1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static bool wild_match (const char *name, const char *patn);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
232 static int ada_is_direct_array_type (struct type *);
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
237 static struct value *ada_index_struct_field (int, struct value *, int,
240 static struct value *assign_aggregate (struct value *, struct value *,
244 static void aggregate_assign_from_choices (struct value *, struct value *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
249 static void aggregate_assign_positional (struct value *, struct value *,
251 int *, LONGEST *, int *, int,
255 static void aggregate_assign_others (struct value *, struct value *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 static void ada_forward_operator_length (struct expression *, int, int *,
269 static struct type *ada_find_any_type (const char *name);
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
276 /* The result of a symbol lookup to be stored in our symbol cache. */
280 /* The name used to perform the lookup. */
282 /* The namespace used during the lookup. */
284 /* The symbol returned by the lookup, or NULL if no matching symbol
287 /* The block where the symbol was found, or NULL if no matching
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
303 #define HASH_SIZE 1009
305 struct ada_symbol_cache
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
319 static const char ada_completer_word_break_characters[] =
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Maintenance-related settings for this module. */
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
350 /* Implement the "maintenance set ada" (prefix) command. */
353 maint_set_ada_cmd (const char *args, int from_tty)
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 /* Implement the "maintenance show ada" (prefix) command. */
362 maint_show_ada_cmd (const char *args, int from_tty)
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369 static int ada_ignore_descriptive_types_p = 0;
371 /* Inferior-specific data. */
373 /* Per-inferior data for this module. */
375 struct ada_inferior_data
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
386 const struct exception_support_info *exception_info;
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
392 /* A cleanup routine for our inferior data. */
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 struct ada_inferior_data *data;
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
403 /* Return our inferior data for the given inferior (INF).
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
414 struct ada_inferior_data *data;
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
430 ada_inferior_exit (struct inferior *inf)
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
437 /* program-space-specific data. */
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
452 This function always returns a valid object. */
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
457 struct ada_pspace_data *data;
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
470 /* The cleanup callback for this module's per-program-space data. */
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
512 ada_typedef_target_type (struct type *type)
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
524 ada_unqualified_name (const char *decoded_name)
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
535 result = strrchr (decoded_name, '.');
537 result++; /* Skip the dot... */
539 result = decoded_name;
544 /* Return a string starting with '<', followed by STR, and '>'. */
547 add_angle_brackets (const char *str)
549 return string_printf ("<%s>", str);
553 ada_get_gdb_completer_word_break_characters (void)
555 return ada_completer_word_break_characters;
558 /* Print an array element index using the Ada syntax. */
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
568 /* la_watch_location_expression for Ada. */
570 gdb::unique_xmalloc_ptr<char>
571 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
573 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
574 std::string name = type_to_string (type);
575 return gdb::unique_xmalloc_ptr<char>
576 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
586 if (*size < min_size)
589 if (*size < min_size)
591 vect = xrealloc (vect, *size * element_size);
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
600 field_name_match (const char *field_name, const char *target)
602 int len = strlen (target);
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
622 ada_get_field_index (const struct type *type, const char *field_name,
626 struct type *struct_type = check_typedef ((struct type *) type);
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
639 /* The length of the prefix of NAME prior to any "___" suffix. */
642 ada_name_prefix_len (const char *name)
648 const char *p = strstr (name, "___");
651 return strlen (name);
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
661 is_suffix (const char *str, const char *suffix)
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
683 struct value *result;
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
711 return valaddr + offset;
715 cond_offset_target (CORE_ADDR address, long offset)
720 return address + offset;
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
733 lim_warning (const char *format, ...)
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
750 ada_ensure_varsize_limit (const struct type *type)
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
756 /* Maximum value of a SIZE-byte signed integer type. */
758 max_of_size (int size)
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
762 return top_bit | (top_bit - 1);
765 /* Minimum value of a SIZE-byte signed integer type. */
767 min_of_size (int size)
769 return -max_of_size (size) - 1;
772 /* Maximum value of a SIZE-byte unsigned integer type. */
774 umax_of_size (int size)
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
778 return top_bit | (top_bit - 1);
781 /* Maximum value of integral type T, as a signed quantity. */
783 max_of_type (struct type *t)
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
788 return max_of_size (TYPE_LENGTH (t));
791 /* Minimum value of integral type T, as a signed quantity. */
793 min_of_type (struct type *t)
795 if (TYPE_UNSIGNED (t))
798 return min_of_size (TYPE_LENGTH (t));
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
803 ada_discrete_type_high_bound (struct type *type)
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
816 return max_of_type (type);
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
824 ada_discrete_type_low_bound (struct type *type)
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
832 return TYPE_FIELD_ENUMVAL (type, 0);
837 return min_of_type (type);
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
847 get_base_type (struct type *type)
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
853 type = TYPE_TARGET_TYPE (type);
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
864 ada_get_decoded_value (struct value *value)
866 struct type *type = ada_check_typedef (value_type (value));
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
875 value = ada_coerce_to_simple_array (value);
878 value = ada_to_fixed_value (value);
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
889 ada_get_decoded_type (struct type *type)
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
899 /* Language Selection */
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
905 ada_update_initial_language (enum language lang)
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
921 struct bound_minimal_symbol msym;
922 static gdb::unique_xmalloc_ptr<char> main_program_name;
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
931 if (msym.minsym != NULL)
933 CORE_ADDR main_program_name_addr;
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
940 target_read_string (main_program_name_addr, &main_program_name,
945 return main_program_name.get ();
948 /* The main procedure doesn't seem to be in Ada. */
954 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
957 const struct ada_opname_map ada_opname_table[] = {
958 {"Oadd", "\"+\"", BINOP_ADD},
959 {"Osubtract", "\"-\"", BINOP_SUB},
960 {"Omultiply", "\"*\"", BINOP_MUL},
961 {"Odivide", "\"/\"", BINOP_DIV},
962 {"Omod", "\"mod\"", BINOP_MOD},
963 {"Orem", "\"rem\"", BINOP_REM},
964 {"Oexpon", "\"**\"", BINOP_EXP},
965 {"Olt", "\"<\"", BINOP_LESS},
966 {"Ole", "\"<=\"", BINOP_LEQ},
967 {"Ogt", "\">\"", BINOP_GTR},
968 {"Oge", "\">=\"", BINOP_GEQ},
969 {"Oeq", "\"=\"", BINOP_EQUAL},
970 {"One", "\"/=\"", BINOP_NOTEQUAL},
971 {"Oand", "\"and\"", BINOP_BITWISE_AND},
972 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
973 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
974 {"Oconcat", "\"&\"", BINOP_CONCAT},
975 {"Oabs", "\"abs\"", UNOP_ABS},
976 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
977 {"Oadd", "\"+\"", UNOP_PLUS},
978 {"Osubtract", "\"-\"", UNOP_NEG},
982 /* The "encoded" form of DECODED, according to GNAT conventions. The
983 result is valid until the next call to ada_encode. If
984 THROW_ERRORS, throw an error if invalid operator name is found.
985 Otherwise, return NULL in that case. */
988 ada_encode_1 (const char *decoded, bool throw_errors)
990 static char *encoding_buffer = NULL;
991 static size_t encoding_buffer_size = 0;
998 GROW_VECT (encoding_buffer, encoding_buffer_size,
999 2 * strlen (decoded) + 10);
1002 for (p = decoded; *p != '\0'; p += 1)
1006 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1011 const struct ada_opname_map *mapping;
1013 for (mapping = ada_opname_table;
1014 mapping->encoded != NULL
1015 && !startswith (p, mapping->decoded); mapping += 1)
1017 if (mapping->encoded == NULL)
1020 error (_("invalid Ada operator name: %s"), p);
1024 strcpy (encoding_buffer + k, mapping->encoded);
1025 k += strlen (mapping->encoded);
1030 encoding_buffer[k] = *p;
1035 encoding_buffer[k] = '\0';
1036 return encoding_buffer;
1039 /* The "encoded" form of DECODED, according to GNAT conventions.
1040 The result is valid until the next call to ada_encode. */
1043 ada_encode (const char *decoded)
1045 return ada_encode_1 (decoded, true);
1048 /* Return NAME folded to lower case, or, if surrounded by single
1049 quotes, unfolded, but with the quotes stripped away. Result good
1053 ada_fold_name (const char *name)
1055 static char *fold_buffer = NULL;
1056 static size_t fold_buffer_size = 0;
1058 int len = strlen (name);
1059 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1061 if (name[0] == '\'')
1063 strncpy (fold_buffer, name + 1, len - 2);
1064 fold_buffer[len - 2] = '\000';
1070 for (i = 0; i <= len; i += 1)
1071 fold_buffer[i] = tolower (name[i]);
1077 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1080 is_lower_alphanum (const char c)
1082 return (isdigit (c) || (isalpha (c) && islower (c)));
1085 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1086 This function saves in LEN the length of that same symbol name but
1087 without either of these suffixes:
1093 These are suffixes introduced by the compiler for entities such as
1094 nested subprogram for instance, in order to avoid name clashes.
1095 They do not serve any purpose for the debugger. */
1098 ada_remove_trailing_digits (const char *encoded, int *len)
1100 if (*len > 1 && isdigit (encoded[*len - 1]))
1104 while (i > 0 && isdigit (encoded[i]))
1106 if (i >= 0 && encoded[i] == '.')
1108 else if (i >= 0 && encoded[i] == '$')
1110 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1112 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1117 /* Remove the suffix introduced by the compiler for protected object
1121 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123 /* Remove trailing N. */
1125 /* Protected entry subprograms are broken into two
1126 separate subprograms: The first one is unprotected, and has
1127 a 'N' suffix; the second is the protected version, and has
1128 the 'P' suffix. The second calls the first one after handling
1129 the protection. Since the P subprograms are internally generated,
1130 we leave these names undecoded, giving the user a clue that this
1131 entity is internal. */
1134 && encoded[*len - 1] == 'N'
1135 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1139 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1142 ada_remove_Xbn_suffix (const char *encoded, int *len)
1146 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1149 if (encoded[i] != 'X')
1155 if (isalnum (encoded[i-1]))
1159 /* If ENCODED follows the GNAT entity encoding conventions, then return
1160 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1161 replaced by ENCODED.
1163 The resulting string is valid until the next call of ada_decode.
1164 If the string is unchanged by decoding, the original string pointer
1168 ada_decode (const char *encoded)
1175 static char *decoding_buffer = NULL;
1176 static size_t decoding_buffer_size = 0;
1178 /* With function descriptors on PPC64, the value of a symbol named
1179 ".FN", if it exists, is the entry point of the function "FN". */
1180 if (encoded[0] == '.')
1183 /* The name of the Ada main procedure starts with "_ada_".
1184 This prefix is not part of the decoded name, so skip this part
1185 if we see this prefix. */
1186 if (startswith (encoded, "_ada_"))
1189 /* If the name starts with '_', then it is not a properly encoded
1190 name, so do not attempt to decode it. Similarly, if the name
1191 starts with '<', the name should not be decoded. */
1192 if (encoded[0] == '_' || encoded[0] == '<')
1195 len0 = strlen (encoded);
1197 ada_remove_trailing_digits (encoded, &len0);
1198 ada_remove_po_subprogram_suffix (encoded, &len0);
1200 /* Remove the ___X.* suffix if present. Do not forget to verify that
1201 the suffix is located before the current "end" of ENCODED. We want
1202 to avoid re-matching parts of ENCODED that have previously been
1203 marked as discarded (by decrementing LEN0). */
1204 p = strstr (encoded, "___");
1205 if (p != NULL && p - encoded < len0 - 3)
1213 /* Remove any trailing TKB suffix. It tells us that this symbol
1214 is for the body of a task, but that information does not actually
1215 appear in the decoded name. */
1217 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1220 /* Remove any trailing TB suffix. The TB suffix is slightly different
1221 from the TKB suffix because it is used for non-anonymous task
1224 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1227 /* Remove trailing "B" suffixes. */
1228 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1230 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1233 /* Make decoded big enough for possible expansion by operator name. */
1235 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1236 decoded = decoding_buffer;
1238 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1240 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1243 while ((i >= 0 && isdigit (encoded[i]))
1244 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1246 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1248 else if (encoded[i] == '$')
1252 /* The first few characters that are not alphabetic are not part
1253 of any encoding we use, so we can copy them over verbatim. */
1255 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1256 decoded[j] = encoded[i];
1261 /* Is this a symbol function? */
1262 if (at_start_name && encoded[i] == 'O')
1266 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1268 int op_len = strlen (ada_opname_table[k].encoded);
1269 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1271 && !isalnum (encoded[i + op_len]))
1273 strcpy (decoded + j, ada_opname_table[k].decoded);
1276 j += strlen (ada_opname_table[k].decoded);
1280 if (ada_opname_table[k].encoded != NULL)
1285 /* Replace "TK__" with "__", which will eventually be translated
1286 into "." (just below). */
1288 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1291 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1292 be translated into "." (just below). These are internal names
1293 generated for anonymous blocks inside which our symbol is nested. */
1295 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1296 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1297 && isdigit (encoded [i+4]))
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++; /* Skip any extra digit. */
1304 /* Double-check that the "__B_{DIGITS}+" sequence we found
1305 is indeed followed by "__". */
1306 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1310 /* Remove _E{DIGITS}+[sb] */
1312 /* Just as for protected object subprograms, there are 2 categories
1313 of subprograms created by the compiler for each entry. The first
1314 one implements the actual entry code, and has a suffix following
1315 the convention above; the second one implements the barrier and
1316 uses the same convention as above, except that the 'E' is replaced
1319 Just as above, we do not decode the name of barrier functions
1320 to give the user a clue that the code he is debugging has been
1321 internally generated. */
1323 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1324 && isdigit (encoded[i+2]))
1328 while (k < len0 && isdigit (encoded[k]))
1332 && (encoded[k] == 'b' || encoded[k] == 's'))
1335 /* Just as an extra precaution, make sure that if this
1336 suffix is followed by anything else, it is a '_'.
1337 Otherwise, we matched this sequence by accident. */
1339 || (k < len0 && encoded[k] == '_'))
1344 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1345 the GNAT front-end in protected object subprograms. */
1348 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1350 /* Backtrack a bit up until we reach either the begining of
1351 the encoded name, or "__". Make sure that we only find
1352 digits or lowercase characters. */
1353 const char *ptr = encoded + i - 1;
1355 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1358 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1362 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1364 /* This is a X[bn]* sequence not separated from the previous
1365 part of the name with a non-alpha-numeric character (in other
1366 words, immediately following an alpha-numeric character), then
1367 verify that it is placed at the end of the encoded name. If
1368 not, then the encoding is not valid and we should abort the
1369 decoding. Otherwise, just skip it, it is used in body-nested
1373 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1377 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1379 /* Replace '__' by '.'. */
1387 /* It's a character part of the decoded name, so just copy it
1389 decoded[j] = encoded[i];
1394 decoded[j] = '\000';
1396 /* Decoded names should never contain any uppercase character.
1397 Double-check this, and abort the decoding if we find one. */
1399 for (i = 0; decoded[i] != '\0'; i += 1)
1400 if (isupper (decoded[i]) || decoded[i] == ' ')
1403 if (strcmp (decoded, encoded) == 0)
1409 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1410 decoded = decoding_buffer;
1411 if (encoded[0] == '<')
1412 strcpy (decoded, encoded);
1414 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1419 /* Table for keeping permanent unique copies of decoded names. Once
1420 allocated, names in this table are never released. While this is a
1421 storage leak, it should not be significant unless there are massive
1422 changes in the set of decoded names in successive versions of a
1423 symbol table loaded during a single session. */
1424 static struct htab *decoded_names_store;
1426 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1427 in the language-specific part of GSYMBOL, if it has not been
1428 previously computed. Tries to save the decoded name in the same
1429 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1430 in any case, the decoded symbol has a lifetime at least that of
1432 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1433 const, but nevertheless modified to a semantically equivalent form
1434 when a decoded name is cached in it. */
1437 ada_decode_symbol (const struct general_symbol_info *arg)
1439 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1440 const char **resultp =
1441 &gsymbol->language_specific.demangled_name;
1443 if (!gsymbol->ada_mangled)
1445 const char *decoded = ada_decode (gsymbol->name);
1446 struct obstack *obstack = gsymbol->language_specific.obstack;
1448 gsymbol->ada_mangled = 1;
1450 if (obstack != NULL)
1452 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1455 /* Sometimes, we can't find a corresponding objfile, in
1456 which case, we put the result on the heap. Since we only
1457 decode when needed, we hope this usually does not cause a
1458 significant memory leak (FIXME). */
1460 char **slot = (char **) htab_find_slot (decoded_names_store,
1464 *slot = xstrdup (decoded);
1473 ada_la_decode (const char *encoded, int options)
1475 return xstrdup (ada_decode (encoded));
1478 /* Implement la_sniff_from_mangled_name for Ada. */
1481 ada_sniff_from_mangled_name (const char *mangled, char **out)
1483 const char *demangled = ada_decode (mangled);
1487 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1489 /* Set the gsymbol language to Ada, but still return 0.
1490 Two reasons for that:
1492 1. For Ada, we prefer computing the symbol's decoded name
1493 on the fly rather than pre-compute it, in order to save
1494 memory (Ada projects are typically very large).
1496 2. There are some areas in the definition of the GNAT
1497 encoding where, with a bit of bad luck, we might be able
1498 to decode a non-Ada symbol, generating an incorrect
1499 demangled name (Eg: names ending with "TB" for instance
1500 are identified as task bodies and so stripped from
1501 the decoded name returned).
1503 Returning 1, here, but not setting *DEMANGLED, helps us get a
1504 little bit of the best of both worlds. Because we're last,
1505 we should not affect any of the other languages that were
1506 able to demangle the symbol before us; we get to correctly
1507 tag Ada symbols as such; and even if we incorrectly tagged a
1508 non-Ada symbol, which should be rare, any routing through the
1509 Ada language should be transparent (Ada tries to behave much
1510 like C/C++ with non-Ada symbols). */
1521 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1522 generated by the GNAT compiler to describe the index type used
1523 for each dimension of an array, check whether it follows the latest
1524 known encoding. If not, fix it up to conform to the latest encoding.
1525 Otherwise, do nothing. This function also does nothing if
1526 INDEX_DESC_TYPE is NULL.
1528 The GNAT encoding used to describle the array index type evolved a bit.
1529 Initially, the information would be provided through the name of each
1530 field of the structure type only, while the type of these fields was
1531 described as unspecified and irrelevant. The debugger was then expected
1532 to perform a global type lookup using the name of that field in order
1533 to get access to the full index type description. Because these global
1534 lookups can be very expensive, the encoding was later enhanced to make
1535 the global lookup unnecessary by defining the field type as being
1536 the full index type description.
1538 The purpose of this routine is to allow us to support older versions
1539 of the compiler by detecting the use of the older encoding, and by
1540 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1541 we essentially replace each field's meaningless type by the associated
1545 ada_fixup_array_indexes_type (struct type *index_desc_type)
1549 if (index_desc_type == NULL)
1551 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1553 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1554 to check one field only, no need to check them all). If not, return
1557 If our INDEX_DESC_TYPE was generated using the older encoding,
1558 the field type should be a meaningless integer type whose name
1559 is not equal to the field name. */
1560 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1561 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1562 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 /* Fixup each field of INDEX_DESC_TYPE. */
1566 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1568 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1569 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1576 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1578 static const char *bound_name[] = {
1579 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1580 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 /* Maximum number of array dimensions we are prepared to handle. */
1585 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588 /* The desc_* routines return primitive portions of array descriptors
1591 /* The descriptor or array type, if any, indicated by TYPE; removes
1592 level of indirection, if needed. */
1594 static struct type *
1595 desc_base_type (struct type *type)
1599 type = ada_check_typedef (type);
1600 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1601 type = ada_typedef_target_type (type);
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1611 /* True iff TYPE indicates a "thin" array pointer type. */
1614 is_thin_pntr (struct type *type)
1617 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1618 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 /* The descriptor type for thin pointer type TYPE. */
1623 static struct type *
1624 thin_descriptor_type (struct type *type)
1626 struct type *base_type = desc_base_type (type);
1628 if (base_type == NULL)
1630 if (is_suffix (ada_type_name (base_type), "___XVE"))
1634 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1636 if (alt_type == NULL)
1643 /* A pointer to the array data for thin-pointer value VAL. */
1645 static struct value *
1646 thin_data_pntr (struct value *val)
1648 struct type *type = ada_check_typedef (value_type (val));
1649 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1651 data_type = lookup_pointer_type (data_type);
1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1654 return value_cast (data_type, value_copy (val));
1656 return value_from_longest (data_type, value_address (val));
1659 /* True iff TYPE indicates a "thick" array pointer type. */
1662 is_thick_pntr (struct type *type)
1664 type = desc_base_type (type);
1665 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1666 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1670 pointer to one, the type of its bounds data; otherwise, NULL. */
1672 static struct type *
1673 desc_bounds_type (struct type *type)
1677 type = desc_base_type (type);
1681 else if (is_thin_pntr (type))
1683 type = thin_descriptor_type (type);
1686 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1688 return ada_check_typedef (r);
1690 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1692 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1694 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1699 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1700 one, a pointer to its bounds data. Otherwise NULL. */
1702 static struct value *
1703 desc_bounds (struct value *arr)
1705 struct type *type = ada_check_typedef (value_type (arr));
1707 if (is_thin_pntr (type))
1709 struct type *bounds_type =
1710 desc_bounds_type (thin_descriptor_type (type));
1713 if (bounds_type == NULL)
1714 error (_("Bad GNAT array descriptor"));
1716 /* NOTE: The following calculation is not really kosher, but
1717 since desc_type is an XVE-encoded type (and shouldn't be),
1718 the correct calculation is a real pain. FIXME (and fix GCC). */
1719 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1720 addr = value_as_long (arr);
1722 addr = value_address (arr);
1725 value_from_longest (lookup_pointer_type (bounds_type),
1726 addr - TYPE_LENGTH (bounds_type));
1729 else if (is_thick_pntr (type))
1731 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1732 _("Bad GNAT array descriptor"));
1733 struct type *p_bounds_type = value_type (p_bounds);
1736 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1738 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1740 if (TYPE_STUB (target_type))
1741 p_bounds = value_cast (lookup_pointer_type
1742 (ada_check_typedef (target_type)),
1746 error (_("Bad GNAT array descriptor"));
1754 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the bounds data. */
1758 fat_pntr_bounds_bitpos (struct type *type)
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1764 size of the field containing the address of the bounds data. */
1767 fat_pntr_bounds_bitsize (struct type *type)
1769 type = desc_base_type (type);
1771 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 1);
1774 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its array data (a array-with-no-bounds type);
1779 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 static struct type *
1783 desc_data_target_type (struct type *type)
1785 type = desc_base_type (type);
1787 /* NOTE: The following is bogus; see comment in desc_bounds. */
1788 if (is_thin_pntr (type))
1789 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1790 else if (is_thick_pntr (type))
1792 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1796 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1802 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 static struct value *
1806 desc_data (struct value *arr)
1808 struct type *type = value_type (arr);
1810 if (is_thin_pntr (type))
1811 return thin_data_pntr (arr);
1812 else if (is_thick_pntr (type))
1813 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1814 _("Bad GNAT array descriptor"));
1820 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1821 position of the field containing the address of the data. */
1824 fat_pntr_data_bitpos (struct type *type)
1826 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1830 size of the field containing the address of the data. */
1833 fat_pntr_data_bitsize (struct type *type)
1835 type = desc_base_type (type);
1837 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1838 return TYPE_FIELD_BITSIZE (type, 0);
1840 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1844 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1847 static struct value *
1848 desc_one_bound (struct value *bounds, int i, int which)
1850 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1851 _("Bad GNAT array descriptor bounds"));
1854 /* If BOUNDS is an array-bounds structure type, return the bit position
1855 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1856 bound, if WHICH is 1. The first bound is I=1. */
1859 desc_bound_bitpos (struct type *type, int i, int which)
1861 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 /* If BOUNDS is an array-bounds structure type, return the bit field size
1865 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1866 bound, if WHICH is 1. The first bound is I=1. */
1869 desc_bound_bitsize (struct type *type, int i, int which)
1871 type = desc_base_type (type);
1873 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1874 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1876 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 /* If TYPE is the type of an array-bounds structure, the type of its
1880 Ith bound (numbering from 1). Otherwise, NULL. */
1882 static struct type *
1883 desc_index_type (struct type *type, int i)
1885 type = desc_base_type (type);
1887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1888 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1893 /* The number of index positions in the array-bounds type TYPE.
1894 Return 0 if TYPE is NULL. */
1897 desc_arity (struct type *type)
1899 type = desc_base_type (type);
1902 return TYPE_NFIELDS (type) / 2;
1906 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1907 an array descriptor type (representing an unconstrained array
1911 ada_is_direct_array_type (struct type *type)
1915 type = ada_check_typedef (type);
1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1917 || ada_is_array_descriptor_type (type));
1920 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1924 ada_is_array_type (struct type *type)
1927 && (TYPE_CODE (type) == TYPE_CODE_PTR
1928 || TYPE_CODE (type) == TYPE_CODE_REF))
1929 type = TYPE_TARGET_TYPE (type);
1930 return ada_is_direct_array_type (type);
1933 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936 ada_is_simple_array_type (struct type *type)
1940 type = ada_check_typedef (type);
1941 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1942 || (TYPE_CODE (type) == TYPE_CODE_PTR
1943 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1944 == TYPE_CODE_ARRAY));
1947 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950 ada_is_array_descriptor_type (struct type *type)
1952 struct type *data_type = desc_data_target_type (type);
1956 type = ada_check_typedef (type);
1957 return (data_type != NULL
1958 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1959 && desc_arity (desc_bounds_type (type)) > 0);
1962 /* Non-zero iff type is a partially mal-formed GNAT array
1963 descriptor. FIXME: This is to compensate for some problems with
1964 debugging output from GNAT. Re-examine periodically to see if it
1968 ada_is_bogus_array_descriptor (struct type *type)
1972 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1973 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1974 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1975 && !ada_is_array_descriptor_type (type);
1979 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1980 (fat pointer) returns the type of the array data described---specifically,
1981 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1982 in from the descriptor; otherwise, they are left unspecified. If
1983 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1984 returns NULL. The result is simply the type of ARR if ARR is not
1987 ada_type_of_array (struct value *arr, int bounds)
1989 if (ada_is_constrained_packed_array_type (value_type (arr)))
1990 return decode_constrained_packed_array_type (value_type (arr));
1992 if (!ada_is_array_descriptor_type (value_type (arr)))
1993 return value_type (arr);
1997 struct type *array_type =
1998 ada_check_typedef (desc_data_target_type (value_type (arr)));
2000 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2001 TYPE_FIELD_BITSIZE (array_type, 0) =
2002 decode_packed_array_bitsize (value_type (arr));
2008 struct type *elt_type;
2010 struct value *descriptor;
2012 elt_type = ada_array_element_type (value_type (arr), -1);
2013 arity = ada_array_arity (value_type (arr));
2015 if (elt_type == NULL || arity == 0)
2016 return ada_check_typedef (value_type (arr));
2018 descriptor = desc_bounds (arr);
2019 if (value_as_long (descriptor) == 0)
2023 struct type *range_type = alloc_type_copy (value_type (arr));
2024 struct type *array_type = alloc_type_copy (value_type (arr));
2025 struct value *low = desc_one_bound (descriptor, arity, 0);
2026 struct value *high = desc_one_bound (descriptor, arity, 1);
2029 create_static_range_type (range_type, value_type (low),
2030 longest_to_int (value_as_long (low)),
2031 longest_to_int (value_as_long (high)));
2032 elt_type = create_array_type (array_type, elt_type, range_type);
2034 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2036 /* We need to store the element packed bitsize, as well as
2037 recompute the array size, because it was previously
2038 computed based on the unpacked element size. */
2039 LONGEST lo = value_as_long (low);
2040 LONGEST hi = value_as_long (high);
2042 TYPE_FIELD_BITSIZE (elt_type, 0) =
2043 decode_packed_array_bitsize (value_type (arr));
2044 /* If the array has no element, then the size is already
2045 zero, and does not need to be recomputed. */
2049 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2051 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2056 return lookup_pointer_type (elt_type);
2060 /* If ARR does not represent an array, returns ARR unchanged.
2061 Otherwise, returns either a standard GDB array with bounds set
2062 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2063 GDB array. Returns NULL if ARR is a null fat pointer. */
2066 ada_coerce_to_simple_array_ptr (struct value *arr)
2068 if (ada_is_array_descriptor_type (value_type (arr)))
2070 struct type *arrType = ada_type_of_array (arr, 1);
2072 if (arrType == NULL)
2074 return value_cast (arrType, value_copy (desc_data (arr)));
2076 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2077 return decode_constrained_packed_array (arr);
2082 /* If ARR does not represent an array, returns ARR unchanged.
2083 Otherwise, returns a standard GDB array describing ARR (which may
2084 be ARR itself if it already is in the proper form). */
2087 ada_coerce_to_simple_array (struct value *arr)
2089 if (ada_is_array_descriptor_type (value_type (arr)))
2091 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094 error (_("Bounds unavailable for null array pointer."));
2095 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2096 return value_ind (arrVal);
2098 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2099 return decode_constrained_packed_array (arr);
2104 /* If TYPE represents a GNAT array type, return it translated to an
2105 ordinary GDB array type (possibly with BITSIZE fields indicating
2106 packing). For other types, is the identity. */
2109 ada_coerce_to_simple_array_type (struct type *type)
2111 if (ada_is_constrained_packed_array_type (type))
2112 return decode_constrained_packed_array_type (type);
2114 if (ada_is_array_descriptor_type (type))
2115 return ada_check_typedef (desc_data_target_type (type));
2120 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123 ada_is_packed_array_type (struct type *type)
2127 type = desc_base_type (type);
2128 type = ada_check_typedef (type);
2130 ada_type_name (type) != NULL
2131 && strstr (ada_type_name (type), "___XP") != NULL;
2134 /* Non-zero iff TYPE represents a standard GNAT constrained
2135 packed-array type. */
2138 ada_is_constrained_packed_array_type (struct type *type)
2140 return ada_is_packed_array_type (type)
2141 && !ada_is_array_descriptor_type (type);
2144 /* Non-zero iff TYPE represents an array descriptor for a
2145 unconstrained packed-array type. */
2148 ada_is_unconstrained_packed_array_type (struct type *type)
2150 return ada_is_packed_array_type (type)
2151 && ada_is_array_descriptor_type (type);
2154 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2155 return the size of its elements in bits. */
2158 decode_packed_array_bitsize (struct type *type)
2160 const char *raw_name;
2164 /* Access to arrays implemented as fat pointers are encoded as a typedef
2165 of the fat pointer type. We need the name of the fat pointer type
2166 to do the decoding, so strip the typedef layer. */
2167 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2168 type = ada_typedef_target_type (type);
2170 raw_name = ada_type_name (ada_check_typedef (type));
2172 raw_name = ada_type_name (desc_base_type (type));
2177 tail = strstr (raw_name, "___XP");
2178 gdb_assert (tail != NULL);
2180 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 (_("could not understand bit size information on packed array"));
2190 /* Given that TYPE is a standard GDB array type with all bounds filled
2191 in, and that the element size of its ultimate scalar constituents
2192 (that is, either its elements, or, if it is an array of arrays, its
2193 elements' elements, etc.) is *ELT_BITS, return an identical type,
2194 but with the bit sizes of its elements (and those of any
2195 constituent arrays) recorded in the BITSIZE components of its
2196 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 Note that, for arrays whose index type has an XA encoding where
2200 a bound references a record discriminant, getting that discriminant,
2201 and therefore the actual value of that bound, is not possible
2202 because none of the given parameters gives us access to the record.
2203 This function assumes that it is OK in the context where it is being
2204 used to return an array whose bounds are still dynamic and where
2205 the length is arbitrary. */
2207 static struct type *
2208 constrained_packed_array_type (struct type *type, long *elt_bits)
2210 struct type *new_elt_type;
2211 struct type *new_type;
2212 struct type *index_type_desc;
2213 struct type *index_type;
2214 LONGEST low_bound, high_bound;
2216 type = ada_check_typedef (type);
2217 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 index_type_desc = ada_find_parallel_type (type, "___XA");
2221 if (index_type_desc)
2222 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 index_type = TYPE_INDEX_TYPE (type);
2227 new_type = alloc_type_copy (type);
2229 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2231 create_array_type (new_type, new_elt_type, index_type);
2232 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2233 TYPE_NAME (new_type) = ada_type_name (type);
2235 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2236 && is_dynamic_type (check_typedef (index_type)))
2237 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2238 low_bound = high_bound = 0;
2239 if (high_bound < low_bound)
2240 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 *elt_bits *= (high_bound - low_bound + 1);
2244 TYPE_LENGTH (new_type) =
2245 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 TYPE_FIXED_INSTANCE (new_type) = 1;
2252 /* The array type encoded by TYPE, where
2253 ada_is_constrained_packed_array_type (TYPE). */
2255 static struct type *
2256 decode_constrained_packed_array_type (struct type *type)
2258 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 struct type *shadow_type;
2265 raw_name = ada_type_name (desc_base_type (type));
2270 name = (char *) alloca (strlen (raw_name) + 1);
2271 tail = strstr (raw_name, "___XP");
2272 type = desc_base_type (type);
2274 memcpy (name, raw_name, tail - raw_name);
2275 name[tail - raw_name] = '\000';
2277 shadow_type = ada_find_parallel_type_with_name (type, name);
2279 if (shadow_type == NULL)
2281 lim_warning (_("could not find bounds information on packed array"));
2284 shadow_type = check_typedef (shadow_type);
2286 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2288 lim_warning (_("could not understand bounds "
2289 "information on packed array"));
2293 bits = decode_packed_array_bitsize (type);
2294 return constrained_packed_array_type (shadow_type, &bits);
2297 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2298 array, returns a simple array that denotes that array. Its type is a
2299 standard GDB array type except that the BITSIZEs of the array
2300 target types are set to the number of bits in each element, and the
2301 type length is set appropriately. */
2303 static struct value *
2304 decode_constrained_packed_array (struct value *arr)
2308 /* If our value is a pointer, then dereference it. Likewise if
2309 the value is a reference. Make sure that this operation does not
2310 cause the target type to be fixed, as this would indirectly cause
2311 this array to be decoded. The rest of the routine assumes that
2312 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2313 and "value_ind" routines to perform the dereferencing, as opposed
2314 to using "ada_coerce_ref" or "ada_value_ind". */
2315 arr = coerce_ref (arr);
2316 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2317 arr = value_ind (arr);
2319 type = decode_constrained_packed_array_type (value_type (arr));
2322 error (_("can't unpack array"));
2326 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2327 && ada_is_modular_type (value_type (arr)))
2329 /* This is a (right-justified) modular type representing a packed
2330 array with no wrapper. In order to interpret the value through
2331 the (left-justified) packed array type we just built, we must
2332 first left-justify it. */
2333 int bit_size, bit_pos;
2336 mod = ada_modulus (value_type (arr)) - 1;
2343 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2344 arr = ada_value_primitive_packed_val (arr, NULL,
2345 bit_pos / HOST_CHAR_BIT,
2346 bit_pos % HOST_CHAR_BIT,
2351 return coerce_unspec_val_to_type (arr, type);
2355 /* The value of the element of packed array ARR at the ARITY indices
2356 given in IND. ARR must be a simple array. */
2358 static struct value *
2359 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 int bits, elt_off, bit_off;
2363 long elt_total_bit_offset;
2364 struct type *elt_type;
2368 elt_total_bit_offset = 0;
2369 elt_type = ada_check_typedef (value_type (arr));
2370 for (i = 0; i < arity; i += 1)
2372 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2373 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2375 (_("attempt to do packed indexing of "
2376 "something other than a packed array"));
2379 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2380 LONGEST lowerbound, upperbound;
2383 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2385 lim_warning (_("don't know bounds of array"));
2386 lowerbound = upperbound = 0;
2389 idx = pos_atr (ind[i]);
2390 if (idx < lowerbound || idx > upperbound)
2391 lim_warning (_("packed array index %ld out of bounds"),
2393 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2394 elt_total_bit_offset += (idx - lowerbound) * bits;
2395 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2399 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2401 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2406 /* Non-zero iff TYPE includes negative integer values. */
2409 has_negatives (struct type *type)
2411 switch (TYPE_CODE (type))
2416 return !TYPE_UNSIGNED (type);
2417 case TYPE_CODE_RANGE:
2418 return TYPE_LOW_BOUND (type) < 0;
2422 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2423 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2424 the unpacked buffer.
2426 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2427 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2429 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2434 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2438 gdb_byte *unpacked, int unpacked_len,
2439 int is_big_endian, int is_signed_type,
2442 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 int src_idx; /* Index into the source area */
2444 int src_bytes_left; /* Number of source bytes left to process. */
2445 int srcBitsLeft; /* Number of source bits left to move */
2446 int unusedLS; /* Number of bits in next significant
2447 byte of source that are unused */
2449 int unpacked_idx; /* Index into the unpacked buffer */
2450 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2452 unsigned long accum; /* Staging area for bits being transferred */
2453 int accumSize; /* Number of meaningful bits in accum */
2456 /* Transmit bytes from least to most significant; delta is the direction
2457 the indices move. */
2458 int delta = is_big_endian ? -1 : 1;
2460 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2462 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2463 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2464 bit_size, unpacked_len);
2466 srcBitsLeft = bit_size;
2467 src_bytes_left = src_len;
2468 unpacked_bytes_left = unpacked_len;
2473 src_idx = src_len - 1;
2475 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2479 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2485 unpacked_idx = unpacked_len - 1;
2489 /* Non-scalar values must be aligned at a byte boundary... */
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2494 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 unpacked_bytes_left = unpacked_idx + 1;
2500 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2502 src_idx = unpacked_idx = 0;
2503 unusedLS = bit_offset;
2506 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2511 while (src_bytes_left > 0)
2513 /* Mask for removing bits of the next source byte that are not
2514 part of the value. */
2515 unsigned int unusedMSMask =
2516 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2518 /* Sign-extend bits for this byte. */
2519 unsigned int signMask = sign & ~unusedMSMask;
2522 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2523 accumSize += HOST_CHAR_BIT - unusedLS;
2524 if (accumSize >= HOST_CHAR_BIT)
2526 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2527 accumSize -= HOST_CHAR_BIT;
2528 accum >>= HOST_CHAR_BIT;
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
2532 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2534 src_bytes_left -= 1;
2537 while (unpacked_bytes_left > 0)
2539 accum |= sign << accumSize;
2540 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2541 accumSize -= HOST_CHAR_BIT;
2544 accum >>= HOST_CHAR_BIT;
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
2550 /* Create a new value of type TYPE from the contents of OBJ starting
2551 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2552 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2553 assigning through the result will set the field fetched from.
2554 VALADDR is ignored unless OBJ is NULL, in which case,
2555 VALADDR+OFFSET must address the start of storage containing the
2556 packed value. The value returned in this case is never an lval.
2557 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2561 long offset, int bit_offset, int bit_size,
2565 const gdb_byte *src; /* First byte containing data to unpack */
2567 const int is_scalar = is_scalar_type (type);
2568 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2569 gdb::byte_vector staging;
2571 type = ada_check_typedef (type);
2574 src = valaddr + offset;
2576 src = value_contents (obj) + offset;
2578 if (is_dynamic_type (type))
2580 /* The length of TYPE might by dynamic, so we need to resolve
2581 TYPE in order to know its actual size, which we then use
2582 to create the contents buffer of the value we return.
2583 The difficulty is that the data containing our object is
2584 packed, and therefore maybe not at a byte boundary. So, what
2585 we do, is unpack the data into a byte-aligned buffer, and then
2586 use that buffer as our object's value for resolving the type. */
2587 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2588 staging.resize (staging_len);
2590 ada_unpack_from_contents (src, bit_offset, bit_size,
2591 staging.data (), staging.size (),
2592 is_big_endian, has_negatives (type),
2594 type = resolve_dynamic_type (type, staging.data (), 0);
2595 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2597 /* This happens when the length of the object is dynamic,
2598 and is actually smaller than the space reserved for it.
2599 For instance, in an array of variant records, the bit_size
2600 we're given is the array stride, which is constant and
2601 normally equal to the maximum size of its element.
2602 But, in reality, each element only actually spans a portion
2604 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 v = allocate_value (type);
2611 src = valaddr + offset;
2613 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2615 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2618 v = value_at (type, value_address (obj) + offset);
2619 buf = (gdb_byte *) alloca (src_len);
2620 read_memory (value_address (v), buf, src_len);
2625 v = allocate_value (type);
2626 src = value_contents (obj) + offset;
2631 long new_offset = offset;
2633 set_value_component_location (v, obj);
2634 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2635 set_value_bitsize (v, bit_size);
2636 if (value_bitpos (v) >= HOST_CHAR_BIT)
2639 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2641 set_value_offset (v, new_offset);
2643 /* Also set the parent value. This is needed when trying to
2644 assign a new value (in inferior memory). */
2645 set_value_parent (v, obj);
2648 set_value_bitsize (v, bit_size);
2649 unpacked = value_contents_writeable (v);
2653 memset (unpacked, 0, TYPE_LENGTH (type));
2657 if (staging.size () == TYPE_LENGTH (type))
2659 /* Small short-cut: If we've unpacked the data into a buffer
2660 of the same size as TYPE's length, then we can reuse that,
2661 instead of doing the unpacking again. */
2662 memcpy (unpacked, staging.data (), staging.size ());
2665 ada_unpack_from_contents (src, bit_offset, bit_size,
2666 unpacked, TYPE_LENGTH (type),
2667 is_big_endian, has_negatives (type), is_scalar);
2672 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2673 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2676 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2677 int src_offset, int n, int bits_big_endian_p)
2679 unsigned int accum, mask;
2680 int accum_bits, chunk_size;
2682 target += targ_offset / HOST_CHAR_BIT;
2683 targ_offset %= HOST_CHAR_BIT;
2684 source += src_offset / HOST_CHAR_BIT;
2685 src_offset %= HOST_CHAR_BIT;
2686 if (bits_big_endian_p)
2688 accum = (unsigned char) *source;
2690 accum_bits = HOST_CHAR_BIT - src_offset;
2696 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2697 accum_bits += HOST_CHAR_BIT;
2699 chunk_size = HOST_CHAR_BIT - targ_offset;
2702 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2703 mask = ((1 << chunk_size) - 1) << unused_right;
2706 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2708 accum_bits -= chunk_size;
2715 accum = (unsigned char) *source >> src_offset;
2717 accum_bits = HOST_CHAR_BIT - src_offset;
2721 accum = accum + ((unsigned char) *source << accum_bits);
2722 accum_bits += HOST_CHAR_BIT;
2724 chunk_size = HOST_CHAR_BIT - targ_offset;
2727 mask = ((1 << chunk_size) - 1) << targ_offset;
2728 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2730 accum_bits -= chunk_size;
2731 accum >>= chunk_size;
2738 /* Store the contents of FROMVAL into the location of TOVAL.
2739 Return a new value with the location of TOVAL and contents of
2740 FROMVAL. Handles assignment into packed fields that have
2741 floating-point or non-scalar types. */
2743 static struct value *
2744 ada_value_assign (struct value *toval, struct value *fromval)
2746 struct type *type = value_type (toval);
2747 int bits = value_bitsize (toval);
2749 toval = ada_coerce_ref (toval);
2750 fromval = ada_coerce_ref (fromval);
2752 if (ada_is_direct_array_type (value_type (toval)))
2753 toval = ada_coerce_to_simple_array (toval);
2754 if (ada_is_direct_array_type (value_type (fromval)))
2755 fromval = ada_coerce_to_simple_array (fromval);
2757 if (!deprecated_value_modifiable (toval))
2758 error (_("Left operand of assignment is not a modifiable lvalue."));
2760 if (VALUE_LVAL (toval) == lval_memory
2762 && (TYPE_CODE (type) == TYPE_CODE_FLT
2763 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2765 int len = (value_bitpos (toval)
2766 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2768 gdb_byte *buffer = (gdb_byte *) alloca (len);
2770 CORE_ADDR to_addr = value_address (toval);
2772 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2773 fromval = value_cast (type, fromval);
2775 read_memory (to_addr, buffer, len);
2776 from_size = value_bitsize (fromval);
2778 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2779 if (gdbarch_bits_big_endian (get_type_arch (type)))
2780 move_bits (buffer, value_bitpos (toval),
2781 value_contents (fromval), from_size - bits, bits, 1);
2783 move_bits (buffer, value_bitpos (toval),
2784 value_contents (fromval), 0, bits, 0);
2785 write_memory_with_notification (to_addr, buffer, len);
2787 val = value_copy (toval);
2788 memcpy (value_contents_raw (val), value_contents (fromval),
2789 TYPE_LENGTH (type));
2790 deprecated_set_value_type (val, type);
2795 return value_assign (toval, fromval);
2799 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2800 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2801 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2802 COMPONENT, and not the inferior's memory. The current contents
2803 of COMPONENT are ignored.
2805 Although not part of the initial design, this function also works
2806 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2807 had a null address, and COMPONENT had an address which is equal to
2808 its offset inside CONTAINER. */
2811 value_assign_to_component (struct value *container, struct value *component,
2814 LONGEST offset_in_container =
2815 (LONGEST) (value_address (component) - value_address (container));
2816 int bit_offset_in_container =
2817 value_bitpos (component) - value_bitpos (container);
2820 val = value_cast (value_type (component), val);
2822 if (value_bitsize (component) == 0)
2823 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2825 bits = value_bitsize (component);
2827 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2831 if (is_scalar_type (check_typedef (value_type (component))))
2833 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2836 move_bits (value_contents_writeable (container) + offset_in_container,
2837 value_bitpos (container) + bit_offset_in_container,
2838 value_contents (val), src_offset, bits, 1);
2841 move_bits (value_contents_writeable (container) + offset_in_container,
2842 value_bitpos (container) + bit_offset_in_container,
2843 value_contents (val), 0, bits, 0);
2846 /* Determine if TYPE is an access to an unconstrained array. */
2849 ada_is_access_to_unconstrained_array (struct type *type)
2851 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2852 && is_thick_pntr (ada_typedef_target_type (type)));
2855 /* The value of the element of array ARR at the ARITY indices given in IND.
2856 ARR may be either a simple array, GNAT array descriptor, or pointer
2860 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2864 struct type *elt_type;
2866 elt = ada_coerce_to_simple_array (arr);
2868 elt_type = ada_check_typedef (value_type (elt));
2869 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2870 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2871 return value_subscript_packed (elt, arity, ind);
2873 for (k = 0; k < arity; k += 1)
2875 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2877 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2878 error (_("too many subscripts (%d expected)"), k);
2880 elt = value_subscript (elt, pos_atr (ind[k]));
2882 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2883 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2885 /* The element is a typedef to an unconstrained array,
2886 except that the value_subscript call stripped the
2887 typedef layer. The typedef layer is GNAT's way to
2888 specify that the element is, at the source level, an
2889 access to the unconstrained array, rather than the
2890 unconstrained array. So, we need to restore that
2891 typedef layer, which we can do by forcing the element's
2892 type back to its original type. Otherwise, the returned
2893 value is going to be printed as the array, rather
2894 than as an access. Another symptom of the same issue
2895 would be that an expression trying to dereference the
2896 element would also be improperly rejected. */
2897 deprecated_set_value_type (elt, saved_elt_type);
2900 elt_type = ada_check_typedef (value_type (elt));
2906 /* Assuming ARR is a pointer to a GDB array, the value of the element
2907 of *ARR at the ARITY indices given in IND.
2908 Does not read the entire array into memory.
2910 Note: Unlike what one would expect, this function is used instead of
2911 ada_value_subscript for basically all non-packed array types. The reason
2912 for this is that a side effect of doing our own pointer arithmetics instead
2913 of relying on value_subscript is that there is no implicit typedef peeling.
2914 This is important for arrays of array accesses, where it allows us to
2915 preserve the fact that the array's element is an array access, where the
2916 access part os encoded in a typedef layer. */
2918 static struct value *
2919 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2922 struct value *array_ind = ada_value_ind (arr);
2924 = check_typedef (value_enclosing_type (array_ind));
2926 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2927 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2928 return value_subscript_packed (array_ind, arity, ind);
2930 for (k = 0; k < arity; k += 1)
2933 struct value *lwb_value;
2935 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2936 error (_("too many subscripts (%d expected)"), k);
2937 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2939 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2940 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2941 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2942 type = TYPE_TARGET_TYPE (type);
2945 return value_ind (arr);
2948 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2949 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2950 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2951 this array is LOW, as per Ada rules. */
2952 static struct value *
2953 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2956 struct type *type0 = ada_check_typedef (type);
2957 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2958 struct type *index_type
2959 = create_static_range_type (NULL, base_index_type, low, high);
2960 struct type *slice_type = create_array_type_with_stride
2961 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2962 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2963 TYPE_FIELD_BITSIZE (type0, 0));
2964 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2965 LONGEST base_low_pos, low_pos;
2968 if (!discrete_position (base_index_type, low, &low_pos)
2969 || !discrete_position (base_index_type, base_low, &base_low_pos))
2971 warning (_("unable to get positions in slice, use bounds instead"));
2973 base_low_pos = base_low;
2976 base = value_as_address (array_ptr)
2977 + ((low_pos - base_low_pos)
2978 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2979 return value_at_lazy (slice_type, base);
2983 static struct value *
2984 ada_value_slice (struct value *array, int low, int high)
2986 struct type *type = ada_check_typedef (value_type (array));
2987 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2988 struct type *index_type
2989 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2990 struct type *slice_type = create_array_type_with_stride
2991 (NULL, TYPE_TARGET_TYPE (type), index_type,
2992 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2993 TYPE_FIELD_BITSIZE (type, 0));
2994 LONGEST low_pos, high_pos;
2996 if (!discrete_position (base_index_type, low, &low_pos)
2997 || !discrete_position (base_index_type, high, &high_pos))
2999 warning (_("unable to get positions in slice, use bounds instead"));
3004 return value_cast (slice_type,
3005 value_slice (array, low, high_pos - low_pos + 1));
3008 /* If type is a record type in the form of a standard GNAT array
3009 descriptor, returns the number of dimensions for type. If arr is a
3010 simple array, returns the number of "array of"s that prefix its
3011 type designation. Otherwise, returns 0. */
3014 ada_array_arity (struct type *type)
3021 type = desc_base_type (type);
3024 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3025 return desc_arity (desc_bounds_type (type));
3027 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3030 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3036 /* If TYPE is a record type in the form of a standard GNAT array
3037 descriptor or a simple array type, returns the element type for
3038 TYPE after indexing by NINDICES indices, or by all indices if
3039 NINDICES is -1. Otherwise, returns NULL. */
3042 ada_array_element_type (struct type *type, int nindices)
3044 type = desc_base_type (type);
3046 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3049 struct type *p_array_type;
3051 p_array_type = desc_data_target_type (type);
3053 k = ada_array_arity (type);
3057 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3058 if (nindices >= 0 && k > nindices)
3060 while (k > 0 && p_array_type != NULL)
3062 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3065 return p_array_type;
3067 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3069 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3071 type = TYPE_TARGET_TYPE (type);
3080 /* The type of nth index in arrays of given type (n numbering from 1).
3081 Does not examine memory. Throws an error if N is invalid or TYPE
3082 is not an array type. NAME is the name of the Ada attribute being
3083 evaluated ('range, 'first, 'last, or 'length); it is used in building
3084 the error message. */
3086 static struct type *
3087 ada_index_type (struct type *type, int n, const char *name)
3089 struct type *result_type;
3091 type = desc_base_type (type);
3093 if (n < 0 || n > ada_array_arity (type))
3094 error (_("invalid dimension number to '%s"), name);
3096 if (ada_is_simple_array_type (type))
3100 for (i = 1; i < n; i += 1)
3101 type = TYPE_TARGET_TYPE (type);
3102 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3103 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3104 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3105 perhaps stabsread.c would make more sense. */
3106 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3111 result_type = desc_index_type (desc_bounds_type (type), n);
3112 if (result_type == NULL)
3113 error (_("attempt to take bound of something that is not an array"));
3119 /* Given that arr is an array type, returns the lower bound of the
3120 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3121 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3122 array-descriptor type. It works for other arrays with bounds supplied
3123 by run-time quantities other than discriminants. */
3126 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3128 struct type *type, *index_type_desc, *index_type;
3131 gdb_assert (which == 0 || which == 1);
3133 if (ada_is_constrained_packed_array_type (arr_type))
3134 arr_type = decode_constrained_packed_array_type (arr_type);
3136 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3137 return (LONGEST) - which;
3139 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3140 type = TYPE_TARGET_TYPE (arr_type);
3144 if (TYPE_FIXED_INSTANCE (type))
3146 /* The array has already been fixed, so we do not need to
3147 check the parallel ___XA type again. That encoding has
3148 already been applied, so ignore it now. */
3149 index_type_desc = NULL;
3153 index_type_desc = ada_find_parallel_type (type, "___XA");
3154 ada_fixup_array_indexes_type (index_type_desc);
3157 if (index_type_desc != NULL)
3158 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3162 struct type *elt_type = check_typedef (type);
3164 for (i = 1; i < n; i++)
3165 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3167 index_type = TYPE_INDEX_TYPE (elt_type);
3171 (LONGEST) (which == 0
3172 ? ada_discrete_type_low_bound (index_type)
3173 : ada_discrete_type_high_bound (index_type));
3176 /* Given that arr is an array value, returns the lower bound of the
3177 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3178 WHICH is 1. This routine will also work for arrays with bounds
3179 supplied by run-time quantities other than discriminants. */
3182 ada_array_bound (struct value *arr, int n, int which)
3184 struct type *arr_type;
3186 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3187 arr = value_ind (arr);
3188 arr_type = value_enclosing_type (arr);
3190 if (ada_is_constrained_packed_array_type (arr_type))
3191 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3192 else if (ada_is_simple_array_type (arr_type))
3193 return ada_array_bound_from_type (arr_type, n, which);
3195 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3198 /* Given that arr is an array value, returns the length of the
3199 nth index. This routine will also work for arrays with bounds
3200 supplied by run-time quantities other than discriminants.
3201 Does not work for arrays indexed by enumeration types with representation
3202 clauses at the moment. */
3205 ada_array_length (struct value *arr, int n)
3207 struct type *arr_type, *index_type;
3210 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3211 arr = value_ind (arr);
3212 arr_type = value_enclosing_type (arr);
3214 if (ada_is_constrained_packed_array_type (arr_type))
3215 return ada_array_length (decode_constrained_packed_array (arr), n);
3217 if (ada_is_simple_array_type (arr_type))
3219 low = ada_array_bound_from_type (arr_type, n, 0);
3220 high = ada_array_bound_from_type (arr_type, n, 1);
3224 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3225 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3228 arr_type = check_typedef (arr_type);
3229 index_type = ada_index_type (arr_type, n, "length");
3230 if (index_type != NULL)
3232 struct type *base_type;
3233 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3234 base_type = TYPE_TARGET_TYPE (index_type);
3236 base_type = index_type;
3238 low = pos_atr (value_from_longest (base_type, low));
3239 high = pos_atr (value_from_longest (base_type, high));
3241 return high - low + 1;
3244 /* An empty array whose type is that of ARR_TYPE (an array type),
3245 with bounds LOW to LOW-1. */
3247 static struct value *
3248 empty_array (struct type *arr_type, int low)
3250 struct type *arr_type0 = ada_check_typedef (arr_type);
3251 struct type *index_type
3252 = create_static_range_type
3253 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3254 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3256 return allocate_value (create_array_type (NULL, elt_type, index_type));
3260 /* Name resolution */
3262 /* The "decoded" name for the user-definable Ada operator corresponding
3266 ada_decoded_op_name (enum exp_opcode op)
3270 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3272 if (ada_opname_table[i].op == op)
3273 return ada_opname_table[i].decoded;
3275 error (_("Could not find operator name for opcode"));
3279 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3280 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3281 undefined namespace) and converts operators that are
3282 user-defined into appropriate function calls. If CONTEXT_TYPE is
3283 non-null, it provides a preferred result type [at the moment, only
3284 type void has any effect---causing procedures to be preferred over
3285 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3286 return type is preferred. May change (expand) *EXP. */
3289 resolve (expression_up *expp, int void_context_p)
3291 struct type *context_type = NULL;
3295 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3297 resolve_subexp (expp, &pc, 1, context_type);
3300 /* Resolve the operator of the subexpression beginning at
3301 position *POS of *EXPP. "Resolving" consists of replacing
3302 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3303 with their resolutions, replacing built-in operators with
3304 function calls to user-defined operators, where appropriate, and,
3305 when DEPROCEDURE_P is non-zero, converting function-valued variables
3306 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3307 are as in ada_resolve, above. */
3309 static struct value *
3310 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3311 struct type *context_type)
3315 struct expression *exp; /* Convenience: == *expp. */
3316 enum exp_opcode op = (*expp)->elts[pc].opcode;
3317 struct value **argvec; /* Vector of operand types (alloca'ed). */
3318 int nargs; /* Number of operands. */
3325 /* Pass one: resolve operands, saving their types and updating *pos,
3330 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3331 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3336 resolve_subexp (expp, pos, 0, NULL);
3338 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3343 resolve_subexp (expp, pos, 0, NULL);
3348 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3351 case OP_ATR_MODULUS:
3361 case TERNOP_IN_RANGE:
3362 case BINOP_IN_BOUNDS:
3368 case OP_DISCRETE_RANGE:
3370 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3379 arg1 = resolve_subexp (expp, pos, 0, NULL);
3381 resolve_subexp (expp, pos, 1, NULL);
3383 resolve_subexp (expp, pos, 1, value_type (arg1));
3400 case BINOP_LOGICAL_AND:
3401 case BINOP_LOGICAL_OR:
3402 case BINOP_BITWISE_AND:
3403 case BINOP_BITWISE_IOR:
3404 case BINOP_BITWISE_XOR:
3407 case BINOP_NOTEQUAL:
3414 case BINOP_SUBSCRIPT:
3422 case UNOP_LOGICAL_NOT:
3432 case OP_VAR_MSYM_VALUE:
3439 case OP_INTERNALVAR:
3449 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3452 case STRUCTOP_STRUCT:
3453 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3466 error (_("Unexpected operator during name resolution"));
3469 argvec = XALLOCAVEC (struct value *, nargs + 1);
3470 for (i = 0; i < nargs; i += 1)
3471 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3475 /* Pass two: perform any resolution on principal operator. */
3482 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3484 std::vector<struct block_symbol> candidates;
3488 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3489 (exp->elts[pc + 2].symbol),
3490 exp->elts[pc + 1].block, VAR_DOMAIN,
3493 if (n_candidates > 1)
3495 /* Types tend to get re-introduced locally, so if there
3496 are any local symbols that are not types, first filter
3499 for (j = 0; j < n_candidates; j += 1)
3500 switch (SYMBOL_CLASS (candidates[j].symbol))
3505 case LOC_REGPARM_ADDR:
3513 if (j < n_candidates)
3516 while (j < n_candidates)
3518 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3520 candidates[j] = candidates[n_candidates - 1];
3529 if (n_candidates == 0)
3530 error (_("No definition found for %s"),
3531 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3532 else if (n_candidates == 1)
3534 else if (deprocedure_p
3535 && !is_nonfunction (candidates.data (), n_candidates))
3537 i = ada_resolve_function
3538 (candidates.data (), n_candidates, NULL, 0,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3542 error (_("Could not find a match for %s"),
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3547 printf_filtered (_("Multiple matches for %s\n"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3549 user_select_syms (candidates.data (), n_candidates, 1);
3553 exp->elts[pc + 1].block = candidates[i].block;
3554 exp->elts[pc + 2].symbol = candidates[i].symbol;
3555 innermost_block.update (candidates[i]);
3559 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3562 replace_operator_with_call (expp, pc, 0, 4,
3563 exp->elts[pc + 2].symbol,
3564 exp->elts[pc + 1].block);
3571 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3572 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3574 std::vector<struct block_symbol> candidates;
3578 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3579 (exp->elts[pc + 5].symbol),
3580 exp->elts[pc + 4].block, VAR_DOMAIN,
3583 if (n_candidates == 1)
3587 i = ada_resolve_function
3588 (candidates.data (), n_candidates,
3590 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3593 error (_("Could not find a match for %s"),
3594 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3597 exp->elts[pc + 4].block = candidates[i].block;
3598 exp->elts[pc + 5].symbol = candidates[i].symbol;
3599 innermost_block.update (candidates[i]);
3610 case BINOP_BITWISE_AND:
3611 case BINOP_BITWISE_IOR:
3612 case BINOP_BITWISE_XOR:
3614 case BINOP_NOTEQUAL:
3622 case UNOP_LOGICAL_NOT:
3624 if (possible_user_operator_p (op, argvec))
3626 std::vector<struct block_symbol> candidates;
3630 ada_lookup_symbol_list (ada_decoded_op_name (op),
3631 (struct block *) NULL, VAR_DOMAIN,
3634 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3635 nargs, ada_decoded_op_name (op), NULL);
3639 replace_operator_with_call (expp, pc, nargs, 1,
3640 candidates[i].symbol,
3641 candidates[i].block);
3652 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3653 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3654 exp->elts[pc + 1].objfile,
3655 exp->elts[pc + 2].msymbol);
3657 return evaluate_subexp_type (exp, pos);
3660 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3661 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3663 /* The term "match" here is rather loose. The match is heuristic and
3667 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3669 ftype = ada_check_typedef (ftype);
3670 atype = ada_check_typedef (atype);
3672 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3673 ftype = TYPE_TARGET_TYPE (ftype);
3674 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3675 atype = TYPE_TARGET_TYPE (atype);
3677 switch (TYPE_CODE (ftype))
3680 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3682 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3683 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3684 TYPE_TARGET_TYPE (atype), 0);
3687 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3689 case TYPE_CODE_ENUM:
3690 case TYPE_CODE_RANGE:
3691 switch (TYPE_CODE (atype))
3694 case TYPE_CODE_ENUM:
3695 case TYPE_CODE_RANGE:
3701 case TYPE_CODE_ARRAY:
3702 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3703 || ada_is_array_descriptor_type (atype));
3705 case TYPE_CODE_STRUCT:
3706 if (ada_is_array_descriptor_type (ftype))
3707 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3708 || ada_is_array_descriptor_type (atype));
3710 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3711 && !ada_is_array_descriptor_type (atype));
3713 case TYPE_CODE_UNION:
3715 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3719 /* Return non-zero if the formals of FUNC "sufficiently match" the
3720 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3721 may also be an enumeral, in which case it is treated as a 0-
3722 argument function. */
3725 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3728 struct type *func_type = SYMBOL_TYPE (func);
3730 if (SYMBOL_CLASS (func) == LOC_CONST
3731 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3732 return (n_actuals == 0);
3733 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3736 if (TYPE_NFIELDS (func_type) != n_actuals)
3739 for (i = 0; i < n_actuals; i += 1)
3741 if (actuals[i] == NULL)
3745 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3747 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3749 if (!ada_type_match (ftype, atype, 1))
3756 /* False iff function type FUNC_TYPE definitely does not produce a value
3757 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3758 FUNC_TYPE is not a valid function type with a non-null return type
3759 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3762 return_match (struct type *func_type, struct type *context_type)
3764 struct type *return_type;
3766 if (func_type == NULL)
3769 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3770 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3772 return_type = get_base_type (func_type);
3773 if (return_type == NULL)
3776 context_type = get_base_type (context_type);
3778 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3779 return context_type == NULL || return_type == context_type;
3780 else if (context_type == NULL)
3781 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3783 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3787 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3788 function (if any) that matches the types of the NARGS arguments in
3789 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3790 that returns that type, then eliminate matches that don't. If
3791 CONTEXT_TYPE is void and there is at least one match that does not
3792 return void, eliminate all matches that do.
3794 Asks the user if there is more than one match remaining. Returns -1
3795 if there is no such symbol or none is selected. NAME is used
3796 solely for messages. May re-arrange and modify SYMS in
3797 the process; the index returned is for the modified vector. */
3800 ada_resolve_function (struct block_symbol syms[],
3801 int nsyms, struct value **args, int nargs,
3802 const char *name, struct type *context_type)
3806 int m; /* Number of hits */
3809 /* In the first pass of the loop, we only accept functions matching
3810 context_type. If none are found, we add a second pass of the loop
3811 where every function is accepted. */
3812 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3814 for (k = 0; k < nsyms; k += 1)
3816 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3818 if (ada_args_match (syms[k].symbol, args, nargs)
3819 && (fallback || return_match (type, context_type)))
3827 /* If we got multiple matches, ask the user which one to use. Don't do this
3828 interactive thing during completion, though, as the purpose of the
3829 completion is providing a list of all possible matches. Prompting the
3830 user to filter it down would be completely unexpected in this case. */
3833 else if (m > 1 && !parse_completion)
3835 printf_filtered (_("Multiple matches for %s\n"), name);
3836 user_select_syms (syms, m, 1);
3842 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3843 in a listing of choices during disambiguation (see sort_choices, below).
3844 The idea is that overloadings of a subprogram name from the
3845 same package should sort in their source order. We settle for ordering
3846 such symbols by their trailing number (__N or $N). */
3849 encoded_ordered_before (const char *N0, const char *N1)
3853 else if (N0 == NULL)
3859 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3861 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3863 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3864 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3869 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3872 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3874 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3875 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3877 return (strcmp (N0, N1) < 0);
3881 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3885 sort_choices (struct block_symbol syms[], int nsyms)
3889 for (i = 1; i < nsyms; i += 1)
3891 struct block_symbol sym = syms[i];
3894 for (j = i - 1; j >= 0; j -= 1)
3896 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3897 SYMBOL_LINKAGE_NAME (sym.symbol)))
3899 syms[j + 1] = syms[j];
3905 /* Whether GDB should display formals and return types for functions in the
3906 overloads selection menu. */
3907 static int print_signatures = 1;
3909 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3910 all but functions, the signature is just the name of the symbol. For
3911 functions, this is the name of the function, the list of types for formals
3912 and the return type (if any). */
3915 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3916 const struct type_print_options *flags)
3918 struct type *type = SYMBOL_TYPE (sym);
3920 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3921 if (!print_signatures
3923 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3926 if (TYPE_NFIELDS (type) > 0)
3930 fprintf_filtered (stream, " (");
3931 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3934 fprintf_filtered (stream, "; ");
3935 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3938 fprintf_filtered (stream, ")");
3940 if (TYPE_TARGET_TYPE (type) != NULL
3941 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3943 fprintf_filtered (stream, " return ");
3944 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3948 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3949 by asking the user (if necessary), returning the number selected,
3950 and setting the first elements of SYMS items. Error if no symbols
3953 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3954 to be re-integrated one of these days. */
3957 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3960 int *chosen = XALLOCAVEC (int , nsyms);
3962 int first_choice = (max_results == 1) ? 1 : 2;
3963 const char *select_mode = multiple_symbols_select_mode ();
3965 if (max_results < 1)
3966 error (_("Request to select 0 symbols!"));
3970 if (select_mode == multiple_symbols_cancel)
3972 canceled because the command is ambiguous\n\
3973 See set/show multiple-symbol."));
3975 /* If select_mode is "all", then return all possible symbols.
3976 Only do that if more than one symbol can be selected, of course.
3977 Otherwise, display the menu as usual. */
3978 if (select_mode == multiple_symbols_all && max_results > 1)
3981 printf_unfiltered (_("[0] cancel\n"));
3982 if (max_results > 1)
3983 printf_unfiltered (_("[1] all\n"));
3985 sort_choices (syms, nsyms);
3987 for (i = 0; i < nsyms; i += 1)
3989 if (syms[i].symbol == NULL)
3992 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3994 struct symtab_and_line sal =
3995 find_function_start_sal (syms[i].symbol, 1);
3997 printf_unfiltered ("[%d] ", i + first_choice);
3998 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3999 &type_print_raw_options);
4000 if (sal.symtab == NULL)
4001 printf_unfiltered (_(" at <no source file available>:%d\n"),
4004 printf_unfiltered (_(" at %s:%d\n"),
4005 symtab_to_filename_for_display (sal.symtab),
4012 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
4013 && SYMBOL_TYPE (syms[i].symbol) != NULL
4014 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
4015 struct symtab *symtab = NULL;
4017 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
4018 symtab = symbol_symtab (syms[i].symbol);
4020 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
4022 printf_unfiltered ("[%d] ", i + first_choice);
4023 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4024 &type_print_raw_options);
4025 printf_unfiltered (_(" at %s:%d\n"),
4026 symtab_to_filename_for_display (symtab),
4027 SYMBOL_LINE (syms[i].symbol));
4029 else if (is_enumeral
4030 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4032 printf_unfiltered (("[%d] "), i + first_choice);
4033 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
4034 gdb_stdout, -1, 0, &type_print_raw_options);
4035 printf_unfiltered (_("'(%s) (enumeral)\n"),
4036 SYMBOL_PRINT_NAME (syms[i].symbol));
4040 printf_unfiltered ("[%d] ", i + first_choice);
4041 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4042 &type_print_raw_options);
4045 printf_unfiltered (is_enumeral
4046 ? _(" in %s (enumeral)\n")
4048 symtab_to_filename_for_display (symtab));
4050 printf_unfiltered (is_enumeral
4051 ? _(" (enumeral)\n")
4057 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4060 for (i = 0; i < n_chosen; i += 1)
4061 syms[i] = syms[chosen[i]];
4066 /* Read and validate a set of numeric choices from the user in the
4067 range 0 .. N_CHOICES-1. Place the results in increasing
4068 order in CHOICES[0 .. N-1], and return N.
4070 The user types choices as a sequence of numbers on one line
4071 separated by blanks, encoding them as follows:
4073 + A choice of 0 means to cancel the selection, throwing an error.
4074 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4075 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4077 The user is not allowed to choose more than MAX_RESULTS values.
4079 ANNOTATION_SUFFIX, if present, is used to annotate the input
4080 prompts (for use with the -f switch). */
4083 get_selections (int *choices, int n_choices, int max_results,
4084 int is_all_choice, const char *annotation_suffix)
4089 int first_choice = is_all_choice ? 2 : 1;
4091 prompt = getenv ("PS2");
4095 args = command_line_input (prompt, annotation_suffix);
4098 error_no_arg (_("one or more choice numbers"));
4102 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4103 order, as given in args. Choices are validated. */
4109 args = skip_spaces (args);
4110 if (*args == '\0' && n_chosen == 0)
4111 error_no_arg (_("one or more choice numbers"));
4112 else if (*args == '\0')
4115 choice = strtol (args, &args2, 10);
4116 if (args == args2 || choice < 0
4117 || choice > n_choices + first_choice - 1)
4118 error (_("Argument must be choice number"));
4122 error (_("cancelled"));
4124 if (choice < first_choice)
4126 n_chosen = n_choices;
4127 for (j = 0; j < n_choices; j += 1)
4131 choice -= first_choice;
4133 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4137 if (j < 0 || choice != choices[j])
4141 for (k = n_chosen - 1; k > j; k -= 1)
4142 choices[k + 1] = choices[k];
4143 choices[j + 1] = choice;
4148 if (n_chosen > max_results)
4149 error (_("Select no more than %d of the above"), max_results);
4154 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4155 on the function identified by SYM and BLOCK, and taking NARGS
4156 arguments. Update *EXPP as needed to hold more space. */
4159 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4160 int oplen, struct symbol *sym,
4161 const struct block *block)
4163 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4164 symbol, -oplen for operator being replaced). */
4165 struct expression *newexp = (struct expression *)
4166 xzalloc (sizeof (struct expression)
4167 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4168 struct expression *exp = expp->get ();
4170 newexp->nelts = exp->nelts + 7 - oplen;
4171 newexp->language_defn = exp->language_defn;
4172 newexp->gdbarch = exp->gdbarch;
4173 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4174 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4175 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4177 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4178 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4180 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4181 newexp->elts[pc + 4].block = block;
4182 newexp->elts[pc + 5].symbol = sym;
4184 expp->reset (newexp);
4187 /* Type-class predicates */
4189 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4193 numeric_type_p (struct type *type)
4199 switch (TYPE_CODE (type))
4204 case TYPE_CODE_RANGE:
4205 return (type == TYPE_TARGET_TYPE (type)
4206 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4213 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4216 integer_type_p (struct type *type)
4222 switch (TYPE_CODE (type))
4226 case TYPE_CODE_RANGE:
4227 return (type == TYPE_TARGET_TYPE (type)
4228 || integer_type_p (TYPE_TARGET_TYPE (type)));
4235 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4238 scalar_type_p (struct type *type)
4244 switch (TYPE_CODE (type))
4247 case TYPE_CODE_RANGE:
4248 case TYPE_CODE_ENUM:
4257 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4260 discrete_type_p (struct type *type)
4266 switch (TYPE_CODE (type))
4269 case TYPE_CODE_RANGE:
4270 case TYPE_CODE_ENUM:
4271 case TYPE_CODE_BOOL:
4279 /* Returns non-zero if OP with operands in the vector ARGS could be
4280 a user-defined function. Errs on the side of pre-defined operators
4281 (i.e., result 0). */
4284 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4286 struct type *type0 =
4287 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4288 struct type *type1 =
4289 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4303 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4307 case BINOP_BITWISE_AND:
4308 case BINOP_BITWISE_IOR:
4309 case BINOP_BITWISE_XOR:
4310 return (!(integer_type_p (type0) && integer_type_p (type1)));
4313 case BINOP_NOTEQUAL:
4318 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4321 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4324 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4328 case UNOP_LOGICAL_NOT:
4330 return (!numeric_type_p (type0));
4339 1. In the following, we assume that a renaming type's name may
4340 have an ___XD suffix. It would be nice if this went away at some
4342 2. We handle both the (old) purely type-based representation of
4343 renamings and the (new) variable-based encoding. At some point,
4344 it is devoutly to be hoped that the former goes away
4345 (FIXME: hilfinger-2007-07-09).
4346 3. Subprogram renamings are not implemented, although the XRS
4347 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4349 /* If SYM encodes a renaming,
4351 <renaming> renames <renamed entity>,
4353 sets *LEN to the length of the renamed entity's name,
4354 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4355 the string describing the subcomponent selected from the renamed
4356 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4357 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4358 are undefined). Otherwise, returns a value indicating the category
4359 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4360 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4361 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4362 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4363 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4364 may be NULL, in which case they are not assigned.
4366 [Currently, however, GCC does not generate subprogram renamings.] */
4368 enum ada_renaming_category
4369 ada_parse_renaming (struct symbol *sym,
4370 const char **renamed_entity, int *len,
4371 const char **renaming_expr)
4373 enum ada_renaming_category kind;
4378 return ADA_NOT_RENAMING;
4379 switch (SYMBOL_CLASS (sym))
4382 return ADA_NOT_RENAMING;
4384 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4385 renamed_entity, len, renaming_expr);
4389 case LOC_OPTIMIZED_OUT:
4390 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4392 return ADA_NOT_RENAMING;
4396 kind = ADA_OBJECT_RENAMING;
4400 kind = ADA_EXCEPTION_RENAMING;
4404 kind = ADA_PACKAGE_RENAMING;
4408 kind = ADA_SUBPROGRAM_RENAMING;
4412 return ADA_NOT_RENAMING;
4416 if (renamed_entity != NULL)
4417 *renamed_entity = info;
4418 suffix = strstr (info, "___XE");
4419 if (suffix == NULL || suffix == info)
4420 return ADA_NOT_RENAMING;
4422 *len = strlen (info) - strlen (suffix);
4424 if (renaming_expr != NULL)
4425 *renaming_expr = suffix;
4429 /* Assuming TYPE encodes a renaming according to the old encoding in
4430 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4431 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4432 ADA_NOT_RENAMING otherwise. */
4433 static enum ada_renaming_category
4434 parse_old_style_renaming (struct type *type,
4435 const char **renamed_entity, int *len,
4436 const char **renaming_expr)
4438 enum ada_renaming_category kind;
4443 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4444 || TYPE_NFIELDS (type) != 1)
4445 return ADA_NOT_RENAMING;
4447 name = TYPE_NAME (type);
4449 return ADA_NOT_RENAMING;
4451 name = strstr (name, "___XR");
4453 return ADA_NOT_RENAMING;
4458 kind = ADA_OBJECT_RENAMING;
4461 kind = ADA_EXCEPTION_RENAMING;
4464 kind = ADA_PACKAGE_RENAMING;
4467 kind = ADA_SUBPROGRAM_RENAMING;
4470 return ADA_NOT_RENAMING;
4473 info = TYPE_FIELD_NAME (type, 0);
4475 return ADA_NOT_RENAMING;
4476 if (renamed_entity != NULL)
4477 *renamed_entity = info;
4478 suffix = strstr (info, "___XE");
4479 if (renaming_expr != NULL)
4480 *renaming_expr = suffix + 5;
4481 if (suffix == NULL || suffix == info)
4482 return ADA_NOT_RENAMING;
4484 *len = suffix - info;
4488 /* Compute the value of the given RENAMING_SYM, which is expected to
4489 be a symbol encoding a renaming expression. BLOCK is the block
4490 used to evaluate the renaming. */
4492 static struct value *
4493 ada_read_renaming_var_value (struct symbol *renaming_sym,
4494 const struct block *block)
4496 const char *sym_name;
4498 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4499 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4500 return evaluate_expression (expr.get ());
4504 /* Evaluation: Function Calls */
4506 /* Return an lvalue containing the value VAL. This is the identity on
4507 lvalues, and otherwise has the side-effect of allocating memory
4508 in the inferior where a copy of the value contents is copied. */
4510 static struct value *
4511 ensure_lval (struct value *val)
4513 if (VALUE_LVAL (val) == not_lval
4514 || VALUE_LVAL (val) == lval_internalvar)
4516 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4517 const CORE_ADDR addr =
4518 value_as_long (value_allocate_space_in_inferior (len));
4520 VALUE_LVAL (val) = lval_memory;
4521 set_value_address (val, addr);
4522 write_memory (addr, value_contents (val), len);
4528 /* Return the value ACTUAL, converted to be an appropriate value for a
4529 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4530 allocating any necessary descriptors (fat pointers), or copies of
4531 values not residing in memory, updating it as needed. */
4534 ada_convert_actual (struct value *actual, struct type *formal_type0)
4536 struct type *actual_type = ada_check_typedef (value_type (actual));
4537 struct type *formal_type = ada_check_typedef (formal_type0);
4538 struct type *formal_target =
4539 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4540 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4541 struct type *actual_target =
4542 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4543 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4545 if (ada_is_array_descriptor_type (formal_target)
4546 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4547 return make_array_descriptor (formal_type, actual);
4548 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4549 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4551 struct value *result;
4553 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4554 && ada_is_array_descriptor_type (actual_target))
4555 result = desc_data (actual);
4556 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4558 if (VALUE_LVAL (actual) != lval_memory)
4562 actual_type = ada_check_typedef (value_type (actual));
4563 val = allocate_value (actual_type);
4564 memcpy ((char *) value_contents_raw (val),
4565 (char *) value_contents (actual),
4566 TYPE_LENGTH (actual_type));
4567 actual = ensure_lval (val);
4569 result = value_addr (actual);
4573 return value_cast_pointers (formal_type, result, 0);
4575 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4576 return ada_value_ind (actual);
4577 else if (ada_is_aligner_type (formal_type))
4579 /* We need to turn this parameter into an aligner type
4581 struct value *aligner = allocate_value (formal_type);
4582 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4584 value_assign_to_component (aligner, component, actual);
4591 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4592 type TYPE. This is usually an inefficient no-op except on some targets
4593 (such as AVR) where the representation of a pointer and an address
4597 value_pointer (struct value *value, struct type *type)
4599 struct gdbarch *gdbarch = get_type_arch (type);
4600 unsigned len = TYPE_LENGTH (type);
4601 gdb_byte *buf = (gdb_byte *) alloca (len);
4604 addr = value_address (value);
4605 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4606 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4611 /* Push a descriptor of type TYPE for array value ARR on the stack at
4612 *SP, updating *SP to reflect the new descriptor. Return either
4613 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4614 to-descriptor type rather than a descriptor type), a struct value *
4615 representing a pointer to this descriptor. */
4617 static struct value *
4618 make_array_descriptor (struct type *type, struct value *arr)
4620 struct type *bounds_type = desc_bounds_type (type);
4621 struct type *desc_type = desc_base_type (type);
4622 struct value *descriptor = allocate_value (desc_type);
4623 struct value *bounds = allocate_value (bounds_type);
4626 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4629 modify_field (value_type (bounds), value_contents_writeable (bounds),
4630 ada_array_bound (arr, i, 0),
4631 desc_bound_bitpos (bounds_type, i, 0),
4632 desc_bound_bitsize (bounds_type, i, 0));
4633 modify_field (value_type (bounds), value_contents_writeable (bounds),
4634 ada_array_bound (arr, i, 1),
4635 desc_bound_bitpos (bounds_type, i, 1),
4636 desc_bound_bitsize (bounds_type, i, 1));
4639 bounds = ensure_lval (bounds);
4641 modify_field (value_type (descriptor),
4642 value_contents_writeable (descriptor),
4643 value_pointer (ensure_lval (arr),
4644 TYPE_FIELD_TYPE (desc_type, 0)),
4645 fat_pntr_data_bitpos (desc_type),
4646 fat_pntr_data_bitsize (desc_type));
4648 modify_field (value_type (descriptor),
4649 value_contents_writeable (descriptor),
4650 value_pointer (bounds,
4651 TYPE_FIELD_TYPE (desc_type, 1)),
4652 fat_pntr_bounds_bitpos (desc_type),
4653 fat_pntr_bounds_bitsize (desc_type));
4655 descriptor = ensure_lval (descriptor);
4657 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4658 return value_addr (descriptor);
4663 /* Symbol Cache Module */
4665 /* Performance measurements made as of 2010-01-15 indicate that
4666 this cache does bring some noticeable improvements. Depending
4667 on the type of entity being printed, the cache can make it as much
4668 as an order of magnitude faster than without it.
4670 The descriptive type DWARF extension has significantly reduced
4671 the need for this cache, at least when DWARF is being used. However,
4672 even in this case, some expensive name-based symbol searches are still
4673 sometimes necessary - to find an XVZ variable, mostly. */
4675 /* Initialize the contents of SYM_CACHE. */
4678 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4680 obstack_init (&sym_cache->cache_space);
4681 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4684 /* Free the memory used by SYM_CACHE. */
4687 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4689 obstack_free (&sym_cache->cache_space, NULL);
4693 /* Return the symbol cache associated to the given program space PSPACE.
4694 If not allocated for this PSPACE yet, allocate and initialize one. */
4696 static struct ada_symbol_cache *
4697 ada_get_symbol_cache (struct program_space *pspace)
4699 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4701 if (pspace_data->sym_cache == NULL)
4703 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4704 ada_init_symbol_cache (pspace_data->sym_cache);
4707 return pspace_data->sym_cache;
4710 /* Clear all entries from the symbol cache. */
4713 ada_clear_symbol_cache (void)
4715 struct ada_symbol_cache *sym_cache
4716 = ada_get_symbol_cache (current_program_space);
4718 obstack_free (&sym_cache->cache_space, NULL);
4719 ada_init_symbol_cache (sym_cache);
4722 /* Search our cache for an entry matching NAME and DOMAIN.
4723 Return it if found, or NULL otherwise. */
4725 static struct cache_entry **
4726 find_entry (const char *name, domain_enum domain)
4728 struct ada_symbol_cache *sym_cache
4729 = ada_get_symbol_cache (current_program_space);
4730 int h = msymbol_hash (name) % HASH_SIZE;
4731 struct cache_entry **e;
4733 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4735 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4741 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4742 Return 1 if found, 0 otherwise.
4744 If an entry was found and SYM is not NULL, set *SYM to the entry's
4745 SYM. Same principle for BLOCK if not NULL. */
4748 lookup_cached_symbol (const char *name, domain_enum domain,
4749 struct symbol **sym, const struct block **block)
4751 struct cache_entry **e = find_entry (name, domain);
4758 *block = (*e)->block;
4762 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4763 in domain DOMAIN, save this result in our symbol cache. */
4766 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4767 const struct block *block)
4769 struct ada_symbol_cache *sym_cache
4770 = ada_get_symbol_cache (current_program_space);
4773 struct cache_entry *e;
4775 /* Symbols for builtin types don't have a block.
4776 For now don't cache such symbols. */
4777 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4780 /* If the symbol is a local symbol, then do not cache it, as a search
4781 for that symbol depends on the context. To determine whether
4782 the symbol is local or not, we check the block where we found it
4783 against the global and static blocks of its associated symtab. */
4785 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4786 GLOBAL_BLOCK) != block
4787 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4788 STATIC_BLOCK) != block)
4791 h = msymbol_hash (name) % HASH_SIZE;
4792 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4793 e->next = sym_cache->root[h];
4794 sym_cache->root[h] = e;
4796 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4797 strcpy (copy, name);
4805 /* Return the symbol name match type that should be used used when
4806 searching for all symbols matching LOOKUP_NAME.
4808 LOOKUP_NAME is expected to be a symbol name after transformation
4811 static symbol_name_match_type
4812 name_match_type_from_name (const char *lookup_name)
4814 return (strstr (lookup_name, "__") == NULL
4815 ? symbol_name_match_type::WILD
4816 : symbol_name_match_type::FULL);
4819 /* Return the result of a standard (literal, C-like) lookup of NAME in
4820 given DOMAIN, visible from lexical block BLOCK. */
4822 static struct symbol *
4823 standard_lookup (const char *name, const struct block *block,
4826 /* Initialize it just to avoid a GCC false warning. */
4827 struct block_symbol sym = {NULL, NULL};
4829 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4831 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4832 cache_symbol (name, domain, sym.symbol, sym.block);
4837 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4839 since they contend in overloading in the same way. */
4841 is_nonfunction (struct block_symbol syms[], int n)
4845 for (i = 0; i < n; i += 1)
4846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4848 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4854 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4855 struct types. Otherwise, they may not. */
4858 equiv_types (struct type *type0, struct type *type1)
4862 if (type0 == NULL || type1 == NULL
4863 || TYPE_CODE (type0) != TYPE_CODE (type1))
4865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4874 /* True iff SYM0 represents the same entity as SYM1, or one that is
4875 no more defined than that of SYM1. */
4878 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4886 switch (SYMBOL_CLASS (sym0))
4892 struct type *type0 = SYMBOL_TYPE (sym0);
4893 struct type *type1 = SYMBOL_TYPE (sym1);
4894 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4895 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4896 int len0 = strlen (name0);
4899 TYPE_CODE (type0) == TYPE_CODE (type1)
4900 && (equiv_types (type0, type1)
4901 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4902 && startswith (name1 + len0, "___XV")));
4905 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4906 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4912 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4913 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4916 add_defn_to_vec (struct obstack *obstackp,
4918 const struct block *block)
4921 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4923 /* Do not try to complete stub types, as the debugger is probably
4924 already scanning all symbols matching a certain name at the
4925 time when this function is called. Trying to replace the stub
4926 type by its associated full type will cause us to restart a scan
4927 which may lead to an infinite recursion. Instead, the client
4928 collecting the matching symbols will end up collecting several
4929 matches, with at least one of them complete. It can then filter
4930 out the stub ones if needed. */
4932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4934 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4936 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4938 prevDefns[i].symbol = sym;
4939 prevDefns[i].block = block;
4945 struct block_symbol info;
4949 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4953 /* Number of block_symbol structures currently collected in current vector in
4957 num_defns_collected (struct obstack *obstackp)
4959 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4962 /* Vector of block_symbol structures currently collected in current vector in
4963 OBSTACKP. If FINISH, close off the vector and return its final address. */
4965 static struct block_symbol *
4966 defns_collected (struct obstack *obstackp, int finish)
4969 return (struct block_symbol *) obstack_finish (obstackp);
4971 return (struct block_symbol *) obstack_base (obstackp);
4974 /* Return a bound minimal symbol matching NAME according to Ada
4975 decoding rules. Returns an invalid symbol if there is no such
4976 minimal symbol. Names prefixed with "standard__" are handled
4977 specially: "standard__" is first stripped off, and only static and
4978 global symbols are searched. */
4980 struct bound_minimal_symbol
4981 ada_lookup_simple_minsym (const char *name)
4983 struct bound_minimal_symbol result;
4984 struct objfile *objfile;
4985 struct minimal_symbol *msymbol;
4987 memset (&result, 0, sizeof (result));
4989 symbol_name_match_type match_type = name_match_type_from_name (name);
4990 lookup_name_info lookup_name (name, match_type);
4992 symbol_name_matcher_ftype *match_name
4993 = ada_get_symbol_name_matcher (lookup_name);
4995 ALL_MSYMBOLS (objfile, msymbol)
4997 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4998 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
5000 result.minsym = msymbol;
5001 result.objfile = objfile;
5009 /* For all subprograms that statically enclose the subprogram of the
5010 selected frame, add symbols matching identifier NAME in DOMAIN
5011 and their blocks to the list of data in OBSTACKP, as for
5012 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
5013 with a wildcard prefix. */
5016 add_symbols_from_enclosing_procs (struct obstack *obstackp,
5017 const lookup_name_info &lookup_name,
5022 /* True if TYPE is definitely an artificial type supplied to a symbol
5023 for which no debugging information was given in the symbol file. */
5026 is_nondebugging_type (struct type *type)
5028 const char *name = ada_type_name (type);
5030 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5033 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5034 that are deemed "identical" for practical purposes.
5036 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5037 types and that their number of enumerals is identical (in other
5038 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5041 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5045 /* The heuristic we use here is fairly conservative. We consider
5046 that 2 enumerate types are identical if they have the same
5047 number of enumerals and that all enumerals have the same
5048 underlying value and name. */
5050 /* All enums in the type should have an identical underlying value. */
5051 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5052 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5055 /* All enumerals should also have the same name (modulo any numerical
5057 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5059 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5060 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5061 int len_1 = strlen (name_1);
5062 int len_2 = strlen (name_2);
5064 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5065 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5067 || strncmp (TYPE_FIELD_NAME (type1, i),
5068 TYPE_FIELD_NAME (type2, i),
5076 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5077 that are deemed "identical" for practical purposes. Sometimes,
5078 enumerals are not strictly identical, but their types are so similar
5079 that they can be considered identical.
5081 For instance, consider the following code:
5083 type Color is (Black, Red, Green, Blue, White);
5084 type RGB_Color is new Color range Red .. Blue;
5086 Type RGB_Color is a subrange of an implicit type which is a copy
5087 of type Color. If we call that implicit type RGB_ColorB ("B" is
5088 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5089 As a result, when an expression references any of the enumeral
5090 by name (Eg. "print green"), the expression is technically
5091 ambiguous and the user should be asked to disambiguate. But
5092 doing so would only hinder the user, since it wouldn't matter
5093 what choice he makes, the outcome would always be the same.
5094 So, for practical purposes, we consider them as the same. */
5097 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5101 /* Before performing a thorough comparison check of each type,
5102 we perform a series of inexpensive checks. We expect that these
5103 checks will quickly fail in the vast majority of cases, and thus
5104 help prevent the unnecessary use of a more expensive comparison.
5105 Said comparison also expects us to make some of these checks
5106 (see ada_identical_enum_types_p). */
5108 /* Quick check: All symbols should have an enum type. */
5109 for (i = 0; i < syms.size (); i++)
5110 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5113 /* Quick check: They should all have the same value. */
5114 for (i = 1; i < syms.size (); i++)
5115 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5118 /* Quick check: They should all have the same number of enumerals. */
5119 for (i = 1; i < syms.size (); i++)
5120 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5121 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5124 /* All the sanity checks passed, so we might have a set of
5125 identical enumeration types. Perform a more complete
5126 comparison of the type of each symbol. */
5127 for (i = 1; i < syms.size (); i++)
5128 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5129 SYMBOL_TYPE (syms[0].symbol)))
5135 /* Remove any non-debugging symbols in SYMS that definitely
5136 duplicate other symbols in the list (The only case I know of where
5137 this happens is when object files containing stabs-in-ecoff are
5138 linked with files containing ordinary ecoff debugging symbols (or no
5139 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5140 Returns the number of items in the modified list. */
5143 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5147 /* We should never be called with less than 2 symbols, as there
5148 cannot be any extra symbol in that case. But it's easy to
5149 handle, since we have nothing to do in that case. */
5150 if (syms->size () < 2)
5151 return syms->size ();
5154 while (i < syms->size ())
5158 /* If two symbols have the same name and one of them is a stub type,
5159 the get rid of the stub. */
5161 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5162 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5164 for (j = 0; j < syms->size (); j++)
5167 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5168 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5169 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5170 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5175 /* Two symbols with the same name, same class and same address
5176 should be identical. */
5178 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5179 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5180 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5182 for (j = 0; j < syms->size (); j += 1)
5185 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5186 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5187 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5188 && SYMBOL_CLASS ((*syms)[i].symbol)
5189 == SYMBOL_CLASS ((*syms)[j].symbol)
5190 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5191 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5197 syms->erase (syms->begin () + i);
5202 /* If all the remaining symbols are identical enumerals, then
5203 just keep the first one and discard the rest.
5205 Unlike what we did previously, we do not discard any entry
5206 unless they are ALL identical. This is because the symbol
5207 comparison is not a strict comparison, but rather a practical
5208 comparison. If all symbols are considered identical, then
5209 we can just go ahead and use the first one and discard the rest.
5210 But if we cannot reduce the list to a single element, we have
5211 to ask the user to disambiguate anyways. And if we have to
5212 present a multiple-choice menu, it's less confusing if the list
5213 isn't missing some choices that were identical and yet distinct. */
5214 if (symbols_are_identical_enums (*syms))
5217 return syms->size ();
5220 /* Given a type that corresponds to a renaming entity, use the type name
5221 to extract the scope (package name or function name, fully qualified,
5222 and following the GNAT encoding convention) where this renaming has been
5226 xget_renaming_scope (struct type *renaming_type)
5228 /* The renaming types adhere to the following convention:
5229 <scope>__<rename>___<XR extension>.
5230 So, to extract the scope, we search for the "___XR" extension,
5231 and then backtrack until we find the first "__". */
5233 const char *name = TYPE_NAME (renaming_type);
5234 const char *suffix = strstr (name, "___XR");
5237 /* Now, backtrack a bit until we find the first "__". Start looking
5238 at suffix - 3, as the <rename> part is at least one character long. */
5240 for (last = suffix - 3; last > name; last--)
5241 if (last[0] == '_' && last[1] == '_')
5244 /* Make a copy of scope and return it. */
5245 return std::string (name, last);
5248 /* Return nonzero if NAME corresponds to a package name. */
5251 is_package_name (const char *name)
5253 /* Here, We take advantage of the fact that no symbols are generated
5254 for packages, while symbols are generated for each function.
5255 So the condition for NAME represent a package becomes equivalent
5256 to NAME not existing in our list of symbols. There is only one
5257 small complication with library-level functions (see below). */
5259 /* If it is a function that has not been defined at library level,
5260 then we should be able to look it up in the symbols. */
5261 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5264 /* Library-level function names start with "_ada_". See if function
5265 "_ada_" followed by NAME can be found. */
5267 /* Do a quick check that NAME does not contain "__", since library-level
5268 functions names cannot contain "__" in them. */
5269 if (strstr (name, "__") != NULL)
5272 std::string fun_name = string_printf ("_ada_%s", name);
5274 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5277 /* Return nonzero if SYM corresponds to a renaming entity that is
5278 not visible from FUNCTION_NAME. */
5281 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5283 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5286 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5288 /* If the rename has been defined in a package, then it is visible. */
5289 if (is_package_name (scope.c_str ()))
5292 /* Check that the rename is in the current function scope by checking
5293 that its name starts with SCOPE. */
5295 /* If the function name starts with "_ada_", it means that it is
5296 a library-level function. Strip this prefix before doing the
5297 comparison, as the encoding for the renaming does not contain
5299 if (startswith (function_name, "_ada_"))
5302 return !startswith (function_name, scope.c_str ());
5305 /* Remove entries from SYMS that corresponds to a renaming entity that
5306 is not visible from the function associated with CURRENT_BLOCK or
5307 that is superfluous due to the presence of more specific renaming
5308 information. Places surviving symbols in the initial entries of
5309 SYMS and returns the number of surviving symbols.
5312 First, in cases where an object renaming is implemented as a
5313 reference variable, GNAT may produce both the actual reference
5314 variable and the renaming encoding. In this case, we discard the
5317 Second, GNAT emits a type following a specified encoding for each renaming
5318 entity. Unfortunately, STABS currently does not support the definition
5319 of types that are local to a given lexical block, so all renamings types
5320 are emitted at library level. As a consequence, if an application
5321 contains two renaming entities using the same name, and a user tries to
5322 print the value of one of these entities, the result of the ada symbol
5323 lookup will also contain the wrong renaming type.
5325 This function partially covers for this limitation by attempting to
5326 remove from the SYMS list renaming symbols that should be visible
5327 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5328 method with the current information available. The implementation
5329 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5331 - When the user tries to print a rename in a function while there
5332 is another rename entity defined in a package: Normally, the
5333 rename in the function has precedence over the rename in the
5334 package, so the latter should be removed from the list. This is
5335 currently not the case.
5337 - This function will incorrectly remove valid renames if
5338 the CURRENT_BLOCK corresponds to a function which symbol name
5339 has been changed by an "Export" pragma. As a consequence,
5340 the user will be unable to print such rename entities. */
5343 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5344 const struct block *current_block)
5346 struct symbol *current_function;
5347 const char *current_function_name;
5349 int is_new_style_renaming;
5351 /* If there is both a renaming foo___XR... encoded as a variable and
5352 a simple variable foo in the same block, discard the latter.
5353 First, zero out such symbols, then compress. */
5354 is_new_style_renaming = 0;
5355 for (i = 0; i < syms->size (); i += 1)
5357 struct symbol *sym = (*syms)[i].symbol;
5358 const struct block *block = (*syms)[i].block;
5362 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5364 name = SYMBOL_LINKAGE_NAME (sym);
5365 suffix = strstr (name, "___XR");
5369 int name_len = suffix - name;
5372 is_new_style_renaming = 1;
5373 for (j = 0; j < syms->size (); j += 1)
5374 if (i != j && (*syms)[j].symbol != NULL
5375 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5377 && block == (*syms)[j].block)
5378 (*syms)[j].symbol = NULL;
5381 if (is_new_style_renaming)
5385 for (j = k = 0; j < syms->size (); j += 1)
5386 if ((*syms)[j].symbol != NULL)
5388 (*syms)[k] = (*syms)[j];
5394 /* Extract the function name associated to CURRENT_BLOCK.
5395 Abort if unable to do so. */
5397 if (current_block == NULL)
5398 return syms->size ();
5400 current_function = block_linkage_function (current_block);
5401 if (current_function == NULL)
5402 return syms->size ();
5404 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5405 if (current_function_name == NULL)
5406 return syms->size ();
5408 /* Check each of the symbols, and remove it from the list if it is
5409 a type corresponding to a renaming that is out of the scope of
5410 the current block. */
5413 while (i < syms->size ())
5415 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5416 == ADA_OBJECT_RENAMING
5417 && old_renaming_is_invisible ((*syms)[i].symbol,
5418 current_function_name))
5419 syms->erase (syms->begin () + i);
5424 return syms->size ();
5427 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5428 whose name and domain match NAME and DOMAIN respectively.
5429 If no match was found, then extend the search to "enclosing"
5430 routines (in other words, if we're inside a nested function,
5431 search the symbols defined inside the enclosing functions).
5432 If WILD_MATCH_P is nonzero, perform the naming matching in
5433 "wild" mode (see function "wild_match" for more info).
5435 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5438 ada_add_local_symbols (struct obstack *obstackp,
5439 const lookup_name_info &lookup_name,
5440 const struct block *block, domain_enum domain)
5442 int block_depth = 0;
5444 while (block != NULL)
5447 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5449 /* If we found a non-function match, assume that's the one. */
5450 if (is_nonfunction (defns_collected (obstackp, 0),
5451 num_defns_collected (obstackp)))
5454 block = BLOCK_SUPERBLOCK (block);
5457 /* If no luck so far, try to find NAME as a local symbol in some lexically
5458 enclosing subprogram. */
5459 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5460 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5463 /* An object of this type is used as the user_data argument when
5464 calling the map_matching_symbols method. */
5468 struct objfile *objfile;
5469 struct obstack *obstackp;
5470 struct symbol *arg_sym;
5474 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5475 to a list of symbols. DATA0 is a pointer to a struct match_data *
5476 containing the obstack that collects the symbol list, the file that SYM
5477 must come from, a flag indicating whether a non-argument symbol has
5478 been found in the current block, and the last argument symbol
5479 passed in SYM within the current block (if any). When SYM is null,
5480 marking the end of a block, the argument symbol is added if no
5481 other has been found. */
5484 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5486 struct match_data *data = (struct match_data *) data0;
5490 if (!data->found_sym && data->arg_sym != NULL)
5491 add_defn_to_vec (data->obstackp,
5492 fixup_symbol_section (data->arg_sym, data->objfile),
5494 data->found_sym = 0;
5495 data->arg_sym = NULL;
5499 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5501 else if (SYMBOL_IS_ARGUMENT (sym))
5502 data->arg_sym = sym;
5505 data->found_sym = 1;
5506 add_defn_to_vec (data->obstackp,
5507 fixup_symbol_section (sym, data->objfile),
5514 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5515 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5516 symbols to OBSTACKP. Return whether we found such symbols. */
5519 ada_add_block_renamings (struct obstack *obstackp,
5520 const struct block *block,
5521 const lookup_name_info &lookup_name,
5524 struct using_direct *renaming;
5525 int defns_mark = num_defns_collected (obstackp);
5527 symbol_name_matcher_ftype *name_match
5528 = ada_get_symbol_name_matcher (lookup_name);
5530 for (renaming = block_using (block);
5532 renaming = renaming->next)
5536 /* Avoid infinite recursions: skip this renaming if we are actually
5537 already traversing it.
5539 Currently, symbol lookup in Ada don't use the namespace machinery from
5540 C++/Fortran support: skip namespace imports that use them. */
5541 if (renaming->searched
5542 || (renaming->import_src != NULL
5543 && renaming->import_src[0] != '\0')
5544 || (renaming->import_dest != NULL
5545 && renaming->import_dest[0] != '\0'))
5547 renaming->searched = 1;
5549 /* TODO: here, we perform another name-based symbol lookup, which can
5550 pull its own multiple overloads. In theory, we should be able to do
5551 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5552 not a simple name. But in order to do this, we would need to enhance
5553 the DWARF reader to associate a symbol to this renaming, instead of a
5554 name. So, for now, we do something simpler: re-use the C++/Fortran
5555 namespace machinery. */
5556 r_name = (renaming->alias != NULL
5558 : renaming->declaration);
5559 if (name_match (r_name, lookup_name, NULL))
5561 lookup_name_info decl_lookup_name (renaming->declaration,
5562 lookup_name.match_type ());
5563 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5566 renaming->searched = 0;
5568 return num_defns_collected (obstackp) != defns_mark;
5571 /* Implements compare_names, but only applying the comparision using
5572 the given CASING. */
5575 compare_names_with_case (const char *string1, const char *string2,
5576 enum case_sensitivity casing)
5578 while (*string1 != '\0' && *string2 != '\0')
5582 if (isspace (*string1) || isspace (*string2))
5583 return strcmp_iw_ordered (string1, string2);
5585 if (casing == case_sensitive_off)
5587 c1 = tolower (*string1);
5588 c2 = tolower (*string2);
5605 return strcmp_iw_ordered (string1, string2);
5607 if (*string2 == '\0')
5609 if (is_name_suffix (string1))
5616 if (*string2 == '(')
5617 return strcmp_iw_ordered (string1, string2);
5620 if (casing == case_sensitive_off)
5621 return tolower (*string1) - tolower (*string2);
5623 return *string1 - *string2;
5628 /* Compare STRING1 to STRING2, with results as for strcmp.
5629 Compatible with strcmp_iw_ordered in that...
5631 strcmp_iw_ordered (STRING1, STRING2) <= 0
5635 compare_names (STRING1, STRING2) <= 0
5637 (they may differ as to what symbols compare equal). */
5640 compare_names (const char *string1, const char *string2)
5644 /* Similar to what strcmp_iw_ordered does, we need to perform
5645 a case-insensitive comparison first, and only resort to
5646 a second, case-sensitive, comparison if the first one was
5647 not sufficient to differentiate the two strings. */
5649 result = compare_names_with_case (string1, string2, case_sensitive_off);
5651 result = compare_names_with_case (string1, string2, case_sensitive_on);
5656 /* Convenience function to get at the Ada encoded lookup name for
5657 LOOKUP_NAME, as a C string. */
5660 ada_lookup_name (const lookup_name_info &lookup_name)
5662 return lookup_name.ada ().lookup_name ().c_str ();
5665 /* Add to OBSTACKP all non-local symbols whose name and domain match
5666 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5667 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5668 symbols otherwise. */
5671 add_nonlocal_symbols (struct obstack *obstackp,
5672 const lookup_name_info &lookup_name,
5673 domain_enum domain, int global)
5675 struct objfile *objfile;
5676 struct compunit_symtab *cu;
5677 struct match_data data;
5679 memset (&data, 0, sizeof data);
5680 data.obstackp = obstackp;
5682 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5684 ALL_OBJFILES (objfile)
5686 data.objfile = objfile;
5689 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5691 aux_add_nonlocal_symbols, &data,
5692 symbol_name_match_type::WILD,
5695 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5697 aux_add_nonlocal_symbols, &data,
5698 symbol_name_match_type::FULL,
5701 ALL_OBJFILE_COMPUNITS (objfile, cu)
5703 const struct block *global_block
5704 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5706 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5712 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5714 const char *name = ada_lookup_name (lookup_name);
5715 std::string name1 = std::string ("<_ada_") + name + '>';
5717 ALL_OBJFILES (objfile)
5719 data.objfile = objfile;
5720 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5722 aux_add_nonlocal_symbols,
5724 symbol_name_match_type::FULL,
5730 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5731 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5732 returning the number of matches. Add these to OBSTACKP.
5734 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5735 symbol match within the nest of blocks whose innermost member is BLOCK,
5736 is the one match returned (no other matches in that or
5737 enclosing blocks is returned). If there are any matches in or
5738 surrounding BLOCK, then these alone are returned.
5740 Names prefixed with "standard__" are handled specially:
5741 "standard__" is first stripped off (by the lookup_name
5742 constructor), and only static and global symbols are searched.
5744 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5745 to lookup global symbols. */
5748 ada_add_all_symbols (struct obstack *obstackp,
5749 const struct block *block,
5750 const lookup_name_info &lookup_name,
5753 int *made_global_lookup_p)
5757 if (made_global_lookup_p)
5758 *made_global_lookup_p = 0;
5760 /* Special case: If the user specifies a symbol name inside package
5761 Standard, do a non-wild matching of the symbol name without
5762 the "standard__" prefix. This was primarily introduced in order
5763 to allow the user to specifically access the standard exceptions
5764 using, for instance, Standard.Constraint_Error when Constraint_Error
5765 is ambiguous (due to the user defining its own Constraint_Error
5766 entity inside its program). */
5767 if (lookup_name.ada ().standard_p ())
5770 /* Check the non-global symbols. If we have ANY match, then we're done. */
5775 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5778 /* In the !full_search case we're are being called by
5779 ada_iterate_over_symbols, and we don't want to search
5781 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5783 if (num_defns_collected (obstackp) > 0 || !full_search)
5787 /* No non-global symbols found. Check our cache to see if we have
5788 already performed this search before. If we have, then return
5791 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5792 domain, &sym, &block))
5795 add_defn_to_vec (obstackp, sym, block);
5799 if (made_global_lookup_p)
5800 *made_global_lookup_p = 1;
5802 /* Search symbols from all global blocks. */
5804 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5806 /* Now add symbols from all per-file blocks if we've gotten no hits
5807 (not strictly correct, but perhaps better than an error). */
5809 if (num_defns_collected (obstackp) == 0)
5810 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5813 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5814 is non-zero, enclosing scope and in global scopes, returning the number of
5816 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5817 found and the blocks and symbol tables (if any) in which they were
5820 When full_search is non-zero, any non-function/non-enumeral
5821 symbol match within the nest of blocks whose innermost member is BLOCK,
5822 is the one match returned (no other matches in that or
5823 enclosing blocks is returned). If there are any matches in or
5824 surrounding BLOCK, then these alone are returned.
5826 Names prefixed with "standard__" are handled specially: "standard__"
5827 is first stripped off, and only static and global symbols are searched. */
5830 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5831 const struct block *block,
5833 std::vector<struct block_symbol> *results,
5836 int syms_from_global_search;
5838 auto_obstack obstack;
5840 ada_add_all_symbols (&obstack, block, lookup_name,
5841 domain, full_search, &syms_from_global_search);
5843 ndefns = num_defns_collected (&obstack);
5845 struct block_symbol *base = defns_collected (&obstack, 1);
5846 for (int i = 0; i < ndefns; ++i)
5847 results->push_back (base[i]);
5849 ndefns = remove_extra_symbols (results);
5851 if (ndefns == 0 && full_search && syms_from_global_search)
5852 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5854 if (ndefns == 1 && full_search && syms_from_global_search)
5855 cache_symbol (ada_lookup_name (lookup_name), domain,
5856 (*results)[0].symbol, (*results)[0].block);
5858 ndefns = remove_irrelevant_renamings (results, block);
5863 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5864 in global scopes, returning the number of matches, and filling *RESULTS
5865 with (SYM,BLOCK) tuples.
5867 See ada_lookup_symbol_list_worker for further details. */
5870 ada_lookup_symbol_list (const char *name, const struct block *block,
5872 std::vector<struct block_symbol> *results)
5874 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5875 lookup_name_info lookup_name (name, name_match_type);
5877 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5880 /* Implementation of the la_iterate_over_symbols method. */
5883 ada_iterate_over_symbols
5884 (const struct block *block, const lookup_name_info &name,
5886 gdb::function_view<symbol_found_callback_ftype> callback)
5889 std::vector<struct block_symbol> results;
5891 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5893 for (i = 0; i < ndefs; ++i)
5895 if (!callback (&results[i]))
5900 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5901 to 1, but choosing the first symbol found if there are multiple
5904 The result is stored in *INFO, which must be non-NULL.
5905 If no match is found, INFO->SYM is set to NULL. */
5908 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5910 struct block_symbol *info)
5912 /* Since we already have an encoded name, wrap it in '<>' to force a
5913 verbatim match. Otherwise, if the name happens to not look like
5914 an encoded name (because it doesn't include a "__"),
5915 ada_lookup_name_info would re-encode/fold it again, and that
5916 would e.g., incorrectly lowercase object renaming names like
5917 "R28b" -> "r28b". */
5918 std::string verbatim = std::string ("<") + name + '>';
5920 gdb_assert (info != NULL);
5921 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5924 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5925 scope and in global scopes, or NULL if none. NAME is folded and
5926 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5927 choosing the first symbol if there are multiple choices.
5928 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5931 ada_lookup_symbol (const char *name, const struct block *block0,
5932 domain_enum domain, int *is_a_field_of_this)
5934 if (is_a_field_of_this != NULL)
5935 *is_a_field_of_this = 0;
5937 std::vector<struct block_symbol> candidates;
5940 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5942 if (n_candidates == 0)
5945 block_symbol info = candidates[0];
5946 info.symbol = fixup_symbol_section (info.symbol, NULL);
5950 static struct block_symbol
5951 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5953 const struct block *block,
5954 const domain_enum domain)
5956 struct block_symbol sym;
5958 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5959 if (sym.symbol != NULL)
5962 /* If we haven't found a match at this point, try the primitive
5963 types. In other languages, this search is performed before
5964 searching for global symbols in order to short-circuit that
5965 global-symbol search if it happens that the name corresponds
5966 to a primitive type. But we cannot do the same in Ada, because
5967 it is perfectly legitimate for a program to declare a type which
5968 has the same name as a standard type. If looking up a type in
5969 that situation, we have traditionally ignored the primitive type
5970 in favor of user-defined types. This is why, unlike most other
5971 languages, we search the primitive types this late and only after
5972 having searched the global symbols without success. */
5974 if (domain == VAR_DOMAIN)
5976 struct gdbarch *gdbarch;
5979 gdbarch = target_gdbarch ();
5981 gdbarch = block_gdbarch (block);
5982 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5983 if (sym.symbol != NULL)
5987 return (struct block_symbol) {NULL, NULL};
5991 /* True iff STR is a possible encoded suffix of a normal Ada name
5992 that is to be ignored for matching purposes. Suffixes of parallel
5993 names (e.g., XVE) are not included here. Currently, the possible suffixes
5994 are given by any of the regular expressions:
5996 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5997 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5998 TKB [subprogram suffix for task bodies]
5999 _E[0-9]+[bs]$ [protected object entry suffixes]
6000 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6002 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6003 match is performed. This sequence is used to differentiate homonyms,
6004 is an optional part of a valid name suffix. */
6007 is_name_suffix (const char *str)
6010 const char *matching;
6011 const int len = strlen (str);
6013 /* Skip optional leading __[0-9]+. */
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6018 while (isdigit (str[0]))
6024 if (str[0] == '.' || str[0] == '$')
6027 while (isdigit (matching[0]))
6029 if (matching[0] == '\0')
6035 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6038 while (isdigit (matching[0]))
6040 if (matching[0] == '\0')
6044 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6046 if (strcmp (str, "TKB") == 0)
6050 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6051 with a N at the end. Unfortunately, the compiler uses the same
6052 convention for other internal types it creates. So treating
6053 all entity names that end with an "N" as a name suffix causes
6054 some regressions. For instance, consider the case of an enumerated
6055 type. To support the 'Image attribute, it creates an array whose
6057 Having a single character like this as a suffix carrying some
6058 information is a bit risky. Perhaps we should change the encoding
6059 to be something like "_N" instead. In the meantime, do not do
6060 the following check. */
6061 /* Protected Object Subprograms */
6062 if (len == 1 && str [0] == 'N')
6067 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6070 while (isdigit (matching[0]))
6072 if ((matching[0] == 'b' || matching[0] == 's')
6073 && matching [1] == '\0')
6077 /* ??? We should not modify STR directly, as we are doing below. This
6078 is fine in this case, but may become problematic later if we find
6079 that this alternative did not work, and want to try matching
6080 another one from the begining of STR. Since we modified it, we
6081 won't be able to find the begining of the string anymore! */
6085 while (str[0] != '_' && str[0] != '\0')
6087 if (str[0] != 'n' && str[0] != 'b')
6093 if (str[0] == '\000')
6098 if (str[1] != '_' || str[2] == '\000')
6102 if (strcmp (str + 3, "JM") == 0)
6104 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6105 the LJM suffix in favor of the JM one. But we will
6106 still accept LJM as a valid suffix for a reasonable
6107 amount of time, just to allow ourselves to debug programs
6108 compiled using an older version of GNAT. */
6109 if (strcmp (str + 3, "LJM") == 0)
6113 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6114 || str[4] == 'U' || str[4] == 'P')
6116 if (str[4] == 'R' && str[5] != 'T')
6120 if (!isdigit (str[2]))
6122 for (k = 3; str[k] != '\0'; k += 1)
6123 if (!isdigit (str[k]) && str[k] != '_')
6127 if (str[0] == '$' && isdigit (str[1]))
6129 for (k = 2; str[k] != '\0'; k += 1)
6130 if (!isdigit (str[k]) && str[k] != '_')
6137 /* Return non-zero if the string starting at NAME and ending before
6138 NAME_END contains no capital letters. */
6141 is_valid_name_for_wild_match (const char *name0)
6143 const char *decoded_name = ada_decode (name0);
6146 /* If the decoded name starts with an angle bracket, it means that
6147 NAME0 does not follow the GNAT encoding format. It should then
6148 not be allowed as a possible wild match. */
6149 if (decoded_name[0] == '<')
6152 for (i=0; decoded_name[i] != '\0'; i++)
6153 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6159 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6160 that could start a simple name. Assumes that *NAMEP points into
6161 the string beginning at NAME0. */
6164 advance_wild_match (const char **namep, const char *name0, int target0)
6166 const char *name = *namep;
6176 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6179 if (name == name0 + 5 && startswith (name0, "_ada"))
6184 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6185 || name[2] == target0))
6193 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6203 /* Return true iff NAME encodes a name of the form prefix.PATN.
6204 Ignores any informational suffixes of NAME (i.e., for which
6205 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6209 wild_match (const char *name, const char *patn)
6212 const char *name0 = name;
6216 const char *match = name;
6220 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6223 if (*p == '\0' && is_name_suffix (name))
6224 return match == name0 || is_valid_name_for_wild_match (name0);
6226 if (name[-1] == '_')
6229 if (!advance_wild_match (&name, name0, *patn))
6234 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6235 any trailing suffixes that encode debugging information or leading
6236 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6237 information that is ignored). */
6240 full_match (const char *sym_name, const char *search_name)
6242 size_t search_name_len = strlen (search_name);
6244 if (strncmp (sym_name, search_name, search_name_len) == 0
6245 && is_name_suffix (sym_name + search_name_len))
6248 if (startswith (sym_name, "_ada_")
6249 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6250 && is_name_suffix (sym_name + search_name_len + 5))
6256 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6257 *defn_symbols, updating the list of symbols in OBSTACKP (if
6258 necessary). OBJFILE is the section containing BLOCK. */
6261 ada_add_block_symbols (struct obstack *obstackp,
6262 const struct block *block,
6263 const lookup_name_info &lookup_name,
6264 domain_enum domain, struct objfile *objfile)
6266 struct block_iterator iter;
6267 /* A matching argument symbol, if any. */
6268 struct symbol *arg_sym;
6269 /* Set true when we find a matching non-argument symbol. */
6275 for (sym = block_iter_match_first (block, lookup_name, &iter);
6277 sym = block_iter_match_next (lookup_name, &iter))
6279 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6280 SYMBOL_DOMAIN (sym), domain))
6282 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6284 if (SYMBOL_IS_ARGUMENT (sym))
6289 add_defn_to_vec (obstackp,
6290 fixup_symbol_section (sym, objfile),
6297 /* Handle renamings. */
6299 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6302 if (!found_sym && arg_sym != NULL)
6304 add_defn_to_vec (obstackp,
6305 fixup_symbol_section (arg_sym, objfile),
6309 if (!lookup_name.ada ().wild_match_p ())
6313 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6314 const char *name = ada_lookup_name.c_str ();
6315 size_t name_len = ada_lookup_name.size ();
6317 ALL_BLOCK_SYMBOLS (block, iter, sym)
6319 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6320 SYMBOL_DOMAIN (sym), domain))
6324 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6327 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6329 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6334 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6336 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6338 if (SYMBOL_IS_ARGUMENT (sym))
6343 add_defn_to_vec (obstackp,
6344 fixup_symbol_section (sym, objfile),
6352 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6353 They aren't parameters, right? */
6354 if (!found_sym && arg_sym != NULL)
6356 add_defn_to_vec (obstackp,
6357 fixup_symbol_section (arg_sym, objfile),
6364 /* Symbol Completion */
6369 ada_lookup_name_info::matches
6370 (const char *sym_name,
6371 symbol_name_match_type match_type,
6372 completion_match_result *comp_match_res) const
6375 const char *text = m_encoded_name.c_str ();
6376 size_t text_len = m_encoded_name.size ();
6378 /* First, test against the fully qualified name of the symbol. */
6380 if (strncmp (sym_name, text, text_len) == 0)
6383 if (match && !m_encoded_p)
6385 /* One needed check before declaring a positive match is to verify
6386 that iff we are doing a verbatim match, the decoded version
6387 of the symbol name starts with '<'. Otherwise, this symbol name
6388 is not a suitable completion. */
6389 const char *sym_name_copy = sym_name;
6390 bool has_angle_bracket;
6392 sym_name = ada_decode (sym_name);
6393 has_angle_bracket = (sym_name[0] == '<');
6394 match = (has_angle_bracket == m_verbatim_p);
6395 sym_name = sym_name_copy;
6398 if (match && !m_verbatim_p)
6400 /* When doing non-verbatim match, another check that needs to
6401 be done is to verify that the potentially matching symbol name
6402 does not include capital letters, because the ada-mode would
6403 not be able to understand these symbol names without the
6404 angle bracket notation. */
6407 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412 /* Second: Try wild matching... */
6414 if (!match && m_wild_match_p)
6416 /* Since we are doing wild matching, this means that TEXT
6417 may represent an unqualified symbol name. We therefore must
6418 also compare TEXT against the unqualified name of the symbol. */
6419 sym_name = ada_unqualified_name (ada_decode (sym_name));
6421 if (strncmp (sym_name, text, text_len) == 0)
6425 /* Finally: If we found a match, prepare the result to return. */
6430 if (comp_match_res != NULL)
6432 std::string &match_str = comp_match_res->match.storage ();
6435 match_str = ada_decode (sym_name);
6439 match_str = add_angle_brackets (sym_name);
6441 match_str = sym_name;
6445 comp_match_res->set_match (match_str.c_str ());
6451 /* Add the list of possible symbol names completing TEXT to TRACKER.
6452 WORD is the entire command on which completion is made. */
6455 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6456 complete_symbol_mode mode,
6457 symbol_name_match_type name_match_type,
6458 const char *text, const char *word,
6459 enum type_code code)
6462 struct compunit_symtab *s;
6463 struct minimal_symbol *msymbol;
6464 struct objfile *objfile;
6465 const struct block *b, *surrounding_static_block = 0;
6466 struct block_iterator iter;
6468 gdb_assert (code == TYPE_CODE_UNDEF);
6470 lookup_name_info lookup_name (text, name_match_type, true);
6472 /* First, look at the partial symtab symbols. */
6473 expand_symtabs_matching (NULL,
6479 /* At this point scan through the misc symbol vectors and add each
6480 symbol you find to the list. Eventually we want to ignore
6481 anything that isn't a text symbol (everything else will be
6482 handled by the psymtab code above). */
6484 ALL_MSYMBOLS (objfile, msymbol)
6488 if (completion_skip_symbol (mode, msymbol))
6491 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6493 /* Ada minimal symbols won't have their language set to Ada. If
6494 we let completion_list_add_name compare using the
6495 default/C-like matcher, then when completing e.g., symbols in a
6496 package named "pck", we'd match internal Ada symbols like
6497 "pckS", which are invalid in an Ada expression, unless you wrap
6498 them in '<' '>' to request a verbatim match.
6500 Unfortunately, some Ada encoded names successfully demangle as
6501 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6502 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6503 with the wrong language set. Paper over that issue here. */
6504 if (symbol_language == language_auto
6505 || symbol_language == language_cplus)
6506 symbol_language = language_ada;
6508 completion_list_add_name (tracker,
6510 MSYMBOL_LINKAGE_NAME (msymbol),
6511 lookup_name, text, word);
6514 /* Search upwards from currently selected frame (so that we can
6515 complete on local vars. */
6517 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6519 if (!BLOCK_SUPERBLOCK (b))
6520 surrounding_static_block = b; /* For elmin of dups */
6522 ALL_BLOCK_SYMBOLS (b, iter, sym)
6524 if (completion_skip_symbol (mode, sym))
6527 completion_list_add_name (tracker,
6528 SYMBOL_LANGUAGE (sym),
6529 SYMBOL_LINKAGE_NAME (sym),
6530 lookup_name, text, word);
6534 /* Go through the symtabs and check the externs and statics for
6535 symbols which match. */
6537 ALL_COMPUNITS (objfile, s)
6540 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6541 ALL_BLOCK_SYMBOLS (b, iter, sym)
6543 if (completion_skip_symbol (mode, sym))
6546 completion_list_add_name (tracker,
6547 SYMBOL_LANGUAGE (sym),
6548 SYMBOL_LINKAGE_NAME (sym),
6549 lookup_name, text, word);
6553 ALL_COMPUNITS (objfile, s)
6556 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6557 /* Don't do this block twice. */
6558 if (b == surrounding_static_block)
6560 ALL_BLOCK_SYMBOLS (b, iter, sym)
6562 if (completion_skip_symbol (mode, sym))
6565 completion_list_add_name (tracker,
6566 SYMBOL_LANGUAGE (sym),
6567 SYMBOL_LINKAGE_NAME (sym),
6568 lookup_name, text, word);
6575 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6576 for tagged types. */
6579 ada_is_dispatch_table_ptr_type (struct type *type)
6583 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6586 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6590 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6593 /* Return non-zero if TYPE is an interface tag. */
6596 ada_is_interface_tag (struct type *type)
6598 const char *name = TYPE_NAME (type);
6603 return (strcmp (name, "ada__tags__interface_tag") == 0);
6606 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6607 to be invisible to users. */
6610 ada_is_ignored_field (struct type *type, int field_num)
6612 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6615 /* Check the name of that field. */
6617 const char *name = TYPE_FIELD_NAME (type, field_num);
6619 /* Anonymous field names should not be printed.
6620 brobecker/2007-02-20: I don't think this can actually happen
6621 but we don't want to print the value of annonymous fields anyway. */
6625 /* Normally, fields whose name start with an underscore ("_")
6626 are fields that have been internally generated by the compiler,
6627 and thus should not be printed. The "_parent" field is special,
6628 however: This is a field internally generated by the compiler
6629 for tagged types, and it contains the components inherited from
6630 the parent type. This field should not be printed as is, but
6631 should not be ignored either. */
6632 if (name[0] == '_' && !startswith (name, "_parent"))
6636 /* If this is the dispatch table of a tagged type or an interface tag,
6638 if (ada_is_tagged_type (type, 1)
6639 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6640 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6643 /* Not a special field, so it should not be ignored. */
6647 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6648 pointer or reference type whose ultimate target has a tag field. */
6651 ada_is_tagged_type (struct type *type, int refok)
6653 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6656 /* True iff TYPE represents the type of X'Tag */
6659 ada_is_tag_type (struct type *type)
6661 type = ada_check_typedef (type);
6663 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6667 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6669 return (name != NULL
6670 && strcmp (name, "ada__tags__dispatch_table") == 0);
6674 /* The type of the tag on VAL. */
6677 ada_tag_type (struct value *val)
6679 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6682 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6683 retired at Ada 05). */
6686 is_ada95_tag (struct value *tag)
6688 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6691 /* The value of the tag on VAL. */
6694 ada_value_tag (struct value *val)
6696 return ada_value_struct_elt (val, "_tag", 0);
6699 /* The value of the tag on the object of type TYPE whose contents are
6700 saved at VALADDR, if it is non-null, or is at memory address
6703 static struct value *
6704 value_tag_from_contents_and_address (struct type *type,
6705 const gdb_byte *valaddr,
6708 int tag_byte_offset;
6709 struct type *tag_type;
6711 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6714 const gdb_byte *valaddr1 = ((valaddr == NULL)
6716 : valaddr + tag_byte_offset);
6717 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6719 return value_from_contents_and_address (tag_type, valaddr1, address1);
6724 static struct type *
6725 type_from_tag (struct value *tag)
6727 const char *type_name = ada_tag_name (tag);
6729 if (type_name != NULL)
6730 return ada_find_any_type (ada_encode (type_name));
6734 /* Given a value OBJ of a tagged type, return a value of this
6735 type at the base address of the object. The base address, as
6736 defined in Ada.Tags, it is the address of the primary tag of
6737 the object, and therefore where the field values of its full
6738 view can be fetched. */
6741 ada_tag_value_at_base_address (struct value *obj)
6744 LONGEST offset_to_top = 0;
6745 struct type *ptr_type, *obj_type;
6747 CORE_ADDR base_address;
6749 obj_type = value_type (obj);
6751 /* It is the responsability of the caller to deref pointers. */
6753 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6754 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6757 tag = ada_value_tag (obj);
6761 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6763 if (is_ada95_tag (tag))
6766 ptr_type = language_lookup_primitive_type
6767 (language_def (language_ada), target_gdbarch(), "storage_offset");
6768 ptr_type = lookup_pointer_type (ptr_type);
6769 val = value_cast (ptr_type, tag);
6773 /* It is perfectly possible that an exception be raised while
6774 trying to determine the base address, just like for the tag;
6775 see ada_tag_name for more details. We do not print the error
6776 message for the same reason. */
6780 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6783 CATCH (e, RETURN_MASK_ERROR)
6789 /* If offset is null, nothing to do. */
6791 if (offset_to_top == 0)
6794 /* -1 is a special case in Ada.Tags; however, what should be done
6795 is not quite clear from the documentation. So do nothing for
6798 if (offset_to_top == -1)
6801 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6802 from the base address. This was however incompatible with
6803 C++ dispatch table: C++ uses a *negative* value to *add*
6804 to the base address. Ada's convention has therefore been
6805 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6806 use the same convention. Here, we support both cases by
6807 checking the sign of OFFSET_TO_TOP. */
6809 if (offset_to_top > 0)
6810 offset_to_top = -offset_to_top;
6812 base_address = value_address (obj) + offset_to_top;
6813 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6815 /* Make sure that we have a proper tag at the new address.
6816 Otherwise, offset_to_top is bogus (which can happen when
6817 the object is not initialized yet). */
6822 obj_type = type_from_tag (tag);
6827 return value_from_contents_and_address (obj_type, NULL, base_address);
6830 /* Return the "ada__tags__type_specific_data" type. */
6832 static struct type *
6833 ada_get_tsd_type (struct inferior *inf)
6835 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6837 if (data->tsd_type == 0)
6838 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6839 return data->tsd_type;
6842 /* Return the TSD (type-specific data) associated to the given TAG.
6843 TAG is assumed to be the tag of a tagged-type entity.
6845 May return NULL if we are unable to get the TSD. */
6847 static struct value *
6848 ada_get_tsd_from_tag (struct value *tag)
6853 /* First option: The TSD is simply stored as a field of our TAG.
6854 Only older versions of GNAT would use this format, but we have
6855 to test it first, because there are no visible markers for
6856 the current approach except the absence of that field. */
6858 val = ada_value_struct_elt (tag, "tsd", 1);
6862 /* Try the second representation for the dispatch table (in which
6863 there is no explicit 'tsd' field in the referent of the tag pointer,
6864 and instead the tsd pointer is stored just before the dispatch
6867 type = ada_get_tsd_type (current_inferior());
6870 type = lookup_pointer_type (lookup_pointer_type (type));
6871 val = value_cast (type, tag);
6874 return value_ind (value_ptradd (val, -1));
6877 /* Given the TSD of a tag (type-specific data), return a string
6878 containing the name of the associated type.
6880 The returned value is good until the next call. May return NULL
6881 if we are unable to determine the tag name. */
6884 ada_tag_name_from_tsd (struct value *tsd)
6886 static char name[1024];
6890 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6893 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6894 for (p = name; *p != '\0'; p += 1)
6900 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6903 Return NULL if the TAG is not an Ada tag, or if we were unable to
6904 determine the name of that tag. The result is good until the next
6908 ada_tag_name (struct value *tag)
6912 if (!ada_is_tag_type (value_type (tag)))
6915 /* It is perfectly possible that an exception be raised while trying
6916 to determine the TAG's name, even under normal circumstances:
6917 The associated variable may be uninitialized or corrupted, for
6918 instance. We do not let any exception propagate past this point.
6919 instead we return NULL.
6921 We also do not print the error message either (which often is very
6922 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6923 the caller print a more meaningful message if necessary. */
6926 struct value *tsd = ada_get_tsd_from_tag (tag);
6929 name = ada_tag_name_from_tsd (tsd);
6931 CATCH (e, RETURN_MASK_ERROR)
6939 /* The parent type of TYPE, or NULL if none. */
6942 ada_parent_type (struct type *type)
6946 type = ada_check_typedef (type);
6948 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6951 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6952 if (ada_is_parent_field (type, i))
6954 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6956 /* If the _parent field is a pointer, then dereference it. */
6957 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6958 parent_type = TYPE_TARGET_TYPE (parent_type);
6959 /* If there is a parallel XVS type, get the actual base type. */
6960 parent_type = ada_get_base_type (parent_type);
6962 return ada_check_typedef (parent_type);
6968 /* True iff field number FIELD_NUM of structure type TYPE contains the
6969 parent-type (inherited) fields of a derived type. Assumes TYPE is
6970 a structure type with at least FIELD_NUM+1 fields. */
6973 ada_is_parent_field (struct type *type, int field_num)
6975 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6977 return (name != NULL
6978 && (startswith (name, "PARENT")
6979 || startswith (name, "_parent")));
6982 /* True iff field number FIELD_NUM of structure type TYPE is a
6983 transparent wrapper field (which should be silently traversed when doing
6984 field selection and flattened when printing). Assumes TYPE is a
6985 structure type with at least FIELD_NUM+1 fields. Such fields are always
6989 ada_is_wrapper_field (struct type *type, int field_num)
6991 const char *name = TYPE_FIELD_NAME (type, field_num);
6993 if (name != NULL && strcmp (name, "RETVAL") == 0)
6995 /* This happens in functions with "out" or "in out" parameters
6996 which are passed by copy. For such functions, GNAT describes
6997 the function's return type as being a struct where the return
6998 value is in a field called RETVAL, and where the other "out"
6999 or "in out" parameters are fields of that struct. This is not
7004 return (name != NULL
7005 && (startswith (name, "PARENT")
7006 || strcmp (name, "REP") == 0
7007 || startswith (name, "_parent")
7008 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7011 /* True iff field number FIELD_NUM of structure or union type TYPE
7012 is a variant wrapper. Assumes TYPE is a structure type with at least
7013 FIELD_NUM+1 fields. */
7016 ada_is_variant_part (struct type *type, int field_num)
7018 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7020 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7021 || (is_dynamic_field (type, field_num)
7022 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7023 == TYPE_CODE_UNION)));
7026 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7027 whose discriminants are contained in the record type OUTER_TYPE,
7028 returns the type of the controlling discriminant for the variant.
7029 May return NULL if the type could not be found. */
7032 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7034 const char *name = ada_variant_discrim_name (var_type);
7036 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7039 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7040 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7041 represents a 'when others' clause; otherwise 0. */
7044 ada_is_others_clause (struct type *type, int field_num)
7046 const char *name = TYPE_FIELD_NAME (type, field_num);
7048 return (name != NULL && name[0] == 'O');
7051 /* Assuming that TYPE0 is the type of the variant part of a record,
7052 returns the name of the discriminant controlling the variant.
7053 The value is valid until the next call to ada_variant_discrim_name. */
7056 ada_variant_discrim_name (struct type *type0)
7058 static char *result = NULL;
7059 static size_t result_len = 0;
7062 const char *discrim_end;
7063 const char *discrim_start;
7065 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7066 type = TYPE_TARGET_TYPE (type0);
7070 name = ada_type_name (type);
7072 if (name == NULL || name[0] == '\000')
7075 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7078 if (startswith (discrim_end, "___XVN"))
7081 if (discrim_end == name)
7084 for (discrim_start = discrim_end; discrim_start != name + 3;
7087 if (discrim_start == name + 1)
7089 if ((discrim_start > name + 3
7090 && startswith (discrim_start - 3, "___"))
7091 || discrim_start[-1] == '.')
7095 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7096 strncpy (result, discrim_start, discrim_end - discrim_start);
7097 result[discrim_end - discrim_start] = '\0';
7101 /* Scan STR for a subtype-encoded number, beginning at position K.
7102 Put the position of the character just past the number scanned in
7103 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7104 Return 1 if there was a valid number at the given position, and 0
7105 otherwise. A "subtype-encoded" number consists of the absolute value
7106 in decimal, followed by the letter 'm' to indicate a negative number.
7107 Assumes 0m does not occur. */
7110 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7114 if (!isdigit (str[k]))
7117 /* Do it the hard way so as not to make any assumption about
7118 the relationship of unsigned long (%lu scan format code) and
7121 while (isdigit (str[k]))
7123 RU = RU * 10 + (str[k] - '0');
7130 *R = (-(LONGEST) (RU - 1)) - 1;
7136 /* NOTE on the above: Technically, C does not say what the results of
7137 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7138 number representable as a LONGEST (although either would probably work
7139 in most implementations). When RU>0, the locution in the then branch
7140 above is always equivalent to the negative of RU. */
7147 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7148 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7149 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7152 ada_in_variant (LONGEST val, struct type *type, int field_num)
7154 const char *name = TYPE_FIELD_NAME (type, field_num);
7168 if (!ada_scan_number (name, p + 1, &W, &p))
7178 if (!ada_scan_number (name, p + 1, &L, &p)
7179 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7181 if (val >= L && val <= U)
7193 /* FIXME: Lots of redundancy below. Try to consolidate. */
7195 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7196 ARG_TYPE, extract and return the value of one of its (non-static)
7197 fields. FIELDNO says which field. Differs from value_primitive_field
7198 only in that it can handle packed values of arbitrary type. */
7200 static struct value *
7201 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7202 struct type *arg_type)
7206 arg_type = ada_check_typedef (arg_type);
7207 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7209 /* Handle packed fields. */
7211 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7213 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7214 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7216 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7217 offset + bit_pos / 8,
7218 bit_pos % 8, bit_size, type);
7221 return value_primitive_field (arg1, offset, fieldno, arg_type);
7224 /* Find field with name NAME in object of type TYPE. If found,
7225 set the following for each argument that is non-null:
7226 - *FIELD_TYPE_P to the field's type;
7227 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7228 an object of that type;
7229 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7230 - *BIT_SIZE_P to its size in bits if the field is packed, and
7232 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7233 fields up to but not including the desired field, or by the total
7234 number of fields if not found. A NULL value of NAME never
7235 matches; the function just counts visible fields in this case.
7237 Notice that we need to handle when a tagged record hierarchy
7238 has some components with the same name, like in this scenario:
7240 type Top_T is tagged record
7246 type Middle_T is new Top.Top_T with record
7247 N : Character := 'a';
7251 type Bottom_T is new Middle.Middle_T with record
7253 C : Character := '5';
7255 A : Character := 'J';
7258 Let's say we now have a variable declared and initialized as follow:
7260 TC : Top_A := new Bottom_T;
7262 And then we use this variable to call this function
7264 procedure Assign (Obj: in out Top_T; TV : Integer);
7268 Assign (Top_T (B), 12);
7270 Now, we're in the debugger, and we're inside that procedure
7271 then and we want to print the value of obj.c:
7273 Usually, the tagged record or one of the parent type owns the
7274 component to print and there's no issue but in this particular
7275 case, what does it mean to ask for Obj.C? Since the actual
7276 type for object is type Bottom_T, it could mean two things: type
7277 component C from the Middle_T view, but also component C from
7278 Bottom_T. So in that "undefined" case, when the component is
7279 not found in the non-resolved type (which includes all the
7280 components of the parent type), then resolve it and see if we
7281 get better luck once expanded.
7283 In the case of homonyms in the derived tagged type, we don't
7284 guaranty anything, and pick the one that's easiest for us
7287 Returns 1 if found, 0 otherwise. */
7290 find_struct_field (const char *name, struct type *type, int offset,
7291 struct type **field_type_p,
7292 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7296 int parent_offset = -1;
7298 type = ada_check_typedef (type);
7300 if (field_type_p != NULL)
7301 *field_type_p = NULL;
7302 if (byte_offset_p != NULL)
7304 if (bit_offset_p != NULL)
7306 if (bit_size_p != NULL)
7309 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7311 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7312 int fld_offset = offset + bit_pos / 8;
7313 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7315 if (t_field_name == NULL)
7318 else if (ada_is_parent_field (type, i))
7320 /* This is a field pointing us to the parent type of a tagged
7321 type. As hinted in this function's documentation, we give
7322 preference to fields in the current record first, so what
7323 we do here is just record the index of this field before
7324 we skip it. If it turns out we couldn't find our field
7325 in the current record, then we'll get back to it and search
7326 inside it whether the field might exist in the parent. */
7332 else if (name != NULL && field_name_match (t_field_name, name))
7334 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7336 if (field_type_p != NULL)
7337 *field_type_p = TYPE_FIELD_TYPE (type, i);
7338 if (byte_offset_p != NULL)
7339 *byte_offset_p = fld_offset;
7340 if (bit_offset_p != NULL)
7341 *bit_offset_p = bit_pos % 8;
7342 if (bit_size_p != NULL)
7343 *bit_size_p = bit_size;
7346 else if (ada_is_wrapper_field (type, i))
7348 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7349 field_type_p, byte_offset_p, bit_offset_p,
7350 bit_size_p, index_p))
7353 else if (ada_is_variant_part (type, i))
7355 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7358 struct type *field_type
7359 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7361 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7363 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7365 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7366 field_type_p, byte_offset_p,
7367 bit_offset_p, bit_size_p, index_p))
7371 else if (index_p != NULL)
7375 /* Field not found so far. If this is a tagged type which
7376 has a parent, try finding that field in the parent now. */
7378 if (parent_offset != -1)
7380 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7381 int fld_offset = offset + bit_pos / 8;
7383 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7384 fld_offset, field_type_p, byte_offset_p,
7385 bit_offset_p, bit_size_p, index_p))
7392 /* Number of user-visible fields in record type TYPE. */
7395 num_visible_fields (struct type *type)
7400 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7404 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7405 and search in it assuming it has (class) type TYPE.
7406 If found, return value, else return NULL.
7408 Searches recursively through wrapper fields (e.g., '_parent').
7410 In the case of homonyms in the tagged types, please refer to the
7411 long explanation in find_struct_field's function documentation. */
7413 static struct value *
7414 ada_search_struct_field (const char *name, struct value *arg, int offset,
7418 int parent_offset = -1;
7420 type = ada_check_typedef (type);
7421 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7423 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7425 if (t_field_name == NULL)
7428 else if (ada_is_parent_field (type, i))
7430 /* This is a field pointing us to the parent type of a tagged
7431 type. As hinted in this function's documentation, we give
7432 preference to fields in the current record first, so what
7433 we do here is just record the index of this field before
7434 we skip it. If it turns out we couldn't find our field
7435 in the current record, then we'll get back to it and search
7436 inside it whether the field might exist in the parent. */
7442 else if (field_name_match (t_field_name, name))
7443 return ada_value_primitive_field (arg, offset, i, type);
7445 else if (ada_is_wrapper_field (type, i))
7447 struct value *v = /* Do not let indent join lines here. */
7448 ada_search_struct_field (name, arg,
7449 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7450 TYPE_FIELD_TYPE (type, i));
7456 else if (ada_is_variant_part (type, i))
7458 /* PNH: Do we ever get here? See find_struct_field. */
7460 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7462 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7464 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7466 struct value *v = ada_search_struct_field /* Force line
7469 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7470 TYPE_FIELD_TYPE (field_type, j));
7478 /* Field not found so far. If this is a tagged type which
7479 has a parent, try finding that field in the parent now. */
7481 if (parent_offset != -1)
7483 struct value *v = ada_search_struct_field (
7484 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7485 TYPE_FIELD_TYPE (type, parent_offset));
7494 static struct value *ada_index_struct_field_1 (int *, struct value *,
7495 int, struct type *);
7498 /* Return field #INDEX in ARG, where the index is that returned by
7499 * find_struct_field through its INDEX_P argument. Adjust the address
7500 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7501 * If found, return value, else return NULL. */
7503 static struct value *
7504 ada_index_struct_field (int index, struct value *arg, int offset,
7507 return ada_index_struct_field_1 (&index, arg, offset, type);
7511 /* Auxiliary function for ada_index_struct_field. Like
7512 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7515 static struct value *
7516 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7520 type = ada_check_typedef (type);
7522 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7524 if (TYPE_FIELD_NAME (type, i) == NULL)
7526 else if (ada_is_wrapper_field (type, i))
7528 struct value *v = /* Do not let indent join lines here. */
7529 ada_index_struct_field_1 (index_p, arg,
7530 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7531 TYPE_FIELD_TYPE (type, i));
7537 else if (ada_is_variant_part (type, i))
7539 /* PNH: Do we ever get here? See ada_search_struct_field,
7540 find_struct_field. */
7541 error (_("Cannot assign this kind of variant record"));
7543 else if (*index_p == 0)
7544 return ada_value_primitive_field (arg, offset, i, type);
7551 /* Given ARG, a value of type (pointer or reference to a)*
7552 structure/union, extract the component named NAME from the ultimate
7553 target structure/union and return it as a value with its
7556 The routine searches for NAME among all members of the structure itself
7557 and (recursively) among all members of any wrapper members
7560 If NO_ERR, then simply return NULL in case of error, rather than
7564 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7566 struct type *t, *t1;
7571 t1 = t = ada_check_typedef (value_type (arg));
7572 if (TYPE_CODE (t) == TYPE_CODE_REF)
7574 t1 = TYPE_TARGET_TYPE (t);
7577 t1 = ada_check_typedef (t1);
7578 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7580 arg = coerce_ref (arg);
7585 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7587 t1 = TYPE_TARGET_TYPE (t);
7590 t1 = ada_check_typedef (t1);
7591 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7593 arg = value_ind (arg);
7600 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7604 v = ada_search_struct_field (name, arg, 0, t);
7607 int bit_offset, bit_size, byte_offset;
7608 struct type *field_type;
7611 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7612 address = value_address (ada_value_ind (arg));
7614 address = value_address (ada_coerce_ref (arg));
7616 /* Check to see if this is a tagged type. We also need to handle
7617 the case where the type is a reference to a tagged type, but
7618 we have to be careful to exclude pointers to tagged types.
7619 The latter should be shown as usual (as a pointer), whereas
7620 a reference should mostly be transparent to the user. */
7622 if (ada_is_tagged_type (t1, 0)
7623 || (TYPE_CODE (t1) == TYPE_CODE_REF
7624 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7626 /* We first try to find the searched field in the current type.
7627 If not found then let's look in the fixed type. */
7629 if (!find_struct_field (name, t1, 0,
7630 &field_type, &byte_offset, &bit_offset,
7639 /* Convert to fixed type in all cases, so that we have proper
7640 offsets to each field in unconstrained record types. */
7641 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7642 address, NULL, check_tag);
7644 if (find_struct_field (name, t1, 0,
7645 &field_type, &byte_offset, &bit_offset,
7650 if (TYPE_CODE (t) == TYPE_CODE_REF)
7651 arg = ada_coerce_ref (arg);
7653 arg = ada_value_ind (arg);
7654 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7655 bit_offset, bit_size,
7659 v = value_at_lazy (field_type, address + byte_offset);
7663 if (v != NULL || no_err)
7666 error (_("There is no member named %s."), name);
7672 error (_("Attempt to extract a component of "
7673 "a value that is not a record."));
7676 /* Return a string representation of type TYPE. */
7679 type_as_string (struct type *type)
7681 string_file tmp_stream;
7683 type_print (type, "", &tmp_stream, -1);
7685 return std::move (tmp_stream.string ());
7688 /* Given a type TYPE, look up the type of the component of type named NAME.
7689 If DISPP is non-null, add its byte displacement from the beginning of a
7690 structure (pointed to by a value) of type TYPE to *DISPP (does not
7691 work for packed fields).
7693 Matches any field whose name has NAME as a prefix, possibly
7696 TYPE can be either a struct or union. If REFOK, TYPE may also
7697 be a (pointer or reference)+ to a struct or union, and the
7698 ultimate target type will be searched.
7700 Looks recursively into variant clauses and parent types.
7702 In the case of homonyms in the tagged types, please refer to the
7703 long explanation in find_struct_field's function documentation.
7705 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7706 TYPE is not a type of the right kind. */
7708 static struct type *
7709 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7713 int parent_offset = -1;
7718 if (refok && type != NULL)
7721 type = ada_check_typedef (type);
7722 if (TYPE_CODE (type) != TYPE_CODE_PTR
7723 && TYPE_CODE (type) != TYPE_CODE_REF)
7725 type = TYPE_TARGET_TYPE (type);
7729 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7730 && TYPE_CODE (type) != TYPE_CODE_UNION))
7735 error (_("Type %s is not a structure or union type"),
7736 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7739 type = to_static_fixed_type (type);
7741 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7743 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7746 if (t_field_name == NULL)
7749 else if (ada_is_parent_field (type, i))
7751 /* This is a field pointing us to the parent type of a tagged
7752 type. As hinted in this function's documentation, we give
7753 preference to fields in the current record first, so what
7754 we do here is just record the index of this field before
7755 we skip it. If it turns out we couldn't find our field
7756 in the current record, then we'll get back to it and search
7757 inside it whether the field might exist in the parent. */
7763 else if (field_name_match (t_field_name, name))
7764 return TYPE_FIELD_TYPE (type, i);
7766 else if (ada_is_wrapper_field (type, i))
7768 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7774 else if (ada_is_variant_part (type, i))
7777 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7780 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7782 /* FIXME pnh 2008/01/26: We check for a field that is
7783 NOT wrapped in a struct, since the compiler sometimes
7784 generates these for unchecked variant types. Revisit
7785 if the compiler changes this practice. */
7786 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7788 if (v_field_name != NULL
7789 && field_name_match (v_field_name, name))
7790 t = TYPE_FIELD_TYPE (field_type, j);
7792 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7803 /* Field not found so far. If this is a tagged type which
7804 has a parent, try finding that field in the parent now. */
7806 if (parent_offset != -1)
7810 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7819 const char *name_str = name != NULL ? name : _("<null>");
7821 error (_("Type %s has no component named %s"),
7822 type_as_string (type).c_str (), name_str);
7828 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7829 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7830 represents an unchecked union (that is, the variant part of a
7831 record that is named in an Unchecked_Union pragma). */
7834 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7836 const char *discrim_name = ada_variant_discrim_name (var_type);
7838 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7842 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7843 within a value of type OUTER_TYPE that is stored in GDB at
7844 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7845 numbering from 0) is applicable. Returns -1 if none are. */
7848 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7849 const gdb_byte *outer_valaddr)
7853 const char *discrim_name = ada_variant_discrim_name (var_type);
7854 struct value *outer;
7855 struct value *discrim;
7856 LONGEST discrim_val;
7858 /* Using plain value_from_contents_and_address here causes problems
7859 because we will end up trying to resolve a type that is currently
7860 being constructed. */
7861 outer = value_from_contents_and_address_unresolved (outer_type,
7863 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7864 if (discrim == NULL)
7866 discrim_val = value_as_long (discrim);
7869 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7871 if (ada_is_others_clause (var_type, i))
7873 else if (ada_in_variant (discrim_val, var_type, i))
7877 return others_clause;
7882 /* Dynamic-Sized Records */
7884 /* Strategy: The type ostensibly attached to a value with dynamic size
7885 (i.e., a size that is not statically recorded in the debugging
7886 data) does not accurately reflect the size or layout of the value.
7887 Our strategy is to convert these values to values with accurate,
7888 conventional types that are constructed on the fly. */
7890 /* There is a subtle and tricky problem here. In general, we cannot
7891 determine the size of dynamic records without its data. However,
7892 the 'struct value' data structure, which GDB uses to represent
7893 quantities in the inferior process (the target), requires the size
7894 of the type at the time of its allocation in order to reserve space
7895 for GDB's internal copy of the data. That's why the
7896 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7897 rather than struct value*s.
7899 However, GDB's internal history variables ($1, $2, etc.) are
7900 struct value*s containing internal copies of the data that are not, in
7901 general, the same as the data at their corresponding addresses in
7902 the target. Fortunately, the types we give to these values are all
7903 conventional, fixed-size types (as per the strategy described
7904 above), so that we don't usually have to perform the
7905 'to_fixed_xxx_type' conversions to look at their values.
7906 Unfortunately, there is one exception: if one of the internal
7907 history variables is an array whose elements are unconstrained
7908 records, then we will need to create distinct fixed types for each
7909 element selected. */
7911 /* The upshot of all of this is that many routines take a (type, host
7912 address, target address) triple as arguments to represent a value.
7913 The host address, if non-null, is supposed to contain an internal
7914 copy of the relevant data; otherwise, the program is to consult the
7915 target at the target address. */
7917 /* Assuming that VAL0 represents a pointer value, the result of
7918 dereferencing it. Differs from value_ind in its treatment of
7919 dynamic-sized types. */
7922 ada_value_ind (struct value *val0)
7924 struct value *val = value_ind (val0);
7926 if (ada_is_tagged_type (value_type (val), 0))
7927 val = ada_tag_value_at_base_address (val);
7929 return ada_to_fixed_value (val);
7932 /* The value resulting from dereferencing any "reference to"
7933 qualifiers on VAL0. */
7935 static struct value *
7936 ada_coerce_ref (struct value *val0)
7938 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7940 struct value *val = val0;
7942 val = coerce_ref (val);
7944 if (ada_is_tagged_type (value_type (val), 0))
7945 val = ada_tag_value_at_base_address (val);
7947 return ada_to_fixed_value (val);
7953 /* Return OFF rounded upward if necessary to a multiple of
7954 ALIGNMENT (a power of 2). */
7957 align_value (unsigned int off, unsigned int alignment)
7959 return (off + alignment - 1) & ~(alignment - 1);
7962 /* Return the bit alignment required for field #F of template type TYPE. */
7965 field_alignment (struct type *type, int f)
7967 const char *name = TYPE_FIELD_NAME (type, f);
7971 /* The field name should never be null, unless the debugging information
7972 is somehow malformed. In this case, we assume the field does not
7973 require any alignment. */
7977 len = strlen (name);
7979 if (!isdigit (name[len - 1]))
7982 if (isdigit (name[len - 2]))
7983 align_offset = len - 2;
7985 align_offset = len - 1;
7987 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7988 return TARGET_CHAR_BIT;
7990 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7993 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7995 static struct symbol *
7996 ada_find_any_type_symbol (const char *name)
8000 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
8001 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
8004 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
8008 /* Find a type named NAME. Ignores ambiguity. This routine will look
8009 solely for types defined by debug info, it will not search the GDB
8012 static struct type *
8013 ada_find_any_type (const char *name)
8015 struct symbol *sym = ada_find_any_type_symbol (name);
8018 return SYMBOL_TYPE (sym);
8023 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8024 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8025 symbol, in which case it is returned. Otherwise, this looks for
8026 symbols whose name is that of NAME_SYM suffixed with "___XR".
8027 Return symbol if found, and NULL otherwise. */
8030 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8032 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8035 if (strstr (name, "___XR") != NULL)
8038 sym = find_old_style_renaming_symbol (name, block);
8043 /* Not right yet. FIXME pnh 7/20/2007. */
8044 sym = ada_find_any_type_symbol (name);
8045 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8051 static struct symbol *
8052 find_old_style_renaming_symbol (const char *name, const struct block *block)
8054 const struct symbol *function_sym = block_linkage_function (block);
8057 if (function_sym != NULL)
8059 /* If the symbol is defined inside a function, NAME is not fully
8060 qualified. This means we need to prepend the function name
8061 as well as adding the ``___XR'' suffix to build the name of
8062 the associated renaming symbol. */
8063 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8064 /* Function names sometimes contain suffixes used
8065 for instance to qualify nested subprograms. When building
8066 the XR type name, we need to make sure that this suffix is
8067 not included. So do not include any suffix in the function
8068 name length below. */
8069 int function_name_len = ada_name_prefix_len (function_name);
8070 const int rename_len = function_name_len + 2 /* "__" */
8071 + strlen (name) + 6 /* "___XR\0" */ ;
8073 /* Strip the suffix if necessary. */
8074 ada_remove_trailing_digits (function_name, &function_name_len);
8075 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8076 ada_remove_Xbn_suffix (function_name, &function_name_len);
8078 /* Library-level functions are a special case, as GNAT adds
8079 a ``_ada_'' prefix to the function name to avoid namespace
8080 pollution. However, the renaming symbols themselves do not
8081 have this prefix, so we need to skip this prefix if present. */
8082 if (function_name_len > 5 /* "_ada_" */
8083 && strstr (function_name, "_ada_") == function_name)
8086 function_name_len -= 5;
8089 rename = (char *) alloca (rename_len * sizeof (char));
8090 strncpy (rename, function_name, function_name_len);
8091 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8096 const int rename_len = strlen (name) + 6;
8098 rename = (char *) alloca (rename_len * sizeof (char));
8099 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8102 return ada_find_any_type_symbol (rename);
8105 /* Because of GNAT encoding conventions, several GDB symbols may match a
8106 given type name. If the type denoted by TYPE0 is to be preferred to
8107 that of TYPE1 for purposes of type printing, return non-zero;
8108 otherwise return 0. */
8111 ada_prefer_type (struct type *type0, struct type *type1)
8115 else if (type0 == NULL)
8117 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8119 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8121 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8123 else if (ada_is_constrained_packed_array_type (type0))
8125 else if (ada_is_array_descriptor_type (type0)
8126 && !ada_is_array_descriptor_type (type1))
8130 const char *type0_name = TYPE_NAME (type0);
8131 const char *type1_name = TYPE_NAME (type1);
8133 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8134 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8140 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8144 ada_type_name (struct type *type)
8148 return TYPE_NAME (type);
8151 /* Search the list of "descriptive" types associated to TYPE for a type
8152 whose name is NAME. */
8154 static struct type *
8155 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8157 struct type *result, *tmp;
8159 if (ada_ignore_descriptive_types_p)
8162 /* If there no descriptive-type info, then there is no parallel type
8164 if (!HAVE_GNAT_AUX_INFO (type))
8167 result = TYPE_DESCRIPTIVE_TYPE (type);
8168 while (result != NULL)
8170 const char *result_name = ada_type_name (result);
8172 if (result_name == NULL)
8174 warning (_("unexpected null name on descriptive type"));
8178 /* If the names match, stop. */
8179 if (strcmp (result_name, name) == 0)
8182 /* Otherwise, look at the next item on the list, if any. */
8183 if (HAVE_GNAT_AUX_INFO (result))
8184 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8188 /* If not found either, try after having resolved the typedef. */
8193 result = check_typedef (result);
8194 if (HAVE_GNAT_AUX_INFO (result))
8195 result = TYPE_DESCRIPTIVE_TYPE (result);
8201 /* If we didn't find a match, see whether this is a packed array. With
8202 older compilers, the descriptive type information is either absent or
8203 irrelevant when it comes to packed arrays so the above lookup fails.
8204 Fall back to using a parallel lookup by name in this case. */
8205 if (result == NULL && ada_is_constrained_packed_array_type (type))
8206 return ada_find_any_type (name);
8211 /* Find a parallel type to TYPE with the specified NAME, using the
8212 descriptive type taken from the debugging information, if available,
8213 and otherwise using the (slower) name-based method. */
8215 static struct type *
8216 ada_find_parallel_type_with_name (struct type *type, const char *name)
8218 struct type *result = NULL;
8220 if (HAVE_GNAT_AUX_INFO (type))
8221 result = find_parallel_type_by_descriptive_type (type, name);
8223 result = ada_find_any_type (name);
8228 /* Same as above, but specify the name of the parallel type by appending
8229 SUFFIX to the name of TYPE. */
8232 ada_find_parallel_type (struct type *type, const char *suffix)
8235 const char *type_name = ada_type_name (type);
8238 if (type_name == NULL)
8241 len = strlen (type_name);
8243 name = (char *) alloca (len + strlen (suffix) + 1);
8245 strcpy (name, type_name);
8246 strcpy (name + len, suffix);
8248 return ada_find_parallel_type_with_name (type, name);
8251 /* If TYPE is a variable-size record type, return the corresponding template
8252 type describing its fields. Otherwise, return NULL. */
8254 static struct type *
8255 dynamic_template_type (struct type *type)
8257 type = ada_check_typedef (type);
8259 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8260 || ada_type_name (type) == NULL)
8264 int len = strlen (ada_type_name (type));
8266 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8269 return ada_find_parallel_type (type, "___XVE");
8273 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8274 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8277 is_dynamic_field (struct type *templ_type, int field_num)
8279 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8282 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8283 && strstr (name, "___XVL") != NULL;
8286 /* The index of the variant field of TYPE, or -1 if TYPE does not
8287 represent a variant record type. */
8290 variant_field_index (struct type *type)
8294 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8297 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8299 if (ada_is_variant_part (type, f))
8305 /* A record type with no fields. */
8307 static struct type *
8308 empty_record (struct type *templ)
8310 struct type *type = alloc_type_copy (templ);
8312 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8313 TYPE_NFIELDS (type) = 0;
8314 TYPE_FIELDS (type) = NULL;
8315 INIT_CPLUS_SPECIFIC (type);
8316 TYPE_NAME (type) = "<empty>";
8317 TYPE_LENGTH (type) = 0;
8321 /* An ordinary record type (with fixed-length fields) that describes
8322 the value of type TYPE at VALADDR or ADDRESS (see comments at
8323 the beginning of this section) VAL according to GNAT conventions.
8324 DVAL0 should describe the (portion of a) record that contains any
8325 necessary discriminants. It should be NULL if value_type (VAL) is
8326 an outer-level type (i.e., as opposed to a branch of a variant.) A
8327 variant field (unless unchecked) is replaced by a particular branch
8330 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8331 length are not statically known are discarded. As a consequence,
8332 VALADDR, ADDRESS and DVAL0 are ignored.
8334 NOTE: Limitations: For now, we assume that dynamic fields and
8335 variants occupy whole numbers of bytes. However, they need not be
8339 ada_template_to_fixed_record_type_1 (struct type *type,
8340 const gdb_byte *valaddr,
8341 CORE_ADDR address, struct value *dval0,
8342 int keep_dynamic_fields)
8344 struct value *mark = value_mark ();
8347 int nfields, bit_len;
8353 /* Compute the number of fields in this record type that are going
8354 to be processed: unless keep_dynamic_fields, this includes only
8355 fields whose position and length are static will be processed. */
8356 if (keep_dynamic_fields)
8357 nfields = TYPE_NFIELDS (type);
8361 while (nfields < TYPE_NFIELDS (type)
8362 && !ada_is_variant_part (type, nfields)
8363 && !is_dynamic_field (type, nfields))
8367 rtype = alloc_type_copy (type);
8368 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8369 INIT_CPLUS_SPECIFIC (rtype);
8370 TYPE_NFIELDS (rtype) = nfields;
8371 TYPE_FIELDS (rtype) = (struct field *)
8372 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8373 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8374 TYPE_NAME (rtype) = ada_type_name (type);
8375 TYPE_FIXED_INSTANCE (rtype) = 1;
8381 for (f = 0; f < nfields; f += 1)
8383 off = align_value (off, field_alignment (type, f))
8384 + TYPE_FIELD_BITPOS (type, f);
8385 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8386 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8388 if (ada_is_variant_part (type, f))
8393 else if (is_dynamic_field (type, f))
8395 const gdb_byte *field_valaddr = valaddr;
8396 CORE_ADDR field_address = address;
8397 struct type *field_type =
8398 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8402 /* rtype's length is computed based on the run-time
8403 value of discriminants. If the discriminants are not
8404 initialized, the type size may be completely bogus and
8405 GDB may fail to allocate a value for it. So check the
8406 size first before creating the value. */
8407 ada_ensure_varsize_limit (rtype);
8408 /* Using plain value_from_contents_and_address here
8409 causes problems because we will end up trying to
8410 resolve a type that is currently being
8412 dval = value_from_contents_and_address_unresolved (rtype,
8415 rtype = value_type (dval);
8420 /* If the type referenced by this field is an aligner type, we need
8421 to unwrap that aligner type, because its size might not be set.
8422 Keeping the aligner type would cause us to compute the wrong
8423 size for this field, impacting the offset of the all the fields
8424 that follow this one. */
8425 if (ada_is_aligner_type (field_type))
8427 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8429 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8430 field_address = cond_offset_target (field_address, field_offset);
8431 field_type = ada_aligned_type (field_type);
8434 field_valaddr = cond_offset_host (field_valaddr,
8435 off / TARGET_CHAR_BIT);
8436 field_address = cond_offset_target (field_address,
8437 off / TARGET_CHAR_BIT);
8439 /* Get the fixed type of the field. Note that, in this case,
8440 we do not want to get the real type out of the tag: if
8441 the current field is the parent part of a tagged record,
8442 we will get the tag of the object. Clearly wrong: the real
8443 type of the parent is not the real type of the child. We
8444 would end up in an infinite loop. */
8445 field_type = ada_get_base_type (field_type);
8446 field_type = ada_to_fixed_type (field_type, field_valaddr,
8447 field_address, dval, 0);
8448 /* If the field size is already larger than the maximum
8449 object size, then the record itself will necessarily
8450 be larger than the maximum object size. We need to make
8451 this check now, because the size might be so ridiculously
8452 large (due to an uninitialized variable in the inferior)
8453 that it would cause an overflow when adding it to the
8455 ada_ensure_varsize_limit (field_type);
8457 TYPE_FIELD_TYPE (rtype, f) = field_type;
8458 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8459 /* The multiplication can potentially overflow. But because
8460 the field length has been size-checked just above, and
8461 assuming that the maximum size is a reasonable value,
8462 an overflow should not happen in practice. So rather than
8463 adding overflow recovery code to this already complex code,
8464 we just assume that it's not going to happen. */
8466 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8470 /* Note: If this field's type is a typedef, it is important
8471 to preserve the typedef layer.
8473 Otherwise, we might be transforming a typedef to a fat
8474 pointer (encoding a pointer to an unconstrained array),
8475 into a basic fat pointer (encoding an unconstrained
8476 array). As both types are implemented using the same
8477 structure, the typedef is the only clue which allows us
8478 to distinguish between the two options. Stripping it
8479 would prevent us from printing this field appropriately. */
8480 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8481 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8482 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8484 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8487 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8489 /* We need to be careful of typedefs when computing
8490 the length of our field. If this is a typedef,
8491 get the length of the target type, not the length
8493 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8494 field_type = ada_typedef_target_type (field_type);
8497 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8500 if (off + fld_bit_len > bit_len)
8501 bit_len = off + fld_bit_len;
8503 TYPE_LENGTH (rtype) =
8504 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8507 /* We handle the variant part, if any, at the end because of certain
8508 odd cases in which it is re-ordered so as NOT to be the last field of
8509 the record. This can happen in the presence of representation
8511 if (variant_field >= 0)
8513 struct type *branch_type;
8515 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8519 /* Using plain value_from_contents_and_address here causes
8520 problems because we will end up trying to resolve a type
8521 that is currently being constructed. */
8522 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8524 rtype = value_type (dval);
8530 to_fixed_variant_branch_type
8531 (TYPE_FIELD_TYPE (type, variant_field),
8532 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8533 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8534 if (branch_type == NULL)
8536 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8537 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8538 TYPE_NFIELDS (rtype) -= 1;
8542 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8543 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8545 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8547 if (off + fld_bit_len > bit_len)
8548 bit_len = off + fld_bit_len;
8549 TYPE_LENGTH (rtype) =
8550 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8554 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8555 should contain the alignment of that record, which should be a strictly
8556 positive value. If null or negative, then something is wrong, most
8557 probably in the debug info. In that case, we don't round up the size
8558 of the resulting type. If this record is not part of another structure,
8559 the current RTYPE length might be good enough for our purposes. */
8560 if (TYPE_LENGTH (type) <= 0)
8562 if (TYPE_NAME (rtype))
8563 warning (_("Invalid type size for `%s' detected: %d."),
8564 TYPE_NAME (rtype), TYPE_LENGTH (type));
8566 warning (_("Invalid type size for <unnamed> detected: %d."),
8567 TYPE_LENGTH (type));
8571 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8572 TYPE_LENGTH (type));
8575 value_free_to_mark (mark);
8576 if (TYPE_LENGTH (rtype) > varsize_limit)
8577 error (_("record type with dynamic size is larger than varsize-limit"));
8581 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8584 static struct type *
8585 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8586 CORE_ADDR address, struct value *dval0)
8588 return ada_template_to_fixed_record_type_1 (type, valaddr,
8592 /* An ordinary record type in which ___XVL-convention fields and
8593 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8594 static approximations, containing all possible fields. Uses
8595 no runtime values. Useless for use in values, but that's OK,
8596 since the results are used only for type determinations. Works on both
8597 structs and unions. Representation note: to save space, we memorize
8598 the result of this function in the TYPE_TARGET_TYPE of the
8601 static struct type *
8602 template_to_static_fixed_type (struct type *type0)
8608 /* No need no do anything if the input type is already fixed. */
8609 if (TYPE_FIXED_INSTANCE (type0))
8612 /* Likewise if we already have computed the static approximation. */
8613 if (TYPE_TARGET_TYPE (type0) != NULL)
8614 return TYPE_TARGET_TYPE (type0);
8616 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8618 nfields = TYPE_NFIELDS (type0);
8620 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8621 recompute all over next time. */
8622 TYPE_TARGET_TYPE (type0) = type;
8624 for (f = 0; f < nfields; f += 1)
8626 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8627 struct type *new_type;
8629 if (is_dynamic_field (type0, f))
8631 field_type = ada_check_typedef (field_type);
8632 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8635 new_type = static_unwrap_type (field_type);
8637 if (new_type != field_type)
8639 /* Clone TYPE0 only the first time we get a new field type. */
8642 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8643 TYPE_CODE (type) = TYPE_CODE (type0);
8644 INIT_CPLUS_SPECIFIC (type);
8645 TYPE_NFIELDS (type) = nfields;
8646 TYPE_FIELDS (type) = (struct field *)
8647 TYPE_ALLOC (type, nfields * sizeof (struct field));
8648 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8649 sizeof (struct field) * nfields);
8650 TYPE_NAME (type) = ada_type_name (type0);
8651 TYPE_FIXED_INSTANCE (type) = 1;
8652 TYPE_LENGTH (type) = 0;
8654 TYPE_FIELD_TYPE (type, f) = new_type;
8655 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8662 /* Given an object of type TYPE whose contents are at VALADDR and
8663 whose address in memory is ADDRESS, returns a revision of TYPE,
8664 which should be a non-dynamic-sized record, in which the variant
8665 part, if any, is replaced with the appropriate branch. Looks
8666 for discriminant values in DVAL0, which can be NULL if the record
8667 contains the necessary discriminant values. */
8669 static struct type *
8670 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8671 CORE_ADDR address, struct value *dval0)
8673 struct value *mark = value_mark ();
8676 struct type *branch_type;
8677 int nfields = TYPE_NFIELDS (type);
8678 int variant_field = variant_field_index (type);
8680 if (variant_field == -1)
8685 dval = value_from_contents_and_address (type, valaddr, address);
8686 type = value_type (dval);
8691 rtype = alloc_type_copy (type);
8692 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8693 INIT_CPLUS_SPECIFIC (rtype);
8694 TYPE_NFIELDS (rtype) = nfields;
8695 TYPE_FIELDS (rtype) =
8696 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8697 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8698 sizeof (struct field) * nfields);
8699 TYPE_NAME (rtype) = ada_type_name (type);
8700 TYPE_FIXED_INSTANCE (rtype) = 1;
8701 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8703 branch_type = to_fixed_variant_branch_type
8704 (TYPE_FIELD_TYPE (type, variant_field),
8705 cond_offset_host (valaddr,
8706 TYPE_FIELD_BITPOS (type, variant_field)
8708 cond_offset_target (address,
8709 TYPE_FIELD_BITPOS (type, variant_field)
8710 / TARGET_CHAR_BIT), dval);
8711 if (branch_type == NULL)
8715 for (f = variant_field + 1; f < nfields; f += 1)
8716 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8717 TYPE_NFIELDS (rtype) -= 1;
8721 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8722 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8723 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8724 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8726 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8728 value_free_to_mark (mark);
8732 /* An ordinary record type (with fixed-length fields) that describes
8733 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8734 beginning of this section]. Any necessary discriminants' values
8735 should be in DVAL, a record value; it may be NULL if the object
8736 at ADDR itself contains any necessary discriminant values.
8737 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8738 values from the record are needed. Except in the case that DVAL,
8739 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8740 unchecked) is replaced by a particular branch of the variant.
8742 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8743 is questionable and may be removed. It can arise during the
8744 processing of an unconstrained-array-of-record type where all the
8745 variant branches have exactly the same size. This is because in
8746 such cases, the compiler does not bother to use the XVS convention
8747 when encoding the record. I am currently dubious of this
8748 shortcut and suspect the compiler should be altered. FIXME. */
8750 static struct type *
8751 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8752 CORE_ADDR address, struct value *dval)
8754 struct type *templ_type;
8756 if (TYPE_FIXED_INSTANCE (type0))
8759 templ_type = dynamic_template_type (type0);
8761 if (templ_type != NULL)
8762 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8763 else if (variant_field_index (type0) >= 0)
8765 if (dval == NULL && valaddr == NULL && address == 0)
8767 return to_record_with_fixed_variant_part (type0, valaddr, address,
8772 TYPE_FIXED_INSTANCE (type0) = 1;
8778 /* An ordinary record type (with fixed-length fields) that describes
8779 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8780 union type. Any necessary discriminants' values should be in DVAL,
8781 a record value. That is, this routine selects the appropriate
8782 branch of the union at ADDR according to the discriminant value
8783 indicated in the union's type name. Returns VAR_TYPE0 itself if
8784 it represents a variant subject to a pragma Unchecked_Union. */
8786 static struct type *
8787 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8788 CORE_ADDR address, struct value *dval)
8791 struct type *templ_type;
8792 struct type *var_type;
8794 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8795 var_type = TYPE_TARGET_TYPE (var_type0);
8797 var_type = var_type0;
8799 templ_type = ada_find_parallel_type (var_type, "___XVU");
8801 if (templ_type != NULL)
8802 var_type = templ_type;
8804 if (is_unchecked_variant (var_type, value_type (dval)))
8807 ada_which_variant_applies (var_type,
8808 value_type (dval), value_contents (dval));
8811 return empty_record (var_type);
8812 else if (is_dynamic_field (var_type, which))
8813 return to_fixed_record_type
8814 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8815 valaddr, address, dval);
8816 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8818 to_fixed_record_type
8819 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8821 return TYPE_FIELD_TYPE (var_type, which);
8824 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8825 ENCODING_TYPE, a type following the GNAT conventions for discrete
8826 type encodings, only carries redundant information. */
8829 ada_is_redundant_range_encoding (struct type *range_type,
8830 struct type *encoding_type)
8832 const char *bounds_str;
8836 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8838 if (TYPE_CODE (get_base_type (range_type))
8839 != TYPE_CODE (get_base_type (encoding_type)))
8841 /* The compiler probably used a simple base type to describe
8842 the range type instead of the range's actual base type,
8843 expecting us to get the real base type from the encoding
8844 anyway. In this situation, the encoding cannot be ignored
8849 if (is_dynamic_type (range_type))
8852 if (TYPE_NAME (encoding_type) == NULL)
8855 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8856 if (bounds_str == NULL)
8859 n = 8; /* Skip "___XDLU_". */
8860 if (!ada_scan_number (bounds_str, n, &lo, &n))
8862 if (TYPE_LOW_BOUND (range_type) != lo)
8865 n += 2; /* Skip the "__" separator between the two bounds. */
8866 if (!ada_scan_number (bounds_str, n, &hi, &n))
8868 if (TYPE_HIGH_BOUND (range_type) != hi)
8874 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8875 a type following the GNAT encoding for describing array type
8876 indices, only carries redundant information. */
8879 ada_is_redundant_index_type_desc (struct type *array_type,
8880 struct type *desc_type)
8882 struct type *this_layer = check_typedef (array_type);
8885 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8887 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8888 TYPE_FIELD_TYPE (desc_type, i)))
8890 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8896 /* Assuming that TYPE0 is an array type describing the type of a value
8897 at ADDR, and that DVAL describes a record containing any
8898 discriminants used in TYPE0, returns a type for the value that
8899 contains no dynamic components (that is, no components whose sizes
8900 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8901 true, gives an error message if the resulting type's size is over
8904 static struct type *
8905 to_fixed_array_type (struct type *type0, struct value *dval,
8908 struct type *index_type_desc;
8909 struct type *result;
8910 int constrained_packed_array_p;
8911 static const char *xa_suffix = "___XA";
8913 type0 = ada_check_typedef (type0);
8914 if (TYPE_FIXED_INSTANCE (type0))
8917 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8918 if (constrained_packed_array_p)
8919 type0 = decode_constrained_packed_array_type (type0);
8921 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8923 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8924 encoding suffixed with 'P' may still be generated. If so,
8925 it should be used to find the XA type. */
8927 if (index_type_desc == NULL)
8929 const char *type_name = ada_type_name (type0);
8931 if (type_name != NULL)
8933 const int len = strlen (type_name);
8934 char *name = (char *) alloca (len + strlen (xa_suffix));
8936 if (type_name[len - 1] == 'P')
8938 strcpy (name, type_name);
8939 strcpy (name + len - 1, xa_suffix);
8940 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8945 ada_fixup_array_indexes_type (index_type_desc);
8946 if (index_type_desc != NULL
8947 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8949 /* Ignore this ___XA parallel type, as it does not bring any
8950 useful information. This allows us to avoid creating fixed
8951 versions of the array's index types, which would be identical
8952 to the original ones. This, in turn, can also help avoid
8953 the creation of fixed versions of the array itself. */
8954 index_type_desc = NULL;
8957 if (index_type_desc == NULL)
8959 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8961 /* NOTE: elt_type---the fixed version of elt_type0---should never
8962 depend on the contents of the array in properly constructed
8964 /* Create a fixed version of the array element type.
8965 We're not providing the address of an element here,
8966 and thus the actual object value cannot be inspected to do
8967 the conversion. This should not be a problem, since arrays of
8968 unconstrained objects are not allowed. In particular, all
8969 the elements of an array of a tagged type should all be of
8970 the same type specified in the debugging info. No need to
8971 consult the object tag. */
8972 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8974 /* Make sure we always create a new array type when dealing with
8975 packed array types, since we're going to fix-up the array
8976 type length and element bitsize a little further down. */
8977 if (elt_type0 == elt_type && !constrained_packed_array_p)
8980 result = create_array_type (alloc_type_copy (type0),
8981 elt_type, TYPE_INDEX_TYPE (type0));
8986 struct type *elt_type0;
8989 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8990 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8992 /* NOTE: result---the fixed version of elt_type0---should never
8993 depend on the contents of the array in properly constructed
8995 /* Create a fixed version of the array element type.
8996 We're not providing the address of an element here,
8997 and thus the actual object value cannot be inspected to do
8998 the conversion. This should not be a problem, since arrays of
8999 unconstrained objects are not allowed. In particular, all
9000 the elements of an array of a tagged type should all be of
9001 the same type specified in the debugging info. No need to
9002 consult the object tag. */
9004 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9007 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9009 struct type *range_type =
9010 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9012 result = create_array_type (alloc_type_copy (elt_type0),
9013 result, range_type);
9014 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9016 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9017 error (_("array type with dynamic size is larger than varsize-limit"));
9020 /* We want to preserve the type name. This can be useful when
9021 trying to get the type name of a value that has already been
9022 printed (for instance, if the user did "print VAR; whatis $". */
9023 TYPE_NAME (result) = TYPE_NAME (type0);
9025 if (constrained_packed_array_p)
9027 /* So far, the resulting type has been created as if the original
9028 type was a regular (non-packed) array type. As a result, the
9029 bitsize of the array elements needs to be set again, and the array
9030 length needs to be recomputed based on that bitsize. */
9031 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9032 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9034 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9035 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9036 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9037 TYPE_LENGTH (result)++;
9040 TYPE_FIXED_INSTANCE (result) = 1;
9045 /* A standard type (containing no dynamically sized components)
9046 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9047 DVAL describes a record containing any discriminants used in TYPE0,
9048 and may be NULL if there are none, or if the object of type TYPE at
9049 ADDRESS or in VALADDR contains these discriminants.
9051 If CHECK_TAG is not null, in the case of tagged types, this function
9052 attempts to locate the object's tag and use it to compute the actual
9053 type. However, when ADDRESS is null, we cannot use it to determine the
9054 location of the tag, and therefore compute the tagged type's actual type.
9055 So we return the tagged type without consulting the tag. */
9057 static struct type *
9058 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9059 CORE_ADDR address, struct value *dval, int check_tag)
9061 type = ada_check_typedef (type);
9062 switch (TYPE_CODE (type))
9066 case TYPE_CODE_STRUCT:
9068 struct type *static_type = to_static_fixed_type (type);
9069 struct type *fixed_record_type =
9070 to_fixed_record_type (type, valaddr, address, NULL);
9072 /* If STATIC_TYPE is a tagged type and we know the object's address,
9073 then we can determine its tag, and compute the object's actual
9074 type from there. Note that we have to use the fixed record
9075 type (the parent part of the record may have dynamic fields
9076 and the way the location of _tag is expressed may depend on
9079 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9082 value_tag_from_contents_and_address
9086 struct type *real_type = type_from_tag (tag);
9088 value_from_contents_and_address (fixed_record_type,
9091 fixed_record_type = value_type (obj);
9092 if (real_type != NULL)
9093 return to_fixed_record_type
9095 value_address (ada_tag_value_at_base_address (obj)), NULL);
9098 /* Check to see if there is a parallel ___XVZ variable.
9099 If there is, then it provides the actual size of our type. */
9100 else if (ada_type_name (fixed_record_type) != NULL)
9102 const char *name = ada_type_name (fixed_record_type);
9104 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9105 bool xvz_found = false;
9108 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9111 xvz_found = get_int_var_value (xvz_name, size);
9113 CATCH (except, RETURN_MASK_ERROR)
9115 /* We found the variable, but somehow failed to read
9116 its value. Rethrow the same error, but with a little
9117 bit more information, to help the user understand
9118 what went wrong (Eg: the variable might have been
9120 throw_error (except.error,
9121 _("unable to read value of %s (%s)"),
9122 xvz_name, except.message);
9126 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9128 fixed_record_type = copy_type (fixed_record_type);
9129 TYPE_LENGTH (fixed_record_type) = size;
9131 /* The FIXED_RECORD_TYPE may have be a stub. We have
9132 observed this when the debugging info is STABS, and
9133 apparently it is something that is hard to fix.
9135 In practice, we don't need the actual type definition
9136 at all, because the presence of the XVZ variable allows us
9137 to assume that there must be a XVS type as well, which we
9138 should be able to use later, when we need the actual type
9141 In the meantime, pretend that the "fixed" type we are
9142 returning is NOT a stub, because this can cause trouble
9143 when using this type to create new types targeting it.
9144 Indeed, the associated creation routines often check
9145 whether the target type is a stub and will try to replace
9146 it, thus using a type with the wrong size. This, in turn,
9147 might cause the new type to have the wrong size too.
9148 Consider the case of an array, for instance, where the size
9149 of the array is computed from the number of elements in
9150 our array multiplied by the size of its element. */
9151 TYPE_STUB (fixed_record_type) = 0;
9154 return fixed_record_type;
9156 case TYPE_CODE_ARRAY:
9157 return to_fixed_array_type (type, dval, 1);
9158 case TYPE_CODE_UNION:
9162 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9166 /* The same as ada_to_fixed_type_1, except that it preserves the type
9167 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9169 The typedef layer needs be preserved in order to differentiate between
9170 arrays and array pointers when both types are implemented using the same
9171 fat pointer. In the array pointer case, the pointer is encoded as
9172 a typedef of the pointer type. For instance, considering:
9174 type String_Access is access String;
9175 S1 : String_Access := null;
9177 To the debugger, S1 is defined as a typedef of type String. But
9178 to the user, it is a pointer. So if the user tries to print S1,
9179 we should not dereference the array, but print the array address
9182 If we didn't preserve the typedef layer, we would lose the fact that
9183 the type is to be presented as a pointer (needs de-reference before
9184 being printed). And we would also use the source-level type name. */
9187 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9188 CORE_ADDR address, struct value *dval, int check_tag)
9191 struct type *fixed_type =
9192 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9194 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9195 then preserve the typedef layer.
9197 Implementation note: We can only check the main-type portion of
9198 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9199 from TYPE now returns a type that has the same instance flags
9200 as TYPE. For instance, if TYPE is a "typedef const", and its
9201 target type is a "struct", then the typedef elimination will return
9202 a "const" version of the target type. See check_typedef for more
9203 details about how the typedef layer elimination is done.
9205 brobecker/2010-11-19: It seems to me that the only case where it is
9206 useful to preserve the typedef layer is when dealing with fat pointers.
9207 Perhaps, we could add a check for that and preserve the typedef layer
9208 only in that situation. But this seems unecessary so far, probably
9209 because we call check_typedef/ada_check_typedef pretty much everywhere.
9211 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9212 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9213 == TYPE_MAIN_TYPE (fixed_type)))
9219 /* A standard (static-sized) type corresponding as well as possible to
9220 TYPE0, but based on no runtime data. */
9222 static struct type *
9223 to_static_fixed_type (struct type *type0)
9230 if (TYPE_FIXED_INSTANCE (type0))
9233 type0 = ada_check_typedef (type0);
9235 switch (TYPE_CODE (type0))
9239 case TYPE_CODE_STRUCT:
9240 type = dynamic_template_type (type0);
9242 return template_to_static_fixed_type (type);
9244 return template_to_static_fixed_type (type0);
9245 case TYPE_CODE_UNION:
9246 type = ada_find_parallel_type (type0, "___XVU");
9248 return template_to_static_fixed_type (type);
9250 return template_to_static_fixed_type (type0);
9254 /* A static approximation of TYPE with all type wrappers removed. */
9256 static struct type *
9257 static_unwrap_type (struct type *type)
9259 if (ada_is_aligner_type (type))
9261 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9262 if (ada_type_name (type1) == NULL)
9263 TYPE_NAME (type1) = ada_type_name (type);
9265 return static_unwrap_type (type1);
9269 struct type *raw_real_type = ada_get_base_type (type);
9271 if (raw_real_type == type)
9274 return to_static_fixed_type (raw_real_type);
9278 /* In some cases, incomplete and private types require
9279 cross-references that are not resolved as records (for example,
9281 type FooP is access Foo;
9283 type Foo is array ...;
9284 ). In these cases, since there is no mechanism for producing
9285 cross-references to such types, we instead substitute for FooP a
9286 stub enumeration type that is nowhere resolved, and whose tag is
9287 the name of the actual type. Call these types "non-record stubs". */
9289 /* A type equivalent to TYPE that is not a non-record stub, if one
9290 exists, otherwise TYPE. */
9293 ada_check_typedef (struct type *type)
9298 /* If our type is an access to an unconstrained array, which is encoded
9299 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9300 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9301 what allows us to distinguish between fat pointers that represent
9302 array types, and fat pointers that represent array access types
9303 (in both cases, the compiler implements them as fat pointers). */
9304 if (ada_is_access_to_unconstrained_array (type))
9307 type = check_typedef (type);
9308 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9309 || !TYPE_STUB (type)
9310 || TYPE_NAME (type) == NULL)
9314 const char *name = TYPE_NAME (type);
9315 struct type *type1 = ada_find_any_type (name);
9320 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9321 stubs pointing to arrays, as we don't create symbols for array
9322 types, only for the typedef-to-array types). If that's the case,
9323 strip the typedef layer. */
9324 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9325 type1 = ada_check_typedef (type1);
9331 /* A value representing the data at VALADDR/ADDRESS as described by
9332 type TYPE0, but with a standard (static-sized) type that correctly
9333 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9334 type, then return VAL0 [this feature is simply to avoid redundant
9335 creation of struct values]. */
9337 static struct value *
9338 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9341 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9343 if (type == type0 && val0 != NULL)
9346 if (VALUE_LVAL (val0) != lval_memory)
9348 /* Our value does not live in memory; it could be a convenience
9349 variable, for instance. Create a not_lval value using val0's
9351 return value_from_contents (type, value_contents (val0));
9354 return value_from_contents_and_address (type, 0, address);
9357 /* A value representing VAL, but with a standard (static-sized) type
9358 that correctly describes it. Does not necessarily create a new
9362 ada_to_fixed_value (struct value *val)
9364 val = unwrap_value (val);
9365 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9372 /* Table mapping attribute numbers to names.
9373 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9375 static const char *attribute_names[] = {
9393 ada_attribute_name (enum exp_opcode n)
9395 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9396 return attribute_names[n - OP_ATR_FIRST + 1];
9398 return attribute_names[0];
9401 /* Evaluate the 'POS attribute applied to ARG. */
9404 pos_atr (struct value *arg)
9406 struct value *val = coerce_ref (arg);
9407 struct type *type = value_type (val);
9410 if (!discrete_type_p (type))
9411 error (_("'POS only defined on discrete types"));
9413 if (!discrete_position (type, value_as_long (val), &result))
9414 error (_("enumeration value is invalid: can't find 'POS"));
9419 static struct value *
9420 value_pos_atr (struct type *type, struct value *arg)
9422 return value_from_longest (type, pos_atr (arg));
9425 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9427 static struct value *
9428 value_val_atr (struct type *type, struct value *arg)
9430 if (!discrete_type_p (type))
9431 error (_("'VAL only defined on discrete types"));
9432 if (!integer_type_p (value_type (arg)))
9433 error (_("'VAL requires integral argument"));
9435 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9437 long pos = value_as_long (arg);
9439 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9440 error (_("argument to 'VAL out of range"));
9441 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9444 return value_from_longest (type, value_as_long (arg));
9450 /* True if TYPE appears to be an Ada character type.
9451 [At the moment, this is true only for Character and Wide_Character;
9452 It is a heuristic test that could stand improvement]. */
9455 ada_is_character_type (struct type *type)
9459 /* If the type code says it's a character, then assume it really is,
9460 and don't check any further. */
9461 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9464 /* Otherwise, assume it's a character type iff it is a discrete type
9465 with a known character type name. */
9466 name = ada_type_name (type);
9467 return (name != NULL
9468 && (TYPE_CODE (type) == TYPE_CODE_INT
9469 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9470 && (strcmp (name, "character") == 0
9471 || strcmp (name, "wide_character") == 0
9472 || strcmp (name, "wide_wide_character") == 0
9473 || strcmp (name, "unsigned char") == 0));
9476 /* True if TYPE appears to be an Ada string type. */
9479 ada_is_string_type (struct type *type)
9481 type = ada_check_typedef (type);
9483 && TYPE_CODE (type) != TYPE_CODE_PTR
9484 && (ada_is_simple_array_type (type)
9485 || ada_is_array_descriptor_type (type))
9486 && ada_array_arity (type) == 1)
9488 struct type *elttype = ada_array_element_type (type, 1);
9490 return ada_is_character_type (elttype);
9496 /* The compiler sometimes provides a parallel XVS type for a given
9497 PAD type. Normally, it is safe to follow the PAD type directly,
9498 but older versions of the compiler have a bug that causes the offset
9499 of its "F" field to be wrong. Following that field in that case
9500 would lead to incorrect results, but this can be worked around
9501 by ignoring the PAD type and using the associated XVS type instead.
9503 Set to True if the debugger should trust the contents of PAD types.
9504 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9505 static int trust_pad_over_xvs = 1;
9507 /* True if TYPE is a struct type introduced by the compiler to force the
9508 alignment of a value. Such types have a single field with a
9509 distinctive name. */
9512 ada_is_aligner_type (struct type *type)
9514 type = ada_check_typedef (type);
9516 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9519 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9520 && TYPE_NFIELDS (type) == 1
9521 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9524 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9525 the parallel type. */
9528 ada_get_base_type (struct type *raw_type)
9530 struct type *real_type_namer;
9531 struct type *raw_real_type;
9533 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9536 if (ada_is_aligner_type (raw_type))
9537 /* The encoding specifies that we should always use the aligner type.
9538 So, even if this aligner type has an associated XVS type, we should
9541 According to the compiler gurus, an XVS type parallel to an aligner
9542 type may exist because of a stabs limitation. In stabs, aligner
9543 types are empty because the field has a variable-sized type, and
9544 thus cannot actually be used as an aligner type. As a result,
9545 we need the associated parallel XVS type to decode the type.
9546 Since the policy in the compiler is to not change the internal
9547 representation based on the debugging info format, we sometimes
9548 end up having a redundant XVS type parallel to the aligner type. */
9551 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9552 if (real_type_namer == NULL
9553 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9554 || TYPE_NFIELDS (real_type_namer) != 1)
9557 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9559 /* This is an older encoding form where the base type needs to be
9560 looked up by name. We prefer the newer enconding because it is
9562 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9563 if (raw_real_type == NULL)
9566 return raw_real_type;
9569 /* The field in our XVS type is a reference to the base type. */
9570 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9573 /* The type of value designated by TYPE, with all aligners removed. */
9576 ada_aligned_type (struct type *type)
9578 if (ada_is_aligner_type (type))
9579 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9581 return ada_get_base_type (type);
9585 /* The address of the aligned value in an object at address VALADDR
9586 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9589 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9591 if (ada_is_aligner_type (type))
9592 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9594 TYPE_FIELD_BITPOS (type,
9595 0) / TARGET_CHAR_BIT);
9602 /* The printed representation of an enumeration literal with encoded
9603 name NAME. The value is good to the next call of ada_enum_name. */
9605 ada_enum_name (const char *name)
9607 static char *result;
9608 static size_t result_len = 0;
9611 /* First, unqualify the enumeration name:
9612 1. Search for the last '.' character. If we find one, then skip
9613 all the preceding characters, the unqualified name starts
9614 right after that dot.
9615 2. Otherwise, we may be debugging on a target where the compiler
9616 translates dots into "__". Search forward for double underscores,
9617 but stop searching when we hit an overloading suffix, which is
9618 of the form "__" followed by digits. */
9620 tmp = strrchr (name, '.');
9625 while ((tmp = strstr (name, "__")) != NULL)
9627 if (isdigit (tmp[2]))
9638 if (name[1] == 'U' || name[1] == 'W')
9640 if (sscanf (name + 2, "%x", &v) != 1)
9646 GROW_VECT (result, result_len, 16);
9647 if (isascii (v) && isprint (v))
9648 xsnprintf (result, result_len, "'%c'", v);
9649 else if (name[1] == 'U')
9650 xsnprintf (result, result_len, "[\"%02x\"]", v);
9652 xsnprintf (result, result_len, "[\"%04x\"]", v);
9658 tmp = strstr (name, "__");
9660 tmp = strstr (name, "$");
9663 GROW_VECT (result, result_len, tmp - name + 1);
9664 strncpy (result, name, tmp - name);
9665 result[tmp - name] = '\0';
9673 /* Evaluate the subexpression of EXP starting at *POS as for
9674 evaluate_type, updating *POS to point just past the evaluated
9677 static struct value *
9678 evaluate_subexp_type (struct expression *exp, int *pos)
9680 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9683 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9686 static struct value *
9687 unwrap_value (struct value *val)
9689 struct type *type = ada_check_typedef (value_type (val));
9691 if (ada_is_aligner_type (type))
9693 struct value *v = ada_value_struct_elt (val, "F", 0);
9694 struct type *val_type = ada_check_typedef (value_type (v));
9696 if (ada_type_name (val_type) == NULL)
9697 TYPE_NAME (val_type) = ada_type_name (type);
9699 return unwrap_value (v);
9703 struct type *raw_real_type =
9704 ada_check_typedef (ada_get_base_type (type));
9706 /* If there is no parallel XVS or XVE type, then the value is
9707 already unwrapped. Return it without further modification. */
9708 if ((type == raw_real_type)
9709 && ada_find_parallel_type (type, "___XVE") == NULL)
9713 coerce_unspec_val_to_type
9714 (val, ada_to_fixed_type (raw_real_type, 0,
9715 value_address (val),
9720 static struct value *
9721 cast_from_fixed (struct type *type, struct value *arg)
9723 struct value *scale = ada_scaling_factor (value_type (arg));
9724 arg = value_cast (value_type (scale), arg);
9726 arg = value_binop (arg, scale, BINOP_MUL);
9727 return value_cast (type, arg);
9730 static struct value *
9731 cast_to_fixed (struct type *type, struct value *arg)
9733 if (type == value_type (arg))
9736 struct value *scale = ada_scaling_factor (type);
9737 if (ada_is_fixed_point_type (value_type (arg)))
9738 arg = cast_from_fixed (value_type (scale), arg);
9740 arg = value_cast (value_type (scale), arg);
9742 arg = value_binop (arg, scale, BINOP_DIV);
9743 return value_cast (type, arg);
9746 /* Given two array types T1 and T2, return nonzero iff both arrays
9747 contain the same number of elements. */
9750 ada_same_array_size_p (struct type *t1, struct type *t2)
9752 LONGEST lo1, hi1, lo2, hi2;
9754 /* Get the array bounds in order to verify that the size of
9755 the two arrays match. */
9756 if (!get_array_bounds (t1, &lo1, &hi1)
9757 || !get_array_bounds (t2, &lo2, &hi2))
9758 error (_("unable to determine array bounds"));
9760 /* To make things easier for size comparison, normalize a bit
9761 the case of empty arrays by making sure that the difference
9762 between upper bound and lower bound is always -1. */
9768 return (hi1 - lo1 == hi2 - lo2);
9771 /* Assuming that VAL is an array of integrals, and TYPE represents
9772 an array with the same number of elements, but with wider integral
9773 elements, return an array "casted" to TYPE. In practice, this
9774 means that the returned array is built by casting each element
9775 of the original array into TYPE's (wider) element type. */
9777 static struct value *
9778 ada_promote_array_of_integrals (struct type *type, struct value *val)
9780 struct type *elt_type = TYPE_TARGET_TYPE (type);
9785 /* Verify that both val and type are arrays of scalars, and
9786 that the size of val's elements is smaller than the size
9787 of type's element. */
9788 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9789 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9790 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9791 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9792 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9793 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9795 if (!get_array_bounds (type, &lo, &hi))
9796 error (_("unable to determine array bounds"));
9798 res = allocate_value (type);
9800 /* Promote each array element. */
9801 for (i = 0; i < hi - lo + 1; i++)
9803 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9805 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9806 value_contents_all (elt), TYPE_LENGTH (elt_type));
9812 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9813 return the converted value. */
9815 static struct value *
9816 coerce_for_assign (struct type *type, struct value *val)
9818 struct type *type2 = value_type (val);
9823 type2 = ada_check_typedef (type2);
9824 type = ada_check_typedef (type);
9826 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9827 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9829 val = ada_value_ind (val);
9830 type2 = value_type (val);
9833 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9834 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9836 if (!ada_same_array_size_p (type, type2))
9837 error (_("cannot assign arrays of different length"));
9839 if (is_integral_type (TYPE_TARGET_TYPE (type))
9840 && is_integral_type (TYPE_TARGET_TYPE (type2))
9841 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9842 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9844 /* Allow implicit promotion of the array elements to
9846 return ada_promote_array_of_integrals (type, val);
9849 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9850 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9851 error (_("Incompatible types in assignment"));
9852 deprecated_set_value_type (val, type);
9857 static struct value *
9858 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9861 struct type *type1, *type2;
9864 arg1 = coerce_ref (arg1);
9865 arg2 = coerce_ref (arg2);
9866 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9867 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9869 if (TYPE_CODE (type1) != TYPE_CODE_INT
9870 || TYPE_CODE (type2) != TYPE_CODE_INT)
9871 return value_binop (arg1, arg2, op);
9880 return value_binop (arg1, arg2, op);
9883 v2 = value_as_long (arg2);
9885 error (_("second operand of %s must not be zero."), op_string (op));
9887 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9888 return value_binop (arg1, arg2, op);
9890 v1 = value_as_long (arg1);
9895 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9896 v += v > 0 ? -1 : 1;
9904 /* Should not reach this point. */
9908 val = allocate_value (type1);
9909 store_unsigned_integer (value_contents_raw (val),
9910 TYPE_LENGTH (value_type (val)),
9911 gdbarch_byte_order (get_type_arch (type1)), v);
9916 ada_value_equal (struct value *arg1, struct value *arg2)
9918 if (ada_is_direct_array_type (value_type (arg1))
9919 || ada_is_direct_array_type (value_type (arg2)))
9921 struct type *arg1_type, *arg2_type;
9923 /* Automatically dereference any array reference before
9924 we attempt to perform the comparison. */
9925 arg1 = ada_coerce_ref (arg1);
9926 arg2 = ada_coerce_ref (arg2);
9928 arg1 = ada_coerce_to_simple_array (arg1);
9929 arg2 = ada_coerce_to_simple_array (arg2);
9931 arg1_type = ada_check_typedef (value_type (arg1));
9932 arg2_type = ada_check_typedef (value_type (arg2));
9934 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9935 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9936 error (_("Attempt to compare array with non-array"));
9937 /* FIXME: The following works only for types whose
9938 representations use all bits (no padding or undefined bits)
9939 and do not have user-defined equality. */
9940 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9941 && memcmp (value_contents (arg1), value_contents (arg2),
9942 TYPE_LENGTH (arg1_type)) == 0);
9944 return value_equal (arg1, arg2);
9947 /* Total number of component associations in the aggregate starting at
9948 index PC in EXP. Assumes that index PC is the start of an
9952 num_component_specs (struct expression *exp, int pc)
9956 m = exp->elts[pc + 1].longconst;
9959 for (i = 0; i < m; i += 1)
9961 switch (exp->elts[pc].opcode)
9967 n += exp->elts[pc + 1].longconst;
9970 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9975 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9976 component of LHS (a simple array or a record), updating *POS past
9977 the expression, assuming that LHS is contained in CONTAINER. Does
9978 not modify the inferior's memory, nor does it modify LHS (unless
9979 LHS == CONTAINER). */
9982 assign_component (struct value *container, struct value *lhs, LONGEST index,
9983 struct expression *exp, int *pos)
9985 struct value *mark = value_mark ();
9987 struct type *lhs_type = check_typedef (value_type (lhs));
9989 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9991 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9992 struct value *index_val = value_from_longest (index_type, index);
9994 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9998 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9999 elt = ada_to_fixed_value (elt);
10002 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10003 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10005 value_assign_to_component (container, elt,
10006 ada_evaluate_subexp (NULL, exp, pos,
10009 value_free_to_mark (mark);
10012 /* Assuming that LHS represents an lvalue having a record or array
10013 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10014 of that aggregate's value to LHS, advancing *POS past the
10015 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10016 lvalue containing LHS (possibly LHS itself). Does not modify
10017 the inferior's memory, nor does it modify the contents of
10018 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10020 static struct value *
10021 assign_aggregate (struct value *container,
10022 struct value *lhs, struct expression *exp,
10023 int *pos, enum noside noside)
10025 struct type *lhs_type;
10026 int n = exp->elts[*pos+1].longconst;
10027 LONGEST low_index, high_index;
10030 int max_indices, num_indices;
10034 if (noside != EVAL_NORMAL)
10036 for (i = 0; i < n; i += 1)
10037 ada_evaluate_subexp (NULL, exp, pos, noside);
10041 container = ada_coerce_ref (container);
10042 if (ada_is_direct_array_type (value_type (container)))
10043 container = ada_coerce_to_simple_array (container);
10044 lhs = ada_coerce_ref (lhs);
10045 if (!deprecated_value_modifiable (lhs))
10046 error (_("Left operand of assignment is not a modifiable lvalue."));
10048 lhs_type = check_typedef (value_type (lhs));
10049 if (ada_is_direct_array_type (lhs_type))
10051 lhs = ada_coerce_to_simple_array (lhs);
10052 lhs_type = check_typedef (value_type (lhs));
10053 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10054 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10056 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10059 high_index = num_visible_fields (lhs_type) - 1;
10062 error (_("Left-hand side must be array or record."));
10064 num_specs = num_component_specs (exp, *pos - 3);
10065 max_indices = 4 * num_specs + 4;
10066 indices = XALLOCAVEC (LONGEST, max_indices);
10067 indices[0] = indices[1] = low_index - 1;
10068 indices[2] = indices[3] = high_index + 1;
10071 for (i = 0; i < n; i += 1)
10073 switch (exp->elts[*pos].opcode)
10076 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10077 &num_indices, max_indices,
10078 low_index, high_index);
10080 case OP_POSITIONAL:
10081 aggregate_assign_positional (container, lhs, exp, pos, indices,
10082 &num_indices, max_indices,
10083 low_index, high_index);
10087 error (_("Misplaced 'others' clause"));
10088 aggregate_assign_others (container, lhs, exp, pos, indices,
10089 num_indices, low_index, high_index);
10092 error (_("Internal error: bad aggregate clause"));
10099 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10100 construct at *POS, updating *POS past the construct, given that
10101 the positions are relative to lower bound LOW, where HIGH is the
10102 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10103 updating *NUM_INDICES as needed. CONTAINER is as for
10104 assign_aggregate. */
10106 aggregate_assign_positional (struct value *container,
10107 struct value *lhs, struct expression *exp,
10108 int *pos, LONGEST *indices, int *num_indices,
10109 int max_indices, LONGEST low, LONGEST high)
10111 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10113 if (ind - 1 == high)
10114 warning (_("Extra components in aggregate ignored."));
10117 add_component_interval (ind, ind, indices, num_indices, max_indices);
10119 assign_component (container, lhs, ind, exp, pos);
10122 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10125 /* Assign into the components of LHS indexed by the OP_CHOICES
10126 construct at *POS, updating *POS past the construct, given that
10127 the allowable indices are LOW..HIGH. Record the indices assigned
10128 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10129 needed. CONTAINER is as for assign_aggregate. */
10131 aggregate_assign_from_choices (struct value *container,
10132 struct value *lhs, struct expression *exp,
10133 int *pos, LONGEST *indices, int *num_indices,
10134 int max_indices, LONGEST low, LONGEST high)
10137 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10138 int choice_pos, expr_pc;
10139 int is_array = ada_is_direct_array_type (value_type (lhs));
10141 choice_pos = *pos += 3;
10143 for (j = 0; j < n_choices; j += 1)
10144 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10146 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10148 for (j = 0; j < n_choices; j += 1)
10150 LONGEST lower, upper;
10151 enum exp_opcode op = exp->elts[choice_pos].opcode;
10153 if (op == OP_DISCRETE_RANGE)
10156 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10158 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10163 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10175 name = &exp->elts[choice_pos + 2].string;
10178 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10181 error (_("Invalid record component association."));
10183 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10185 if (! find_struct_field (name, value_type (lhs), 0,
10186 NULL, NULL, NULL, NULL, &ind))
10187 error (_("Unknown component name: %s."), name);
10188 lower = upper = ind;
10191 if (lower <= upper && (lower < low || upper > high))
10192 error (_("Index in component association out of bounds."));
10194 add_component_interval (lower, upper, indices, num_indices,
10196 while (lower <= upper)
10201 assign_component (container, lhs, lower, exp, &pos1);
10207 /* Assign the value of the expression in the OP_OTHERS construct in
10208 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10209 have not been previously assigned. The index intervals already assigned
10210 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10211 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10213 aggregate_assign_others (struct value *container,
10214 struct value *lhs, struct expression *exp,
10215 int *pos, LONGEST *indices, int num_indices,
10216 LONGEST low, LONGEST high)
10219 int expr_pc = *pos + 1;
10221 for (i = 0; i < num_indices - 2; i += 2)
10225 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10229 localpos = expr_pc;
10230 assign_component (container, lhs, ind, exp, &localpos);
10233 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10236 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10237 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10238 modifying *SIZE as needed. It is an error if *SIZE exceeds
10239 MAX_SIZE. The resulting intervals do not overlap. */
10241 add_component_interval (LONGEST low, LONGEST high,
10242 LONGEST* indices, int *size, int max_size)
10246 for (i = 0; i < *size; i += 2) {
10247 if (high >= indices[i] && low <= indices[i + 1])
10251 for (kh = i + 2; kh < *size; kh += 2)
10252 if (high < indices[kh])
10254 if (low < indices[i])
10256 indices[i + 1] = indices[kh - 1];
10257 if (high > indices[i + 1])
10258 indices[i + 1] = high;
10259 memcpy (indices + i + 2, indices + kh, *size - kh);
10260 *size -= kh - i - 2;
10263 else if (high < indices[i])
10267 if (*size == max_size)
10268 error (_("Internal error: miscounted aggregate components."));
10270 for (j = *size-1; j >= i+2; j -= 1)
10271 indices[j] = indices[j - 2];
10273 indices[i + 1] = high;
10276 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10279 static struct value *
10280 ada_value_cast (struct type *type, struct value *arg2)
10282 if (type == ada_check_typedef (value_type (arg2)))
10285 if (ada_is_fixed_point_type (type))
10286 return cast_to_fixed (type, arg2);
10288 if (ada_is_fixed_point_type (value_type (arg2)))
10289 return cast_from_fixed (type, arg2);
10291 return value_cast (type, arg2);
10294 /* Evaluating Ada expressions, and printing their result.
10295 ------------------------------------------------------
10300 We usually evaluate an Ada expression in order to print its value.
10301 We also evaluate an expression in order to print its type, which
10302 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10303 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10304 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10305 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10308 Evaluating expressions is a little more complicated for Ada entities
10309 than it is for entities in languages such as C. The main reason for
10310 this is that Ada provides types whose definition might be dynamic.
10311 One example of such types is variant records. Or another example
10312 would be an array whose bounds can only be known at run time.
10314 The following description is a general guide as to what should be
10315 done (and what should NOT be done) in order to evaluate an expression
10316 involving such types, and when. This does not cover how the semantic
10317 information is encoded by GNAT as this is covered separatly. For the
10318 document used as the reference for the GNAT encoding, see exp_dbug.ads
10319 in the GNAT sources.
10321 Ideally, we should embed each part of this description next to its
10322 associated code. Unfortunately, the amount of code is so vast right
10323 now that it's hard to see whether the code handling a particular
10324 situation might be duplicated or not. One day, when the code is
10325 cleaned up, this guide might become redundant with the comments
10326 inserted in the code, and we might want to remove it.
10328 2. ``Fixing'' an Entity, the Simple Case:
10329 -----------------------------------------
10331 When evaluating Ada expressions, the tricky issue is that they may
10332 reference entities whose type contents and size are not statically
10333 known. Consider for instance a variant record:
10335 type Rec (Empty : Boolean := True) is record
10338 when False => Value : Integer;
10341 Yes : Rec := (Empty => False, Value => 1);
10342 No : Rec := (empty => True);
10344 The size and contents of that record depends on the value of the
10345 descriminant (Rec.Empty). At this point, neither the debugging
10346 information nor the associated type structure in GDB are able to
10347 express such dynamic types. So what the debugger does is to create
10348 "fixed" versions of the type that applies to the specific object.
10349 We also informally refer to this opperation as "fixing" an object,
10350 which means creating its associated fixed type.
10352 Example: when printing the value of variable "Yes" above, its fixed
10353 type would look like this:
10360 On the other hand, if we printed the value of "No", its fixed type
10367 Things become a little more complicated when trying to fix an entity
10368 with a dynamic type that directly contains another dynamic type,
10369 such as an array of variant records, for instance. There are
10370 two possible cases: Arrays, and records.
10372 3. ``Fixing'' Arrays:
10373 ---------------------
10375 The type structure in GDB describes an array in terms of its bounds,
10376 and the type of its elements. By design, all elements in the array
10377 have the same type and we cannot represent an array of variant elements
10378 using the current type structure in GDB. When fixing an array,
10379 we cannot fix the array element, as we would potentially need one
10380 fixed type per element of the array. As a result, the best we can do
10381 when fixing an array is to produce an array whose bounds and size
10382 are correct (allowing us to read it from memory), but without having
10383 touched its element type. Fixing each element will be done later,
10384 when (if) necessary.
10386 Arrays are a little simpler to handle than records, because the same
10387 amount of memory is allocated for each element of the array, even if
10388 the amount of space actually used by each element differs from element
10389 to element. Consider for instance the following array of type Rec:
10391 type Rec_Array is array (1 .. 2) of Rec;
10393 The actual amount of memory occupied by each element might be different
10394 from element to element, depending on the value of their discriminant.
10395 But the amount of space reserved for each element in the array remains
10396 fixed regardless. So we simply need to compute that size using
10397 the debugging information available, from which we can then determine
10398 the array size (we multiply the number of elements of the array by
10399 the size of each element).
10401 The simplest case is when we have an array of a constrained element
10402 type. For instance, consider the following type declarations:
10404 type Bounded_String (Max_Size : Integer) is
10406 Buffer : String (1 .. Max_Size);
10408 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10410 In this case, the compiler describes the array as an array of
10411 variable-size elements (identified by its XVS suffix) for which
10412 the size can be read in the parallel XVZ variable.
10414 In the case of an array of an unconstrained element type, the compiler
10415 wraps the array element inside a private PAD type. This type should not
10416 be shown to the user, and must be "unwrap"'ed before printing. Note
10417 that we also use the adjective "aligner" in our code to designate
10418 these wrapper types.
10420 In some cases, the size allocated for each element is statically
10421 known. In that case, the PAD type already has the correct size,
10422 and the array element should remain unfixed.
10424 But there are cases when this size is not statically known.
10425 For instance, assuming that "Five" is an integer variable:
10427 type Dynamic is array (1 .. Five) of Integer;
10428 type Wrapper (Has_Length : Boolean := False) is record
10431 when True => Length : Integer;
10432 when False => null;
10435 type Wrapper_Array is array (1 .. 2) of Wrapper;
10437 Hello : Wrapper_Array := (others => (Has_Length => True,
10438 Data => (others => 17),
10442 The debugging info would describe variable Hello as being an
10443 array of a PAD type. The size of that PAD type is not statically
10444 known, but can be determined using a parallel XVZ variable.
10445 In that case, a copy of the PAD type with the correct size should
10446 be used for the fixed array.
10448 3. ``Fixing'' record type objects:
10449 ----------------------------------
10451 Things are slightly different from arrays in the case of dynamic
10452 record types. In this case, in order to compute the associated
10453 fixed type, we need to determine the size and offset of each of
10454 its components. This, in turn, requires us to compute the fixed
10455 type of each of these components.
10457 Consider for instance the example:
10459 type Bounded_String (Max_Size : Natural) is record
10460 Str : String (1 .. Max_Size);
10463 My_String : Bounded_String (Max_Size => 10);
10465 In that case, the position of field "Length" depends on the size
10466 of field Str, which itself depends on the value of the Max_Size
10467 discriminant. In order to fix the type of variable My_String,
10468 we need to fix the type of field Str. Therefore, fixing a variant
10469 record requires us to fix each of its components.
10471 However, if a component does not have a dynamic size, the component
10472 should not be fixed. In particular, fields that use a PAD type
10473 should not fixed. Here is an example where this might happen
10474 (assuming type Rec above):
10476 type Container (Big : Boolean) is record
10480 when True => Another : Integer;
10481 when False => null;
10484 My_Container : Container := (Big => False,
10485 First => (Empty => True),
10488 In that example, the compiler creates a PAD type for component First,
10489 whose size is constant, and then positions the component After just
10490 right after it. The offset of component After is therefore constant
10493 The debugger computes the position of each field based on an algorithm
10494 that uses, among other things, the actual position and size of the field
10495 preceding it. Let's now imagine that the user is trying to print
10496 the value of My_Container. If the type fixing was recursive, we would
10497 end up computing the offset of field After based on the size of the
10498 fixed version of field First. And since in our example First has
10499 only one actual field, the size of the fixed type is actually smaller
10500 than the amount of space allocated to that field, and thus we would
10501 compute the wrong offset of field After.
10503 To make things more complicated, we need to watch out for dynamic
10504 components of variant records (identified by the ___XVL suffix in
10505 the component name). Even if the target type is a PAD type, the size
10506 of that type might not be statically known. So the PAD type needs
10507 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10508 we might end up with the wrong size for our component. This can be
10509 observed with the following type declarations:
10511 type Octal is new Integer range 0 .. 7;
10512 type Octal_Array is array (Positive range <>) of Octal;
10513 pragma Pack (Octal_Array);
10515 type Octal_Buffer (Size : Positive) is record
10516 Buffer : Octal_Array (1 .. Size);
10520 In that case, Buffer is a PAD type whose size is unset and needs
10521 to be computed by fixing the unwrapped type.
10523 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10524 ----------------------------------------------------------
10526 Lastly, when should the sub-elements of an entity that remained unfixed
10527 thus far, be actually fixed?
10529 The answer is: Only when referencing that element. For instance
10530 when selecting one component of a record, this specific component
10531 should be fixed at that point in time. Or when printing the value
10532 of a record, each component should be fixed before its value gets
10533 printed. Similarly for arrays, the element of the array should be
10534 fixed when printing each element of the array, or when extracting
10535 one element out of that array. On the other hand, fixing should
10536 not be performed on the elements when taking a slice of an array!
10538 Note that one of the side effects of miscomputing the offset and
10539 size of each field is that we end up also miscomputing the size
10540 of the containing type. This can have adverse results when computing
10541 the value of an entity. GDB fetches the value of an entity based
10542 on the size of its type, and thus a wrong size causes GDB to fetch
10543 the wrong amount of memory. In the case where the computed size is
10544 too small, GDB fetches too little data to print the value of our
10545 entity. Results in this case are unpredictable, as we usually read
10546 past the buffer containing the data =:-o. */
10548 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10549 for that subexpression cast to TO_TYPE. Advance *POS over the
10553 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10554 enum noside noside, struct type *to_type)
10558 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10559 || exp->elts[pc].opcode == OP_VAR_VALUE)
10564 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10566 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10567 return value_zero (to_type, not_lval);
10569 val = evaluate_var_msym_value (noside,
10570 exp->elts[pc + 1].objfile,
10571 exp->elts[pc + 2].msymbol);
10574 val = evaluate_var_value (noside,
10575 exp->elts[pc + 1].block,
10576 exp->elts[pc + 2].symbol);
10578 if (noside == EVAL_SKIP)
10579 return eval_skip_value (exp);
10581 val = ada_value_cast (to_type, val);
10583 /* Follow the Ada language semantics that do not allow taking
10584 an address of the result of a cast (view conversion in Ada). */
10585 if (VALUE_LVAL (val) == lval_memory)
10587 if (value_lazy (val))
10588 value_fetch_lazy (val);
10589 VALUE_LVAL (val) = not_lval;
10594 value *val = evaluate_subexp (to_type, exp, pos, noside);
10595 if (noside == EVAL_SKIP)
10596 return eval_skip_value (exp);
10597 return ada_value_cast (to_type, val);
10600 /* Implement the evaluate_exp routine in the exp_descriptor structure
10601 for the Ada language. */
10603 static struct value *
10604 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10605 int *pos, enum noside noside)
10607 enum exp_opcode op;
10611 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10614 struct value **argvec;
10618 op = exp->elts[pc].opcode;
10624 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10626 if (noside == EVAL_NORMAL)
10627 arg1 = unwrap_value (arg1);
10629 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10630 then we need to perform the conversion manually, because
10631 evaluate_subexp_standard doesn't do it. This conversion is
10632 necessary in Ada because the different kinds of float/fixed
10633 types in Ada have different representations.
10635 Similarly, we need to perform the conversion from OP_LONG
10637 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10638 arg1 = ada_value_cast (expect_type, arg1);
10644 struct value *result;
10647 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10648 /* The result type will have code OP_STRING, bashed there from
10649 OP_ARRAY. Bash it back. */
10650 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10651 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10657 type = exp->elts[pc + 1].type;
10658 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10662 type = exp->elts[pc + 1].type;
10663 return ada_evaluate_subexp (type, exp, pos, noside);
10666 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10667 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10669 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10670 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10672 return ada_value_assign (arg1, arg1);
10674 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10675 except if the lhs of our assignment is a convenience variable.
10676 In the case of assigning to a convenience variable, the lhs
10677 should be exactly the result of the evaluation of the rhs. */
10678 type = value_type (arg1);
10679 if (VALUE_LVAL (arg1) == lval_internalvar)
10681 arg2 = evaluate_subexp (type, exp, pos, noside);
10682 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10684 if (ada_is_fixed_point_type (value_type (arg1)))
10685 arg2 = cast_to_fixed (value_type (arg1), arg2);
10686 else if (ada_is_fixed_point_type (value_type (arg2)))
10688 (_("Fixed-point values must be assigned to fixed-point variables"));
10690 arg2 = coerce_for_assign (value_type (arg1), arg2);
10691 return ada_value_assign (arg1, arg2);
10694 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10695 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10696 if (noside == EVAL_SKIP)
10698 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10699 return (value_from_longest
10700 (value_type (arg1),
10701 value_as_long (arg1) + value_as_long (arg2)));
10702 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10703 return (value_from_longest
10704 (value_type (arg2),
10705 value_as_long (arg1) + value_as_long (arg2)));
10706 if ((ada_is_fixed_point_type (value_type (arg1))
10707 || ada_is_fixed_point_type (value_type (arg2)))
10708 && value_type (arg1) != value_type (arg2))
10709 error (_("Operands of fixed-point addition must have the same type"));
10710 /* Do the addition, and cast the result to the type of the first
10711 argument. We cannot cast the result to a reference type, so if
10712 ARG1 is a reference type, find its underlying type. */
10713 type = value_type (arg1);
10714 while (TYPE_CODE (type) == TYPE_CODE_REF)
10715 type = TYPE_TARGET_TYPE (type);
10716 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10717 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10720 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10721 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10724 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10725 return (value_from_longest
10726 (value_type (arg1),
10727 value_as_long (arg1) - value_as_long (arg2)));
10728 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10729 return (value_from_longest
10730 (value_type (arg2),
10731 value_as_long (arg1) - value_as_long (arg2)));
10732 if ((ada_is_fixed_point_type (value_type (arg1))
10733 || ada_is_fixed_point_type (value_type (arg2)))
10734 && value_type (arg1) != value_type (arg2))
10735 error (_("Operands of fixed-point subtraction "
10736 "must have the same type"));
10737 /* Do the substraction, and cast the result to the type of the first
10738 argument. We cannot cast the result to a reference type, so if
10739 ARG1 is a reference type, find its underlying type. */
10740 type = value_type (arg1);
10741 while (TYPE_CODE (type) == TYPE_CODE_REF)
10742 type = TYPE_TARGET_TYPE (type);
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10744 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10751 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10752 if (noside == EVAL_SKIP)
10754 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10757 return value_zero (value_type (arg1), not_lval);
10761 type = builtin_type (exp->gdbarch)->builtin_double;
10762 if (ada_is_fixed_point_type (value_type (arg1)))
10763 arg1 = cast_from_fixed (type, arg1);
10764 if (ada_is_fixed_point_type (value_type (arg2)))
10765 arg2 = cast_from_fixed (type, arg2);
10766 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10767 return ada_value_binop (arg1, arg2, op);
10771 case BINOP_NOTEQUAL:
10772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10774 if (noside == EVAL_SKIP)
10776 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10780 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10781 tem = ada_value_equal (arg1, arg2);
10783 if (op == BINOP_NOTEQUAL)
10785 type = language_bool_type (exp->language_defn, exp->gdbarch);
10786 return value_from_longest (type, (LONGEST) tem);
10789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10790 if (noside == EVAL_SKIP)
10792 else if (ada_is_fixed_point_type (value_type (arg1)))
10793 return value_cast (value_type (arg1), value_neg (arg1));
10796 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10797 return value_neg (arg1);
10800 case BINOP_LOGICAL_AND:
10801 case BINOP_LOGICAL_OR:
10802 case UNOP_LOGICAL_NOT:
10807 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10808 type = language_bool_type (exp->language_defn, exp->gdbarch);
10809 return value_cast (type, val);
10812 case BINOP_BITWISE_AND:
10813 case BINOP_BITWISE_IOR:
10814 case BINOP_BITWISE_XOR:
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10820 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10822 return value_cast (value_type (arg1), val);
10828 if (noside == EVAL_SKIP)
10834 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10835 /* Only encountered when an unresolved symbol occurs in a
10836 context other than a function call, in which case, it is
10838 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10839 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10843 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10844 /* Check to see if this is a tagged type. We also need to handle
10845 the case where the type is a reference to a tagged type, but
10846 we have to be careful to exclude pointers to tagged types.
10847 The latter should be shown as usual (as a pointer), whereas
10848 a reference should mostly be transparent to the user. */
10849 if (ada_is_tagged_type (type, 0)
10850 || (TYPE_CODE (type) == TYPE_CODE_REF
10851 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10853 /* Tagged types are a little special in the fact that the real
10854 type is dynamic and can only be determined by inspecting the
10855 object's tag. This means that we need to get the object's
10856 value first (EVAL_NORMAL) and then extract the actual object
10859 Note that we cannot skip the final step where we extract
10860 the object type from its tag, because the EVAL_NORMAL phase
10861 results in dynamic components being resolved into fixed ones.
10862 This can cause problems when trying to print the type
10863 description of tagged types whose parent has a dynamic size:
10864 We use the type name of the "_parent" component in order
10865 to print the name of the ancestor type in the type description.
10866 If that component had a dynamic size, the resolution into
10867 a fixed type would result in the loss of that type name,
10868 thus preventing us from printing the name of the ancestor
10869 type in the type description. */
10870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10872 if (TYPE_CODE (type) != TYPE_CODE_REF)
10874 struct type *actual_type;
10876 actual_type = type_from_tag (ada_value_tag (arg1));
10877 if (actual_type == NULL)
10878 /* If, for some reason, we were unable to determine
10879 the actual type from the tag, then use the static
10880 approximation that we just computed as a fallback.
10881 This can happen if the debugging information is
10882 incomplete, for instance. */
10883 actual_type = type;
10884 return value_zero (actual_type, not_lval);
10888 /* In the case of a ref, ada_coerce_ref takes care
10889 of determining the actual type. But the evaluation
10890 should return a ref as it should be valid to ask
10891 for its address; so rebuild a ref after coerce. */
10892 arg1 = ada_coerce_ref (arg1);
10893 return value_ref (arg1, TYPE_CODE_REF);
10897 /* Records and unions for which GNAT encodings have been
10898 generated need to be statically fixed as well.
10899 Otherwise, non-static fixing produces a type where
10900 all dynamic properties are removed, which prevents "ptype"
10901 from being able to completely describe the type.
10902 For instance, a case statement in a variant record would be
10903 replaced by the relevant components based on the actual
10904 value of the discriminants. */
10905 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10906 && dynamic_template_type (type) != NULL)
10907 || (TYPE_CODE (type) == TYPE_CODE_UNION
10908 && ada_find_parallel_type (type, "___XVU") != NULL))
10911 return value_zero (to_static_fixed_type (type), not_lval);
10915 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10916 return ada_to_fixed_value (arg1);
10921 /* Allocate arg vector, including space for the function to be
10922 called in argvec[0] and a terminating NULL. */
10923 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10924 argvec = XALLOCAVEC (struct value *, nargs + 2);
10926 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10927 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10928 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10929 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10932 for (tem = 0; tem <= nargs; tem += 1)
10933 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10936 if (noside == EVAL_SKIP)
10940 if (ada_is_constrained_packed_array_type
10941 (desc_base_type (value_type (argvec[0]))))
10942 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10943 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10944 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10945 /* This is a packed array that has already been fixed, and
10946 therefore already coerced to a simple array. Nothing further
10949 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10951 /* Make sure we dereference references so that all the code below
10952 feels like it's really handling the referenced value. Wrapping
10953 types (for alignment) may be there, so make sure we strip them as
10955 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10957 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10958 && VALUE_LVAL (argvec[0]) == lval_memory)
10959 argvec[0] = value_addr (argvec[0]);
10961 type = ada_check_typedef (value_type (argvec[0]));
10963 /* Ada allows us to implicitly dereference arrays when subscripting
10964 them. So, if this is an array typedef (encoding use for array
10965 access types encoded as fat pointers), strip it now. */
10966 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10967 type = ada_typedef_target_type (type);
10969 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10971 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10973 case TYPE_CODE_FUNC:
10974 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10976 case TYPE_CODE_ARRAY:
10978 case TYPE_CODE_STRUCT:
10979 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10980 argvec[0] = ada_value_ind (argvec[0]);
10981 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10984 error (_("cannot subscript or call something of type `%s'"),
10985 ada_type_name (value_type (argvec[0])));
10990 switch (TYPE_CODE (type))
10992 case TYPE_CODE_FUNC:
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10995 if (TYPE_TARGET_TYPE (type) == NULL)
10996 error_call_unknown_return_type (NULL);
10997 return allocate_value (TYPE_TARGET_TYPE (type));
10999 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
11000 case TYPE_CODE_INTERNAL_FUNCTION:
11001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11002 /* We don't know anything about what the internal
11003 function might return, but we have to return
11005 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11008 return call_internal_function (exp->gdbarch, exp->language_defn,
11009 argvec[0], nargs, argvec + 1);
11011 case TYPE_CODE_STRUCT:
11015 arity = ada_array_arity (type);
11016 type = ada_array_element_type (type, nargs);
11018 error (_("cannot subscript or call a record"));
11019 if (arity != nargs)
11020 error (_("wrong number of subscripts; expecting %d"), arity);
11021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022 return value_zero (ada_aligned_type (type), lval_memory);
11024 unwrap_value (ada_value_subscript
11025 (argvec[0], nargs, argvec + 1));
11027 case TYPE_CODE_ARRAY:
11028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11030 type = ada_array_element_type (type, nargs);
11032 error (_("element type of array unknown"));
11034 return value_zero (ada_aligned_type (type), lval_memory);
11037 unwrap_value (ada_value_subscript
11038 (ada_coerce_to_simple_array (argvec[0]),
11039 nargs, argvec + 1));
11040 case TYPE_CODE_PTR: /* Pointer to array */
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11043 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11044 type = ada_array_element_type (type, nargs);
11046 error (_("element type of array unknown"));
11048 return value_zero (ada_aligned_type (type), lval_memory);
11051 unwrap_value (ada_value_ptr_subscript (argvec[0],
11052 nargs, argvec + 1));
11055 error (_("Attempt to index or call something other than an "
11056 "array or function"));
11061 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11062 struct value *low_bound_val =
11063 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064 struct value *high_bound_val =
11065 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11067 LONGEST high_bound;
11069 low_bound_val = coerce_ref (low_bound_val);
11070 high_bound_val = coerce_ref (high_bound_val);
11071 low_bound = value_as_long (low_bound_val);
11072 high_bound = value_as_long (high_bound_val);
11074 if (noside == EVAL_SKIP)
11077 /* If this is a reference to an aligner type, then remove all
11079 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11080 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11081 TYPE_TARGET_TYPE (value_type (array)) =
11082 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11084 if (ada_is_constrained_packed_array_type (value_type (array)))
11085 error (_("cannot slice a packed array"));
11087 /* If this is a reference to an array or an array lvalue,
11088 convert to a pointer. */
11089 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11090 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11091 && VALUE_LVAL (array) == lval_memory))
11092 array = value_addr (array);
11094 if (noside == EVAL_AVOID_SIDE_EFFECTS
11095 && ada_is_array_descriptor_type (ada_check_typedef
11096 (value_type (array))))
11097 return empty_array (ada_type_of_array (array, 0), low_bound);
11099 array = ada_coerce_to_simple_array_ptr (array);
11101 /* If we have more than one level of pointer indirection,
11102 dereference the value until we get only one level. */
11103 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11104 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11106 array = value_ind (array);
11108 /* Make sure we really do have an array type before going further,
11109 to avoid a SEGV when trying to get the index type or the target
11110 type later down the road if the debug info generated by
11111 the compiler is incorrect or incomplete. */
11112 if (!ada_is_simple_array_type (value_type (array)))
11113 error (_("cannot take slice of non-array"));
11115 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11118 struct type *type0 = ada_check_typedef (value_type (array));
11120 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11121 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11124 struct type *arr_type0 =
11125 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11127 return ada_value_slice_from_ptr (array, arr_type0,
11128 longest_to_int (low_bound),
11129 longest_to_int (high_bound));
11132 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11134 else if (high_bound < low_bound)
11135 return empty_array (value_type (array), low_bound);
11137 return ada_value_slice (array, longest_to_int (low_bound),
11138 longest_to_int (high_bound));
11141 case UNOP_IN_RANGE:
11143 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11144 type = check_typedef (exp->elts[pc + 1].type);
11146 if (noside == EVAL_SKIP)
11149 switch (TYPE_CODE (type))
11152 lim_warning (_("Membership test incompletely implemented; "
11153 "always returns true"));
11154 type = language_bool_type (exp->language_defn, exp->gdbarch);
11155 return value_from_longest (type, (LONGEST) 1);
11157 case TYPE_CODE_RANGE:
11158 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11159 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
11164 value_from_longest (type,
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11171 case BINOP_IN_BOUNDS:
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11176 if (noside == EVAL_SKIP)
11179 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11181 type = language_bool_type (exp->language_defn, exp->gdbarch);
11182 return value_zero (type, not_lval);
11185 tem = longest_to_int (exp->elts[pc + 1].longconst);
11187 type = ada_index_type (value_type (arg2), tem, "range");
11189 type = value_type (arg1);
11191 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11192 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11194 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11195 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11196 type = language_bool_type (exp->language_defn, exp->gdbarch);
11198 value_from_longest (type,
11199 (value_less (arg1, arg3)
11200 || value_equal (arg1, arg3))
11201 && (value_less (arg2, arg1)
11202 || value_equal (arg2, arg1)));
11204 case TERNOP_IN_RANGE:
11205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11209 if (noside == EVAL_SKIP)
11212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11214 type = language_bool_type (exp->language_defn, exp->gdbarch);
11216 value_from_longest (type,
11217 (value_less (arg1, arg3)
11218 || value_equal (arg1, arg3))
11219 && (value_less (arg2, arg1)
11220 || value_equal (arg2, arg1)));
11224 case OP_ATR_LENGTH:
11226 struct type *type_arg;
11228 if (exp->elts[*pos].opcode == OP_TYPE)
11230 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11232 type_arg = check_typedef (exp->elts[pc + 2].type);
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 if (exp->elts[*pos].opcode != OP_LONG)
11241 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11242 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11245 if (noside == EVAL_SKIP)
11248 if (type_arg == NULL)
11250 arg1 = ada_coerce_ref (arg1);
11252 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11253 arg1 = ada_coerce_to_simple_array (arg1);
11255 if (op == OP_ATR_LENGTH)
11256 type = builtin_type (exp->gdbarch)->builtin_int;
11259 type = ada_index_type (value_type (arg1), tem,
11260 ada_attribute_name (op));
11262 type = builtin_type (exp->gdbarch)->builtin_int;
11265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11266 return allocate_value (type);
11270 default: /* Should never happen. */
11271 error (_("unexpected attribute encountered"));
11273 return value_from_longest
11274 (type, ada_array_bound (arg1, tem, 0));
11276 return value_from_longest
11277 (type, ada_array_bound (arg1, tem, 1));
11278 case OP_ATR_LENGTH:
11279 return value_from_longest
11280 (type, ada_array_length (arg1, tem));
11283 else if (discrete_type_p (type_arg))
11285 struct type *range_type;
11286 const char *name = ada_type_name (type_arg);
11289 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11290 range_type = to_fixed_range_type (type_arg, NULL);
11291 if (range_type == NULL)
11292 range_type = type_arg;
11296 error (_("unexpected attribute encountered"));
11298 return value_from_longest
11299 (range_type, ada_discrete_type_low_bound (range_type));
11301 return value_from_longest
11302 (range_type, ada_discrete_type_high_bound (range_type));
11303 case OP_ATR_LENGTH:
11304 error (_("the 'length attribute applies only to array types"));
11307 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11308 error (_("unimplemented type attribute"));
11313 if (ada_is_constrained_packed_array_type (type_arg))
11314 type_arg = decode_constrained_packed_array_type (type_arg);
11316 if (op == OP_ATR_LENGTH)
11317 type = builtin_type (exp->gdbarch)->builtin_int;
11320 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11322 type = builtin_type (exp->gdbarch)->builtin_int;
11325 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11326 return allocate_value (type);
11331 error (_("unexpected attribute encountered"));
11333 low = ada_array_bound_from_type (type_arg, tem, 0);
11334 return value_from_longest (type, low);
11336 high = ada_array_bound_from_type (type_arg, tem, 1);
11337 return value_from_longest (type, high);
11338 case OP_ATR_LENGTH:
11339 low = ada_array_bound_from_type (type_arg, tem, 0);
11340 high = ada_array_bound_from_type (type_arg, tem, 1);
11341 return value_from_longest (type, high - low + 1);
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11348 if (noside == EVAL_SKIP)
11351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11352 return value_zero (ada_tag_type (arg1), not_lval);
11354 return ada_value_tag (arg1);
11358 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11360 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11361 if (noside == EVAL_SKIP)
11363 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11364 return value_zero (value_type (arg1), not_lval);
11367 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11368 return value_binop (arg1, arg2,
11369 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11372 case OP_ATR_MODULUS:
11374 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11376 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11377 if (noside == EVAL_SKIP)
11380 if (!ada_is_modular_type (type_arg))
11381 error (_("'modulus must be applied to modular type"));
11383 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11384 ada_modulus (type_arg));
11389 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11391 if (noside == EVAL_SKIP)
11393 type = builtin_type (exp->gdbarch)->builtin_int;
11394 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11395 return value_zero (type, not_lval);
11397 return value_pos_atr (type, arg1);
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 type = value_type (arg1);
11403 /* If the argument is a reference, then dereference its type, since
11404 the user is really asking for the size of the actual object,
11405 not the size of the pointer. */
11406 if (TYPE_CODE (type) == TYPE_CODE_REF)
11407 type = TYPE_TARGET_TYPE (type);
11409 if (noside == EVAL_SKIP)
11411 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11412 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11414 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11415 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11418 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11420 type = exp->elts[pc + 2].type;
11421 if (noside == EVAL_SKIP)
11423 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11424 return value_zero (type, not_lval);
11426 return value_val_atr (type, arg1);
11429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11430 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11431 if (noside == EVAL_SKIP)
11433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11434 return value_zero (value_type (arg1), not_lval);
11437 /* For integer exponentiation operations,
11438 only promote the first argument. */
11439 if (is_integral_type (value_type (arg2)))
11440 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11442 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11444 return value_binop (arg1, arg2, op);
11448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11449 if (noside == EVAL_SKIP)
11455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11456 if (noside == EVAL_SKIP)
11458 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11459 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11460 return value_neg (arg1);
11465 preeval_pos = *pos;
11466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11467 if (noside == EVAL_SKIP)
11469 type = ada_check_typedef (value_type (arg1));
11470 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11472 if (ada_is_array_descriptor_type (type))
11473 /* GDB allows dereferencing GNAT array descriptors. */
11475 struct type *arrType = ada_type_of_array (arg1, 0);
11477 if (arrType == NULL)
11478 error (_("Attempt to dereference null array pointer."));
11479 return value_at_lazy (arrType, 0);
11481 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11482 || TYPE_CODE (type) == TYPE_CODE_REF
11483 /* In C you can dereference an array to get the 1st elt. */
11484 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11486 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11487 only be determined by inspecting the object's tag.
11488 This means that we need to evaluate completely the
11489 expression in order to get its type. */
11491 if ((TYPE_CODE (type) == TYPE_CODE_REF
11492 || TYPE_CODE (type) == TYPE_CODE_PTR)
11493 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11495 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11497 type = value_type (ada_value_ind (arg1));
11501 type = to_static_fixed_type
11503 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11505 ada_ensure_varsize_limit (type);
11506 return value_zero (type, lval_memory);
11508 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11510 /* GDB allows dereferencing an int. */
11511 if (expect_type == NULL)
11512 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11517 to_static_fixed_type (ada_aligned_type (expect_type));
11518 return value_zero (expect_type, lval_memory);
11522 error (_("Attempt to take contents of a non-pointer value."));
11524 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11525 type = ada_check_typedef (value_type (arg1));
11527 if (TYPE_CODE (type) == TYPE_CODE_INT)
11528 /* GDB allows dereferencing an int. If we were given
11529 the expect_type, then use that as the target type.
11530 Otherwise, assume that the target type is an int. */
11532 if (expect_type != NULL)
11533 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11536 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11537 (CORE_ADDR) value_as_address (arg1));
11540 if (ada_is_array_descriptor_type (type))
11541 /* GDB allows dereferencing GNAT array descriptors. */
11542 return ada_coerce_to_simple_array (arg1);
11544 return ada_value_ind (arg1);
11546 case STRUCTOP_STRUCT:
11547 tem = longest_to_int (exp->elts[pc + 1].longconst);
11548 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11549 preeval_pos = *pos;
11550 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11551 if (noside == EVAL_SKIP)
11553 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11555 struct type *type1 = value_type (arg1);
11557 if (ada_is_tagged_type (type1, 1))
11559 type = ada_lookup_struct_elt_type (type1,
11560 &exp->elts[pc + 2].string,
11563 /* If the field is not found, check if it exists in the
11564 extension of this object's type. This means that we
11565 need to evaluate completely the expression. */
11569 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11571 arg1 = ada_value_struct_elt (arg1,
11572 &exp->elts[pc + 2].string,
11574 arg1 = unwrap_value (arg1);
11575 type = value_type (ada_to_fixed_value (arg1));
11580 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11583 return value_zero (ada_aligned_type (type), lval_memory);
11587 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11588 arg1 = unwrap_value (arg1);
11589 return ada_to_fixed_value (arg1);
11593 /* The value is not supposed to be used. This is here to make it
11594 easier to accommodate expressions that contain types. */
11596 if (noside == EVAL_SKIP)
11598 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11599 return allocate_value (exp->elts[pc + 1].type);
11601 error (_("Attempt to use a type name as an expression"));
11606 case OP_DISCRETE_RANGE:
11607 case OP_POSITIONAL:
11609 if (noside == EVAL_NORMAL)
11613 error (_("Undefined name, ambiguous name, or renaming used in "
11614 "component association: %s."), &exp->elts[pc+2].string);
11616 error (_("Aggregates only allowed on the right of an assignment"));
11618 internal_error (__FILE__, __LINE__,
11619 _("aggregate apparently mangled"));
11622 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11624 for (tem = 0; tem < nargs; tem += 1)
11625 ada_evaluate_subexp (NULL, exp, pos, noside);
11630 return eval_skip_value (exp);
11636 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11637 type name that encodes the 'small and 'delta information.
11638 Otherwise, return NULL. */
11640 static const char *
11641 fixed_type_info (struct type *type)
11643 const char *name = ada_type_name (type);
11644 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11646 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11648 const char *tail = strstr (name, "___XF_");
11655 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11656 return fixed_type_info (TYPE_TARGET_TYPE (type));
11661 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11664 ada_is_fixed_point_type (struct type *type)
11666 return fixed_type_info (type) != NULL;
11669 /* Return non-zero iff TYPE represents a System.Address type. */
11672 ada_is_system_address_type (struct type *type)
11674 return (TYPE_NAME (type)
11675 && strcmp (TYPE_NAME (type), "system__address") == 0);
11678 /* Assuming that TYPE is the representation of an Ada fixed-point
11679 type, return the target floating-point type to be used to represent
11680 of this type during internal computation. */
11682 static struct type *
11683 ada_scaling_type (struct type *type)
11685 return builtin_type (get_type_arch (type))->builtin_long_double;
11688 /* Assuming that TYPE is the representation of an Ada fixed-point
11689 type, return its delta, or NULL if the type is malformed and the
11690 delta cannot be determined. */
11693 ada_delta (struct type *type)
11695 const char *encoding = fixed_type_info (type);
11696 struct type *scale_type = ada_scaling_type (type);
11698 long long num, den;
11700 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11703 return value_binop (value_from_longest (scale_type, num),
11704 value_from_longest (scale_type, den), BINOP_DIV);
11707 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11708 factor ('SMALL value) associated with the type. */
11711 ada_scaling_factor (struct type *type)
11713 const char *encoding = fixed_type_info (type);
11714 struct type *scale_type = ada_scaling_type (type);
11716 long long num0, den0, num1, den1;
11719 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11720 &num0, &den0, &num1, &den1);
11723 return value_from_longest (scale_type, 1);
11725 return value_binop (value_from_longest (scale_type, num1),
11726 value_from_longest (scale_type, den1), BINOP_DIV);
11728 return value_binop (value_from_longest (scale_type, num0),
11729 value_from_longest (scale_type, den0), BINOP_DIV);
11736 /* Scan STR beginning at position K for a discriminant name, and
11737 return the value of that discriminant field of DVAL in *PX. If
11738 PNEW_K is not null, put the position of the character beyond the
11739 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11740 not alter *PX and *PNEW_K if unsuccessful. */
11743 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11746 static char *bound_buffer = NULL;
11747 static size_t bound_buffer_len = 0;
11748 const char *pstart, *pend, *bound;
11749 struct value *bound_val;
11751 if (dval == NULL || str == NULL || str[k] == '\0')
11755 pend = strstr (pstart, "__");
11759 k += strlen (bound);
11763 int len = pend - pstart;
11765 /* Strip __ and beyond. */
11766 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11767 strncpy (bound_buffer, pstart, len);
11768 bound_buffer[len] = '\0';
11770 bound = bound_buffer;
11774 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11775 if (bound_val == NULL)
11778 *px = value_as_long (bound_val);
11779 if (pnew_k != NULL)
11784 /* Value of variable named NAME in the current environment. If
11785 no such variable found, then if ERR_MSG is null, returns 0, and
11786 otherwise causes an error with message ERR_MSG. */
11788 static struct value *
11789 get_var_value (const char *name, const char *err_msg)
11791 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11793 std::vector<struct block_symbol> syms;
11794 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11795 get_selected_block (0),
11796 VAR_DOMAIN, &syms, 1);
11800 if (err_msg == NULL)
11803 error (("%s"), err_msg);
11806 return value_of_variable (syms[0].symbol, syms[0].block);
11809 /* Value of integer variable named NAME in the current environment.
11810 If no such variable is found, returns false. Otherwise, sets VALUE
11811 to the variable's value and returns true. */
11814 get_int_var_value (const char *name, LONGEST &value)
11816 struct value *var_val = get_var_value (name, 0);
11821 value = value_as_long (var_val);
11826 /* Return a range type whose base type is that of the range type named
11827 NAME in the current environment, and whose bounds are calculated
11828 from NAME according to the GNAT range encoding conventions.
11829 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11830 corresponding range type from debug information; fall back to using it
11831 if symbol lookup fails. If a new type must be created, allocate it
11832 like ORIG_TYPE was. The bounds information, in general, is encoded
11833 in NAME, the base type given in the named range type. */
11835 static struct type *
11836 to_fixed_range_type (struct type *raw_type, struct value *dval)
11839 struct type *base_type;
11840 const char *subtype_info;
11842 gdb_assert (raw_type != NULL);
11843 gdb_assert (TYPE_NAME (raw_type) != NULL);
11845 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11846 base_type = TYPE_TARGET_TYPE (raw_type);
11848 base_type = raw_type;
11850 name = TYPE_NAME (raw_type);
11851 subtype_info = strstr (name, "___XD");
11852 if (subtype_info == NULL)
11854 LONGEST L = ada_discrete_type_low_bound (raw_type);
11855 LONGEST U = ada_discrete_type_high_bound (raw_type);
11857 if (L < INT_MIN || U > INT_MAX)
11860 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11865 static char *name_buf = NULL;
11866 static size_t name_len = 0;
11867 int prefix_len = subtype_info - name;
11870 const char *bounds_str;
11873 GROW_VECT (name_buf, name_len, prefix_len + 5);
11874 strncpy (name_buf, name, prefix_len);
11875 name_buf[prefix_len] = '\0';
11878 bounds_str = strchr (subtype_info, '_');
11881 if (*subtype_info == 'L')
11883 if (!ada_scan_number (bounds_str, n, &L, &n)
11884 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11886 if (bounds_str[n] == '_')
11888 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11894 strcpy (name_buf + prefix_len, "___L");
11895 if (!get_int_var_value (name_buf, L))
11897 lim_warning (_("Unknown lower bound, using 1."));
11902 if (*subtype_info == 'U')
11904 if (!ada_scan_number (bounds_str, n, &U, &n)
11905 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11910 strcpy (name_buf + prefix_len, "___U");
11911 if (!get_int_var_value (name_buf, U))
11913 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11918 type = create_static_range_type (alloc_type_copy (raw_type),
11920 /* create_static_range_type alters the resulting type's length
11921 to match the size of the base_type, which is not what we want.
11922 Set it back to the original range type's length. */
11923 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11924 TYPE_NAME (type) = name;
11929 /* True iff NAME is the name of a range type. */
11932 ada_is_range_type_name (const char *name)
11934 return (name != NULL && strstr (name, "___XD"));
11938 /* Modular types */
11940 /* True iff TYPE is an Ada modular type. */
11943 ada_is_modular_type (struct type *type)
11945 struct type *subranged_type = get_base_type (type);
11947 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11948 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11949 && TYPE_UNSIGNED (subranged_type));
11952 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11955 ada_modulus (struct type *type)
11957 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11961 /* Ada exception catchpoint support:
11962 ---------------------------------
11964 We support 3 kinds of exception catchpoints:
11965 . catchpoints on Ada exceptions
11966 . catchpoints on unhandled Ada exceptions
11967 . catchpoints on failed assertions
11969 Exceptions raised during failed assertions, or unhandled exceptions
11970 could perfectly be caught with the general catchpoint on Ada exceptions.
11971 However, we can easily differentiate these two special cases, and having
11972 the option to distinguish these two cases from the rest can be useful
11973 to zero-in on certain situations.
11975 Exception catchpoints are a specialized form of breakpoint,
11976 since they rely on inserting breakpoints inside known routines
11977 of the GNAT runtime. The implementation therefore uses a standard
11978 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11981 Support in the runtime for exception catchpoints have been changed
11982 a few times already, and these changes affect the implementation
11983 of these catchpoints. In order to be able to support several
11984 variants of the runtime, we use a sniffer that will determine
11985 the runtime variant used by the program being debugged. */
11987 /* Ada's standard exceptions.
11989 The Ada 83 standard also defined Numeric_Error. But there so many
11990 situations where it was unclear from the Ada 83 Reference Manual
11991 (RM) whether Constraint_Error or Numeric_Error should be raised,
11992 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11993 Interpretation saying that anytime the RM says that Numeric_Error
11994 should be raised, the implementation may raise Constraint_Error.
11995 Ada 95 went one step further and pretty much removed Numeric_Error
11996 from the list of standard exceptions (it made it a renaming of
11997 Constraint_Error, to help preserve compatibility when compiling
11998 an Ada83 compiler). As such, we do not include Numeric_Error from
11999 this list of standard exceptions. */
12001 static const char *standard_exc[] = {
12002 "constraint_error",
12008 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12010 /* A structure that describes how to support exception catchpoints
12011 for a given executable. */
12013 struct exception_support_info
12015 /* The name of the symbol to break on in order to insert
12016 a catchpoint on exceptions. */
12017 const char *catch_exception_sym;
12019 /* The name of the symbol to break on in order to insert
12020 a catchpoint on unhandled exceptions. */
12021 const char *catch_exception_unhandled_sym;
12023 /* The name of the symbol to break on in order to insert
12024 a catchpoint on failed assertions. */
12025 const char *catch_assert_sym;
12027 /* The name of the symbol to break on in order to insert
12028 a catchpoint on exception handling. */
12029 const char *catch_handlers_sym;
12031 /* Assuming that the inferior just triggered an unhandled exception
12032 catchpoint, this function is responsible for returning the address
12033 in inferior memory where the name of that exception is stored.
12034 Return zero if the address could not be computed. */
12035 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12038 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12039 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12041 /* The following exception support info structure describes how to
12042 implement exception catchpoints with the latest version of the
12043 Ada runtime (as of 2007-03-06). */
12045 static const struct exception_support_info default_exception_support_info =
12047 "__gnat_debug_raise_exception", /* catch_exception_sym */
12048 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12049 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12050 "__gnat_begin_handler", /* catch_handlers_sym */
12051 ada_unhandled_exception_name_addr
12054 /* The following exception support info structure describes how to
12055 implement exception catchpoints with a slightly older version
12056 of the Ada runtime. */
12058 static const struct exception_support_info exception_support_info_fallback =
12060 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12061 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12062 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12063 "__gnat_begin_handler", /* catch_handlers_sym */
12064 ada_unhandled_exception_name_addr_from_raise
12067 /* Return nonzero if we can detect the exception support routines
12068 described in EINFO.
12070 This function errors out if an abnormal situation is detected
12071 (for instance, if we find the exception support routines, but
12072 that support is found to be incomplete). */
12075 ada_has_this_exception_support (const struct exception_support_info *einfo)
12077 struct symbol *sym;
12079 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12080 that should be compiled with debugging information. As a result, we
12081 expect to find that symbol in the symtabs. */
12083 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12086 /* Perhaps we did not find our symbol because the Ada runtime was
12087 compiled without debugging info, or simply stripped of it.
12088 It happens on some GNU/Linux distributions for instance, where
12089 users have to install a separate debug package in order to get
12090 the runtime's debugging info. In that situation, let the user
12091 know why we cannot insert an Ada exception catchpoint.
12093 Note: Just for the purpose of inserting our Ada exception
12094 catchpoint, we could rely purely on the associated minimal symbol.
12095 But we would be operating in degraded mode anyway, since we are
12096 still lacking the debugging info needed later on to extract
12097 the name of the exception being raised (this name is printed in
12098 the catchpoint message, and is also used when trying to catch
12099 a specific exception). We do not handle this case for now. */
12100 struct bound_minimal_symbol msym
12101 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12103 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12104 error (_("Your Ada runtime appears to be missing some debugging "
12105 "information.\nCannot insert Ada exception catchpoint "
12106 "in this configuration."));
12111 /* Make sure that the symbol we found corresponds to a function. */
12113 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12114 error (_("Symbol \"%s\" is not a function (class = %d)"),
12115 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12120 /* Inspect the Ada runtime and determine which exception info structure
12121 should be used to provide support for exception catchpoints.
12123 This function will always set the per-inferior exception_info,
12124 or raise an error. */
12127 ada_exception_support_info_sniffer (void)
12129 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12131 /* If the exception info is already known, then no need to recompute it. */
12132 if (data->exception_info != NULL)
12135 /* Check the latest (default) exception support info. */
12136 if (ada_has_this_exception_support (&default_exception_support_info))
12138 data->exception_info = &default_exception_support_info;
12142 /* Try our fallback exception suport info. */
12143 if (ada_has_this_exception_support (&exception_support_info_fallback))
12145 data->exception_info = &exception_support_info_fallback;
12149 /* Sometimes, it is normal for us to not be able to find the routine
12150 we are looking for. This happens when the program is linked with
12151 the shared version of the GNAT runtime, and the program has not been
12152 started yet. Inform the user of these two possible causes if
12155 if (ada_update_initial_language (language_unknown) != language_ada)
12156 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12158 /* If the symbol does not exist, then check that the program is
12159 already started, to make sure that shared libraries have been
12160 loaded. If it is not started, this may mean that the symbol is
12161 in a shared library. */
12163 if (inferior_ptid.pid () == 0)
12164 error (_("Unable to insert catchpoint. Try to start the program first."));
12166 /* At this point, we know that we are debugging an Ada program and
12167 that the inferior has been started, but we still are not able to
12168 find the run-time symbols. That can mean that we are in
12169 configurable run time mode, or that a-except as been optimized
12170 out by the linker... In any case, at this point it is not worth
12171 supporting this feature. */
12173 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12176 /* True iff FRAME is very likely to be that of a function that is
12177 part of the runtime system. This is all very heuristic, but is
12178 intended to be used as advice as to what frames are uninteresting
12182 is_known_support_routine (struct frame_info *frame)
12184 enum language func_lang;
12186 const char *fullname;
12188 /* If this code does not have any debugging information (no symtab),
12189 This cannot be any user code. */
12191 symtab_and_line sal = find_frame_sal (frame);
12192 if (sal.symtab == NULL)
12195 /* If there is a symtab, but the associated source file cannot be
12196 located, then assume this is not user code: Selecting a frame
12197 for which we cannot display the code would not be very helpful
12198 for the user. This should also take care of case such as VxWorks
12199 where the kernel has some debugging info provided for a few units. */
12201 fullname = symtab_to_fullname (sal.symtab);
12202 if (access (fullname, R_OK) != 0)
12205 /* Check the unit filename againt the Ada runtime file naming.
12206 We also check the name of the objfile against the name of some
12207 known system libraries that sometimes come with debugging info
12210 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12212 re_comp (known_runtime_file_name_patterns[i]);
12213 if (re_exec (lbasename (sal.symtab->filename)))
12215 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12216 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12220 /* Check whether the function is a GNAT-generated entity. */
12222 gdb::unique_xmalloc_ptr<char> func_name
12223 = find_frame_funname (frame, &func_lang, NULL);
12224 if (func_name == NULL)
12227 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12229 re_comp (known_auxiliary_function_name_patterns[i]);
12230 if (re_exec (func_name.get ()))
12237 /* Find the first frame that contains debugging information and that is not
12238 part of the Ada run-time, starting from FI and moving upward. */
12241 ada_find_printable_frame (struct frame_info *fi)
12243 for (; fi != NULL; fi = get_prev_frame (fi))
12245 if (!is_known_support_routine (fi))
12254 /* Assuming that the inferior just triggered an unhandled exception
12255 catchpoint, return the address in inferior memory where the name
12256 of the exception is stored.
12258 Return zero if the address could not be computed. */
12261 ada_unhandled_exception_name_addr (void)
12263 return parse_and_eval_address ("e.full_name");
12266 /* Same as ada_unhandled_exception_name_addr, except that this function
12267 should be used when the inferior uses an older version of the runtime,
12268 where the exception name needs to be extracted from a specific frame
12269 several frames up in the callstack. */
12272 ada_unhandled_exception_name_addr_from_raise (void)
12275 struct frame_info *fi;
12276 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12278 /* To determine the name of this exception, we need to select
12279 the frame corresponding to RAISE_SYM_NAME. This frame is
12280 at least 3 levels up, so we simply skip the first 3 frames
12281 without checking the name of their associated function. */
12282 fi = get_current_frame ();
12283 for (frame_level = 0; frame_level < 3; frame_level += 1)
12285 fi = get_prev_frame (fi);
12289 enum language func_lang;
12291 gdb::unique_xmalloc_ptr<char> func_name
12292 = find_frame_funname (fi, &func_lang, NULL);
12293 if (func_name != NULL)
12295 if (strcmp (func_name.get (),
12296 data->exception_info->catch_exception_sym) == 0)
12297 break; /* We found the frame we were looking for... */
12299 fi = get_prev_frame (fi);
12306 return parse_and_eval_address ("id.full_name");
12309 /* Assuming the inferior just triggered an Ada exception catchpoint
12310 (of any type), return the address in inferior memory where the name
12311 of the exception is stored, if applicable.
12313 Assumes the selected frame is the current frame.
12315 Return zero if the address could not be computed, or if not relevant. */
12318 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12319 struct breakpoint *b)
12321 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12325 case ada_catch_exception:
12326 return (parse_and_eval_address ("e.full_name"));
12329 case ada_catch_exception_unhandled:
12330 return data->exception_info->unhandled_exception_name_addr ();
12333 case ada_catch_handlers:
12334 return 0; /* The runtimes does not provide access to the exception
12338 case ada_catch_assert:
12339 return 0; /* Exception name is not relevant in this case. */
12343 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12347 return 0; /* Should never be reached. */
12350 /* Assuming the inferior is stopped at an exception catchpoint,
12351 return the message which was associated to the exception, if
12352 available. Return NULL if the message could not be retrieved.
12354 Note: The exception message can be associated to an exception
12355 either through the use of the Raise_Exception function, or
12356 more simply (Ada 2005 and later), via:
12358 raise Exception_Name with "exception message";
12362 static gdb::unique_xmalloc_ptr<char>
12363 ada_exception_message_1 (void)
12365 struct value *e_msg_val;
12368 /* For runtimes that support this feature, the exception message
12369 is passed as an unbounded string argument called "message". */
12370 e_msg_val = parse_and_eval ("message");
12371 if (e_msg_val == NULL)
12372 return NULL; /* Exception message not supported. */
12374 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12375 gdb_assert (e_msg_val != NULL);
12376 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12378 /* If the message string is empty, then treat it as if there was
12379 no exception message. */
12380 if (e_msg_len <= 0)
12383 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12384 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12385 e_msg.get ()[e_msg_len] = '\0';
12390 /* Same as ada_exception_message_1, except that all exceptions are
12391 contained here (returning NULL instead). */
12393 static gdb::unique_xmalloc_ptr<char>
12394 ada_exception_message (void)
12396 gdb::unique_xmalloc_ptr<char> e_msg;
12400 e_msg = ada_exception_message_1 ();
12402 CATCH (e, RETURN_MASK_ERROR)
12404 e_msg.reset (nullptr);
12411 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12412 any error that ada_exception_name_addr_1 might cause to be thrown.
12413 When an error is intercepted, a warning with the error message is printed,
12414 and zero is returned. */
12417 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12418 struct breakpoint *b)
12420 CORE_ADDR result = 0;
12424 result = ada_exception_name_addr_1 (ex, b);
12427 CATCH (e, RETURN_MASK_ERROR)
12429 warning (_("failed to get exception name: %s"), e.message);
12437 static std::string ada_exception_catchpoint_cond_string
12438 (const char *excep_string,
12439 enum ada_exception_catchpoint_kind ex);
12441 /* Ada catchpoints.
12443 In the case of catchpoints on Ada exceptions, the catchpoint will
12444 stop the target on every exception the program throws. When a user
12445 specifies the name of a specific exception, we translate this
12446 request into a condition expression (in text form), and then parse
12447 it into an expression stored in each of the catchpoint's locations.
12448 We then use this condition to check whether the exception that was
12449 raised is the one the user is interested in. If not, then the
12450 target is resumed again. We store the name of the requested
12451 exception, in order to be able to re-set the condition expression
12452 when symbols change. */
12454 /* An instance of this type is used to represent an Ada catchpoint
12455 breakpoint location. */
12457 class ada_catchpoint_location : public bp_location
12460 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12461 : bp_location (ops, owner)
12464 /* The condition that checks whether the exception that was raised
12465 is the specific exception the user specified on catchpoint
12467 expression_up excep_cond_expr;
12470 /* Implement the DTOR method in the bp_location_ops structure for all
12471 Ada exception catchpoint kinds. */
12474 ada_catchpoint_location_dtor (struct bp_location *bl)
12476 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12478 al->excep_cond_expr.reset ();
12481 /* The vtable to be used in Ada catchpoint locations. */
12483 static const struct bp_location_ops ada_catchpoint_location_ops =
12485 ada_catchpoint_location_dtor
12488 /* An instance of this type is used to represent an Ada catchpoint. */
12490 struct ada_catchpoint : public breakpoint
12492 /* The name of the specific exception the user specified. */
12493 std::string excep_string;
12496 /* Parse the exception condition string in the context of each of the
12497 catchpoint's locations, and store them for later evaluation. */
12500 create_excep_cond_exprs (struct ada_catchpoint *c,
12501 enum ada_exception_catchpoint_kind ex)
12503 struct bp_location *bl;
12505 /* Nothing to do if there's no specific exception to catch. */
12506 if (c->excep_string.empty ())
12509 /* Same if there are no locations... */
12510 if (c->loc == NULL)
12513 /* Compute the condition expression in text form, from the specific
12514 expection we want to catch. */
12515 std::string cond_string
12516 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12518 /* Iterate over all the catchpoint's locations, and parse an
12519 expression for each. */
12520 for (bl = c->loc; bl != NULL; bl = bl->next)
12522 struct ada_catchpoint_location *ada_loc
12523 = (struct ada_catchpoint_location *) bl;
12526 if (!bl->shlib_disabled)
12530 s = cond_string.c_str ();
12533 exp = parse_exp_1 (&s, bl->address,
12534 block_for_pc (bl->address),
12537 CATCH (e, RETURN_MASK_ERROR)
12539 warning (_("failed to reevaluate internal exception condition "
12540 "for catchpoint %d: %s"),
12541 c->number, e.message);
12546 ada_loc->excep_cond_expr = std::move (exp);
12550 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12551 structure for all exception catchpoint kinds. */
12553 static struct bp_location *
12554 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12555 struct breakpoint *self)
12557 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12560 /* Implement the RE_SET method in the breakpoint_ops structure for all
12561 exception catchpoint kinds. */
12564 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12566 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12568 /* Call the base class's method. This updates the catchpoint's
12570 bkpt_breakpoint_ops.re_set (b);
12572 /* Reparse the exception conditional expressions. One for each
12574 create_excep_cond_exprs (c, ex);
12577 /* Returns true if we should stop for this breakpoint hit. If the
12578 user specified a specific exception, we only want to cause a stop
12579 if the program thrown that exception. */
12582 should_stop_exception (const struct bp_location *bl)
12584 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12585 const struct ada_catchpoint_location *ada_loc
12586 = (const struct ada_catchpoint_location *) bl;
12589 /* With no specific exception, should always stop. */
12590 if (c->excep_string.empty ())
12593 if (ada_loc->excep_cond_expr == NULL)
12595 /* We will have a NULL expression if back when we were creating
12596 the expressions, this location's had failed to parse. */
12603 struct value *mark;
12605 mark = value_mark ();
12606 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12607 value_free_to_mark (mark);
12609 CATCH (ex, RETURN_MASK_ALL)
12611 exception_fprintf (gdb_stderr, ex,
12612 _("Error in testing exception condition:\n"));
12619 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12620 for all exception catchpoint kinds. */
12623 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12625 bs->stop = should_stop_exception (bs->bp_location_at);
12628 /* Implement the PRINT_IT method in the breakpoint_ops structure
12629 for all exception catchpoint kinds. */
12631 static enum print_stop_action
12632 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12634 struct ui_out *uiout = current_uiout;
12635 struct breakpoint *b = bs->breakpoint_at;
12637 annotate_catchpoint (b->number);
12639 if (uiout->is_mi_like_p ())
12641 uiout->field_string ("reason",
12642 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12643 uiout->field_string ("disp", bpdisp_text (b->disposition));
12646 uiout->text (b->disposition == disp_del
12647 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12648 uiout->field_int ("bkptno", b->number);
12649 uiout->text (", ");
12651 /* ada_exception_name_addr relies on the selected frame being the
12652 current frame. Need to do this here because this function may be
12653 called more than once when printing a stop, and below, we'll
12654 select the first frame past the Ada run-time (see
12655 ada_find_printable_frame). */
12656 select_frame (get_current_frame ());
12660 case ada_catch_exception:
12661 case ada_catch_exception_unhandled:
12662 case ada_catch_handlers:
12664 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12665 char exception_name[256];
12669 read_memory (addr, (gdb_byte *) exception_name,
12670 sizeof (exception_name) - 1);
12671 exception_name [sizeof (exception_name) - 1] = '\0';
12675 /* For some reason, we were unable to read the exception
12676 name. This could happen if the Runtime was compiled
12677 without debugging info, for instance. In that case,
12678 just replace the exception name by the generic string
12679 "exception" - it will read as "an exception" in the
12680 notification we are about to print. */
12681 memcpy (exception_name, "exception", sizeof ("exception"));
12683 /* In the case of unhandled exception breakpoints, we print
12684 the exception name as "unhandled EXCEPTION_NAME", to make
12685 it clearer to the user which kind of catchpoint just got
12686 hit. We used ui_out_text to make sure that this extra
12687 info does not pollute the exception name in the MI case. */
12688 if (ex == ada_catch_exception_unhandled)
12689 uiout->text ("unhandled ");
12690 uiout->field_string ("exception-name", exception_name);
12693 case ada_catch_assert:
12694 /* In this case, the name of the exception is not really
12695 important. Just print "failed assertion" to make it clearer
12696 that his program just hit an assertion-failure catchpoint.
12697 We used ui_out_text because this info does not belong in
12699 uiout->text ("failed assertion");
12703 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12704 if (exception_message != NULL)
12706 uiout->text (" (");
12707 uiout->field_string ("exception-message", exception_message.get ());
12711 uiout->text (" at ");
12712 ada_find_printable_frame (get_current_frame ());
12714 return PRINT_SRC_AND_LOC;
12717 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12718 for all exception catchpoint kinds. */
12721 print_one_exception (enum ada_exception_catchpoint_kind ex,
12722 struct breakpoint *b, struct bp_location **last_loc)
12724 struct ui_out *uiout = current_uiout;
12725 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12726 struct value_print_options opts;
12728 get_user_print_options (&opts);
12729 if (opts.addressprint)
12731 annotate_field (4);
12732 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12735 annotate_field (5);
12736 *last_loc = b->loc;
12739 case ada_catch_exception:
12740 if (!c->excep_string.empty ())
12742 std::string msg = string_printf (_("`%s' Ada exception"),
12743 c->excep_string.c_str ());
12745 uiout->field_string ("what", msg);
12748 uiout->field_string ("what", "all Ada exceptions");
12752 case ada_catch_exception_unhandled:
12753 uiout->field_string ("what", "unhandled Ada exceptions");
12756 case ada_catch_handlers:
12757 if (!c->excep_string.empty ())
12759 uiout->field_fmt ("what",
12760 _("`%s' Ada exception handlers"),
12761 c->excep_string.c_str ());
12764 uiout->field_string ("what", "all Ada exceptions handlers");
12767 case ada_catch_assert:
12768 uiout->field_string ("what", "failed Ada assertions");
12772 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12777 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12778 for all exception catchpoint kinds. */
12781 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12782 struct breakpoint *b)
12784 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12785 struct ui_out *uiout = current_uiout;
12787 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12788 : _("Catchpoint "));
12789 uiout->field_int ("bkptno", b->number);
12790 uiout->text (": ");
12794 case ada_catch_exception:
12795 if (!c->excep_string.empty ())
12797 std::string info = string_printf (_("`%s' Ada exception"),
12798 c->excep_string.c_str ());
12799 uiout->text (info.c_str ());
12802 uiout->text (_("all Ada exceptions"));
12805 case ada_catch_exception_unhandled:
12806 uiout->text (_("unhandled Ada exceptions"));
12809 case ada_catch_handlers:
12810 if (!c->excep_string.empty ())
12813 = string_printf (_("`%s' Ada exception handlers"),
12814 c->excep_string.c_str ());
12815 uiout->text (info.c_str ());
12818 uiout->text (_("all Ada exceptions handlers"));
12821 case ada_catch_assert:
12822 uiout->text (_("failed Ada assertions"));
12826 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12831 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12832 for all exception catchpoint kinds. */
12835 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12836 struct breakpoint *b, struct ui_file *fp)
12838 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12842 case ada_catch_exception:
12843 fprintf_filtered (fp, "catch exception");
12844 if (!c->excep_string.empty ())
12845 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12848 case ada_catch_exception_unhandled:
12849 fprintf_filtered (fp, "catch exception unhandled");
12852 case ada_catch_handlers:
12853 fprintf_filtered (fp, "catch handlers");
12856 case ada_catch_assert:
12857 fprintf_filtered (fp, "catch assert");
12861 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12863 print_recreate_thread (b, fp);
12866 /* Virtual table for "catch exception" breakpoints. */
12868 static struct bp_location *
12869 allocate_location_catch_exception (struct breakpoint *self)
12871 return allocate_location_exception (ada_catch_exception, self);
12875 re_set_catch_exception (struct breakpoint *b)
12877 re_set_exception (ada_catch_exception, b);
12881 check_status_catch_exception (bpstat bs)
12883 check_status_exception (ada_catch_exception, bs);
12886 static enum print_stop_action
12887 print_it_catch_exception (bpstat bs)
12889 return print_it_exception (ada_catch_exception, bs);
12893 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12895 print_one_exception (ada_catch_exception, b, last_loc);
12899 print_mention_catch_exception (struct breakpoint *b)
12901 print_mention_exception (ada_catch_exception, b);
12905 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12907 print_recreate_exception (ada_catch_exception, b, fp);
12910 static struct breakpoint_ops catch_exception_breakpoint_ops;
12912 /* Virtual table for "catch exception unhandled" breakpoints. */
12914 static struct bp_location *
12915 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12917 return allocate_location_exception (ada_catch_exception_unhandled, self);
12921 re_set_catch_exception_unhandled (struct breakpoint *b)
12923 re_set_exception (ada_catch_exception_unhandled, b);
12927 check_status_catch_exception_unhandled (bpstat bs)
12929 check_status_exception (ada_catch_exception_unhandled, bs);
12932 static enum print_stop_action
12933 print_it_catch_exception_unhandled (bpstat bs)
12935 return print_it_exception (ada_catch_exception_unhandled, bs);
12939 print_one_catch_exception_unhandled (struct breakpoint *b,
12940 struct bp_location **last_loc)
12942 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12946 print_mention_catch_exception_unhandled (struct breakpoint *b)
12948 print_mention_exception (ada_catch_exception_unhandled, b);
12952 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12953 struct ui_file *fp)
12955 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12958 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12960 /* Virtual table for "catch assert" breakpoints. */
12962 static struct bp_location *
12963 allocate_location_catch_assert (struct breakpoint *self)
12965 return allocate_location_exception (ada_catch_assert, self);
12969 re_set_catch_assert (struct breakpoint *b)
12971 re_set_exception (ada_catch_assert, b);
12975 check_status_catch_assert (bpstat bs)
12977 check_status_exception (ada_catch_assert, bs);
12980 static enum print_stop_action
12981 print_it_catch_assert (bpstat bs)
12983 return print_it_exception (ada_catch_assert, bs);
12987 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12989 print_one_exception (ada_catch_assert, b, last_loc);
12993 print_mention_catch_assert (struct breakpoint *b)
12995 print_mention_exception (ada_catch_assert, b);
12999 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13001 print_recreate_exception (ada_catch_assert, b, fp);
13004 static struct breakpoint_ops catch_assert_breakpoint_ops;
13006 /* Virtual table for "catch handlers" breakpoints. */
13008 static struct bp_location *
13009 allocate_location_catch_handlers (struct breakpoint *self)
13011 return allocate_location_exception (ada_catch_handlers, self);
13015 re_set_catch_handlers (struct breakpoint *b)
13017 re_set_exception (ada_catch_handlers, b);
13021 check_status_catch_handlers (bpstat bs)
13023 check_status_exception (ada_catch_handlers, bs);
13026 static enum print_stop_action
13027 print_it_catch_handlers (bpstat bs)
13029 return print_it_exception (ada_catch_handlers, bs);
13033 print_one_catch_handlers (struct breakpoint *b,
13034 struct bp_location **last_loc)
13036 print_one_exception (ada_catch_handlers, b, last_loc);
13040 print_mention_catch_handlers (struct breakpoint *b)
13042 print_mention_exception (ada_catch_handlers, b);
13046 print_recreate_catch_handlers (struct breakpoint *b,
13047 struct ui_file *fp)
13049 print_recreate_exception (ada_catch_handlers, b, fp);
13052 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13054 /* Split the arguments specified in a "catch exception" command.
13055 Set EX to the appropriate catchpoint type.
13056 Set EXCEP_STRING to the name of the specific exception if
13057 specified by the user.
13058 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13059 "catch handlers" command. False otherwise.
13060 If a condition is found at the end of the arguments, the condition
13061 expression is stored in COND_STRING (memory must be deallocated
13062 after use). Otherwise COND_STRING is set to NULL. */
13065 catch_ada_exception_command_split (const char *args,
13066 bool is_catch_handlers_cmd,
13067 enum ada_exception_catchpoint_kind *ex,
13068 std::string *excep_string,
13069 std::string *cond_string)
13071 std::string exception_name;
13073 exception_name = extract_arg (&args);
13074 if (exception_name == "if")
13076 /* This is not an exception name; this is the start of a condition
13077 expression for a catchpoint on all exceptions. So, "un-get"
13078 this token, and set exception_name to NULL. */
13079 exception_name.clear ();
13083 /* Check to see if we have a condition. */
13085 args = skip_spaces (args);
13086 if (startswith (args, "if")
13087 && (isspace (args[2]) || args[2] == '\0'))
13090 args = skip_spaces (args);
13092 if (args[0] == '\0')
13093 error (_("Condition missing after `if' keyword"));
13094 *cond_string = args;
13096 args += strlen (args);
13099 /* Check that we do not have any more arguments. Anything else
13102 if (args[0] != '\0')
13103 error (_("Junk at end of expression"));
13105 if (is_catch_handlers_cmd)
13107 /* Catch handling of exceptions. */
13108 *ex = ada_catch_handlers;
13109 *excep_string = exception_name;
13111 else if (exception_name.empty ())
13113 /* Catch all exceptions. */
13114 *ex = ada_catch_exception;
13115 excep_string->clear ();
13117 else if (exception_name == "unhandled")
13119 /* Catch unhandled exceptions. */
13120 *ex = ada_catch_exception_unhandled;
13121 excep_string->clear ();
13125 /* Catch a specific exception. */
13126 *ex = ada_catch_exception;
13127 *excep_string = exception_name;
13131 /* Return the name of the symbol on which we should break in order to
13132 implement a catchpoint of the EX kind. */
13134 static const char *
13135 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13137 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13139 gdb_assert (data->exception_info != NULL);
13143 case ada_catch_exception:
13144 return (data->exception_info->catch_exception_sym);
13146 case ada_catch_exception_unhandled:
13147 return (data->exception_info->catch_exception_unhandled_sym);
13149 case ada_catch_assert:
13150 return (data->exception_info->catch_assert_sym);
13152 case ada_catch_handlers:
13153 return (data->exception_info->catch_handlers_sym);
13156 internal_error (__FILE__, __LINE__,
13157 _("unexpected catchpoint kind (%d)"), ex);
13161 /* Return the breakpoint ops "virtual table" used for catchpoints
13164 static const struct breakpoint_ops *
13165 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13169 case ada_catch_exception:
13170 return (&catch_exception_breakpoint_ops);
13172 case ada_catch_exception_unhandled:
13173 return (&catch_exception_unhandled_breakpoint_ops);
13175 case ada_catch_assert:
13176 return (&catch_assert_breakpoint_ops);
13178 case ada_catch_handlers:
13179 return (&catch_handlers_breakpoint_ops);
13182 internal_error (__FILE__, __LINE__,
13183 _("unexpected catchpoint kind (%d)"), ex);
13187 /* Return the condition that will be used to match the current exception
13188 being raised with the exception that the user wants to catch. This
13189 assumes that this condition is used when the inferior just triggered
13190 an exception catchpoint.
13191 EX: the type of catchpoints used for catching Ada exceptions. */
13194 ada_exception_catchpoint_cond_string (const char *excep_string,
13195 enum ada_exception_catchpoint_kind ex)
13198 bool is_standard_exc = false;
13199 std::string result;
13201 if (ex == ada_catch_handlers)
13203 /* For exception handlers catchpoints, the condition string does
13204 not use the same parameter as for the other exceptions. */
13205 result = ("long_integer (GNAT_GCC_exception_Access"
13206 "(gcc_exception).all.occurrence.id)");
13209 result = "long_integer (e)";
13211 /* The standard exceptions are a special case. They are defined in
13212 runtime units that have been compiled without debugging info; if
13213 EXCEP_STRING is the not-fully-qualified name of a standard
13214 exception (e.g. "constraint_error") then, during the evaluation
13215 of the condition expression, the symbol lookup on this name would
13216 *not* return this standard exception. The catchpoint condition
13217 may then be set only on user-defined exceptions which have the
13218 same not-fully-qualified name (e.g. my_package.constraint_error).
13220 To avoid this unexcepted behavior, these standard exceptions are
13221 systematically prefixed by "standard". This means that "catch
13222 exception constraint_error" is rewritten into "catch exception
13223 standard.constraint_error".
13225 If an exception named contraint_error is defined in another package of
13226 the inferior program, then the only way to specify this exception as a
13227 breakpoint condition is to use its fully-qualified named:
13228 e.g. my_package.constraint_error. */
13230 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13232 if (strcmp (standard_exc [i], excep_string) == 0)
13234 is_standard_exc = true;
13241 if (is_standard_exc)
13242 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13244 string_appendf (result, "long_integer (&%s)", excep_string);
13249 /* Return the symtab_and_line that should be used to insert an exception
13250 catchpoint of the TYPE kind.
13252 ADDR_STRING returns the name of the function where the real
13253 breakpoint that implements the catchpoints is set, depending on the
13254 type of catchpoint we need to create. */
13256 static struct symtab_and_line
13257 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13258 const char **addr_string, const struct breakpoint_ops **ops)
13260 const char *sym_name;
13261 struct symbol *sym;
13263 /* First, find out which exception support info to use. */
13264 ada_exception_support_info_sniffer ();
13266 /* Then lookup the function on which we will break in order to catch
13267 the Ada exceptions requested by the user. */
13268 sym_name = ada_exception_sym_name (ex);
13269 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13272 error (_("Catchpoint symbol not found: %s"), sym_name);
13274 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13275 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13277 /* Set ADDR_STRING. */
13278 *addr_string = xstrdup (sym_name);
13281 *ops = ada_exception_breakpoint_ops (ex);
13283 return find_function_start_sal (sym, 1);
13286 /* Create an Ada exception catchpoint.
13288 EX_KIND is the kind of exception catchpoint to be created.
13290 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13291 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13292 of the exception to which this catchpoint applies.
13294 COND_STRING, if not empty, is the catchpoint condition.
13296 TEMPFLAG, if nonzero, means that the underlying breakpoint
13297 should be temporary.
13299 FROM_TTY is the usual argument passed to all commands implementations. */
13302 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13303 enum ada_exception_catchpoint_kind ex_kind,
13304 const std::string &excep_string,
13305 const std::string &cond_string,
13310 const char *addr_string = NULL;
13311 const struct breakpoint_ops *ops = NULL;
13312 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13314 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13315 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13316 ops, tempflag, disabled, from_tty);
13317 c->excep_string = excep_string;
13318 create_excep_cond_exprs (c.get (), ex_kind);
13319 if (!cond_string.empty ())
13320 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13321 install_breakpoint (0, std::move (c), 1);
13324 /* Implement the "catch exception" command. */
13327 catch_ada_exception_command (const char *arg_entry, int from_tty,
13328 struct cmd_list_element *command)
13330 const char *arg = arg_entry;
13331 struct gdbarch *gdbarch = get_current_arch ();
13333 enum ada_exception_catchpoint_kind ex_kind;
13334 std::string excep_string;
13335 std::string cond_string;
13337 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13341 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13343 create_ada_exception_catchpoint (gdbarch, ex_kind,
13344 excep_string, cond_string,
13345 tempflag, 1 /* enabled */,
13349 /* Implement the "catch handlers" command. */
13352 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13353 struct cmd_list_element *command)
13355 const char *arg = arg_entry;
13356 struct gdbarch *gdbarch = get_current_arch ();
13358 enum ada_exception_catchpoint_kind ex_kind;
13359 std::string excep_string;
13360 std::string cond_string;
13362 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13366 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13368 create_ada_exception_catchpoint (gdbarch, ex_kind,
13369 excep_string, cond_string,
13370 tempflag, 1 /* enabled */,
13374 /* Split the arguments specified in a "catch assert" command.
13376 ARGS contains the command's arguments (or the empty string if
13377 no arguments were passed).
13379 If ARGS contains a condition, set COND_STRING to that condition
13380 (the memory needs to be deallocated after use). */
13383 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13385 args = skip_spaces (args);
13387 /* Check whether a condition was provided. */
13388 if (startswith (args, "if")
13389 && (isspace (args[2]) || args[2] == '\0'))
13392 args = skip_spaces (args);
13393 if (args[0] == '\0')
13394 error (_("condition missing after `if' keyword"));
13395 cond_string.assign (args);
13398 /* Otherwise, there should be no other argument at the end of
13400 else if (args[0] != '\0')
13401 error (_("Junk at end of arguments."));
13404 /* Implement the "catch assert" command. */
13407 catch_assert_command (const char *arg_entry, int from_tty,
13408 struct cmd_list_element *command)
13410 const char *arg = arg_entry;
13411 struct gdbarch *gdbarch = get_current_arch ();
13413 std::string cond_string;
13415 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13419 catch_ada_assert_command_split (arg, cond_string);
13420 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13422 tempflag, 1 /* enabled */,
13426 /* Return non-zero if the symbol SYM is an Ada exception object. */
13429 ada_is_exception_sym (struct symbol *sym)
13431 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13433 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13434 && SYMBOL_CLASS (sym) != LOC_BLOCK
13435 && SYMBOL_CLASS (sym) != LOC_CONST
13436 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13437 && type_name != NULL && strcmp (type_name, "exception") == 0);
13440 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13441 Ada exception object. This matches all exceptions except the ones
13442 defined by the Ada language. */
13445 ada_is_non_standard_exception_sym (struct symbol *sym)
13449 if (!ada_is_exception_sym (sym))
13452 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13453 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13454 return 0; /* A standard exception. */
13456 /* Numeric_Error is also a standard exception, so exclude it.
13457 See the STANDARD_EXC description for more details as to why
13458 this exception is not listed in that array. */
13459 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13465 /* A helper function for std::sort, comparing two struct ada_exc_info
13468 The comparison is determined first by exception name, and then
13469 by exception address. */
13472 ada_exc_info::operator< (const ada_exc_info &other) const
13476 result = strcmp (name, other.name);
13479 if (result == 0 && addr < other.addr)
13485 ada_exc_info::operator== (const ada_exc_info &other) const
13487 return addr == other.addr && strcmp (name, other.name) == 0;
13490 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13491 routine, but keeping the first SKIP elements untouched.
13493 All duplicates are also removed. */
13496 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13499 std::sort (exceptions->begin () + skip, exceptions->end ());
13500 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13501 exceptions->end ());
13504 /* Add all exceptions defined by the Ada standard whose name match
13505 a regular expression.
13507 If PREG is not NULL, then this regexp_t object is used to
13508 perform the symbol name matching. Otherwise, no name-based
13509 filtering is performed.
13511 EXCEPTIONS is a vector of exceptions to which matching exceptions
13515 ada_add_standard_exceptions (compiled_regex *preg,
13516 std::vector<ada_exc_info> *exceptions)
13520 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13523 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13525 struct bound_minimal_symbol msymbol
13526 = ada_lookup_simple_minsym (standard_exc[i]);
13528 if (msymbol.minsym != NULL)
13530 struct ada_exc_info info
13531 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13533 exceptions->push_back (info);
13539 /* Add all Ada exceptions defined locally and accessible from the given
13542 If PREG is not NULL, then this regexp_t object is used to
13543 perform the symbol name matching. Otherwise, no name-based
13544 filtering is performed.
13546 EXCEPTIONS is a vector of exceptions to which matching exceptions
13550 ada_add_exceptions_from_frame (compiled_regex *preg,
13551 struct frame_info *frame,
13552 std::vector<ada_exc_info> *exceptions)
13554 const struct block *block = get_frame_block (frame, 0);
13558 struct block_iterator iter;
13559 struct symbol *sym;
13561 ALL_BLOCK_SYMBOLS (block, iter, sym)
13563 switch (SYMBOL_CLASS (sym))
13570 if (ada_is_exception_sym (sym))
13572 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13573 SYMBOL_VALUE_ADDRESS (sym)};
13575 exceptions->push_back (info);
13579 if (BLOCK_FUNCTION (block) != NULL)
13581 block = BLOCK_SUPERBLOCK (block);
13585 /* Return true if NAME matches PREG or if PREG is NULL. */
13588 name_matches_regex (const char *name, compiled_regex *preg)
13590 return (preg == NULL
13591 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13594 /* Add all exceptions defined globally whose name name match
13595 a regular expression, excluding standard exceptions.
13597 The reason we exclude standard exceptions is that they need
13598 to be handled separately: Standard exceptions are defined inside
13599 a runtime unit which is normally not compiled with debugging info,
13600 and thus usually do not show up in our symbol search. However,
13601 if the unit was in fact built with debugging info, we need to
13602 exclude them because they would duplicate the entry we found
13603 during the special loop that specifically searches for those
13604 standard exceptions.
13606 If PREG is not NULL, then this regexp_t object is used to
13607 perform the symbol name matching. Otherwise, no name-based
13608 filtering is performed.
13610 EXCEPTIONS is a vector of exceptions to which matching exceptions
13614 ada_add_global_exceptions (compiled_regex *preg,
13615 std::vector<ada_exc_info> *exceptions)
13617 struct objfile *objfile;
13618 struct compunit_symtab *s;
13620 /* In Ada, the symbol "search name" is a linkage name, whereas the
13621 regular expression used to do the matching refers to the natural
13622 name. So match against the decoded name. */
13623 expand_symtabs_matching (NULL,
13624 lookup_name_info::match_any (),
13625 [&] (const char *search_name)
13627 const char *decoded = ada_decode (search_name);
13628 return name_matches_regex (decoded, preg);
13633 ALL_COMPUNITS (objfile, s)
13635 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13638 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13640 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13641 struct block_iterator iter;
13642 struct symbol *sym;
13644 ALL_BLOCK_SYMBOLS (b, iter, sym)
13645 if (ada_is_non_standard_exception_sym (sym)
13646 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13648 struct ada_exc_info info
13649 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13651 exceptions->push_back (info);
13657 /* Implements ada_exceptions_list with the regular expression passed
13658 as a regex_t, rather than a string.
13660 If not NULL, PREG is used to filter out exceptions whose names
13661 do not match. Otherwise, all exceptions are listed. */
13663 static std::vector<ada_exc_info>
13664 ada_exceptions_list_1 (compiled_regex *preg)
13666 std::vector<ada_exc_info> result;
13669 /* First, list the known standard exceptions. These exceptions
13670 need to be handled separately, as they are usually defined in
13671 runtime units that have been compiled without debugging info. */
13673 ada_add_standard_exceptions (preg, &result);
13675 /* Next, find all exceptions whose scope is local and accessible
13676 from the currently selected frame. */
13678 if (has_stack_frames ())
13680 prev_len = result.size ();
13681 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13683 if (result.size () > prev_len)
13684 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13687 /* Add all exceptions whose scope is global. */
13689 prev_len = result.size ();
13690 ada_add_global_exceptions (preg, &result);
13691 if (result.size () > prev_len)
13692 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13697 /* Return a vector of ada_exc_info.
13699 If REGEXP is NULL, all exceptions are included in the result.
13700 Otherwise, it should contain a valid regular expression,
13701 and only the exceptions whose names match that regular expression
13702 are included in the result.
13704 The exceptions are sorted in the following order:
13705 - Standard exceptions (defined by the Ada language), in
13706 alphabetical order;
13707 - Exceptions only visible from the current frame, in
13708 alphabetical order;
13709 - Exceptions whose scope is global, in alphabetical order. */
13711 std::vector<ada_exc_info>
13712 ada_exceptions_list (const char *regexp)
13714 if (regexp == NULL)
13715 return ada_exceptions_list_1 (NULL);
13717 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13718 return ada_exceptions_list_1 (®);
13721 /* Implement the "info exceptions" command. */
13724 info_exceptions_command (const char *regexp, int from_tty)
13726 struct gdbarch *gdbarch = get_current_arch ();
13728 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13730 if (regexp != NULL)
13732 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13734 printf_filtered (_("All defined Ada exceptions:\n"));
13736 for (const ada_exc_info &info : exceptions)
13737 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13741 /* Information about operators given special treatment in functions
13743 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13745 #define ADA_OPERATORS \
13746 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13747 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13748 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13749 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13750 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13751 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13752 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13753 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13754 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13755 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13756 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13757 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13758 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13759 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13760 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13761 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13762 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13763 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13764 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13767 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13770 switch (exp->elts[pc - 1].opcode)
13773 operator_length_standard (exp, pc, oplenp, argsp);
13776 #define OP_DEFN(op, len, args, binop) \
13777 case op: *oplenp = len; *argsp = args; break;
13783 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13788 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13793 /* Implementation of the exp_descriptor method operator_check. */
13796 ada_operator_check (struct expression *exp, int pos,
13797 int (*objfile_func) (struct objfile *objfile, void *data),
13800 const union exp_element *const elts = exp->elts;
13801 struct type *type = NULL;
13803 switch (elts[pos].opcode)
13805 case UNOP_IN_RANGE:
13807 type = elts[pos + 1].type;
13811 return operator_check_standard (exp, pos, objfile_func, data);
13814 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13816 if (type && TYPE_OBJFILE (type)
13817 && (*objfile_func) (TYPE_OBJFILE (type), data))
13823 static const char *
13824 ada_op_name (enum exp_opcode opcode)
13829 return op_name_standard (opcode);
13831 #define OP_DEFN(op, len, args, binop) case op: return #op;
13836 return "OP_AGGREGATE";
13838 return "OP_CHOICES";
13844 /* As for operator_length, but assumes PC is pointing at the first
13845 element of the operator, and gives meaningful results only for the
13846 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13849 ada_forward_operator_length (struct expression *exp, int pc,
13850 int *oplenp, int *argsp)
13852 switch (exp->elts[pc].opcode)
13855 *oplenp = *argsp = 0;
13858 #define OP_DEFN(op, len, args, binop) \
13859 case op: *oplenp = len; *argsp = args; break;
13865 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13870 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13876 int len = longest_to_int (exp->elts[pc + 1].longconst);
13878 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13886 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13888 enum exp_opcode op = exp->elts[elt].opcode;
13893 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13897 /* Ada attributes ('Foo). */
13900 case OP_ATR_LENGTH:
13904 case OP_ATR_MODULUS:
13911 case UNOP_IN_RANGE:
13913 /* XXX: gdb_sprint_host_address, type_sprint */
13914 fprintf_filtered (stream, _("Type @"));
13915 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13916 fprintf_filtered (stream, " (");
13917 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13918 fprintf_filtered (stream, ")");
13920 case BINOP_IN_BOUNDS:
13921 fprintf_filtered (stream, " (%d)",
13922 longest_to_int (exp->elts[pc + 2].longconst));
13924 case TERNOP_IN_RANGE:
13929 case OP_DISCRETE_RANGE:
13930 case OP_POSITIONAL:
13937 char *name = &exp->elts[elt + 2].string;
13938 int len = longest_to_int (exp->elts[elt + 1].longconst);
13940 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13945 return dump_subexp_body_standard (exp, stream, elt);
13949 for (i = 0; i < nargs; i += 1)
13950 elt = dump_subexp (exp, stream, elt);
13955 /* The Ada extension of print_subexp (q.v.). */
13958 ada_print_subexp (struct expression *exp, int *pos,
13959 struct ui_file *stream, enum precedence prec)
13961 int oplen, nargs, i;
13963 enum exp_opcode op = exp->elts[pc].opcode;
13965 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13972 print_subexp_standard (exp, pos, stream, prec);
13976 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13979 case BINOP_IN_BOUNDS:
13980 /* XXX: sprint_subexp */
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 fputs_filtered (" in ", stream);
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 fputs_filtered ("'range", stream);
13985 if (exp->elts[pc + 1].longconst > 1)
13986 fprintf_filtered (stream, "(%ld)",
13987 (long) exp->elts[pc + 1].longconst);
13990 case TERNOP_IN_RANGE:
13991 if (prec >= PREC_EQUAL)
13992 fputs_filtered ("(", stream);
13993 /* XXX: sprint_subexp */
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 fputs_filtered (" in ", stream);
13996 print_subexp (exp, pos, stream, PREC_EQUAL);
13997 fputs_filtered (" .. ", stream);
13998 print_subexp (exp, pos, stream, PREC_EQUAL);
13999 if (prec >= PREC_EQUAL)
14000 fputs_filtered (")", stream);
14005 case OP_ATR_LENGTH:
14009 case OP_ATR_MODULUS:
14014 if (exp->elts[*pos].opcode == OP_TYPE)
14016 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14017 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14018 &type_print_raw_options);
14022 print_subexp (exp, pos, stream, PREC_SUFFIX);
14023 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14028 for (tem = 1; tem < nargs; tem += 1)
14030 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14031 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14033 fputs_filtered (")", stream);
14038 type_print (exp->elts[pc + 1].type, "", stream, 0);
14039 fputs_filtered ("'(", stream);
14040 print_subexp (exp, pos, stream, PREC_PREFIX);
14041 fputs_filtered (")", stream);
14044 case UNOP_IN_RANGE:
14045 /* XXX: sprint_subexp */
14046 print_subexp (exp, pos, stream, PREC_SUFFIX);
14047 fputs_filtered (" in ", stream);
14048 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14049 &type_print_raw_options);
14052 case OP_DISCRETE_RANGE:
14053 print_subexp (exp, pos, stream, PREC_SUFFIX);
14054 fputs_filtered ("..", stream);
14055 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 fputs_filtered ("others => ", stream);
14060 print_subexp (exp, pos, stream, PREC_SUFFIX);
14064 for (i = 0; i < nargs-1; i += 1)
14067 fputs_filtered ("|", stream);
14068 print_subexp (exp, pos, stream, PREC_SUFFIX);
14070 fputs_filtered (" => ", stream);
14071 print_subexp (exp, pos, stream, PREC_SUFFIX);
14074 case OP_POSITIONAL:
14075 print_subexp (exp, pos, stream, PREC_SUFFIX);
14079 fputs_filtered ("(", stream);
14080 for (i = 0; i < nargs; i += 1)
14083 fputs_filtered (", ", stream);
14084 print_subexp (exp, pos, stream, PREC_SUFFIX);
14086 fputs_filtered (")", stream);
14091 /* Table mapping opcodes into strings for printing operators
14092 and precedences of the operators. */
14094 static const struct op_print ada_op_print_tab[] = {
14095 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14096 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14097 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14098 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14099 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14100 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14101 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14102 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14103 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14104 {">=", BINOP_GEQ, PREC_ORDER, 0},
14105 {">", BINOP_GTR, PREC_ORDER, 0},
14106 {"<", BINOP_LESS, PREC_ORDER, 0},
14107 {">>", BINOP_RSH, PREC_SHIFT, 0},
14108 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14109 {"+", BINOP_ADD, PREC_ADD, 0},
14110 {"-", BINOP_SUB, PREC_ADD, 0},
14111 {"&", BINOP_CONCAT, PREC_ADD, 0},
14112 {"*", BINOP_MUL, PREC_MUL, 0},
14113 {"/", BINOP_DIV, PREC_MUL, 0},
14114 {"rem", BINOP_REM, PREC_MUL, 0},
14115 {"mod", BINOP_MOD, PREC_MUL, 0},
14116 {"**", BINOP_EXP, PREC_REPEAT, 0},
14117 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14118 {"-", UNOP_NEG, PREC_PREFIX, 0},
14119 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14120 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14121 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14122 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14123 {".all", UNOP_IND, PREC_SUFFIX, 1},
14124 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14125 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14126 {NULL, OP_NULL, PREC_SUFFIX, 0}
14129 enum ada_primitive_types {
14130 ada_primitive_type_int,
14131 ada_primitive_type_long,
14132 ada_primitive_type_short,
14133 ada_primitive_type_char,
14134 ada_primitive_type_float,
14135 ada_primitive_type_double,
14136 ada_primitive_type_void,
14137 ada_primitive_type_long_long,
14138 ada_primitive_type_long_double,
14139 ada_primitive_type_natural,
14140 ada_primitive_type_positive,
14141 ada_primitive_type_system_address,
14142 ada_primitive_type_storage_offset,
14143 nr_ada_primitive_types
14147 ada_language_arch_info (struct gdbarch *gdbarch,
14148 struct language_arch_info *lai)
14150 const struct builtin_type *builtin = builtin_type (gdbarch);
14152 lai->primitive_type_vector
14153 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14156 lai->primitive_type_vector [ada_primitive_type_int]
14157 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14159 lai->primitive_type_vector [ada_primitive_type_long]
14160 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14161 0, "long_integer");
14162 lai->primitive_type_vector [ada_primitive_type_short]
14163 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14164 0, "short_integer");
14165 lai->string_char_type
14166 = lai->primitive_type_vector [ada_primitive_type_char]
14167 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14168 lai->primitive_type_vector [ada_primitive_type_float]
14169 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14170 "float", gdbarch_float_format (gdbarch));
14171 lai->primitive_type_vector [ada_primitive_type_double]
14172 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14173 "long_float", gdbarch_double_format (gdbarch));
14174 lai->primitive_type_vector [ada_primitive_type_long_long]
14175 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14176 0, "long_long_integer");
14177 lai->primitive_type_vector [ada_primitive_type_long_double]
14178 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14179 "long_long_float", gdbarch_long_double_format (gdbarch));
14180 lai->primitive_type_vector [ada_primitive_type_natural]
14181 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14183 lai->primitive_type_vector [ada_primitive_type_positive]
14184 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14186 lai->primitive_type_vector [ada_primitive_type_void]
14187 = builtin->builtin_void;
14189 lai->primitive_type_vector [ada_primitive_type_system_address]
14190 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14192 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14193 = "system__address";
14195 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14196 type. This is a signed integral type whose size is the same as
14197 the size of addresses. */
14199 unsigned int addr_length = TYPE_LENGTH
14200 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14202 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14203 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14207 lai->bool_type_symbol = NULL;
14208 lai->bool_type_default = builtin->builtin_bool;
14211 /* Language vector */
14213 /* Not really used, but needed in the ada_language_defn. */
14216 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14218 ada_emit_char (c, type, stream, quoter, 1);
14222 parse (struct parser_state *ps)
14224 warnings_issued = 0;
14225 return ada_parse (ps);
14228 static const struct exp_descriptor ada_exp_descriptor = {
14230 ada_operator_length,
14231 ada_operator_check,
14233 ada_dump_subexp_body,
14234 ada_evaluate_subexp
14237 /* symbol_name_matcher_ftype adapter for wild_match. */
14240 do_wild_match (const char *symbol_search_name,
14241 const lookup_name_info &lookup_name,
14242 completion_match_result *comp_match_res)
14244 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14247 /* symbol_name_matcher_ftype adapter for full_match. */
14250 do_full_match (const char *symbol_search_name,
14251 const lookup_name_info &lookup_name,
14252 completion_match_result *comp_match_res)
14254 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14257 /* Build the Ada lookup name for LOOKUP_NAME. */
14259 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14261 const std::string &user_name = lookup_name.name ();
14263 if (user_name[0] == '<')
14265 if (user_name.back () == '>')
14266 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14268 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14269 m_encoded_p = true;
14270 m_verbatim_p = true;
14271 m_wild_match_p = false;
14272 m_standard_p = false;
14276 m_verbatim_p = false;
14278 m_encoded_p = user_name.find ("__") != std::string::npos;
14282 const char *folded = ada_fold_name (user_name.c_str ());
14283 const char *encoded = ada_encode_1 (folded, false);
14284 if (encoded != NULL)
14285 m_encoded_name = encoded;
14287 m_encoded_name = user_name;
14290 m_encoded_name = user_name;
14292 /* Handle the 'package Standard' special case. See description
14293 of m_standard_p. */
14294 if (startswith (m_encoded_name.c_str (), "standard__"))
14296 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14297 m_standard_p = true;
14300 m_standard_p = false;
14302 /* If the name contains a ".", then the user is entering a fully
14303 qualified entity name, and the match must not be done in wild
14304 mode. Similarly, if the user wants to complete what looks
14305 like an encoded name, the match must not be done in wild
14306 mode. Also, in the standard__ special case always do
14307 non-wild matching. */
14309 = (lookup_name.match_type () != symbol_name_match_type::FULL
14312 && user_name.find ('.') == std::string::npos);
14316 /* symbol_name_matcher_ftype method for Ada. This only handles
14317 completion mode. */
14320 ada_symbol_name_matches (const char *symbol_search_name,
14321 const lookup_name_info &lookup_name,
14322 completion_match_result *comp_match_res)
14324 return lookup_name.ada ().matches (symbol_search_name,
14325 lookup_name.match_type (),
14329 /* A name matcher that matches the symbol name exactly, with
14333 literal_symbol_name_matcher (const char *symbol_search_name,
14334 const lookup_name_info &lookup_name,
14335 completion_match_result *comp_match_res)
14337 const std::string &name = lookup_name.name ();
14339 int cmp = (lookup_name.completion_mode ()
14340 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14341 : strcmp (symbol_search_name, name.c_str ()));
14344 if (comp_match_res != NULL)
14345 comp_match_res->set_match (symbol_search_name);
14352 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14355 static symbol_name_matcher_ftype *
14356 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14358 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14359 return literal_symbol_name_matcher;
14361 if (lookup_name.completion_mode ())
14362 return ada_symbol_name_matches;
14365 if (lookup_name.ada ().wild_match_p ())
14366 return do_wild_match;
14368 return do_full_match;
14372 /* Implement the "la_read_var_value" language_defn method for Ada. */
14374 static struct value *
14375 ada_read_var_value (struct symbol *var, const struct block *var_block,
14376 struct frame_info *frame)
14378 const struct block *frame_block = NULL;
14379 struct symbol *renaming_sym = NULL;
14381 /* The only case where default_read_var_value is not sufficient
14382 is when VAR is a renaming... */
14384 frame_block = get_frame_block (frame, NULL);
14386 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14387 if (renaming_sym != NULL)
14388 return ada_read_renaming_var_value (renaming_sym, frame_block);
14390 /* This is a typical case where we expect the default_read_var_value
14391 function to work. */
14392 return default_read_var_value (var, var_block, frame);
14395 static const char *ada_extensions[] =
14397 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14400 extern const struct language_defn ada_language_defn = {
14401 "ada", /* Language name */
14405 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14406 that's not quite what this means. */
14408 macro_expansion_no,
14410 &ada_exp_descriptor,
14413 ada_printchar, /* Print a character constant */
14414 ada_printstr, /* Function to print string constant */
14415 emit_char, /* Function to print single char (not used) */
14416 ada_print_type, /* Print a type using appropriate syntax */
14417 ada_print_typedef, /* Print a typedef using appropriate syntax */
14418 ada_val_print, /* Print a value using appropriate syntax */
14419 ada_value_print, /* Print a top-level value */
14420 ada_read_var_value, /* la_read_var_value */
14421 NULL, /* Language specific skip_trampoline */
14422 NULL, /* name_of_this */
14423 true, /* la_store_sym_names_in_linkage_form_p */
14424 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14425 basic_lookup_transparent_type, /* lookup_transparent_type */
14426 ada_la_decode, /* Language specific symbol demangler */
14427 ada_sniff_from_mangled_name,
14428 NULL, /* Language specific
14429 class_name_from_physname */
14430 ada_op_print_tab, /* expression operators for printing */
14431 0, /* c-style arrays */
14432 1, /* String lower bound */
14433 ada_get_gdb_completer_word_break_characters,
14434 ada_collect_symbol_completion_matches,
14435 ada_language_arch_info,
14436 ada_print_array_index,
14437 default_pass_by_reference,
14439 ada_watch_location_expression,
14440 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14441 ada_iterate_over_symbols,
14442 default_search_name_hash,
14449 /* Command-list for the "set/show ada" prefix command. */
14450 static struct cmd_list_element *set_ada_list;
14451 static struct cmd_list_element *show_ada_list;
14453 /* Implement the "set ada" prefix command. */
14456 set_ada_command (const char *arg, int from_tty)
14458 printf_unfiltered (_(\
14459 "\"set ada\" must be followed by the name of a setting.\n"));
14460 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14463 /* Implement the "show ada" prefix command. */
14466 show_ada_command (const char *args, int from_tty)
14468 cmd_show_list (show_ada_list, from_tty, "");
14472 initialize_ada_catchpoint_ops (void)
14474 struct breakpoint_ops *ops;
14476 initialize_breakpoint_ops ();
14478 ops = &catch_exception_breakpoint_ops;
14479 *ops = bkpt_breakpoint_ops;
14480 ops->allocate_location = allocate_location_catch_exception;
14481 ops->re_set = re_set_catch_exception;
14482 ops->check_status = check_status_catch_exception;
14483 ops->print_it = print_it_catch_exception;
14484 ops->print_one = print_one_catch_exception;
14485 ops->print_mention = print_mention_catch_exception;
14486 ops->print_recreate = print_recreate_catch_exception;
14488 ops = &catch_exception_unhandled_breakpoint_ops;
14489 *ops = bkpt_breakpoint_ops;
14490 ops->allocate_location = allocate_location_catch_exception_unhandled;
14491 ops->re_set = re_set_catch_exception_unhandled;
14492 ops->check_status = check_status_catch_exception_unhandled;
14493 ops->print_it = print_it_catch_exception_unhandled;
14494 ops->print_one = print_one_catch_exception_unhandled;
14495 ops->print_mention = print_mention_catch_exception_unhandled;
14496 ops->print_recreate = print_recreate_catch_exception_unhandled;
14498 ops = &catch_assert_breakpoint_ops;
14499 *ops = bkpt_breakpoint_ops;
14500 ops->allocate_location = allocate_location_catch_assert;
14501 ops->re_set = re_set_catch_assert;
14502 ops->check_status = check_status_catch_assert;
14503 ops->print_it = print_it_catch_assert;
14504 ops->print_one = print_one_catch_assert;
14505 ops->print_mention = print_mention_catch_assert;
14506 ops->print_recreate = print_recreate_catch_assert;
14508 ops = &catch_handlers_breakpoint_ops;
14509 *ops = bkpt_breakpoint_ops;
14510 ops->allocate_location = allocate_location_catch_handlers;
14511 ops->re_set = re_set_catch_handlers;
14512 ops->check_status = check_status_catch_handlers;
14513 ops->print_it = print_it_catch_handlers;
14514 ops->print_one = print_one_catch_handlers;
14515 ops->print_mention = print_mention_catch_handlers;
14516 ops->print_recreate = print_recreate_catch_handlers;
14519 /* This module's 'new_objfile' observer. */
14522 ada_new_objfile_observer (struct objfile *objfile)
14524 ada_clear_symbol_cache ();
14527 /* This module's 'free_objfile' observer. */
14530 ada_free_objfile_observer (struct objfile *objfile)
14532 ada_clear_symbol_cache ();
14536 _initialize_ada_language (void)
14538 initialize_ada_catchpoint_ops ();
14540 add_prefix_cmd ("ada", no_class, set_ada_command,
14541 _("Prefix command for changing Ada-specific settings"),
14542 &set_ada_list, "set ada ", 0, &setlist);
14544 add_prefix_cmd ("ada", no_class, show_ada_command,
14545 _("Generic command for showing Ada-specific settings."),
14546 &show_ada_list, "show ada ", 0, &showlist);
14548 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14549 &trust_pad_over_xvs, _("\
14550 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14551 Show whether an optimization trusting PAD types over XVS types is activated"),
14553 This is related to the encoding used by the GNAT compiler. The debugger\n\
14554 should normally trust the contents of PAD types, but certain older versions\n\
14555 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14556 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14557 work around this bug. It is always safe to turn this option \"off\", but\n\
14558 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14559 this option to \"off\" unless necessary."),
14560 NULL, NULL, &set_ada_list, &show_ada_list);
14562 add_setshow_boolean_cmd ("print-signatures", class_vars,
14563 &print_signatures, _("\
14564 Enable or disable the output of formal and return types for functions in the \
14565 overloads selection menu"), _("\
14566 Show whether the output of formal and return types for functions in the \
14567 overloads selection menu is activated"),
14568 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14570 add_catch_command ("exception", _("\
14571 Catch Ada exceptions, when raised.\n\
14572 With an argument, catch only exceptions with the given name."),
14573 catch_ada_exception_command,
14578 add_catch_command ("handlers", _("\
14579 Catch Ada exceptions, when handled.\n\
14580 With an argument, catch only exceptions with the given name."),
14581 catch_ada_handlers_command,
14585 add_catch_command ("assert", _("\
14586 Catch failed Ada assertions, when raised.\n\
14587 With an argument, catch only exceptions with the given name."),
14588 catch_assert_command,
14593 varsize_limit = 65536;
14594 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14595 &varsize_limit, _("\
14596 Set the maximum number of bytes allowed in a variable-size object."), _("\
14597 Show the maximum number of bytes allowed in a variable-size object."), _("\
14598 Attempts to access an object whose size is not a compile-time constant\n\
14599 and exceeds this limit will cause an error."),
14600 NULL, NULL, &setlist, &showlist);
14602 add_info ("exceptions", info_exceptions_command,
14604 List all Ada exception names.\n\
14605 If a regular expression is passed as an argument, only those matching\n\
14606 the regular expression are listed."));
14608 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14609 _("Set Ada maintenance-related variables."),
14610 &maint_set_ada_cmdlist, "maintenance set ada ",
14611 0/*allow-unknown*/, &maintenance_set_cmdlist);
14613 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14614 _("Show Ada maintenance-related variables"),
14615 &maint_show_ada_cmdlist, "maintenance show ada ",
14616 0/*allow-unknown*/, &maintenance_show_cmdlist);
14618 add_setshow_boolean_cmd
14619 ("ignore-descriptive-types", class_maintenance,
14620 &ada_ignore_descriptive_types_p,
14621 _("Set whether descriptive types generated by GNAT should be ignored."),
14622 _("Show whether descriptive types generated by GNAT should be ignored."),
14624 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14625 DWARF attribute."),
14626 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14628 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14629 NULL, xcalloc, xfree);
14631 /* The ada-lang observers. */
14632 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14633 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14634 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14636 /* Setup various context-specific data. */
14638 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14639 ada_pspace_data_handle
14640 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);