1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static bool wild_match (const char *name, const char *patn);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
232 static int ada_is_direct_array_type (struct type *);
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
237 static struct value *ada_index_struct_field (int, struct value *, int,
240 static struct value *assign_aggregate (struct value *, struct value *,
244 static void aggregate_assign_from_choices (struct value *, struct value *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
249 static void aggregate_assign_positional (struct value *, struct value *,
251 int *, LONGEST *, int *, int,
255 static void aggregate_assign_others (struct value *, struct value *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 static void ada_forward_operator_length (struct expression *, int, int *,
269 static struct type *ada_find_any_type (const char *name);
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
276 /* The result of a symbol lookup to be stored in our symbol cache. */
280 /* The name used to perform the lookup. */
282 /* The namespace used during the lookup. */
284 /* The symbol returned by the lookup, or NULL if no matching symbol
287 /* The block where the symbol was found, or NULL if no matching
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
303 #define HASH_SIZE 1009
305 struct ada_symbol_cache
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
319 static const char ada_completer_word_break_characters[] =
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Maintenance-related settings for this module. */
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
350 /* Implement the "maintenance set ada" (prefix) command. */
353 maint_set_ada_cmd (const char *args, int from_tty)
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 /* Implement the "maintenance show ada" (prefix) command. */
362 maint_show_ada_cmd (const char *args, int from_tty)
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369 static int ada_ignore_descriptive_types_p = 0;
371 /* Inferior-specific data. */
373 /* Per-inferior data for this module. */
375 struct ada_inferior_data
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
386 const struct exception_support_info *exception_info;
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
392 /* A cleanup routine for our inferior data. */
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 struct ada_inferior_data *data;
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
403 /* Return our inferior data for the given inferior (INF).
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
414 struct ada_inferior_data *data;
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
430 ada_inferior_exit (struct inferior *inf)
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
437 /* program-space-specific data. */
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
452 This function always returns a valid object. */
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
457 struct ada_pspace_data *data;
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
470 /* The cleanup callback for this module's per-program-space data. */
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
512 ada_typedef_target_type (struct type *type)
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
524 ada_unqualified_name (const char *decoded_name)
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
535 result = strrchr (decoded_name, '.');
537 result++; /* Skip the dot... */
539 result = decoded_name;
544 /* Return a string starting with '<', followed by STR, and '>'. */
547 add_angle_brackets (const char *str)
549 return string_printf ("<%s>", str);
553 ada_get_gdb_completer_word_break_characters (void)
555 return ada_completer_word_break_characters;
558 /* Print an array element index using the Ada syntax. */
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
575 if (*size < min_size)
578 if (*size < min_size)
580 vect = xrealloc (vect, *size * element_size);
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
589 field_name_match (const char *field_name, const char *target)
591 int len = strlen (target);
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (startswith (field_name + len, "___")
597 && strcmp (field_name + strlen (field_name) - 6,
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
611 ada_get_field_index (const struct type *type, const char *field_name,
615 struct type *struct_type = check_typedef ((struct type *) type);
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
628 /* The length of the prefix of NAME prior to any "___" suffix. */
631 ada_name_prefix_len (const char *name)
637 const char *p = strstr (name, "___");
640 return strlen (name);
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
650 is_suffix (const char *str, const char *suffix)
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
672 struct value *result;
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 ada_ensure_varsize_limit (type);
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
683 result = allocate_value (type);
684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
686 set_value_component_location (result, val);
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
689 set_value_address (result, value_address (val));
694 static const gdb_byte *
695 cond_offset_host (const gdb_byte *valaddr, long offset)
700 return valaddr + offset;
704 cond_offset_target (CORE_ADDR address, long offset)
709 return address + offset;
712 /* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
717 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
719 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
722 lim_warning (const char *format, ...)
726 va_start (args, format);
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
729 vwarning (format, args);
734 /* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
739 ada_ensure_varsize_limit (const struct type *type)
741 if (TYPE_LENGTH (type) > varsize_limit)
742 error (_("object size is larger than varsize-limit"));
745 /* Maximum value of a SIZE-byte signed integer type. */
747 max_of_size (int size)
749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
751 return top_bit | (top_bit - 1);
754 /* Minimum value of a SIZE-byte signed integer type. */
756 min_of_size (int size)
758 return -max_of_size (size) - 1;
761 /* Maximum value of a SIZE-byte unsigned integer type. */
763 umax_of_size (int size)
765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
767 return top_bit | (top_bit - 1);
770 /* Maximum value of integral type T, as a signed quantity. */
772 max_of_type (struct type *t)
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
777 return max_of_size (TYPE_LENGTH (t));
780 /* Minimum value of integral type T, as a signed quantity. */
782 min_of_type (struct type *t)
784 if (TYPE_UNSIGNED (t))
787 return min_of_size (TYPE_LENGTH (t));
790 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
792 ada_discrete_type_high_bound (struct type *type)
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
797 case TYPE_CODE_RANGE:
798 return TYPE_HIGH_BOUND (type);
800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
805 return max_of_type (type);
807 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
813 ada_discrete_type_low_bound (struct type *type)
815 type = resolve_dynamic_type (type, NULL, 0);
816 switch (TYPE_CODE (type))
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
821 return TYPE_FIELD_ENUMVAL (type, 0);
826 return min_of_type (type);
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
836 get_base_type (struct type *type)
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
842 type = TYPE_TARGET_TYPE (type);
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
853 ada_get_decoded_value (struct value *value)
855 struct type *type = ada_check_typedef (value_type (value));
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
864 value = ada_coerce_to_simple_array (value);
867 value = ada_to_fixed_value (value);
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
878 ada_get_decoded_type (struct type *type)
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
888 /* Language Selection */
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
894 ada_update_initial_language (enum language lang)
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
910 struct bound_minimal_symbol msym;
911 static gdb::unique_xmalloc_ptr<char> main_program_name;
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
920 if (msym.minsym != NULL)
922 CORE_ADDR main_program_name_addr;
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
929 target_read_string (main_program_name_addr, &main_program_name,
934 return main_program_name.get ();
937 /* The main procedure doesn't seem to be in Ada. */
943 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
946 const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
971 /* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
977 ada_encode_1 (const char *decoded, bool throw_errors)
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
991 for (p = decoded; *p != '\0'; p += 1)
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1000 const struct ada_opname_map *mapping;
1002 for (mapping = ada_opname_table;
1003 mapping->encoded != NULL
1004 && !startswith (p, mapping->decoded); mapping += 1)
1006 if (mapping->encoded == NULL)
1009 error (_("invalid Ada operator name: %s"), p);
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1019 encoding_buffer[k] = *p;
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1028 /* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1032 ada_encode (const char *decoded)
1034 return ada_encode_1 (decoded, true);
1037 /* Return NAME folded to lower case, or, if surrounded by single
1038 quotes, unfolded, but with the quotes stripped away. Result good
1042 ada_fold_name (const char *name)
1044 static char *fold_buffer = NULL;
1045 static size_t fold_buffer_size = 0;
1047 int len = strlen (name);
1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1050 if (name[0] == '\'')
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
1059 for (i = 0; i <= len; i += 1)
1060 fold_buffer[i] = tolower (name[i]);
1066 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1069 is_lower_alphanum (const char c)
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1074 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1087 ada_remove_trailing_digits (const char *encoded, int *len)
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1093 while (i > 0 && isdigit (encoded[i]))
1095 if (i >= 0 && encoded[i] == '.')
1097 else if (i >= 0 && encoded[i] == '$')
1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1106 /* Remove the suffix introduced by the compiler for protected object
1110 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1112 /* Remove trailing N. */
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
1117 the 'P' suffix. The second calls the first one after handling
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1128 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1131 ada_remove_Xbn_suffix (const char *encoded, int *len)
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1138 if (encoded[i] != 'X')
1144 if (isalnum (encoded[i-1]))
1148 /* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
1152 The resulting string is valid until the next call of ada_decode.
1153 If the string is unchanged by decoding, the original string pointer
1157 ada_decode (const char *encoded)
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1184 len0 = strlen (encoded);
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1222 /* Make decoded big enough for possible expansion by operator name. */
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1237 else if (encoded[i] == '$')
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1260 && !isalnum (encoded[i + op_len]))
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1265 j += strlen (ada_opname_table[k].decoded);
1269 if (ada_opname_table[k].encoded != NULL)
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1299 /* Remove _E{DIGITS}+[sb] */
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1317 while (k < len0 && isdigit (encoded[k]))
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1328 || (k < len0 && encoded[k] == '_'))
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1368 /* Replace '__' by '.'. */
1376 /* It's a character part of the decoded name, so just copy it
1378 decoded[j] = encoded[i];
1383 decoded[j] = '\000';
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1392 if (strcmp (decoded, encoded) == 0)
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1432 if (!gsymbol->ada_mangled)
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1437 gsymbol->ada_mangled = 1;
1439 if (obstack != NULL)
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1453 *slot = xstrdup (decoded);
1462 ada_la_decode (const char *encoded, int options)
1464 return xstrdup (ada_decode (encoded));
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1472 const char *demangled = ada_decode (mangled);
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1538 if (index_desc_type == NULL)
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1572 /* Maximum number of array dimensions we are prepared to handle. */
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1577 /* The desc_* routines return primitive portions of array descriptors
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1583 static struct type *
1584 desc_base_type (struct type *type)
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1603 is_thin_pntr (struct type *type)
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1610 /* The descriptor type for thin pointer type TYPE. */
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1615 struct type *base_type = desc_base_type (type);
1617 if (base_type == NULL)
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1625 if (alt_type == NULL)
1632 /* A pointer to the array data for thin-pointer value VAL. */
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1640 data_type = lookup_pointer_type (data_type);
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1645 return value_from_longest (data_type, value_address (val));
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1651 is_thick_pntr (struct type *type)
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1666 type = desc_base_type (type);
1670 else if (is_thin_pntr (type))
1672 type = thin_descriptor_type (type);
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1677 return ada_check_typedef (r);
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1691 static struct value *
1692 desc_bounds (struct value *arr)
1694 struct type *type = ada_check_typedef (value_type (arr));
1696 if (is_thin_pntr (type))
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1711 addr = value_address (arr);
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1718 else if (is_thick_pntr (type))
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1735 error (_("Bad GNAT array descriptor"));
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1747 fat_pntr_bounds_bitpos (struct type *type)
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1756 fat_pntr_bounds_bitsize (struct type *type)
1758 type = desc_base_type (type);
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1774 type = desc_base_type (type);
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1794 static struct value *
1795 desc_data (struct value *arr)
1797 struct type *type = value_type (arr);
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1813 fat_pntr_data_bitpos (struct type *type)
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1822 fat_pntr_data_bitsize (struct type *type)
1824 type = desc_base_type (type);
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1848 desc_bound_bitpos (struct type *type, int i, int which)
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1858 desc_bound_bitsize (struct type *type, int i, int which)
1860 type = desc_base_type (type);
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1874 type = desc_base_type (type);
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1886 desc_arity (struct type *type)
1888 type = desc_base_type (type);
1891 return TYPE_NFIELDS (type) / 2;
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1900 ada_is_direct_array_type (struct type *type)
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1913 ada_is_array_type (struct type *type)
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1925 ada_is_simple_array_type (struct type *type)
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1939 ada_is_array_descriptor_type (struct type *type)
1941 struct type *data_type = desc_data_target_type (type);
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1957 ada_is_bogus_array_descriptor (struct type *type)
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1976 ada_type_of_array (struct value *arr, int bounds)
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1997 struct type *elt_type;
1999 struct value *descriptor;
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 return lookup_pointer_type (elt_type);
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2059 struct type *arrType = ada_type_of_array (arr, 1);
2061 if (arrType == NULL)
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2076 ada_coerce_to_simple_array (struct value *arr)
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2098 ada_coerce_to_simple_array_type (struct type *type)
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2112 ada_is_packed_array_type (struct type *type)
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2127 ada_is_constrained_packed_array_type (struct type *type)
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2147 decode_packed_array_bitsize (struct type *type)
2149 const char *raw_name;
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2159 raw_name = ada_type_name (ada_check_typedef (type));
2161 raw_name = ada_type_name (desc_base_type (type));
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2172 (_("could not understand bit size information on packed array"));
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2214 index_type = TYPE_INDEX_TYPE (type);
2216 new_type = alloc_type_copy (type);
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2250 struct type *shadow_type;
2254 raw_name = ada_type_name (desc_base_type (type));
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2268 if (shadow_type == NULL)
2270 lim_warning (_("could not find bounds information on packed array"));
2273 shadow_type = check_typedef (shadow_type);
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2308 type = decode_constrained_packed_array_type (value_type (arr));
2311 error (_("can't unpack array"));
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2325 mod = ada_modulus (value_type (arr)) - 1;
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2340 return coerce_unspec_val_to_type (arr, type);
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 /* Non-zero iff TYPE includes negative integer values. */
2398 has_negatives (struct type *type)
2400 switch (TYPE_CODE (type))
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2462 src_idx = src_len - 1;
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2474 unpacked_idx = unpacked_len - 1;
2478 /* Non-scalar values must be aligned at a byte boundary... */
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 while (src_bytes_left > 0)
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2523 src_bytes_left -= 1;
2526 while (unpacked_bytes_left > 0)
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2554 const gdb_byte *src; /* First byte containing data to unpack */
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2560 type = ada_check_typedef (type);
2563 src = valaddr + offset;
2565 src = value_contents (obj) + offset;
2567 if (is_dynamic_type (type))
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2620 long new_offset = offset;
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2630 set_value_offset (v, new_offset);
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2646 if (staging.size () == TYPE_LENGTH (type))
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2677 accum = (unsigned char) *source;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2697 accum_bits -= chunk_size;
2704 accum = (unsigned char) *source >> src_offset;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2749 if (VALUE_LVAL (toval) == lval_memory
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2759 CORE_ADDR to_addr = value_address (toval);
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2784 return value_assign (toval, fromval);
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2800 value_assign_to_component (struct value *container, struct value *component,
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2809 val = value_cast (value_type (component), val);
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2814 bits = value_bitsize (component);
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2820 if (is_scalar_type (check_typedef (value_type (component))))
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2835 /* Determine if TYPE is an access to an unconstrained array. */
2838 ada_is_access_to_unconstrained_array (struct type *type)
2840 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2841 && is_thick_pntr (ada_typedef_target_type (type)));
2844 /* The value of the element of array ARR at the ARITY indices given in IND.
2845 ARR may be either a simple array, GNAT array descriptor, or pointer
2849 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2853 struct type *elt_type;
2855 elt = ada_coerce_to_simple_array (arr);
2857 elt_type = ada_check_typedef (value_type (elt));
2858 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2860 return value_subscript_packed (elt, arity, ind);
2862 for (k = 0; k < arity; k += 1)
2864 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2867 error (_("too many subscripts (%d expected)"), k);
2869 elt = value_subscript (elt, pos_atr (ind[k]));
2871 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2872 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2874 /* The element is a typedef to an unconstrained array,
2875 except that the value_subscript call stripped the
2876 typedef layer. The typedef layer is GNAT's way to
2877 specify that the element is, at the source level, an
2878 access to the unconstrained array, rather than the
2879 unconstrained array. So, we need to restore that
2880 typedef layer, which we can do by forcing the element's
2881 type back to its original type. Otherwise, the returned
2882 value is going to be printed as the array, rather
2883 than as an access. Another symptom of the same issue
2884 would be that an expression trying to dereference the
2885 element would also be improperly rejected. */
2886 deprecated_set_value_type (elt, saved_elt_type);
2889 elt_type = ada_check_typedef (value_type (elt));
2895 /* Assuming ARR is a pointer to a GDB array, the value of the element
2896 of *ARR at the ARITY indices given in IND.
2897 Does not read the entire array into memory.
2899 Note: Unlike what one would expect, this function is used instead of
2900 ada_value_subscript for basically all non-packed array types. The reason
2901 for this is that a side effect of doing our own pointer arithmetics instead
2902 of relying on value_subscript is that there is no implicit typedef peeling.
2903 This is important for arrays of array accesses, where it allows us to
2904 preserve the fact that the array's element is an array access, where the
2905 access part os encoded in a typedef layer. */
2907 static struct value *
2908 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2911 struct value *array_ind = ada_value_ind (arr);
2913 = check_typedef (value_enclosing_type (array_ind));
2915 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2916 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2917 return value_subscript_packed (array_ind, arity, ind);
2919 for (k = 0; k < arity; k += 1)
2922 struct value *lwb_value;
2924 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2925 error (_("too many subscripts (%d expected)"), k);
2926 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2928 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2929 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2930 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2931 type = TYPE_TARGET_TYPE (type);
2934 return value_ind (arr);
2937 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2938 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2939 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2940 this array is LOW, as per Ada rules. */
2941 static struct value *
2942 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2945 struct type *type0 = ada_check_typedef (type);
2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2947 struct type *index_type
2948 = create_static_range_type (NULL, base_index_type, low, high);
2949 struct type *slice_type = create_array_type_with_stride
2950 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2951 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2952 TYPE_FIELD_BITSIZE (type0, 0));
2953 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2954 LONGEST base_low_pos, low_pos;
2957 if (!discrete_position (base_index_type, low, &low_pos)
2958 || !discrete_position (base_index_type, base_low, &base_low_pos))
2960 warning (_("unable to get positions in slice, use bounds instead"));
2962 base_low_pos = base_low;
2965 base = value_as_address (array_ptr)
2966 + ((low_pos - base_low_pos)
2967 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2968 return value_at_lazy (slice_type, base);
2972 static struct value *
2973 ada_value_slice (struct value *array, int low, int high)
2975 struct type *type = ada_check_typedef (value_type (array));
2976 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2977 struct type *index_type
2978 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2979 struct type *slice_type = create_array_type_with_stride
2980 (NULL, TYPE_TARGET_TYPE (type), index_type,
2981 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2982 TYPE_FIELD_BITSIZE (type, 0));
2983 LONGEST low_pos, high_pos;
2985 if (!discrete_position (base_index_type, low, &low_pos)
2986 || !discrete_position (base_index_type, high, &high_pos))
2988 warning (_("unable to get positions in slice, use bounds instead"));
2993 return value_cast (slice_type,
2994 value_slice (array, low, high_pos - low_pos + 1));
2997 /* If type is a record type in the form of a standard GNAT array
2998 descriptor, returns the number of dimensions for type. If arr is a
2999 simple array, returns the number of "array of"s that prefix its
3000 type designation. Otherwise, returns 0. */
3003 ada_array_arity (struct type *type)
3010 type = desc_base_type (type);
3013 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3014 return desc_arity (desc_bounds_type (type));
3016 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3025 /* If TYPE is a record type in the form of a standard GNAT array
3026 descriptor or a simple array type, returns the element type for
3027 TYPE after indexing by NINDICES indices, or by all indices if
3028 NINDICES is -1. Otherwise, returns NULL. */
3031 ada_array_element_type (struct type *type, int nindices)
3033 type = desc_base_type (type);
3035 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3038 struct type *p_array_type;
3040 p_array_type = desc_data_target_type (type);
3042 k = ada_array_arity (type);
3046 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3047 if (nindices >= 0 && k > nindices)
3049 while (k > 0 && p_array_type != NULL)
3051 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3054 return p_array_type;
3056 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3058 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3060 type = TYPE_TARGET_TYPE (type);
3069 /* The type of nth index in arrays of given type (n numbering from 1).
3070 Does not examine memory. Throws an error if N is invalid or TYPE
3071 is not an array type. NAME is the name of the Ada attribute being
3072 evaluated ('range, 'first, 'last, or 'length); it is used in building
3073 the error message. */
3075 static struct type *
3076 ada_index_type (struct type *type, int n, const char *name)
3078 struct type *result_type;
3080 type = desc_base_type (type);
3082 if (n < 0 || n > ada_array_arity (type))
3083 error (_("invalid dimension number to '%s"), name);
3085 if (ada_is_simple_array_type (type))
3089 for (i = 1; i < n; i += 1)
3090 type = TYPE_TARGET_TYPE (type);
3091 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3092 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3093 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3094 perhaps stabsread.c would make more sense. */
3095 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3100 result_type = desc_index_type (desc_bounds_type (type), n);
3101 if (result_type == NULL)
3102 error (_("attempt to take bound of something that is not an array"));
3108 /* Given that arr is an array type, returns the lower bound of the
3109 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3111 array-descriptor type. It works for other arrays with bounds supplied
3112 by run-time quantities other than discriminants. */
3115 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3117 struct type *type, *index_type_desc, *index_type;
3120 gdb_assert (which == 0 || which == 1);
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 arr_type = decode_constrained_packed_array_type (arr_type);
3125 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3126 return (LONGEST) - which;
3128 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3129 type = TYPE_TARGET_TYPE (arr_type);
3133 if (TYPE_FIXED_INSTANCE (type))
3135 /* The array has already been fixed, so we do not need to
3136 check the parallel ___XA type again. That encoding has
3137 already been applied, so ignore it now. */
3138 index_type_desc = NULL;
3142 index_type_desc = ada_find_parallel_type (type, "___XA");
3143 ada_fixup_array_indexes_type (index_type_desc);
3146 if (index_type_desc != NULL)
3147 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3151 struct type *elt_type = check_typedef (type);
3153 for (i = 1; i < n; i++)
3154 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3156 index_type = TYPE_INDEX_TYPE (elt_type);
3160 (LONGEST) (which == 0
3161 ? ada_discrete_type_low_bound (index_type)
3162 : ada_discrete_type_high_bound (index_type));
3165 /* Given that arr is an array value, returns the lower bound of the
3166 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3167 WHICH is 1. This routine will also work for arrays with bounds
3168 supplied by run-time quantities other than discriminants. */
3171 ada_array_bound (struct value *arr, int n, int which)
3173 struct type *arr_type;
3175 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3176 arr = value_ind (arr);
3177 arr_type = value_enclosing_type (arr);
3179 if (ada_is_constrained_packed_array_type (arr_type))
3180 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3181 else if (ada_is_simple_array_type (arr_type))
3182 return ada_array_bound_from_type (arr_type, n, which);
3184 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3187 /* Given that arr is an array value, returns the length of the
3188 nth index. This routine will also work for arrays with bounds
3189 supplied by run-time quantities other than discriminants.
3190 Does not work for arrays indexed by enumeration types with representation
3191 clauses at the moment. */
3194 ada_array_length (struct value *arr, int n)
3196 struct type *arr_type, *index_type;
3199 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3200 arr = value_ind (arr);
3201 arr_type = value_enclosing_type (arr);
3203 if (ada_is_constrained_packed_array_type (arr_type))
3204 return ada_array_length (decode_constrained_packed_array (arr), n);
3206 if (ada_is_simple_array_type (arr_type))
3208 low = ada_array_bound_from_type (arr_type, n, 0);
3209 high = ada_array_bound_from_type (arr_type, n, 1);
3213 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3214 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3217 arr_type = check_typedef (arr_type);
3218 index_type = ada_index_type (arr_type, n, "length");
3219 if (index_type != NULL)
3221 struct type *base_type;
3222 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3223 base_type = TYPE_TARGET_TYPE (index_type);
3225 base_type = index_type;
3227 low = pos_atr (value_from_longest (base_type, low));
3228 high = pos_atr (value_from_longest (base_type, high));
3230 return high - low + 1;
3233 /* An empty array whose type is that of ARR_TYPE (an array type),
3234 with bounds LOW to LOW-1. */
3236 static struct value *
3237 empty_array (struct type *arr_type, int low)
3239 struct type *arr_type0 = ada_check_typedef (arr_type);
3240 struct type *index_type
3241 = create_static_range_type
3242 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3243 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3245 return allocate_value (create_array_type (NULL, elt_type, index_type));
3249 /* Name resolution */
3251 /* The "decoded" name for the user-definable Ada operator corresponding
3255 ada_decoded_op_name (enum exp_opcode op)
3259 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3261 if (ada_opname_table[i].op == op)
3262 return ada_opname_table[i].decoded;
3264 error (_("Could not find operator name for opcode"));
3268 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3269 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3270 undefined namespace) and converts operators that are
3271 user-defined into appropriate function calls. If CONTEXT_TYPE is
3272 non-null, it provides a preferred result type [at the moment, only
3273 type void has any effect---causing procedures to be preferred over
3274 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3275 return type is preferred. May change (expand) *EXP. */
3278 resolve (expression_up *expp, int void_context_p)
3280 struct type *context_type = NULL;
3284 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3286 resolve_subexp (expp, &pc, 1, context_type);
3289 /* Resolve the operator of the subexpression beginning at
3290 position *POS of *EXPP. "Resolving" consists of replacing
3291 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3292 with their resolutions, replacing built-in operators with
3293 function calls to user-defined operators, where appropriate, and,
3294 when DEPROCEDURE_P is non-zero, converting function-valued variables
3295 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3296 are as in ada_resolve, above. */
3298 static struct value *
3299 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3300 struct type *context_type)
3304 struct expression *exp; /* Convenience: == *expp. */
3305 enum exp_opcode op = (*expp)->elts[pc].opcode;
3306 struct value **argvec; /* Vector of operand types (alloca'ed). */
3307 int nargs; /* Number of operands. */
3314 /* Pass one: resolve operands, saving their types and updating *pos,
3319 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3320 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3325 resolve_subexp (expp, pos, 0, NULL);
3327 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3332 resolve_subexp (expp, pos, 0, NULL);
3337 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3340 case OP_ATR_MODULUS:
3350 case TERNOP_IN_RANGE:
3351 case BINOP_IN_BOUNDS:
3357 case OP_DISCRETE_RANGE:
3359 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3368 arg1 = resolve_subexp (expp, pos, 0, NULL);
3370 resolve_subexp (expp, pos, 1, NULL);
3372 resolve_subexp (expp, pos, 1, value_type (arg1));
3389 case BINOP_LOGICAL_AND:
3390 case BINOP_LOGICAL_OR:
3391 case BINOP_BITWISE_AND:
3392 case BINOP_BITWISE_IOR:
3393 case BINOP_BITWISE_XOR:
3396 case BINOP_NOTEQUAL:
3403 case BINOP_SUBSCRIPT:
3411 case UNOP_LOGICAL_NOT:
3421 case OP_VAR_MSYM_VALUE:
3428 case OP_INTERNALVAR:
3438 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3441 case STRUCTOP_STRUCT:
3442 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3455 error (_("Unexpected operator during name resolution"));
3458 argvec = XALLOCAVEC (struct value *, nargs + 1);
3459 for (i = 0; i < nargs; i += 1)
3460 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3464 /* Pass two: perform any resolution on principal operator. */
3471 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3473 std::vector<struct block_symbol> candidates;
3477 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3478 (exp->elts[pc + 2].symbol),
3479 exp->elts[pc + 1].block, VAR_DOMAIN,
3482 if (n_candidates > 1)
3484 /* Types tend to get re-introduced locally, so if there
3485 are any local symbols that are not types, first filter
3488 for (j = 0; j < n_candidates; j += 1)
3489 switch (SYMBOL_CLASS (candidates[j].symbol))
3494 case LOC_REGPARM_ADDR:
3502 if (j < n_candidates)
3505 while (j < n_candidates)
3507 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3509 candidates[j] = candidates[n_candidates - 1];
3518 if (n_candidates == 0)
3519 error (_("No definition found for %s"),
3520 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3521 else if (n_candidates == 1)
3523 else if (deprocedure_p
3524 && !is_nonfunction (candidates.data (), n_candidates))
3526 i = ada_resolve_function
3527 (candidates.data (), n_candidates, NULL, 0,
3528 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3531 error (_("Could not find a match for %s"),
3532 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3536 printf_filtered (_("Multiple matches for %s\n"),
3537 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3538 user_select_syms (candidates.data (), n_candidates, 1);
3542 exp->elts[pc + 1].block = candidates[i].block;
3543 exp->elts[pc + 2].symbol = candidates[i].symbol;
3544 innermost_block.update (candidates[i]);
3548 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3551 replace_operator_with_call (expp, pc, 0, 4,
3552 exp->elts[pc + 2].symbol,
3553 exp->elts[pc + 1].block);
3560 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3561 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3563 std::vector<struct block_symbol> candidates;
3567 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3568 (exp->elts[pc + 5].symbol),
3569 exp->elts[pc + 4].block, VAR_DOMAIN,
3572 if (n_candidates == 1)
3576 i = ada_resolve_function
3577 (candidates.data (), n_candidates,
3579 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3582 error (_("Could not find a match for %s"),
3583 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3586 exp->elts[pc + 4].block = candidates[i].block;
3587 exp->elts[pc + 5].symbol = candidates[i].symbol;
3588 innermost_block.update (candidates[i]);
3599 case BINOP_BITWISE_AND:
3600 case BINOP_BITWISE_IOR:
3601 case BINOP_BITWISE_XOR:
3603 case BINOP_NOTEQUAL:
3611 case UNOP_LOGICAL_NOT:
3613 if (possible_user_operator_p (op, argvec))
3615 std::vector<struct block_symbol> candidates;
3619 ada_lookup_symbol_list (ada_decoded_op_name (op),
3620 (struct block *) NULL, VAR_DOMAIN,
3623 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3624 nargs, ada_decoded_op_name (op), NULL);
3628 replace_operator_with_call (expp, pc, nargs, 1,
3629 candidates[i].symbol,
3630 candidates[i].block);
3641 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3642 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3643 exp->elts[pc + 1].objfile,
3644 exp->elts[pc + 2].msymbol);
3646 return evaluate_subexp_type (exp, pos);
3649 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3650 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3652 /* The term "match" here is rather loose. The match is heuristic and
3656 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3658 ftype = ada_check_typedef (ftype);
3659 atype = ada_check_typedef (atype);
3661 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3662 ftype = TYPE_TARGET_TYPE (ftype);
3663 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3664 atype = TYPE_TARGET_TYPE (atype);
3666 switch (TYPE_CODE (ftype))
3669 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3671 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3672 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3673 TYPE_TARGET_TYPE (atype), 0);
3676 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3678 case TYPE_CODE_ENUM:
3679 case TYPE_CODE_RANGE:
3680 switch (TYPE_CODE (atype))
3683 case TYPE_CODE_ENUM:
3684 case TYPE_CODE_RANGE:
3690 case TYPE_CODE_ARRAY:
3691 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3692 || ada_is_array_descriptor_type (atype));
3694 case TYPE_CODE_STRUCT:
3695 if (ada_is_array_descriptor_type (ftype))
3696 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3697 || ada_is_array_descriptor_type (atype));
3699 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3700 && !ada_is_array_descriptor_type (atype));
3702 case TYPE_CODE_UNION:
3704 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3708 /* Return non-zero if the formals of FUNC "sufficiently match" the
3709 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3710 may also be an enumeral, in which case it is treated as a 0-
3711 argument function. */
3714 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3717 struct type *func_type = SYMBOL_TYPE (func);
3719 if (SYMBOL_CLASS (func) == LOC_CONST
3720 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3721 return (n_actuals == 0);
3722 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3725 if (TYPE_NFIELDS (func_type) != n_actuals)
3728 for (i = 0; i < n_actuals; i += 1)
3730 if (actuals[i] == NULL)
3734 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3736 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3738 if (!ada_type_match (ftype, atype, 1))
3745 /* False iff function type FUNC_TYPE definitely does not produce a value
3746 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3747 FUNC_TYPE is not a valid function type with a non-null return type
3748 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3751 return_match (struct type *func_type, struct type *context_type)
3753 struct type *return_type;
3755 if (func_type == NULL)
3758 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3759 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3761 return_type = get_base_type (func_type);
3762 if (return_type == NULL)
3765 context_type = get_base_type (context_type);
3767 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3768 return context_type == NULL || return_type == context_type;
3769 else if (context_type == NULL)
3770 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3772 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3776 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3777 function (if any) that matches the types of the NARGS arguments in
3778 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3779 that returns that type, then eliminate matches that don't. If
3780 CONTEXT_TYPE is void and there is at least one match that does not
3781 return void, eliminate all matches that do.
3783 Asks the user if there is more than one match remaining. Returns -1
3784 if there is no such symbol or none is selected. NAME is used
3785 solely for messages. May re-arrange and modify SYMS in
3786 the process; the index returned is for the modified vector. */
3789 ada_resolve_function (struct block_symbol syms[],
3790 int nsyms, struct value **args, int nargs,
3791 const char *name, struct type *context_type)
3795 int m; /* Number of hits */
3798 /* In the first pass of the loop, we only accept functions matching
3799 context_type. If none are found, we add a second pass of the loop
3800 where every function is accepted. */
3801 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3803 for (k = 0; k < nsyms; k += 1)
3805 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3807 if (ada_args_match (syms[k].symbol, args, nargs)
3808 && (fallback || return_match (type, context_type)))
3816 /* If we got multiple matches, ask the user which one to use. Don't do this
3817 interactive thing during completion, though, as the purpose of the
3818 completion is providing a list of all possible matches. Prompting the
3819 user to filter it down would be completely unexpected in this case. */
3822 else if (m > 1 && !parse_completion)
3824 printf_filtered (_("Multiple matches for %s\n"), name);
3825 user_select_syms (syms, m, 1);
3831 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3832 in a listing of choices during disambiguation (see sort_choices, below).
3833 The idea is that overloadings of a subprogram name from the
3834 same package should sort in their source order. We settle for ordering
3835 such symbols by their trailing number (__N or $N). */
3838 encoded_ordered_before (const char *N0, const char *N1)
3842 else if (N0 == NULL)
3848 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3850 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3852 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3853 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3858 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3861 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3863 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3864 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3866 return (strcmp (N0, N1) < 0);
3870 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3874 sort_choices (struct block_symbol syms[], int nsyms)
3878 for (i = 1; i < nsyms; i += 1)
3880 struct block_symbol sym = syms[i];
3883 for (j = i - 1; j >= 0; j -= 1)
3885 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3886 SYMBOL_LINKAGE_NAME (sym.symbol)))
3888 syms[j + 1] = syms[j];
3894 /* Whether GDB should display formals and return types for functions in the
3895 overloads selection menu. */
3896 static int print_signatures = 1;
3898 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3899 all but functions, the signature is just the name of the symbol. For
3900 functions, this is the name of the function, the list of types for formals
3901 and the return type (if any). */
3904 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3905 const struct type_print_options *flags)
3907 struct type *type = SYMBOL_TYPE (sym);
3909 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3910 if (!print_signatures
3912 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3915 if (TYPE_NFIELDS (type) > 0)
3919 fprintf_filtered (stream, " (");
3920 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3923 fprintf_filtered (stream, "; ");
3924 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3927 fprintf_filtered (stream, ")");
3929 if (TYPE_TARGET_TYPE (type) != NULL
3930 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3932 fprintf_filtered (stream, " return ");
3933 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3937 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3938 by asking the user (if necessary), returning the number selected,
3939 and setting the first elements of SYMS items. Error if no symbols
3942 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3943 to be re-integrated one of these days. */
3946 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3949 int *chosen = XALLOCAVEC (int , nsyms);
3951 int first_choice = (max_results == 1) ? 1 : 2;
3952 const char *select_mode = multiple_symbols_select_mode ();
3954 if (max_results < 1)
3955 error (_("Request to select 0 symbols!"));
3959 if (select_mode == multiple_symbols_cancel)
3961 canceled because the command is ambiguous\n\
3962 See set/show multiple-symbol."));
3964 /* If select_mode is "all", then return all possible symbols.
3965 Only do that if more than one symbol can be selected, of course.
3966 Otherwise, display the menu as usual. */
3967 if (select_mode == multiple_symbols_all && max_results > 1)
3970 printf_unfiltered (_("[0] cancel\n"));
3971 if (max_results > 1)
3972 printf_unfiltered (_("[1] all\n"));
3974 sort_choices (syms, nsyms);
3976 for (i = 0; i < nsyms; i += 1)
3978 if (syms[i].symbol == NULL)
3981 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3983 struct symtab_and_line sal =
3984 find_function_start_sal (syms[i].symbol, 1);
3986 printf_unfiltered ("[%d] ", i + first_choice);
3987 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3988 &type_print_raw_options);
3989 if (sal.symtab == NULL)
3990 printf_unfiltered (_(" at <no source file available>:%d\n"),
3993 printf_unfiltered (_(" at %s:%d\n"),
3994 symtab_to_filename_for_display (sal.symtab),
4001 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
4002 && SYMBOL_TYPE (syms[i].symbol) != NULL
4003 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
4004 struct symtab *symtab = NULL;
4006 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
4007 symtab = symbol_symtab (syms[i].symbol);
4009 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
4011 printf_unfiltered ("[%d] ", i + first_choice);
4012 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4013 &type_print_raw_options);
4014 printf_unfiltered (_(" at %s:%d\n"),
4015 symtab_to_filename_for_display (symtab),
4016 SYMBOL_LINE (syms[i].symbol));
4018 else if (is_enumeral
4019 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4021 printf_unfiltered (("[%d] "), i + first_choice);
4022 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
4023 gdb_stdout, -1, 0, &type_print_raw_options);
4024 printf_unfiltered (_("'(%s) (enumeral)\n"),
4025 SYMBOL_PRINT_NAME (syms[i].symbol));
4029 printf_unfiltered ("[%d] ", i + first_choice);
4030 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4031 &type_print_raw_options);
4034 printf_unfiltered (is_enumeral
4035 ? _(" in %s (enumeral)\n")
4037 symtab_to_filename_for_display (symtab));
4039 printf_unfiltered (is_enumeral
4040 ? _(" (enumeral)\n")
4046 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4049 for (i = 0; i < n_chosen; i += 1)
4050 syms[i] = syms[chosen[i]];
4055 /* Read and validate a set of numeric choices from the user in the
4056 range 0 .. N_CHOICES-1. Place the results in increasing
4057 order in CHOICES[0 .. N-1], and return N.
4059 The user types choices as a sequence of numbers on one line
4060 separated by blanks, encoding them as follows:
4062 + A choice of 0 means to cancel the selection, throwing an error.
4063 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4064 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4066 The user is not allowed to choose more than MAX_RESULTS values.
4068 ANNOTATION_SUFFIX, if present, is used to annotate the input
4069 prompts (for use with the -f switch). */
4072 get_selections (int *choices, int n_choices, int max_results,
4073 int is_all_choice, const char *annotation_suffix)
4078 int first_choice = is_all_choice ? 2 : 1;
4080 prompt = getenv ("PS2");
4084 args = command_line_input (prompt, annotation_suffix);
4087 error_no_arg (_("one or more choice numbers"));
4091 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4092 order, as given in args. Choices are validated. */
4098 args = skip_spaces (args);
4099 if (*args == '\0' && n_chosen == 0)
4100 error_no_arg (_("one or more choice numbers"));
4101 else if (*args == '\0')
4104 choice = strtol (args, &args2, 10);
4105 if (args == args2 || choice < 0
4106 || choice > n_choices + first_choice - 1)
4107 error (_("Argument must be choice number"));
4111 error (_("cancelled"));
4113 if (choice < first_choice)
4115 n_chosen = n_choices;
4116 for (j = 0; j < n_choices; j += 1)
4120 choice -= first_choice;
4122 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4126 if (j < 0 || choice != choices[j])
4130 for (k = n_chosen - 1; k > j; k -= 1)
4131 choices[k + 1] = choices[k];
4132 choices[j + 1] = choice;
4137 if (n_chosen > max_results)
4138 error (_("Select no more than %d of the above"), max_results);
4143 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4144 on the function identified by SYM and BLOCK, and taking NARGS
4145 arguments. Update *EXPP as needed to hold more space. */
4148 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4149 int oplen, struct symbol *sym,
4150 const struct block *block)
4152 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4153 symbol, -oplen for operator being replaced). */
4154 struct expression *newexp = (struct expression *)
4155 xzalloc (sizeof (struct expression)
4156 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4157 struct expression *exp = expp->get ();
4159 newexp->nelts = exp->nelts + 7 - oplen;
4160 newexp->language_defn = exp->language_defn;
4161 newexp->gdbarch = exp->gdbarch;
4162 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4163 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4164 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4166 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4167 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4169 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4170 newexp->elts[pc + 4].block = block;
4171 newexp->elts[pc + 5].symbol = sym;
4173 expp->reset (newexp);
4176 /* Type-class predicates */
4178 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4182 numeric_type_p (struct type *type)
4188 switch (TYPE_CODE (type))
4193 case TYPE_CODE_RANGE:
4194 return (type == TYPE_TARGET_TYPE (type)
4195 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4202 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4205 integer_type_p (struct type *type)
4211 switch (TYPE_CODE (type))
4215 case TYPE_CODE_RANGE:
4216 return (type == TYPE_TARGET_TYPE (type)
4217 || integer_type_p (TYPE_TARGET_TYPE (type)));
4224 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4227 scalar_type_p (struct type *type)
4233 switch (TYPE_CODE (type))
4236 case TYPE_CODE_RANGE:
4237 case TYPE_CODE_ENUM:
4246 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4249 discrete_type_p (struct type *type)
4255 switch (TYPE_CODE (type))
4258 case TYPE_CODE_RANGE:
4259 case TYPE_CODE_ENUM:
4260 case TYPE_CODE_BOOL:
4268 /* Returns non-zero if OP with operands in the vector ARGS could be
4269 a user-defined function. Errs on the side of pre-defined operators
4270 (i.e., result 0). */
4273 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4275 struct type *type0 =
4276 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4277 struct type *type1 =
4278 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4292 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4296 case BINOP_BITWISE_AND:
4297 case BINOP_BITWISE_IOR:
4298 case BINOP_BITWISE_XOR:
4299 return (!(integer_type_p (type0) && integer_type_p (type1)));
4302 case BINOP_NOTEQUAL:
4307 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4310 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4313 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4317 case UNOP_LOGICAL_NOT:
4319 return (!numeric_type_p (type0));
4328 1. In the following, we assume that a renaming type's name may
4329 have an ___XD suffix. It would be nice if this went away at some
4331 2. We handle both the (old) purely type-based representation of
4332 renamings and the (new) variable-based encoding. At some point,
4333 it is devoutly to be hoped that the former goes away
4334 (FIXME: hilfinger-2007-07-09).
4335 3. Subprogram renamings are not implemented, although the XRS
4336 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4338 /* If SYM encodes a renaming,
4340 <renaming> renames <renamed entity>,
4342 sets *LEN to the length of the renamed entity's name,
4343 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4344 the string describing the subcomponent selected from the renamed
4345 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4346 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4347 are undefined). Otherwise, returns a value indicating the category
4348 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4349 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4350 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4351 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4352 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4353 may be NULL, in which case they are not assigned.
4355 [Currently, however, GCC does not generate subprogram renamings.] */
4357 enum ada_renaming_category
4358 ada_parse_renaming (struct symbol *sym,
4359 const char **renamed_entity, int *len,
4360 const char **renaming_expr)
4362 enum ada_renaming_category kind;
4367 return ADA_NOT_RENAMING;
4368 switch (SYMBOL_CLASS (sym))
4371 return ADA_NOT_RENAMING;
4373 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4374 renamed_entity, len, renaming_expr);
4378 case LOC_OPTIMIZED_OUT:
4379 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4381 return ADA_NOT_RENAMING;
4385 kind = ADA_OBJECT_RENAMING;
4389 kind = ADA_EXCEPTION_RENAMING;
4393 kind = ADA_PACKAGE_RENAMING;
4397 kind = ADA_SUBPROGRAM_RENAMING;
4401 return ADA_NOT_RENAMING;
4405 if (renamed_entity != NULL)
4406 *renamed_entity = info;
4407 suffix = strstr (info, "___XE");
4408 if (suffix == NULL || suffix == info)
4409 return ADA_NOT_RENAMING;
4411 *len = strlen (info) - strlen (suffix);
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix;
4418 /* Assuming TYPE encodes a renaming according to the old encoding in
4419 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4420 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4421 ADA_NOT_RENAMING otherwise. */
4422 static enum ada_renaming_category
4423 parse_old_style_renaming (struct type *type,
4424 const char **renamed_entity, int *len,
4425 const char **renaming_expr)
4427 enum ada_renaming_category kind;
4432 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4433 || TYPE_NFIELDS (type) != 1)
4434 return ADA_NOT_RENAMING;
4436 name = TYPE_NAME (type);
4438 return ADA_NOT_RENAMING;
4440 name = strstr (name, "___XR");
4442 return ADA_NOT_RENAMING;
4447 kind = ADA_OBJECT_RENAMING;
4450 kind = ADA_EXCEPTION_RENAMING;
4453 kind = ADA_PACKAGE_RENAMING;
4456 kind = ADA_SUBPROGRAM_RENAMING;
4459 return ADA_NOT_RENAMING;
4462 info = TYPE_FIELD_NAME (type, 0);
4464 return ADA_NOT_RENAMING;
4465 if (renamed_entity != NULL)
4466 *renamed_entity = info;
4467 suffix = strstr (info, "___XE");
4468 if (renaming_expr != NULL)
4469 *renaming_expr = suffix + 5;
4470 if (suffix == NULL || suffix == info)
4471 return ADA_NOT_RENAMING;
4473 *len = suffix - info;
4477 /* Compute the value of the given RENAMING_SYM, which is expected to
4478 be a symbol encoding a renaming expression. BLOCK is the block
4479 used to evaluate the renaming. */
4481 static struct value *
4482 ada_read_renaming_var_value (struct symbol *renaming_sym,
4483 const struct block *block)
4485 const char *sym_name;
4487 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4488 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4489 return evaluate_expression (expr.get ());
4493 /* Evaluation: Function Calls */
4495 /* Return an lvalue containing the value VAL. This is the identity on
4496 lvalues, and otherwise has the side-effect of allocating memory
4497 in the inferior where a copy of the value contents is copied. */
4499 static struct value *
4500 ensure_lval (struct value *val)
4502 if (VALUE_LVAL (val) == not_lval
4503 || VALUE_LVAL (val) == lval_internalvar)
4505 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4506 const CORE_ADDR addr =
4507 value_as_long (value_allocate_space_in_inferior (len));
4509 VALUE_LVAL (val) = lval_memory;
4510 set_value_address (val, addr);
4511 write_memory (addr, value_contents (val), len);
4517 /* Return the value ACTUAL, converted to be an appropriate value for a
4518 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4519 allocating any necessary descriptors (fat pointers), or copies of
4520 values not residing in memory, updating it as needed. */
4523 ada_convert_actual (struct value *actual, struct type *formal_type0)
4525 struct type *actual_type = ada_check_typedef (value_type (actual));
4526 struct type *formal_type = ada_check_typedef (formal_type0);
4527 struct type *formal_target =
4528 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4529 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4530 struct type *actual_target =
4531 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4532 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4534 if (ada_is_array_descriptor_type (formal_target)
4535 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4536 return make_array_descriptor (formal_type, actual);
4537 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4538 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4540 struct value *result;
4542 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4543 && ada_is_array_descriptor_type (actual_target))
4544 result = desc_data (actual);
4545 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4547 if (VALUE_LVAL (actual) != lval_memory)
4551 actual_type = ada_check_typedef (value_type (actual));
4552 val = allocate_value (actual_type);
4553 memcpy ((char *) value_contents_raw (val),
4554 (char *) value_contents (actual),
4555 TYPE_LENGTH (actual_type));
4556 actual = ensure_lval (val);
4558 result = value_addr (actual);
4562 return value_cast_pointers (formal_type, result, 0);
4564 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4565 return ada_value_ind (actual);
4566 else if (ada_is_aligner_type (formal_type))
4568 /* We need to turn this parameter into an aligner type
4570 struct value *aligner = allocate_value (formal_type);
4571 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4573 value_assign_to_component (aligner, component, actual);
4580 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4581 type TYPE. This is usually an inefficient no-op except on some targets
4582 (such as AVR) where the representation of a pointer and an address
4586 value_pointer (struct value *value, struct type *type)
4588 struct gdbarch *gdbarch = get_type_arch (type);
4589 unsigned len = TYPE_LENGTH (type);
4590 gdb_byte *buf = (gdb_byte *) alloca (len);
4593 addr = value_address (value);
4594 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4595 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4600 /* Push a descriptor of type TYPE for array value ARR on the stack at
4601 *SP, updating *SP to reflect the new descriptor. Return either
4602 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4603 to-descriptor type rather than a descriptor type), a struct value *
4604 representing a pointer to this descriptor. */
4606 static struct value *
4607 make_array_descriptor (struct type *type, struct value *arr)
4609 struct type *bounds_type = desc_bounds_type (type);
4610 struct type *desc_type = desc_base_type (type);
4611 struct value *descriptor = allocate_value (desc_type);
4612 struct value *bounds = allocate_value (bounds_type);
4615 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4618 modify_field (value_type (bounds), value_contents_writeable (bounds),
4619 ada_array_bound (arr, i, 0),
4620 desc_bound_bitpos (bounds_type, i, 0),
4621 desc_bound_bitsize (bounds_type, i, 0));
4622 modify_field (value_type (bounds), value_contents_writeable (bounds),
4623 ada_array_bound (arr, i, 1),
4624 desc_bound_bitpos (bounds_type, i, 1),
4625 desc_bound_bitsize (bounds_type, i, 1));
4628 bounds = ensure_lval (bounds);
4630 modify_field (value_type (descriptor),
4631 value_contents_writeable (descriptor),
4632 value_pointer (ensure_lval (arr),
4633 TYPE_FIELD_TYPE (desc_type, 0)),
4634 fat_pntr_data_bitpos (desc_type),
4635 fat_pntr_data_bitsize (desc_type));
4637 modify_field (value_type (descriptor),
4638 value_contents_writeable (descriptor),
4639 value_pointer (bounds,
4640 TYPE_FIELD_TYPE (desc_type, 1)),
4641 fat_pntr_bounds_bitpos (desc_type),
4642 fat_pntr_bounds_bitsize (desc_type));
4644 descriptor = ensure_lval (descriptor);
4646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4647 return value_addr (descriptor);
4652 /* Symbol Cache Module */
4654 /* Performance measurements made as of 2010-01-15 indicate that
4655 this cache does bring some noticeable improvements. Depending
4656 on the type of entity being printed, the cache can make it as much
4657 as an order of magnitude faster than without it.
4659 The descriptive type DWARF extension has significantly reduced
4660 the need for this cache, at least when DWARF is being used. However,
4661 even in this case, some expensive name-based symbol searches are still
4662 sometimes necessary - to find an XVZ variable, mostly. */
4664 /* Initialize the contents of SYM_CACHE. */
4667 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4669 obstack_init (&sym_cache->cache_space);
4670 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4673 /* Free the memory used by SYM_CACHE. */
4676 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4678 obstack_free (&sym_cache->cache_space, NULL);
4682 /* Return the symbol cache associated to the given program space PSPACE.
4683 If not allocated for this PSPACE yet, allocate and initialize one. */
4685 static struct ada_symbol_cache *
4686 ada_get_symbol_cache (struct program_space *pspace)
4688 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4690 if (pspace_data->sym_cache == NULL)
4692 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4693 ada_init_symbol_cache (pspace_data->sym_cache);
4696 return pspace_data->sym_cache;
4699 /* Clear all entries from the symbol cache. */
4702 ada_clear_symbol_cache (void)
4704 struct ada_symbol_cache *sym_cache
4705 = ada_get_symbol_cache (current_program_space);
4707 obstack_free (&sym_cache->cache_space, NULL);
4708 ada_init_symbol_cache (sym_cache);
4711 /* Search our cache for an entry matching NAME and DOMAIN.
4712 Return it if found, or NULL otherwise. */
4714 static struct cache_entry **
4715 find_entry (const char *name, domain_enum domain)
4717 struct ada_symbol_cache *sym_cache
4718 = ada_get_symbol_cache (current_program_space);
4719 int h = msymbol_hash (name) % HASH_SIZE;
4720 struct cache_entry **e;
4722 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4724 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4730 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4731 Return 1 if found, 0 otherwise.
4733 If an entry was found and SYM is not NULL, set *SYM to the entry's
4734 SYM. Same principle for BLOCK if not NULL. */
4737 lookup_cached_symbol (const char *name, domain_enum domain,
4738 struct symbol **sym, const struct block **block)
4740 struct cache_entry **e = find_entry (name, domain);
4747 *block = (*e)->block;
4751 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4752 in domain DOMAIN, save this result in our symbol cache. */
4755 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4756 const struct block *block)
4758 struct ada_symbol_cache *sym_cache
4759 = ada_get_symbol_cache (current_program_space);
4762 struct cache_entry *e;
4764 /* Symbols for builtin types don't have a block.
4765 For now don't cache such symbols. */
4766 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4769 /* If the symbol is a local symbol, then do not cache it, as a search
4770 for that symbol depends on the context. To determine whether
4771 the symbol is local or not, we check the block where we found it
4772 against the global and static blocks of its associated symtab. */
4774 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4775 GLOBAL_BLOCK) != block
4776 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4777 STATIC_BLOCK) != block)
4780 h = msymbol_hash (name) % HASH_SIZE;
4781 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4782 e->next = sym_cache->root[h];
4783 sym_cache->root[h] = e;
4785 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4786 strcpy (copy, name);
4794 /* Return the symbol name match type that should be used used when
4795 searching for all symbols matching LOOKUP_NAME.
4797 LOOKUP_NAME is expected to be a symbol name after transformation
4800 static symbol_name_match_type
4801 name_match_type_from_name (const char *lookup_name)
4803 return (strstr (lookup_name, "__") == NULL
4804 ? symbol_name_match_type::WILD
4805 : symbol_name_match_type::FULL);
4808 /* Return the result of a standard (literal, C-like) lookup of NAME in
4809 given DOMAIN, visible from lexical block BLOCK. */
4811 static struct symbol *
4812 standard_lookup (const char *name, const struct block *block,
4815 /* Initialize it just to avoid a GCC false warning. */
4816 struct block_symbol sym = {NULL, NULL};
4818 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4820 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4821 cache_symbol (name, domain, sym.symbol, sym.block);
4826 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4827 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4828 since they contend in overloading in the same way. */
4830 is_nonfunction (struct block_symbol syms[], int n)
4834 for (i = 0; i < n; i += 1)
4835 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4836 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4837 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4843 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4844 struct types. Otherwise, they may not. */
4847 equiv_types (struct type *type0, struct type *type1)
4851 if (type0 == NULL || type1 == NULL
4852 || TYPE_CODE (type0) != TYPE_CODE (type1))
4854 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4855 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4856 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4857 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4863 /* True iff SYM0 represents the same entity as SYM1, or one that is
4864 no more defined than that of SYM1. */
4867 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4871 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4872 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4875 switch (SYMBOL_CLASS (sym0))
4881 struct type *type0 = SYMBOL_TYPE (sym0);
4882 struct type *type1 = SYMBOL_TYPE (sym1);
4883 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4884 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4885 int len0 = strlen (name0);
4888 TYPE_CODE (type0) == TYPE_CODE (type1)
4889 && (equiv_types (type0, type1)
4890 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4891 && startswith (name1 + len0, "___XV")));
4894 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4895 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4901 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4902 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4905 add_defn_to_vec (struct obstack *obstackp,
4907 const struct block *block)
4910 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4912 /* Do not try to complete stub types, as the debugger is probably
4913 already scanning all symbols matching a certain name at the
4914 time when this function is called. Trying to replace the stub
4915 type by its associated full type will cause us to restart a scan
4916 which may lead to an infinite recursion. Instead, the client
4917 collecting the matching symbols will end up collecting several
4918 matches, with at least one of them complete. It can then filter
4919 out the stub ones if needed. */
4921 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4923 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4925 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4927 prevDefns[i].symbol = sym;
4928 prevDefns[i].block = block;
4934 struct block_symbol info;
4938 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4942 /* Number of block_symbol structures currently collected in current vector in
4946 num_defns_collected (struct obstack *obstackp)
4948 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4951 /* Vector of block_symbol structures currently collected in current vector in
4952 OBSTACKP. If FINISH, close off the vector and return its final address. */
4954 static struct block_symbol *
4955 defns_collected (struct obstack *obstackp, int finish)
4958 return (struct block_symbol *) obstack_finish (obstackp);
4960 return (struct block_symbol *) obstack_base (obstackp);
4963 /* Return a bound minimal symbol matching NAME according to Ada
4964 decoding rules. Returns an invalid symbol if there is no such
4965 minimal symbol. Names prefixed with "standard__" are handled
4966 specially: "standard__" is first stripped off, and only static and
4967 global symbols are searched. */
4969 struct bound_minimal_symbol
4970 ada_lookup_simple_minsym (const char *name)
4972 struct bound_minimal_symbol result;
4973 struct objfile *objfile;
4974 struct minimal_symbol *msymbol;
4976 memset (&result, 0, sizeof (result));
4978 symbol_name_match_type match_type = name_match_type_from_name (name);
4979 lookup_name_info lookup_name (name, match_type);
4981 symbol_name_matcher_ftype *match_name
4982 = ada_get_symbol_name_matcher (lookup_name);
4984 ALL_MSYMBOLS (objfile, msymbol)
4986 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4987 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4989 result.minsym = msymbol;
4990 result.objfile = objfile;
4998 /* For all subprograms that statically enclose the subprogram of the
4999 selected frame, add symbols matching identifier NAME in DOMAIN
5000 and their blocks to the list of data in OBSTACKP, as for
5001 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
5002 with a wildcard prefix. */
5005 add_symbols_from_enclosing_procs (struct obstack *obstackp,
5006 const lookup_name_info &lookup_name,
5011 /* True if TYPE is definitely an artificial type supplied to a symbol
5012 for which no debugging information was given in the symbol file. */
5015 is_nondebugging_type (struct type *type)
5017 const char *name = ada_type_name (type);
5019 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5022 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5023 that are deemed "identical" for practical purposes.
5025 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5026 types and that their number of enumerals is identical (in other
5027 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5030 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5034 /* The heuristic we use here is fairly conservative. We consider
5035 that 2 enumerate types are identical if they have the same
5036 number of enumerals and that all enumerals have the same
5037 underlying value and name. */
5039 /* All enums in the type should have an identical underlying value. */
5040 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5041 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5044 /* All enumerals should also have the same name (modulo any numerical
5046 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5048 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5049 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5050 int len_1 = strlen (name_1);
5051 int len_2 = strlen (name_2);
5053 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5054 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5056 || strncmp (TYPE_FIELD_NAME (type1, i),
5057 TYPE_FIELD_NAME (type2, i),
5065 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5066 that are deemed "identical" for practical purposes. Sometimes,
5067 enumerals are not strictly identical, but their types are so similar
5068 that they can be considered identical.
5070 For instance, consider the following code:
5072 type Color is (Black, Red, Green, Blue, White);
5073 type RGB_Color is new Color range Red .. Blue;
5075 Type RGB_Color is a subrange of an implicit type which is a copy
5076 of type Color. If we call that implicit type RGB_ColorB ("B" is
5077 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5078 As a result, when an expression references any of the enumeral
5079 by name (Eg. "print green"), the expression is technically
5080 ambiguous and the user should be asked to disambiguate. But
5081 doing so would only hinder the user, since it wouldn't matter
5082 what choice he makes, the outcome would always be the same.
5083 So, for practical purposes, we consider them as the same. */
5086 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5090 /* Before performing a thorough comparison check of each type,
5091 we perform a series of inexpensive checks. We expect that these
5092 checks will quickly fail in the vast majority of cases, and thus
5093 help prevent the unnecessary use of a more expensive comparison.
5094 Said comparison also expects us to make some of these checks
5095 (see ada_identical_enum_types_p). */
5097 /* Quick check: All symbols should have an enum type. */
5098 for (i = 0; i < syms.size (); i++)
5099 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5102 /* Quick check: They should all have the same value. */
5103 for (i = 1; i < syms.size (); i++)
5104 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5107 /* Quick check: They should all have the same number of enumerals. */
5108 for (i = 1; i < syms.size (); i++)
5109 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5110 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5113 /* All the sanity checks passed, so we might have a set of
5114 identical enumeration types. Perform a more complete
5115 comparison of the type of each symbol. */
5116 for (i = 1; i < syms.size (); i++)
5117 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5118 SYMBOL_TYPE (syms[0].symbol)))
5124 /* Remove any non-debugging symbols in SYMS that definitely
5125 duplicate other symbols in the list (The only case I know of where
5126 this happens is when object files containing stabs-in-ecoff are
5127 linked with files containing ordinary ecoff debugging symbols (or no
5128 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5129 Returns the number of items in the modified list. */
5132 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5136 /* We should never be called with less than 2 symbols, as there
5137 cannot be any extra symbol in that case. But it's easy to
5138 handle, since we have nothing to do in that case. */
5139 if (syms->size () < 2)
5140 return syms->size ();
5143 while (i < syms->size ())
5147 /* If two symbols have the same name and one of them is a stub type,
5148 the get rid of the stub. */
5150 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5151 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5153 for (j = 0; j < syms->size (); j++)
5156 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5157 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5158 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5159 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5164 /* Two symbols with the same name, same class and same address
5165 should be identical. */
5167 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5168 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5169 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5171 for (j = 0; j < syms->size (); j += 1)
5174 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5175 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5176 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5177 && SYMBOL_CLASS ((*syms)[i].symbol)
5178 == SYMBOL_CLASS ((*syms)[j].symbol)
5179 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5180 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5186 syms->erase (syms->begin () + i);
5191 /* If all the remaining symbols are identical enumerals, then
5192 just keep the first one and discard the rest.
5194 Unlike what we did previously, we do not discard any entry
5195 unless they are ALL identical. This is because the symbol
5196 comparison is not a strict comparison, but rather a practical
5197 comparison. If all symbols are considered identical, then
5198 we can just go ahead and use the first one and discard the rest.
5199 But if we cannot reduce the list to a single element, we have
5200 to ask the user to disambiguate anyways. And if we have to
5201 present a multiple-choice menu, it's less confusing if the list
5202 isn't missing some choices that were identical and yet distinct. */
5203 if (symbols_are_identical_enums (*syms))
5206 return syms->size ();
5209 /* Given a type that corresponds to a renaming entity, use the type name
5210 to extract the scope (package name or function name, fully qualified,
5211 and following the GNAT encoding convention) where this renaming has been
5215 xget_renaming_scope (struct type *renaming_type)
5217 /* The renaming types adhere to the following convention:
5218 <scope>__<rename>___<XR extension>.
5219 So, to extract the scope, we search for the "___XR" extension,
5220 and then backtrack until we find the first "__". */
5222 const char *name = TYPE_NAME (renaming_type);
5223 const char *suffix = strstr (name, "___XR");
5226 /* Now, backtrack a bit until we find the first "__". Start looking
5227 at suffix - 3, as the <rename> part is at least one character long. */
5229 for (last = suffix - 3; last > name; last--)
5230 if (last[0] == '_' && last[1] == '_')
5233 /* Make a copy of scope and return it. */
5234 return std::string (name, last);
5237 /* Return nonzero if NAME corresponds to a package name. */
5240 is_package_name (const char *name)
5242 /* Here, We take advantage of the fact that no symbols are generated
5243 for packages, while symbols are generated for each function.
5244 So the condition for NAME represent a package becomes equivalent
5245 to NAME not existing in our list of symbols. There is only one
5246 small complication with library-level functions (see below). */
5248 /* If it is a function that has not been defined at library level,
5249 then we should be able to look it up in the symbols. */
5250 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5253 /* Library-level function names start with "_ada_". See if function
5254 "_ada_" followed by NAME can be found. */
5256 /* Do a quick check that NAME does not contain "__", since library-level
5257 functions names cannot contain "__" in them. */
5258 if (strstr (name, "__") != NULL)
5261 std::string fun_name = string_printf ("_ada_%s", name);
5263 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5266 /* Return nonzero if SYM corresponds to a renaming entity that is
5267 not visible from FUNCTION_NAME. */
5270 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5272 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5275 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5277 /* If the rename has been defined in a package, then it is visible. */
5278 if (is_package_name (scope.c_str ()))
5281 /* Check that the rename is in the current function scope by checking
5282 that its name starts with SCOPE. */
5284 /* If the function name starts with "_ada_", it means that it is
5285 a library-level function. Strip this prefix before doing the
5286 comparison, as the encoding for the renaming does not contain
5288 if (startswith (function_name, "_ada_"))
5291 return !startswith (function_name, scope.c_str ());
5294 /* Remove entries from SYMS that corresponds to a renaming entity that
5295 is not visible from the function associated with CURRENT_BLOCK or
5296 that is superfluous due to the presence of more specific renaming
5297 information. Places surviving symbols in the initial entries of
5298 SYMS and returns the number of surviving symbols.
5301 First, in cases where an object renaming is implemented as a
5302 reference variable, GNAT may produce both the actual reference
5303 variable and the renaming encoding. In this case, we discard the
5306 Second, GNAT emits a type following a specified encoding for each renaming
5307 entity. Unfortunately, STABS currently does not support the definition
5308 of types that are local to a given lexical block, so all renamings types
5309 are emitted at library level. As a consequence, if an application
5310 contains two renaming entities using the same name, and a user tries to
5311 print the value of one of these entities, the result of the ada symbol
5312 lookup will also contain the wrong renaming type.
5314 This function partially covers for this limitation by attempting to
5315 remove from the SYMS list renaming symbols that should be visible
5316 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5317 method with the current information available. The implementation
5318 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5320 - When the user tries to print a rename in a function while there
5321 is another rename entity defined in a package: Normally, the
5322 rename in the function has precedence over the rename in the
5323 package, so the latter should be removed from the list. This is
5324 currently not the case.
5326 - This function will incorrectly remove valid renames if
5327 the CURRENT_BLOCK corresponds to a function which symbol name
5328 has been changed by an "Export" pragma. As a consequence,
5329 the user will be unable to print such rename entities. */
5332 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5333 const struct block *current_block)
5335 struct symbol *current_function;
5336 const char *current_function_name;
5338 int is_new_style_renaming;
5340 /* If there is both a renaming foo___XR... encoded as a variable and
5341 a simple variable foo in the same block, discard the latter.
5342 First, zero out such symbols, then compress. */
5343 is_new_style_renaming = 0;
5344 for (i = 0; i < syms->size (); i += 1)
5346 struct symbol *sym = (*syms)[i].symbol;
5347 const struct block *block = (*syms)[i].block;
5351 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5353 name = SYMBOL_LINKAGE_NAME (sym);
5354 suffix = strstr (name, "___XR");
5358 int name_len = suffix - name;
5361 is_new_style_renaming = 1;
5362 for (j = 0; j < syms->size (); j += 1)
5363 if (i != j && (*syms)[j].symbol != NULL
5364 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5366 && block == (*syms)[j].block)
5367 (*syms)[j].symbol = NULL;
5370 if (is_new_style_renaming)
5374 for (j = k = 0; j < syms->size (); j += 1)
5375 if ((*syms)[j].symbol != NULL)
5377 (*syms)[k] = (*syms)[j];
5383 /* Extract the function name associated to CURRENT_BLOCK.
5384 Abort if unable to do so. */
5386 if (current_block == NULL)
5387 return syms->size ();
5389 current_function = block_linkage_function (current_block);
5390 if (current_function == NULL)
5391 return syms->size ();
5393 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5394 if (current_function_name == NULL)
5395 return syms->size ();
5397 /* Check each of the symbols, and remove it from the list if it is
5398 a type corresponding to a renaming that is out of the scope of
5399 the current block. */
5402 while (i < syms->size ())
5404 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5405 == ADA_OBJECT_RENAMING
5406 && old_renaming_is_invisible ((*syms)[i].symbol,
5407 current_function_name))
5408 syms->erase (syms->begin () + i);
5413 return syms->size ();
5416 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5417 whose name and domain match NAME and DOMAIN respectively.
5418 If no match was found, then extend the search to "enclosing"
5419 routines (in other words, if we're inside a nested function,
5420 search the symbols defined inside the enclosing functions).
5421 If WILD_MATCH_P is nonzero, perform the naming matching in
5422 "wild" mode (see function "wild_match" for more info).
5424 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5427 ada_add_local_symbols (struct obstack *obstackp,
5428 const lookup_name_info &lookup_name,
5429 const struct block *block, domain_enum domain)
5431 int block_depth = 0;
5433 while (block != NULL)
5436 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5438 /* If we found a non-function match, assume that's the one. */
5439 if (is_nonfunction (defns_collected (obstackp, 0),
5440 num_defns_collected (obstackp)))
5443 block = BLOCK_SUPERBLOCK (block);
5446 /* If no luck so far, try to find NAME as a local symbol in some lexically
5447 enclosing subprogram. */
5448 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5449 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5452 /* An object of this type is used as the user_data argument when
5453 calling the map_matching_symbols method. */
5457 struct objfile *objfile;
5458 struct obstack *obstackp;
5459 struct symbol *arg_sym;
5463 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5464 to a list of symbols. DATA0 is a pointer to a struct match_data *
5465 containing the obstack that collects the symbol list, the file that SYM
5466 must come from, a flag indicating whether a non-argument symbol has
5467 been found in the current block, and the last argument symbol
5468 passed in SYM within the current block (if any). When SYM is null,
5469 marking the end of a block, the argument symbol is added if no
5470 other has been found. */
5473 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5475 struct match_data *data = (struct match_data *) data0;
5479 if (!data->found_sym && data->arg_sym != NULL)
5480 add_defn_to_vec (data->obstackp,
5481 fixup_symbol_section (data->arg_sym, data->objfile),
5483 data->found_sym = 0;
5484 data->arg_sym = NULL;
5488 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5490 else if (SYMBOL_IS_ARGUMENT (sym))
5491 data->arg_sym = sym;
5494 data->found_sym = 1;
5495 add_defn_to_vec (data->obstackp,
5496 fixup_symbol_section (sym, data->objfile),
5503 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5504 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5505 symbols to OBSTACKP. Return whether we found such symbols. */
5508 ada_add_block_renamings (struct obstack *obstackp,
5509 const struct block *block,
5510 const lookup_name_info &lookup_name,
5513 struct using_direct *renaming;
5514 int defns_mark = num_defns_collected (obstackp);
5516 symbol_name_matcher_ftype *name_match
5517 = ada_get_symbol_name_matcher (lookup_name);
5519 for (renaming = block_using (block);
5521 renaming = renaming->next)
5525 /* Avoid infinite recursions: skip this renaming if we are actually
5526 already traversing it.
5528 Currently, symbol lookup in Ada don't use the namespace machinery from
5529 C++/Fortran support: skip namespace imports that use them. */
5530 if (renaming->searched
5531 || (renaming->import_src != NULL
5532 && renaming->import_src[0] != '\0')
5533 || (renaming->import_dest != NULL
5534 && renaming->import_dest[0] != '\0'))
5536 renaming->searched = 1;
5538 /* TODO: here, we perform another name-based symbol lookup, which can
5539 pull its own multiple overloads. In theory, we should be able to do
5540 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5541 not a simple name. But in order to do this, we would need to enhance
5542 the DWARF reader to associate a symbol to this renaming, instead of a
5543 name. So, for now, we do something simpler: re-use the C++/Fortran
5544 namespace machinery. */
5545 r_name = (renaming->alias != NULL
5547 : renaming->declaration);
5548 if (name_match (r_name, lookup_name, NULL))
5550 lookup_name_info decl_lookup_name (renaming->declaration,
5551 lookup_name.match_type ());
5552 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5555 renaming->searched = 0;
5557 return num_defns_collected (obstackp) != defns_mark;
5560 /* Implements compare_names, but only applying the comparision using
5561 the given CASING. */
5564 compare_names_with_case (const char *string1, const char *string2,
5565 enum case_sensitivity casing)
5567 while (*string1 != '\0' && *string2 != '\0')
5571 if (isspace (*string1) || isspace (*string2))
5572 return strcmp_iw_ordered (string1, string2);
5574 if (casing == case_sensitive_off)
5576 c1 = tolower (*string1);
5577 c2 = tolower (*string2);
5594 return strcmp_iw_ordered (string1, string2);
5596 if (*string2 == '\0')
5598 if (is_name_suffix (string1))
5605 if (*string2 == '(')
5606 return strcmp_iw_ordered (string1, string2);
5609 if (casing == case_sensitive_off)
5610 return tolower (*string1) - tolower (*string2);
5612 return *string1 - *string2;
5617 /* Compare STRING1 to STRING2, with results as for strcmp.
5618 Compatible with strcmp_iw_ordered in that...
5620 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624 compare_names (STRING1, STRING2) <= 0
5626 (they may differ as to what symbols compare equal). */
5629 compare_names (const char *string1, const char *string2)
5633 /* Similar to what strcmp_iw_ordered does, we need to perform
5634 a case-insensitive comparison first, and only resort to
5635 a second, case-sensitive, comparison if the first one was
5636 not sufficient to differentiate the two strings. */
5638 result = compare_names_with_case (string1, string2, case_sensitive_off);
5640 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645 /* Convenience function to get at the Ada encoded lookup name for
5646 LOOKUP_NAME, as a C string. */
5649 ada_lookup_name (const lookup_name_info &lookup_name)
5651 return lookup_name.ada ().lookup_name ().c_str ();
5654 /* Add to OBSTACKP all non-local symbols whose name and domain match
5655 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5656 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5657 symbols otherwise. */
5660 add_nonlocal_symbols (struct obstack *obstackp,
5661 const lookup_name_info &lookup_name,
5662 domain_enum domain, int global)
5664 struct objfile *objfile;
5665 struct compunit_symtab *cu;
5666 struct match_data data;
5668 memset (&data, 0, sizeof data);
5669 data.obstackp = obstackp;
5671 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5673 ALL_OBJFILES (objfile)
5675 data.objfile = objfile;
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5680 aux_add_nonlocal_symbols, &data,
5681 symbol_name_match_type::WILD,
5684 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5686 aux_add_nonlocal_symbols, &data,
5687 symbol_name_match_type::FULL,
5690 ALL_OBJFILE_COMPUNITS (objfile, cu)
5692 const struct block *global_block
5693 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5695 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5701 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5703 const char *name = ada_lookup_name (lookup_name);
5704 std::string name1 = std::string ("<_ada_") + name + '>';
5706 ALL_OBJFILES (objfile)
5708 data.objfile = objfile;
5709 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5711 aux_add_nonlocal_symbols,
5713 symbol_name_match_type::FULL,
5719 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5720 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5721 returning the number of matches. Add these to OBSTACKP.
5723 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5724 symbol match within the nest of blocks whose innermost member is BLOCK,
5725 is the one match returned (no other matches in that or
5726 enclosing blocks is returned). If there are any matches in or
5727 surrounding BLOCK, then these alone are returned.
5729 Names prefixed with "standard__" are handled specially:
5730 "standard__" is first stripped off (by the lookup_name
5731 constructor), and only static and global symbols are searched.
5733 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5734 to lookup global symbols. */
5737 ada_add_all_symbols (struct obstack *obstackp,
5738 const struct block *block,
5739 const lookup_name_info &lookup_name,
5742 int *made_global_lookup_p)
5746 if (made_global_lookup_p)
5747 *made_global_lookup_p = 0;
5749 /* Special case: If the user specifies a symbol name inside package
5750 Standard, do a non-wild matching of the symbol name without
5751 the "standard__" prefix. This was primarily introduced in order
5752 to allow the user to specifically access the standard exceptions
5753 using, for instance, Standard.Constraint_Error when Constraint_Error
5754 is ambiguous (due to the user defining its own Constraint_Error
5755 entity inside its program). */
5756 if (lookup_name.ada ().standard_p ())
5759 /* Check the non-global symbols. If we have ANY match, then we're done. */
5764 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5767 /* In the !full_search case we're are being called by
5768 ada_iterate_over_symbols, and we don't want to search
5770 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5772 if (num_defns_collected (obstackp) > 0 || !full_search)
5776 /* No non-global symbols found. Check our cache to see if we have
5777 already performed this search before. If we have, then return
5780 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5781 domain, &sym, &block))
5784 add_defn_to_vec (obstackp, sym, block);
5788 if (made_global_lookup_p)
5789 *made_global_lookup_p = 1;
5791 /* Search symbols from all global blocks. */
5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5795 /* Now add symbols from all per-file blocks if we've gotten no hits
5796 (not strictly correct, but perhaps better than an error). */
5798 if (num_defns_collected (obstackp) == 0)
5799 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5802 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5803 is non-zero, enclosing scope and in global scopes, returning the number of
5805 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5806 found and the blocks and symbol tables (if any) in which they were
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5819 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
5822 std::vector<struct block_symbol> *results,
5825 int syms_from_global_search;
5827 auto_obstack obstack;
5829 ada_add_all_symbols (&obstack, block, lookup_name,
5830 domain, full_search, &syms_from_global_search);
5832 ndefns = num_defns_collected (&obstack);
5834 struct block_symbol *base = defns_collected (&obstack, 1);
5835 for (int i = 0; i < ndefns; ++i)
5836 results->push_back (base[i]);
5838 ndefns = remove_extra_symbols (results);
5840 if (ndefns == 0 && full_search && syms_from_global_search)
5841 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5843 if (ndefns == 1 && full_search && syms_from_global_search)
5844 cache_symbol (ada_lookup_name (lookup_name), domain,
5845 (*results)[0].symbol, (*results)[0].block);
5847 ndefns = remove_irrelevant_renamings (results, block);
5852 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5853 in global scopes, returning the number of matches, and filling *RESULTS
5854 with (SYM,BLOCK) tuples.
5856 See ada_lookup_symbol_list_worker for further details. */
5859 ada_lookup_symbol_list (const char *name, const struct block *block,
5861 std::vector<struct block_symbol> *results)
5863 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5864 lookup_name_info lookup_name (name, name_match_type);
5866 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5869 /* Implementation of the la_iterate_over_symbols method. */
5872 ada_iterate_over_symbols
5873 (const struct block *block, const lookup_name_info &name,
5875 gdb::function_view<symbol_found_callback_ftype> callback)
5878 std::vector<struct block_symbol> results;
5880 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5882 for (i = 0; i < ndefs; ++i)
5884 if (!callback (&results[i]))
5889 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5890 to 1, but choosing the first symbol found if there are multiple
5893 The result is stored in *INFO, which must be non-NULL.
5894 If no match is found, INFO->SYM is set to NULL. */
5897 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5899 struct block_symbol *info)
5901 /* Since we already have an encoded name, wrap it in '<>' to force a
5902 verbatim match. Otherwise, if the name happens to not look like
5903 an encoded name (because it doesn't include a "__"),
5904 ada_lookup_name_info would re-encode/fold it again, and that
5905 would e.g., incorrectly lowercase object renaming names like
5906 "R28b" -> "r28b". */
5907 std::string verbatim = std::string ("<") + name + '>';
5909 gdb_assert (info != NULL);
5910 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5926 std::vector<struct block_symbol> candidates;
5929 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5931 if (n_candidates == 0)
5934 block_symbol info = candidates[0];
5935 info.symbol = fixup_symbol_section (info.symbol, NULL);
5939 static struct block_symbol
5940 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5942 const struct block *block,
5943 const domain_enum domain)
5945 struct block_symbol sym;
5947 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5948 if (sym.symbol != NULL)
5951 /* If we haven't found a match at this point, try the primitive
5952 types. In other languages, this search is performed before
5953 searching for global symbols in order to short-circuit that
5954 global-symbol search if it happens that the name corresponds
5955 to a primitive type. But we cannot do the same in Ada, because
5956 it is perfectly legitimate for a program to declare a type which
5957 has the same name as a standard type. If looking up a type in
5958 that situation, we have traditionally ignored the primitive type
5959 in favor of user-defined types. This is why, unlike most other
5960 languages, we search the primitive types this late and only after
5961 having searched the global symbols without success. */
5963 if (domain == VAR_DOMAIN)
5965 struct gdbarch *gdbarch;
5968 gdbarch = target_gdbarch ();
5970 gdbarch = block_gdbarch (block);
5971 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5972 if (sym.symbol != NULL)
5976 return (struct block_symbol) {NULL, NULL};
5980 /* True iff STR is a possible encoded suffix of a normal Ada name
5981 that is to be ignored for matching purposes. Suffixes of parallel
5982 names (e.g., XVE) are not included here. Currently, the possible suffixes
5983 are given by any of the regular expressions:
5985 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5986 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5987 TKB [subprogram suffix for task bodies]
5988 _E[0-9]+[bs]$ [protected object entry suffixes]
5989 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5991 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5992 match is performed. This sequence is used to differentiate homonyms,
5993 is an optional part of a valid name suffix. */
5996 is_name_suffix (const char *str)
5999 const char *matching;
6000 const int len = strlen (str);
6002 /* Skip optional leading __[0-9]+. */
6004 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6007 while (isdigit (str[0]))
6013 if (str[0] == '.' || str[0] == '$')
6016 while (isdigit (matching[0]))
6018 if (matching[0] == '\0')
6024 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6027 while (isdigit (matching[0]))
6029 if (matching[0] == '\0')
6033 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6035 if (strcmp (str, "TKB") == 0)
6039 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6040 with a N at the end. Unfortunately, the compiler uses the same
6041 convention for other internal types it creates. So treating
6042 all entity names that end with an "N" as a name suffix causes
6043 some regressions. For instance, consider the case of an enumerated
6044 type. To support the 'Image attribute, it creates an array whose
6046 Having a single character like this as a suffix carrying some
6047 information is a bit risky. Perhaps we should change the encoding
6048 to be something like "_N" instead. In the meantime, do not do
6049 the following check. */
6050 /* Protected Object Subprograms */
6051 if (len == 1 && str [0] == 'N')
6056 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6059 while (isdigit (matching[0]))
6061 if ((matching[0] == 'b' || matching[0] == 's')
6062 && matching [1] == '\0')
6066 /* ??? We should not modify STR directly, as we are doing below. This
6067 is fine in this case, but may become problematic later if we find
6068 that this alternative did not work, and want to try matching
6069 another one from the begining of STR. Since we modified it, we
6070 won't be able to find the begining of the string anymore! */
6074 while (str[0] != '_' && str[0] != '\0')
6076 if (str[0] != 'n' && str[0] != 'b')
6082 if (str[0] == '\000')
6087 if (str[1] != '_' || str[2] == '\000')
6091 if (strcmp (str + 3, "JM") == 0)
6093 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6094 the LJM suffix in favor of the JM one. But we will
6095 still accept LJM as a valid suffix for a reasonable
6096 amount of time, just to allow ourselves to debug programs
6097 compiled using an older version of GNAT. */
6098 if (strcmp (str + 3, "LJM") == 0)
6102 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6103 || str[4] == 'U' || str[4] == 'P')
6105 if (str[4] == 'R' && str[5] != 'T')
6109 if (!isdigit (str[2]))
6111 for (k = 3; str[k] != '\0'; k += 1)
6112 if (!isdigit (str[k]) && str[k] != '_')
6116 if (str[0] == '$' && isdigit (str[1]))
6118 for (k = 2; str[k] != '\0'; k += 1)
6119 if (!isdigit (str[k]) && str[k] != '_')
6126 /* Return non-zero if the string starting at NAME and ending before
6127 NAME_END contains no capital letters. */
6130 is_valid_name_for_wild_match (const char *name0)
6132 const char *decoded_name = ada_decode (name0);
6135 /* If the decoded name starts with an angle bracket, it means that
6136 NAME0 does not follow the GNAT encoding format. It should then
6137 not be allowed as a possible wild match. */
6138 if (decoded_name[0] == '<')
6141 for (i=0; decoded_name[i] != '\0'; i++)
6142 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6148 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6149 that could start a simple name. Assumes that *NAMEP points into
6150 the string beginning at NAME0. */
6153 advance_wild_match (const char **namep, const char *name0, int target0)
6155 const char *name = *namep;
6165 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6168 if (name == name0 + 5 && startswith (name0, "_ada"))
6173 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6174 || name[2] == target0))
6182 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6192 /* Return true iff NAME encodes a name of the form prefix.PATN.
6193 Ignores any informational suffixes of NAME (i.e., for which
6194 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6198 wild_match (const char *name, const char *patn)
6201 const char *name0 = name;
6205 const char *match = name;
6209 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6212 if (*p == '\0' && is_name_suffix (name))
6213 return match == name0 || is_valid_name_for_wild_match (name0);
6215 if (name[-1] == '_')
6218 if (!advance_wild_match (&name, name0, *patn))
6223 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6224 any trailing suffixes that encode debugging information or leading
6225 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6226 information that is ignored). */
6229 full_match (const char *sym_name, const char *search_name)
6231 size_t search_name_len = strlen (search_name);
6233 if (strncmp (sym_name, search_name, search_name_len) == 0
6234 && is_name_suffix (sym_name + search_name_len))
6237 if (startswith (sym_name, "_ada_")
6238 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6239 && is_name_suffix (sym_name + search_name_len + 5))
6245 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6246 *defn_symbols, updating the list of symbols in OBSTACKP (if
6247 necessary). OBJFILE is the section containing BLOCK. */
6250 ada_add_block_symbols (struct obstack *obstackp,
6251 const struct block *block,
6252 const lookup_name_info &lookup_name,
6253 domain_enum domain, struct objfile *objfile)
6255 struct block_iterator iter;
6256 /* A matching argument symbol, if any. */
6257 struct symbol *arg_sym;
6258 /* Set true when we find a matching non-argument symbol. */
6264 for (sym = block_iter_match_first (block, lookup_name, &iter);
6266 sym = block_iter_match_next (lookup_name, &iter))
6268 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6269 SYMBOL_DOMAIN (sym), domain))
6271 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6273 if (SYMBOL_IS_ARGUMENT (sym))
6278 add_defn_to_vec (obstackp,
6279 fixup_symbol_section (sym, objfile),
6286 /* Handle renamings. */
6288 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6291 if (!found_sym && arg_sym != NULL)
6293 add_defn_to_vec (obstackp,
6294 fixup_symbol_section (arg_sym, objfile),
6298 if (!lookup_name.ada ().wild_match_p ())
6302 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6303 const char *name = ada_lookup_name.c_str ();
6304 size_t name_len = ada_lookup_name.size ();
6306 ALL_BLOCK_SYMBOLS (block, iter, sym)
6308 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6309 SYMBOL_DOMAIN (sym), domain))
6313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6316 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6325 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6327 if (SYMBOL_IS_ARGUMENT (sym))
6332 add_defn_to_vec (obstackp,
6333 fixup_symbol_section (sym, objfile),
6341 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6342 They aren't parameters, right? */
6343 if (!found_sym && arg_sym != NULL)
6345 add_defn_to_vec (obstackp,
6346 fixup_symbol_section (arg_sym, objfile),
6353 /* Symbol Completion */
6358 ada_lookup_name_info::matches
6359 (const char *sym_name,
6360 symbol_name_match_type match_type,
6361 completion_match_result *comp_match_res) const
6364 const char *text = m_encoded_name.c_str ();
6365 size_t text_len = m_encoded_name.size ();
6367 /* First, test against the fully qualified name of the symbol. */
6369 if (strncmp (sym_name, text, text_len) == 0)
6372 if (match && !m_encoded_p)
6374 /* One needed check before declaring a positive match is to verify
6375 that iff we are doing a verbatim match, the decoded version
6376 of the symbol name starts with '<'. Otherwise, this symbol name
6377 is not a suitable completion. */
6378 const char *sym_name_copy = sym_name;
6379 bool has_angle_bracket;
6381 sym_name = ada_decode (sym_name);
6382 has_angle_bracket = (sym_name[0] == '<');
6383 match = (has_angle_bracket == m_verbatim_p);
6384 sym_name = sym_name_copy;
6387 if (match && !m_verbatim_p)
6389 /* When doing non-verbatim match, another check that needs to
6390 be done is to verify that the potentially matching symbol name
6391 does not include capital letters, because the ada-mode would
6392 not be able to understand these symbol names without the
6393 angle bracket notation. */
6396 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6401 /* Second: Try wild matching... */
6403 if (!match && m_wild_match_p)
6405 /* Since we are doing wild matching, this means that TEXT
6406 may represent an unqualified symbol name. We therefore must
6407 also compare TEXT against the unqualified name of the symbol. */
6408 sym_name = ada_unqualified_name (ada_decode (sym_name));
6410 if (strncmp (sym_name, text, text_len) == 0)
6414 /* Finally: If we found a match, prepare the result to return. */
6419 if (comp_match_res != NULL)
6421 std::string &match_str = comp_match_res->match.storage ();
6424 match_str = ada_decode (sym_name);
6428 match_str = add_angle_brackets (sym_name);
6430 match_str = sym_name;
6434 comp_match_res->set_match (match_str.c_str ());
6440 /* Add the list of possible symbol names completing TEXT to TRACKER.
6441 WORD is the entire command on which completion is made. */
6444 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6445 complete_symbol_mode mode,
6446 symbol_name_match_type name_match_type,
6447 const char *text, const char *word,
6448 enum type_code code)
6451 struct compunit_symtab *s;
6452 struct minimal_symbol *msymbol;
6453 struct objfile *objfile;
6454 const struct block *b, *surrounding_static_block = 0;
6455 struct block_iterator iter;
6457 gdb_assert (code == TYPE_CODE_UNDEF);
6459 lookup_name_info lookup_name (text, name_match_type, true);
6461 /* First, look at the partial symtab symbols. */
6462 expand_symtabs_matching (NULL,
6468 /* At this point scan through the misc symbol vectors and add each
6469 symbol you find to the list. Eventually we want to ignore
6470 anything that isn't a text symbol (everything else will be
6471 handled by the psymtab code above). */
6473 ALL_MSYMBOLS (objfile, msymbol)
6477 if (completion_skip_symbol (mode, msymbol))
6480 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6482 /* Ada minimal symbols won't have their language set to Ada. If
6483 we let completion_list_add_name compare using the
6484 default/C-like matcher, then when completing e.g., symbols in a
6485 package named "pck", we'd match internal Ada symbols like
6486 "pckS", which are invalid in an Ada expression, unless you wrap
6487 them in '<' '>' to request a verbatim match.
6489 Unfortunately, some Ada encoded names successfully demangle as
6490 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6491 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6492 with the wrong language set. Paper over that issue here. */
6493 if (symbol_language == language_auto
6494 || symbol_language == language_cplus)
6495 symbol_language = language_ada;
6497 completion_list_add_name (tracker,
6499 MSYMBOL_LINKAGE_NAME (msymbol),
6500 lookup_name, text, word);
6503 /* Search upwards from currently selected frame (so that we can
6504 complete on local vars. */
6506 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6508 if (!BLOCK_SUPERBLOCK (b))
6509 surrounding_static_block = b; /* For elmin of dups */
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6513 if (completion_skip_symbol (mode, sym))
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
6519 lookup_name, text, word);
6523 /* Go through the symtabs and check the externs and statics for
6524 symbols which match. */
6526 ALL_COMPUNITS (objfile, s)
6529 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6530 ALL_BLOCK_SYMBOLS (b, iter, sym)
6532 if (completion_skip_symbol (mode, sym))
6535 completion_list_add_name (tracker,
6536 SYMBOL_LANGUAGE (sym),
6537 SYMBOL_LINKAGE_NAME (sym),
6538 lookup_name, text, word);
6542 ALL_COMPUNITS (objfile, s)
6545 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6546 /* Don't do this block twice. */
6547 if (b == surrounding_static_block)
6549 ALL_BLOCK_SYMBOLS (b, iter, sym)
6551 if (completion_skip_symbol (mode, sym))
6554 completion_list_add_name (tracker,
6555 SYMBOL_LANGUAGE (sym),
6556 SYMBOL_LINKAGE_NAME (sym),
6557 lookup_name, text, word);
6564 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6565 for tagged types. */
6568 ada_is_dispatch_table_ptr_type (struct type *type)
6572 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6575 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6579 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6582 /* Return non-zero if TYPE is an interface tag. */
6585 ada_is_interface_tag (struct type *type)
6587 const char *name = TYPE_NAME (type);
6592 return (strcmp (name, "ada__tags__interface_tag") == 0);
6595 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6596 to be invisible to users. */
6599 ada_is_ignored_field (struct type *type, int field_num)
6601 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6604 /* Check the name of that field. */
6606 const char *name = TYPE_FIELD_NAME (type, field_num);
6608 /* Anonymous field names should not be printed.
6609 brobecker/2007-02-20: I don't think this can actually happen
6610 but we don't want to print the value of annonymous fields anyway. */
6614 /* Normally, fields whose name start with an underscore ("_")
6615 are fields that have been internally generated by the compiler,
6616 and thus should not be printed. The "_parent" field is special,
6617 however: This is a field internally generated by the compiler
6618 for tagged types, and it contains the components inherited from
6619 the parent type. This field should not be printed as is, but
6620 should not be ignored either. */
6621 if (name[0] == '_' && !startswith (name, "_parent"))
6625 /* If this is the dispatch table of a tagged type or an interface tag,
6627 if (ada_is_tagged_type (type, 1)
6628 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6629 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6632 /* Not a special field, so it should not be ignored. */
6636 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6637 pointer or reference type whose ultimate target has a tag field. */
6640 ada_is_tagged_type (struct type *type, int refok)
6642 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6645 /* True iff TYPE represents the type of X'Tag */
6648 ada_is_tag_type (struct type *type)
6650 type = ada_check_typedef (type);
6652 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6656 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6658 return (name != NULL
6659 && strcmp (name, "ada__tags__dispatch_table") == 0);
6663 /* The type of the tag on VAL. */
6666 ada_tag_type (struct value *val)
6668 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6671 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6672 retired at Ada 05). */
6675 is_ada95_tag (struct value *tag)
6677 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6680 /* The value of the tag on VAL. */
6683 ada_value_tag (struct value *val)
6685 return ada_value_struct_elt (val, "_tag", 0);
6688 /* The value of the tag on the object of type TYPE whose contents are
6689 saved at VALADDR, if it is non-null, or is at memory address
6692 static struct value *
6693 value_tag_from_contents_and_address (struct type *type,
6694 const gdb_byte *valaddr,
6697 int tag_byte_offset;
6698 struct type *tag_type;
6700 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6703 const gdb_byte *valaddr1 = ((valaddr == NULL)
6705 : valaddr + tag_byte_offset);
6706 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6708 return value_from_contents_and_address (tag_type, valaddr1, address1);
6713 static struct type *
6714 type_from_tag (struct value *tag)
6716 const char *type_name = ada_tag_name (tag);
6718 if (type_name != NULL)
6719 return ada_find_any_type (ada_encode (type_name));
6723 /* Given a value OBJ of a tagged type, return a value of this
6724 type at the base address of the object. The base address, as
6725 defined in Ada.Tags, it is the address of the primary tag of
6726 the object, and therefore where the field values of its full
6727 view can be fetched. */
6730 ada_tag_value_at_base_address (struct value *obj)
6733 LONGEST offset_to_top = 0;
6734 struct type *ptr_type, *obj_type;
6736 CORE_ADDR base_address;
6738 obj_type = value_type (obj);
6740 /* It is the responsability of the caller to deref pointers. */
6742 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6743 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6746 tag = ada_value_tag (obj);
6750 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6752 if (is_ada95_tag (tag))
6755 ptr_type = language_lookup_primitive_type
6756 (language_def (language_ada), target_gdbarch(), "storage_offset");
6757 ptr_type = lookup_pointer_type (ptr_type);
6758 val = value_cast (ptr_type, tag);
6762 /* It is perfectly possible that an exception be raised while
6763 trying to determine the base address, just like for the tag;
6764 see ada_tag_name for more details. We do not print the error
6765 message for the same reason. */
6769 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6772 CATCH (e, RETURN_MASK_ERROR)
6778 /* If offset is null, nothing to do. */
6780 if (offset_to_top == 0)
6783 /* -1 is a special case in Ada.Tags; however, what should be done
6784 is not quite clear from the documentation. So do nothing for
6787 if (offset_to_top == -1)
6790 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6791 from the base address. This was however incompatible with
6792 C++ dispatch table: C++ uses a *negative* value to *add*
6793 to the base address. Ada's convention has therefore been
6794 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6795 use the same convention. Here, we support both cases by
6796 checking the sign of OFFSET_TO_TOP. */
6798 if (offset_to_top > 0)
6799 offset_to_top = -offset_to_top;
6801 base_address = value_address (obj) + offset_to_top;
6802 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6804 /* Make sure that we have a proper tag at the new address.
6805 Otherwise, offset_to_top is bogus (which can happen when
6806 the object is not initialized yet). */
6811 obj_type = type_from_tag (tag);
6816 return value_from_contents_and_address (obj_type, NULL, base_address);
6819 /* Return the "ada__tags__type_specific_data" type. */
6821 static struct type *
6822 ada_get_tsd_type (struct inferior *inf)
6824 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6826 if (data->tsd_type == 0)
6827 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6828 return data->tsd_type;
6831 /* Return the TSD (type-specific data) associated to the given TAG.
6832 TAG is assumed to be the tag of a tagged-type entity.
6834 May return NULL if we are unable to get the TSD. */
6836 static struct value *
6837 ada_get_tsd_from_tag (struct value *tag)
6842 /* First option: The TSD is simply stored as a field of our TAG.
6843 Only older versions of GNAT would use this format, but we have
6844 to test it first, because there are no visible markers for
6845 the current approach except the absence of that field. */
6847 val = ada_value_struct_elt (tag, "tsd", 1);
6851 /* Try the second representation for the dispatch table (in which
6852 there is no explicit 'tsd' field in the referent of the tag pointer,
6853 and instead the tsd pointer is stored just before the dispatch
6856 type = ada_get_tsd_type (current_inferior());
6859 type = lookup_pointer_type (lookup_pointer_type (type));
6860 val = value_cast (type, tag);
6863 return value_ind (value_ptradd (val, -1));
6866 /* Given the TSD of a tag (type-specific data), return a string
6867 containing the name of the associated type.
6869 The returned value is good until the next call. May return NULL
6870 if we are unable to determine the tag name. */
6873 ada_tag_name_from_tsd (struct value *tsd)
6875 static char name[1024];
6879 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6882 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6883 for (p = name; *p != '\0'; p += 1)
6889 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6892 Return NULL if the TAG is not an Ada tag, or if we were unable to
6893 determine the name of that tag. The result is good until the next
6897 ada_tag_name (struct value *tag)
6901 if (!ada_is_tag_type (value_type (tag)))
6904 /* It is perfectly possible that an exception be raised while trying
6905 to determine the TAG's name, even under normal circumstances:
6906 The associated variable may be uninitialized or corrupted, for
6907 instance. We do not let any exception propagate past this point.
6908 instead we return NULL.
6910 We also do not print the error message either (which often is very
6911 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6912 the caller print a more meaningful message if necessary. */
6915 struct value *tsd = ada_get_tsd_from_tag (tag);
6918 name = ada_tag_name_from_tsd (tsd);
6920 CATCH (e, RETURN_MASK_ERROR)
6928 /* The parent type of TYPE, or NULL if none. */
6931 ada_parent_type (struct type *type)
6935 type = ada_check_typedef (type);
6937 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6941 if (ada_is_parent_field (type, i))
6943 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6945 /* If the _parent field is a pointer, then dereference it. */
6946 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6947 parent_type = TYPE_TARGET_TYPE (parent_type);
6948 /* If there is a parallel XVS type, get the actual base type. */
6949 parent_type = ada_get_base_type (parent_type);
6951 return ada_check_typedef (parent_type);
6957 /* True iff field number FIELD_NUM of structure type TYPE contains the
6958 parent-type (inherited) fields of a derived type. Assumes TYPE is
6959 a structure type with at least FIELD_NUM+1 fields. */
6962 ada_is_parent_field (struct type *type, int field_num)
6964 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6966 return (name != NULL
6967 && (startswith (name, "PARENT")
6968 || startswith (name, "_parent")));
6971 /* True iff field number FIELD_NUM of structure type TYPE is a
6972 transparent wrapper field (which should be silently traversed when doing
6973 field selection and flattened when printing). Assumes TYPE is a
6974 structure type with at least FIELD_NUM+1 fields. Such fields are always
6978 ada_is_wrapper_field (struct type *type, int field_num)
6980 const char *name = TYPE_FIELD_NAME (type, field_num);
6982 if (name != NULL && strcmp (name, "RETVAL") == 0)
6984 /* This happens in functions with "out" or "in out" parameters
6985 which are passed by copy. For such functions, GNAT describes
6986 the function's return type as being a struct where the return
6987 value is in a field called RETVAL, and where the other "out"
6988 or "in out" parameters are fields of that struct. This is not
6993 return (name != NULL
6994 && (startswith (name, "PARENT")
6995 || strcmp (name, "REP") == 0
6996 || startswith (name, "_parent")
6997 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7000 /* True iff field number FIELD_NUM of structure or union type TYPE
7001 is a variant wrapper. Assumes TYPE is a structure type with at least
7002 FIELD_NUM+1 fields. */
7005 ada_is_variant_part (struct type *type, int field_num)
7007 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7009 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7010 || (is_dynamic_field (type, field_num)
7011 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7012 == TYPE_CODE_UNION)));
7015 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7016 whose discriminants are contained in the record type OUTER_TYPE,
7017 returns the type of the controlling discriminant for the variant.
7018 May return NULL if the type could not be found. */
7021 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7023 const char *name = ada_variant_discrim_name (var_type);
7025 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7028 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7029 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7030 represents a 'when others' clause; otherwise 0. */
7033 ada_is_others_clause (struct type *type, int field_num)
7035 const char *name = TYPE_FIELD_NAME (type, field_num);
7037 return (name != NULL && name[0] == 'O');
7040 /* Assuming that TYPE0 is the type of the variant part of a record,
7041 returns the name of the discriminant controlling the variant.
7042 The value is valid until the next call to ada_variant_discrim_name. */
7045 ada_variant_discrim_name (struct type *type0)
7047 static char *result = NULL;
7048 static size_t result_len = 0;
7051 const char *discrim_end;
7052 const char *discrim_start;
7054 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7055 type = TYPE_TARGET_TYPE (type0);
7059 name = ada_type_name (type);
7061 if (name == NULL || name[0] == '\000')
7064 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7067 if (startswith (discrim_end, "___XVN"))
7070 if (discrim_end == name)
7073 for (discrim_start = discrim_end; discrim_start != name + 3;
7076 if (discrim_start == name + 1)
7078 if ((discrim_start > name + 3
7079 && startswith (discrim_start - 3, "___"))
7080 || discrim_start[-1] == '.')
7084 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7085 strncpy (result, discrim_start, discrim_end - discrim_start);
7086 result[discrim_end - discrim_start] = '\0';
7090 /* Scan STR for a subtype-encoded number, beginning at position K.
7091 Put the position of the character just past the number scanned in
7092 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7093 Return 1 if there was a valid number at the given position, and 0
7094 otherwise. A "subtype-encoded" number consists of the absolute value
7095 in decimal, followed by the letter 'm' to indicate a negative number.
7096 Assumes 0m does not occur. */
7099 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7103 if (!isdigit (str[k]))
7106 /* Do it the hard way so as not to make any assumption about
7107 the relationship of unsigned long (%lu scan format code) and
7110 while (isdigit (str[k]))
7112 RU = RU * 10 + (str[k] - '0');
7119 *R = (-(LONGEST) (RU - 1)) - 1;
7125 /* NOTE on the above: Technically, C does not say what the results of
7126 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7127 number representable as a LONGEST (although either would probably work
7128 in most implementations). When RU>0, the locution in the then branch
7129 above is always equivalent to the negative of RU. */
7136 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7137 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7138 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7141 ada_in_variant (LONGEST val, struct type *type, int field_num)
7143 const char *name = TYPE_FIELD_NAME (type, field_num);
7157 if (!ada_scan_number (name, p + 1, &W, &p))
7167 if (!ada_scan_number (name, p + 1, &L, &p)
7168 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7170 if (val >= L && val <= U)
7182 /* FIXME: Lots of redundancy below. Try to consolidate. */
7184 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7185 ARG_TYPE, extract and return the value of one of its (non-static)
7186 fields. FIELDNO says which field. Differs from value_primitive_field
7187 only in that it can handle packed values of arbitrary type. */
7189 static struct value *
7190 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7191 struct type *arg_type)
7195 arg_type = ada_check_typedef (arg_type);
7196 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7198 /* Handle packed fields. */
7200 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7202 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7203 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7205 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7206 offset + bit_pos / 8,
7207 bit_pos % 8, bit_size, type);
7210 return value_primitive_field (arg1, offset, fieldno, arg_type);
7213 /* Find field with name NAME in object of type TYPE. If found,
7214 set the following for each argument that is non-null:
7215 - *FIELD_TYPE_P to the field's type;
7216 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7217 an object of that type;
7218 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7219 - *BIT_SIZE_P to its size in bits if the field is packed, and
7221 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7222 fields up to but not including the desired field, or by the total
7223 number of fields if not found. A NULL value of NAME never
7224 matches; the function just counts visible fields in this case.
7226 Notice that we need to handle when a tagged record hierarchy
7227 has some components with the same name, like in this scenario:
7229 type Top_T is tagged record
7235 type Middle_T is new Top.Top_T with record
7236 N : Character := 'a';
7240 type Bottom_T is new Middle.Middle_T with record
7242 C : Character := '5';
7244 A : Character := 'J';
7247 Let's say we now have a variable declared and initialized as follow:
7249 TC : Top_A := new Bottom_T;
7251 And then we use this variable to call this function
7253 procedure Assign (Obj: in out Top_T; TV : Integer);
7257 Assign (Top_T (B), 12);
7259 Now, we're in the debugger, and we're inside that procedure
7260 then and we want to print the value of obj.c:
7262 Usually, the tagged record or one of the parent type owns the
7263 component to print and there's no issue but in this particular
7264 case, what does it mean to ask for Obj.C? Since the actual
7265 type for object is type Bottom_T, it could mean two things: type
7266 component C from the Middle_T view, but also component C from
7267 Bottom_T. So in that "undefined" case, when the component is
7268 not found in the non-resolved type (which includes all the
7269 components of the parent type), then resolve it and see if we
7270 get better luck once expanded.
7272 In the case of homonyms in the derived tagged type, we don't
7273 guaranty anything, and pick the one that's easiest for us
7276 Returns 1 if found, 0 otherwise. */
7279 find_struct_field (const char *name, struct type *type, int offset,
7280 struct type **field_type_p,
7281 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7285 int parent_offset = -1;
7287 type = ada_check_typedef (type);
7289 if (field_type_p != NULL)
7290 *field_type_p = NULL;
7291 if (byte_offset_p != NULL)
7293 if (bit_offset_p != NULL)
7295 if (bit_size_p != NULL)
7298 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7300 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7301 int fld_offset = offset + bit_pos / 8;
7302 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7304 if (t_field_name == NULL)
7307 else if (ada_is_parent_field (type, i))
7309 /* This is a field pointing us to the parent type of a tagged
7310 type. As hinted in this function's documentation, we give
7311 preference to fields in the current record first, so what
7312 we do here is just record the index of this field before
7313 we skip it. If it turns out we couldn't find our field
7314 in the current record, then we'll get back to it and search
7315 inside it whether the field might exist in the parent. */
7321 else if (name != NULL && field_name_match (t_field_name, name))
7323 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7325 if (field_type_p != NULL)
7326 *field_type_p = TYPE_FIELD_TYPE (type, i);
7327 if (byte_offset_p != NULL)
7328 *byte_offset_p = fld_offset;
7329 if (bit_offset_p != NULL)
7330 *bit_offset_p = bit_pos % 8;
7331 if (bit_size_p != NULL)
7332 *bit_size_p = bit_size;
7335 else if (ada_is_wrapper_field (type, i))
7337 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7338 field_type_p, byte_offset_p, bit_offset_p,
7339 bit_size_p, index_p))
7342 else if (ada_is_variant_part (type, i))
7344 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7347 struct type *field_type
7348 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7350 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7352 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7354 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7355 field_type_p, byte_offset_p,
7356 bit_offset_p, bit_size_p, index_p))
7360 else if (index_p != NULL)
7364 /* Field not found so far. If this is a tagged type which
7365 has a parent, try finding that field in the parent now. */
7367 if (parent_offset != -1)
7369 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7370 int fld_offset = offset + bit_pos / 8;
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7373 fld_offset, field_type_p, byte_offset_p,
7374 bit_offset_p, bit_size_p, index_p))
7381 /* Number of user-visible fields in record type TYPE. */
7384 num_visible_fields (struct type *type)
7389 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7393 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7394 and search in it assuming it has (class) type TYPE.
7395 If found, return value, else return NULL.
7397 Searches recursively through wrapper fields (e.g., '_parent').
7399 In the case of homonyms in the tagged types, please refer to the
7400 long explanation in find_struct_field's function documentation. */
7402 static struct value *
7403 ada_search_struct_field (const char *name, struct value *arg, int offset,
7407 int parent_offset = -1;
7409 type = ada_check_typedef (type);
7410 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7412 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7414 if (t_field_name == NULL)
7417 else if (ada_is_parent_field (type, i))
7419 /* This is a field pointing us to the parent type of a tagged
7420 type. As hinted in this function's documentation, we give
7421 preference to fields in the current record first, so what
7422 we do here is just record the index of this field before
7423 we skip it. If it turns out we couldn't find our field
7424 in the current record, then we'll get back to it and search
7425 inside it whether the field might exist in the parent. */
7431 else if (field_name_match (t_field_name, name))
7432 return ada_value_primitive_field (arg, offset, i, type);
7434 else if (ada_is_wrapper_field (type, i))
7436 struct value *v = /* Do not let indent join lines here. */
7437 ada_search_struct_field (name, arg,
7438 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7439 TYPE_FIELD_TYPE (type, i));
7445 else if (ada_is_variant_part (type, i))
7447 /* PNH: Do we ever get here? See find_struct_field. */
7449 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7451 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7453 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7455 struct value *v = ada_search_struct_field /* Force line
7458 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7459 TYPE_FIELD_TYPE (field_type, j));
7467 /* Field not found so far. If this is a tagged type which
7468 has a parent, try finding that field in the parent now. */
7470 if (parent_offset != -1)
7472 struct value *v = ada_search_struct_field (
7473 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7474 TYPE_FIELD_TYPE (type, parent_offset));
7483 static struct value *ada_index_struct_field_1 (int *, struct value *,
7484 int, struct type *);
7487 /* Return field #INDEX in ARG, where the index is that returned by
7488 * find_struct_field through its INDEX_P argument. Adjust the address
7489 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7490 * If found, return value, else return NULL. */
7492 static struct value *
7493 ada_index_struct_field (int index, struct value *arg, int offset,
7496 return ada_index_struct_field_1 (&index, arg, offset, type);
7500 /* Auxiliary function for ada_index_struct_field. Like
7501 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7504 static struct value *
7505 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7509 type = ada_check_typedef (type);
7511 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7513 if (TYPE_FIELD_NAME (type, i) == NULL)
7515 else if (ada_is_wrapper_field (type, i))
7517 struct value *v = /* Do not let indent join lines here. */
7518 ada_index_struct_field_1 (index_p, arg,
7519 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7520 TYPE_FIELD_TYPE (type, i));
7526 else if (ada_is_variant_part (type, i))
7528 /* PNH: Do we ever get here? See ada_search_struct_field,
7529 find_struct_field. */
7530 error (_("Cannot assign this kind of variant record"));
7532 else if (*index_p == 0)
7533 return ada_value_primitive_field (arg, offset, i, type);
7540 /* Given ARG, a value of type (pointer or reference to a)*
7541 structure/union, extract the component named NAME from the ultimate
7542 target structure/union and return it as a value with its
7545 The routine searches for NAME among all members of the structure itself
7546 and (recursively) among all members of any wrapper members
7549 If NO_ERR, then simply return NULL in case of error, rather than
7553 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7555 struct type *t, *t1;
7559 t1 = t = ada_check_typedef (value_type (arg));
7560 if (TYPE_CODE (t) == TYPE_CODE_REF)
7562 t1 = TYPE_TARGET_TYPE (t);
7565 t1 = ada_check_typedef (t1);
7566 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7568 arg = coerce_ref (arg);
7573 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7575 t1 = TYPE_TARGET_TYPE (t);
7578 t1 = ada_check_typedef (t1);
7579 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7581 arg = value_ind (arg);
7588 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7592 v = ada_search_struct_field (name, arg, 0, t);
7595 int bit_offset, bit_size, byte_offset;
7596 struct type *field_type;
7599 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7600 address = value_address (ada_value_ind (arg));
7602 address = value_address (ada_coerce_ref (arg));
7604 /* Check to see if this is a tagged type. We also need to handle
7605 the case where the type is a reference to a tagged type, but
7606 we have to be careful to exclude pointers to tagged types.
7607 The latter should be shown as usual (as a pointer), whereas
7608 a reference should mostly be transparent to the user. */
7610 if (ada_is_tagged_type (t1, 0)
7611 || (TYPE_CODE (t1) == TYPE_CODE_REF
7612 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7614 /* We first try to find the searched field in the current type.
7615 If not found then let's look in the fixed type. */
7617 if (!find_struct_field (name, t1, 0,
7618 &field_type, &byte_offset, &bit_offset,
7620 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7624 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7627 if (find_struct_field (name, t1, 0,
7628 &field_type, &byte_offset, &bit_offset,
7633 if (TYPE_CODE (t) == TYPE_CODE_REF)
7634 arg = ada_coerce_ref (arg);
7636 arg = ada_value_ind (arg);
7637 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7638 bit_offset, bit_size,
7642 v = value_at_lazy (field_type, address + byte_offset);
7646 if (v != NULL || no_err)
7649 error (_("There is no member named %s."), name);
7655 error (_("Attempt to extract a component of "
7656 "a value that is not a record."));
7659 /* Return a string representation of type TYPE. */
7662 type_as_string (struct type *type)
7664 string_file tmp_stream;
7666 type_print (type, "", &tmp_stream, -1);
7668 return std::move (tmp_stream.string ());
7671 /* Given a type TYPE, look up the type of the component of type named NAME.
7672 If DISPP is non-null, add its byte displacement from the beginning of a
7673 structure (pointed to by a value) of type TYPE to *DISPP (does not
7674 work for packed fields).
7676 Matches any field whose name has NAME as a prefix, possibly
7679 TYPE can be either a struct or union. If REFOK, TYPE may also
7680 be a (pointer or reference)+ to a struct or union, and the
7681 ultimate target type will be searched.
7683 Looks recursively into variant clauses and parent types.
7685 In the case of homonyms in the tagged types, please refer to the
7686 long explanation in find_struct_field's function documentation.
7688 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7689 TYPE is not a type of the right kind. */
7691 static struct type *
7692 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7696 int parent_offset = -1;
7701 if (refok && type != NULL)
7704 type = ada_check_typedef (type);
7705 if (TYPE_CODE (type) != TYPE_CODE_PTR
7706 && TYPE_CODE (type) != TYPE_CODE_REF)
7708 type = TYPE_TARGET_TYPE (type);
7712 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7713 && TYPE_CODE (type) != TYPE_CODE_UNION))
7718 error (_("Type %s is not a structure or union type"),
7719 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7722 type = to_static_fixed_type (type);
7724 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7726 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7729 if (t_field_name == NULL)
7732 else if (ada_is_parent_field (type, i))
7734 /* This is a field pointing us to the parent type of a tagged
7735 type. As hinted in this function's documentation, we give
7736 preference to fields in the current record first, so what
7737 we do here is just record the index of this field before
7738 we skip it. If it turns out we couldn't find our field
7739 in the current record, then we'll get back to it and search
7740 inside it whether the field might exist in the parent. */
7746 else if (field_name_match (t_field_name, name))
7747 return TYPE_FIELD_TYPE (type, i);
7749 else if (ada_is_wrapper_field (type, i))
7751 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7757 else if (ada_is_variant_part (type, i))
7760 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7763 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7765 /* FIXME pnh 2008/01/26: We check for a field that is
7766 NOT wrapped in a struct, since the compiler sometimes
7767 generates these for unchecked variant types. Revisit
7768 if the compiler changes this practice. */
7769 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7771 if (v_field_name != NULL
7772 && field_name_match (v_field_name, name))
7773 t = TYPE_FIELD_TYPE (field_type, j);
7775 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7786 /* Field not found so far. If this is a tagged type which
7787 has a parent, try finding that field in the parent now. */
7789 if (parent_offset != -1)
7793 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7802 const char *name_str = name != NULL ? name : _("<null>");
7804 error (_("Type %s has no component named %s"),
7805 type_as_string (type).c_str (), name_str);
7811 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7812 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7813 represents an unchecked union (that is, the variant part of a
7814 record that is named in an Unchecked_Union pragma). */
7817 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7819 const char *discrim_name = ada_variant_discrim_name (var_type);
7821 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7825 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7826 within a value of type OUTER_TYPE that is stored in GDB at
7827 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7828 numbering from 0) is applicable. Returns -1 if none are. */
7831 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7832 const gdb_byte *outer_valaddr)
7836 const char *discrim_name = ada_variant_discrim_name (var_type);
7837 struct value *outer;
7838 struct value *discrim;
7839 LONGEST discrim_val;
7841 /* Using plain value_from_contents_and_address here causes problems
7842 because we will end up trying to resolve a type that is currently
7843 being constructed. */
7844 outer = value_from_contents_and_address_unresolved (outer_type,
7846 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7847 if (discrim == NULL)
7849 discrim_val = value_as_long (discrim);
7852 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7854 if (ada_is_others_clause (var_type, i))
7856 else if (ada_in_variant (discrim_val, var_type, i))
7860 return others_clause;
7865 /* Dynamic-Sized Records */
7867 /* Strategy: The type ostensibly attached to a value with dynamic size
7868 (i.e., a size that is not statically recorded in the debugging
7869 data) does not accurately reflect the size or layout of the value.
7870 Our strategy is to convert these values to values with accurate,
7871 conventional types that are constructed on the fly. */
7873 /* There is a subtle and tricky problem here. In general, we cannot
7874 determine the size of dynamic records without its data. However,
7875 the 'struct value' data structure, which GDB uses to represent
7876 quantities in the inferior process (the target), requires the size
7877 of the type at the time of its allocation in order to reserve space
7878 for GDB's internal copy of the data. That's why the
7879 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7880 rather than struct value*s.
7882 However, GDB's internal history variables ($1, $2, etc.) are
7883 struct value*s containing internal copies of the data that are not, in
7884 general, the same as the data at their corresponding addresses in
7885 the target. Fortunately, the types we give to these values are all
7886 conventional, fixed-size types (as per the strategy described
7887 above), so that we don't usually have to perform the
7888 'to_fixed_xxx_type' conversions to look at their values.
7889 Unfortunately, there is one exception: if one of the internal
7890 history variables is an array whose elements are unconstrained
7891 records, then we will need to create distinct fixed types for each
7892 element selected. */
7894 /* The upshot of all of this is that many routines take a (type, host
7895 address, target address) triple as arguments to represent a value.
7896 The host address, if non-null, is supposed to contain an internal
7897 copy of the relevant data; otherwise, the program is to consult the
7898 target at the target address. */
7900 /* Assuming that VAL0 represents a pointer value, the result of
7901 dereferencing it. Differs from value_ind in its treatment of
7902 dynamic-sized types. */
7905 ada_value_ind (struct value *val0)
7907 struct value *val = value_ind (val0);
7909 if (ada_is_tagged_type (value_type (val), 0))
7910 val = ada_tag_value_at_base_address (val);
7912 return ada_to_fixed_value (val);
7915 /* The value resulting from dereferencing any "reference to"
7916 qualifiers on VAL0. */
7918 static struct value *
7919 ada_coerce_ref (struct value *val0)
7921 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7923 struct value *val = val0;
7925 val = coerce_ref (val);
7927 if (ada_is_tagged_type (value_type (val), 0))
7928 val = ada_tag_value_at_base_address (val);
7930 return ada_to_fixed_value (val);
7936 /* Return OFF rounded upward if necessary to a multiple of
7937 ALIGNMENT (a power of 2). */
7940 align_value (unsigned int off, unsigned int alignment)
7942 return (off + alignment - 1) & ~(alignment - 1);
7945 /* Return the bit alignment required for field #F of template type TYPE. */
7948 field_alignment (struct type *type, int f)
7950 const char *name = TYPE_FIELD_NAME (type, f);
7954 /* The field name should never be null, unless the debugging information
7955 is somehow malformed. In this case, we assume the field does not
7956 require any alignment. */
7960 len = strlen (name);
7962 if (!isdigit (name[len - 1]))
7965 if (isdigit (name[len - 2]))
7966 align_offset = len - 2;
7968 align_offset = len - 1;
7970 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7971 return TARGET_CHAR_BIT;
7973 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7976 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7978 static struct symbol *
7979 ada_find_any_type_symbol (const char *name)
7983 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7984 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7987 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7991 /* Find a type named NAME. Ignores ambiguity. This routine will look
7992 solely for types defined by debug info, it will not search the GDB
7995 static struct type *
7996 ada_find_any_type (const char *name)
7998 struct symbol *sym = ada_find_any_type_symbol (name);
8001 return SYMBOL_TYPE (sym);
8006 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8007 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8008 symbol, in which case it is returned. Otherwise, this looks for
8009 symbols whose name is that of NAME_SYM suffixed with "___XR".
8010 Return symbol if found, and NULL otherwise. */
8013 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8015 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8018 if (strstr (name, "___XR") != NULL)
8021 sym = find_old_style_renaming_symbol (name, block);
8026 /* Not right yet. FIXME pnh 7/20/2007. */
8027 sym = ada_find_any_type_symbol (name);
8028 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8034 static struct symbol *
8035 find_old_style_renaming_symbol (const char *name, const struct block *block)
8037 const struct symbol *function_sym = block_linkage_function (block);
8040 if (function_sym != NULL)
8042 /* If the symbol is defined inside a function, NAME is not fully
8043 qualified. This means we need to prepend the function name
8044 as well as adding the ``___XR'' suffix to build the name of
8045 the associated renaming symbol. */
8046 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8047 /* Function names sometimes contain suffixes used
8048 for instance to qualify nested subprograms. When building
8049 the XR type name, we need to make sure that this suffix is
8050 not included. So do not include any suffix in the function
8051 name length below. */
8052 int function_name_len = ada_name_prefix_len (function_name);
8053 const int rename_len = function_name_len + 2 /* "__" */
8054 + strlen (name) + 6 /* "___XR\0" */ ;
8056 /* Strip the suffix if necessary. */
8057 ada_remove_trailing_digits (function_name, &function_name_len);
8058 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8059 ada_remove_Xbn_suffix (function_name, &function_name_len);
8061 /* Library-level functions are a special case, as GNAT adds
8062 a ``_ada_'' prefix to the function name to avoid namespace
8063 pollution. However, the renaming symbols themselves do not
8064 have this prefix, so we need to skip this prefix if present. */
8065 if (function_name_len > 5 /* "_ada_" */
8066 && strstr (function_name, "_ada_") == function_name)
8069 function_name_len -= 5;
8072 rename = (char *) alloca (rename_len * sizeof (char));
8073 strncpy (rename, function_name, function_name_len);
8074 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8079 const int rename_len = strlen (name) + 6;
8081 rename = (char *) alloca (rename_len * sizeof (char));
8082 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8085 return ada_find_any_type_symbol (rename);
8088 /* Because of GNAT encoding conventions, several GDB symbols may match a
8089 given type name. If the type denoted by TYPE0 is to be preferred to
8090 that of TYPE1 for purposes of type printing, return non-zero;
8091 otherwise return 0. */
8094 ada_prefer_type (struct type *type0, struct type *type1)
8098 else if (type0 == NULL)
8100 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8102 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8104 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8106 else if (ada_is_constrained_packed_array_type (type0))
8108 else if (ada_is_array_descriptor_type (type0)
8109 && !ada_is_array_descriptor_type (type1))
8113 const char *type0_name = TYPE_NAME (type0);
8114 const char *type1_name = TYPE_NAME (type1);
8116 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8117 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8123 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8127 ada_type_name (struct type *type)
8131 return TYPE_NAME (type);
8134 /* Search the list of "descriptive" types associated to TYPE for a type
8135 whose name is NAME. */
8137 static struct type *
8138 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8140 struct type *result, *tmp;
8142 if (ada_ignore_descriptive_types_p)
8145 /* If there no descriptive-type info, then there is no parallel type
8147 if (!HAVE_GNAT_AUX_INFO (type))
8150 result = TYPE_DESCRIPTIVE_TYPE (type);
8151 while (result != NULL)
8153 const char *result_name = ada_type_name (result);
8155 if (result_name == NULL)
8157 warning (_("unexpected null name on descriptive type"));
8161 /* If the names match, stop. */
8162 if (strcmp (result_name, name) == 0)
8165 /* Otherwise, look at the next item on the list, if any. */
8166 if (HAVE_GNAT_AUX_INFO (result))
8167 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8171 /* If not found either, try after having resolved the typedef. */
8176 result = check_typedef (result);
8177 if (HAVE_GNAT_AUX_INFO (result))
8178 result = TYPE_DESCRIPTIVE_TYPE (result);
8184 /* If we didn't find a match, see whether this is a packed array. With
8185 older compilers, the descriptive type information is either absent or
8186 irrelevant when it comes to packed arrays so the above lookup fails.
8187 Fall back to using a parallel lookup by name in this case. */
8188 if (result == NULL && ada_is_constrained_packed_array_type (type))
8189 return ada_find_any_type (name);
8194 /* Find a parallel type to TYPE with the specified NAME, using the
8195 descriptive type taken from the debugging information, if available,
8196 and otherwise using the (slower) name-based method. */
8198 static struct type *
8199 ada_find_parallel_type_with_name (struct type *type, const char *name)
8201 struct type *result = NULL;
8203 if (HAVE_GNAT_AUX_INFO (type))
8204 result = find_parallel_type_by_descriptive_type (type, name);
8206 result = ada_find_any_type (name);
8211 /* Same as above, but specify the name of the parallel type by appending
8212 SUFFIX to the name of TYPE. */
8215 ada_find_parallel_type (struct type *type, const char *suffix)
8218 const char *type_name = ada_type_name (type);
8221 if (type_name == NULL)
8224 len = strlen (type_name);
8226 name = (char *) alloca (len + strlen (suffix) + 1);
8228 strcpy (name, type_name);
8229 strcpy (name + len, suffix);
8231 return ada_find_parallel_type_with_name (type, name);
8234 /* If TYPE is a variable-size record type, return the corresponding template
8235 type describing its fields. Otherwise, return NULL. */
8237 static struct type *
8238 dynamic_template_type (struct type *type)
8240 type = ada_check_typedef (type);
8242 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8243 || ada_type_name (type) == NULL)
8247 int len = strlen (ada_type_name (type));
8249 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8252 return ada_find_parallel_type (type, "___XVE");
8256 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8257 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8260 is_dynamic_field (struct type *templ_type, int field_num)
8262 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8265 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8266 && strstr (name, "___XVL") != NULL;
8269 /* The index of the variant field of TYPE, or -1 if TYPE does not
8270 represent a variant record type. */
8273 variant_field_index (struct type *type)
8277 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8280 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8282 if (ada_is_variant_part (type, f))
8288 /* A record type with no fields. */
8290 static struct type *
8291 empty_record (struct type *templ)
8293 struct type *type = alloc_type_copy (templ);
8295 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8296 TYPE_NFIELDS (type) = 0;
8297 TYPE_FIELDS (type) = NULL;
8298 INIT_CPLUS_SPECIFIC (type);
8299 TYPE_NAME (type) = "<empty>";
8300 TYPE_LENGTH (type) = 0;
8304 /* An ordinary record type (with fixed-length fields) that describes
8305 the value of type TYPE at VALADDR or ADDRESS (see comments at
8306 the beginning of this section) VAL according to GNAT conventions.
8307 DVAL0 should describe the (portion of a) record that contains any
8308 necessary discriminants. It should be NULL if value_type (VAL) is
8309 an outer-level type (i.e., as opposed to a branch of a variant.) A
8310 variant field (unless unchecked) is replaced by a particular branch
8313 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8314 length are not statically known are discarded. As a consequence,
8315 VALADDR, ADDRESS and DVAL0 are ignored.
8317 NOTE: Limitations: For now, we assume that dynamic fields and
8318 variants occupy whole numbers of bytes. However, they need not be
8322 ada_template_to_fixed_record_type_1 (struct type *type,
8323 const gdb_byte *valaddr,
8324 CORE_ADDR address, struct value *dval0,
8325 int keep_dynamic_fields)
8327 struct value *mark = value_mark ();
8330 int nfields, bit_len;
8336 /* Compute the number of fields in this record type that are going
8337 to be processed: unless keep_dynamic_fields, this includes only
8338 fields whose position and length are static will be processed. */
8339 if (keep_dynamic_fields)
8340 nfields = TYPE_NFIELDS (type);
8344 while (nfields < TYPE_NFIELDS (type)
8345 && !ada_is_variant_part (type, nfields)
8346 && !is_dynamic_field (type, nfields))
8350 rtype = alloc_type_copy (type);
8351 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8352 INIT_CPLUS_SPECIFIC (rtype);
8353 TYPE_NFIELDS (rtype) = nfields;
8354 TYPE_FIELDS (rtype) = (struct field *)
8355 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8356 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8357 TYPE_NAME (rtype) = ada_type_name (type);
8358 TYPE_FIXED_INSTANCE (rtype) = 1;
8364 for (f = 0; f < nfields; f += 1)
8366 off = align_value (off, field_alignment (type, f))
8367 + TYPE_FIELD_BITPOS (type, f);
8368 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8369 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8371 if (ada_is_variant_part (type, f))
8376 else if (is_dynamic_field (type, f))
8378 const gdb_byte *field_valaddr = valaddr;
8379 CORE_ADDR field_address = address;
8380 struct type *field_type =
8381 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8385 /* rtype's length is computed based on the run-time
8386 value of discriminants. If the discriminants are not
8387 initialized, the type size may be completely bogus and
8388 GDB may fail to allocate a value for it. So check the
8389 size first before creating the value. */
8390 ada_ensure_varsize_limit (rtype);
8391 /* Using plain value_from_contents_and_address here
8392 causes problems because we will end up trying to
8393 resolve a type that is currently being
8395 dval = value_from_contents_and_address_unresolved (rtype,
8398 rtype = value_type (dval);
8403 /* If the type referenced by this field is an aligner type, we need
8404 to unwrap that aligner type, because its size might not be set.
8405 Keeping the aligner type would cause us to compute the wrong
8406 size for this field, impacting the offset of the all the fields
8407 that follow this one. */
8408 if (ada_is_aligner_type (field_type))
8410 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8412 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8413 field_address = cond_offset_target (field_address, field_offset);
8414 field_type = ada_aligned_type (field_type);
8417 field_valaddr = cond_offset_host (field_valaddr,
8418 off / TARGET_CHAR_BIT);
8419 field_address = cond_offset_target (field_address,
8420 off / TARGET_CHAR_BIT);
8422 /* Get the fixed type of the field. Note that, in this case,
8423 we do not want to get the real type out of the tag: if
8424 the current field is the parent part of a tagged record,
8425 we will get the tag of the object. Clearly wrong: the real
8426 type of the parent is not the real type of the child. We
8427 would end up in an infinite loop. */
8428 field_type = ada_get_base_type (field_type);
8429 field_type = ada_to_fixed_type (field_type, field_valaddr,
8430 field_address, dval, 0);
8431 /* If the field size is already larger than the maximum
8432 object size, then the record itself will necessarily
8433 be larger than the maximum object size. We need to make
8434 this check now, because the size might be so ridiculously
8435 large (due to an uninitialized variable in the inferior)
8436 that it would cause an overflow when adding it to the
8438 ada_ensure_varsize_limit (field_type);
8440 TYPE_FIELD_TYPE (rtype, f) = field_type;
8441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8442 /* The multiplication can potentially overflow. But because
8443 the field length has been size-checked just above, and
8444 assuming that the maximum size is a reasonable value,
8445 an overflow should not happen in practice. So rather than
8446 adding overflow recovery code to this already complex code,
8447 we just assume that it's not going to happen. */
8449 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8453 /* Note: If this field's type is a typedef, it is important
8454 to preserve the typedef layer.
8456 Otherwise, we might be transforming a typedef to a fat
8457 pointer (encoding a pointer to an unconstrained array),
8458 into a basic fat pointer (encoding an unconstrained
8459 array). As both types are implemented using the same
8460 structure, the typedef is the only clue which allows us
8461 to distinguish between the two options. Stripping it
8462 would prevent us from printing this field appropriately. */
8463 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8464 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8465 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8467 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8470 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8472 /* We need to be careful of typedefs when computing
8473 the length of our field. If this is a typedef,
8474 get the length of the target type, not the length
8476 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8477 field_type = ada_typedef_target_type (field_type);
8480 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8483 if (off + fld_bit_len > bit_len)
8484 bit_len = off + fld_bit_len;
8486 TYPE_LENGTH (rtype) =
8487 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8490 /* We handle the variant part, if any, at the end because of certain
8491 odd cases in which it is re-ordered so as NOT to be the last field of
8492 the record. This can happen in the presence of representation
8494 if (variant_field >= 0)
8496 struct type *branch_type;
8498 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8502 /* Using plain value_from_contents_and_address here causes
8503 problems because we will end up trying to resolve a type
8504 that is currently being constructed. */
8505 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8507 rtype = value_type (dval);
8513 to_fixed_variant_branch_type
8514 (TYPE_FIELD_TYPE (type, variant_field),
8515 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8516 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8517 if (branch_type == NULL)
8519 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8520 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8521 TYPE_NFIELDS (rtype) -= 1;
8525 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8526 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8528 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8530 if (off + fld_bit_len > bit_len)
8531 bit_len = off + fld_bit_len;
8532 TYPE_LENGTH (rtype) =
8533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8537 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8538 should contain the alignment of that record, which should be a strictly
8539 positive value. If null or negative, then something is wrong, most
8540 probably in the debug info. In that case, we don't round up the size
8541 of the resulting type. If this record is not part of another structure,
8542 the current RTYPE length might be good enough for our purposes. */
8543 if (TYPE_LENGTH (type) <= 0)
8545 if (TYPE_NAME (rtype))
8546 warning (_("Invalid type size for `%s' detected: %d."),
8547 TYPE_NAME (rtype), TYPE_LENGTH (type));
8549 warning (_("Invalid type size for <unnamed> detected: %d."),
8550 TYPE_LENGTH (type));
8554 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8555 TYPE_LENGTH (type));
8558 value_free_to_mark (mark);
8559 if (TYPE_LENGTH (rtype) > varsize_limit)
8560 error (_("record type with dynamic size is larger than varsize-limit"));
8564 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8567 static struct type *
8568 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8569 CORE_ADDR address, struct value *dval0)
8571 return ada_template_to_fixed_record_type_1 (type, valaddr,
8575 /* An ordinary record type in which ___XVL-convention fields and
8576 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8577 static approximations, containing all possible fields. Uses
8578 no runtime values. Useless for use in values, but that's OK,
8579 since the results are used only for type determinations. Works on both
8580 structs and unions. Representation note: to save space, we memorize
8581 the result of this function in the TYPE_TARGET_TYPE of the
8584 static struct type *
8585 template_to_static_fixed_type (struct type *type0)
8591 /* No need no do anything if the input type is already fixed. */
8592 if (TYPE_FIXED_INSTANCE (type0))
8595 /* Likewise if we already have computed the static approximation. */
8596 if (TYPE_TARGET_TYPE (type0) != NULL)
8597 return TYPE_TARGET_TYPE (type0);
8599 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8601 nfields = TYPE_NFIELDS (type0);
8603 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8604 recompute all over next time. */
8605 TYPE_TARGET_TYPE (type0) = type;
8607 for (f = 0; f < nfields; f += 1)
8609 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8610 struct type *new_type;
8612 if (is_dynamic_field (type0, f))
8614 field_type = ada_check_typedef (field_type);
8615 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8618 new_type = static_unwrap_type (field_type);
8620 if (new_type != field_type)
8622 /* Clone TYPE0 only the first time we get a new field type. */
8625 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8626 TYPE_CODE (type) = TYPE_CODE (type0);
8627 INIT_CPLUS_SPECIFIC (type);
8628 TYPE_NFIELDS (type) = nfields;
8629 TYPE_FIELDS (type) = (struct field *)
8630 TYPE_ALLOC (type, nfields * sizeof (struct field));
8631 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8632 sizeof (struct field) * nfields);
8633 TYPE_NAME (type) = ada_type_name (type0);
8634 TYPE_FIXED_INSTANCE (type) = 1;
8635 TYPE_LENGTH (type) = 0;
8637 TYPE_FIELD_TYPE (type, f) = new_type;
8638 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8645 /* Given an object of type TYPE whose contents are at VALADDR and
8646 whose address in memory is ADDRESS, returns a revision of TYPE,
8647 which should be a non-dynamic-sized record, in which the variant
8648 part, if any, is replaced with the appropriate branch. Looks
8649 for discriminant values in DVAL0, which can be NULL if the record
8650 contains the necessary discriminant values. */
8652 static struct type *
8653 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8654 CORE_ADDR address, struct value *dval0)
8656 struct value *mark = value_mark ();
8659 struct type *branch_type;
8660 int nfields = TYPE_NFIELDS (type);
8661 int variant_field = variant_field_index (type);
8663 if (variant_field == -1)
8668 dval = value_from_contents_and_address (type, valaddr, address);
8669 type = value_type (dval);
8674 rtype = alloc_type_copy (type);
8675 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8676 INIT_CPLUS_SPECIFIC (rtype);
8677 TYPE_NFIELDS (rtype) = nfields;
8678 TYPE_FIELDS (rtype) =
8679 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8680 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8681 sizeof (struct field) * nfields);
8682 TYPE_NAME (rtype) = ada_type_name (type);
8683 TYPE_FIXED_INSTANCE (rtype) = 1;
8684 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8686 branch_type = to_fixed_variant_branch_type
8687 (TYPE_FIELD_TYPE (type, variant_field),
8688 cond_offset_host (valaddr,
8689 TYPE_FIELD_BITPOS (type, variant_field)
8691 cond_offset_target (address,
8692 TYPE_FIELD_BITPOS (type, variant_field)
8693 / TARGET_CHAR_BIT), dval);
8694 if (branch_type == NULL)
8698 for (f = variant_field + 1; f < nfields; f += 1)
8699 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8700 TYPE_NFIELDS (rtype) -= 1;
8704 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8705 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8706 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8707 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8709 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8711 value_free_to_mark (mark);
8715 /* An ordinary record type (with fixed-length fields) that describes
8716 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8717 beginning of this section]. Any necessary discriminants' values
8718 should be in DVAL, a record value; it may be NULL if the object
8719 at ADDR itself contains any necessary discriminant values.
8720 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8721 values from the record are needed. Except in the case that DVAL,
8722 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8723 unchecked) is replaced by a particular branch of the variant.
8725 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8726 is questionable and may be removed. It can arise during the
8727 processing of an unconstrained-array-of-record type where all the
8728 variant branches have exactly the same size. This is because in
8729 such cases, the compiler does not bother to use the XVS convention
8730 when encoding the record. I am currently dubious of this
8731 shortcut and suspect the compiler should be altered. FIXME. */
8733 static struct type *
8734 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8735 CORE_ADDR address, struct value *dval)
8737 struct type *templ_type;
8739 if (TYPE_FIXED_INSTANCE (type0))
8742 templ_type = dynamic_template_type (type0);
8744 if (templ_type != NULL)
8745 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8746 else if (variant_field_index (type0) >= 0)
8748 if (dval == NULL && valaddr == NULL && address == 0)
8750 return to_record_with_fixed_variant_part (type0, valaddr, address,
8755 TYPE_FIXED_INSTANCE (type0) = 1;
8761 /* An ordinary record type (with fixed-length fields) that describes
8762 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8763 union type. Any necessary discriminants' values should be in DVAL,
8764 a record value. That is, this routine selects the appropriate
8765 branch of the union at ADDR according to the discriminant value
8766 indicated in the union's type name. Returns VAR_TYPE0 itself if
8767 it represents a variant subject to a pragma Unchecked_Union. */
8769 static struct type *
8770 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8771 CORE_ADDR address, struct value *dval)
8774 struct type *templ_type;
8775 struct type *var_type;
8777 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8778 var_type = TYPE_TARGET_TYPE (var_type0);
8780 var_type = var_type0;
8782 templ_type = ada_find_parallel_type (var_type, "___XVU");
8784 if (templ_type != NULL)
8785 var_type = templ_type;
8787 if (is_unchecked_variant (var_type, value_type (dval)))
8790 ada_which_variant_applies (var_type,
8791 value_type (dval), value_contents (dval));
8794 return empty_record (var_type);
8795 else if (is_dynamic_field (var_type, which))
8796 return to_fixed_record_type
8797 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8798 valaddr, address, dval);
8799 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8801 to_fixed_record_type
8802 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8804 return TYPE_FIELD_TYPE (var_type, which);
8807 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8808 ENCODING_TYPE, a type following the GNAT conventions for discrete
8809 type encodings, only carries redundant information. */
8812 ada_is_redundant_range_encoding (struct type *range_type,
8813 struct type *encoding_type)
8815 const char *bounds_str;
8819 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8821 if (TYPE_CODE (get_base_type (range_type))
8822 != TYPE_CODE (get_base_type (encoding_type)))
8824 /* The compiler probably used a simple base type to describe
8825 the range type instead of the range's actual base type,
8826 expecting us to get the real base type from the encoding
8827 anyway. In this situation, the encoding cannot be ignored
8832 if (is_dynamic_type (range_type))
8835 if (TYPE_NAME (encoding_type) == NULL)
8838 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8839 if (bounds_str == NULL)
8842 n = 8; /* Skip "___XDLU_". */
8843 if (!ada_scan_number (bounds_str, n, &lo, &n))
8845 if (TYPE_LOW_BOUND (range_type) != lo)
8848 n += 2; /* Skip the "__" separator between the two bounds. */
8849 if (!ada_scan_number (bounds_str, n, &hi, &n))
8851 if (TYPE_HIGH_BOUND (range_type) != hi)
8857 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8858 a type following the GNAT encoding for describing array type
8859 indices, only carries redundant information. */
8862 ada_is_redundant_index_type_desc (struct type *array_type,
8863 struct type *desc_type)
8865 struct type *this_layer = check_typedef (array_type);
8868 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8870 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8871 TYPE_FIELD_TYPE (desc_type, i)))
8873 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8879 /* Assuming that TYPE0 is an array type describing the type of a value
8880 at ADDR, and that DVAL describes a record containing any
8881 discriminants used in TYPE0, returns a type for the value that
8882 contains no dynamic components (that is, no components whose sizes
8883 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8884 true, gives an error message if the resulting type's size is over
8887 static struct type *
8888 to_fixed_array_type (struct type *type0, struct value *dval,
8891 struct type *index_type_desc;
8892 struct type *result;
8893 int constrained_packed_array_p;
8894 static const char *xa_suffix = "___XA";
8896 type0 = ada_check_typedef (type0);
8897 if (TYPE_FIXED_INSTANCE (type0))
8900 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8901 if (constrained_packed_array_p)
8902 type0 = decode_constrained_packed_array_type (type0);
8904 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8906 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8907 encoding suffixed with 'P' may still be generated. If so,
8908 it should be used to find the XA type. */
8910 if (index_type_desc == NULL)
8912 const char *type_name = ada_type_name (type0);
8914 if (type_name != NULL)
8916 const int len = strlen (type_name);
8917 char *name = (char *) alloca (len + strlen (xa_suffix));
8919 if (type_name[len - 1] == 'P')
8921 strcpy (name, type_name);
8922 strcpy (name + len - 1, xa_suffix);
8923 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8928 ada_fixup_array_indexes_type (index_type_desc);
8929 if (index_type_desc != NULL
8930 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8932 /* Ignore this ___XA parallel type, as it does not bring any
8933 useful information. This allows us to avoid creating fixed
8934 versions of the array's index types, which would be identical
8935 to the original ones. This, in turn, can also help avoid
8936 the creation of fixed versions of the array itself. */
8937 index_type_desc = NULL;
8940 if (index_type_desc == NULL)
8942 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8944 /* NOTE: elt_type---the fixed version of elt_type0---should never
8945 depend on the contents of the array in properly constructed
8947 /* Create a fixed version of the array element type.
8948 We're not providing the address of an element here,
8949 and thus the actual object value cannot be inspected to do
8950 the conversion. This should not be a problem, since arrays of
8951 unconstrained objects are not allowed. In particular, all
8952 the elements of an array of a tagged type should all be of
8953 the same type specified in the debugging info. No need to
8954 consult the object tag. */
8955 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8957 /* Make sure we always create a new array type when dealing with
8958 packed array types, since we're going to fix-up the array
8959 type length and element bitsize a little further down. */
8960 if (elt_type0 == elt_type && !constrained_packed_array_p)
8963 result = create_array_type (alloc_type_copy (type0),
8964 elt_type, TYPE_INDEX_TYPE (type0));
8969 struct type *elt_type0;
8972 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8973 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8975 /* NOTE: result---the fixed version of elt_type0---should never
8976 depend on the contents of the array in properly constructed
8978 /* Create a fixed version of the array element type.
8979 We're not providing the address of an element here,
8980 and thus the actual object value cannot be inspected to do
8981 the conversion. This should not be a problem, since arrays of
8982 unconstrained objects are not allowed. In particular, all
8983 the elements of an array of a tagged type should all be of
8984 the same type specified in the debugging info. No need to
8985 consult the object tag. */
8987 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8990 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8992 struct type *range_type =
8993 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8995 result = create_array_type (alloc_type_copy (elt_type0),
8996 result, range_type);
8997 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8999 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9000 error (_("array type with dynamic size is larger than varsize-limit"));
9003 /* We want to preserve the type name. This can be useful when
9004 trying to get the type name of a value that has already been
9005 printed (for instance, if the user did "print VAR; whatis $". */
9006 TYPE_NAME (result) = TYPE_NAME (type0);
9008 if (constrained_packed_array_p)
9010 /* So far, the resulting type has been created as if the original
9011 type was a regular (non-packed) array type. As a result, the
9012 bitsize of the array elements needs to be set again, and the array
9013 length needs to be recomputed based on that bitsize. */
9014 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9015 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9017 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9018 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9019 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9020 TYPE_LENGTH (result)++;
9023 TYPE_FIXED_INSTANCE (result) = 1;
9028 /* A standard type (containing no dynamically sized components)
9029 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9030 DVAL describes a record containing any discriminants used in TYPE0,
9031 and may be NULL if there are none, or if the object of type TYPE at
9032 ADDRESS or in VALADDR contains these discriminants.
9034 If CHECK_TAG is not null, in the case of tagged types, this function
9035 attempts to locate the object's tag and use it to compute the actual
9036 type. However, when ADDRESS is null, we cannot use it to determine the
9037 location of the tag, and therefore compute the tagged type's actual type.
9038 So we return the tagged type without consulting the tag. */
9040 static struct type *
9041 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9042 CORE_ADDR address, struct value *dval, int check_tag)
9044 type = ada_check_typedef (type);
9045 switch (TYPE_CODE (type))
9049 case TYPE_CODE_STRUCT:
9051 struct type *static_type = to_static_fixed_type (type);
9052 struct type *fixed_record_type =
9053 to_fixed_record_type (type, valaddr, address, NULL);
9055 /* If STATIC_TYPE is a tagged type and we know the object's address,
9056 then we can determine its tag, and compute the object's actual
9057 type from there. Note that we have to use the fixed record
9058 type (the parent part of the record may have dynamic fields
9059 and the way the location of _tag is expressed may depend on
9062 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9065 value_tag_from_contents_and_address
9069 struct type *real_type = type_from_tag (tag);
9071 value_from_contents_and_address (fixed_record_type,
9074 fixed_record_type = value_type (obj);
9075 if (real_type != NULL)
9076 return to_fixed_record_type
9078 value_address (ada_tag_value_at_base_address (obj)), NULL);
9081 /* Check to see if there is a parallel ___XVZ variable.
9082 If there is, then it provides the actual size of our type. */
9083 else if (ada_type_name (fixed_record_type) != NULL)
9085 const char *name = ada_type_name (fixed_record_type);
9087 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9088 bool xvz_found = false;
9091 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9094 xvz_found = get_int_var_value (xvz_name, size);
9096 CATCH (except, RETURN_MASK_ERROR)
9098 /* We found the variable, but somehow failed to read
9099 its value. Rethrow the same error, but with a little
9100 bit more information, to help the user understand
9101 what went wrong (Eg: the variable might have been
9103 throw_error (except.error,
9104 _("unable to read value of %s (%s)"),
9105 xvz_name, except.message);
9109 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9111 fixed_record_type = copy_type (fixed_record_type);
9112 TYPE_LENGTH (fixed_record_type) = size;
9114 /* The FIXED_RECORD_TYPE may have be a stub. We have
9115 observed this when the debugging info is STABS, and
9116 apparently it is something that is hard to fix.
9118 In practice, we don't need the actual type definition
9119 at all, because the presence of the XVZ variable allows us
9120 to assume that there must be a XVS type as well, which we
9121 should be able to use later, when we need the actual type
9124 In the meantime, pretend that the "fixed" type we are
9125 returning is NOT a stub, because this can cause trouble
9126 when using this type to create new types targeting it.
9127 Indeed, the associated creation routines often check
9128 whether the target type is a stub and will try to replace
9129 it, thus using a type with the wrong size. This, in turn,
9130 might cause the new type to have the wrong size too.
9131 Consider the case of an array, for instance, where the size
9132 of the array is computed from the number of elements in
9133 our array multiplied by the size of its element. */
9134 TYPE_STUB (fixed_record_type) = 0;
9137 return fixed_record_type;
9139 case TYPE_CODE_ARRAY:
9140 return to_fixed_array_type (type, dval, 1);
9141 case TYPE_CODE_UNION:
9145 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9149 /* The same as ada_to_fixed_type_1, except that it preserves the type
9150 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9152 The typedef layer needs be preserved in order to differentiate between
9153 arrays and array pointers when both types are implemented using the same
9154 fat pointer. In the array pointer case, the pointer is encoded as
9155 a typedef of the pointer type. For instance, considering:
9157 type String_Access is access String;
9158 S1 : String_Access := null;
9160 To the debugger, S1 is defined as a typedef of type String. But
9161 to the user, it is a pointer. So if the user tries to print S1,
9162 we should not dereference the array, but print the array address
9165 If we didn't preserve the typedef layer, we would lose the fact that
9166 the type is to be presented as a pointer (needs de-reference before
9167 being printed). And we would also use the source-level type name. */
9170 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9171 CORE_ADDR address, struct value *dval, int check_tag)
9174 struct type *fixed_type =
9175 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9177 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9178 then preserve the typedef layer.
9180 Implementation note: We can only check the main-type portion of
9181 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9182 from TYPE now returns a type that has the same instance flags
9183 as TYPE. For instance, if TYPE is a "typedef const", and its
9184 target type is a "struct", then the typedef elimination will return
9185 a "const" version of the target type. See check_typedef for more
9186 details about how the typedef layer elimination is done.
9188 brobecker/2010-11-19: It seems to me that the only case where it is
9189 useful to preserve the typedef layer is when dealing with fat pointers.
9190 Perhaps, we could add a check for that and preserve the typedef layer
9191 only in that situation. But this seems unecessary so far, probably
9192 because we call check_typedef/ada_check_typedef pretty much everywhere.
9194 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9195 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9196 == TYPE_MAIN_TYPE (fixed_type)))
9202 /* A standard (static-sized) type corresponding as well as possible to
9203 TYPE0, but based on no runtime data. */
9205 static struct type *
9206 to_static_fixed_type (struct type *type0)
9213 if (TYPE_FIXED_INSTANCE (type0))
9216 type0 = ada_check_typedef (type0);
9218 switch (TYPE_CODE (type0))
9222 case TYPE_CODE_STRUCT:
9223 type = dynamic_template_type (type0);
9225 return template_to_static_fixed_type (type);
9227 return template_to_static_fixed_type (type0);
9228 case TYPE_CODE_UNION:
9229 type = ada_find_parallel_type (type0, "___XVU");
9231 return template_to_static_fixed_type (type);
9233 return template_to_static_fixed_type (type0);
9237 /* A static approximation of TYPE with all type wrappers removed. */
9239 static struct type *
9240 static_unwrap_type (struct type *type)
9242 if (ada_is_aligner_type (type))
9244 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9245 if (ada_type_name (type1) == NULL)
9246 TYPE_NAME (type1) = ada_type_name (type);
9248 return static_unwrap_type (type1);
9252 struct type *raw_real_type = ada_get_base_type (type);
9254 if (raw_real_type == type)
9257 return to_static_fixed_type (raw_real_type);
9261 /* In some cases, incomplete and private types require
9262 cross-references that are not resolved as records (for example,
9264 type FooP is access Foo;
9266 type Foo is array ...;
9267 ). In these cases, since there is no mechanism for producing
9268 cross-references to such types, we instead substitute for FooP a
9269 stub enumeration type that is nowhere resolved, and whose tag is
9270 the name of the actual type. Call these types "non-record stubs". */
9272 /* A type equivalent to TYPE that is not a non-record stub, if one
9273 exists, otherwise TYPE. */
9276 ada_check_typedef (struct type *type)
9281 /* If our type is an access to an unconstrained array, which is encoded
9282 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9283 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9284 what allows us to distinguish between fat pointers that represent
9285 array types, and fat pointers that represent array access types
9286 (in both cases, the compiler implements them as fat pointers). */
9287 if (ada_is_access_to_unconstrained_array (type))
9290 type = check_typedef (type);
9291 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9292 || !TYPE_STUB (type)
9293 || TYPE_NAME (type) == NULL)
9297 const char *name = TYPE_NAME (type);
9298 struct type *type1 = ada_find_any_type (name);
9303 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9304 stubs pointing to arrays, as we don't create symbols for array
9305 types, only for the typedef-to-array types). If that's the case,
9306 strip the typedef layer. */
9307 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9308 type1 = ada_check_typedef (type1);
9314 /* A value representing the data at VALADDR/ADDRESS as described by
9315 type TYPE0, but with a standard (static-sized) type that correctly
9316 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9317 type, then return VAL0 [this feature is simply to avoid redundant
9318 creation of struct values]. */
9320 static struct value *
9321 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9324 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9326 if (type == type0 && val0 != NULL)
9329 if (VALUE_LVAL (val0) != lval_memory)
9331 /* Our value does not live in memory; it could be a convenience
9332 variable, for instance. Create a not_lval value using val0's
9334 return value_from_contents (type, value_contents (val0));
9337 return value_from_contents_and_address (type, 0, address);
9340 /* A value representing VAL, but with a standard (static-sized) type
9341 that correctly describes it. Does not necessarily create a new
9345 ada_to_fixed_value (struct value *val)
9347 val = unwrap_value (val);
9348 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9355 /* Table mapping attribute numbers to names.
9356 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9358 static const char *attribute_names[] = {
9376 ada_attribute_name (enum exp_opcode n)
9378 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9379 return attribute_names[n - OP_ATR_FIRST + 1];
9381 return attribute_names[0];
9384 /* Evaluate the 'POS attribute applied to ARG. */
9387 pos_atr (struct value *arg)
9389 struct value *val = coerce_ref (arg);
9390 struct type *type = value_type (val);
9393 if (!discrete_type_p (type))
9394 error (_("'POS only defined on discrete types"));
9396 if (!discrete_position (type, value_as_long (val), &result))
9397 error (_("enumeration value is invalid: can't find 'POS"));
9402 static struct value *
9403 value_pos_atr (struct type *type, struct value *arg)
9405 return value_from_longest (type, pos_atr (arg));
9408 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9410 static struct value *
9411 value_val_atr (struct type *type, struct value *arg)
9413 if (!discrete_type_p (type))
9414 error (_("'VAL only defined on discrete types"));
9415 if (!integer_type_p (value_type (arg)))
9416 error (_("'VAL requires integral argument"));
9418 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9420 long pos = value_as_long (arg);
9422 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9423 error (_("argument to 'VAL out of range"));
9424 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9427 return value_from_longest (type, value_as_long (arg));
9433 /* True if TYPE appears to be an Ada character type.
9434 [At the moment, this is true only for Character and Wide_Character;
9435 It is a heuristic test that could stand improvement]. */
9438 ada_is_character_type (struct type *type)
9442 /* If the type code says it's a character, then assume it really is,
9443 and don't check any further. */
9444 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9447 /* Otherwise, assume it's a character type iff it is a discrete type
9448 with a known character type name. */
9449 name = ada_type_name (type);
9450 return (name != NULL
9451 && (TYPE_CODE (type) == TYPE_CODE_INT
9452 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9453 && (strcmp (name, "character") == 0
9454 || strcmp (name, "wide_character") == 0
9455 || strcmp (name, "wide_wide_character") == 0
9456 || strcmp (name, "unsigned char") == 0));
9459 /* True if TYPE appears to be an Ada string type. */
9462 ada_is_string_type (struct type *type)
9464 type = ada_check_typedef (type);
9466 && TYPE_CODE (type) != TYPE_CODE_PTR
9467 && (ada_is_simple_array_type (type)
9468 || ada_is_array_descriptor_type (type))
9469 && ada_array_arity (type) == 1)
9471 struct type *elttype = ada_array_element_type (type, 1);
9473 return ada_is_character_type (elttype);
9479 /* The compiler sometimes provides a parallel XVS type for a given
9480 PAD type. Normally, it is safe to follow the PAD type directly,
9481 but older versions of the compiler have a bug that causes the offset
9482 of its "F" field to be wrong. Following that field in that case
9483 would lead to incorrect results, but this can be worked around
9484 by ignoring the PAD type and using the associated XVS type instead.
9486 Set to True if the debugger should trust the contents of PAD types.
9487 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9488 static int trust_pad_over_xvs = 1;
9490 /* True if TYPE is a struct type introduced by the compiler to force the
9491 alignment of a value. Such types have a single field with a
9492 distinctive name. */
9495 ada_is_aligner_type (struct type *type)
9497 type = ada_check_typedef (type);
9499 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9502 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9503 && TYPE_NFIELDS (type) == 1
9504 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9507 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9508 the parallel type. */
9511 ada_get_base_type (struct type *raw_type)
9513 struct type *real_type_namer;
9514 struct type *raw_real_type;
9516 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9519 if (ada_is_aligner_type (raw_type))
9520 /* The encoding specifies that we should always use the aligner type.
9521 So, even if this aligner type has an associated XVS type, we should
9524 According to the compiler gurus, an XVS type parallel to an aligner
9525 type may exist because of a stabs limitation. In stabs, aligner
9526 types are empty because the field has a variable-sized type, and
9527 thus cannot actually be used as an aligner type. As a result,
9528 we need the associated parallel XVS type to decode the type.
9529 Since the policy in the compiler is to not change the internal
9530 representation based on the debugging info format, we sometimes
9531 end up having a redundant XVS type parallel to the aligner type. */
9534 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9535 if (real_type_namer == NULL
9536 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9537 || TYPE_NFIELDS (real_type_namer) != 1)
9540 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9542 /* This is an older encoding form where the base type needs to be
9543 looked up by name. We prefer the newer enconding because it is
9545 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9546 if (raw_real_type == NULL)
9549 return raw_real_type;
9552 /* The field in our XVS type is a reference to the base type. */
9553 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9556 /* The type of value designated by TYPE, with all aligners removed. */
9559 ada_aligned_type (struct type *type)
9561 if (ada_is_aligner_type (type))
9562 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9564 return ada_get_base_type (type);
9568 /* The address of the aligned value in an object at address VALADDR
9569 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9572 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9574 if (ada_is_aligner_type (type))
9575 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9577 TYPE_FIELD_BITPOS (type,
9578 0) / TARGET_CHAR_BIT);
9585 /* The printed representation of an enumeration literal with encoded
9586 name NAME. The value is good to the next call of ada_enum_name. */
9588 ada_enum_name (const char *name)
9590 static char *result;
9591 static size_t result_len = 0;
9594 /* First, unqualify the enumeration name:
9595 1. Search for the last '.' character. If we find one, then skip
9596 all the preceding characters, the unqualified name starts
9597 right after that dot.
9598 2. Otherwise, we may be debugging on a target where the compiler
9599 translates dots into "__". Search forward for double underscores,
9600 but stop searching when we hit an overloading suffix, which is
9601 of the form "__" followed by digits. */
9603 tmp = strrchr (name, '.');
9608 while ((tmp = strstr (name, "__")) != NULL)
9610 if (isdigit (tmp[2]))
9621 if (name[1] == 'U' || name[1] == 'W')
9623 if (sscanf (name + 2, "%x", &v) != 1)
9629 GROW_VECT (result, result_len, 16);
9630 if (isascii (v) && isprint (v))
9631 xsnprintf (result, result_len, "'%c'", v);
9632 else if (name[1] == 'U')
9633 xsnprintf (result, result_len, "[\"%02x\"]", v);
9635 xsnprintf (result, result_len, "[\"%04x\"]", v);
9641 tmp = strstr (name, "__");
9643 tmp = strstr (name, "$");
9646 GROW_VECT (result, result_len, tmp - name + 1);
9647 strncpy (result, name, tmp - name);
9648 result[tmp - name] = '\0';
9656 /* Evaluate the subexpression of EXP starting at *POS as for
9657 evaluate_type, updating *POS to point just past the evaluated
9660 static struct value *
9661 evaluate_subexp_type (struct expression *exp, int *pos)
9663 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9666 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9669 static struct value *
9670 unwrap_value (struct value *val)
9672 struct type *type = ada_check_typedef (value_type (val));
9674 if (ada_is_aligner_type (type))
9676 struct value *v = ada_value_struct_elt (val, "F", 0);
9677 struct type *val_type = ada_check_typedef (value_type (v));
9679 if (ada_type_name (val_type) == NULL)
9680 TYPE_NAME (val_type) = ada_type_name (type);
9682 return unwrap_value (v);
9686 struct type *raw_real_type =
9687 ada_check_typedef (ada_get_base_type (type));
9689 /* If there is no parallel XVS or XVE type, then the value is
9690 already unwrapped. Return it without further modification. */
9691 if ((type == raw_real_type)
9692 && ada_find_parallel_type (type, "___XVE") == NULL)
9696 coerce_unspec_val_to_type
9697 (val, ada_to_fixed_type (raw_real_type, 0,
9698 value_address (val),
9703 static struct value *
9704 cast_from_fixed (struct type *type, struct value *arg)
9706 struct value *scale = ada_scaling_factor (value_type (arg));
9707 arg = value_cast (value_type (scale), arg);
9709 arg = value_binop (arg, scale, BINOP_MUL);
9710 return value_cast (type, arg);
9713 static struct value *
9714 cast_to_fixed (struct type *type, struct value *arg)
9716 if (type == value_type (arg))
9719 struct value *scale = ada_scaling_factor (type);
9720 if (ada_is_fixed_point_type (value_type (arg)))
9721 arg = cast_from_fixed (value_type (scale), arg);
9723 arg = value_cast (value_type (scale), arg);
9725 arg = value_binop (arg, scale, BINOP_DIV);
9726 return value_cast (type, arg);
9729 /* Given two array types T1 and T2, return nonzero iff both arrays
9730 contain the same number of elements. */
9733 ada_same_array_size_p (struct type *t1, struct type *t2)
9735 LONGEST lo1, hi1, lo2, hi2;
9737 /* Get the array bounds in order to verify that the size of
9738 the two arrays match. */
9739 if (!get_array_bounds (t1, &lo1, &hi1)
9740 || !get_array_bounds (t2, &lo2, &hi2))
9741 error (_("unable to determine array bounds"));
9743 /* To make things easier for size comparison, normalize a bit
9744 the case of empty arrays by making sure that the difference
9745 between upper bound and lower bound is always -1. */
9751 return (hi1 - lo1 == hi2 - lo2);
9754 /* Assuming that VAL is an array of integrals, and TYPE represents
9755 an array with the same number of elements, but with wider integral
9756 elements, return an array "casted" to TYPE. In practice, this
9757 means that the returned array is built by casting each element
9758 of the original array into TYPE's (wider) element type. */
9760 static struct value *
9761 ada_promote_array_of_integrals (struct type *type, struct value *val)
9763 struct type *elt_type = TYPE_TARGET_TYPE (type);
9768 /* Verify that both val and type are arrays of scalars, and
9769 that the size of val's elements is smaller than the size
9770 of type's element. */
9771 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9772 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9773 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9774 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9775 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9776 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9778 if (!get_array_bounds (type, &lo, &hi))
9779 error (_("unable to determine array bounds"));
9781 res = allocate_value (type);
9783 /* Promote each array element. */
9784 for (i = 0; i < hi - lo + 1; i++)
9786 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9788 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9789 value_contents_all (elt), TYPE_LENGTH (elt_type));
9795 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9796 return the converted value. */
9798 static struct value *
9799 coerce_for_assign (struct type *type, struct value *val)
9801 struct type *type2 = value_type (val);
9806 type2 = ada_check_typedef (type2);
9807 type = ada_check_typedef (type);
9809 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9812 val = ada_value_ind (val);
9813 type2 = value_type (val);
9816 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9817 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9819 if (!ada_same_array_size_p (type, type2))
9820 error (_("cannot assign arrays of different length"));
9822 if (is_integral_type (TYPE_TARGET_TYPE (type))
9823 && is_integral_type (TYPE_TARGET_TYPE (type2))
9824 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9825 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9827 /* Allow implicit promotion of the array elements to
9829 return ada_promote_array_of_integrals (type, val);
9832 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9833 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9834 error (_("Incompatible types in assignment"));
9835 deprecated_set_value_type (val, type);
9840 static struct value *
9841 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9844 struct type *type1, *type2;
9847 arg1 = coerce_ref (arg1);
9848 arg2 = coerce_ref (arg2);
9849 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9850 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9852 if (TYPE_CODE (type1) != TYPE_CODE_INT
9853 || TYPE_CODE (type2) != TYPE_CODE_INT)
9854 return value_binop (arg1, arg2, op);
9863 return value_binop (arg1, arg2, op);
9866 v2 = value_as_long (arg2);
9868 error (_("second operand of %s must not be zero."), op_string (op));
9870 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9871 return value_binop (arg1, arg2, op);
9873 v1 = value_as_long (arg1);
9878 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9879 v += v > 0 ? -1 : 1;
9887 /* Should not reach this point. */
9891 val = allocate_value (type1);
9892 store_unsigned_integer (value_contents_raw (val),
9893 TYPE_LENGTH (value_type (val)),
9894 gdbarch_byte_order (get_type_arch (type1)), v);
9899 ada_value_equal (struct value *arg1, struct value *arg2)
9901 if (ada_is_direct_array_type (value_type (arg1))
9902 || ada_is_direct_array_type (value_type (arg2)))
9904 struct type *arg1_type, *arg2_type;
9906 /* Automatically dereference any array reference before
9907 we attempt to perform the comparison. */
9908 arg1 = ada_coerce_ref (arg1);
9909 arg2 = ada_coerce_ref (arg2);
9911 arg1 = ada_coerce_to_simple_array (arg1);
9912 arg2 = ada_coerce_to_simple_array (arg2);
9914 arg1_type = ada_check_typedef (value_type (arg1));
9915 arg2_type = ada_check_typedef (value_type (arg2));
9917 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9918 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9919 error (_("Attempt to compare array with non-array"));
9920 /* FIXME: The following works only for types whose
9921 representations use all bits (no padding or undefined bits)
9922 and do not have user-defined equality. */
9923 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9924 && memcmp (value_contents (arg1), value_contents (arg2),
9925 TYPE_LENGTH (arg1_type)) == 0);
9927 return value_equal (arg1, arg2);
9930 /* Total number of component associations in the aggregate starting at
9931 index PC in EXP. Assumes that index PC is the start of an
9935 num_component_specs (struct expression *exp, int pc)
9939 m = exp->elts[pc + 1].longconst;
9942 for (i = 0; i < m; i += 1)
9944 switch (exp->elts[pc].opcode)
9950 n += exp->elts[pc + 1].longconst;
9953 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9958 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9959 component of LHS (a simple array or a record), updating *POS past
9960 the expression, assuming that LHS is contained in CONTAINER. Does
9961 not modify the inferior's memory, nor does it modify LHS (unless
9962 LHS == CONTAINER). */
9965 assign_component (struct value *container, struct value *lhs, LONGEST index,
9966 struct expression *exp, int *pos)
9968 struct value *mark = value_mark ();
9970 struct type *lhs_type = check_typedef (value_type (lhs));
9972 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9974 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9975 struct value *index_val = value_from_longest (index_type, index);
9977 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9981 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9982 elt = ada_to_fixed_value (elt);
9985 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9986 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9988 value_assign_to_component (container, elt,
9989 ada_evaluate_subexp (NULL, exp, pos,
9992 value_free_to_mark (mark);
9995 /* Assuming that LHS represents an lvalue having a record or array
9996 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9997 of that aggregate's value to LHS, advancing *POS past the
9998 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9999 lvalue containing LHS (possibly LHS itself). Does not modify
10000 the inferior's memory, nor does it modify the contents of
10001 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10003 static struct value *
10004 assign_aggregate (struct value *container,
10005 struct value *lhs, struct expression *exp,
10006 int *pos, enum noside noside)
10008 struct type *lhs_type;
10009 int n = exp->elts[*pos+1].longconst;
10010 LONGEST low_index, high_index;
10013 int max_indices, num_indices;
10017 if (noside != EVAL_NORMAL)
10019 for (i = 0; i < n; i += 1)
10020 ada_evaluate_subexp (NULL, exp, pos, noside);
10024 container = ada_coerce_ref (container);
10025 if (ada_is_direct_array_type (value_type (container)))
10026 container = ada_coerce_to_simple_array (container);
10027 lhs = ada_coerce_ref (lhs);
10028 if (!deprecated_value_modifiable (lhs))
10029 error (_("Left operand of assignment is not a modifiable lvalue."));
10031 lhs_type = check_typedef (value_type (lhs));
10032 if (ada_is_direct_array_type (lhs_type))
10034 lhs = ada_coerce_to_simple_array (lhs);
10035 lhs_type = check_typedef (value_type (lhs));
10036 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10037 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10039 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10042 high_index = num_visible_fields (lhs_type) - 1;
10045 error (_("Left-hand side must be array or record."));
10047 num_specs = num_component_specs (exp, *pos - 3);
10048 max_indices = 4 * num_specs + 4;
10049 indices = XALLOCAVEC (LONGEST, max_indices);
10050 indices[0] = indices[1] = low_index - 1;
10051 indices[2] = indices[3] = high_index + 1;
10054 for (i = 0; i < n; i += 1)
10056 switch (exp->elts[*pos].opcode)
10059 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10060 &num_indices, max_indices,
10061 low_index, high_index);
10063 case OP_POSITIONAL:
10064 aggregate_assign_positional (container, lhs, exp, pos, indices,
10065 &num_indices, max_indices,
10066 low_index, high_index);
10070 error (_("Misplaced 'others' clause"));
10071 aggregate_assign_others (container, lhs, exp, pos, indices,
10072 num_indices, low_index, high_index);
10075 error (_("Internal error: bad aggregate clause"));
10082 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10083 construct at *POS, updating *POS past the construct, given that
10084 the positions are relative to lower bound LOW, where HIGH is the
10085 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10086 updating *NUM_INDICES as needed. CONTAINER is as for
10087 assign_aggregate. */
10089 aggregate_assign_positional (struct value *container,
10090 struct value *lhs, struct expression *exp,
10091 int *pos, LONGEST *indices, int *num_indices,
10092 int max_indices, LONGEST low, LONGEST high)
10094 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10096 if (ind - 1 == high)
10097 warning (_("Extra components in aggregate ignored."));
10100 add_component_interval (ind, ind, indices, num_indices, max_indices);
10102 assign_component (container, lhs, ind, exp, pos);
10105 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10108 /* Assign into the components of LHS indexed by the OP_CHOICES
10109 construct at *POS, updating *POS past the construct, given that
10110 the allowable indices are LOW..HIGH. Record the indices assigned
10111 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10112 needed. CONTAINER is as for assign_aggregate. */
10114 aggregate_assign_from_choices (struct value *container,
10115 struct value *lhs, struct expression *exp,
10116 int *pos, LONGEST *indices, int *num_indices,
10117 int max_indices, LONGEST low, LONGEST high)
10120 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10121 int choice_pos, expr_pc;
10122 int is_array = ada_is_direct_array_type (value_type (lhs));
10124 choice_pos = *pos += 3;
10126 for (j = 0; j < n_choices; j += 1)
10127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10129 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10131 for (j = 0; j < n_choices; j += 1)
10133 LONGEST lower, upper;
10134 enum exp_opcode op = exp->elts[choice_pos].opcode;
10136 if (op == OP_DISCRETE_RANGE)
10139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10141 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10146 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10158 name = &exp->elts[choice_pos + 2].string;
10161 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10164 error (_("Invalid record component association."));
10166 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10168 if (! find_struct_field (name, value_type (lhs), 0,
10169 NULL, NULL, NULL, NULL, &ind))
10170 error (_("Unknown component name: %s."), name);
10171 lower = upper = ind;
10174 if (lower <= upper && (lower < low || upper > high))
10175 error (_("Index in component association out of bounds."));
10177 add_component_interval (lower, upper, indices, num_indices,
10179 while (lower <= upper)
10184 assign_component (container, lhs, lower, exp, &pos1);
10190 /* Assign the value of the expression in the OP_OTHERS construct in
10191 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10192 have not been previously assigned. The index intervals already assigned
10193 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10194 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10196 aggregate_assign_others (struct value *container,
10197 struct value *lhs, struct expression *exp,
10198 int *pos, LONGEST *indices, int num_indices,
10199 LONGEST low, LONGEST high)
10202 int expr_pc = *pos + 1;
10204 for (i = 0; i < num_indices - 2; i += 2)
10208 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10212 localpos = expr_pc;
10213 assign_component (container, lhs, ind, exp, &localpos);
10216 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10219 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10220 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10221 modifying *SIZE as needed. It is an error if *SIZE exceeds
10222 MAX_SIZE. The resulting intervals do not overlap. */
10224 add_component_interval (LONGEST low, LONGEST high,
10225 LONGEST* indices, int *size, int max_size)
10229 for (i = 0; i < *size; i += 2) {
10230 if (high >= indices[i] && low <= indices[i + 1])
10234 for (kh = i + 2; kh < *size; kh += 2)
10235 if (high < indices[kh])
10237 if (low < indices[i])
10239 indices[i + 1] = indices[kh - 1];
10240 if (high > indices[i + 1])
10241 indices[i + 1] = high;
10242 memcpy (indices + i + 2, indices + kh, *size - kh);
10243 *size -= kh - i - 2;
10246 else if (high < indices[i])
10250 if (*size == max_size)
10251 error (_("Internal error: miscounted aggregate components."));
10253 for (j = *size-1; j >= i+2; j -= 1)
10254 indices[j] = indices[j - 2];
10256 indices[i + 1] = high;
10259 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10262 static struct value *
10263 ada_value_cast (struct type *type, struct value *arg2)
10265 if (type == ada_check_typedef (value_type (arg2)))
10268 if (ada_is_fixed_point_type (type))
10269 return cast_to_fixed (type, arg2);
10271 if (ada_is_fixed_point_type (value_type (arg2)))
10272 return cast_from_fixed (type, arg2);
10274 return value_cast (type, arg2);
10277 /* Evaluating Ada expressions, and printing their result.
10278 ------------------------------------------------------
10283 We usually evaluate an Ada expression in order to print its value.
10284 We also evaluate an expression in order to print its type, which
10285 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10286 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10287 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10288 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10291 Evaluating expressions is a little more complicated for Ada entities
10292 than it is for entities in languages such as C. The main reason for
10293 this is that Ada provides types whose definition might be dynamic.
10294 One example of such types is variant records. Or another example
10295 would be an array whose bounds can only be known at run time.
10297 The following description is a general guide as to what should be
10298 done (and what should NOT be done) in order to evaluate an expression
10299 involving such types, and when. This does not cover how the semantic
10300 information is encoded by GNAT as this is covered separatly. For the
10301 document used as the reference for the GNAT encoding, see exp_dbug.ads
10302 in the GNAT sources.
10304 Ideally, we should embed each part of this description next to its
10305 associated code. Unfortunately, the amount of code is so vast right
10306 now that it's hard to see whether the code handling a particular
10307 situation might be duplicated or not. One day, when the code is
10308 cleaned up, this guide might become redundant with the comments
10309 inserted in the code, and we might want to remove it.
10311 2. ``Fixing'' an Entity, the Simple Case:
10312 -----------------------------------------
10314 When evaluating Ada expressions, the tricky issue is that they may
10315 reference entities whose type contents and size are not statically
10316 known. Consider for instance a variant record:
10318 type Rec (Empty : Boolean := True) is record
10321 when False => Value : Integer;
10324 Yes : Rec := (Empty => False, Value => 1);
10325 No : Rec := (empty => True);
10327 The size and contents of that record depends on the value of the
10328 descriminant (Rec.Empty). At this point, neither the debugging
10329 information nor the associated type structure in GDB are able to
10330 express such dynamic types. So what the debugger does is to create
10331 "fixed" versions of the type that applies to the specific object.
10332 We also informally refer to this opperation as "fixing" an object,
10333 which means creating its associated fixed type.
10335 Example: when printing the value of variable "Yes" above, its fixed
10336 type would look like this:
10343 On the other hand, if we printed the value of "No", its fixed type
10350 Things become a little more complicated when trying to fix an entity
10351 with a dynamic type that directly contains another dynamic type,
10352 such as an array of variant records, for instance. There are
10353 two possible cases: Arrays, and records.
10355 3. ``Fixing'' Arrays:
10356 ---------------------
10358 The type structure in GDB describes an array in terms of its bounds,
10359 and the type of its elements. By design, all elements in the array
10360 have the same type and we cannot represent an array of variant elements
10361 using the current type structure in GDB. When fixing an array,
10362 we cannot fix the array element, as we would potentially need one
10363 fixed type per element of the array. As a result, the best we can do
10364 when fixing an array is to produce an array whose bounds and size
10365 are correct (allowing us to read it from memory), but without having
10366 touched its element type. Fixing each element will be done later,
10367 when (if) necessary.
10369 Arrays are a little simpler to handle than records, because the same
10370 amount of memory is allocated for each element of the array, even if
10371 the amount of space actually used by each element differs from element
10372 to element. Consider for instance the following array of type Rec:
10374 type Rec_Array is array (1 .. 2) of Rec;
10376 The actual amount of memory occupied by each element might be different
10377 from element to element, depending on the value of their discriminant.
10378 But the amount of space reserved for each element in the array remains
10379 fixed regardless. So we simply need to compute that size using
10380 the debugging information available, from which we can then determine
10381 the array size (we multiply the number of elements of the array by
10382 the size of each element).
10384 The simplest case is when we have an array of a constrained element
10385 type. For instance, consider the following type declarations:
10387 type Bounded_String (Max_Size : Integer) is
10389 Buffer : String (1 .. Max_Size);
10391 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10393 In this case, the compiler describes the array as an array of
10394 variable-size elements (identified by its XVS suffix) for which
10395 the size can be read in the parallel XVZ variable.
10397 In the case of an array of an unconstrained element type, the compiler
10398 wraps the array element inside a private PAD type. This type should not
10399 be shown to the user, and must be "unwrap"'ed before printing. Note
10400 that we also use the adjective "aligner" in our code to designate
10401 these wrapper types.
10403 In some cases, the size allocated for each element is statically
10404 known. In that case, the PAD type already has the correct size,
10405 and the array element should remain unfixed.
10407 But there are cases when this size is not statically known.
10408 For instance, assuming that "Five" is an integer variable:
10410 type Dynamic is array (1 .. Five) of Integer;
10411 type Wrapper (Has_Length : Boolean := False) is record
10414 when True => Length : Integer;
10415 when False => null;
10418 type Wrapper_Array is array (1 .. 2) of Wrapper;
10420 Hello : Wrapper_Array := (others => (Has_Length => True,
10421 Data => (others => 17),
10425 The debugging info would describe variable Hello as being an
10426 array of a PAD type. The size of that PAD type is not statically
10427 known, but can be determined using a parallel XVZ variable.
10428 In that case, a copy of the PAD type with the correct size should
10429 be used for the fixed array.
10431 3. ``Fixing'' record type objects:
10432 ----------------------------------
10434 Things are slightly different from arrays in the case of dynamic
10435 record types. In this case, in order to compute the associated
10436 fixed type, we need to determine the size and offset of each of
10437 its components. This, in turn, requires us to compute the fixed
10438 type of each of these components.
10440 Consider for instance the example:
10442 type Bounded_String (Max_Size : Natural) is record
10443 Str : String (1 .. Max_Size);
10446 My_String : Bounded_String (Max_Size => 10);
10448 In that case, the position of field "Length" depends on the size
10449 of field Str, which itself depends on the value of the Max_Size
10450 discriminant. In order to fix the type of variable My_String,
10451 we need to fix the type of field Str. Therefore, fixing a variant
10452 record requires us to fix each of its components.
10454 However, if a component does not have a dynamic size, the component
10455 should not be fixed. In particular, fields that use a PAD type
10456 should not fixed. Here is an example where this might happen
10457 (assuming type Rec above):
10459 type Container (Big : Boolean) is record
10463 when True => Another : Integer;
10464 when False => null;
10467 My_Container : Container := (Big => False,
10468 First => (Empty => True),
10471 In that example, the compiler creates a PAD type for component First,
10472 whose size is constant, and then positions the component After just
10473 right after it. The offset of component After is therefore constant
10476 The debugger computes the position of each field based on an algorithm
10477 that uses, among other things, the actual position and size of the field
10478 preceding it. Let's now imagine that the user is trying to print
10479 the value of My_Container. If the type fixing was recursive, we would
10480 end up computing the offset of field After based on the size of the
10481 fixed version of field First. And since in our example First has
10482 only one actual field, the size of the fixed type is actually smaller
10483 than the amount of space allocated to that field, and thus we would
10484 compute the wrong offset of field After.
10486 To make things more complicated, we need to watch out for dynamic
10487 components of variant records (identified by the ___XVL suffix in
10488 the component name). Even if the target type is a PAD type, the size
10489 of that type might not be statically known. So the PAD type needs
10490 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10491 we might end up with the wrong size for our component. This can be
10492 observed with the following type declarations:
10494 type Octal is new Integer range 0 .. 7;
10495 type Octal_Array is array (Positive range <>) of Octal;
10496 pragma Pack (Octal_Array);
10498 type Octal_Buffer (Size : Positive) is record
10499 Buffer : Octal_Array (1 .. Size);
10503 In that case, Buffer is a PAD type whose size is unset and needs
10504 to be computed by fixing the unwrapped type.
10506 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10507 ----------------------------------------------------------
10509 Lastly, when should the sub-elements of an entity that remained unfixed
10510 thus far, be actually fixed?
10512 The answer is: Only when referencing that element. For instance
10513 when selecting one component of a record, this specific component
10514 should be fixed at that point in time. Or when printing the value
10515 of a record, each component should be fixed before its value gets
10516 printed. Similarly for arrays, the element of the array should be
10517 fixed when printing each element of the array, or when extracting
10518 one element out of that array. On the other hand, fixing should
10519 not be performed on the elements when taking a slice of an array!
10521 Note that one of the side effects of miscomputing the offset and
10522 size of each field is that we end up also miscomputing the size
10523 of the containing type. This can have adverse results when computing
10524 the value of an entity. GDB fetches the value of an entity based
10525 on the size of its type, and thus a wrong size causes GDB to fetch
10526 the wrong amount of memory. In the case where the computed size is
10527 too small, GDB fetches too little data to print the value of our
10528 entity. Results in this case are unpredictable, as we usually read
10529 past the buffer containing the data =:-o. */
10531 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10532 for that subexpression cast to TO_TYPE. Advance *POS over the
10536 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10537 enum noside noside, struct type *to_type)
10541 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10542 || exp->elts[pc].opcode == OP_VAR_VALUE)
10547 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 return value_zero (to_type, not_lval);
10552 val = evaluate_var_msym_value (noside,
10553 exp->elts[pc + 1].objfile,
10554 exp->elts[pc + 2].msymbol);
10557 val = evaluate_var_value (noside,
10558 exp->elts[pc + 1].block,
10559 exp->elts[pc + 2].symbol);
10561 if (noside == EVAL_SKIP)
10562 return eval_skip_value (exp);
10564 val = ada_value_cast (to_type, val);
10566 /* Follow the Ada language semantics that do not allow taking
10567 an address of the result of a cast (view conversion in Ada). */
10568 if (VALUE_LVAL (val) == lval_memory)
10570 if (value_lazy (val))
10571 value_fetch_lazy (val);
10572 VALUE_LVAL (val) = not_lval;
10577 value *val = evaluate_subexp (to_type, exp, pos, noside);
10578 if (noside == EVAL_SKIP)
10579 return eval_skip_value (exp);
10580 return ada_value_cast (to_type, val);
10583 /* Implement the evaluate_exp routine in the exp_descriptor structure
10584 for the Ada language. */
10586 static struct value *
10587 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10588 int *pos, enum noside noside)
10590 enum exp_opcode op;
10594 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10597 struct value **argvec;
10601 op = exp->elts[pc].opcode;
10607 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10609 if (noside == EVAL_NORMAL)
10610 arg1 = unwrap_value (arg1);
10612 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10613 then we need to perform the conversion manually, because
10614 evaluate_subexp_standard doesn't do it. This conversion is
10615 necessary in Ada because the different kinds of float/fixed
10616 types in Ada have different representations.
10618 Similarly, we need to perform the conversion from OP_LONG
10620 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10621 arg1 = ada_value_cast (expect_type, arg1);
10627 struct value *result;
10630 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10631 /* The result type will have code OP_STRING, bashed there from
10632 OP_ARRAY. Bash it back. */
10633 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10634 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10640 type = exp->elts[pc + 1].type;
10641 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10645 type = exp->elts[pc + 1].type;
10646 return ada_evaluate_subexp (type, exp, pos, noside);
10649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10650 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10652 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10653 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10655 return ada_value_assign (arg1, arg1);
10657 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10658 except if the lhs of our assignment is a convenience variable.
10659 In the case of assigning to a convenience variable, the lhs
10660 should be exactly the result of the evaluation of the rhs. */
10661 type = value_type (arg1);
10662 if (VALUE_LVAL (arg1) == lval_internalvar)
10664 arg2 = evaluate_subexp (type, exp, pos, noside);
10665 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10667 if (ada_is_fixed_point_type (value_type (arg1)))
10668 arg2 = cast_to_fixed (value_type (arg1), arg2);
10669 else if (ada_is_fixed_point_type (value_type (arg2)))
10671 (_("Fixed-point values must be assigned to fixed-point variables"));
10673 arg2 = coerce_for_assign (value_type (arg1), arg2);
10674 return ada_value_assign (arg1, arg2);
10677 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10678 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10679 if (noside == EVAL_SKIP)
10681 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10682 return (value_from_longest
10683 (value_type (arg1),
10684 value_as_long (arg1) + value_as_long (arg2)));
10685 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10686 return (value_from_longest
10687 (value_type (arg2),
10688 value_as_long (arg1) + value_as_long (arg2)));
10689 if ((ada_is_fixed_point_type (value_type (arg1))
10690 || ada_is_fixed_point_type (value_type (arg2)))
10691 && value_type (arg1) != value_type (arg2))
10692 error (_("Operands of fixed-point addition must have the same type"));
10693 /* Do the addition, and cast the result to the type of the first
10694 argument. We cannot cast the result to a reference type, so if
10695 ARG1 is a reference type, find its underlying type. */
10696 type = value_type (arg1);
10697 while (TYPE_CODE (type) == TYPE_CODE_REF)
10698 type = TYPE_TARGET_TYPE (type);
10699 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10700 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10703 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10704 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10705 if (noside == EVAL_SKIP)
10707 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10708 return (value_from_longest
10709 (value_type (arg1),
10710 value_as_long (arg1) - value_as_long (arg2)));
10711 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10712 return (value_from_longest
10713 (value_type (arg2),
10714 value_as_long (arg1) - value_as_long (arg2)));
10715 if ((ada_is_fixed_point_type (value_type (arg1))
10716 || ada_is_fixed_point_type (value_type (arg2)))
10717 && value_type (arg1) != value_type (arg2))
10718 error (_("Operands of fixed-point subtraction "
10719 "must have the same type"));
10720 /* Do the substraction, and cast the result to the type of the first
10721 argument. We cannot cast the result to a reference type, so if
10722 ARG1 is a reference type, find its underlying type. */
10723 type = value_type (arg1);
10724 while (TYPE_CODE (type) == TYPE_CODE_REF)
10725 type = TYPE_TARGET_TYPE (type);
10726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10727 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10737 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10740 return value_zero (value_type (arg1), not_lval);
10744 type = builtin_type (exp->gdbarch)->builtin_double;
10745 if (ada_is_fixed_point_type (value_type (arg1)))
10746 arg1 = cast_from_fixed (type, arg1);
10747 if (ada_is_fixed_point_type (value_type (arg2)))
10748 arg2 = cast_from_fixed (type, arg2);
10749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10750 return ada_value_binop (arg1, arg2, op);
10754 case BINOP_NOTEQUAL:
10755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10756 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10757 if (noside == EVAL_SKIP)
10759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10764 tem = ada_value_equal (arg1, arg2);
10766 if (op == BINOP_NOTEQUAL)
10768 type = language_bool_type (exp->language_defn, exp->gdbarch);
10769 return value_from_longest (type, (LONGEST) tem);
10772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 if (noside == EVAL_SKIP)
10775 else if (ada_is_fixed_point_type (value_type (arg1)))
10776 return value_cast (value_type (arg1), value_neg (arg1));
10779 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10780 return value_neg (arg1);
10783 case BINOP_LOGICAL_AND:
10784 case BINOP_LOGICAL_OR:
10785 case UNOP_LOGICAL_NOT:
10790 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10791 type = language_bool_type (exp->language_defn, exp->gdbarch);
10792 return value_cast (type, val);
10795 case BINOP_BITWISE_AND:
10796 case BINOP_BITWISE_IOR:
10797 case BINOP_BITWISE_XOR:
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10803 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10805 return value_cast (value_type (arg1), val);
10811 if (noside == EVAL_SKIP)
10817 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10818 /* Only encountered when an unresolved symbol occurs in a
10819 context other than a function call, in which case, it is
10821 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10824 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10826 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10827 /* Check to see if this is a tagged type. We also need to handle
10828 the case where the type is a reference to a tagged type, but
10829 we have to be careful to exclude pointers to tagged types.
10830 The latter should be shown as usual (as a pointer), whereas
10831 a reference should mostly be transparent to the user. */
10832 if (ada_is_tagged_type (type, 0)
10833 || (TYPE_CODE (type) == TYPE_CODE_REF
10834 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10836 /* Tagged types are a little special in the fact that the real
10837 type is dynamic and can only be determined by inspecting the
10838 object's tag. This means that we need to get the object's
10839 value first (EVAL_NORMAL) and then extract the actual object
10842 Note that we cannot skip the final step where we extract
10843 the object type from its tag, because the EVAL_NORMAL phase
10844 results in dynamic components being resolved into fixed ones.
10845 This can cause problems when trying to print the type
10846 description of tagged types whose parent has a dynamic size:
10847 We use the type name of the "_parent" component in order
10848 to print the name of the ancestor type in the type description.
10849 If that component had a dynamic size, the resolution into
10850 a fixed type would result in the loss of that type name,
10851 thus preventing us from printing the name of the ancestor
10852 type in the type description. */
10853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10855 if (TYPE_CODE (type) != TYPE_CODE_REF)
10857 struct type *actual_type;
10859 actual_type = type_from_tag (ada_value_tag (arg1));
10860 if (actual_type == NULL)
10861 /* If, for some reason, we were unable to determine
10862 the actual type from the tag, then use the static
10863 approximation that we just computed as a fallback.
10864 This can happen if the debugging information is
10865 incomplete, for instance. */
10866 actual_type = type;
10867 return value_zero (actual_type, not_lval);
10871 /* In the case of a ref, ada_coerce_ref takes care
10872 of determining the actual type. But the evaluation
10873 should return a ref as it should be valid to ask
10874 for its address; so rebuild a ref after coerce. */
10875 arg1 = ada_coerce_ref (arg1);
10876 return value_ref (arg1, TYPE_CODE_REF);
10880 /* Records and unions for which GNAT encodings have been
10881 generated need to be statically fixed as well.
10882 Otherwise, non-static fixing produces a type where
10883 all dynamic properties are removed, which prevents "ptype"
10884 from being able to completely describe the type.
10885 For instance, a case statement in a variant record would be
10886 replaced by the relevant components based on the actual
10887 value of the discriminants. */
10888 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10889 && dynamic_template_type (type) != NULL)
10890 || (TYPE_CODE (type) == TYPE_CODE_UNION
10891 && ada_find_parallel_type (type, "___XVU") != NULL))
10894 return value_zero (to_static_fixed_type (type), not_lval);
10898 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10899 return ada_to_fixed_value (arg1);
10904 /* Allocate arg vector, including space for the function to be
10905 called in argvec[0] and a terminating NULL. */
10906 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10907 argvec = XALLOCAVEC (struct value *, nargs + 2);
10909 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10910 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10911 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10912 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10915 for (tem = 0; tem <= nargs; tem += 1)
10916 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10919 if (noside == EVAL_SKIP)
10923 if (ada_is_constrained_packed_array_type
10924 (desc_base_type (value_type (argvec[0]))))
10925 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10926 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10927 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10928 /* This is a packed array that has already been fixed, and
10929 therefore already coerced to a simple array. Nothing further
10932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10934 /* Make sure we dereference references so that all the code below
10935 feels like it's really handling the referenced value. Wrapping
10936 types (for alignment) may be there, so make sure we strip them as
10938 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10940 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10941 && VALUE_LVAL (argvec[0]) == lval_memory)
10942 argvec[0] = value_addr (argvec[0]);
10944 type = ada_check_typedef (value_type (argvec[0]));
10946 /* Ada allows us to implicitly dereference arrays when subscripting
10947 them. So, if this is an array typedef (encoding use for array
10948 access types encoded as fat pointers), strip it now. */
10949 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10950 type = ada_typedef_target_type (type);
10952 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10954 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10956 case TYPE_CODE_FUNC:
10957 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10959 case TYPE_CODE_ARRAY:
10961 case TYPE_CODE_STRUCT:
10962 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10963 argvec[0] = ada_value_ind (argvec[0]);
10964 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10967 error (_("cannot subscript or call something of type `%s'"),
10968 ada_type_name (value_type (argvec[0])));
10973 switch (TYPE_CODE (type))
10975 case TYPE_CODE_FUNC:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 if (TYPE_TARGET_TYPE (type) == NULL)
10979 error_call_unknown_return_type (NULL);
10980 return allocate_value (TYPE_TARGET_TYPE (type));
10982 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10983 case TYPE_CODE_INTERNAL_FUNCTION:
10984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 /* We don't know anything about what the internal
10986 function might return, but we have to return
10988 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10991 return call_internal_function (exp->gdbarch, exp->language_defn,
10992 argvec[0], nargs, argvec + 1);
10994 case TYPE_CODE_STRUCT:
10998 arity = ada_array_arity (type);
10999 type = ada_array_element_type (type, nargs);
11001 error (_("cannot subscript or call a record"));
11002 if (arity != nargs)
11003 error (_("wrong number of subscripts; expecting %d"), arity);
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11005 return value_zero (ada_aligned_type (type), lval_memory);
11007 unwrap_value (ada_value_subscript
11008 (argvec[0], nargs, argvec + 1));
11010 case TYPE_CODE_ARRAY:
11011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11013 type = ada_array_element_type (type, nargs);
11015 error (_("element type of array unknown"));
11017 return value_zero (ada_aligned_type (type), lval_memory);
11020 unwrap_value (ada_value_subscript
11021 (ada_coerce_to_simple_array (argvec[0]),
11022 nargs, argvec + 1));
11023 case TYPE_CODE_PTR: /* Pointer to array */
11024 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11026 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11027 type = ada_array_element_type (type, nargs);
11029 error (_("element type of array unknown"));
11031 return value_zero (ada_aligned_type (type), lval_memory);
11034 unwrap_value (ada_value_ptr_subscript (argvec[0],
11035 nargs, argvec + 1));
11038 error (_("Attempt to index or call something other than an "
11039 "array or function"));
11044 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11045 struct value *low_bound_val =
11046 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11047 struct value *high_bound_val =
11048 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11050 LONGEST high_bound;
11052 low_bound_val = coerce_ref (low_bound_val);
11053 high_bound_val = coerce_ref (high_bound_val);
11054 low_bound = value_as_long (low_bound_val);
11055 high_bound = value_as_long (high_bound_val);
11057 if (noside == EVAL_SKIP)
11060 /* If this is a reference to an aligner type, then remove all
11062 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11063 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11064 TYPE_TARGET_TYPE (value_type (array)) =
11065 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11067 if (ada_is_constrained_packed_array_type (value_type (array)))
11068 error (_("cannot slice a packed array"));
11070 /* If this is a reference to an array or an array lvalue,
11071 convert to a pointer. */
11072 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11073 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11074 && VALUE_LVAL (array) == lval_memory))
11075 array = value_addr (array);
11077 if (noside == EVAL_AVOID_SIDE_EFFECTS
11078 && ada_is_array_descriptor_type (ada_check_typedef
11079 (value_type (array))))
11080 return empty_array (ada_type_of_array (array, 0), low_bound);
11082 array = ada_coerce_to_simple_array_ptr (array);
11084 /* If we have more than one level of pointer indirection,
11085 dereference the value until we get only one level. */
11086 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11087 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11089 array = value_ind (array);
11091 /* Make sure we really do have an array type before going further,
11092 to avoid a SEGV when trying to get the index type or the target
11093 type later down the road if the debug info generated by
11094 the compiler is incorrect or incomplete. */
11095 if (!ada_is_simple_array_type (value_type (array)))
11096 error (_("cannot take slice of non-array"));
11098 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11101 struct type *type0 = ada_check_typedef (value_type (array));
11103 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11104 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11107 struct type *arr_type0 =
11108 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11110 return ada_value_slice_from_ptr (array, arr_type0,
11111 longest_to_int (low_bound),
11112 longest_to_int (high_bound));
11115 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11117 else if (high_bound < low_bound)
11118 return empty_array (value_type (array), low_bound);
11120 return ada_value_slice (array, longest_to_int (low_bound),
11121 longest_to_int (high_bound));
11124 case UNOP_IN_RANGE:
11126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11127 type = check_typedef (exp->elts[pc + 1].type);
11129 if (noside == EVAL_SKIP)
11132 switch (TYPE_CODE (type))
11135 lim_warning (_("Membership test incompletely implemented; "
11136 "always returns true"));
11137 type = language_bool_type (exp->language_defn, exp->gdbarch);
11138 return value_from_longest (type, (LONGEST) 1);
11140 case TYPE_CODE_RANGE:
11141 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11142 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11145 type = language_bool_type (exp->language_defn, exp->gdbarch);
11147 value_from_longest (type,
11148 (value_less (arg1, arg3)
11149 || value_equal (arg1, arg3))
11150 && (value_less (arg2, arg1)
11151 || value_equal (arg2, arg1)));
11154 case BINOP_IN_BOUNDS:
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 if (noside == EVAL_SKIP)
11162 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11164 type = language_bool_type (exp->language_defn, exp->gdbarch);
11165 return value_zero (type, not_lval);
11168 tem = longest_to_int (exp->elts[pc + 1].longconst);
11170 type = ada_index_type (value_type (arg2), tem, "range");
11172 type = value_type (arg1);
11174 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11175 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11179 type = language_bool_type (exp->language_defn, exp->gdbarch);
11181 value_from_longest (type,
11182 (value_less (arg1, arg3)
11183 || value_equal (arg1, arg3))
11184 && (value_less (arg2, arg1)
11185 || value_equal (arg2, arg1)));
11187 case TERNOP_IN_RANGE:
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 if (noside == EVAL_SKIP)
11195 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11197 type = language_bool_type (exp->language_defn, exp->gdbarch);
11199 value_from_longest (type,
11200 (value_less (arg1, arg3)
11201 || value_equal (arg1, arg3))
11202 && (value_less (arg2, arg1)
11203 || value_equal (arg2, arg1)));
11207 case OP_ATR_LENGTH:
11209 struct type *type_arg;
11211 if (exp->elts[*pos].opcode == OP_TYPE)
11213 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11215 type_arg = check_typedef (exp->elts[pc + 2].type);
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 if (exp->elts[*pos].opcode != OP_LONG)
11224 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11225 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11228 if (noside == EVAL_SKIP)
11231 if (type_arg == NULL)
11233 arg1 = ada_coerce_ref (arg1);
11235 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11236 arg1 = ada_coerce_to_simple_array (arg1);
11238 if (op == OP_ATR_LENGTH)
11239 type = builtin_type (exp->gdbarch)->builtin_int;
11242 type = ada_index_type (value_type (arg1), tem,
11243 ada_attribute_name (op));
11245 type = builtin_type (exp->gdbarch)->builtin_int;
11248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11249 return allocate_value (type);
11253 default: /* Should never happen. */
11254 error (_("unexpected attribute encountered"));
11256 return value_from_longest
11257 (type, ada_array_bound (arg1, tem, 0));
11259 return value_from_longest
11260 (type, ada_array_bound (arg1, tem, 1));
11261 case OP_ATR_LENGTH:
11262 return value_from_longest
11263 (type, ada_array_length (arg1, tem));
11266 else if (discrete_type_p (type_arg))
11268 struct type *range_type;
11269 const char *name = ada_type_name (type_arg);
11272 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11273 range_type = to_fixed_range_type (type_arg, NULL);
11274 if (range_type == NULL)
11275 range_type = type_arg;
11279 error (_("unexpected attribute encountered"));
11281 return value_from_longest
11282 (range_type, ada_discrete_type_low_bound (range_type));
11284 return value_from_longest
11285 (range_type, ada_discrete_type_high_bound (range_type));
11286 case OP_ATR_LENGTH:
11287 error (_("the 'length attribute applies only to array types"));
11290 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11291 error (_("unimplemented type attribute"));
11296 if (ada_is_constrained_packed_array_type (type_arg))
11297 type_arg = decode_constrained_packed_array_type (type_arg);
11299 if (op == OP_ATR_LENGTH)
11300 type = builtin_type (exp->gdbarch)->builtin_int;
11303 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11305 type = builtin_type (exp->gdbarch)->builtin_int;
11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11309 return allocate_value (type);
11314 error (_("unexpected attribute encountered"));
11316 low = ada_array_bound_from_type (type_arg, tem, 0);
11317 return value_from_longest (type, low);
11319 high = ada_array_bound_from_type (type_arg, tem, 1);
11320 return value_from_longest (type, high);
11321 case OP_ATR_LENGTH:
11322 low = ada_array_bound_from_type (type_arg, tem, 0);
11323 high = ada_array_bound_from_type (type_arg, tem, 1);
11324 return value_from_longest (type, high - low + 1);
11330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11331 if (noside == EVAL_SKIP)
11334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11335 return value_zero (ada_tag_type (arg1), not_lval);
11337 return ada_value_tag (arg1);
11341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11343 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 if (noside == EVAL_SKIP)
11346 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11347 return value_zero (value_type (arg1), not_lval);
11350 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11351 return value_binop (arg1, arg2,
11352 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11355 case OP_ATR_MODULUS:
11357 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11359 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11360 if (noside == EVAL_SKIP)
11363 if (!ada_is_modular_type (type_arg))
11364 error (_("'modulus must be applied to modular type"));
11366 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11367 ada_modulus (type_arg));
11372 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11374 if (noside == EVAL_SKIP)
11376 type = builtin_type (exp->gdbarch)->builtin_int;
11377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11378 return value_zero (type, not_lval);
11380 return value_pos_atr (type, arg1);
11383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11384 type = value_type (arg1);
11386 /* If the argument is a reference, then dereference its type, since
11387 the user is really asking for the size of the actual object,
11388 not the size of the pointer. */
11389 if (TYPE_CODE (type) == TYPE_CODE_REF)
11390 type = TYPE_TARGET_TYPE (type);
11392 if (noside == EVAL_SKIP)
11394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11395 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11397 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11398 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 type = exp->elts[pc + 2].type;
11404 if (noside == EVAL_SKIP)
11406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11407 return value_zero (type, not_lval);
11409 return value_val_atr (type, arg1);
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11414 if (noside == EVAL_SKIP)
11416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11417 return value_zero (value_type (arg1), not_lval);
11420 /* For integer exponentiation operations,
11421 only promote the first argument. */
11422 if (is_integral_type (value_type (arg2)))
11423 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11425 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11427 return value_binop (arg1, arg2, op);
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 if (noside == EVAL_SKIP)
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11439 if (noside == EVAL_SKIP)
11441 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11442 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11443 return value_neg (arg1);
11448 preeval_pos = *pos;
11449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11450 if (noside == EVAL_SKIP)
11452 type = ada_check_typedef (value_type (arg1));
11453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11455 if (ada_is_array_descriptor_type (type))
11456 /* GDB allows dereferencing GNAT array descriptors. */
11458 struct type *arrType = ada_type_of_array (arg1, 0);
11460 if (arrType == NULL)
11461 error (_("Attempt to dereference null array pointer."));
11462 return value_at_lazy (arrType, 0);
11464 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11465 || TYPE_CODE (type) == TYPE_CODE_REF
11466 /* In C you can dereference an array to get the 1st elt. */
11467 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11469 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11470 only be determined by inspecting the object's tag.
11471 This means that we need to evaluate completely the
11472 expression in order to get its type. */
11474 if ((TYPE_CODE (type) == TYPE_CODE_REF
11475 || TYPE_CODE (type) == TYPE_CODE_PTR)
11476 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11478 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11480 type = value_type (ada_value_ind (arg1));
11484 type = to_static_fixed_type
11486 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11488 ada_ensure_varsize_limit (type);
11489 return value_zero (type, lval_memory);
11491 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11493 /* GDB allows dereferencing an int. */
11494 if (expect_type == NULL)
11495 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11500 to_static_fixed_type (ada_aligned_type (expect_type));
11501 return value_zero (expect_type, lval_memory);
11505 error (_("Attempt to take contents of a non-pointer value."));
11507 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11508 type = ada_check_typedef (value_type (arg1));
11510 if (TYPE_CODE (type) == TYPE_CODE_INT)
11511 /* GDB allows dereferencing an int. If we were given
11512 the expect_type, then use that as the target type.
11513 Otherwise, assume that the target type is an int. */
11515 if (expect_type != NULL)
11516 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11519 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11520 (CORE_ADDR) value_as_address (arg1));
11523 if (ada_is_array_descriptor_type (type))
11524 /* GDB allows dereferencing GNAT array descriptors. */
11525 return ada_coerce_to_simple_array (arg1);
11527 return ada_value_ind (arg1);
11529 case STRUCTOP_STRUCT:
11530 tem = longest_to_int (exp->elts[pc + 1].longconst);
11531 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11532 preeval_pos = *pos;
11533 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11534 if (noside == EVAL_SKIP)
11536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11538 struct type *type1 = value_type (arg1);
11540 if (ada_is_tagged_type (type1, 1))
11542 type = ada_lookup_struct_elt_type (type1,
11543 &exp->elts[pc + 2].string,
11546 /* If the field is not found, check if it exists in the
11547 extension of this object's type. This means that we
11548 need to evaluate completely the expression. */
11552 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11554 arg1 = ada_value_struct_elt (arg1,
11555 &exp->elts[pc + 2].string,
11557 arg1 = unwrap_value (arg1);
11558 type = value_type (ada_to_fixed_value (arg1));
11563 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11566 return value_zero (ada_aligned_type (type), lval_memory);
11570 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11571 arg1 = unwrap_value (arg1);
11572 return ada_to_fixed_value (arg1);
11576 /* The value is not supposed to be used. This is here to make it
11577 easier to accommodate expressions that contain types. */
11579 if (noside == EVAL_SKIP)
11581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11582 return allocate_value (exp->elts[pc + 1].type);
11584 error (_("Attempt to use a type name as an expression"));
11589 case OP_DISCRETE_RANGE:
11590 case OP_POSITIONAL:
11592 if (noside == EVAL_NORMAL)
11596 error (_("Undefined name, ambiguous name, or renaming used in "
11597 "component association: %s."), &exp->elts[pc+2].string);
11599 error (_("Aggregates only allowed on the right of an assignment"));
11601 internal_error (__FILE__, __LINE__,
11602 _("aggregate apparently mangled"));
11605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11607 for (tem = 0; tem < nargs; tem += 1)
11608 ada_evaluate_subexp (NULL, exp, pos, noside);
11613 return eval_skip_value (exp);
11619 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11620 type name that encodes the 'small and 'delta information.
11621 Otherwise, return NULL. */
11623 static const char *
11624 fixed_type_info (struct type *type)
11626 const char *name = ada_type_name (type);
11627 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11629 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11631 const char *tail = strstr (name, "___XF_");
11638 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11639 return fixed_type_info (TYPE_TARGET_TYPE (type));
11644 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11647 ada_is_fixed_point_type (struct type *type)
11649 return fixed_type_info (type) != NULL;
11652 /* Return non-zero iff TYPE represents a System.Address type. */
11655 ada_is_system_address_type (struct type *type)
11657 return (TYPE_NAME (type)
11658 && strcmp (TYPE_NAME (type), "system__address") == 0);
11661 /* Assuming that TYPE is the representation of an Ada fixed-point
11662 type, return the target floating-point type to be used to represent
11663 of this type during internal computation. */
11665 static struct type *
11666 ada_scaling_type (struct type *type)
11668 return builtin_type (get_type_arch (type))->builtin_long_double;
11671 /* Assuming that TYPE is the representation of an Ada fixed-point
11672 type, return its delta, or NULL if the type is malformed and the
11673 delta cannot be determined. */
11676 ada_delta (struct type *type)
11678 const char *encoding = fixed_type_info (type);
11679 struct type *scale_type = ada_scaling_type (type);
11681 long long num, den;
11683 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11686 return value_binop (value_from_longest (scale_type, num),
11687 value_from_longest (scale_type, den), BINOP_DIV);
11690 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11691 factor ('SMALL value) associated with the type. */
11694 ada_scaling_factor (struct type *type)
11696 const char *encoding = fixed_type_info (type);
11697 struct type *scale_type = ada_scaling_type (type);
11699 long long num0, den0, num1, den1;
11702 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11703 &num0, &den0, &num1, &den1);
11706 return value_from_longest (scale_type, 1);
11708 return value_binop (value_from_longest (scale_type, num1),
11709 value_from_longest (scale_type, den1), BINOP_DIV);
11711 return value_binop (value_from_longest (scale_type, num0),
11712 value_from_longest (scale_type, den0), BINOP_DIV);
11719 /* Scan STR beginning at position K for a discriminant name, and
11720 return the value of that discriminant field of DVAL in *PX. If
11721 PNEW_K is not null, put the position of the character beyond the
11722 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11723 not alter *PX and *PNEW_K if unsuccessful. */
11726 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11729 static char *bound_buffer = NULL;
11730 static size_t bound_buffer_len = 0;
11731 const char *pstart, *pend, *bound;
11732 struct value *bound_val;
11734 if (dval == NULL || str == NULL || str[k] == '\0')
11738 pend = strstr (pstart, "__");
11742 k += strlen (bound);
11746 int len = pend - pstart;
11748 /* Strip __ and beyond. */
11749 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11750 strncpy (bound_buffer, pstart, len);
11751 bound_buffer[len] = '\0';
11753 bound = bound_buffer;
11757 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11758 if (bound_val == NULL)
11761 *px = value_as_long (bound_val);
11762 if (pnew_k != NULL)
11767 /* Value of variable named NAME in the current environment. If
11768 no such variable found, then if ERR_MSG is null, returns 0, and
11769 otherwise causes an error with message ERR_MSG. */
11771 static struct value *
11772 get_var_value (const char *name, const char *err_msg)
11774 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11776 std::vector<struct block_symbol> syms;
11777 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11778 get_selected_block (0),
11779 VAR_DOMAIN, &syms, 1);
11783 if (err_msg == NULL)
11786 error (("%s"), err_msg);
11789 return value_of_variable (syms[0].symbol, syms[0].block);
11792 /* Value of integer variable named NAME in the current environment.
11793 If no such variable is found, returns false. Otherwise, sets VALUE
11794 to the variable's value and returns true. */
11797 get_int_var_value (const char *name, LONGEST &value)
11799 struct value *var_val = get_var_value (name, 0);
11804 value = value_as_long (var_val);
11809 /* Return a range type whose base type is that of the range type named
11810 NAME in the current environment, and whose bounds are calculated
11811 from NAME according to the GNAT range encoding conventions.
11812 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11813 corresponding range type from debug information; fall back to using it
11814 if symbol lookup fails. If a new type must be created, allocate it
11815 like ORIG_TYPE was. The bounds information, in general, is encoded
11816 in NAME, the base type given in the named range type. */
11818 static struct type *
11819 to_fixed_range_type (struct type *raw_type, struct value *dval)
11822 struct type *base_type;
11823 const char *subtype_info;
11825 gdb_assert (raw_type != NULL);
11826 gdb_assert (TYPE_NAME (raw_type) != NULL);
11828 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11829 base_type = TYPE_TARGET_TYPE (raw_type);
11831 base_type = raw_type;
11833 name = TYPE_NAME (raw_type);
11834 subtype_info = strstr (name, "___XD");
11835 if (subtype_info == NULL)
11837 LONGEST L = ada_discrete_type_low_bound (raw_type);
11838 LONGEST U = ada_discrete_type_high_bound (raw_type);
11840 if (L < INT_MIN || U > INT_MAX)
11843 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11848 static char *name_buf = NULL;
11849 static size_t name_len = 0;
11850 int prefix_len = subtype_info - name;
11853 const char *bounds_str;
11856 GROW_VECT (name_buf, name_len, prefix_len + 5);
11857 strncpy (name_buf, name, prefix_len);
11858 name_buf[prefix_len] = '\0';
11861 bounds_str = strchr (subtype_info, '_');
11864 if (*subtype_info == 'L')
11866 if (!ada_scan_number (bounds_str, n, &L, &n)
11867 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11869 if (bounds_str[n] == '_')
11871 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11877 strcpy (name_buf + prefix_len, "___L");
11878 if (!get_int_var_value (name_buf, L))
11880 lim_warning (_("Unknown lower bound, using 1."));
11885 if (*subtype_info == 'U')
11887 if (!ada_scan_number (bounds_str, n, &U, &n)
11888 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11893 strcpy (name_buf + prefix_len, "___U");
11894 if (!get_int_var_value (name_buf, U))
11896 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11901 type = create_static_range_type (alloc_type_copy (raw_type),
11903 /* create_static_range_type alters the resulting type's length
11904 to match the size of the base_type, which is not what we want.
11905 Set it back to the original range type's length. */
11906 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11907 TYPE_NAME (type) = name;
11912 /* True iff NAME is the name of a range type. */
11915 ada_is_range_type_name (const char *name)
11917 return (name != NULL && strstr (name, "___XD"));
11921 /* Modular types */
11923 /* True iff TYPE is an Ada modular type. */
11926 ada_is_modular_type (struct type *type)
11928 struct type *subranged_type = get_base_type (type);
11930 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11931 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11932 && TYPE_UNSIGNED (subranged_type));
11935 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11938 ada_modulus (struct type *type)
11940 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11944 /* Ada exception catchpoint support:
11945 ---------------------------------
11947 We support 3 kinds of exception catchpoints:
11948 . catchpoints on Ada exceptions
11949 . catchpoints on unhandled Ada exceptions
11950 . catchpoints on failed assertions
11952 Exceptions raised during failed assertions, or unhandled exceptions
11953 could perfectly be caught with the general catchpoint on Ada exceptions.
11954 However, we can easily differentiate these two special cases, and having
11955 the option to distinguish these two cases from the rest can be useful
11956 to zero-in on certain situations.
11958 Exception catchpoints are a specialized form of breakpoint,
11959 since they rely on inserting breakpoints inside known routines
11960 of the GNAT runtime. The implementation therefore uses a standard
11961 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11964 Support in the runtime for exception catchpoints have been changed
11965 a few times already, and these changes affect the implementation
11966 of these catchpoints. In order to be able to support several
11967 variants of the runtime, we use a sniffer that will determine
11968 the runtime variant used by the program being debugged. */
11970 /* Ada's standard exceptions.
11972 The Ada 83 standard also defined Numeric_Error. But there so many
11973 situations where it was unclear from the Ada 83 Reference Manual
11974 (RM) whether Constraint_Error or Numeric_Error should be raised,
11975 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11976 Interpretation saying that anytime the RM says that Numeric_Error
11977 should be raised, the implementation may raise Constraint_Error.
11978 Ada 95 went one step further and pretty much removed Numeric_Error
11979 from the list of standard exceptions (it made it a renaming of
11980 Constraint_Error, to help preserve compatibility when compiling
11981 an Ada83 compiler). As such, we do not include Numeric_Error from
11982 this list of standard exceptions. */
11984 static const char *standard_exc[] = {
11985 "constraint_error",
11991 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11993 /* A structure that describes how to support exception catchpoints
11994 for a given executable. */
11996 struct exception_support_info
11998 /* The name of the symbol to break on in order to insert
11999 a catchpoint on exceptions. */
12000 const char *catch_exception_sym;
12002 /* The name of the symbol to break on in order to insert
12003 a catchpoint on unhandled exceptions. */
12004 const char *catch_exception_unhandled_sym;
12006 /* The name of the symbol to break on in order to insert
12007 a catchpoint on failed assertions. */
12008 const char *catch_assert_sym;
12010 /* The name of the symbol to break on in order to insert
12011 a catchpoint on exception handling. */
12012 const char *catch_handlers_sym;
12014 /* Assuming that the inferior just triggered an unhandled exception
12015 catchpoint, this function is responsible for returning the address
12016 in inferior memory where the name of that exception is stored.
12017 Return zero if the address could not be computed. */
12018 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12021 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12022 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12024 /* The following exception support info structure describes how to
12025 implement exception catchpoints with the latest version of the
12026 Ada runtime (as of 2007-03-06). */
12028 static const struct exception_support_info default_exception_support_info =
12030 "__gnat_debug_raise_exception", /* catch_exception_sym */
12031 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12032 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12033 "__gnat_begin_handler", /* catch_handlers_sym */
12034 ada_unhandled_exception_name_addr
12037 /* The following exception support info structure describes how to
12038 implement exception catchpoints with a slightly older version
12039 of the Ada runtime. */
12041 static const struct exception_support_info exception_support_info_fallback =
12043 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12044 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12045 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12046 "__gnat_begin_handler", /* catch_handlers_sym */
12047 ada_unhandled_exception_name_addr_from_raise
12050 /* Return nonzero if we can detect the exception support routines
12051 described in EINFO.
12053 This function errors out if an abnormal situation is detected
12054 (for instance, if we find the exception support routines, but
12055 that support is found to be incomplete). */
12058 ada_has_this_exception_support (const struct exception_support_info *einfo)
12060 struct symbol *sym;
12062 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12063 that should be compiled with debugging information. As a result, we
12064 expect to find that symbol in the symtabs. */
12066 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12069 /* Perhaps we did not find our symbol because the Ada runtime was
12070 compiled without debugging info, or simply stripped of it.
12071 It happens on some GNU/Linux distributions for instance, where
12072 users have to install a separate debug package in order to get
12073 the runtime's debugging info. In that situation, let the user
12074 know why we cannot insert an Ada exception catchpoint.
12076 Note: Just for the purpose of inserting our Ada exception
12077 catchpoint, we could rely purely on the associated minimal symbol.
12078 But we would be operating in degraded mode anyway, since we are
12079 still lacking the debugging info needed later on to extract
12080 the name of the exception being raised (this name is printed in
12081 the catchpoint message, and is also used when trying to catch
12082 a specific exception). We do not handle this case for now. */
12083 struct bound_minimal_symbol msym
12084 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12086 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12087 error (_("Your Ada runtime appears to be missing some debugging "
12088 "information.\nCannot insert Ada exception catchpoint "
12089 "in this configuration."));
12094 /* Make sure that the symbol we found corresponds to a function. */
12096 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12097 error (_("Symbol \"%s\" is not a function (class = %d)"),
12098 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12103 /* Inspect the Ada runtime and determine which exception info structure
12104 should be used to provide support for exception catchpoints.
12106 This function will always set the per-inferior exception_info,
12107 or raise an error. */
12110 ada_exception_support_info_sniffer (void)
12112 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12114 /* If the exception info is already known, then no need to recompute it. */
12115 if (data->exception_info != NULL)
12118 /* Check the latest (default) exception support info. */
12119 if (ada_has_this_exception_support (&default_exception_support_info))
12121 data->exception_info = &default_exception_support_info;
12125 /* Try our fallback exception suport info. */
12126 if (ada_has_this_exception_support (&exception_support_info_fallback))
12128 data->exception_info = &exception_support_info_fallback;
12132 /* Sometimes, it is normal for us to not be able to find the routine
12133 we are looking for. This happens when the program is linked with
12134 the shared version of the GNAT runtime, and the program has not been
12135 started yet. Inform the user of these two possible causes if
12138 if (ada_update_initial_language (language_unknown) != language_ada)
12139 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12141 /* If the symbol does not exist, then check that the program is
12142 already started, to make sure that shared libraries have been
12143 loaded. If it is not started, this may mean that the symbol is
12144 in a shared library. */
12146 if (inferior_ptid.pid () == 0)
12147 error (_("Unable to insert catchpoint. Try to start the program first."));
12149 /* At this point, we know that we are debugging an Ada program and
12150 that the inferior has been started, but we still are not able to
12151 find the run-time symbols. That can mean that we are in
12152 configurable run time mode, or that a-except as been optimized
12153 out by the linker... In any case, at this point it is not worth
12154 supporting this feature. */
12156 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12159 /* True iff FRAME is very likely to be that of a function that is
12160 part of the runtime system. This is all very heuristic, but is
12161 intended to be used as advice as to what frames are uninteresting
12165 is_known_support_routine (struct frame_info *frame)
12167 enum language func_lang;
12169 const char *fullname;
12171 /* If this code does not have any debugging information (no symtab),
12172 This cannot be any user code. */
12174 symtab_and_line sal = find_frame_sal (frame);
12175 if (sal.symtab == NULL)
12178 /* If there is a symtab, but the associated source file cannot be
12179 located, then assume this is not user code: Selecting a frame
12180 for which we cannot display the code would not be very helpful
12181 for the user. This should also take care of case such as VxWorks
12182 where the kernel has some debugging info provided for a few units. */
12184 fullname = symtab_to_fullname (sal.symtab);
12185 if (access (fullname, R_OK) != 0)
12188 /* Check the unit filename againt the Ada runtime file naming.
12189 We also check the name of the objfile against the name of some
12190 known system libraries that sometimes come with debugging info
12193 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12195 re_comp (known_runtime_file_name_patterns[i]);
12196 if (re_exec (lbasename (sal.symtab->filename)))
12198 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12199 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12203 /* Check whether the function is a GNAT-generated entity. */
12205 gdb::unique_xmalloc_ptr<char> func_name
12206 = find_frame_funname (frame, &func_lang, NULL);
12207 if (func_name == NULL)
12210 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12212 re_comp (known_auxiliary_function_name_patterns[i]);
12213 if (re_exec (func_name.get ()))
12220 /* Find the first frame that contains debugging information and that is not
12221 part of the Ada run-time, starting from FI and moving upward. */
12224 ada_find_printable_frame (struct frame_info *fi)
12226 for (; fi != NULL; fi = get_prev_frame (fi))
12228 if (!is_known_support_routine (fi))
12237 /* Assuming that the inferior just triggered an unhandled exception
12238 catchpoint, return the address in inferior memory where the name
12239 of the exception is stored.
12241 Return zero if the address could not be computed. */
12244 ada_unhandled_exception_name_addr (void)
12246 return parse_and_eval_address ("e.full_name");
12249 /* Same as ada_unhandled_exception_name_addr, except that this function
12250 should be used when the inferior uses an older version of the runtime,
12251 where the exception name needs to be extracted from a specific frame
12252 several frames up in the callstack. */
12255 ada_unhandled_exception_name_addr_from_raise (void)
12258 struct frame_info *fi;
12259 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12261 /* To determine the name of this exception, we need to select
12262 the frame corresponding to RAISE_SYM_NAME. This frame is
12263 at least 3 levels up, so we simply skip the first 3 frames
12264 without checking the name of their associated function. */
12265 fi = get_current_frame ();
12266 for (frame_level = 0; frame_level < 3; frame_level += 1)
12268 fi = get_prev_frame (fi);
12272 enum language func_lang;
12274 gdb::unique_xmalloc_ptr<char> func_name
12275 = find_frame_funname (fi, &func_lang, NULL);
12276 if (func_name != NULL)
12278 if (strcmp (func_name.get (),
12279 data->exception_info->catch_exception_sym) == 0)
12280 break; /* We found the frame we were looking for... */
12282 fi = get_prev_frame (fi);
12289 return parse_and_eval_address ("id.full_name");
12292 /* Assuming the inferior just triggered an Ada exception catchpoint
12293 (of any type), return the address in inferior memory where the name
12294 of the exception is stored, if applicable.
12296 Assumes the selected frame is the current frame.
12298 Return zero if the address could not be computed, or if not relevant. */
12301 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12302 struct breakpoint *b)
12304 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12308 case ada_catch_exception:
12309 return (parse_and_eval_address ("e.full_name"));
12312 case ada_catch_exception_unhandled:
12313 return data->exception_info->unhandled_exception_name_addr ();
12316 case ada_catch_handlers:
12317 return 0; /* The runtimes does not provide access to the exception
12321 case ada_catch_assert:
12322 return 0; /* Exception name is not relevant in this case. */
12326 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12330 return 0; /* Should never be reached. */
12333 /* Assuming the inferior is stopped at an exception catchpoint,
12334 return the message which was associated to the exception, if
12335 available. Return NULL if the message could not be retrieved.
12337 Note: The exception message can be associated to an exception
12338 either through the use of the Raise_Exception function, or
12339 more simply (Ada 2005 and later), via:
12341 raise Exception_Name with "exception message";
12345 static gdb::unique_xmalloc_ptr<char>
12346 ada_exception_message_1 (void)
12348 struct value *e_msg_val;
12351 /* For runtimes that support this feature, the exception message
12352 is passed as an unbounded string argument called "message". */
12353 e_msg_val = parse_and_eval ("message");
12354 if (e_msg_val == NULL)
12355 return NULL; /* Exception message not supported. */
12357 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12358 gdb_assert (e_msg_val != NULL);
12359 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12361 /* If the message string is empty, then treat it as if there was
12362 no exception message. */
12363 if (e_msg_len <= 0)
12366 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12367 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12368 e_msg.get ()[e_msg_len] = '\0';
12373 /* Same as ada_exception_message_1, except that all exceptions are
12374 contained here (returning NULL instead). */
12376 static gdb::unique_xmalloc_ptr<char>
12377 ada_exception_message (void)
12379 gdb::unique_xmalloc_ptr<char> e_msg;
12383 e_msg = ada_exception_message_1 ();
12385 CATCH (e, RETURN_MASK_ERROR)
12387 e_msg.reset (nullptr);
12394 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12395 any error that ada_exception_name_addr_1 might cause to be thrown.
12396 When an error is intercepted, a warning with the error message is printed,
12397 and zero is returned. */
12400 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12401 struct breakpoint *b)
12403 CORE_ADDR result = 0;
12407 result = ada_exception_name_addr_1 (ex, b);
12410 CATCH (e, RETURN_MASK_ERROR)
12412 warning (_("failed to get exception name: %s"), e.message);
12420 static std::string ada_exception_catchpoint_cond_string
12421 (const char *excep_string,
12422 enum ada_exception_catchpoint_kind ex);
12424 /* Ada catchpoints.
12426 In the case of catchpoints on Ada exceptions, the catchpoint will
12427 stop the target on every exception the program throws. When a user
12428 specifies the name of a specific exception, we translate this
12429 request into a condition expression (in text form), and then parse
12430 it into an expression stored in each of the catchpoint's locations.
12431 We then use this condition to check whether the exception that was
12432 raised is the one the user is interested in. If not, then the
12433 target is resumed again. We store the name of the requested
12434 exception, in order to be able to re-set the condition expression
12435 when symbols change. */
12437 /* An instance of this type is used to represent an Ada catchpoint
12438 breakpoint location. */
12440 class ada_catchpoint_location : public bp_location
12443 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12444 : bp_location (ops, owner)
12447 /* The condition that checks whether the exception that was raised
12448 is the specific exception the user specified on catchpoint
12450 expression_up excep_cond_expr;
12453 /* Implement the DTOR method in the bp_location_ops structure for all
12454 Ada exception catchpoint kinds. */
12457 ada_catchpoint_location_dtor (struct bp_location *bl)
12459 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12461 al->excep_cond_expr.reset ();
12464 /* The vtable to be used in Ada catchpoint locations. */
12466 static const struct bp_location_ops ada_catchpoint_location_ops =
12468 ada_catchpoint_location_dtor
12471 /* An instance of this type is used to represent an Ada catchpoint. */
12473 struct ada_catchpoint : public breakpoint
12475 /* The name of the specific exception the user specified. */
12476 std::string excep_string;
12479 /* Parse the exception condition string in the context of each of the
12480 catchpoint's locations, and store them for later evaluation. */
12483 create_excep_cond_exprs (struct ada_catchpoint *c,
12484 enum ada_exception_catchpoint_kind ex)
12486 struct bp_location *bl;
12488 /* Nothing to do if there's no specific exception to catch. */
12489 if (c->excep_string.empty ())
12492 /* Same if there are no locations... */
12493 if (c->loc == NULL)
12496 /* Compute the condition expression in text form, from the specific
12497 expection we want to catch. */
12498 std::string cond_string
12499 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12501 /* Iterate over all the catchpoint's locations, and parse an
12502 expression for each. */
12503 for (bl = c->loc; bl != NULL; bl = bl->next)
12505 struct ada_catchpoint_location *ada_loc
12506 = (struct ada_catchpoint_location *) bl;
12509 if (!bl->shlib_disabled)
12513 s = cond_string.c_str ();
12516 exp = parse_exp_1 (&s, bl->address,
12517 block_for_pc (bl->address),
12520 CATCH (e, RETURN_MASK_ERROR)
12522 warning (_("failed to reevaluate internal exception condition "
12523 "for catchpoint %d: %s"),
12524 c->number, e.message);
12529 ada_loc->excep_cond_expr = std::move (exp);
12533 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12534 structure for all exception catchpoint kinds. */
12536 static struct bp_location *
12537 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12538 struct breakpoint *self)
12540 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12543 /* Implement the RE_SET method in the breakpoint_ops structure for all
12544 exception catchpoint kinds. */
12547 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12551 /* Call the base class's method. This updates the catchpoint's
12553 bkpt_breakpoint_ops.re_set (b);
12555 /* Reparse the exception conditional expressions. One for each
12557 create_excep_cond_exprs (c, ex);
12560 /* Returns true if we should stop for this breakpoint hit. If the
12561 user specified a specific exception, we only want to cause a stop
12562 if the program thrown that exception. */
12565 should_stop_exception (const struct bp_location *bl)
12567 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12568 const struct ada_catchpoint_location *ada_loc
12569 = (const struct ada_catchpoint_location *) bl;
12572 /* With no specific exception, should always stop. */
12573 if (c->excep_string.empty ())
12576 if (ada_loc->excep_cond_expr == NULL)
12578 /* We will have a NULL expression if back when we were creating
12579 the expressions, this location's had failed to parse. */
12586 struct value *mark;
12588 mark = value_mark ();
12589 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12590 value_free_to_mark (mark);
12592 CATCH (ex, RETURN_MASK_ALL)
12594 exception_fprintf (gdb_stderr, ex,
12595 _("Error in testing exception condition:\n"));
12602 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12603 for all exception catchpoint kinds. */
12606 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12608 bs->stop = should_stop_exception (bs->bp_location_at);
12611 /* Implement the PRINT_IT method in the breakpoint_ops structure
12612 for all exception catchpoint kinds. */
12614 static enum print_stop_action
12615 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12617 struct ui_out *uiout = current_uiout;
12618 struct breakpoint *b = bs->breakpoint_at;
12620 annotate_catchpoint (b->number);
12622 if (uiout->is_mi_like_p ())
12624 uiout->field_string ("reason",
12625 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12626 uiout->field_string ("disp", bpdisp_text (b->disposition));
12629 uiout->text (b->disposition == disp_del
12630 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12631 uiout->field_int ("bkptno", b->number);
12632 uiout->text (", ");
12634 /* ada_exception_name_addr relies on the selected frame being the
12635 current frame. Need to do this here because this function may be
12636 called more than once when printing a stop, and below, we'll
12637 select the first frame past the Ada run-time (see
12638 ada_find_printable_frame). */
12639 select_frame (get_current_frame ());
12643 case ada_catch_exception:
12644 case ada_catch_exception_unhandled:
12645 case ada_catch_handlers:
12647 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12648 char exception_name[256];
12652 read_memory (addr, (gdb_byte *) exception_name,
12653 sizeof (exception_name) - 1);
12654 exception_name [sizeof (exception_name) - 1] = '\0';
12658 /* For some reason, we were unable to read the exception
12659 name. This could happen if the Runtime was compiled
12660 without debugging info, for instance. In that case,
12661 just replace the exception name by the generic string
12662 "exception" - it will read as "an exception" in the
12663 notification we are about to print. */
12664 memcpy (exception_name, "exception", sizeof ("exception"));
12666 /* In the case of unhandled exception breakpoints, we print
12667 the exception name as "unhandled EXCEPTION_NAME", to make
12668 it clearer to the user which kind of catchpoint just got
12669 hit. We used ui_out_text to make sure that this extra
12670 info does not pollute the exception name in the MI case. */
12671 if (ex == ada_catch_exception_unhandled)
12672 uiout->text ("unhandled ");
12673 uiout->field_string ("exception-name", exception_name);
12676 case ada_catch_assert:
12677 /* In this case, the name of the exception is not really
12678 important. Just print "failed assertion" to make it clearer
12679 that his program just hit an assertion-failure catchpoint.
12680 We used ui_out_text because this info does not belong in
12682 uiout->text ("failed assertion");
12686 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12687 if (exception_message != NULL)
12689 uiout->text (" (");
12690 uiout->field_string ("exception-message", exception_message.get ());
12694 uiout->text (" at ");
12695 ada_find_printable_frame (get_current_frame ());
12697 return PRINT_SRC_AND_LOC;
12700 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12701 for all exception catchpoint kinds. */
12704 print_one_exception (enum ada_exception_catchpoint_kind ex,
12705 struct breakpoint *b, struct bp_location **last_loc)
12707 struct ui_out *uiout = current_uiout;
12708 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12709 struct value_print_options opts;
12711 get_user_print_options (&opts);
12712 if (opts.addressprint)
12714 annotate_field (4);
12715 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12718 annotate_field (5);
12719 *last_loc = b->loc;
12722 case ada_catch_exception:
12723 if (!c->excep_string.empty ())
12725 std::string msg = string_printf (_("`%s' Ada exception"),
12726 c->excep_string.c_str ());
12728 uiout->field_string ("what", msg);
12731 uiout->field_string ("what", "all Ada exceptions");
12735 case ada_catch_exception_unhandled:
12736 uiout->field_string ("what", "unhandled Ada exceptions");
12739 case ada_catch_handlers:
12740 if (!c->excep_string.empty ())
12742 uiout->field_fmt ("what",
12743 _("`%s' Ada exception handlers"),
12744 c->excep_string.c_str ());
12747 uiout->field_string ("what", "all Ada exceptions handlers");
12750 case ada_catch_assert:
12751 uiout->field_string ("what", "failed Ada assertions");
12755 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12760 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12761 for all exception catchpoint kinds. */
12764 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12765 struct breakpoint *b)
12767 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12768 struct ui_out *uiout = current_uiout;
12770 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12771 : _("Catchpoint "));
12772 uiout->field_int ("bkptno", b->number);
12773 uiout->text (": ");
12777 case ada_catch_exception:
12778 if (!c->excep_string.empty ())
12780 std::string info = string_printf (_("`%s' Ada exception"),
12781 c->excep_string.c_str ());
12782 uiout->text (info.c_str ());
12785 uiout->text (_("all Ada exceptions"));
12788 case ada_catch_exception_unhandled:
12789 uiout->text (_("unhandled Ada exceptions"));
12792 case ada_catch_handlers:
12793 if (!c->excep_string.empty ())
12796 = string_printf (_("`%s' Ada exception handlers"),
12797 c->excep_string.c_str ());
12798 uiout->text (info.c_str ());
12801 uiout->text (_("all Ada exceptions handlers"));
12804 case ada_catch_assert:
12805 uiout->text (_("failed Ada assertions"));
12809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12814 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12815 for all exception catchpoint kinds. */
12818 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12819 struct breakpoint *b, struct ui_file *fp)
12821 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12825 case ada_catch_exception:
12826 fprintf_filtered (fp, "catch exception");
12827 if (!c->excep_string.empty ())
12828 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12831 case ada_catch_exception_unhandled:
12832 fprintf_filtered (fp, "catch exception unhandled");
12835 case ada_catch_handlers:
12836 fprintf_filtered (fp, "catch handlers");
12839 case ada_catch_assert:
12840 fprintf_filtered (fp, "catch assert");
12844 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12846 print_recreate_thread (b, fp);
12849 /* Virtual table for "catch exception" breakpoints. */
12851 static struct bp_location *
12852 allocate_location_catch_exception (struct breakpoint *self)
12854 return allocate_location_exception (ada_catch_exception, self);
12858 re_set_catch_exception (struct breakpoint *b)
12860 re_set_exception (ada_catch_exception, b);
12864 check_status_catch_exception (bpstat bs)
12866 check_status_exception (ada_catch_exception, bs);
12869 static enum print_stop_action
12870 print_it_catch_exception (bpstat bs)
12872 return print_it_exception (ada_catch_exception, bs);
12876 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12878 print_one_exception (ada_catch_exception, b, last_loc);
12882 print_mention_catch_exception (struct breakpoint *b)
12884 print_mention_exception (ada_catch_exception, b);
12888 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12890 print_recreate_exception (ada_catch_exception, b, fp);
12893 static struct breakpoint_ops catch_exception_breakpoint_ops;
12895 /* Virtual table for "catch exception unhandled" breakpoints. */
12897 static struct bp_location *
12898 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12900 return allocate_location_exception (ada_catch_exception_unhandled, self);
12904 re_set_catch_exception_unhandled (struct breakpoint *b)
12906 re_set_exception (ada_catch_exception_unhandled, b);
12910 check_status_catch_exception_unhandled (bpstat bs)
12912 check_status_exception (ada_catch_exception_unhandled, bs);
12915 static enum print_stop_action
12916 print_it_catch_exception_unhandled (bpstat bs)
12918 return print_it_exception (ada_catch_exception_unhandled, bs);
12922 print_one_catch_exception_unhandled (struct breakpoint *b,
12923 struct bp_location **last_loc)
12925 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12929 print_mention_catch_exception_unhandled (struct breakpoint *b)
12931 print_mention_exception (ada_catch_exception_unhandled, b);
12935 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12936 struct ui_file *fp)
12938 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12941 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12943 /* Virtual table for "catch assert" breakpoints. */
12945 static struct bp_location *
12946 allocate_location_catch_assert (struct breakpoint *self)
12948 return allocate_location_exception (ada_catch_assert, self);
12952 re_set_catch_assert (struct breakpoint *b)
12954 re_set_exception (ada_catch_assert, b);
12958 check_status_catch_assert (bpstat bs)
12960 check_status_exception (ada_catch_assert, bs);
12963 static enum print_stop_action
12964 print_it_catch_assert (bpstat bs)
12966 return print_it_exception (ada_catch_assert, bs);
12970 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12972 print_one_exception (ada_catch_assert, b, last_loc);
12976 print_mention_catch_assert (struct breakpoint *b)
12978 print_mention_exception (ada_catch_assert, b);
12982 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12984 print_recreate_exception (ada_catch_assert, b, fp);
12987 static struct breakpoint_ops catch_assert_breakpoint_ops;
12989 /* Virtual table for "catch handlers" breakpoints. */
12991 static struct bp_location *
12992 allocate_location_catch_handlers (struct breakpoint *self)
12994 return allocate_location_exception (ada_catch_handlers, self);
12998 re_set_catch_handlers (struct breakpoint *b)
13000 re_set_exception (ada_catch_handlers, b);
13004 check_status_catch_handlers (bpstat bs)
13006 check_status_exception (ada_catch_handlers, bs);
13009 static enum print_stop_action
13010 print_it_catch_handlers (bpstat bs)
13012 return print_it_exception (ada_catch_handlers, bs);
13016 print_one_catch_handlers (struct breakpoint *b,
13017 struct bp_location **last_loc)
13019 print_one_exception (ada_catch_handlers, b, last_loc);
13023 print_mention_catch_handlers (struct breakpoint *b)
13025 print_mention_exception (ada_catch_handlers, b);
13029 print_recreate_catch_handlers (struct breakpoint *b,
13030 struct ui_file *fp)
13032 print_recreate_exception (ada_catch_handlers, b, fp);
13035 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13037 /* Split the arguments specified in a "catch exception" command.
13038 Set EX to the appropriate catchpoint type.
13039 Set EXCEP_STRING to the name of the specific exception if
13040 specified by the user.
13041 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13042 "catch handlers" command. False otherwise.
13043 If a condition is found at the end of the arguments, the condition
13044 expression is stored in COND_STRING (memory must be deallocated
13045 after use). Otherwise COND_STRING is set to NULL. */
13048 catch_ada_exception_command_split (const char *args,
13049 bool is_catch_handlers_cmd,
13050 enum ada_exception_catchpoint_kind *ex,
13051 std::string *excep_string,
13052 std::string *cond_string)
13054 std::string exception_name;
13056 exception_name = extract_arg (&args);
13057 if (exception_name == "if")
13059 /* This is not an exception name; this is the start of a condition
13060 expression for a catchpoint on all exceptions. So, "un-get"
13061 this token, and set exception_name to NULL. */
13062 exception_name.clear ();
13066 /* Check to see if we have a condition. */
13068 args = skip_spaces (args);
13069 if (startswith (args, "if")
13070 && (isspace (args[2]) || args[2] == '\0'))
13073 args = skip_spaces (args);
13075 if (args[0] == '\0')
13076 error (_("Condition missing after `if' keyword"));
13077 *cond_string = args;
13079 args += strlen (args);
13082 /* Check that we do not have any more arguments. Anything else
13085 if (args[0] != '\0')
13086 error (_("Junk at end of expression"));
13088 if (is_catch_handlers_cmd)
13090 /* Catch handling of exceptions. */
13091 *ex = ada_catch_handlers;
13092 *excep_string = exception_name;
13094 else if (exception_name.empty ())
13096 /* Catch all exceptions. */
13097 *ex = ada_catch_exception;
13098 excep_string->clear ();
13100 else if (exception_name == "unhandled")
13102 /* Catch unhandled exceptions. */
13103 *ex = ada_catch_exception_unhandled;
13104 excep_string->clear ();
13108 /* Catch a specific exception. */
13109 *ex = ada_catch_exception;
13110 *excep_string = exception_name;
13114 /* Return the name of the symbol on which we should break in order to
13115 implement a catchpoint of the EX kind. */
13117 static const char *
13118 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13122 gdb_assert (data->exception_info != NULL);
13126 case ada_catch_exception:
13127 return (data->exception_info->catch_exception_sym);
13129 case ada_catch_exception_unhandled:
13130 return (data->exception_info->catch_exception_unhandled_sym);
13132 case ada_catch_assert:
13133 return (data->exception_info->catch_assert_sym);
13135 case ada_catch_handlers:
13136 return (data->exception_info->catch_handlers_sym);
13139 internal_error (__FILE__, __LINE__,
13140 _("unexpected catchpoint kind (%d)"), ex);
13144 /* Return the breakpoint ops "virtual table" used for catchpoints
13147 static const struct breakpoint_ops *
13148 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13152 case ada_catch_exception:
13153 return (&catch_exception_breakpoint_ops);
13155 case ada_catch_exception_unhandled:
13156 return (&catch_exception_unhandled_breakpoint_ops);
13158 case ada_catch_assert:
13159 return (&catch_assert_breakpoint_ops);
13161 case ada_catch_handlers:
13162 return (&catch_handlers_breakpoint_ops);
13165 internal_error (__FILE__, __LINE__,
13166 _("unexpected catchpoint kind (%d)"), ex);
13170 /* Return the condition that will be used to match the current exception
13171 being raised with the exception that the user wants to catch. This
13172 assumes that this condition is used when the inferior just triggered
13173 an exception catchpoint.
13174 EX: the type of catchpoints used for catching Ada exceptions. */
13177 ada_exception_catchpoint_cond_string (const char *excep_string,
13178 enum ada_exception_catchpoint_kind ex)
13181 bool is_standard_exc = false;
13182 std::string result;
13184 if (ex == ada_catch_handlers)
13186 /* For exception handlers catchpoints, the condition string does
13187 not use the same parameter as for the other exceptions. */
13188 result = ("long_integer (GNAT_GCC_exception_Access"
13189 "(gcc_exception).all.occurrence.id)");
13192 result = "long_integer (e)";
13194 /* The standard exceptions are a special case. They are defined in
13195 runtime units that have been compiled without debugging info; if
13196 EXCEP_STRING is the not-fully-qualified name of a standard
13197 exception (e.g. "constraint_error") then, during the evaluation
13198 of the condition expression, the symbol lookup on this name would
13199 *not* return this standard exception. The catchpoint condition
13200 may then be set only on user-defined exceptions which have the
13201 same not-fully-qualified name (e.g. my_package.constraint_error).
13203 To avoid this unexcepted behavior, these standard exceptions are
13204 systematically prefixed by "standard". This means that "catch
13205 exception constraint_error" is rewritten into "catch exception
13206 standard.constraint_error".
13208 If an exception named contraint_error is defined in another package of
13209 the inferior program, then the only way to specify this exception as a
13210 breakpoint condition is to use its fully-qualified named:
13211 e.g. my_package.constraint_error. */
13213 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13215 if (strcmp (standard_exc [i], excep_string) == 0)
13217 is_standard_exc = true;
13224 if (is_standard_exc)
13225 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13227 string_appendf (result, "long_integer (&%s)", excep_string);
13232 /* Return the symtab_and_line that should be used to insert an exception
13233 catchpoint of the TYPE kind.
13235 ADDR_STRING returns the name of the function where the real
13236 breakpoint that implements the catchpoints is set, depending on the
13237 type of catchpoint we need to create. */
13239 static struct symtab_and_line
13240 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13241 const char **addr_string, const struct breakpoint_ops **ops)
13243 const char *sym_name;
13244 struct symbol *sym;
13246 /* First, find out which exception support info to use. */
13247 ada_exception_support_info_sniffer ();
13249 /* Then lookup the function on which we will break in order to catch
13250 the Ada exceptions requested by the user. */
13251 sym_name = ada_exception_sym_name (ex);
13252 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13255 error (_("Catchpoint symbol not found: %s"), sym_name);
13257 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13258 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13260 /* Set ADDR_STRING. */
13261 *addr_string = xstrdup (sym_name);
13264 *ops = ada_exception_breakpoint_ops (ex);
13266 return find_function_start_sal (sym, 1);
13269 /* Create an Ada exception catchpoint.
13271 EX_KIND is the kind of exception catchpoint to be created.
13273 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13274 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13275 of the exception to which this catchpoint applies.
13277 COND_STRING, if not empty, is the catchpoint condition.
13279 TEMPFLAG, if nonzero, means that the underlying breakpoint
13280 should be temporary.
13282 FROM_TTY is the usual argument passed to all commands implementations. */
13285 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13286 enum ada_exception_catchpoint_kind ex_kind,
13287 const std::string &excep_string,
13288 const std::string &cond_string,
13293 const char *addr_string = NULL;
13294 const struct breakpoint_ops *ops = NULL;
13295 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13297 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13298 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13299 ops, tempflag, disabled, from_tty);
13300 c->excep_string = excep_string;
13301 create_excep_cond_exprs (c.get (), ex_kind);
13302 if (!cond_string.empty ())
13303 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13304 install_breakpoint (0, std::move (c), 1);
13307 /* Implement the "catch exception" command. */
13310 catch_ada_exception_command (const char *arg_entry, int from_tty,
13311 struct cmd_list_element *command)
13313 const char *arg = arg_entry;
13314 struct gdbarch *gdbarch = get_current_arch ();
13316 enum ada_exception_catchpoint_kind ex_kind;
13317 std::string excep_string;
13318 std::string cond_string;
13320 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13324 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13326 create_ada_exception_catchpoint (gdbarch, ex_kind,
13327 excep_string, cond_string,
13328 tempflag, 1 /* enabled */,
13332 /* Implement the "catch handlers" command. */
13335 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13336 struct cmd_list_element *command)
13338 const char *arg = arg_entry;
13339 struct gdbarch *gdbarch = get_current_arch ();
13341 enum ada_exception_catchpoint_kind ex_kind;
13342 std::string excep_string;
13343 std::string cond_string;
13345 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13349 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13351 create_ada_exception_catchpoint (gdbarch, ex_kind,
13352 excep_string, cond_string,
13353 tempflag, 1 /* enabled */,
13357 /* Split the arguments specified in a "catch assert" command.
13359 ARGS contains the command's arguments (or the empty string if
13360 no arguments were passed).
13362 If ARGS contains a condition, set COND_STRING to that condition
13363 (the memory needs to be deallocated after use). */
13366 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13368 args = skip_spaces (args);
13370 /* Check whether a condition was provided. */
13371 if (startswith (args, "if")
13372 && (isspace (args[2]) || args[2] == '\0'))
13375 args = skip_spaces (args);
13376 if (args[0] == '\0')
13377 error (_("condition missing after `if' keyword"));
13378 cond_string.assign (args);
13381 /* Otherwise, there should be no other argument at the end of
13383 else if (args[0] != '\0')
13384 error (_("Junk at end of arguments."));
13387 /* Implement the "catch assert" command. */
13390 catch_assert_command (const char *arg_entry, int from_tty,
13391 struct cmd_list_element *command)
13393 const char *arg = arg_entry;
13394 struct gdbarch *gdbarch = get_current_arch ();
13396 std::string cond_string;
13398 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13402 catch_ada_assert_command_split (arg, cond_string);
13403 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13405 tempflag, 1 /* enabled */,
13409 /* Return non-zero if the symbol SYM is an Ada exception object. */
13412 ada_is_exception_sym (struct symbol *sym)
13414 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13416 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13417 && SYMBOL_CLASS (sym) != LOC_BLOCK
13418 && SYMBOL_CLASS (sym) != LOC_CONST
13419 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13420 && type_name != NULL && strcmp (type_name, "exception") == 0);
13423 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13424 Ada exception object. This matches all exceptions except the ones
13425 defined by the Ada language. */
13428 ada_is_non_standard_exception_sym (struct symbol *sym)
13432 if (!ada_is_exception_sym (sym))
13435 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13436 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13437 return 0; /* A standard exception. */
13439 /* Numeric_Error is also a standard exception, so exclude it.
13440 See the STANDARD_EXC description for more details as to why
13441 this exception is not listed in that array. */
13442 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13448 /* A helper function for std::sort, comparing two struct ada_exc_info
13451 The comparison is determined first by exception name, and then
13452 by exception address. */
13455 ada_exc_info::operator< (const ada_exc_info &other) const
13459 result = strcmp (name, other.name);
13462 if (result == 0 && addr < other.addr)
13468 ada_exc_info::operator== (const ada_exc_info &other) const
13470 return addr == other.addr && strcmp (name, other.name) == 0;
13473 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13474 routine, but keeping the first SKIP elements untouched.
13476 All duplicates are also removed. */
13479 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13482 std::sort (exceptions->begin () + skip, exceptions->end ());
13483 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13484 exceptions->end ());
13487 /* Add all exceptions defined by the Ada standard whose name match
13488 a regular expression.
13490 If PREG is not NULL, then this regexp_t object is used to
13491 perform the symbol name matching. Otherwise, no name-based
13492 filtering is performed.
13494 EXCEPTIONS is a vector of exceptions to which matching exceptions
13498 ada_add_standard_exceptions (compiled_regex *preg,
13499 std::vector<ada_exc_info> *exceptions)
13503 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13506 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13508 struct bound_minimal_symbol msymbol
13509 = ada_lookup_simple_minsym (standard_exc[i]);
13511 if (msymbol.minsym != NULL)
13513 struct ada_exc_info info
13514 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13516 exceptions->push_back (info);
13522 /* Add all Ada exceptions defined locally and accessible from the given
13525 If PREG is not NULL, then this regexp_t object is used to
13526 perform the symbol name matching. Otherwise, no name-based
13527 filtering is performed.
13529 EXCEPTIONS is a vector of exceptions to which matching exceptions
13533 ada_add_exceptions_from_frame (compiled_regex *preg,
13534 struct frame_info *frame,
13535 std::vector<ada_exc_info> *exceptions)
13537 const struct block *block = get_frame_block (frame, 0);
13541 struct block_iterator iter;
13542 struct symbol *sym;
13544 ALL_BLOCK_SYMBOLS (block, iter, sym)
13546 switch (SYMBOL_CLASS (sym))
13553 if (ada_is_exception_sym (sym))
13555 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13556 SYMBOL_VALUE_ADDRESS (sym)};
13558 exceptions->push_back (info);
13562 if (BLOCK_FUNCTION (block) != NULL)
13564 block = BLOCK_SUPERBLOCK (block);
13568 /* Return true if NAME matches PREG or if PREG is NULL. */
13571 name_matches_regex (const char *name, compiled_regex *preg)
13573 return (preg == NULL
13574 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13577 /* Add all exceptions defined globally whose name name match
13578 a regular expression, excluding standard exceptions.
13580 The reason we exclude standard exceptions is that they need
13581 to be handled separately: Standard exceptions are defined inside
13582 a runtime unit which is normally not compiled with debugging info,
13583 and thus usually do not show up in our symbol search. However,
13584 if the unit was in fact built with debugging info, we need to
13585 exclude them because they would duplicate the entry we found
13586 during the special loop that specifically searches for those
13587 standard exceptions.
13589 If PREG is not NULL, then this regexp_t object is used to
13590 perform the symbol name matching. Otherwise, no name-based
13591 filtering is performed.
13593 EXCEPTIONS is a vector of exceptions to which matching exceptions
13597 ada_add_global_exceptions (compiled_regex *preg,
13598 std::vector<ada_exc_info> *exceptions)
13600 struct objfile *objfile;
13601 struct compunit_symtab *s;
13603 /* In Ada, the symbol "search name" is a linkage name, whereas the
13604 regular expression used to do the matching refers to the natural
13605 name. So match against the decoded name. */
13606 expand_symtabs_matching (NULL,
13607 lookup_name_info::match_any (),
13608 [&] (const char *search_name)
13610 const char *decoded = ada_decode (search_name);
13611 return name_matches_regex (decoded, preg);
13616 ALL_COMPUNITS (objfile, s)
13618 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13621 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13623 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13624 struct block_iterator iter;
13625 struct symbol *sym;
13627 ALL_BLOCK_SYMBOLS (b, iter, sym)
13628 if (ada_is_non_standard_exception_sym (sym)
13629 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13631 struct ada_exc_info info
13632 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13634 exceptions->push_back (info);
13640 /* Implements ada_exceptions_list with the regular expression passed
13641 as a regex_t, rather than a string.
13643 If not NULL, PREG is used to filter out exceptions whose names
13644 do not match. Otherwise, all exceptions are listed. */
13646 static std::vector<ada_exc_info>
13647 ada_exceptions_list_1 (compiled_regex *preg)
13649 std::vector<ada_exc_info> result;
13652 /* First, list the known standard exceptions. These exceptions
13653 need to be handled separately, as they are usually defined in
13654 runtime units that have been compiled without debugging info. */
13656 ada_add_standard_exceptions (preg, &result);
13658 /* Next, find all exceptions whose scope is local and accessible
13659 from the currently selected frame. */
13661 if (has_stack_frames ())
13663 prev_len = result.size ();
13664 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13666 if (result.size () > prev_len)
13667 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13670 /* Add all exceptions whose scope is global. */
13672 prev_len = result.size ();
13673 ada_add_global_exceptions (preg, &result);
13674 if (result.size () > prev_len)
13675 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13680 /* Return a vector of ada_exc_info.
13682 If REGEXP is NULL, all exceptions are included in the result.
13683 Otherwise, it should contain a valid regular expression,
13684 and only the exceptions whose names match that regular expression
13685 are included in the result.
13687 The exceptions are sorted in the following order:
13688 - Standard exceptions (defined by the Ada language), in
13689 alphabetical order;
13690 - Exceptions only visible from the current frame, in
13691 alphabetical order;
13692 - Exceptions whose scope is global, in alphabetical order. */
13694 std::vector<ada_exc_info>
13695 ada_exceptions_list (const char *regexp)
13697 if (regexp == NULL)
13698 return ada_exceptions_list_1 (NULL);
13700 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13701 return ada_exceptions_list_1 (®);
13704 /* Implement the "info exceptions" command. */
13707 info_exceptions_command (const char *regexp, int from_tty)
13709 struct gdbarch *gdbarch = get_current_arch ();
13711 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13713 if (regexp != NULL)
13715 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13717 printf_filtered (_("All defined Ada exceptions:\n"));
13719 for (const ada_exc_info &info : exceptions)
13720 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13724 /* Information about operators given special treatment in functions
13726 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13728 #define ADA_OPERATORS \
13729 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13730 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13731 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13732 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13733 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13734 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13735 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13736 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13737 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13738 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13739 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13741 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13742 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13743 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13744 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13745 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13746 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13747 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13750 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13753 switch (exp->elts[pc - 1].opcode)
13756 operator_length_standard (exp, pc, oplenp, argsp);
13759 #define OP_DEFN(op, len, args, binop) \
13760 case op: *oplenp = len; *argsp = args; break;
13766 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13771 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13776 /* Implementation of the exp_descriptor method operator_check. */
13779 ada_operator_check (struct expression *exp, int pos,
13780 int (*objfile_func) (struct objfile *objfile, void *data),
13783 const union exp_element *const elts = exp->elts;
13784 struct type *type = NULL;
13786 switch (elts[pos].opcode)
13788 case UNOP_IN_RANGE:
13790 type = elts[pos + 1].type;
13794 return operator_check_standard (exp, pos, objfile_func, data);
13797 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13799 if (type && TYPE_OBJFILE (type)
13800 && (*objfile_func) (TYPE_OBJFILE (type), data))
13806 static const char *
13807 ada_op_name (enum exp_opcode opcode)
13812 return op_name_standard (opcode);
13814 #define OP_DEFN(op, len, args, binop) case op: return #op;
13819 return "OP_AGGREGATE";
13821 return "OP_CHOICES";
13827 /* As for operator_length, but assumes PC is pointing at the first
13828 element of the operator, and gives meaningful results only for the
13829 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13832 ada_forward_operator_length (struct expression *exp, int pc,
13833 int *oplenp, int *argsp)
13835 switch (exp->elts[pc].opcode)
13838 *oplenp = *argsp = 0;
13841 #define OP_DEFN(op, len, args, binop) \
13842 case op: *oplenp = len; *argsp = args; break;
13848 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13853 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13859 int len = longest_to_int (exp->elts[pc + 1].longconst);
13861 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13869 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13871 enum exp_opcode op = exp->elts[elt].opcode;
13876 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13880 /* Ada attributes ('Foo). */
13883 case OP_ATR_LENGTH:
13887 case OP_ATR_MODULUS:
13894 case UNOP_IN_RANGE:
13896 /* XXX: gdb_sprint_host_address, type_sprint */
13897 fprintf_filtered (stream, _("Type @"));
13898 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13899 fprintf_filtered (stream, " (");
13900 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13901 fprintf_filtered (stream, ")");
13903 case BINOP_IN_BOUNDS:
13904 fprintf_filtered (stream, " (%d)",
13905 longest_to_int (exp->elts[pc + 2].longconst));
13907 case TERNOP_IN_RANGE:
13912 case OP_DISCRETE_RANGE:
13913 case OP_POSITIONAL:
13920 char *name = &exp->elts[elt + 2].string;
13921 int len = longest_to_int (exp->elts[elt + 1].longconst);
13923 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13928 return dump_subexp_body_standard (exp, stream, elt);
13932 for (i = 0; i < nargs; i += 1)
13933 elt = dump_subexp (exp, stream, elt);
13938 /* The Ada extension of print_subexp (q.v.). */
13941 ada_print_subexp (struct expression *exp, int *pos,
13942 struct ui_file *stream, enum precedence prec)
13944 int oplen, nargs, i;
13946 enum exp_opcode op = exp->elts[pc].opcode;
13948 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13955 print_subexp_standard (exp, pos, stream, prec);
13959 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13962 case BINOP_IN_BOUNDS:
13963 /* XXX: sprint_subexp */
13964 print_subexp (exp, pos, stream, PREC_SUFFIX);
13965 fputs_filtered (" in ", stream);
13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 fputs_filtered ("'range", stream);
13968 if (exp->elts[pc + 1].longconst > 1)
13969 fprintf_filtered (stream, "(%ld)",
13970 (long) exp->elts[pc + 1].longconst);
13973 case TERNOP_IN_RANGE:
13974 if (prec >= PREC_EQUAL)
13975 fputs_filtered ("(", stream);
13976 /* XXX: sprint_subexp */
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 fputs_filtered (" in ", stream);
13979 print_subexp (exp, pos, stream, PREC_EQUAL);
13980 fputs_filtered (" .. ", stream);
13981 print_subexp (exp, pos, stream, PREC_EQUAL);
13982 if (prec >= PREC_EQUAL)
13983 fputs_filtered (")", stream);
13988 case OP_ATR_LENGTH:
13992 case OP_ATR_MODULUS:
13997 if (exp->elts[*pos].opcode == OP_TYPE)
13999 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14000 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14001 &type_print_raw_options);
14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
14006 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14011 for (tem = 1; tem < nargs; tem += 1)
14013 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14014 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14016 fputs_filtered (")", stream);
14021 type_print (exp->elts[pc + 1].type, "", stream, 0);
14022 fputs_filtered ("'(", stream);
14023 print_subexp (exp, pos, stream, PREC_PREFIX);
14024 fputs_filtered (")", stream);
14027 case UNOP_IN_RANGE:
14028 /* XXX: sprint_subexp */
14029 print_subexp (exp, pos, stream, PREC_SUFFIX);
14030 fputs_filtered (" in ", stream);
14031 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14032 &type_print_raw_options);
14035 case OP_DISCRETE_RANGE:
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered ("..", stream);
14038 print_subexp (exp, pos, stream, PREC_SUFFIX);
14042 fputs_filtered ("others => ", stream);
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14047 for (i = 0; i < nargs-1; i += 1)
14050 fputs_filtered ("|", stream);
14051 print_subexp (exp, pos, stream, PREC_SUFFIX);
14053 fputs_filtered (" => ", stream);
14054 print_subexp (exp, pos, stream, PREC_SUFFIX);
14057 case OP_POSITIONAL:
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14062 fputs_filtered ("(", stream);
14063 for (i = 0; i < nargs; i += 1)
14066 fputs_filtered (", ", stream);
14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
14069 fputs_filtered (")", stream);
14074 /* Table mapping opcodes into strings for printing operators
14075 and precedences of the operators. */
14077 static const struct op_print ada_op_print_tab[] = {
14078 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14079 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14080 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14081 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14082 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14083 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14084 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14085 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14086 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14087 {">=", BINOP_GEQ, PREC_ORDER, 0},
14088 {">", BINOP_GTR, PREC_ORDER, 0},
14089 {"<", BINOP_LESS, PREC_ORDER, 0},
14090 {">>", BINOP_RSH, PREC_SHIFT, 0},
14091 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14092 {"+", BINOP_ADD, PREC_ADD, 0},
14093 {"-", BINOP_SUB, PREC_ADD, 0},
14094 {"&", BINOP_CONCAT, PREC_ADD, 0},
14095 {"*", BINOP_MUL, PREC_MUL, 0},
14096 {"/", BINOP_DIV, PREC_MUL, 0},
14097 {"rem", BINOP_REM, PREC_MUL, 0},
14098 {"mod", BINOP_MOD, PREC_MUL, 0},
14099 {"**", BINOP_EXP, PREC_REPEAT, 0},
14100 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14101 {"-", UNOP_NEG, PREC_PREFIX, 0},
14102 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14103 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14104 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14105 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14106 {".all", UNOP_IND, PREC_SUFFIX, 1},
14107 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14108 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14109 {NULL, OP_NULL, PREC_SUFFIX, 0}
14112 enum ada_primitive_types {
14113 ada_primitive_type_int,
14114 ada_primitive_type_long,
14115 ada_primitive_type_short,
14116 ada_primitive_type_char,
14117 ada_primitive_type_float,
14118 ada_primitive_type_double,
14119 ada_primitive_type_void,
14120 ada_primitive_type_long_long,
14121 ada_primitive_type_long_double,
14122 ada_primitive_type_natural,
14123 ada_primitive_type_positive,
14124 ada_primitive_type_system_address,
14125 ada_primitive_type_storage_offset,
14126 nr_ada_primitive_types
14130 ada_language_arch_info (struct gdbarch *gdbarch,
14131 struct language_arch_info *lai)
14133 const struct builtin_type *builtin = builtin_type (gdbarch);
14135 lai->primitive_type_vector
14136 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14139 lai->primitive_type_vector [ada_primitive_type_int]
14140 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14142 lai->primitive_type_vector [ada_primitive_type_long]
14143 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14144 0, "long_integer");
14145 lai->primitive_type_vector [ada_primitive_type_short]
14146 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14147 0, "short_integer");
14148 lai->string_char_type
14149 = lai->primitive_type_vector [ada_primitive_type_char]
14150 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14151 lai->primitive_type_vector [ada_primitive_type_float]
14152 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14153 "float", gdbarch_float_format (gdbarch));
14154 lai->primitive_type_vector [ada_primitive_type_double]
14155 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14156 "long_float", gdbarch_double_format (gdbarch));
14157 lai->primitive_type_vector [ada_primitive_type_long_long]
14158 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14159 0, "long_long_integer");
14160 lai->primitive_type_vector [ada_primitive_type_long_double]
14161 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14162 "long_long_float", gdbarch_long_double_format (gdbarch));
14163 lai->primitive_type_vector [ada_primitive_type_natural]
14164 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14166 lai->primitive_type_vector [ada_primitive_type_positive]
14167 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14169 lai->primitive_type_vector [ada_primitive_type_void]
14170 = builtin->builtin_void;
14172 lai->primitive_type_vector [ada_primitive_type_system_address]
14173 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14175 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14176 = "system__address";
14178 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14179 type. This is a signed integral type whose size is the same as
14180 the size of addresses. */
14182 unsigned int addr_length = TYPE_LENGTH
14183 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14185 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14186 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14190 lai->bool_type_symbol = NULL;
14191 lai->bool_type_default = builtin->builtin_bool;
14194 /* Language vector */
14196 /* Not really used, but needed in the ada_language_defn. */
14199 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14201 ada_emit_char (c, type, stream, quoter, 1);
14205 parse (struct parser_state *ps)
14207 warnings_issued = 0;
14208 return ada_parse (ps);
14211 static const struct exp_descriptor ada_exp_descriptor = {
14213 ada_operator_length,
14214 ada_operator_check,
14216 ada_dump_subexp_body,
14217 ada_evaluate_subexp
14220 /* symbol_name_matcher_ftype adapter for wild_match. */
14223 do_wild_match (const char *symbol_search_name,
14224 const lookup_name_info &lookup_name,
14225 completion_match_result *comp_match_res)
14227 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14230 /* symbol_name_matcher_ftype adapter for full_match. */
14233 do_full_match (const char *symbol_search_name,
14234 const lookup_name_info &lookup_name,
14235 completion_match_result *comp_match_res)
14237 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14240 /* Build the Ada lookup name for LOOKUP_NAME. */
14242 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14244 const std::string &user_name = lookup_name.name ();
14246 if (user_name[0] == '<')
14248 if (user_name.back () == '>')
14249 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14251 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14252 m_encoded_p = true;
14253 m_verbatim_p = true;
14254 m_wild_match_p = false;
14255 m_standard_p = false;
14259 m_verbatim_p = false;
14261 m_encoded_p = user_name.find ("__") != std::string::npos;
14265 const char *folded = ada_fold_name (user_name.c_str ());
14266 const char *encoded = ada_encode_1 (folded, false);
14267 if (encoded != NULL)
14268 m_encoded_name = encoded;
14270 m_encoded_name = user_name;
14273 m_encoded_name = user_name;
14275 /* Handle the 'package Standard' special case. See description
14276 of m_standard_p. */
14277 if (startswith (m_encoded_name.c_str (), "standard__"))
14279 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14280 m_standard_p = true;
14283 m_standard_p = false;
14285 /* If the name contains a ".", then the user is entering a fully
14286 qualified entity name, and the match must not be done in wild
14287 mode. Similarly, if the user wants to complete what looks
14288 like an encoded name, the match must not be done in wild
14289 mode. Also, in the standard__ special case always do
14290 non-wild matching. */
14292 = (lookup_name.match_type () != symbol_name_match_type::FULL
14295 && user_name.find ('.') == std::string::npos);
14299 /* symbol_name_matcher_ftype method for Ada. This only handles
14300 completion mode. */
14303 ada_symbol_name_matches (const char *symbol_search_name,
14304 const lookup_name_info &lookup_name,
14305 completion_match_result *comp_match_res)
14307 return lookup_name.ada ().matches (symbol_search_name,
14308 lookup_name.match_type (),
14312 /* A name matcher that matches the symbol name exactly, with
14316 literal_symbol_name_matcher (const char *symbol_search_name,
14317 const lookup_name_info &lookup_name,
14318 completion_match_result *comp_match_res)
14320 const std::string &name = lookup_name.name ();
14322 int cmp = (lookup_name.completion_mode ()
14323 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14324 : strcmp (symbol_search_name, name.c_str ()));
14327 if (comp_match_res != NULL)
14328 comp_match_res->set_match (symbol_search_name);
14335 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14338 static symbol_name_matcher_ftype *
14339 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14341 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14342 return literal_symbol_name_matcher;
14344 if (lookup_name.completion_mode ())
14345 return ada_symbol_name_matches;
14348 if (lookup_name.ada ().wild_match_p ())
14349 return do_wild_match;
14351 return do_full_match;
14355 /* Implement the "la_read_var_value" language_defn method for Ada. */
14357 static struct value *
14358 ada_read_var_value (struct symbol *var, const struct block *var_block,
14359 struct frame_info *frame)
14361 const struct block *frame_block = NULL;
14362 struct symbol *renaming_sym = NULL;
14364 /* The only case where default_read_var_value is not sufficient
14365 is when VAR is a renaming... */
14367 frame_block = get_frame_block (frame, NULL);
14369 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14370 if (renaming_sym != NULL)
14371 return ada_read_renaming_var_value (renaming_sym, frame_block);
14373 /* This is a typical case where we expect the default_read_var_value
14374 function to work. */
14375 return default_read_var_value (var, var_block, frame);
14378 static const char *ada_extensions[] =
14380 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14383 extern const struct language_defn ada_language_defn = {
14384 "ada", /* Language name */
14388 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14389 that's not quite what this means. */
14391 macro_expansion_no,
14393 &ada_exp_descriptor,
14396 ada_printchar, /* Print a character constant */
14397 ada_printstr, /* Function to print string constant */
14398 emit_char, /* Function to print single char (not used) */
14399 ada_print_type, /* Print a type using appropriate syntax */
14400 ada_print_typedef, /* Print a typedef using appropriate syntax */
14401 ada_val_print, /* Print a value using appropriate syntax */
14402 ada_value_print, /* Print a top-level value */
14403 ada_read_var_value, /* la_read_var_value */
14404 NULL, /* Language specific skip_trampoline */
14405 NULL, /* name_of_this */
14406 true, /* la_store_sym_names_in_linkage_form_p */
14407 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14408 basic_lookup_transparent_type, /* lookup_transparent_type */
14409 ada_la_decode, /* Language specific symbol demangler */
14410 ada_sniff_from_mangled_name,
14411 NULL, /* Language specific
14412 class_name_from_physname */
14413 ada_op_print_tab, /* expression operators for printing */
14414 0, /* c-style arrays */
14415 1, /* String lower bound */
14416 ada_get_gdb_completer_word_break_characters,
14417 ada_collect_symbol_completion_matches,
14418 ada_language_arch_info,
14419 ada_print_array_index,
14420 default_pass_by_reference,
14422 c_watch_location_expression,
14423 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14424 ada_iterate_over_symbols,
14425 default_search_name_hash,
14432 /* Command-list for the "set/show ada" prefix command. */
14433 static struct cmd_list_element *set_ada_list;
14434 static struct cmd_list_element *show_ada_list;
14436 /* Implement the "set ada" prefix command. */
14439 set_ada_command (const char *arg, int from_tty)
14441 printf_unfiltered (_(\
14442 "\"set ada\" must be followed by the name of a setting.\n"));
14443 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14446 /* Implement the "show ada" prefix command. */
14449 show_ada_command (const char *args, int from_tty)
14451 cmd_show_list (show_ada_list, from_tty, "");
14455 initialize_ada_catchpoint_ops (void)
14457 struct breakpoint_ops *ops;
14459 initialize_breakpoint_ops ();
14461 ops = &catch_exception_breakpoint_ops;
14462 *ops = bkpt_breakpoint_ops;
14463 ops->allocate_location = allocate_location_catch_exception;
14464 ops->re_set = re_set_catch_exception;
14465 ops->check_status = check_status_catch_exception;
14466 ops->print_it = print_it_catch_exception;
14467 ops->print_one = print_one_catch_exception;
14468 ops->print_mention = print_mention_catch_exception;
14469 ops->print_recreate = print_recreate_catch_exception;
14471 ops = &catch_exception_unhandled_breakpoint_ops;
14472 *ops = bkpt_breakpoint_ops;
14473 ops->allocate_location = allocate_location_catch_exception_unhandled;
14474 ops->re_set = re_set_catch_exception_unhandled;
14475 ops->check_status = check_status_catch_exception_unhandled;
14476 ops->print_it = print_it_catch_exception_unhandled;
14477 ops->print_one = print_one_catch_exception_unhandled;
14478 ops->print_mention = print_mention_catch_exception_unhandled;
14479 ops->print_recreate = print_recreate_catch_exception_unhandled;
14481 ops = &catch_assert_breakpoint_ops;
14482 *ops = bkpt_breakpoint_ops;
14483 ops->allocate_location = allocate_location_catch_assert;
14484 ops->re_set = re_set_catch_assert;
14485 ops->check_status = check_status_catch_assert;
14486 ops->print_it = print_it_catch_assert;
14487 ops->print_one = print_one_catch_assert;
14488 ops->print_mention = print_mention_catch_assert;
14489 ops->print_recreate = print_recreate_catch_assert;
14491 ops = &catch_handlers_breakpoint_ops;
14492 *ops = bkpt_breakpoint_ops;
14493 ops->allocate_location = allocate_location_catch_handlers;
14494 ops->re_set = re_set_catch_handlers;
14495 ops->check_status = check_status_catch_handlers;
14496 ops->print_it = print_it_catch_handlers;
14497 ops->print_one = print_one_catch_handlers;
14498 ops->print_mention = print_mention_catch_handlers;
14499 ops->print_recreate = print_recreate_catch_handlers;
14502 /* This module's 'new_objfile' observer. */
14505 ada_new_objfile_observer (struct objfile *objfile)
14507 ada_clear_symbol_cache ();
14510 /* This module's 'free_objfile' observer. */
14513 ada_free_objfile_observer (struct objfile *objfile)
14515 ada_clear_symbol_cache ();
14519 _initialize_ada_language (void)
14521 initialize_ada_catchpoint_ops ();
14523 add_prefix_cmd ("ada", no_class, set_ada_command,
14524 _("Prefix command for changing Ada-specfic settings"),
14525 &set_ada_list, "set ada ", 0, &setlist);
14527 add_prefix_cmd ("ada", no_class, show_ada_command,
14528 _("Generic command for showing Ada-specific settings."),
14529 &show_ada_list, "show ada ", 0, &showlist);
14531 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14532 &trust_pad_over_xvs, _("\
14533 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14534 Show whether an optimization trusting PAD types over XVS types is activated"),
14536 This is related to the encoding used by the GNAT compiler. The debugger\n\
14537 should normally trust the contents of PAD types, but certain older versions\n\
14538 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14539 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14540 work around this bug. It is always safe to turn this option \"off\", but\n\
14541 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14542 this option to \"off\" unless necessary."),
14543 NULL, NULL, &set_ada_list, &show_ada_list);
14545 add_setshow_boolean_cmd ("print-signatures", class_vars,
14546 &print_signatures, _("\
14547 Enable or disable the output of formal and return types for functions in the \
14548 overloads selection menu"), _("\
14549 Show whether the output of formal and return types for functions in the \
14550 overloads selection menu is activated"),
14551 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14553 add_catch_command ("exception", _("\
14554 Catch Ada exceptions, when raised.\n\
14555 With an argument, catch only exceptions with the given name."),
14556 catch_ada_exception_command,
14561 add_catch_command ("handlers", _("\
14562 Catch Ada exceptions, when handled.\n\
14563 With an argument, catch only exceptions with the given name."),
14564 catch_ada_handlers_command,
14568 add_catch_command ("assert", _("\
14569 Catch failed Ada assertions, when raised.\n\
14570 With an argument, catch only exceptions with the given name."),
14571 catch_assert_command,
14576 varsize_limit = 65536;
14577 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14578 &varsize_limit, _("\
14579 Set the maximum number of bytes allowed in a variable-size object."), _("\
14580 Show the maximum number of bytes allowed in a variable-size object."), _("\
14581 Attempts to access an object whose size is not a compile-time constant\n\
14582 and exceeds this limit will cause an error."),
14583 NULL, NULL, &setlist, &showlist);
14585 add_info ("exceptions", info_exceptions_command,
14587 List all Ada exception names.\n\
14588 If a regular expression is passed as an argument, only those matching\n\
14589 the regular expression are listed."));
14591 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14592 _("Set Ada maintenance-related variables."),
14593 &maint_set_ada_cmdlist, "maintenance set ada ",
14594 0/*allow-unknown*/, &maintenance_set_cmdlist);
14596 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14597 _("Show Ada maintenance-related variables"),
14598 &maint_show_ada_cmdlist, "maintenance show ada ",
14599 0/*allow-unknown*/, &maintenance_show_cmdlist);
14601 add_setshow_boolean_cmd
14602 ("ignore-descriptive-types", class_maintenance,
14603 &ada_ignore_descriptive_types_p,
14604 _("Set whether descriptive types generated by GNAT should be ignored."),
14605 _("Show whether descriptive types generated by GNAT should be ignored."),
14607 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14608 DWARF attribute."),
14609 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14611 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14612 NULL, xcalloc, xfree);
14614 /* The ada-lang observers. */
14615 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14616 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14617 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14619 /* Setup various context-specific data. */
14621 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14622 ada_pspace_data_handle
14623 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);