943 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7949 static struct symbol *
7950 find_old_style_renaming_symbol (const char *name, const struct block *block)
7952 const struct symbol *function_sym = block_linkage_function (block);
7955 if (function_sym != NULL)
7957 /* If the symbol is defined inside a function, NAME is not fully
7958 qualified. This means we need to prepend the function name
7959 as well as adding the ``___XR'' suffix to build the name of
7960 the associated renaming symbol. */
7961 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7962 /* Function names sometimes contain suffixes used
7963 for instance to qualify nested subprograms. When building
7964 the XR type name, we need to make sure that this suffix is
7965 not included. So do not include any suffix in the function
7966 name length below. */
7967 int function_name_len = ada_name_prefix_len (function_name);
7968 const int rename_len = function_name_len + 2 /* "__" */
7969 + strlen (name) + 6 /* "___XR\0" */ ;
7971 /* Strip the suffix if necessary. */
7972 ada_remove_trailing_digits (function_name, &function_name_len);
7973 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7974 ada_remove_Xbn_suffix (function_name, &function_name_len);
7976 /* Library-level functions are a special case, as GNAT adds
7977 a ``_ada_'' prefix to the function name to avoid namespace
7978 pollution. However, the renaming symbols themselves do not
7979 have this prefix, so we need to skip this prefix if present. */
7980 if (function_name_len > 5 /* "_ada_" */
7981 && strstr (function_name, "_ada_") == function_name)
7984 function_name_len -= 5;
7987 rename = (char *) alloca (rename_len * sizeof (char));
7988 strncpy (rename, function_name, function_name_len);
7989 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7994 const int rename_len = strlen (name) + 6;
7996 rename = (char *) alloca (rename_len * sizeof (char));
7997 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8000 return ada_find_any_type_symbol (rename);
8003 /* Because of GNAT encoding conventions, several GDB symbols may match a
8004 given type name. If the type denoted by TYPE0 is to be preferred to
8005 that of TYPE1 for purposes of type printing, return non-zero;
8006 otherwise return 0. */
8009 ada_prefer_type (struct type *type0, struct type *type1)
8013 else if (type0 == NULL)
8015 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8017 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8019 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8021 else if (ada_is_constrained_packed_array_type (type0))
8023 else if (ada_is_array_descriptor_type (type0)
8024 && !ada_is_array_descriptor_type (type1))
8028 const char *type0_name = type_name_no_tag (type0);
8029 const char *type1_name = type_name_no_tag (type1);
8031 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8032 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8038 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8039 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8042 ada_type_name (struct type *type)
8046 else if (TYPE_NAME (type) != NULL)
8047 return TYPE_NAME (type);
8049 return TYPE_TAG_NAME (type);
8052 /* Search the list of "descriptive" types associated to TYPE for a type
8053 whose name is NAME. */
8055 static struct type *
8056 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8058 struct type *result, *tmp;
8060 if (ada_ignore_descriptive_types_p)
8063 /* If there no descriptive-type info, then there is no parallel type
8065 if (!HAVE_GNAT_AUX_INFO (type))
8068 result = TYPE_DESCRIPTIVE_TYPE (type);
8069 while (result != NULL)
8071 const char *result_name = ada_type_name (result);
8073 if (result_name == NULL)
8075 warning (_("unexpected null name on descriptive type"));
8079 /* If the names match, stop. */
8080 if (strcmp (result_name, name) == 0)
8083 /* Otherwise, look at the next item on the list, if any. */
8084 if (HAVE_GNAT_AUX_INFO (result))
8085 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8089 /* If not found either, try after having resolved the typedef. */
8094 result = check_typedef (result);
8095 if (HAVE_GNAT_AUX_INFO (result))
8096 result = TYPE_DESCRIPTIVE_TYPE (result);
8102 /* If we didn't find a match, see whether this is a packed array. With
8103 older compilers, the descriptive type information is either absent or
8104 irrelevant when it comes to packed arrays so the above lookup fails.
8105 Fall back to using a parallel lookup by name in this case. */
8106 if (result == NULL && ada_is_constrained_packed_array_type (type))
8107 return ada_find_any_type (name);
8112 /* Find a parallel type to TYPE with the specified NAME, using the
8113 descriptive type taken from the debugging information, if available,
8114 and otherwise using the (slower) name-based method. */
8116 static struct type *
8117 ada_find_parallel_type_with_name (struct type *type, const char *name)
8119 struct type *result = NULL;
8121 if (HAVE_GNAT_AUX_INFO (type))
8122 result = find_parallel_type_by_descriptive_type (type, name);
8124 result = ada_find_any_type (name);
8129 /* Same as above, but specify the name of the parallel type by appending
8130 SUFFIX to the name of TYPE. */
8133 ada_find_parallel_type (struct type *type, const char *suffix)
8136 const char *type_name = ada_type_name (type);
8139 if (type_name == NULL)
8142 len = strlen (type_name);
8144 name = (char *) alloca (len + strlen (suffix) + 1);
8146 strcpy (name, type_name);
8147 strcpy (name + len, suffix);
8149 return ada_find_parallel_type_with_name (type, name);
8152 /* If TYPE is a variable-size record type, return the corresponding template
8153 type describing its fields. Otherwise, return NULL. */
8155 static struct type *
8156 dynamic_template_type (struct type *type)
8158 type = ada_check_typedef (type);
8160 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8161 || ada_type_name (type) == NULL)
8165 int len = strlen (ada_type_name (type));
8167 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8170 return ada_find_parallel_type (type, "___XVE");
8174 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8175 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8178 is_dynamic_field (struct type *templ_type, int field_num)
8180 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8183 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8184 && strstr (name, "___XVL") != NULL;
8187 /* The index of the variant field of TYPE, or -1 if TYPE does not
8188 represent a variant record type. */
8191 variant_field_index (struct type *type)
8195 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8198 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8200 if (ada_is_variant_part (type, f))
8206 /* A record type with no fields. */
8208 static struct type *
8209 empty_record (struct type *templ)
8211 struct type *type = alloc_type_copy (templ);
8213 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8214 TYPE_NFIELDS (type) = 0;
8215 TYPE_FIELDS (type) = NULL;
8216 INIT_CPLUS_SPECIFIC (type);
8217 TYPE_NAME (type) = "<empty>";
8218 TYPE_TAG_NAME (type) = NULL;
8219 TYPE_LENGTH (type) = 0;
8223 /* An ordinary record type (with fixed-length fields) that describes
8224 the value of type TYPE at VALADDR or ADDRESS (see comments at
8225 the beginning of this section) VAL according to GNAT conventions.
8226 DVAL0 should describe the (portion of a) record that contains any
8227 necessary discriminants. It should be NULL if value_type (VAL) is
8228 an outer-level type (i.e., as opposed to a branch of a variant.) A
8229 variant field (unless unchecked) is replaced by a particular branch
8232 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8233 length are not statically known are discarded. As a consequence,
8234 VALADDR, ADDRESS and DVAL0 are ignored.
8236 NOTE: Limitations: For now, we assume that dynamic fields and
8237 variants occupy whole numbers of bytes. However, they need not be
8241 ada_template_to_fixed_record_type_1 (struct type *type,
8242 const gdb_byte *valaddr,
8243 CORE_ADDR address, struct value *dval0,
8244 int keep_dynamic_fields)
8246 struct value *mark = value_mark ();
8249 int nfields, bit_len;
8255 /* Compute the number of fields in this record type that are going
8256 to be processed: unless keep_dynamic_fields, this includes only
8257 fields whose position and length are static will be processed. */
8258 if (keep_dynamic_fields)
8259 nfields = TYPE_NFIELDS (type);
8263 while (nfields < TYPE_NFIELDS (type)
8264 && !ada_is_variant_part (type, nfields)
8265 && !is_dynamic_field (type, nfields))
8269 rtype = alloc_type_copy (type);
8270 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8271 INIT_CPLUS_SPECIFIC (rtype);
8272 TYPE_NFIELDS (rtype) = nfields;
8273 TYPE_FIELDS (rtype) = (struct field *)
8274 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8275 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8276 TYPE_NAME (rtype) = ada_type_name (type);
8277 TYPE_TAG_NAME (rtype) = NULL;
8278 TYPE_FIXED_INSTANCE (rtype) = 1;
8284 for (f = 0; f < nfields; f += 1)
8286 off = align_value (off, field_alignment (type, f))
8287 + TYPE_FIELD_BITPOS (type, f);
8288 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8289 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8291 if (ada_is_variant_part (type, f))
8296 else if (is_dynamic_field (type, f))
8298 const gdb_byte *field_valaddr = valaddr;
8299 CORE_ADDR field_address = address;
8300 struct type *field_type =
8301 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8305 /* rtype's length is computed based on the run-time
8306 value of discriminants. If the discriminants are not
8307 initialized, the type size may be completely bogus and
8308 GDB may fail to allocate a value for it. So check the
8309 size first before creating the value. */
8310 ada_ensure_varsize_limit (rtype);
8311 /* Using plain value_from_contents_and_address here
8312 causes problems because we will end up trying to
8313 resolve a type that is currently being
8315 dval = value_from_contents_and_address_unresolved (rtype,
8318 rtype = value_type (dval);
8323 /* If the type referenced by this field is an aligner type, we need
8324 to unwrap that aligner type, because its size might not be set.
8325 Keeping the aligner type would cause us to compute the wrong
8326 size for this field, impacting the offset of the all the fields
8327 that follow this one. */
8328 if (ada_is_aligner_type (field_type))
8330 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8332 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8333 field_address = cond_offset_target (field_address, field_offset);
8334 field_type = ada_aligned_type (field_type);
8337 field_valaddr = cond_offset_host (field_valaddr,
8338 off / TARGET_CHAR_BIT);
8339 field_address = cond_offset_target (field_address,
8340 off / TARGET_CHAR_BIT);
8342 /* Get the fixed type of the field. Note that, in this case,
8343 we do not want to get the real type out of the tag: if
8344 the current field is the parent part of a tagged record,
8345 we will get the tag of the object. Clearly wrong: the real
8346 type of the parent is not the real type of the child. We
8347 would end up in an infinite loop. */
8348 field_type = ada_get_base_type (field_type);
8349 field_type = ada_to_fixed_type (field_type, field_valaddr,
8350 field_address, dval, 0);
8351 /* If the field size is already larger than the maximum
8352 object size, then the record itself will necessarily
8353 be larger than the maximum object size. We need to make
8354 this check now, because the size might be so ridiculously
8355 large (due to an uninitialized variable in the inferior)
8356 that it would cause an overflow when adding it to the
8358 ada_ensure_varsize_limit (field_type);
8360 TYPE_FIELD_TYPE (rtype, f) = field_type;
8361 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8362 /* The multiplication can potentially overflow. But because
8363 the field length has been size-checked just above, and
8364 assuming that the maximum size is a reasonable value,
8365 an overflow should not happen in practice. So rather than
8366 adding overflow recovery code to this already complex code,
8367 we just assume that it's not going to happen. */
8369 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8373 /* Note: If this field's type is a typedef, it is important
8374 to preserve the typedef layer.
8376 Otherwise, we might be transforming a typedef to a fat
8377 pointer (encoding a pointer to an unconstrained array),
8378 into a basic fat pointer (encoding an unconstrained
8379 array). As both types are implemented using the same
8380 structure, the typedef is the only clue which allows us
8381 to distinguish between the two options. Stripping it
8382 would prevent us from printing this field appropriately. */
8383 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8384 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8385 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8387 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8390 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8392 /* We need to be careful of typedefs when computing
8393 the length of our field. If this is a typedef,
8394 get the length of the target type, not the length
8396 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8397 field_type = ada_typedef_target_type (field_type);
8400 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8403 if (off + fld_bit_len > bit_len)
8404 bit_len = off + fld_bit_len;
8406 TYPE_LENGTH (rtype) =
8407 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8410 /* We handle the variant part, if any, at the end because of certain
8411 odd cases in which it is re-ordered so as NOT to be the last field of
8412 the record. This can happen in the presence of representation
8414 if (variant_field >= 0)
8416 struct type *branch_type;
8418 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8422 /* Using plain value_from_contents_and_address here causes
8423 problems because we will end up trying to resolve a type
8424 that is currently being constructed. */
8425 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8427 rtype = value_type (dval);
8433 to_fixed_variant_branch_type
8434 (TYPE_FIELD_TYPE (type, variant_field),
8435 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8436 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8437 if (branch_type == NULL)
8439 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8440 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8441 TYPE_NFIELDS (rtype) -= 1;
8445 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8446 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8448 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8450 if (off + fld_bit_len > bit_len)
8451 bit_len = off + fld_bit_len;
8452 TYPE_LENGTH (rtype) =
8453 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8457 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8458 should contain the alignment of that record, which should be a strictly
8459 positive value. If null or negative, then something is wrong, most
8460 probably in the debug info. In that case, we don't round up the size
8461 of the resulting type. If this record is not part of another structure,
8462 the current RTYPE length might be good enough for our purposes. */
8463 if (TYPE_LENGTH (type) <= 0)
8465 if (TYPE_NAME (rtype))
8466 warning (_("Invalid type size for `%s' detected: %d."),
8467 TYPE_NAME (rtype), TYPE_LENGTH (type));
8469 warning (_("Invalid type size for <unnamed> detected: %d."),
8470 TYPE_LENGTH (type));
8474 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8475 TYPE_LENGTH (type));
8478 value_free_to_mark (mark);
8479 if (TYPE_LENGTH (rtype) > varsize_limit)
8480 error (_("record type with dynamic size is larger than varsize-limit"));
8484 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8487 static struct type *
8488 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8489 CORE_ADDR address, struct value *dval0)
8491 return ada_template_to_fixed_record_type_1 (type, valaddr,
8495 /* An ordinary record type in which ___XVL-convention fields and
8496 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8497 static approximations, containing all possible fields. Uses
8498 no runtime values. Useless for use in values, but that's OK,
8499 since the results are used only for type determinations. Works on both
8500 structs and unions. Representation note: to save space, we memorize
8501 the result of this function in the TYPE_TARGET_TYPE of the
8504 static struct type *
8505 template_to_static_fixed_type (struct type *type0)
8511 /* No need no do anything if the input type is already fixed. */
8512 if (TYPE_FIXED_INSTANCE (type0))
8515 /* Likewise if we already have computed the static approximation. */
8516 if (TYPE_TARGET_TYPE (type0) != NULL)
8517 return TYPE_TARGET_TYPE (type0);
8519 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8521 nfields = TYPE_NFIELDS (type0);
8523 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8524 recompute all over next time. */
8525 TYPE_TARGET_TYPE (type0) = type;
8527 for (f = 0; f < nfields; f += 1)
8529 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8530 struct type *new_type;
8532 if (is_dynamic_field (type0, f))
8534 field_type = ada_check_typedef (field_type);
8535 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8538 new_type = static_unwrap_type (field_type);
8540 if (new_type != field_type)
8542 /* Clone TYPE0 only the first time we get a new field type. */
8545 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8546 TYPE_CODE (type) = TYPE_CODE (type0);
8547 INIT_CPLUS_SPECIFIC (type);
8548 TYPE_NFIELDS (type) = nfields;
8549 TYPE_FIELDS (type) = (struct field *)
8550 TYPE_ALLOC (type, nfields * sizeof (struct field));
8551 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8552 sizeof (struct field) * nfields);
8553 TYPE_NAME (type) = ada_type_name (type0);
8554 TYPE_TAG_NAME (type) = NULL;
8555 TYPE_FIXED_INSTANCE (type) = 1;
8556 TYPE_LENGTH (type) = 0;
8558 TYPE_FIELD_TYPE (type, f) = new_type;
8559 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8566 /* Given an object of type TYPE whose contents are at VALADDR and
8567 whose address in memory is ADDRESS, returns a revision of TYPE,
8568 which should be a non-dynamic-sized record, in which the variant
8569 part, if any, is replaced with the appropriate branch. Looks
8570 for discriminant values in DVAL0, which can be NULL if the record
8571 contains the necessary discriminant values. */
8573 static struct type *
8574 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8575 CORE_ADDR address, struct value *dval0)
8577 struct value *mark = value_mark ();
8580 struct type *branch_type;
8581 int nfields = TYPE_NFIELDS (type);
8582 int variant_field = variant_field_index (type);
8584 if (variant_field == -1)
8589 dval = value_from_contents_and_address (type, valaddr, address);
8590 type = value_type (dval);
8595 rtype = alloc_type_copy (type);
8596 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8597 INIT_CPLUS_SPECIFIC (rtype);
8598 TYPE_NFIELDS (rtype) = nfields;
8599 TYPE_FIELDS (rtype) =
8600 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8601 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8602 sizeof (struct field) * nfields);
8603 TYPE_NAME (rtype) = ada_type_name (type);
8604 TYPE_TAG_NAME (rtype) = NULL;
8605 TYPE_FIXED_INSTANCE (rtype) = 1;
8606 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8608 branch_type = to_fixed_variant_branch_type
8609 (TYPE_FIELD_TYPE (type, variant_field),
8610 cond_offset_host (valaddr,
8611 TYPE_FIELD_BITPOS (type, variant_field)
8613 cond_offset_target (address,
8614 TYPE_FIELD_BITPOS (type, variant_field)
8615 / TARGET_CHAR_BIT), dval);
8616 if (branch_type == NULL)
8620 for (f = variant_field + 1; f < nfields; f += 1)
8621 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8622 TYPE_NFIELDS (rtype) -= 1;
8626 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8627 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8628 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8629 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8631 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8633 value_free_to_mark (mark);
8637 /* An ordinary record type (with fixed-length fields) that describes
8638 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8639 beginning of this section]. Any necessary discriminants' values
8640 should be in DVAL, a record value; it may be NULL if the object
8641 at ADDR itself contains any necessary discriminant values.
8642 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8643 values from the record are needed. Except in the case that DVAL,
8644 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8645 unchecked) is replaced by a particular branch of the variant.
8647 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8648 is questionable and may be removed. It can arise during the
8649 processing of an unconstrained-array-of-record type where all the
8650 variant branches have exactly the same size. This is because in
8651 such cases, the compiler does not bother to use the XVS convention
8652 when encoding the record. I am currently dubious of this
8653 shortcut and suspect the compiler should be altered. FIXME. */
8655 static struct type *
8656 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8657 CORE_ADDR address, struct value *dval)
8659 struct type *templ_type;
8661 if (TYPE_FIXED_INSTANCE (type0))
8664 templ_type = dynamic_template_type (type0);
8666 if (templ_type != NULL)
8667 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8668 else if (variant_field_index (type0) >= 0)
8670 if (dval == NULL && valaddr == NULL && address == 0)
8672 return to_record_with_fixed_variant_part (type0, valaddr, address,
8677 TYPE_FIXED_INSTANCE (type0) = 1;
8683 /* An ordinary record type (with fixed-length fields) that describes
8684 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8685 union type. Any necessary discriminants' values should be in DVAL,
8686 a record value. That is, this routine selects the appropriate
8687 branch of the union at ADDR according to the discriminant value
8688 indicated in the union's type name. Returns VAR_TYPE0 itself if
8689 it represents a variant subject to a pragma Unchecked_Union. */
8691 static struct type *
8692 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8693 CORE_ADDR address, struct value *dval)
8696 struct type *templ_type;
8697 struct type *var_type;
8699 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8700 var_type = TYPE_TARGET_TYPE (var_type0);
8702 var_type = var_type0;
8704 templ_type = ada_find_parallel_type (var_type, "___XVU");
8706 if (templ_type != NULL)
8707 var_type = templ_type;
8709 if (is_unchecked_variant (var_type, value_type (dval)))
8712 ada_which_variant_applies (var_type,
8713 value_type (dval), value_contents (dval));
8716 return empty_record (var_type);
8717 else if (is_dynamic_field (var_type, which))
8718 return to_fixed_record_type
8719 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8720 valaddr, address, dval);
8721 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8723 to_fixed_record_type
8724 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8726 return TYPE_FIELD_TYPE (var_type, which);
8729 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8730 ENCODING_TYPE, a type following the GNAT conventions for discrete
8731 type encodings, only carries redundant information. */
8734 ada_is_redundant_range_encoding (struct type *range_type,
8735 struct type *encoding_type)
8737 struct type *fixed_range_type;
8738 const char *bounds_str;
8742 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8744 if (TYPE_CODE (get_base_type (range_type))
8745 != TYPE_CODE (get_base_type (encoding_type)))
8747 /* The compiler probably used a simple base type to describe
8748 the range type instead of the range's actual base type,
8749 expecting us to get the real base type from the encoding
8750 anyway. In this situation, the encoding cannot be ignored
8755 if (is_dynamic_type (range_type))
8758 if (TYPE_NAME (encoding_type) == NULL)
8761 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8762 if (bounds_str == NULL)
8765 n = 8; /* Skip "___XDLU_". */
8766 if (!ada_scan_number (bounds_str, n, &lo, &n))
8768 if (TYPE_LOW_BOUND (range_type) != lo)
8771 n += 2; /* Skip the "__" separator between the two bounds. */
8772 if (!ada_scan_number (bounds_str, n, &hi, &n))
8774 if (TYPE_HIGH_BOUND (range_type) != hi)
8780 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8781 a type following the GNAT encoding for describing array type
8782 indices, only carries redundant information. */
8785 ada_is_redundant_index_type_desc (struct type *array_type,
8786 struct type *desc_type)
8788 struct type *this_layer = check_typedef (array_type);
8791 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8793 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8794 TYPE_FIELD_TYPE (desc_type, i)))
8796 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8802 /* Assuming that TYPE0 is an array type describing the type of a value
8803 at ADDR, and that DVAL describes a record containing any
8804 discriminants used in TYPE0, returns a type for the value that
8805 contains no dynamic components (that is, no components whose sizes
8806 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8807 true, gives an error message if the resulting type's size is over
8810 static struct type *
8811 to_fixed_array_type (struct type *type0, struct value *dval,
8814 struct type *index_type_desc;
8815 struct type *result;
8816 int constrained_packed_array_p;
8817 static const char *xa_suffix = "___XA";
8819 type0 = ada_check_typedef (type0);
8820 if (TYPE_FIXED_INSTANCE (type0))
8823 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8824 if (constrained_packed_array_p)
8825 type0 = decode_constrained_packed_array_type (type0);
8827 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8829 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8830 encoding suffixed with 'P' may still be generated. If so,
8831 it should be used to find the XA type. */
8833 if (index_type_desc == NULL)
8835 const char *type_name = ada_type_name (type0);
8837 if (type_name != NULL)
8839 const int len = strlen (type_name);
8840 char *name = (char *) alloca (len + strlen (xa_suffix));
8842 if (type_name[len - 1] == 'P')
8844 strcpy (name, type_name);
8845 strcpy (name + len - 1, xa_suffix);
8846 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8851 ada_fixup_array_indexes_type (index_type_desc);
8852 if (index_type_desc != NULL
8853 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8855 /* Ignore this ___XA parallel type, as it does not bring any
8856 useful information. This allows us to avoid creating fixed
8857 versions of the array's index types, which would be identical
8858 to the original ones. This, in turn, can also help avoid
8859 the creation of fixed versions of the array itself. */
8860 index_type_desc = NULL;
8863 if (index_type_desc == NULL)
8865 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8867 /* NOTE: elt_type---the fixed version of elt_type0---should never
8868 depend on the contents of the array in properly constructed
8870 /* Create a fixed version of the array element type.
8871 We're not providing the address of an element here,
8872 and thus the actual object value cannot be inspected to do
8873 the conversion. This should not be a problem, since arrays of
8874 unconstrained objects are not allowed. In particular, all
8875 the elements of an array of a tagged type should all be of
8876 the same type specified in the debugging info. No need to
8877 consult the object tag. */
8878 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8880 /* Make sure we always create a new array type when dealing with
8881 packed array types, since we're going to fix-up the array
8882 type length and element bitsize a little further down. */
8883 if (elt_type0 == elt_type && !constrained_packed_array_p)
8886 result = create_array_type (alloc_type_copy (type0),
8887 elt_type, TYPE_INDEX_TYPE (type0));
8892 struct type *elt_type0;
8895 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8896 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8898 /* NOTE: result---the fixed version of elt_type0---should never
8899 depend on the contents of the array in properly constructed
8901 /* Create a fixed version of the array element type.
8902 We're not providing the address of an element here,
8903 and thus the actual object value cannot be inspected to do
8904 the conversion. This should not be a problem, since arrays of
8905 unconstrained objects are not allowed. In particular, all
8906 the elements of an array of a tagged type should all be of
8907 the same type specified in the debugging info. No need to
8908 consult the object tag. */
8910 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8913 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8915 struct type *range_type =
8916 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8918 result = create_array_type (alloc_type_copy (elt_type0),
8919 result, range_type);
8920 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8922 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8923 error (_("array type with dynamic size is larger than varsize-limit"));
8926 /* We want to preserve the type name. This can be useful when
8927 trying to get the type name of a value that has already been
8928 printed (for instance, if the user did "print VAR; whatis $". */
8929 TYPE_NAME (result) = TYPE_NAME (type0);
8931 if (constrained_packed_array_p)
8933 /* So far, the resulting type has been created as if the original
8934 type was a regular (non-packed) array type. As a result, the
8935 bitsize of the array elements needs to be set again, and the array
8936 length needs to be recomputed based on that bitsize. */
8937 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8938 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8940 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8941 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8942 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8943 TYPE_LENGTH (result)++;
8946 TYPE_FIXED_INSTANCE (result) = 1;
8951 /* A standard type (containing no dynamically sized components)
8952 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8953 DVAL describes a record containing any discriminants used in TYPE0,
8954 and may be NULL if there are none, or if the object of type TYPE at
8955 ADDRESS or in VALADDR contains these discriminants.
8957 If CHECK_TAG is not null, in the case of tagged types, this function
8958 attempts to locate the object's tag and use it to compute the actual
8959 type. However, when ADDRESS is null, we cannot use it to determine the
8960 location of the tag, and therefore compute the tagged type's actual type.
8961 So we return the tagged type without consulting the tag. */
8963 static struct type *
8964 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8965 CORE_ADDR address, struct value *dval, int check_tag)
8967 type = ada_check_typedef (type);
8968 switch (TYPE_CODE (type))
8972 case TYPE_CODE_STRUCT:
8974 struct type *static_type = to_static_fixed_type (type);
8975 struct type *fixed_record_type =
8976 to_fixed_record_type (type, valaddr, address, NULL);
8978 /* If STATIC_TYPE is a tagged type and we know the object's address,
8979 then we can determine its tag, and compute the object's actual
8980 type from there. Note that we have to use the fixed record
8981 type (the parent part of the record may have dynamic fields
8982 and the way the location of _tag is expressed may depend on
8985 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8988 value_tag_from_contents_and_address
8992 struct type *real_type = type_from_tag (tag);
8994 value_from_contents_and_address (fixed_record_type,
8997 fixed_record_type = value_type (obj);
8998 if (real_type != NULL)
8999 return to_fixed_record_type
9001 value_address (ada_tag_value_at_base_address (obj)), NULL);
9004 /* Check to see if there is a parallel ___XVZ variable.
9005 If there is, then it provides the actual size of our type. */
9006 else if (ada_type_name (fixed_record_type) != NULL)
9008 const char *name = ada_type_name (fixed_record_type);
9010 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9014 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9015 size = get_int_var_value (xvz_name, &xvz_found);
9016 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9018 fixed_record_type = copy_type (fixed_record_type);
9019 TYPE_LENGTH (fixed_record_type) = size;
9021 /* The FIXED_RECORD_TYPE may have be a stub. We have
9022 observed this when the debugging info is STABS, and
9023 apparently it is something that is hard to fix.
9025 In practice, we don't need the actual type definition
9026 at all, because the presence of the XVZ variable allows us
9027 to assume that there must be a XVS type as well, which we
9028 should be able to use later, when we need the actual type
9031 In the meantime, pretend that the "fixed" type we are
9032 returning is NOT a stub, because this can cause trouble
9033 when using this type to create new types targeting it.
9034 Indeed, the associated creation routines often check
9035 whether the target type is a stub and will try to replace
9036 it, thus using a type with the wrong size. This, in turn,
9037 might cause the new type to have the wrong size too.
9038 Consider the case of an array, for instance, where the size
9039 of the array is computed from the number of elements in
9040 our array multiplied by the size of its element. */
9041 TYPE_STUB (fixed_record_type) = 0;
9044 return fixed_record_type;
9046 case TYPE_CODE_ARRAY:
9047 return to_fixed_array_type (type, dval, 1);
9048 case TYPE_CODE_UNION:
9052 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9056 /* The same as ada_to_fixed_type_1, except that it preserves the type
9057 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9059 The typedef layer needs be preserved in order to differentiate between
9060 arrays and array pointers when both types are implemented using the same
9061 fat pointer. In the array pointer case, the pointer is encoded as
9062 a typedef of the pointer type. For instance, considering:
9064 type String_Access is access String;
9065 S1 : String_Access := null;
9067 To the debugger, S1 is defined as a typedef of type String. But
9068 to the user, it is a pointer. So if the user tries to print S1,
9069 we should not dereference the array, but print the array address
9072 If we didn't preserve the typedef layer, we would lose the fact that
9073 the type is to be presented as a pointer (needs de-reference before
9074 being printed). And we would also use the source-level type name. */
9077 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9078 CORE_ADDR address, struct value *dval, int check_tag)
9081 struct type *fixed_type =
9082 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9084 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9085 then preserve the typedef layer.
9087 Implementation note: We can only check the main-type portion of
9088 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9089 from TYPE now returns a type that has the same instance flags
9090 as TYPE. For instance, if TYPE is a "typedef const", and its
9091 target type is a "struct", then the typedef elimination will return
9092 a "const" version of the target type. See check_typedef for more
9093 details about how the typedef layer elimination is done.
9095 brobecker/2010-11-19: It seems to me that the only case where it is
9096 useful to preserve the typedef layer is when dealing with fat pointers.
9097 Perhaps, we could add a check for that and preserve the typedef layer
9098 only in that situation. But this seems unecessary so far, probably
9099 because we call check_typedef/ada_check_typedef pretty much everywhere.
9101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9102 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9103 == TYPE_MAIN_TYPE (fixed_type)))
9109 /* A standard (static-sized) type corresponding as well as possible to
9110 TYPE0, but based on no runtime data. */
9112 static struct type *
9113 to_static_fixed_type (struct type *type0)
9120 if (TYPE_FIXED_INSTANCE (type0))
9123 type0 = ada_check_typedef (type0);
9125 switch (TYPE_CODE (type0))
9129 case TYPE_CODE_STRUCT:
9130 type = dynamic_template_type (type0);
9132 return template_to_static_fixed_type (type);
9134 return template_to_static_fixed_type (type0);
9135 case TYPE_CODE_UNION:
9136 type = ada_find_parallel_type (type0, "___XVU");
9138 return template_to_static_fixed_type (type);
9140 return template_to_static_fixed_type (type0);
9144 /* A static approximation of TYPE with all type wrappers removed. */
9146 static struct type *
9147 static_unwrap_type (struct type *type)
9149 if (ada_is_aligner_type (type))
9151 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9152 if (ada_type_name (type1) == NULL)
9153 TYPE_NAME (type1) = ada_type_name (type);
9155 return static_unwrap_type (type1);
9159 struct type *raw_real_type = ada_get_base_type (type);
9161 if (raw_real_type == type)
9164 return to_static_fixed_type (raw_real_type);
9168 /* In some cases, incomplete and private types require
9169 cross-references that are not resolved as records (for example,
9171 type FooP is access Foo;
9173 type Foo is array ...;
9174 ). In these cases, since there is no mechanism for producing
9175 cross-references to such types, we instead substitute for FooP a
9176 stub enumeration type that is nowhere resolved, and whose tag is
9177 the name of the actual type. Call these types "non-record stubs". */
9179 /* A type equivalent to TYPE that is not a non-record stub, if one
9180 exists, otherwise TYPE. */
9183 ada_check_typedef (struct type *type)
9188 /* If our type is a typedef type of a fat pointer, then we're done.
9189 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9190 what allows us to distinguish between fat pointers that represent
9191 array types, and fat pointers that represent array access types
9192 (in both cases, the compiler implements them as fat pointers). */
9193 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9194 && is_thick_pntr (ada_typedef_target_type (type)))
9197 type = check_typedef (type);
9198 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9199 || !TYPE_STUB (type)
9200 || TYPE_TAG_NAME (type) == NULL)
9204 const char *name = TYPE_TAG_NAME (type);
9205 struct type *type1 = ada_find_any_type (name);
9210 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9211 stubs pointing to arrays, as we don't create symbols for array
9212 types, only for the typedef-to-array types). If that's the case,
9213 strip the typedef layer. */
9214 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9215 type1 = ada_check_typedef (type1);
9221 /* A value representing the data at VALADDR/ADDRESS as described by
9222 type TYPE0, but with a standard (static-sized) type that correctly
9223 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9224 type, then return VAL0 [this feature is simply to avoid redundant
9225 creation of struct values]. */
9227 static struct value *
9228 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9231 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9233 if (type == type0 && val0 != NULL)
9236 return value_from_contents_and_address (type, 0, address);
9239 /* A value representing VAL, but with a standard (static-sized) type
9240 that correctly describes it. Does not necessarily create a new
9244 ada_to_fixed_value (struct value *val)
9246 val = unwrap_value (val);
9247 val = ada_to_fixed_value_create (value_type (val),
9248 value_address (val),
9256 /* Table mapping attribute numbers to names.
9257 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9259 static const char *attribute_names[] = {
9277 ada_attribute_name (enum exp_opcode n)
9279 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9280 return attribute_names[n - OP_ATR_FIRST + 1];
9282 return attribute_names[0];
9285 /* Evaluate the 'POS attribute applied to ARG. */
9288 pos_atr (struct value *arg)
9290 struct value *val = coerce_ref (arg);
9291 struct type *type = value_type (val);
9294 if (!discrete_type_p (type))
9295 error (_("'POS only defined on discrete types"));
9297 if (!discrete_position (type, value_as_long (val), &result))
9298 error (_("enumeration value is invalid: can't find 'POS"));
9303 static struct value *
9304 value_pos_atr (struct type *type, struct value *arg)
9306 return value_from_longest (type, pos_atr (arg));
9309 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9311 static struct value *
9312 value_val_atr (struct type *type, struct value *arg)
9314 if (!discrete_type_p (type))
9315 error (_("'VAL only defined on discrete types"));
9316 if (!integer_type_p (value_type (arg)))
9317 error (_("'VAL requires integral argument"));
9319 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9321 long pos = value_as_long (arg);
9323 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9324 error (_("argument to 'VAL out of range"));
9325 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9328 return value_from_longest (type, value_as_long (arg));
9334 /* True if TYPE appears to be an Ada character type.
9335 [At the moment, this is true only for Character and Wide_Character;
9336 It is a heuristic test that could stand improvement]. */
9339 ada_is_character_type (struct type *type)
9343 /* If the type code says it's a character, then assume it really is,
9344 and don't check any further. */
9345 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9348 /* Otherwise, assume it's a character type iff it is a discrete type
9349 with a known character type name. */
9350 name = ada_type_name (type);
9351 return (name != NULL
9352 && (TYPE_CODE (type) == TYPE_CODE_INT
9353 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9354 && (strcmp (name, "character") == 0
9355 || strcmp (name, "wide_character") == 0
9356 || strcmp (name, "wide_wide_character") == 0
9357 || strcmp (name, "unsigned char") == 0));
9360 /* True if TYPE appears to be an Ada string type. */
9363 ada_is_string_type (struct type *type)
9365 type = ada_check_typedef (type);
9367 && TYPE_CODE (type) != TYPE_CODE_PTR
9368 && (ada_is_simple_array_type (type)
9369 || ada_is_array_descriptor_type (type))
9370 && ada_array_arity (type) == 1)
9372 struct type *elttype = ada_array_element_type (type, 1);
9374 return ada_is_character_type (elttype);
9380 /* The compiler sometimes provides a parallel XVS type for a given
9381 PAD type. Normally, it is safe to follow the PAD type directly,
9382 but older versions of the compiler have a bug that causes the offset
9383 of its "F" field to be wrong. Following that field in that case
9384 would lead to incorrect results, but this can be worked around
9385 by ignoring the PAD type and using the associated XVS type instead.
9387 Set to True if the debugger should trust the contents of PAD types.
9388 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9389 static int trust_pad_over_xvs = 1;
9391 /* True if TYPE is a struct type introduced by the compiler to force the
9392 alignment of a value. Such types have a single field with a
9393 distinctive name. */
9396 ada_is_aligner_type (struct type *type)
9398 type = ada_check_typedef (type);
9400 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9403 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9404 && TYPE_NFIELDS (type) == 1
9405 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9408 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9409 the parallel type. */
9412 ada_get_base_type (struct type *raw_type)
9414 struct type *real_type_namer;
9415 struct type *raw_real_type;
9417 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9420 if (ada_is_aligner_type (raw_type))
9421 /* The encoding specifies that we should always use the aligner type.
9422 So, even if this aligner type has an associated XVS type, we should
9425 According to the compiler gurus, an XVS type parallel to an aligner
9426 type may exist because of a stabs limitation. In stabs, aligner
9427 types are empty because the field has a variable-sized type, and
9428 thus cannot actually be used as an aligner type. As a result,
9429 we need the associated parallel XVS type to decode the type.
9430 Since the policy in the compiler is to not change the internal
9431 representation based on the debugging info format, we sometimes
9432 end up having a redundant XVS type parallel to the aligner type. */
9435 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9436 if (real_type_namer == NULL
9437 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9438 || TYPE_NFIELDS (real_type_namer) != 1)
9441 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9443 /* This is an older encoding form where the base type needs to be
9444 looked up by name. We prefer the newer enconding because it is
9446 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9447 if (raw_real_type == NULL)
9450 return raw_real_type;
9453 /* The field in our XVS type is a reference to the base type. */
9454 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9457 /* The type of value designated by TYPE, with all aligners removed. */
9460 ada_aligned_type (struct type *type)
9462 if (ada_is_aligner_type (type))
9463 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9465 return ada_get_base_type (type);
9469 /* The address of the aligned value in an object at address VALADDR
9470 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9473 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9475 if (ada_is_aligner_type (type))
9476 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9478 TYPE_FIELD_BITPOS (type,
9479 0) / TARGET_CHAR_BIT);
9486 /* The printed representation of an enumeration literal with encoded
9487 name NAME. The value is good to the next call of ada_enum_name. */
9489 ada_enum_name (const char *name)
9491 static char *result;
9492 static size_t result_len = 0;
9495 /* First, unqualify the enumeration name:
9496 1. Search for the last '.' character. If we find one, then skip
9497 all the preceding characters, the unqualified name starts
9498 right after that dot.
9499 2. Otherwise, we may be debugging on a target where the compiler
9500 translates dots into "__". Search forward for double underscores,
9501 but stop searching when we hit an overloading suffix, which is
9502 of the form "__" followed by digits. */
9504 tmp = strrchr (name, '.');
9509 while ((tmp = strstr (name, "__")) != NULL)
9511 if (isdigit (tmp[2]))
9522 if (name[1] == 'U' || name[1] == 'W')
9524 if (sscanf (name + 2, "%x", &v) != 1)
9530 GROW_VECT (result, result_len, 16);
9531 if (isascii (v) && isprint (v))
9532 xsnprintf (result, result_len, "'%c'", v);
9533 else if (name[1] == 'U')
9534 xsnprintf (result, result_len, "[\"%02x\"]", v);
9536 xsnprintf (result, result_len, "[\"%04x\"]", v);
9542 tmp = strstr (name, "__");
9544 tmp = strstr (name, "$");
9547 GROW_VECT (result, result_len, tmp - name + 1);
9548 strncpy (result, name, tmp - name);
9549 result[tmp - name] = '\0';
9557 /* Evaluate the subexpression of EXP starting at *POS as for
9558 evaluate_type, updating *POS to point just past the evaluated
9561 static struct value *
9562 evaluate_subexp_type (struct expression *exp, int *pos)
9564 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9567 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9570 static struct value *
9571 unwrap_value (struct value *val)
9573 struct type *type = ada_check_typedef (value_type (val));
9575 if (ada_is_aligner_type (type))
9577 struct value *v = ada_value_struct_elt (val, "F", 0);
9578 struct type *val_type = ada_check_typedef (value_type (v));
9580 if (ada_type_name (val_type) == NULL)
9581 TYPE_NAME (val_type) = ada_type_name (type);
9583 return unwrap_value (v);
9587 struct type *raw_real_type =
9588 ada_check_typedef (ada_get_base_type (type));
9590 /* If there is no parallel XVS or XVE type, then the value is
9591 already unwrapped. Return it without further modification. */
9592 if ((type == raw_real_type)
9593 && ada_find_parallel_type (type, "___XVE") == NULL)
9597 coerce_unspec_val_to_type
9598 (val, ada_to_fixed_type (raw_real_type, 0,
9599 value_address (val),
9604 static struct value *
9605 cast_to_fixed (struct type *type, struct value *arg)
9609 if (type == value_type (arg))
9611 else if (ada_is_fixed_point_type (value_type (arg)))
9612 val = ada_float_to_fixed (type,
9613 ada_fixed_to_float (value_type (arg),
9614 value_as_long (arg)));
9617 DOUBLEST argd = value_as_double (arg);
9619 val = ada_float_to_fixed (type, argd);
9622 return value_from_longest (type, val);
9625 static struct value *
9626 cast_from_fixed (struct type *type, struct value *arg)
9628 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9629 value_as_long (arg));
9631 return value_from_double (type, val);
9634 /* Given two array types T1 and T2, return nonzero iff both arrays
9635 contain the same number of elements. */
9638 ada_same_array_size_p (struct type *t1, struct type *t2)
9640 LONGEST lo1, hi1, lo2, hi2;
9642 /* Get the array bounds in order to verify that the size of
9643 the two arrays match. */
9644 if (!get_array_bounds (t1, &lo1, &hi1)
9645 || !get_array_bounds (t2, &lo2, &hi2))
9646 error (_("unable to determine array bounds"));
9648 /* To make things easier for size comparison, normalize a bit
9649 the case of empty arrays by making sure that the difference
9650 between upper bound and lower bound is always -1. */
9656 return (hi1 - lo1 == hi2 - lo2);
9659 /* Assuming that VAL is an array of integrals, and TYPE represents
9660 an array with the same number of elements, but with wider integral
9661 elements, return an array "casted" to TYPE. In practice, this
9662 means that the returned array is built by casting each element
9663 of the original array into TYPE's (wider) element type. */
9665 static struct value *
9666 ada_promote_array_of_integrals (struct type *type, struct value *val)
9668 struct type *elt_type = TYPE_TARGET_TYPE (type);
9673 /* Verify that both val and type are arrays of scalars, and
9674 that the size of val's elements is smaller than the size
9675 of type's element. */
9676 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9677 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9678 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9679 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9680 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9681 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9683 if (!get_array_bounds (type, &lo, &hi))
9684 error (_("unable to determine array bounds"));
9686 res = allocate_value (type);
9688 /* Promote each array element. */
9689 for (i = 0; i < hi - lo + 1; i++)
9691 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9693 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9694 value_contents_all (elt), TYPE_LENGTH (elt_type));
9700 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9701 return the converted value. */
9703 static struct value *
9704 coerce_for_assign (struct type *type, struct value *val)
9706 struct type *type2 = value_type (val);
9711 type2 = ada_check_typedef (type2);
9712 type = ada_check_typedef (type);
9714 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9715 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9717 val = ada_value_ind (val);
9718 type2 = value_type (val);
9721 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9722 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9724 if (!ada_same_array_size_p (type, type2))
9725 error (_("cannot assign arrays of different length"));
9727 if (is_integral_type (TYPE_TARGET_TYPE (type))
9728 && is_integral_type (TYPE_TARGET_TYPE (type2))
9729 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9730 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9732 /* Allow implicit promotion of the array elements to
9734 return ada_promote_array_of_integrals (type, val);
9737 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9738 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9739 error (_("Incompatible types in assignment"));
9740 deprecated_set_value_type (val, type);
9745 static struct value *
9746 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9749 struct type *type1, *type2;
9752 arg1 = coerce_ref (arg1);
9753 arg2 = coerce_ref (arg2);
9754 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9755 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9757 if (TYPE_CODE (type1) != TYPE_CODE_INT
9758 || TYPE_CODE (type2) != TYPE_CODE_INT)
9759 return value_binop (arg1, arg2, op);
9768 return value_binop (arg1, arg2, op);
9771 v2 = value_as_long (arg2);
9773 error (_("second operand of %s must not be zero."), op_string (op));
9775 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9776 return value_binop (arg1, arg2, op);
9778 v1 = value_as_long (arg1);
9783 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9784 v += v > 0 ? -1 : 1;
9792 /* Should not reach this point. */
9796 val = allocate_value (type1);
9797 store_unsigned_integer (value_contents_raw (val),
9798 TYPE_LENGTH (value_type (val)),
9799 gdbarch_byte_order (get_type_arch (type1)), v);
9804 ada_value_equal (struct value *arg1, struct value *arg2)
9806 if (ada_is_direct_array_type (value_type (arg1))
9807 || ada_is_direct_array_type (value_type (arg2)))
9809 /* Automatically dereference any array reference before
9810 we attempt to perform the comparison. */
9811 arg1 = ada_coerce_ref (arg1);
9812 arg2 = ada_coerce_ref (arg2);
9814 arg1 = ada_coerce_to_simple_array (arg1);
9815 arg2 = ada_coerce_to_simple_array (arg2);
9816 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9817 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9818 error (_("Attempt to compare array with non-array"));
9819 /* FIXME: The following works only for types whose
9820 representations use all bits (no padding or undefined bits)
9821 and do not have user-defined equality. */
9823 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9824 && memcmp (value_contents (arg1), value_contents (arg2),
9825 TYPE_LENGTH (value_type (arg1))) == 0;
9827 return value_equal (arg1, arg2);
9830 /* Total number of component associations in the aggregate starting at
9831 index PC in EXP. Assumes that index PC is the start of an
9835 num_component_specs (struct expression *exp, int pc)
9839 m = exp->elts[pc + 1].longconst;
9842 for (i = 0; i < m; i += 1)
9844 switch (exp->elts[pc].opcode)
9850 n += exp->elts[pc + 1].longconst;
9853 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9858 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9859 component of LHS (a simple array or a record), updating *POS past
9860 the expression, assuming that LHS is contained in CONTAINER. Does
9861 not modify the inferior's memory, nor does it modify LHS (unless
9862 LHS == CONTAINER). */
9865 assign_component (struct value *container, struct value *lhs, LONGEST index,
9866 struct expression *exp, int *pos)
9868 struct value *mark = value_mark ();
9871 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9873 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9874 struct value *index_val = value_from_longest (index_type, index);
9876 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9880 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9881 elt = ada_to_fixed_value (elt);
9884 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9885 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9887 value_assign_to_component (container, elt,
9888 ada_evaluate_subexp (NULL, exp, pos,
9891 value_free_to_mark (mark);
9894 /* Assuming that LHS represents an lvalue having a record or array
9895 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9896 of that aggregate's value to LHS, advancing *POS past the
9897 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9898 lvalue containing LHS (possibly LHS itself). Does not modify
9899 the inferior's memory, nor does it modify the contents of
9900 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9902 static struct value *
9903 assign_aggregate (struct value *container,
9904 struct value *lhs, struct expression *exp,
9905 int *pos, enum noside noside)
9907 struct type *lhs_type;
9908 int n = exp->elts[*pos+1].longconst;
9909 LONGEST low_index, high_index;
9912 int max_indices, num_indices;
9916 if (noside != EVAL_NORMAL)
9918 for (i = 0; i < n; i += 1)
9919 ada_evaluate_subexp (NULL, exp, pos, noside);
9923 container = ada_coerce_ref (container);
9924 if (ada_is_direct_array_type (value_type (container)))
9925 container = ada_coerce_to_simple_array (container);
9926 lhs = ada_coerce_ref (lhs);
9927 if (!deprecated_value_modifiable (lhs))
9928 error (_("Left operand of assignment is not a modifiable lvalue."));
9930 lhs_type = value_type (lhs);
9931 if (ada_is_direct_array_type (lhs_type))
9933 lhs = ada_coerce_to_simple_array (lhs);
9934 lhs_type = value_type (lhs);
9935 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9936 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9938 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9941 high_index = num_visible_fields (lhs_type) - 1;
9944 error (_("Left-hand side must be array or record."));
9946 num_specs = num_component_specs (exp, *pos - 3);
9947 max_indices = 4 * num_specs + 4;
9948 indices = XALLOCAVEC (LONGEST, max_indices);
9949 indices[0] = indices[1] = low_index - 1;
9950 indices[2] = indices[3] = high_index + 1;
9953 for (i = 0; i < n; i += 1)
9955 switch (exp->elts[*pos].opcode)
9958 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9959 &num_indices, max_indices,
9960 low_index, high_index);
9963 aggregate_assign_positional (container, lhs, exp, pos, indices,
9964 &num_indices, max_indices,
9965 low_index, high_index);
9969 error (_("Misplaced 'others' clause"));
9970 aggregate_assign_others (container, lhs, exp, pos, indices,
9971 num_indices, low_index, high_index);
9974 error (_("Internal error: bad aggregate clause"));
9981 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9982 construct at *POS, updating *POS past the construct, given that
9983 the positions are relative to lower bound LOW, where HIGH is the
9984 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9985 updating *NUM_INDICES as needed. CONTAINER is as for
9986 assign_aggregate. */
9988 aggregate_assign_positional (struct value *container,
9989 struct value *lhs, struct expression *exp,
9990 int *pos, LONGEST *indices, int *num_indices,
9991 int max_indices, LONGEST low, LONGEST high)
9993 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9995 if (ind - 1 == high)
9996 warning (_("Extra components in aggregate ignored."));
9999 add_component_interval (ind, ind, indices, num_indices, max_indices);
10001 assign_component (container, lhs, ind, exp, pos);
10004 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10007 /* Assign into the components of LHS indexed by the OP_CHOICES
10008 construct at *POS, updating *POS past the construct, given that
10009 the allowable indices are LOW..HIGH. Record the indices assigned
10010 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10011 needed. CONTAINER is as for assign_aggregate. */
10013 aggregate_assign_from_choices (struct value *container,
10014 struct value *lhs, struct expression *exp,
10015 int *pos, LONGEST *indices, int *num_indices,
10016 int max_indices, LONGEST low, LONGEST high)
10019 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10020 int choice_pos, expr_pc;
10021 int is_array = ada_is_direct_array_type (value_type (lhs));
10023 choice_pos = *pos += 3;
10025 for (j = 0; j < n_choices; j += 1)
10026 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10028 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10030 for (j = 0; j < n_choices; j += 1)
10032 LONGEST lower, upper;
10033 enum exp_opcode op = exp->elts[choice_pos].opcode;
10035 if (op == OP_DISCRETE_RANGE)
10038 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10040 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10045 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10057 name = &exp->elts[choice_pos + 2].string;
10060 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10063 error (_("Invalid record component association."));
10065 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10067 if (! find_struct_field (name, value_type (lhs), 0,
10068 NULL, NULL, NULL, NULL, &ind))
10069 error (_("Unknown component name: %s."), name);
10070 lower = upper = ind;
10073 if (lower <= upper && (lower < low || upper > high))
10074 error (_("Index in component association out of bounds."));
10076 add_component_interval (lower, upper, indices, num_indices,
10078 while (lower <= upper)
10083 assign_component (container, lhs, lower, exp, &pos1);
10089 /* Assign the value of the expression in the OP_OTHERS construct in
10090 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10091 have not been previously assigned. The index intervals already assigned
10092 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10093 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10095 aggregate_assign_others (struct value *container,
10096 struct value *lhs, struct expression *exp,
10097 int *pos, LONGEST *indices, int num_indices,
10098 LONGEST low, LONGEST high)
10101 int expr_pc = *pos + 1;
10103 for (i = 0; i < num_indices - 2; i += 2)
10107 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10111 localpos = expr_pc;
10112 assign_component (container, lhs, ind, exp, &localpos);
10115 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10118 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10119 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10120 modifying *SIZE as needed. It is an error if *SIZE exceeds
10121 MAX_SIZE. The resulting intervals do not overlap. */
10123 add_component_interval (LONGEST low, LONGEST high,
10124 LONGEST* indices, int *size, int max_size)
10128 for (i = 0; i < *size; i += 2) {
10129 if (high >= indices[i] && low <= indices[i + 1])
10133 for (kh = i + 2; kh < *size; kh += 2)
10134 if (high < indices[kh])
10136 if (low < indices[i])
10138 indices[i + 1] = indices[kh - 1];
10139 if (high > indices[i + 1])
10140 indices[i + 1] = high;
10141 memcpy (indices + i + 2, indices + kh, *size - kh);
10142 *size -= kh - i - 2;
10145 else if (high < indices[i])
10149 if (*size == max_size)
10150 error (_("Internal error: miscounted aggregate components."));
10152 for (j = *size-1; j >= i+2; j -= 1)
10153 indices[j] = indices[j - 2];
10155 indices[i + 1] = high;
10158 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10161 static struct value *
10162 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10164 if (type == ada_check_typedef (value_type (arg2)))
10167 if (ada_is_fixed_point_type (type))
10168 return (cast_to_fixed (type, arg2));
10170 if (ada_is_fixed_point_type (value_type (arg2)))
10171 return cast_from_fixed (type, arg2);
10173 return value_cast (type, arg2);
10176 /* Evaluating Ada expressions, and printing their result.
10177 ------------------------------------------------------
10182 We usually evaluate an Ada expression in order to print its value.
10183 We also evaluate an expression in order to print its type, which
10184 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10185 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10186 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10187 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10190 Evaluating expressions is a little more complicated for Ada entities
10191 than it is for entities in languages such as C. The main reason for
10192 this is that Ada provides types whose definition might be dynamic.
10193 One example of such types is variant records. Or another example
10194 would be an array whose bounds can only be known at run time.
10196 The following description is a general guide as to what should be
10197 done (and what should NOT be done) in order to evaluate an expression
10198 involving such types, and when. This does not cover how the semantic
10199 information is encoded by GNAT as this is covered separatly. For the
10200 document used as the reference for the GNAT encoding, see exp_dbug.ads
10201 in the GNAT sources.
10203 Ideally, we should embed each part of this description next to its
10204 associated code. Unfortunately, the amount of code is so vast right
10205 now that it's hard to see whether the code handling a particular
10206 situation might be duplicated or not. One day, when the code is
10207 cleaned up, this guide might become redundant with the comments
10208 inserted in the code, and we might want to remove it.
10210 2. ``Fixing'' an Entity, the Simple Case:
10211 -----------------------------------------
10213 When evaluating Ada expressions, the tricky issue is that they may
10214 reference entities whose type contents and size are not statically
10215 known. Consider for instance a variant record:
10217 type Rec (Empty : Boolean := True) is record
10220 when False => Value : Integer;
10223 Yes : Rec := (Empty => False, Value => 1);
10224 No : Rec := (empty => True);
10226 The size and contents of that record depends on the value of the
10227 descriminant (Rec.Empty). At this point, neither the debugging
10228 information nor the associated type structure in GDB are able to
10229 express such dynamic types. So what the debugger does is to create
10230 "fixed" versions of the type that applies to the specific object.
10231 We also informally refer to this opperation as "fixing" an object,
10232 which means creating its associated fixed type.
10234 Example: when printing the value of variable "Yes" above, its fixed
10235 type would look like this:
10242 On the other hand, if we printed the value of "No", its fixed type
10249 Things become a little more complicated when trying to fix an entity
10250 with a dynamic type that directly contains another dynamic type,
10251 such as an array of variant records, for instance. There are
10252 two possible cases: Arrays, and records.
10254 3. ``Fixing'' Arrays:
10255 ---------------------
10257 The type structure in GDB describes an array in terms of its bounds,
10258 and the type of its elements. By design, all elements in the array
10259 have the same type and we cannot represent an array of variant elements
10260 using the current type structure in GDB. When fixing an array,
10261 we cannot fix the array element, as we would potentially need one
10262 fixed type per element of the array. As a result, the best we can do
10263 when fixing an array is to produce an array whose bounds and size
10264 are correct (allowing us to read it from memory), but without having
10265 touched its element type. Fixing each element will be done later,
10266 when (if) necessary.
10268 Arrays are a little simpler to handle than records, because the same
10269 amount of memory is allocated for each element of the array, even if
10270 the amount of space actually used by each element differs from element
10271 to element. Consider for instance the following array of type Rec:
10273 type Rec_Array is array (1 .. 2) of Rec;
10275 The actual amount of memory occupied by each element might be different
10276 from element to element, depending on the value of their discriminant.
10277 But the amount of space reserved for each element in the array remains
10278 fixed regardless. So we simply need to compute that size using
10279 the debugging information available, from which we can then determine
10280 the array size (we multiply the number of elements of the array by
10281 the size of each element).
10283 The simplest case is when we have an array of a constrained element
10284 type. For instance, consider the following type declarations:
10286 type Bounded_String (Max_Size : Integer) is
10288 Buffer : String (1 .. Max_Size);
10290 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10292 In this case, the compiler describes the array as an array of
10293 variable-size elements (identified by its XVS suffix) for which
10294 the size can be read in the parallel XVZ variable.
10296 In the case of an array of an unconstrained element type, the compiler
10297 wraps the array element inside a private PAD type. This type should not
10298 be shown to the user, and must be "unwrap"'ed before printing. Note
10299 that we also use the adjective "aligner" in our code to designate
10300 these wrapper types.
10302 In some cases, the size allocated for each element is statically
10303 known. In that case, the PAD type already has the correct size,
10304 and the array element should remain unfixed.
10306 But there are cases when this size is not statically known.
10307 For instance, assuming that "Five" is an integer variable:
10309 type Dynamic is array (1 .. Five) of Integer;
10310 type Wrapper (Has_Length : Boolean := False) is record
10313 when True => Length : Integer;
10314 when False => null;
10317 type Wrapper_Array is array (1 .. 2) of Wrapper;
10319 Hello : Wrapper_Array := (others => (Has_Length => True,
10320 Data => (others => 17),
10324 The debugging info would describe variable Hello as being an
10325 array of a PAD type. The size of that PAD type is not statically
10326 known, but can be determined using a parallel XVZ variable.
10327 In that case, a copy of the PAD type with the correct size should
10328 be used for the fixed array.
10330 3. ``Fixing'' record type objects:
10331 ----------------------------------
10333 Things are slightly different from arrays in the case of dynamic
10334 record types. In this case, in order to compute the associated
10335 fixed type, we need to determine the size and offset of each of
10336 its components. This, in turn, requires us to compute the fixed
10337 type of each of these components.
10339 Consider for instance the example:
10341 type Bounded_String (Max_Size : Natural) is record
10342 Str : String (1 .. Max_Size);
10345 My_String : Bounded_String (Max_Size => 10);
10347 In that case, the position of field "Length" depends on the size
10348 of field Str, which itself depends on the value of the Max_Size
10349 discriminant. In order to fix the type of variable My_String,
10350 we need to fix the type of field Str. Therefore, fixing a variant
10351 record requires us to fix each of its components.
10353 However, if a component does not have a dynamic size, the component
10354 should not be fixed. In particular, fields that use a PAD type
10355 should not fixed. Here is an example where this might happen
10356 (assuming type Rec above):
10358 type Container (Big : Boolean) is record
10362 when True => Another : Integer;
10363 when False => null;
10366 My_Container : Container := (Big => False,
10367 First => (Empty => True),
10370 In that example, the compiler creates a PAD type for component First,
10371 whose size is constant, and then positions the component After just
10372 right after it. The offset of component After is therefore constant
10375 The debugger computes the position of each field based on an algorithm
10376 that uses, among other things, the actual position and size of the field
10377 preceding it. Let's now imagine that the user is trying to print
10378 the value of My_Container. If the type fixing was recursive, we would
10379 end up computing the offset of field After based on the size of the
10380 fixed version of field First. And since in our example First has
10381 only one actual field, the size of the fixed type is actually smaller
10382 than the amount of space allocated to that field, and thus we would
10383 compute the wrong offset of field After.
10385 To make things more complicated, we need to watch out for dynamic
10386 components of variant records (identified by the ___XVL suffix in
10387 the component name). Even if the target type is a PAD type, the size
10388 of that type might not be statically known. So the PAD type needs
10389 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10390 we might end up with the wrong size for our component. This can be
10391 observed with the following type declarations:
10393 type Octal is new Integer range 0 .. 7;
10394 type Octal_Array is array (Positive range <>) of Octal;
10395 pragma Pack (Octal_Array);
10397 type Octal_Buffer (Size : Positive) is record
10398 Buffer : Octal_Array (1 .. Size);
10402 In that case, Buffer is a PAD type whose size is unset and needs
10403 to be computed by fixing the unwrapped type.
10405 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10406 ----------------------------------------------------------
10408 Lastly, when should the sub-elements of an entity that remained unfixed
10409 thus far, be actually fixed?
10411 The answer is: Only when referencing that element. For instance
10412 when selecting one component of a record, this specific component
10413 should be fixed at that point in time. Or when printing the value
10414 of a record, each component should be fixed before its value gets
10415 printed. Similarly for arrays, the element of the array should be
10416 fixed when printing each element of the array, or when extracting
10417 one element out of that array. On the other hand, fixing should
10418 not be performed on the elements when taking a slice of an array!
10420 Note that one of the side-effects of miscomputing the offset and
10421 size of each field is that we end up also miscomputing the size
10422 of the containing type. This can have adverse results when computing
10423 the value of an entity. GDB fetches the value of an entity based
10424 on the size of its type, and thus a wrong size causes GDB to fetch
10425 the wrong amount of memory. In the case where the computed size is
10426 too small, GDB fetches too little data to print the value of our
10427 entiry. Results in this case as unpredicatble, as we usually read
10428 past the buffer containing the data =:-o. */
10430 /* Implement the evaluate_exp routine in the exp_descriptor structure
10431 for the Ada language. */
10433 static struct value *
10434 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10435 int *pos, enum noside noside)
10437 enum exp_opcode op;
10441 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10444 struct value **argvec;
10448 op = exp->elts[pc].opcode;
10454 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10456 if (noside == EVAL_NORMAL)
10457 arg1 = unwrap_value (arg1);
10459 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10460 then we need to perform the conversion manually, because
10461 evaluate_subexp_standard doesn't do it. This conversion is
10462 necessary in Ada because the different kinds of float/fixed
10463 types in Ada have different representations.
10465 Similarly, we need to perform the conversion from OP_LONG
10467 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10468 arg1 = ada_value_cast (expect_type, arg1, noside);
10474 struct value *result;
10477 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10478 /* The result type will have code OP_STRING, bashed there from
10479 OP_ARRAY. Bash it back. */
10480 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10481 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10487 type = exp->elts[pc + 1].type;
10488 arg1 = evaluate_subexp (type, exp, pos, noside);
10489 if (noside == EVAL_SKIP)
10491 arg1 = ada_value_cast (type, arg1, noside);
10496 type = exp->elts[pc + 1].type;
10497 return ada_evaluate_subexp (type, exp, pos, noside);
10500 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10501 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10503 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10504 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10506 return ada_value_assign (arg1, arg1);
10508 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10509 except if the lhs of our assignment is a convenience variable.
10510 In the case of assigning to a convenience variable, the lhs
10511 should be exactly the result of the evaluation of the rhs. */
10512 type = value_type (arg1);
10513 if (VALUE_LVAL (arg1) == lval_internalvar)
10515 arg2 = evaluate_subexp (type, exp, pos, noside);
10516 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10518 if (ada_is_fixed_point_type (value_type (arg1)))
10519 arg2 = cast_to_fixed (value_type (arg1), arg2);
10520 else if (ada_is_fixed_point_type (value_type (arg2)))
10522 (_("Fixed-point values must be assigned to fixed-point variables"));
10524 arg2 = coerce_for_assign (value_type (arg1), arg2);
10525 return ada_value_assign (arg1, arg2);
10528 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10529 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10530 if (noside == EVAL_SKIP)
10532 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10533 return (value_from_longest
10534 (value_type (arg1),
10535 value_as_long (arg1) + value_as_long (arg2)));
10536 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10537 return (value_from_longest
10538 (value_type (arg2),
10539 value_as_long (arg1) + value_as_long (arg2)));
10540 if ((ada_is_fixed_point_type (value_type (arg1))
10541 || ada_is_fixed_point_type (value_type (arg2)))
10542 && value_type (arg1) != value_type (arg2))
10543 error (_("Operands of fixed-point addition must have the same type"));
10544 /* Do the addition, and cast the result to the type of the first
10545 argument. We cannot cast the result to a reference type, so if
10546 ARG1 is a reference type, find its underlying type. */
10547 type = value_type (arg1);
10548 while (TYPE_CODE (type) == TYPE_CODE_REF)
10549 type = TYPE_TARGET_TYPE (type);
10550 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10551 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10554 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10555 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10556 if (noside == EVAL_SKIP)
10558 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10559 return (value_from_longest
10560 (value_type (arg1),
10561 value_as_long (arg1) - value_as_long (arg2)));
10562 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10563 return (value_from_longest
10564 (value_type (arg2),
10565 value_as_long (arg1) - value_as_long (arg2)));
10566 if ((ada_is_fixed_point_type (value_type (arg1))
10567 || ada_is_fixed_point_type (value_type (arg2)))
10568 && value_type (arg1) != value_type (arg2))
10569 error (_("Operands of fixed-point subtraction "
10570 "must have the same type"));
10571 /* Do the substraction, and cast the result to the type of the first
10572 argument. We cannot cast the result to a reference type, so if
10573 ARG1 is a reference type, find its underlying type. */
10574 type = value_type (arg1);
10575 while (TYPE_CODE (type) == TYPE_CODE_REF)
10576 type = TYPE_TARGET_TYPE (type);
10577 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10578 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10585 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10586 if (noside == EVAL_SKIP)
10588 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10590 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10591 return value_zero (value_type (arg1), not_lval);
10595 type = builtin_type (exp->gdbarch)->builtin_double;
10596 if (ada_is_fixed_point_type (value_type (arg1)))
10597 arg1 = cast_from_fixed (type, arg1);
10598 if (ada_is_fixed_point_type (value_type (arg2)))
10599 arg2 = cast_from_fixed (type, arg2);
10600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10601 return ada_value_binop (arg1, arg2, op);
10605 case BINOP_NOTEQUAL:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10608 if (noside == EVAL_SKIP)
10610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10614 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10615 tem = ada_value_equal (arg1, arg2);
10617 if (op == BINOP_NOTEQUAL)
10619 type = language_bool_type (exp->language_defn, exp->gdbarch);
10620 return value_from_longest (type, (LONGEST) tem);
10623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10624 if (noside == EVAL_SKIP)
10626 else if (ada_is_fixed_point_type (value_type (arg1)))
10627 return value_cast (value_type (arg1), value_neg (arg1));
10630 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10631 return value_neg (arg1);
10634 case BINOP_LOGICAL_AND:
10635 case BINOP_LOGICAL_OR:
10636 case UNOP_LOGICAL_NOT:
10641 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10642 type = language_bool_type (exp->language_defn, exp->gdbarch);
10643 return value_cast (type, val);
10646 case BINOP_BITWISE_AND:
10647 case BINOP_BITWISE_IOR:
10648 case BINOP_BITWISE_XOR:
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10654 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10656 return value_cast (value_type (arg1), val);
10662 if (noside == EVAL_SKIP)
10668 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10669 /* Only encountered when an unresolved symbol occurs in a
10670 context other than a function call, in which case, it is
10672 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10673 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10677 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10678 /* Check to see if this is a tagged type. We also need to handle
10679 the case where the type is a reference to a tagged type, but
10680 we have to be careful to exclude pointers to tagged types.
10681 The latter should be shown as usual (as a pointer), whereas
10682 a reference should mostly be transparent to the user. */
10683 if (ada_is_tagged_type (type, 0)
10684 || (TYPE_CODE (type) == TYPE_CODE_REF
10685 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10687 /* Tagged types are a little special in the fact that the real
10688 type is dynamic and can only be determined by inspecting the
10689 object's tag. This means that we need to get the object's
10690 value first (EVAL_NORMAL) and then extract the actual object
10693 Note that we cannot skip the final step where we extract
10694 the object type from its tag, because the EVAL_NORMAL phase
10695 results in dynamic components being resolved into fixed ones.
10696 This can cause problems when trying to print the type
10697 description of tagged types whose parent has a dynamic size:
10698 We use the type name of the "_parent" component in order
10699 to print the name of the ancestor type in the type description.
10700 If that component had a dynamic size, the resolution into
10701 a fixed type would result in the loss of that type name,
10702 thus preventing us from printing the name of the ancestor
10703 type in the type description. */
10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10706 if (TYPE_CODE (type) != TYPE_CODE_REF)
10708 struct type *actual_type;
10710 actual_type = type_from_tag (ada_value_tag (arg1));
10711 if (actual_type == NULL)
10712 /* If, for some reason, we were unable to determine
10713 the actual type from the tag, then use the static
10714 approximation that we just computed as a fallback.
10715 This can happen if the debugging information is
10716 incomplete, for instance. */
10717 actual_type = type;
10718 return value_zero (actual_type, not_lval);
10722 /* In the case of a ref, ada_coerce_ref takes care
10723 of determining the actual type. But the evaluation
10724 should return a ref as it should be valid to ask
10725 for its address; so rebuild a ref after coerce. */
10726 arg1 = ada_coerce_ref (arg1);
10727 return value_ref (arg1);
10731 /* Records and unions for which GNAT encodings have been
10732 generated need to be statically fixed as well.
10733 Otherwise, non-static fixing produces a type where
10734 all dynamic properties are removed, which prevents "ptype"
10735 from being able to completely describe the type.
10736 For instance, a case statement in a variant record would be
10737 replaced by the relevant components based on the actual
10738 value of the discriminants. */
10739 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10740 && dynamic_template_type (type) != NULL)
10741 || (TYPE_CODE (type) == TYPE_CODE_UNION
10742 && ada_find_parallel_type (type, "___XVU") != NULL))
10745 return value_zero (to_static_fixed_type (type), not_lval);
10749 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10750 return ada_to_fixed_value (arg1);
10755 /* Allocate arg vector, including space for the function to be
10756 called in argvec[0] and a terminating NULL. */
10757 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10758 argvec = XALLOCAVEC (struct value *, nargs + 2);
10760 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10762 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10763 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10766 for (tem = 0; tem <= nargs; tem += 1)
10767 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10770 if (noside == EVAL_SKIP)
10774 if (ada_is_constrained_packed_array_type
10775 (desc_base_type (value_type (argvec[0]))))
10776 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10777 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10778 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10779 /* This is a packed array that has already been fixed, and
10780 therefore already coerced to a simple array. Nothing further
10783 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10785 /* Make sure we dereference references so that all the code below
10786 feels like it's really handling the referenced value. Wrapping
10787 types (for alignment) may be there, so make sure we strip them as
10789 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10791 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10792 && VALUE_LVAL (argvec[0]) == lval_memory)
10793 argvec[0] = value_addr (argvec[0]);
10795 type = ada_check_typedef (value_type (argvec[0]));
10797 /* Ada allows us to implicitly dereference arrays when subscripting
10798 them. So, if this is an array typedef (encoding use for array
10799 access types encoded as fat pointers), strip it now. */
10800 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10801 type = ada_typedef_target_type (type);
10803 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10805 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10807 case TYPE_CODE_FUNC:
10808 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10810 case TYPE_CODE_ARRAY:
10812 case TYPE_CODE_STRUCT:
10813 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10814 argvec[0] = ada_value_ind (argvec[0]);
10815 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10818 error (_("cannot subscript or call something of type `%s'"),
10819 ada_type_name (value_type (argvec[0])));
10824 switch (TYPE_CODE (type))
10826 case TYPE_CODE_FUNC:
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10829 struct type *rtype = TYPE_TARGET_TYPE (type);
10831 if (TYPE_GNU_IFUNC (type))
10832 return allocate_value (TYPE_TARGET_TYPE (rtype));
10833 return allocate_value (rtype);
10835 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10836 case TYPE_CODE_INTERNAL_FUNCTION:
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 /* We don't know anything about what the internal
10839 function might return, but we have to return
10841 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10844 return call_internal_function (exp->gdbarch, exp->language_defn,
10845 argvec[0], nargs, argvec + 1);
10847 case TYPE_CODE_STRUCT:
10851 arity = ada_array_arity (type);
10852 type = ada_array_element_type (type, nargs);
10854 error (_("cannot subscript or call a record"));
10855 if (arity != nargs)
10856 error (_("wrong number of subscripts; expecting %d"), arity);
10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10858 return value_zero (ada_aligned_type (type), lval_memory);
10860 unwrap_value (ada_value_subscript
10861 (argvec[0], nargs, argvec + 1));
10863 case TYPE_CODE_ARRAY:
10864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10866 type = ada_array_element_type (type, nargs);
10868 error (_("element type of array unknown"));
10870 return value_zero (ada_aligned_type (type), lval_memory);
10873 unwrap_value (ada_value_subscript
10874 (ada_coerce_to_simple_array (argvec[0]),
10875 nargs, argvec + 1));
10876 case TYPE_CODE_PTR: /* Pointer to array */
10877 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10879 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10880 type = ada_array_element_type (type, nargs);
10882 error (_("element type of array unknown"));
10884 return value_zero (ada_aligned_type (type), lval_memory);
10887 unwrap_value (ada_value_ptr_subscript (argvec[0],
10888 nargs, argvec + 1));
10891 error (_("Attempt to index or call something other than an "
10892 "array or function"));
10897 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10898 struct value *low_bound_val =
10899 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10900 struct value *high_bound_val =
10901 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10903 LONGEST high_bound;
10905 low_bound_val = coerce_ref (low_bound_val);
10906 high_bound_val = coerce_ref (high_bound_val);
10907 low_bound = value_as_long (low_bound_val);
10908 high_bound = value_as_long (high_bound_val);
10910 if (noside == EVAL_SKIP)
10913 /* If this is a reference to an aligner type, then remove all
10915 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10916 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10917 TYPE_TARGET_TYPE (value_type (array)) =
10918 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10920 if (ada_is_constrained_packed_array_type (value_type (array)))
10921 error (_("cannot slice a packed array"));
10923 /* If this is a reference to an array or an array lvalue,
10924 convert to a pointer. */
10925 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10926 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10927 && VALUE_LVAL (array) == lval_memory))
10928 array = value_addr (array);
10930 if (noside == EVAL_AVOID_SIDE_EFFECTS
10931 && ada_is_array_descriptor_type (ada_check_typedef
10932 (value_type (array))))
10933 return empty_array (ada_type_of_array (array, 0), low_bound);
10935 array = ada_coerce_to_simple_array_ptr (array);
10937 /* If we have more than one level of pointer indirection,
10938 dereference the value until we get only one level. */
10939 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10940 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10942 array = value_ind (array);
10944 /* Make sure we really do have an array type before going further,
10945 to avoid a SEGV when trying to get the index type or the target
10946 type later down the road if the debug info generated by
10947 the compiler is incorrect or incomplete. */
10948 if (!ada_is_simple_array_type (value_type (array)))
10949 error (_("cannot take slice of non-array"));
10951 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10954 struct type *type0 = ada_check_typedef (value_type (array));
10956 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10957 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10960 struct type *arr_type0 =
10961 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10963 return ada_value_slice_from_ptr (array, arr_type0,
10964 longest_to_int (low_bound),
10965 longest_to_int (high_bound));
10968 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10970 else if (high_bound < low_bound)
10971 return empty_array (value_type (array), low_bound);
10973 return ada_value_slice (array, longest_to_int (low_bound),
10974 longest_to_int (high_bound));
10977 case UNOP_IN_RANGE:
10979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 type = check_typedef (exp->elts[pc + 1].type);
10982 if (noside == EVAL_SKIP)
10985 switch (TYPE_CODE (type))
10988 lim_warning (_("Membership test incompletely implemented; "
10989 "always returns true"));
10990 type = language_bool_type (exp->language_defn, exp->gdbarch);
10991 return value_from_longest (type, (LONGEST) 1);
10993 case TYPE_CODE_RANGE:
10994 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10995 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10996 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10997 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10998 type = language_bool_type (exp->language_defn, exp->gdbarch);
11000 value_from_longest (type,
11001 (value_less (arg1, arg3)
11002 || value_equal (arg1, arg3))
11003 && (value_less (arg2, arg1)
11004 || value_equal (arg2, arg1)));
11007 case BINOP_IN_BOUNDS:
11009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 if (noside == EVAL_SKIP)
11015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11017 type = language_bool_type (exp->language_defn, exp->gdbarch);
11018 return value_zero (type, not_lval);
11021 tem = longest_to_int (exp->elts[pc + 1].longconst);
11023 type = ada_index_type (value_type (arg2), tem, "range");
11025 type = value_type (arg1);
11027 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11028 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11031 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11032 type = language_bool_type (exp->language_defn, exp->gdbarch);
11034 value_from_longest (type,
11035 (value_less (arg1, arg3)
11036 || value_equal (arg1, arg3))
11037 && (value_less (arg2, arg1)
11038 || value_equal (arg2, arg1)));
11040 case TERNOP_IN_RANGE:
11041 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11042 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11043 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11045 if (noside == EVAL_SKIP)
11048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11049 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11050 type = language_bool_type (exp->language_defn, exp->gdbarch);
11052 value_from_longest (type,
11053 (value_less (arg1, arg3)
11054 || value_equal (arg1, arg3))
11055 && (value_less (arg2, arg1)
11056 || value_equal (arg2, arg1)));
11060 case OP_ATR_LENGTH:
11062 struct type *type_arg;
11064 if (exp->elts[*pos].opcode == OP_TYPE)
11066 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11068 type_arg = check_typedef (exp->elts[pc + 2].type);
11072 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11076 if (exp->elts[*pos].opcode != OP_LONG)
11077 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11078 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11081 if (noside == EVAL_SKIP)
11084 if (type_arg == NULL)
11086 arg1 = ada_coerce_ref (arg1);
11088 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11089 arg1 = ada_coerce_to_simple_array (arg1);
11091 if (op == OP_ATR_LENGTH)
11092 type = builtin_type (exp->gdbarch)->builtin_int;
11095 type = ada_index_type (value_type (arg1), tem,
11096 ada_attribute_name (op));
11098 type = builtin_type (exp->gdbarch)->builtin_int;
11101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11102 return allocate_value (type);
11106 default: /* Should never happen. */
11107 error (_("unexpected attribute encountered"));
11109 return value_from_longest
11110 (type, ada_array_bound (arg1, tem, 0));
11112 return value_from_longest
11113 (type, ada_array_bound (arg1, tem, 1));
11114 case OP_ATR_LENGTH:
11115 return value_from_longest
11116 (type, ada_array_length (arg1, tem));
11119 else if (discrete_type_p (type_arg))
11121 struct type *range_type;
11122 const char *name = ada_type_name (type_arg);
11125 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11126 range_type = to_fixed_range_type (type_arg, NULL);
11127 if (range_type == NULL)
11128 range_type = type_arg;
11132 error (_("unexpected attribute encountered"));
11134 return value_from_longest
11135 (range_type, ada_discrete_type_low_bound (range_type));
11137 return value_from_longest
11138 (range_type, ada_discrete_type_high_bound (range_type));
11139 case OP_ATR_LENGTH:
11140 error (_("the 'length attribute applies only to array types"));
11143 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11144 error (_("unimplemented type attribute"));
11149 if (ada_is_constrained_packed_array_type (type_arg))
11150 type_arg = decode_constrained_packed_array_type (type_arg);
11152 if (op == OP_ATR_LENGTH)
11153 type = builtin_type (exp->gdbarch)->builtin_int;
11156 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11158 type = builtin_type (exp->gdbarch)->builtin_int;
11161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11162 return allocate_value (type);
11167 error (_("unexpected attribute encountered"));
11169 low = ada_array_bound_from_type (type_arg, tem, 0);
11170 return value_from_longest (type, low);
11172 high = ada_array_bound_from_type (type_arg, tem, 1);
11173 return value_from_longest (type, high);
11174 case OP_ATR_LENGTH:
11175 low = ada_array_bound_from_type (type_arg, tem, 0);
11176 high = ada_array_bound_from_type (type_arg, tem, 1);
11177 return value_from_longest (type, high - low + 1);
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 if (noside == EVAL_SKIP)
11187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (ada_tag_type (arg1), not_lval);
11190 return ada_value_tag (arg1);
11194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197 if (noside == EVAL_SKIP)
11199 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11200 return value_zero (value_type (arg1), not_lval);
11203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11204 return value_binop (arg1, arg2,
11205 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11208 case OP_ATR_MODULUS:
11210 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11212 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11213 if (noside == EVAL_SKIP)
11216 if (!ada_is_modular_type (type_arg))
11217 error (_("'modulus must be applied to modular type"));
11219 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11220 ada_modulus (type_arg));
11225 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11227 if (noside == EVAL_SKIP)
11229 type = builtin_type (exp->gdbarch)->builtin_int;
11230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11231 return value_zero (type, not_lval);
11233 return value_pos_atr (type, arg1);
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 type = value_type (arg1);
11239 /* If the argument is a reference, then dereference its type, since
11240 the user is really asking for the size of the actual object,
11241 not the size of the pointer. */
11242 if (TYPE_CODE (type) == TYPE_CODE_REF)
11243 type = TYPE_TARGET_TYPE (type);
11245 if (noside == EVAL_SKIP)
11247 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11248 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11250 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11251 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11254 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11256 type = exp->elts[pc + 2].type;
11257 if (noside == EVAL_SKIP)
11259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11260 return value_zero (type, not_lval);
11262 return value_val_atr (type, arg1);
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11267 if (noside == EVAL_SKIP)
11269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 return value_zero (value_type (arg1), not_lval);
11273 /* For integer exponentiation operations,
11274 only promote the first argument. */
11275 if (is_integral_type (value_type (arg2)))
11276 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11278 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11280 return value_binop (arg1, arg2, op);
11284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11285 if (noside == EVAL_SKIP)
11291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11292 if (noside == EVAL_SKIP)
11294 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11295 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11296 return value_neg (arg1);
11301 preeval_pos = *pos;
11302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11303 if (noside == EVAL_SKIP)
11305 type = ada_check_typedef (value_type (arg1));
11306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11308 if (ada_is_array_descriptor_type (type))
11309 /* GDB allows dereferencing GNAT array descriptors. */
11311 struct type *arrType = ada_type_of_array (arg1, 0);
11313 if (arrType == NULL)
11314 error (_("Attempt to dereference null array pointer."));
11315 return value_at_lazy (arrType, 0);
11317 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11318 || TYPE_CODE (type) == TYPE_CODE_REF
11319 /* In C you can dereference an array to get the 1st elt. */
11320 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11322 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11323 only be determined by inspecting the object's tag.
11324 This means that we need to evaluate completely the
11325 expression in order to get its type. */
11327 if ((TYPE_CODE (type) == TYPE_CODE_REF
11328 || TYPE_CODE (type) == TYPE_CODE_PTR)
11329 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11331 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11333 type = value_type (ada_value_ind (arg1));
11337 type = to_static_fixed_type
11339 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11341 ada_ensure_varsize_limit (type);
11342 return value_zero (type, lval_memory);
11344 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11346 /* GDB allows dereferencing an int. */
11347 if (expect_type == NULL)
11348 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11353 to_static_fixed_type (ada_aligned_type (expect_type));
11354 return value_zero (expect_type, lval_memory);
11358 error (_("Attempt to take contents of a non-pointer value."));
11360 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11361 type = ada_check_typedef (value_type (arg1));
11363 if (TYPE_CODE (type) == TYPE_CODE_INT)
11364 /* GDB allows dereferencing an int. If we were given
11365 the expect_type, then use that as the target type.
11366 Otherwise, assume that the target type is an int. */
11368 if (expect_type != NULL)
11369 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11372 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11373 (CORE_ADDR) value_as_address (arg1));
11376 if (ada_is_array_descriptor_type (type))
11377 /* GDB allows dereferencing GNAT array descriptors. */
11378 return ada_coerce_to_simple_array (arg1);
11380 return ada_value_ind (arg1);
11382 case STRUCTOP_STRUCT:
11383 tem = longest_to_int (exp->elts[pc + 1].longconst);
11384 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11385 preeval_pos = *pos;
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 if (noside == EVAL_SKIP)
11389 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11391 struct type *type1 = value_type (arg1);
11393 if (ada_is_tagged_type (type1, 1))
11395 type = ada_lookup_struct_elt_type (type1,
11396 &exp->elts[pc + 2].string,
11399 /* If the field is not found, check if it exists in the
11400 extension of this object's type. This means that we
11401 need to evaluate completely the expression. */
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11407 arg1 = ada_value_struct_elt (arg1,
11408 &exp->elts[pc + 2].string,
11410 arg1 = unwrap_value (arg1);
11411 type = value_type (ada_to_fixed_value (arg1));
11416 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11419 return value_zero (ada_aligned_type (type), lval_memory);
11423 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11424 arg1 = unwrap_value (arg1);
11425 return ada_to_fixed_value (arg1);
11429 /* The value is not supposed to be used. This is here to make it
11430 easier to accommodate expressions that contain types. */
11432 if (noside == EVAL_SKIP)
11434 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11435 return allocate_value (exp->elts[pc + 1].type);
11437 error (_("Attempt to use a type name as an expression"));
11442 case OP_DISCRETE_RANGE:
11443 case OP_POSITIONAL:
11445 if (noside == EVAL_NORMAL)
11449 error (_("Undefined name, ambiguous name, or renaming used in "
11450 "component association: %s."), &exp->elts[pc+2].string);
11452 error (_("Aggregates only allowed on the right of an assignment"));
11454 internal_error (__FILE__, __LINE__,
11455 _("aggregate apparently mangled"));
11458 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11460 for (tem = 0; tem < nargs; tem += 1)
11461 ada_evaluate_subexp (NULL, exp, pos, noside);
11466 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11472 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11473 type name that encodes the 'small and 'delta information.
11474 Otherwise, return NULL. */
11476 static const char *
11477 fixed_type_info (struct type *type)
11479 const char *name = ada_type_name (type);
11480 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11482 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11484 const char *tail = strstr (name, "___XF_");
11491 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11492 return fixed_type_info (TYPE_TARGET_TYPE (type));
11497 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11500 ada_is_fixed_point_type (struct type *type)
11502 return fixed_type_info (type) != NULL;
11505 /* Return non-zero iff TYPE represents a System.Address type. */
11508 ada_is_system_address_type (struct type *type)
11510 return (TYPE_NAME (type)
11511 && strcmp (TYPE_NAME (type), "system__address") == 0);
11514 /* Assuming that TYPE is the representation of an Ada fixed-point
11515 type, return its delta, or -1 if the type is malformed and the
11516 delta cannot be determined. */
11519 ada_delta (struct type *type)
11521 const char *encoding = fixed_type_info (type);
11524 /* Strictly speaking, num and den are encoded as integer. However,
11525 they may not fit into a long, and they will have to be converted
11526 to DOUBLEST anyway. So scan them as DOUBLEST. */
11527 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11534 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11535 factor ('SMALL value) associated with the type. */
11538 scaling_factor (struct type *type)
11540 const char *encoding = fixed_type_info (type);
11541 DOUBLEST num0, den0, num1, den1;
11544 /* Strictly speaking, num's and den's are encoded as integer. However,
11545 they may not fit into a long, and they will have to be converted
11546 to DOUBLEST anyway. So scan them as DOUBLEST. */
11547 n = sscanf (encoding,
11548 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11549 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11550 &num0, &den0, &num1, &den1);
11555 return num1 / den1;
11557 return num0 / den0;
11561 /* Assuming that X is the representation of a value of fixed-point
11562 type TYPE, return its floating-point equivalent. */
11565 ada_fixed_to_float (struct type *type, LONGEST x)
11567 return (DOUBLEST) x *scaling_factor (type);
11570 /* The representation of a fixed-point value of type TYPE
11571 corresponding to the value X. */
11574 ada_float_to_fixed (struct type *type, DOUBLEST x)
11576 return (LONGEST) (x / scaling_factor (type) + 0.5);
11583 /* Scan STR beginning at position K for a discriminant name, and
11584 return the value of that discriminant field of DVAL in *PX. If
11585 PNEW_K is not null, put the position of the character beyond the
11586 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11587 not alter *PX and *PNEW_K if unsuccessful. */
11590 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11593 static char *bound_buffer = NULL;
11594 static size_t bound_buffer_len = 0;
11595 const char *pstart, *pend, *bound;
11596 struct value *bound_val;
11598 if (dval == NULL || str == NULL || str[k] == '\0')
11602 pend = strstr (pstart, "__");
11606 k += strlen (bound);
11610 int len = pend - pstart;
11612 /* Strip __ and beyond. */
11613 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11614 strncpy (bound_buffer, pstart, len);
11615 bound_buffer[len] = '\0';
11617 bound = bound_buffer;
11621 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11622 if (bound_val == NULL)
11625 *px = value_as_long (bound_val);
11626 if (pnew_k != NULL)
11631 /* Value of variable named NAME in the current environment. If
11632 no such variable found, then if ERR_MSG is null, returns 0, and
11633 otherwise causes an error with message ERR_MSG. */
11635 static struct value *
11636 get_var_value (char *name, char *err_msg)
11638 struct block_symbol *syms;
11641 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11646 if (err_msg == NULL)
11649 error (("%s"), err_msg);
11652 return value_of_variable (syms[0].symbol, syms[0].block);
11655 /* Value of integer variable named NAME in the current environment. If
11656 no such variable found, returns 0, and sets *FLAG to 0. If
11657 successful, sets *FLAG to 1. */
11660 get_int_var_value (char *name, int *flag)
11662 struct value *var_val = get_var_value (name, 0);
11674 return value_as_long (var_val);
11679 /* Return a range type whose base type is that of the range type named
11680 NAME in the current environment, and whose bounds are calculated
11681 from NAME according to the GNAT range encoding conventions.
11682 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11683 corresponding range type from debug information; fall back to using it
11684 if symbol lookup fails. If a new type must be created, allocate it
11685 like ORIG_TYPE was. The bounds information, in general, is encoded
11686 in NAME, the base type given in the named range type. */
11688 static struct type *
11689 to_fixed_range_type (struct type *raw_type, struct value *dval)
11692 struct type *base_type;
11693 const char *subtype_info;
11695 gdb_assert (raw_type != NULL);
11696 gdb_assert (TYPE_NAME (raw_type) != NULL);
11698 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11699 base_type = TYPE_TARGET_TYPE (raw_type);
11701 base_type = raw_type;
11703 name = TYPE_NAME (raw_type);
11704 subtype_info = strstr (name, "___XD");
11705 if (subtype_info == NULL)
11707 LONGEST L = ada_discrete_type_low_bound (raw_type);
11708 LONGEST U = ada_discrete_type_high_bound (raw_type);
11710 if (L < INT_MIN || U > INT_MAX)
11713 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11718 static char *name_buf = NULL;
11719 static size_t name_len = 0;
11720 int prefix_len = subtype_info - name;
11723 const char *bounds_str;
11726 GROW_VECT (name_buf, name_len, prefix_len + 5);
11727 strncpy (name_buf, name, prefix_len);
11728 name_buf[prefix_len] = '\0';
11731 bounds_str = strchr (subtype_info, '_');
11734 if (*subtype_info == 'L')
11736 if (!ada_scan_number (bounds_str, n, &L, &n)
11737 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11739 if (bounds_str[n] == '_')
11741 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11749 strcpy (name_buf + prefix_len, "___L");
11750 L = get_int_var_value (name_buf, &ok);
11753 lim_warning (_("Unknown lower bound, using 1."));
11758 if (*subtype_info == 'U')
11760 if (!ada_scan_number (bounds_str, n, &U, &n)
11761 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11768 strcpy (name_buf + prefix_len, "___U");
11769 U = get_int_var_value (name_buf, &ok);
11772 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11777 type = create_static_range_type (alloc_type_copy (raw_type),
11779 TYPE_NAME (type) = name;
11784 /* True iff NAME is the name of a range type. */
11787 ada_is_range_type_name (const char *name)
11789 return (name != NULL && strstr (name, "___XD"));
11793 /* Modular types */
11795 /* True iff TYPE is an Ada modular type. */
11798 ada_is_modular_type (struct type *type)
11800 struct type *subranged_type = get_base_type (type);
11802 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11803 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11804 && TYPE_UNSIGNED (subranged_type));
11807 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11810 ada_modulus (struct type *type)
11812 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11816 /* Ada exception catchpoint support:
11817 ---------------------------------
11819 We support 3 kinds of exception catchpoints:
11820 . catchpoints on Ada exceptions
11821 . catchpoints on unhandled Ada exceptions
11822 . catchpoints on failed assertions
11824 Exceptions raised during failed assertions, or unhandled exceptions
11825 could perfectly be caught with the general catchpoint on Ada exceptions.
11826 However, we can easily differentiate these two special cases, and having
11827 the option to distinguish these two cases from the rest can be useful
11828 to zero-in on certain situations.
11830 Exception catchpoints are a specialized form of breakpoint,
11831 since they rely on inserting breakpoints inside known routines
11832 of the GNAT runtime. The implementation therefore uses a standard
11833 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11836 Support in the runtime for exception catchpoints have been changed
11837 a few times already, and these changes affect the implementation
11838 of these catchpoints. In order to be able to support several
11839 variants of the runtime, we use a sniffer that will determine
11840 the runtime variant used by the program being debugged. */
11842 /* Ada's standard exceptions.
11844 The Ada 83 standard also defined Numeric_Error. But there so many
11845 situations where it was unclear from the Ada 83 Reference Manual
11846 (RM) whether Constraint_Error or Numeric_Error should be raised,
11847 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11848 Interpretation saying that anytime the RM says that Numeric_Error
11849 should be raised, the implementation may raise Constraint_Error.
11850 Ada 95 went one step further and pretty much removed Numeric_Error
11851 from the list of standard exceptions (it made it a renaming of
11852 Constraint_Error, to help preserve compatibility when compiling
11853 an Ada83 compiler). As such, we do not include Numeric_Error from
11854 this list of standard exceptions. */
11856 static char *standard_exc[] = {
11857 "constraint_error",
11863 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11865 /* A structure that describes how to support exception catchpoints
11866 for a given executable. */
11868 struct exception_support_info
11870 /* The name of the symbol to break on in order to insert
11871 a catchpoint on exceptions. */
11872 const char *catch_exception_sym;
11874 /* The name of the symbol to break on in order to insert
11875 a catchpoint on unhandled exceptions. */
11876 const char *catch_exception_unhandled_sym;
11878 /* The name of the symbol to break on in order to insert
11879 a catchpoint on failed assertions. */
11880 const char *catch_assert_sym;
11882 /* Assuming that the inferior just triggered an unhandled exception
11883 catchpoint, this function is responsible for returning the address
11884 in inferior memory where the name of that exception is stored.
11885 Return zero if the address could not be computed. */
11886 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11889 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11890 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11892 /* The following exception support info structure describes how to
11893 implement exception catchpoints with the latest version of the
11894 Ada runtime (as of 2007-03-06). */
11896 static const struct exception_support_info default_exception_support_info =
11898 "__gnat_debug_raise_exception", /* catch_exception_sym */
11899 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11900 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11901 ada_unhandled_exception_name_addr
11904 /* The following exception support info structure describes how to
11905 implement exception catchpoints with a slightly older version
11906 of the Ada runtime. */
11908 static const struct exception_support_info exception_support_info_fallback =
11910 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11911 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11912 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11913 ada_unhandled_exception_name_addr_from_raise
11916 /* Return nonzero if we can detect the exception support routines
11917 described in EINFO.
11919 This function errors out if an abnormal situation is detected
11920 (for instance, if we find the exception support routines, but
11921 that support is found to be incomplete). */
11924 ada_has_this_exception_support (const struct exception_support_info *einfo)
11926 struct symbol *sym;
11928 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11929 that should be compiled with debugging information. As a result, we
11930 expect to find that symbol in the symtabs. */
11932 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11935 /* Perhaps we did not find our symbol because the Ada runtime was
11936 compiled without debugging info, or simply stripped of it.
11937 It happens on some GNU/Linux distributions for instance, where
11938 users have to install a separate debug package in order to get
11939 the runtime's debugging info. In that situation, let the user
11940 know why we cannot insert an Ada exception catchpoint.
11942 Note: Just for the purpose of inserting our Ada exception
11943 catchpoint, we could rely purely on the associated minimal symbol.
11944 But we would be operating in degraded mode anyway, since we are
11945 still lacking the debugging info needed later on to extract
11946 the name of the exception being raised (this name is printed in
11947 the catchpoint message, and is also used when trying to catch
11948 a specific exception). We do not handle this case for now. */
11949 struct bound_minimal_symbol msym
11950 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11952 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11953 error (_("Your Ada runtime appears to be missing some debugging "
11954 "information.\nCannot insert Ada exception catchpoint "
11955 "in this configuration."));
11960 /* Make sure that the symbol we found corresponds to a function. */
11962 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11963 error (_("Symbol \"%s\" is not a function (class = %d)"),
11964 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11969 /* Inspect the Ada runtime and determine which exception info structure
11970 should be used to provide support for exception catchpoints.
11972 This function will always set the per-inferior exception_info,
11973 or raise an error. */
11976 ada_exception_support_info_sniffer (void)
11978 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11980 /* If the exception info is already known, then no need to recompute it. */
11981 if (data->exception_info != NULL)
11984 /* Check the latest (default) exception support info. */
11985 if (ada_has_this_exception_support (&default_exception_support_info))
11987 data->exception_info = &default_exception_support_info;
11991 /* Try our fallback exception suport info. */
11992 if (ada_has_this_exception_support (&exception_support_info_fallback))
11994 data->exception_info = &exception_support_info_fallback;
11998 /* Sometimes, it is normal for us to not be able to find the routine
11999 we are looking for. This happens when the program is linked with
12000 the shared version of the GNAT runtime, and the program has not been
12001 started yet. Inform the user of these two possible causes if
12004 if (ada_update_initial_language (language_unknown) != language_ada)
12005 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12007 /* If the symbol does not exist, then check that the program is
12008 already started, to make sure that shared libraries have been
12009 loaded. If it is not started, this may mean that the symbol is
12010 in a shared library. */
12012 if (ptid_get_pid (inferior_ptid) == 0)
12013 error (_("Unable to insert catchpoint. Try to start the program first."));
12015 /* At this point, we know that we are debugging an Ada program and
12016 that the inferior has been started, but we still are not able to
12017 find the run-time symbols. That can mean that we are in
12018 configurable run time mode, or that a-except as been optimized
12019 out by the linker... In any case, at this point it is not worth
12020 supporting this feature. */
12022 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12025 /* True iff FRAME is very likely to be that of a function that is
12026 part of the runtime system. This is all very heuristic, but is
12027 intended to be used as advice as to what frames are uninteresting
12031 is_known_support_routine (struct frame_info *frame)
12033 struct symtab_and_line sal;
12035 enum language func_lang;
12037 const char *fullname;
12039 /* If this code does not have any debugging information (no symtab),
12040 This cannot be any user code. */
12042 find_frame_sal (frame, &sal);
12043 if (sal.symtab == NULL)
12046 /* If there is a symtab, but the associated source file cannot be
12047 located, then assume this is not user code: Selecting a frame
12048 for which we cannot display the code would not be very helpful
12049 for the user. This should also take care of case such as VxWorks
12050 where the kernel has some debugging info provided for a few units. */
12052 fullname = symtab_to_fullname (sal.symtab);
12053 if (access (fullname, R_OK) != 0)
12056 /* Check the unit filename againt the Ada runtime file naming.
12057 We also check the name of the objfile against the name of some
12058 known system libraries that sometimes come with debugging info
12061 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12063 re_comp (known_runtime_file_name_patterns[i]);
12064 if (re_exec (lbasename (sal.symtab->filename)))
12066 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12067 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12071 /* Check whether the function is a GNAT-generated entity. */
12073 find_frame_funname (frame, &func_name, &func_lang, NULL);
12074 if (func_name == NULL)
12077 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12079 re_comp (known_auxiliary_function_name_patterns[i]);
12080 if (re_exec (func_name))
12091 /* Find the first frame that contains debugging information and that is not
12092 part of the Ada run-time, starting from FI and moving upward. */
12095 ada_find_printable_frame (struct frame_info *fi)
12097 for (; fi != NULL; fi = get_prev_frame (fi))
12099 if (!is_known_support_routine (fi))
12108 /* Assuming that the inferior just triggered an unhandled exception
12109 catchpoint, return the address in inferior memory where the name
12110 of the exception is stored.
12112 Return zero if the address could not be computed. */
12115 ada_unhandled_exception_name_addr (void)
12117 return parse_and_eval_address ("e.full_name");
12120 /* Same as ada_unhandled_exception_name_addr, except that this function
12121 should be used when the inferior uses an older version of the runtime,
12122 where the exception name needs to be extracted from a specific frame
12123 several frames up in the callstack. */
12126 ada_unhandled_exception_name_addr_from_raise (void)
12129 struct frame_info *fi;
12130 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12131 struct cleanup *old_chain;
12133 /* To determine the name of this exception, we need to select
12134 the frame corresponding to RAISE_SYM_NAME. This frame is
12135 at least 3 levels up, so we simply skip the first 3 frames
12136 without checking the name of their associated function. */
12137 fi = get_current_frame ();
12138 for (frame_level = 0; frame_level < 3; frame_level += 1)
12140 fi = get_prev_frame (fi);
12142 old_chain = make_cleanup (null_cleanup, NULL);
12146 enum language func_lang;
12148 find_frame_funname (fi, &func_name, &func_lang, NULL);
12149 if (func_name != NULL)
12151 make_cleanup (xfree, func_name);
12153 if (strcmp (func_name,
12154 data->exception_info->catch_exception_sym) == 0)
12155 break; /* We found the frame we were looking for... */
12156 fi = get_prev_frame (fi);
12159 do_cleanups (old_chain);
12165 return parse_and_eval_address ("id.full_name");
12168 /* Assuming the inferior just triggered an Ada exception catchpoint
12169 (of any type), return the address in inferior memory where the name
12170 of the exception is stored, if applicable.
12172 Return zero if the address could not be computed, or if not relevant. */
12175 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12176 struct breakpoint *b)
12178 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12182 case ada_catch_exception:
12183 return (parse_and_eval_address ("e.full_name"));
12186 case ada_catch_exception_unhandled:
12187 return data->exception_info->unhandled_exception_name_addr ();
12190 case ada_catch_assert:
12191 return 0; /* Exception name is not relevant in this case. */
12195 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12199 return 0; /* Should never be reached. */
12202 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12203 any error that ada_exception_name_addr_1 might cause to be thrown.
12204 When an error is intercepted, a warning with the error message is printed,
12205 and zero is returned. */
12208 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12209 struct breakpoint *b)
12211 CORE_ADDR result = 0;
12215 result = ada_exception_name_addr_1 (ex, b);
12218 CATCH (e, RETURN_MASK_ERROR)
12220 warning (_("failed to get exception name: %s"), e.message);
12228 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12230 /* Ada catchpoints.
12232 In the case of catchpoints on Ada exceptions, the catchpoint will
12233 stop the target on every exception the program throws. When a user
12234 specifies the name of a specific exception, we translate this
12235 request into a condition expression (in text form), and then parse
12236 it into an expression stored in each of the catchpoint's locations.
12237 We then use this condition to check whether the exception that was
12238 raised is the one the user is interested in. If not, then the
12239 target is resumed again. We store the name of the requested
12240 exception, in order to be able to re-set the condition expression
12241 when symbols change. */
12243 /* An instance of this type is used to represent an Ada catchpoint
12244 breakpoint location. It includes a "struct bp_location" as a kind
12245 of base class; users downcast to "struct bp_location *" when
12248 struct ada_catchpoint_location
12250 /* The base class. */
12251 struct bp_location base;
12253 /* The condition that checks whether the exception that was raised
12254 is the specific exception the user specified on catchpoint
12256 struct expression *excep_cond_expr;
12259 /* Implement the DTOR method in the bp_location_ops structure for all
12260 Ada exception catchpoint kinds. */
12263 ada_catchpoint_location_dtor (struct bp_location *bl)
12265 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12267 xfree (al->excep_cond_expr);
12270 /* The vtable to be used in Ada catchpoint locations. */
12272 static const struct bp_location_ops ada_catchpoint_location_ops =
12274 ada_catchpoint_location_dtor
12277 /* An instance of this type is used to represent an Ada catchpoint.
12278 It includes a "struct breakpoint" as a kind of base class; users
12279 downcast to "struct breakpoint *" when needed. */
12281 struct ada_catchpoint
12283 /* The base class. */
12284 struct breakpoint base;
12286 /* The name of the specific exception the user specified. */
12287 char *excep_string;
12290 /* Parse the exception condition string in the context of each of the
12291 catchpoint's locations, and store them for later evaluation. */
12294 create_excep_cond_exprs (struct ada_catchpoint *c)
12296 struct cleanup *old_chain;
12297 struct bp_location *bl;
12300 /* Nothing to do if there's no specific exception to catch. */
12301 if (c->excep_string == NULL)
12304 /* Same if there are no locations... */
12305 if (c->base.loc == NULL)
12308 /* Compute the condition expression in text form, from the specific
12309 expection we want to catch. */
12310 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12311 old_chain = make_cleanup (xfree, cond_string);
12313 /* Iterate over all the catchpoint's locations, and parse an
12314 expression for each. */
12315 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12317 struct ada_catchpoint_location *ada_loc
12318 = (struct ada_catchpoint_location *) bl;
12319 struct expression *exp = NULL;
12321 if (!bl->shlib_disabled)
12328 exp = parse_exp_1 (&s, bl->address,
12329 block_for_pc (bl->address), 0);
12331 CATCH (e, RETURN_MASK_ERROR)
12333 warning (_("failed to reevaluate internal exception condition "
12334 "for catchpoint %d: %s"),
12335 c->base.number, e.message);
12336 /* There is a bug in GCC on sparc-solaris when building with
12337 optimization which causes EXP to change unexpectedly
12338 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12339 The problem should be fixed starting with GCC 4.9.
12340 In the meantime, work around it by forcing EXP back
12347 ada_loc->excep_cond_expr = exp;
12350 do_cleanups (old_chain);
12353 /* Implement the DTOR method in the breakpoint_ops structure for all
12354 exception catchpoint kinds. */
12357 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12359 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12361 xfree (c->excep_string);
12363 bkpt_breakpoint_ops.dtor (b);
12366 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12367 structure for all exception catchpoint kinds. */
12369 static struct bp_location *
12370 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12371 struct breakpoint *self)
12373 struct ada_catchpoint_location *loc;
12375 loc = XNEW (struct ada_catchpoint_location);
12376 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12377 loc->excep_cond_expr = NULL;
12381 /* Implement the RE_SET method in the breakpoint_ops structure for all
12382 exception catchpoint kinds. */
12385 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12387 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12389 /* Call the base class's method. This updates the catchpoint's
12391 bkpt_breakpoint_ops.re_set (b);
12393 /* Reparse the exception conditional expressions. One for each
12395 create_excep_cond_exprs (c);
12398 /* Returns true if we should stop for this breakpoint hit. If the
12399 user specified a specific exception, we only want to cause a stop
12400 if the program thrown that exception. */
12403 should_stop_exception (const struct bp_location *bl)
12405 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12406 const struct ada_catchpoint_location *ada_loc
12407 = (const struct ada_catchpoint_location *) bl;
12410 /* With no specific exception, should always stop. */
12411 if (c->excep_string == NULL)
12414 if (ada_loc->excep_cond_expr == NULL)
12416 /* We will have a NULL expression if back when we were creating
12417 the expressions, this location's had failed to parse. */
12424 struct value *mark;
12426 mark = value_mark ();
12427 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12428 value_free_to_mark (mark);
12430 CATCH (ex, RETURN_MASK_ALL)
12432 exception_fprintf (gdb_stderr, ex,
12433 _("Error in testing exception condition:\n"));
12440 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12441 for all exception catchpoint kinds. */
12444 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12446 bs->stop = should_stop_exception (bs->bp_location_at);
12449 /* Implement the PRINT_IT method in the breakpoint_ops structure
12450 for all exception catchpoint kinds. */
12452 static enum print_stop_action
12453 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12455 struct ui_out *uiout = current_uiout;
12456 struct breakpoint *b = bs->breakpoint_at;
12458 annotate_catchpoint (b->number);
12460 if (ui_out_is_mi_like_p (uiout))
12462 ui_out_field_string (uiout, "reason",
12463 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12464 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12467 ui_out_text (uiout,
12468 b->disposition == disp_del ? "\nTemporary catchpoint "
12469 : "\nCatchpoint ");
12470 ui_out_field_int (uiout, "bkptno", b->number);
12471 ui_out_text (uiout, ", ");
12475 case ada_catch_exception:
12476 case ada_catch_exception_unhandled:
12478 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12479 char exception_name[256];
12483 read_memory (addr, (gdb_byte *) exception_name,
12484 sizeof (exception_name) - 1);
12485 exception_name [sizeof (exception_name) - 1] = '\0';
12489 /* For some reason, we were unable to read the exception
12490 name. This could happen if the Runtime was compiled
12491 without debugging info, for instance. In that case,
12492 just replace the exception name by the generic string
12493 "exception" - it will read as "an exception" in the
12494 notification we are about to print. */
12495 memcpy (exception_name, "exception", sizeof ("exception"));
12497 /* In the case of unhandled exception breakpoints, we print
12498 the exception name as "unhandled EXCEPTION_NAME", to make
12499 it clearer to the user which kind of catchpoint just got
12500 hit. We used ui_out_text to make sure that this extra
12501 info does not pollute the exception name in the MI case. */
12502 if (ex == ada_catch_exception_unhandled)
12503 ui_out_text (uiout, "unhandled ");
12504 ui_out_field_string (uiout, "exception-name", exception_name);
12507 case ada_catch_assert:
12508 /* In this case, the name of the exception is not really
12509 important. Just print "failed assertion" to make it clearer
12510 that his program just hit an assertion-failure catchpoint.
12511 We used ui_out_text because this info does not belong in
12513 ui_out_text (uiout, "failed assertion");
12516 ui_out_text (uiout, " at ");
12517 ada_find_printable_frame (get_current_frame ());
12519 return PRINT_SRC_AND_LOC;
12522 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12523 for all exception catchpoint kinds. */
12526 print_one_exception (enum ada_exception_catchpoint_kind ex,
12527 struct breakpoint *b, struct bp_location **last_loc)
12529 struct ui_out *uiout = current_uiout;
12530 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12531 struct value_print_options opts;
12533 get_user_print_options (&opts);
12534 if (opts.addressprint)
12536 annotate_field (4);
12537 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12540 annotate_field (5);
12541 *last_loc = b->loc;
12544 case ada_catch_exception:
12545 if (c->excep_string != NULL)
12547 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12549 ui_out_field_string (uiout, "what", msg);
12553 ui_out_field_string (uiout, "what", "all Ada exceptions");
12557 case ada_catch_exception_unhandled:
12558 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12561 case ada_catch_assert:
12562 ui_out_field_string (uiout, "what", "failed Ada assertions");
12566 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12571 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12572 for all exception catchpoint kinds. */
12575 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12576 struct breakpoint *b)
12578 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12579 struct ui_out *uiout = current_uiout;
12581 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12582 : _("Catchpoint "));
12583 ui_out_field_int (uiout, "bkptno", b->number);
12584 ui_out_text (uiout, ": ");
12588 case ada_catch_exception:
12589 if (c->excep_string != NULL)
12591 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12592 struct cleanup *old_chain = make_cleanup (xfree, info);
12594 ui_out_text (uiout, info);
12595 do_cleanups (old_chain);
12598 ui_out_text (uiout, _("all Ada exceptions"));
12601 case ada_catch_exception_unhandled:
12602 ui_out_text (uiout, _("unhandled Ada exceptions"));
12605 case ada_catch_assert:
12606 ui_out_text (uiout, _("failed Ada assertions"));
12610 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12615 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12616 for all exception catchpoint kinds. */
12619 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12620 struct breakpoint *b, struct ui_file *fp)
12622 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12626 case ada_catch_exception:
12627 fprintf_filtered (fp, "catch exception");
12628 if (c->excep_string != NULL)
12629 fprintf_filtered (fp, " %s", c->excep_string);
12632 case ada_catch_exception_unhandled:
12633 fprintf_filtered (fp, "catch exception unhandled");
12636 case ada_catch_assert:
12637 fprintf_filtered (fp, "catch assert");
12641 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12643 print_recreate_thread (b, fp);
12646 /* Virtual table for "catch exception" breakpoints. */
12649 dtor_catch_exception (struct breakpoint *b)
12651 dtor_exception (ada_catch_exception, b);
12654 static struct bp_location *
12655 allocate_location_catch_exception (struct breakpoint *self)
12657 return allocate_location_exception (ada_catch_exception, self);
12661 re_set_catch_exception (struct breakpoint *b)
12663 re_set_exception (ada_catch_exception, b);
12667 check_status_catch_exception (bpstat bs)
12669 check_status_exception (ada_catch_exception, bs);
12672 static enum print_stop_action
12673 print_it_catch_exception (bpstat bs)
12675 return print_it_exception (ada_catch_exception, bs);
12679 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12681 print_one_exception (ada_catch_exception, b, last_loc);
12685 print_mention_catch_exception (struct breakpoint *b)
12687 print_mention_exception (ada_catch_exception, b);
12691 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12693 print_recreate_exception (ada_catch_exception, b, fp);
12696 static struct breakpoint_ops catch_exception_breakpoint_ops;
12698 /* Virtual table for "catch exception unhandled" breakpoints. */
12701 dtor_catch_exception_unhandled (struct breakpoint *b)
12703 dtor_exception (ada_catch_exception_unhandled, b);
12706 static struct bp_location *
12707 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12709 return allocate_location_exception (ada_catch_exception_unhandled, self);
12713 re_set_catch_exception_unhandled (struct breakpoint *b)
12715 re_set_exception (ada_catch_exception_unhandled, b);
12719 check_status_catch_exception_unhandled (bpstat bs)
12721 check_status_exception (ada_catch_exception_unhandled, bs);
12724 static enum print_stop_action
12725 print_it_catch_exception_unhandled (bpstat bs)
12727 return print_it_exception (ada_catch_exception_unhandled, bs);
12731 print_one_catch_exception_unhandled (struct breakpoint *b,
12732 struct bp_location **last_loc)
12734 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12738 print_mention_catch_exception_unhandled (struct breakpoint *b)
12740 print_mention_exception (ada_catch_exception_unhandled, b);
12744 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12745 struct ui_file *fp)
12747 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12750 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12752 /* Virtual table for "catch assert" breakpoints. */
12755 dtor_catch_assert (struct breakpoint *b)
12757 dtor_exception (ada_catch_assert, b);
12760 static struct bp_location *
12761 allocate_location_catch_assert (struct breakpoint *self)
12763 return allocate_location_exception (ada_catch_assert, self);
12767 re_set_catch_assert (struct breakpoint *b)
12769 re_set_exception (ada_catch_assert, b);
12773 check_status_catch_assert (bpstat bs)
12775 check_status_exception (ada_catch_assert, bs);
12778 static enum print_stop_action
12779 print_it_catch_assert (bpstat bs)
12781 return print_it_exception (ada_catch_assert, bs);
12785 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12787 print_one_exception (ada_catch_assert, b, last_loc);
12791 print_mention_catch_assert (struct breakpoint *b)
12793 print_mention_exception (ada_catch_assert, b);
12797 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12799 print_recreate_exception (ada_catch_assert, b, fp);
12802 static struct breakpoint_ops catch_assert_breakpoint_ops;
12804 /* Return a newly allocated copy of the first space-separated token
12805 in ARGSP, and then adjust ARGSP to point immediately after that
12808 Return NULL if ARGPS does not contain any more tokens. */
12811 ada_get_next_arg (char **argsp)
12813 char *args = *argsp;
12817 args = skip_spaces (args);
12818 if (args[0] == '\0')
12819 return NULL; /* No more arguments. */
12821 /* Find the end of the current argument. */
12823 end = skip_to_space (args);
12825 /* Adjust ARGSP to point to the start of the next argument. */
12829 /* Make a copy of the current argument and return it. */
12831 result = (char *) xmalloc (end - args + 1);
12832 strncpy (result, args, end - args);
12833 result[end - args] = '\0';
12838 /* Split the arguments specified in a "catch exception" command.
12839 Set EX to the appropriate catchpoint type.
12840 Set EXCEP_STRING to the name of the specific exception if
12841 specified by the user.
12842 If a condition is found at the end of the arguments, the condition
12843 expression is stored in COND_STRING (memory must be deallocated
12844 after use). Otherwise COND_STRING is set to NULL. */
12847 catch_ada_exception_command_split (char *args,
12848 enum ada_exception_catchpoint_kind *ex,
12849 char **excep_string,
12850 char **cond_string)
12852 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12853 char *exception_name;
12856 exception_name = ada_get_next_arg (&args);
12857 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12859 /* This is not an exception name; this is the start of a condition
12860 expression for a catchpoint on all exceptions. So, "un-get"
12861 this token, and set exception_name to NULL. */
12862 xfree (exception_name);
12863 exception_name = NULL;
12866 make_cleanup (xfree, exception_name);
12868 /* Check to see if we have a condition. */
12870 args = skip_spaces (args);
12871 if (startswith (args, "if")
12872 && (isspace (args[2]) || args[2] == '\0'))
12875 args = skip_spaces (args);
12877 if (args[0] == '\0')
12878 error (_("Condition missing after `if' keyword"));
12879 cond = xstrdup (args);
12880 make_cleanup (xfree, cond);
12882 args += strlen (args);
12885 /* Check that we do not have any more arguments. Anything else
12888 if (args[0] != '\0')
12889 error (_("Junk at end of expression"));
12891 discard_cleanups (old_chain);
12893 if (exception_name == NULL)
12895 /* Catch all exceptions. */
12896 *ex = ada_catch_exception;
12897 *excep_string = NULL;
12899 else if (strcmp (exception_name, "unhandled") == 0)
12901 /* Catch unhandled exceptions. */
12902 *ex = ada_catch_exception_unhandled;
12903 *excep_string = NULL;
12907 /* Catch a specific exception. */
12908 *ex = ada_catch_exception;
12909 *excep_string = exception_name;
12911 *cond_string = cond;
12914 /* Return the name of the symbol on which we should break in order to
12915 implement a catchpoint of the EX kind. */
12917 static const char *
12918 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12922 gdb_assert (data->exception_info != NULL);
12926 case ada_catch_exception:
12927 return (data->exception_info->catch_exception_sym);
12929 case ada_catch_exception_unhandled:
12930 return (data->exception_info->catch_exception_unhandled_sym);
12932 case ada_catch_assert:
12933 return (data->exception_info->catch_assert_sym);
12936 internal_error (__FILE__, __LINE__,
12937 _("unexpected catchpoint kind (%d)"), ex);
12941 /* Return the breakpoint ops "virtual table" used for catchpoints
12944 static const struct breakpoint_ops *
12945 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12949 case ada_catch_exception:
12950 return (&catch_exception_breakpoint_ops);
12952 case ada_catch_exception_unhandled:
12953 return (&catch_exception_unhandled_breakpoint_ops);
12955 case ada_catch_assert:
12956 return (&catch_assert_breakpoint_ops);
12959 internal_error (__FILE__, __LINE__,
12960 _("unexpected catchpoint kind (%d)"), ex);
12964 /* Return the condition that will be used to match the current exception
12965 being raised with the exception that the user wants to catch. This
12966 assumes that this condition is used when the inferior just triggered
12967 an exception catchpoint.
12969 The string returned is a newly allocated string that needs to be
12970 deallocated later. */
12973 ada_exception_catchpoint_cond_string (const char *excep_string)
12977 /* The standard exceptions are a special case. They are defined in
12978 runtime units that have been compiled without debugging info; if
12979 EXCEP_STRING is the not-fully-qualified name of a standard
12980 exception (e.g. "constraint_error") then, during the evaluation
12981 of the condition expression, the symbol lookup on this name would
12982 *not* return this standard exception. The catchpoint condition
12983 may then be set only on user-defined exceptions which have the
12984 same not-fully-qualified name (e.g. my_package.constraint_error).
12986 To avoid this unexcepted behavior, these standard exceptions are
12987 systematically prefixed by "standard". This means that "catch
12988 exception constraint_error" is rewritten into "catch exception
12989 standard.constraint_error".
12991 If an exception named contraint_error is defined in another package of
12992 the inferior program, then the only way to specify this exception as a
12993 breakpoint condition is to use its fully-qualified named:
12994 e.g. my_package.constraint_error. */
12996 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12998 if (strcmp (standard_exc [i], excep_string) == 0)
13000 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13004 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13007 /* Return the symtab_and_line that should be used to insert an exception
13008 catchpoint of the TYPE kind.
13010 EXCEP_STRING should contain the name of a specific exception that
13011 the catchpoint should catch, or NULL otherwise.
13013 ADDR_STRING returns the name of the function where the real
13014 breakpoint that implements the catchpoints is set, depending on the
13015 type of catchpoint we need to create. */
13017 static struct symtab_and_line
13018 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13019 char **addr_string, const struct breakpoint_ops **ops)
13021 const char *sym_name;
13022 struct symbol *sym;
13024 /* First, find out which exception support info to use. */
13025 ada_exception_support_info_sniffer ();
13027 /* Then lookup the function on which we will break in order to catch
13028 the Ada exceptions requested by the user. */
13029 sym_name = ada_exception_sym_name (ex);
13030 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13032 /* We can assume that SYM is not NULL at this stage. If the symbol
13033 did not exist, ada_exception_support_info_sniffer would have
13034 raised an exception.
13036 Also, ada_exception_support_info_sniffer should have already
13037 verified that SYM is a function symbol. */
13038 gdb_assert (sym != NULL);
13039 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13041 /* Set ADDR_STRING. */
13042 *addr_string = xstrdup (sym_name);
13045 *ops = ada_exception_breakpoint_ops (ex);
13047 return find_function_start_sal (sym, 1);
13050 /* Create an Ada exception catchpoint.
13052 EX_KIND is the kind of exception catchpoint to be created.
13054 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13055 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13056 of the exception to which this catchpoint applies. When not NULL,
13057 the string must be allocated on the heap, and its deallocation
13058 is no longer the responsibility of the caller.
13060 COND_STRING, if not NULL, is the catchpoint condition. This string
13061 must be allocated on the heap, and its deallocation is no longer
13062 the responsibility of the caller.
13064 TEMPFLAG, if nonzero, means that the underlying breakpoint
13065 should be temporary.
13067 FROM_TTY is the usual argument passed to all commands implementations. */
13070 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13071 enum ada_exception_catchpoint_kind ex_kind,
13072 char *excep_string,
13078 struct ada_catchpoint *c;
13079 char *addr_string = NULL;
13080 const struct breakpoint_ops *ops = NULL;
13081 struct symtab_and_line sal
13082 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13084 c = XNEW (struct ada_catchpoint);
13085 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13086 ops, tempflag, disabled, from_tty);
13087 c->excep_string = excep_string;
13088 create_excep_cond_exprs (c);
13089 if (cond_string != NULL)
13090 set_breakpoint_condition (&c->base, cond_string, from_tty);
13091 install_breakpoint (0, &c->base, 1);
13094 /* Implement the "catch exception" command. */
13097 catch_ada_exception_command (char *arg, int from_tty,
13098 struct cmd_list_element *command)
13100 struct gdbarch *gdbarch = get_current_arch ();
13102 enum ada_exception_catchpoint_kind ex_kind;
13103 char *excep_string = NULL;
13104 char *cond_string = NULL;
13106 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13110 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13112 create_ada_exception_catchpoint (gdbarch, ex_kind,
13113 excep_string, cond_string,
13114 tempflag, 1 /* enabled */,
13118 /* Split the arguments specified in a "catch assert" command.
13120 ARGS contains the command's arguments (or the empty string if
13121 no arguments were passed).
13123 If ARGS contains a condition, set COND_STRING to that condition
13124 (the memory needs to be deallocated after use). */
13127 catch_ada_assert_command_split (char *args, char **cond_string)
13129 args = skip_spaces (args);
13131 /* Check whether a condition was provided. */
13132 if (startswith (args, "if")
13133 && (isspace (args[2]) || args[2] == '\0'))
13136 args = skip_spaces (args);
13137 if (args[0] == '\0')
13138 error (_("condition missing after `if' keyword"));
13139 *cond_string = xstrdup (args);
13142 /* Otherwise, there should be no other argument at the end of
13144 else if (args[0] != '\0')
13145 error (_("Junk at end of arguments."));
13148 /* Implement the "catch assert" command. */
13151 catch_assert_command (char *arg, int from_tty,
13152 struct cmd_list_element *command)
13154 struct gdbarch *gdbarch = get_current_arch ();
13156 char *cond_string = NULL;
13158 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13162 catch_ada_assert_command_split (arg, &cond_string);
13163 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13165 tempflag, 1 /* enabled */,
13169 /* Return non-zero if the symbol SYM is an Ada exception object. */
13172 ada_is_exception_sym (struct symbol *sym)
13174 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13176 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13177 && SYMBOL_CLASS (sym) != LOC_BLOCK
13178 && SYMBOL_CLASS (sym) != LOC_CONST
13179 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13180 && type_name != NULL && strcmp (type_name, "exception") == 0);
13183 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13184 Ada exception object. This matches all exceptions except the ones
13185 defined by the Ada language. */
13188 ada_is_non_standard_exception_sym (struct symbol *sym)
13192 if (!ada_is_exception_sym (sym))
13195 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13196 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13197 return 0; /* A standard exception. */
13199 /* Numeric_Error is also a standard exception, so exclude it.
13200 See the STANDARD_EXC description for more details as to why
13201 this exception is not listed in that array. */
13202 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13208 /* A helper function for qsort, comparing two struct ada_exc_info
13211 The comparison is determined first by exception name, and then
13212 by exception address. */
13215 compare_ada_exception_info (const void *a, const void *b)
13217 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13218 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13221 result = strcmp (exc_a->name, exc_b->name);
13225 if (exc_a->addr < exc_b->addr)
13227 if (exc_a->addr > exc_b->addr)
13233 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13234 routine, but keeping the first SKIP elements untouched.
13236 All duplicates are also removed. */
13239 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13242 struct ada_exc_info *to_sort
13243 = VEC_address (ada_exc_info, *exceptions) + skip;
13245 = VEC_length (ada_exc_info, *exceptions) - skip;
13248 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13249 compare_ada_exception_info);
13251 for (i = 1, j = 1; i < to_sort_len; i++)
13252 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13253 to_sort[j++] = to_sort[i];
13255 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13258 /* A function intended as the "name_matcher" callback in the struct
13259 quick_symbol_functions' expand_symtabs_matching method.
13261 SEARCH_NAME is the symbol's search name.
13263 If USER_DATA is not NULL, it is a pointer to a regext_t object
13264 used to match the symbol (by natural name). Otherwise, when USER_DATA
13265 is null, no filtering is performed, and all symbols are a positive
13269 ada_exc_search_name_matches (const char *search_name, void *user_data)
13271 regex_t *preg = (regex_t *) user_data;
13276 /* In Ada, the symbol "search name" is a linkage name, whereas
13277 the regular expression used to do the matching refers to
13278 the natural name. So match against the decoded name. */
13279 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13282 /* Add all exceptions defined by the Ada standard whose name match
13283 a regular expression.
13285 If PREG is not NULL, then this regexp_t object is used to
13286 perform the symbol name matching. Otherwise, no name-based
13287 filtering is performed.
13289 EXCEPTIONS is a vector of exceptions to which matching exceptions
13293 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13297 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13300 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13302 struct bound_minimal_symbol msymbol
13303 = ada_lookup_simple_minsym (standard_exc[i]);
13305 if (msymbol.minsym != NULL)
13307 struct ada_exc_info info
13308 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13310 VEC_safe_push (ada_exc_info, *exceptions, &info);
13316 /* Add all Ada exceptions defined locally and accessible from the given
13319 If PREG is not NULL, then this regexp_t object is used to
13320 perform the symbol name matching. Otherwise, no name-based
13321 filtering is performed.
13323 EXCEPTIONS is a vector of exceptions to which matching exceptions
13327 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13328 VEC(ada_exc_info) **exceptions)
13330 const struct block *block = get_frame_block (frame, 0);
13334 struct block_iterator iter;
13335 struct symbol *sym;
13337 ALL_BLOCK_SYMBOLS (block, iter, sym)
13339 switch (SYMBOL_CLASS (sym))
13346 if (ada_is_exception_sym (sym))
13348 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13349 SYMBOL_VALUE_ADDRESS (sym)};
13351 VEC_safe_push (ada_exc_info, *exceptions, &info);
13355 if (BLOCK_FUNCTION (block) != NULL)
13357 block = BLOCK_SUPERBLOCK (block);
13361 /* Add all exceptions defined globally whose name name match
13362 a regular expression, excluding standard exceptions.
13364 The reason we exclude standard exceptions is that they need
13365 to be handled separately: Standard exceptions are defined inside
13366 a runtime unit which is normally not compiled with debugging info,
13367 and thus usually do not show up in our symbol search. However,
13368 if the unit was in fact built with debugging info, we need to
13369 exclude them because they would duplicate the entry we found
13370 during the special loop that specifically searches for those
13371 standard exceptions.
13373 If PREG is not NULL, then this regexp_t object is used to
13374 perform the symbol name matching. Otherwise, no name-based
13375 filtering is performed.
13377 EXCEPTIONS is a vector of exceptions to which matching exceptions
13381 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13383 struct objfile *objfile;
13384 struct compunit_symtab *s;
13386 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13387 VARIABLES_DOMAIN, preg);
13389 ALL_COMPUNITS (objfile, s)
13391 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13394 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13396 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13397 struct block_iterator iter;
13398 struct symbol *sym;
13400 ALL_BLOCK_SYMBOLS (b, iter, sym)
13401 if (ada_is_non_standard_exception_sym (sym)
13403 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13406 struct ada_exc_info info
13407 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13409 VEC_safe_push (ada_exc_info, *exceptions, &info);
13415 /* Implements ada_exceptions_list with the regular expression passed
13416 as a regex_t, rather than a string.
13418 If not NULL, PREG is used to filter out exceptions whose names
13419 do not match. Otherwise, all exceptions are listed. */
13421 static VEC(ada_exc_info) *
13422 ada_exceptions_list_1 (regex_t *preg)
13424 VEC(ada_exc_info) *result = NULL;
13425 struct cleanup *old_chain
13426 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13429 /* First, list the known standard exceptions. These exceptions
13430 need to be handled separately, as they are usually defined in
13431 runtime units that have been compiled without debugging info. */
13433 ada_add_standard_exceptions (preg, &result);
13435 /* Next, find all exceptions whose scope is local and accessible
13436 from the currently selected frame. */
13438 if (has_stack_frames ())
13440 prev_len = VEC_length (ada_exc_info, result);
13441 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13443 if (VEC_length (ada_exc_info, result) > prev_len)
13444 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13447 /* Add all exceptions whose scope is global. */
13449 prev_len = VEC_length (ada_exc_info, result);
13450 ada_add_global_exceptions (preg, &result);
13451 if (VEC_length (ada_exc_info, result) > prev_len)
13452 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13454 discard_cleanups (old_chain);
13458 /* Return a vector of ada_exc_info.
13460 If REGEXP is NULL, all exceptions are included in the result.
13461 Otherwise, it should contain a valid regular expression,
13462 and only the exceptions whose names match that regular expression
13463 are included in the result.
13465 The exceptions are sorted in the following order:
13466 - Standard exceptions (defined by the Ada language), in
13467 alphabetical order;
13468 - Exceptions only visible from the current frame, in
13469 alphabetical order;
13470 - Exceptions whose scope is global, in alphabetical order. */
13472 VEC(ada_exc_info) *
13473 ada_exceptions_list (const char *regexp)
13475 VEC(ada_exc_info) *result = NULL;
13476 struct cleanup *old_chain = NULL;
13479 if (regexp != NULL)
13480 old_chain = compile_rx_or_error (®, regexp,
13481 _("invalid regular expression"));
13483 result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL);
13485 if (old_chain != NULL)
13486 do_cleanups (old_chain);
13490 /* Implement the "info exceptions" command. */
13493 info_exceptions_command (char *regexp, int from_tty)
13495 VEC(ada_exc_info) *exceptions;
13496 struct cleanup *cleanup;
13497 struct gdbarch *gdbarch = get_current_arch ();
13499 struct ada_exc_info *info;
13501 exceptions = ada_exceptions_list (regexp);
13502 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13504 if (regexp != NULL)
13506 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13508 printf_filtered (_("All defined Ada exceptions:\n"));
13510 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13511 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13513 do_cleanups (cleanup);
13517 /* Information about operators given special treatment in functions
13519 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13521 #define ADA_OPERATORS \
13522 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13523 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13524 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13525 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13526 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13527 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13528 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13529 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13530 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13531 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13532 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13533 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13534 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13535 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13536 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13537 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13538 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13539 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13540 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13543 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13546 switch (exp->elts[pc - 1].opcode)
13549 operator_length_standard (exp, pc, oplenp, argsp);
13552 #define OP_DEFN(op, len, args, binop) \
13553 case op: *oplenp = len; *argsp = args; break;
13559 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13564 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13569 /* Implementation of the exp_descriptor method operator_check. */
13572 ada_operator_check (struct expression *exp, int pos,
13573 int (*objfile_func) (struct objfile *objfile, void *data),
13576 const union exp_element *const elts = exp->elts;
13577 struct type *type = NULL;
13579 switch (elts[pos].opcode)
13581 case UNOP_IN_RANGE:
13583 type = elts[pos + 1].type;
13587 return operator_check_standard (exp, pos, objfile_func, data);
13590 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13592 if (type && TYPE_OBJFILE (type)
13593 && (*objfile_func) (TYPE_OBJFILE (type), data))
13600 ada_op_name (enum exp_opcode opcode)
13605 return op_name_standard (opcode);
13607 #define OP_DEFN(op, len, args, binop) case op: return #op;
13612 return "OP_AGGREGATE";
13614 return "OP_CHOICES";
13620 /* As for operator_length, but assumes PC is pointing at the first
13621 element of the operator, and gives meaningful results only for the
13622 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13625 ada_forward_operator_length (struct expression *exp, int pc,
13626 int *oplenp, int *argsp)
13628 switch (exp->elts[pc].opcode)
13631 *oplenp = *argsp = 0;
13634 #define OP_DEFN(op, len, args, binop) \
13635 case op: *oplenp = len; *argsp = args; break;
13641 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13646 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13652 int len = longest_to_int (exp->elts[pc + 1].longconst);
13654 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13662 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13664 enum exp_opcode op = exp->elts[elt].opcode;
13669 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13673 /* Ada attributes ('Foo). */
13676 case OP_ATR_LENGTH:
13680 case OP_ATR_MODULUS:
13687 case UNOP_IN_RANGE:
13689 /* XXX: gdb_sprint_host_address, type_sprint */
13690 fprintf_filtered (stream, _("Type @"));
13691 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13692 fprintf_filtered (stream, " (");
13693 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13694 fprintf_filtered (stream, ")");
13696 case BINOP_IN_BOUNDS:
13697 fprintf_filtered (stream, " (%d)",
13698 longest_to_int (exp->elts[pc + 2].longconst));
13700 case TERNOP_IN_RANGE:
13705 case OP_DISCRETE_RANGE:
13706 case OP_POSITIONAL:
13713 char *name = &exp->elts[elt + 2].string;
13714 int len = longest_to_int (exp->elts[elt + 1].longconst);
13716 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13721 return dump_subexp_body_standard (exp, stream, elt);
13725 for (i = 0; i < nargs; i += 1)
13726 elt = dump_subexp (exp, stream, elt);
13731 /* The Ada extension of print_subexp (q.v.). */
13734 ada_print_subexp (struct expression *exp, int *pos,
13735 struct ui_file *stream, enum precedence prec)
13737 int oplen, nargs, i;
13739 enum exp_opcode op = exp->elts[pc].opcode;
13741 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13748 print_subexp_standard (exp, pos, stream, prec);
13752 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13755 case BINOP_IN_BOUNDS:
13756 /* XXX: sprint_subexp */
13757 print_subexp (exp, pos, stream, PREC_SUFFIX);
13758 fputs_filtered (" in ", stream);
13759 print_subexp (exp, pos, stream, PREC_SUFFIX);
13760 fputs_filtered ("'range", stream);
13761 if (exp->elts[pc + 1].longconst > 1)
13762 fprintf_filtered (stream, "(%ld)",
13763 (long) exp->elts[pc + 1].longconst);
13766 case TERNOP_IN_RANGE:
13767 if (prec >= PREC_EQUAL)
13768 fputs_filtered ("(", stream);
13769 /* XXX: sprint_subexp */
13770 print_subexp (exp, pos, stream, PREC_SUFFIX);
13771 fputs_filtered (" in ", stream);
13772 print_subexp (exp, pos, stream, PREC_EQUAL);
13773 fputs_filtered (" .. ", stream);
13774 print_subexp (exp, pos, stream, PREC_EQUAL);
13775 if (prec >= PREC_EQUAL)
13776 fputs_filtered (")", stream);
13781 case OP_ATR_LENGTH:
13785 case OP_ATR_MODULUS:
13790 if (exp->elts[*pos].opcode == OP_TYPE)
13792 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13793 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13794 &type_print_raw_options);
13798 print_subexp (exp, pos, stream, PREC_SUFFIX);
13799 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13804 for (tem = 1; tem < nargs; tem += 1)
13806 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13807 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13809 fputs_filtered (")", stream);
13814 type_print (exp->elts[pc + 1].type, "", stream, 0);
13815 fputs_filtered ("'(", stream);
13816 print_subexp (exp, pos, stream, PREC_PREFIX);
13817 fputs_filtered (")", stream);
13820 case UNOP_IN_RANGE:
13821 /* XXX: sprint_subexp */
13822 print_subexp (exp, pos, stream, PREC_SUFFIX);
13823 fputs_filtered (" in ", stream);
13824 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13825 &type_print_raw_options);
13828 case OP_DISCRETE_RANGE:
13829 print_subexp (exp, pos, stream, PREC_SUFFIX);
13830 fputs_filtered ("..", stream);
13831 print_subexp (exp, pos, stream, PREC_SUFFIX);
13835 fputs_filtered ("others => ", stream);
13836 print_subexp (exp, pos, stream, PREC_SUFFIX);
13840 for (i = 0; i < nargs-1; i += 1)
13843 fputs_filtered ("|", stream);
13844 print_subexp (exp, pos, stream, PREC_SUFFIX);
13846 fputs_filtered (" => ", stream);
13847 print_subexp (exp, pos, stream, PREC_SUFFIX);
13850 case OP_POSITIONAL:
13851 print_subexp (exp, pos, stream, PREC_SUFFIX);
13855 fputs_filtered ("(", stream);
13856 for (i = 0; i < nargs; i += 1)
13859 fputs_filtered (", ", stream);
13860 print_subexp (exp, pos, stream, PREC_SUFFIX);
13862 fputs_filtered (")", stream);
13867 /* Table mapping opcodes into strings for printing operators
13868 and precedences of the operators. */
13870 static const struct op_print ada_op_print_tab[] = {
13871 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13872 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13873 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13874 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13875 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13876 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13877 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13878 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13879 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13880 {">=", BINOP_GEQ, PREC_ORDER, 0},
13881 {">", BINOP_GTR, PREC_ORDER, 0},
13882 {"<", BINOP_LESS, PREC_ORDER, 0},
13883 {">>", BINOP_RSH, PREC_SHIFT, 0},
13884 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13885 {"+", BINOP_ADD, PREC_ADD, 0},
13886 {"-", BINOP_SUB, PREC_ADD, 0},
13887 {"&", BINOP_CONCAT, PREC_ADD, 0},
13888 {"*", BINOP_MUL, PREC_MUL, 0},
13889 {"/", BINOP_DIV, PREC_MUL, 0},
13890 {"rem", BINOP_REM, PREC_MUL, 0},
13891 {"mod", BINOP_MOD, PREC_MUL, 0},
13892 {"**", BINOP_EXP, PREC_REPEAT, 0},
13893 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13894 {"-", UNOP_NEG, PREC_PREFIX, 0},
13895 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13896 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13897 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13898 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13899 {".all", UNOP_IND, PREC_SUFFIX, 1},
13900 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13901 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13902 {NULL, OP_NULL, PREC_SUFFIX, 0}
13905 enum ada_primitive_types {
13906 ada_primitive_type_int,
13907 ada_primitive_type_long,
13908 ada_primitive_type_short,
13909 ada_primitive_type_char,
13910 ada_primitive_type_float,
13911 ada_primitive_type_double,
13912 ada_primitive_type_void,
13913 ada_primitive_type_long_long,
13914 ada_primitive_type_long_double,
13915 ada_primitive_type_natural,
13916 ada_primitive_type_positive,
13917 ada_primitive_type_system_address,
13918 nr_ada_primitive_types
13922 ada_language_arch_info (struct gdbarch *gdbarch,
13923 struct language_arch_info *lai)
13925 const struct builtin_type *builtin = builtin_type (gdbarch);
13927 lai->primitive_type_vector
13928 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13931 lai->primitive_type_vector [ada_primitive_type_int]
13932 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13934 lai->primitive_type_vector [ada_primitive_type_long]
13935 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13936 0, "long_integer");
13937 lai->primitive_type_vector [ada_primitive_type_short]
13938 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13939 0, "short_integer");
13940 lai->string_char_type
13941 = lai->primitive_type_vector [ada_primitive_type_char]
13942 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13943 lai->primitive_type_vector [ada_primitive_type_float]
13944 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13946 lai->primitive_type_vector [ada_primitive_type_double]
13947 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13948 "long_float", NULL);
13949 lai->primitive_type_vector [ada_primitive_type_long_long]
13950 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13951 0, "long_long_integer");
13952 lai->primitive_type_vector [ada_primitive_type_long_double]
13953 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13954 "long_long_float", NULL);
13955 lai->primitive_type_vector [ada_primitive_type_natural]
13956 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13958 lai->primitive_type_vector [ada_primitive_type_positive]
13959 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13961 lai->primitive_type_vector [ada_primitive_type_void]
13962 = builtin->builtin_void;
13964 lai->primitive_type_vector [ada_primitive_type_system_address]
13965 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13966 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13967 = "system__address";
13969 lai->bool_type_symbol = NULL;
13970 lai->bool_type_default = builtin->builtin_bool;
13973 /* Language vector */
13975 /* Not really used, but needed in the ada_language_defn. */
13978 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13980 ada_emit_char (c, type, stream, quoter, 1);
13984 parse (struct parser_state *ps)
13986 warnings_issued = 0;
13987 return ada_parse (ps);
13990 static const struct exp_descriptor ada_exp_descriptor = {
13992 ada_operator_length,
13993 ada_operator_check,
13995 ada_dump_subexp_body,
13996 ada_evaluate_subexp
13999 /* Implement the "la_get_symbol_name_cmp" language_defn method
14002 static symbol_name_cmp_ftype
14003 ada_get_symbol_name_cmp (const char *lookup_name)
14005 if (should_use_wild_match (lookup_name))
14008 return compare_names;
14011 /* Implement the "la_read_var_value" language_defn method for Ada. */
14013 static struct value *
14014 ada_read_var_value (struct symbol *var, const struct block *var_block,
14015 struct frame_info *frame)
14017 const struct block *frame_block = NULL;
14018 struct symbol *renaming_sym = NULL;
14020 /* The only case where default_read_var_value is not sufficient
14021 is when VAR is a renaming... */
14023 frame_block = get_frame_block (frame, NULL);
14025 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14026 if (renaming_sym != NULL)
14027 return ada_read_renaming_var_value (renaming_sym, frame_block);
14029 /* This is a typical case where we expect the default_read_var_value
14030 function to work. */
14031 return default_read_var_value (var, var_block, frame);
14034 const struct language_defn ada_language_defn = {
14035 "ada", /* Language name */
14039 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14040 that's not quite what this means. */
14042 macro_expansion_no,
14043 &ada_exp_descriptor,
14047 ada_printchar, /* Print a character constant */
14048 ada_printstr, /* Function to print string constant */
14049 emit_char, /* Function to print single char (not used) */
14050 ada_print_type, /* Print a type using appropriate syntax */
14051 ada_print_typedef, /* Print a typedef using appropriate syntax */
14052 ada_val_print, /* Print a value using appropriate syntax */
14053 ada_value_print, /* Print a top-level value */
14054 ada_read_var_value, /* la_read_var_value */
14055 NULL, /* Language specific skip_trampoline */
14056 NULL, /* name_of_this */
14057 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14058 basic_lookup_transparent_type, /* lookup_transparent_type */
14059 ada_la_decode, /* Language specific symbol demangler */
14060 NULL, /* Language specific
14061 class_name_from_physname */
14062 ada_op_print_tab, /* expression operators for printing */
14063 0, /* c-style arrays */
14064 1, /* String lower bound */
14065 ada_get_gdb_completer_word_break_characters,
14066 ada_make_symbol_completion_list,
14067 ada_language_arch_info,
14068 ada_print_array_index,
14069 default_pass_by_reference,
14071 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14072 ada_iterate_over_symbols,
14079 /* Provide a prototype to silence -Wmissing-prototypes. */
14080 extern initialize_file_ftype _initialize_ada_language;
14082 /* Command-list for the "set/show ada" prefix command. */
14083 static struct cmd_list_element *set_ada_list;
14084 static struct cmd_list_element *show_ada_list;
14086 /* Implement the "set ada" prefix command. */
14089 set_ada_command (char *arg, int from_tty)
14091 printf_unfiltered (_(\
14092 "\"set ada\" must be followed by the name of a setting.\n"));
14093 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14096 /* Implement the "show ada" prefix command. */
14099 show_ada_command (char *args, int from_tty)
14101 cmd_show_list (show_ada_list, from_tty, "");
14105 initialize_ada_catchpoint_ops (void)
14107 struct breakpoint_ops *ops;
14109 initialize_breakpoint_ops ();
14111 ops = &catch_exception_breakpoint_ops;
14112 *ops = bkpt_breakpoint_ops;
14113 ops->dtor = dtor_catch_exception;
14114 ops->allocate_location = allocate_location_catch_exception;
14115 ops->re_set = re_set_catch_exception;
14116 ops->check_status = check_status_catch_exception;
14117 ops->print_it = print_it_catch_exception;
14118 ops->print_one = print_one_catch_exception;
14119 ops->print_mention = print_mention_catch_exception;
14120 ops->print_recreate = print_recreate_catch_exception;
14122 ops = &catch_exception_unhandled_breakpoint_ops;
14123 *ops = bkpt_breakpoint_ops;
14124 ops->dtor = dtor_catch_exception_unhandled;
14125 ops->allocate_location = allocate_location_catch_exception_unhandled;
14126 ops->re_set = re_set_catch_exception_unhandled;
14127 ops->check_status = check_status_catch_exception_unhandled;
14128 ops->print_it = print_it_catch_exception_unhandled;
14129 ops->print_one = print_one_catch_exception_unhandled;
14130 ops->print_mention = print_mention_catch_exception_unhandled;
14131 ops->print_recreate = print_recreate_catch_exception_unhandled;
14133 ops = &catch_assert_breakpoint_ops;
14134 *ops = bkpt_breakpoint_ops;
14135 ops->dtor = dtor_catch_assert;
14136 ops->allocate_location = allocate_location_catch_assert;
14137 ops->re_set = re_set_catch_assert;
14138 ops->check_status = check_status_catch_assert;
14139 ops->print_it = print_it_catch_assert;
14140 ops->print_one = print_one_catch_assert;
14141 ops->print_mention = print_mention_catch_assert;
14142 ops->print_recreate = print_recreate_catch_assert;
14145 /* This module's 'new_objfile' observer. */
14148 ada_new_objfile_observer (struct objfile *objfile)
14150 ada_clear_symbol_cache ();
14153 /* This module's 'free_objfile' observer. */
14156 ada_free_objfile_observer (struct objfile *objfile)
14158 ada_clear_symbol_cache ();
14162 _initialize_ada_language (void)
14164 add_language (&ada_language_defn);
14166 initialize_ada_catchpoint_ops ();
14168 add_prefix_cmd ("ada", no_class, set_ada_command,
14169 _("Prefix command for changing Ada-specfic settings"),
14170 &set_ada_list, "set ada ", 0, &setlist);
14172 add_prefix_cmd ("ada", no_class, show_ada_command,
14173 _("Generic command for showing Ada-specific settings."),
14174 &show_ada_list, "show ada ", 0, &showlist);
14176 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14177 &trust_pad_over_xvs, _("\
14178 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14179 Show whether an optimization trusting PAD types over XVS types is activated"),
14181 This is related to the encoding used by the GNAT compiler. The debugger\n\
14182 should normally trust the contents of PAD types, but certain older versions\n\
14183 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14184 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14185 work around this bug. It is always safe to turn this option \"off\", but\n\
14186 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14187 this option to \"off\" unless necessary."),
14188 NULL, NULL, &set_ada_list, &show_ada_list);
14190 add_setshow_boolean_cmd ("print-signatures", class_vars,
14191 &print_signatures, _("\
14192 Enable or disable the output of formal and return types for functions in the \
14193 overloads selection menu"), _("\
14194 Show whether the output of formal and return types for functions in the \
14195 overloads selection menu is activated"),
14196 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14198 add_catch_command ("exception", _("\
14199 Catch Ada exceptions, when raised.\n\
14200 With an argument, catch only exceptions with the given name."),
14201 catch_ada_exception_command,
14205 add_catch_command ("assert", _("\
14206 Catch failed Ada assertions, when raised.\n\
14207 With an argument, catch only exceptions with the given name."),
14208 catch_assert_command,
14213 varsize_limit = 65536;
14215 add_info ("exceptions", info_exceptions_command,
14217 List all Ada exception names.\n\
14218 If a regular expression is passed as an argument, only those matching\n\
14219 the regular expression are listed."));
14221 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14222 _("Set Ada maintenance-related variables."),
14223 &maint_set_ada_cmdlist, "maintenance set ada ",
14224 0/*allow-unknown*/, &maintenance_set_cmdlist);
14226 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14227 _("Show Ada maintenance-related variables"),
14228 &maint_show_ada_cmdlist, "maintenance show ada ",
14229 0/*allow-unknown*/, &maintenance_show_cmdlist);
14231 add_setshow_boolean_cmd
14232 ("ignore-descriptive-types", class_maintenance,
14233 &ada_ignore_descriptive_types_p,
14234 _("Set whether descriptive types generated by GNAT should be ignored."),
14235 _("Show whether descriptive types generated by GNAT should be ignored."),
14237 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14238 DWARF attribute."),
14239 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14241 obstack_init (&symbol_list_obstack);
14243 decoded_names_store = htab_create_alloc
14244 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14245 NULL, xcalloc, xfree);
14247 /* The ada-lang observers. */
14248 observer_attach_new_objfile (ada_new_objfile_observer);
14249 observer_attach_free_objfile (ada_free_objfile_observer);
14250 observer_attach_inferior_exit (ada_inferior_exit);
14252 /* Setup various context-specific data. */
14254 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14255 ada_pspace_data_handle
14256 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);