1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
66 /* Define whether or not the C operator '/' truncates towards zero for
67 differently signed operands (truncation direction is undefined in C).
68 Copied from valarith.c. */
70 #ifndef TRUNCATION_TOWARDS_ZERO
71 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 static struct type *desc_base_type (struct type *);
76 static struct type *desc_bounds_type (struct type *);
78 static struct value *desc_bounds (struct value *);
80 static int fat_pntr_bounds_bitpos (struct type *);
82 static int fat_pntr_bounds_bitsize (struct type *);
84 static struct type *desc_data_target_type (struct type *);
86 static struct value *desc_data (struct value *);
88 static int fat_pntr_data_bitpos (struct type *);
90 static int fat_pntr_data_bitsize (struct type *);
92 static struct value *desc_one_bound (struct value *, int, int);
94 static int desc_bound_bitpos (struct type *, int, int);
96 static int desc_bound_bitsize (struct type *, int, int);
98 static struct type *desc_index_type (struct type *, int);
100 static int desc_arity (struct type *);
102 static int ada_type_match (struct type *, struct type *, int);
104 static int ada_args_match (struct symbol *, struct value **, int);
106 static int full_match (const char *, const char *);
108 static struct value *make_array_descriptor (struct type *, struct value *);
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *, const char *,
112 domain_enum, struct objfile *, int);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const char *, domain_enum, int, int *);
117 static int is_nonfunction (struct block_symbol *, int);
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 const struct block *);
122 static int num_defns_collected (struct obstack *);
124 static struct block_symbol *defns_collected (struct obstack *, int);
126 static struct value *resolve_subexp (struct expression **, int *, int,
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 static const char *ada_op_name (enum exp_opcode);
136 static const char *ada_decoded_op_name (enum exp_opcode);
138 static int numeric_type_p (struct type *);
140 static int integer_type_p (struct type *);
142 static int scalar_type_p (struct type *);
144 static int discrete_type_p (struct type *);
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
154 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
157 static struct value *evaluate_subexp_type (struct expression *, int *);
159 static struct type *ada_find_parallel_type_with_name (struct type *,
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (struct type *, struct value *);
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
175 static struct value *unwrap_value (struct value *);
177 static struct type *constrained_packed_array_type (struct type *, long *);
179 static struct type *decode_constrained_packed_array_type (struct type *);
181 static long decode_packed_array_bitsize (struct type *);
183 static struct value *decode_constrained_packed_array (struct value *);
185 static int ada_is_packed_array_type (struct type *);
187 static int ada_is_unconstrained_packed_array_type (struct type *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int advance_wild_match (const char **, const char *, int);
207 static int wild_match (const char *, const char *);
209 static struct value *ada_coerce_ref (struct value *);
211 static LONGEST pos_atr (struct value *);
213 static struct value *value_pos_atr (struct type *, struct value *);
215 static struct value *value_val_atr (struct type *, struct value *);
217 static struct symbol *standard_lookup (const char *, const struct block *,
220 static struct value *ada_search_struct_field (const char *, struct value *, int,
223 static struct value *ada_value_primitive_field (struct value *, int, int,
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 static int ada_resolve_function (struct block_symbol *, int,
233 struct value **, int, const char *,
236 static int ada_is_direct_array_type (struct type *);
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
241 static struct value *ada_index_struct_field (int, struct value *, int,
244 static struct value *assign_aggregate (struct value *, struct value *,
248 static void aggregate_assign_from_choices (struct value *, struct value *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
253 static void aggregate_assign_positional (struct value *, struct value *,
255 int *, LONGEST *, int *, int,
259 static void aggregate_assign_others (struct value *, struct value *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 static void ada_forward_operator_length (struct expression *, int, int *,
273 static struct type *ada_find_any_type (const char *name);
276 /* The result of a symbol lookup to be stored in our symbol cache. */
280 /* The name used to perform the lookup. */
282 /* The namespace used during the lookup. */
284 /* The symbol returned by the lookup, or NULL if no matching symbol
287 /* The block where the symbol was found, or NULL if no matching
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
303 #define HASH_SIZE 1009
305 struct ada_symbol_cache
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
319 static const char ada_completer_word_break_characters[] =
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
348 /* Maintenance-related settings for this module. */
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
353 /* Implement the "maintenance set ada" (prefix) command. */
356 maint_set_ada_cmd (char *args, int from_tty)
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 /* Implement the "maintenance show ada" (prefix) command. */
365 maint_show_ada_cmd (char *args, int from_tty)
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372 static int ada_ignore_descriptive_types_p = 0;
374 /* Inferior-specific data. */
376 /* Per-inferior data for this module. */
378 struct ada_inferior_data
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
389 const struct exception_support_info *exception_info;
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
395 /* A cleanup routine for our inferior data. */
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 struct ada_inferior_data *data;
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
406 /* Return our inferior data for the given inferior (INF).
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
417 struct ada_inferior_data *data;
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
433 ada_inferior_exit (struct inferior *inf)
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
440 /* program-space-specific data. */
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
455 This function always returns a valid object. */
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
460 struct ada_pspace_data *data;
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
473 /* The cleanup callback for this module's per-program-space data. */
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
515 ada_typedef_target_type (struct type *type)
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
527 ada_unqualified_name (const char *decoded_name)
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
538 result = strrchr (decoded_name, '.');
540 result++; /* Skip the dot... */
542 result = decoded_name;
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
551 add_angle_brackets (const char *str)
553 static char *result = NULL;
556 result = xstrprintf ("<%s>", str);
561 ada_get_gdb_completer_word_break_characters (void)
563 return ada_completer_word_break_characters;
566 /* Print an array element index using the Ada syntax. */
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 if (*size < min_size)
586 if (*size < min_size)
588 vect = xrealloc (vect, *size * element_size);
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
597 field_name_match (const char *field_name, const char *target)
599 int len = strlen (target);
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
619 ada_get_field_index (const struct type *type, const char *field_name,
623 struct type *struct_type = check_typedef ((struct type *) type);
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
636 /* The length of the prefix of NAME prior to any "___" suffix. */
639 ada_name_prefix_len (const char *name)
645 const char *p = strstr (name, "___");
648 return strlen (name);
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
658 is_suffix (const char *str, const char *suffix)
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
680 struct value *result;
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
708 return valaddr + offset;
712 cond_offset_target (CORE_ADDR address, long offset)
717 return address + offset;
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730 lim_warning (const char *format, ...)
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
747 ada_ensure_varsize_limit (const struct type *type)
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
753 /* Maximum value of a SIZE-byte signed integer type. */
755 max_of_size (int size)
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759 return top_bit | (top_bit - 1);
762 /* Minimum value of a SIZE-byte signed integer type. */
764 min_of_size (int size)
766 return -max_of_size (size) - 1;
769 /* Maximum value of a SIZE-byte unsigned integer type. */
771 umax_of_size (int size)
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775 return top_bit | (top_bit - 1);
778 /* Maximum value of integral type T, as a signed quantity. */
780 max_of_type (struct type *t)
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 return max_of_size (TYPE_LENGTH (t));
788 /* Minimum value of integral type T, as a signed quantity. */
790 min_of_type (struct type *t)
792 if (TYPE_UNSIGNED (t))
795 return min_of_size (TYPE_LENGTH (t));
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 ada_discrete_type_high_bound (struct type *type)
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
813 return max_of_type (type);
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 ada_discrete_type_low_bound (struct type *type)
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
829 return TYPE_FIELD_ENUMVAL (type, 0);
834 return min_of_type (type);
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
844 get_base_type (struct type *type)
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 type = TYPE_TARGET_TYPE (type);
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
861 ada_get_decoded_value (struct value *value)
863 struct type *type = ada_check_typedef (value_type (value));
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
872 value = ada_coerce_to_simple_array (value);
875 value = ada_to_fixed_value (value);
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
886 ada_get_decoded_type (struct type *type)
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
896 /* Language Selection */
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
902 ada_update_initial_language (enum language lang)
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928 if (msym.minsym != NULL)
930 CORE_ADDR main_program_name_addr;
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
943 return main_program_name;
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
984 ada_encode (const char *decoded)
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
998 for (p = decoded; *p != '\0'; p += 1)
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1007 const struct ada_opname_map *mapping;
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1021 encoding_buffer[k] = *p;
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1035 ada_fold_name (const char *name)
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1043 if (name[0] == '\'')
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1062 is_lower_alphanum (const char c)
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1086 while (i > 0 && isdigit (encoded[i]))
1088 if (i >= 0 && encoded[i] == '.')
1090 else if (i >= 0 && encoded[i] == '$')
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1099 /* Remove the suffix introduced by the compiler for protected object
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1105 /* Remove trailing N. */
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1131 if (encoded[i] != 'X')
1137 if (isalnum (encoded[i-1]))
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1150 ada_decode (const char *encoded)
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1172 len0 = strlen (encoded);
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1210 /* Make decoded big enough for possible expansion by operator name. */
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1225 else if (encoded[i] == '$')
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1248 && !isalnum (encoded[i + op_len]))
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1253 j += strlen (ada_opname_table[k].decoded);
1257 if (ada_opname_table[k].encoded != NULL)
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1287 /* Remove _E{DIGITS}+[sb] */
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1305 while (k < len0 && isdigit (encoded[k]))
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1316 || (k < len0 && encoded[k] == '_'))
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1356 /* Replace '__' by '.'. */
1364 /* It's a character part of the decoded name, so just copy it
1366 decoded[j] = encoded[i];
1371 decoded[j] = '\000';
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1380 if (strcmp (decoded, encoded) == 0)
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1420 if (!gsymbol->ada_mangled)
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1425 gsymbol->ada_mangled = 1;
1427 if (obstack != NULL)
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1441 *slot = xstrdup (decoded);
1450 ada_la_decode (const char *encoded, int options)
1452 return xstrdup (ada_decode (encoded));
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1460 const char *demangled = ada_decode (mangled);
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1502 match_name (const char *sym_name, const char *name, int wild)
1504 if (sym_name == NULL || name == NULL)
1507 return wild_match (sym_name, name) == 0;
1510 int len_name = strlen (name);
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1551 if (index_desc_type == NULL)
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1580 static const char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1585 /* Maximum number of array dimensions we are prepared to handle. */
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1590 /* The desc_* routines return primitive portions of array descriptors
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1596 static struct type *
1597 desc_base_type (struct type *type)
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1616 is_thin_pntr (struct type *type)
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1623 /* The descriptor type for thin pointer type TYPE. */
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1628 struct type *base_type = desc_base_type (type);
1630 if (base_type == NULL)
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1638 if (alt_type == NULL)
1645 /* A pointer to the array data for thin-pointer value VAL. */
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1653 data_type = lookup_pointer_type (data_type);
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1658 return value_from_longest (data_type, value_address (val));
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1664 is_thick_pntr (struct type *type)
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1679 type = desc_base_type (type);
1683 else if (is_thin_pntr (type))
1685 type = thin_descriptor_type (type);
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1690 return ada_check_typedef (r);
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1704 static struct value *
1705 desc_bounds (struct value *arr)
1707 struct type *type = ada_check_typedef (value_type (arr));
1709 if (is_thin_pntr (type))
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1724 addr = value_address (arr);
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1731 else if (is_thick_pntr (type))
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1748 error (_("Bad GNAT array descriptor"));
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1760 fat_pntr_bounds_bitpos (struct type *type)
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1769 fat_pntr_bounds_bitsize (struct type *type)
1771 type = desc_base_type (type);
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1787 type = desc_base_type (type);
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1807 static struct value *
1808 desc_data (struct value *arr)
1810 struct type *type = value_type (arr);
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1826 fat_pntr_data_bitpos (struct type *type)
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1835 fat_pntr_data_bitsize (struct type *type)
1837 type = desc_base_type (type);
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1861 desc_bound_bitpos (struct type *type, int i, int which)
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1871 desc_bound_bitsize (struct type *type, int i, int which)
1873 type = desc_base_type (type);
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1887 type = desc_base_type (type);
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1899 desc_arity (struct type *type)
1901 type = desc_base_type (type);
1904 return TYPE_NFIELDS (type) / 2;
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1913 ada_is_direct_array_type (struct type *type)
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1926 ada_is_array_type (struct type *type)
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1938 ada_is_simple_array_type (struct type *type)
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1952 ada_is_array_descriptor_type (struct type *type)
1954 struct type *data_type = desc_data_target_type (type);
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1970 ada_is_bogus_array_descriptor (struct type *type)
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1989 ada_type_of_array (struct value *arr, int bounds)
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2010 struct type *elt_type;
2012 struct value *descriptor;
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2058 return lookup_pointer_type (elt_type);
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2072 struct type *arrType = ada_type_of_array (arr, 1);
2074 if (arrType == NULL)
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2089 ada_coerce_to_simple_array (struct value *arr)
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2111 ada_coerce_to_simple_array_type (struct type *type)
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2125 ada_is_packed_array_type (struct type *type)
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2140 ada_is_constrained_packed_array_type (struct type *type)
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2160 decode_packed_array_bitsize (struct type *type)
2162 const char *raw_name;
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2172 raw_name = ada_type_name (ada_check_typedef (type));
2174 raw_name = ada_type_name (desc_base_type (type));
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2185 (_("could not understand bit size information on packed array"));
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2227 index_type = TYPE_INDEX_TYPE (type);
2229 new_type = alloc_type_copy (type);
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2263 struct type *shadow_type;
2267 raw_name = ada_type_name (desc_base_type (type));
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2281 if (shadow_type == NULL)
2283 lim_warning (_("could not find bounds information on packed array"));
2286 shadow_type = check_typedef (shadow_type);
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2321 type = decode_constrained_packed_array_type (value_type (arr));
2324 error (_("can't unpack array"));
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2338 mod = ada_modulus (value_type (arr)) - 1;
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2353 return coerce_unspec_val_to_type (arr, type);
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2408 /* Non-zero iff TYPE includes negative integer values. */
2411 has_negatives (struct type *type)
2413 switch (TYPE_CODE (type))
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2475 src_idx = src_len - 1;
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2487 unpacked_idx = unpacked_len - 1;
2491 /* Non-scalar values must be aligned at a byte boundary... */
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2513 while (src_bytes_left > 0)
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2536 src_bytes_left -= 1;
2539 while (unpacked_bytes_left > 0)
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2567 const gdb_byte *src; /* First byte containing data to unpack */
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb::byte_vector staging;
2573 type = ada_check_typedef (type);
2576 src = valaddr + offset;
2578 src = value_contents (obj) + offset;
2580 if (is_dynamic_type (type))
2582 /* The length of TYPE might by dynamic, so we need to resolve
2583 TYPE in order to know its actual size, which we then use
2584 to create the contents buffer of the value we return.
2585 The difficulty is that the data containing our object is
2586 packed, and therefore maybe not at a byte boundary. So, what
2587 we do, is unpack the data into a byte-aligned buffer, and then
2588 use that buffer as our object's value for resolving the type. */
2589 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2590 staging.resize (staging_len);
2592 ada_unpack_from_contents (src, bit_offset, bit_size,
2593 staging.data (), staging.size (),
2594 is_big_endian, has_negatives (type),
2596 type = resolve_dynamic_type (type, staging.data (), 0);
2597 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2599 /* This happens when the length of the object is dynamic,
2600 and is actually smaller than the space reserved for it.
2601 For instance, in an array of variant records, the bit_size
2602 we're given is the array stride, which is constant and
2603 normally equal to the maximum size of its element.
2604 But, in reality, each element only actually spans a portion
2606 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2612 v = allocate_value (type);
2613 src = valaddr + offset;
2615 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2617 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2620 v = value_at (type, value_address (obj) + offset);
2621 buf = (gdb_byte *) alloca (src_len);
2622 read_memory (value_address (v), buf, src_len);
2627 v = allocate_value (type);
2628 src = value_contents (obj) + offset;
2633 long new_offset = offset;
2635 set_value_component_location (v, obj);
2636 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2637 set_value_bitsize (v, bit_size);
2638 if (value_bitpos (v) >= HOST_CHAR_BIT)
2641 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2643 set_value_offset (v, new_offset);
2645 /* Also set the parent value. This is needed when trying to
2646 assign a new value (in inferior memory). */
2647 set_value_parent (v, obj);
2650 set_value_bitsize (v, bit_size);
2651 unpacked = value_contents_writeable (v);
2655 memset (unpacked, 0, TYPE_LENGTH (type));
2659 if (staging.size () == TYPE_LENGTH (type))
2661 /* Small short-cut: If we've unpacked the data into a buffer
2662 of the same size as TYPE's length, then we can reuse that,
2663 instead of doing the unpacking again. */
2664 memcpy (unpacked, staging.data (), staging.size ());
2667 ada_unpack_from_contents (src, bit_offset, bit_size,
2668 unpacked, TYPE_LENGTH (type),
2669 is_big_endian, has_negatives (type), is_scalar);
2674 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2675 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2678 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2679 int src_offset, int n, int bits_big_endian_p)
2681 unsigned int accum, mask;
2682 int accum_bits, chunk_size;
2684 target += targ_offset / HOST_CHAR_BIT;
2685 targ_offset %= HOST_CHAR_BIT;
2686 source += src_offset / HOST_CHAR_BIT;
2687 src_offset %= HOST_CHAR_BIT;
2688 if (bits_big_endian_p)
2690 accum = (unsigned char) *source;
2692 accum_bits = HOST_CHAR_BIT - src_offset;
2698 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2699 accum_bits += HOST_CHAR_BIT;
2701 chunk_size = HOST_CHAR_BIT - targ_offset;
2704 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2705 mask = ((1 << chunk_size) - 1) << unused_right;
2708 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2710 accum_bits -= chunk_size;
2717 accum = (unsigned char) *source >> src_offset;
2719 accum_bits = HOST_CHAR_BIT - src_offset;
2723 accum = accum + ((unsigned char) *source << accum_bits);
2724 accum_bits += HOST_CHAR_BIT;
2726 chunk_size = HOST_CHAR_BIT - targ_offset;
2729 mask = ((1 << chunk_size) - 1) << targ_offset;
2730 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2732 accum_bits -= chunk_size;
2733 accum >>= chunk_size;
2740 /* Store the contents of FROMVAL into the location of TOVAL.
2741 Return a new value with the location of TOVAL and contents of
2742 FROMVAL. Handles assignment into packed fields that have
2743 floating-point or non-scalar types. */
2745 static struct value *
2746 ada_value_assign (struct value *toval, struct value *fromval)
2748 struct type *type = value_type (toval);
2749 int bits = value_bitsize (toval);
2751 toval = ada_coerce_ref (toval);
2752 fromval = ada_coerce_ref (fromval);
2754 if (ada_is_direct_array_type (value_type (toval)))
2755 toval = ada_coerce_to_simple_array (toval);
2756 if (ada_is_direct_array_type (value_type (fromval)))
2757 fromval = ada_coerce_to_simple_array (fromval);
2759 if (!deprecated_value_modifiable (toval))
2760 error (_("Left operand of assignment is not a modifiable lvalue."));
2762 if (VALUE_LVAL (toval) == lval_memory
2764 && (TYPE_CODE (type) == TYPE_CODE_FLT
2765 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2767 int len = (value_bitpos (toval)
2768 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2770 gdb_byte *buffer = (gdb_byte *) alloca (len);
2772 CORE_ADDR to_addr = value_address (toval);
2774 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2775 fromval = value_cast (type, fromval);
2777 read_memory (to_addr, buffer, len);
2778 from_size = value_bitsize (fromval);
2780 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2781 if (gdbarch_bits_big_endian (get_type_arch (type)))
2782 move_bits (buffer, value_bitpos (toval),
2783 value_contents (fromval), from_size - bits, bits, 1);
2785 move_bits (buffer, value_bitpos (toval),
2786 value_contents (fromval), 0, bits, 0);
2787 write_memory_with_notification (to_addr, buffer, len);
2789 val = value_copy (toval);
2790 memcpy (value_contents_raw (val), value_contents (fromval),
2791 TYPE_LENGTH (type));
2792 deprecated_set_value_type (val, type);
2797 return value_assign (toval, fromval);
2801 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2802 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2803 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2804 COMPONENT, and not the inferior's memory. The current contents
2805 of COMPONENT are ignored.
2807 Although not part of the initial design, this function also works
2808 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2809 had a null address, and COMPONENT had an address which is equal to
2810 its offset inside CONTAINER. */
2813 value_assign_to_component (struct value *container, struct value *component,
2816 LONGEST offset_in_container =
2817 (LONGEST) (value_address (component) - value_address (container));
2818 int bit_offset_in_container =
2819 value_bitpos (component) - value_bitpos (container);
2822 val = value_cast (value_type (component), val);
2824 if (value_bitsize (component) == 0)
2825 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2827 bits = value_bitsize (component);
2829 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val),
2833 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2836 move_bits (value_contents_writeable (container) + offset_in_container,
2837 value_bitpos (container) + bit_offset_in_container,
2838 value_contents (val), 0, bits, 0);
2841 /* The value of the element of array ARR at the ARITY indices given in IND.
2842 ARR may be either a simple array, GNAT array descriptor, or pointer
2846 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2850 struct type *elt_type;
2852 elt = ada_coerce_to_simple_array (arr);
2854 elt_type = ada_check_typedef (value_type (elt));
2855 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2856 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2857 return value_subscript_packed (elt, arity, ind);
2859 for (k = 0; k < arity; k += 1)
2861 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2862 error (_("too many subscripts (%d expected)"), k);
2863 elt = value_subscript (elt, pos_atr (ind[k]));
2868 /* Assuming ARR is a pointer to a GDB array, the value of the element
2869 of *ARR at the ARITY indices given in IND.
2870 Does not read the entire array into memory.
2872 Note: Unlike what one would expect, this function is used instead of
2873 ada_value_subscript for basically all non-packed array types. The reason
2874 for this is that a side effect of doing our own pointer arithmetics instead
2875 of relying on value_subscript is that there is no implicit typedef peeling.
2876 This is important for arrays of array accesses, where it allows us to
2877 preserve the fact that the array's element is an array access, where the
2878 access part os encoded in a typedef layer. */
2880 static struct value *
2881 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2884 struct value *array_ind = ada_value_ind (arr);
2886 = check_typedef (value_enclosing_type (array_ind));
2888 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2889 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2890 return value_subscript_packed (array_ind, arity, ind);
2892 for (k = 0; k < arity; k += 1)
2895 struct value *lwb_value;
2897 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2898 error (_("too many subscripts (%d expected)"), k);
2899 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2901 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2902 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2903 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2904 type = TYPE_TARGET_TYPE (type);
2907 return value_ind (arr);
2910 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2911 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2912 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2913 this array is LOW, as per Ada rules. */
2914 static struct value *
2915 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2918 struct type *type0 = ada_check_typedef (type);
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2920 struct type *index_type
2921 = create_static_range_type (NULL, base_index_type, low, high);
2922 struct type *slice_type =
2923 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2924 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2925 LONGEST base_low_pos, low_pos;
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, base_low, &base_low_pos))
2931 warning (_("unable to get positions in slice, use bounds instead"));
2933 base_low_pos = base_low;
2936 base = value_as_address (array_ptr)
2937 + ((low_pos - base_low_pos)
2938 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2939 return value_at_lazy (slice_type, base);
2943 static struct value *
2944 ada_value_slice (struct value *array, int low, int high)
2946 struct type *type = ada_check_typedef (value_type (array));
2947 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2948 struct type *index_type
2949 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2950 struct type *slice_type =
2951 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2952 LONGEST low_pos, high_pos;
2954 if (!discrete_position (base_index_type, low, &low_pos)
2955 || !discrete_position (base_index_type, high, &high_pos))
2957 warning (_("unable to get positions in slice, use bounds instead"));
2962 return value_cast (slice_type,
2963 value_slice (array, low, high_pos - low_pos + 1));
2966 /* If type is a record type in the form of a standard GNAT array
2967 descriptor, returns the number of dimensions for type. If arr is a
2968 simple array, returns the number of "array of"s that prefix its
2969 type designation. Otherwise, returns 0. */
2972 ada_array_arity (struct type *type)
2979 type = desc_base_type (type);
2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2983 return desc_arity (desc_bounds_type (type));
2985 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2988 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2994 /* If TYPE is a record type in the form of a standard GNAT array
2995 descriptor or a simple array type, returns the element type for
2996 TYPE after indexing by NINDICES indices, or by all indices if
2997 NINDICES is -1. Otherwise, returns NULL. */
3000 ada_array_element_type (struct type *type, int nindices)
3002 type = desc_base_type (type);
3004 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3007 struct type *p_array_type;
3009 p_array_type = desc_data_target_type (type);
3011 k = ada_array_arity (type);
3015 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3016 if (nindices >= 0 && k > nindices)
3018 while (k > 0 && p_array_type != NULL)
3020 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3023 return p_array_type;
3025 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3029 type = TYPE_TARGET_TYPE (type);
3038 /* The type of nth index in arrays of given type (n numbering from 1).
3039 Does not examine memory. Throws an error if N is invalid or TYPE
3040 is not an array type. NAME is the name of the Ada attribute being
3041 evaluated ('range, 'first, 'last, or 'length); it is used in building
3042 the error message. */
3044 static struct type *
3045 ada_index_type (struct type *type, int n, const char *name)
3047 struct type *result_type;
3049 type = desc_base_type (type);
3051 if (n < 0 || n > ada_array_arity (type))
3052 error (_("invalid dimension number to '%s"), name);
3054 if (ada_is_simple_array_type (type))
3058 for (i = 1; i < n; i += 1)
3059 type = TYPE_TARGET_TYPE (type);
3060 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3061 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3062 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3063 perhaps stabsread.c would make more sense. */
3064 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3069 result_type = desc_index_type (desc_bounds_type (type), n);
3070 if (result_type == NULL)
3071 error (_("attempt to take bound of something that is not an array"));
3077 /* Given that arr is an array type, returns the lower bound of the
3078 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3079 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3080 array-descriptor type. It works for other arrays with bounds supplied
3081 by run-time quantities other than discriminants. */
3084 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3086 struct type *type, *index_type_desc, *index_type;
3089 gdb_assert (which == 0 || which == 1);
3091 if (ada_is_constrained_packed_array_type (arr_type))
3092 arr_type = decode_constrained_packed_array_type (arr_type);
3094 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3095 return (LONGEST) - which;
3097 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3098 type = TYPE_TARGET_TYPE (arr_type);
3102 if (TYPE_FIXED_INSTANCE (type))
3104 /* The array has already been fixed, so we do not need to
3105 check the parallel ___XA type again. That encoding has
3106 already been applied, so ignore it now. */
3107 index_type_desc = NULL;
3111 index_type_desc = ada_find_parallel_type (type, "___XA");
3112 ada_fixup_array_indexes_type (index_type_desc);
3115 if (index_type_desc != NULL)
3116 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3120 struct type *elt_type = check_typedef (type);
3122 for (i = 1; i < n; i++)
3123 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3125 index_type = TYPE_INDEX_TYPE (elt_type);
3129 (LONGEST) (which == 0
3130 ? ada_discrete_type_low_bound (index_type)
3131 : ada_discrete_type_high_bound (index_type));
3134 /* Given that arr is an array value, returns the lower bound of the
3135 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3136 WHICH is 1. This routine will also work for arrays with bounds
3137 supplied by run-time quantities other than discriminants. */
3140 ada_array_bound (struct value *arr, int n, int which)
3142 struct type *arr_type;
3144 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3145 arr = value_ind (arr);
3146 arr_type = value_enclosing_type (arr);
3148 if (ada_is_constrained_packed_array_type (arr_type))
3149 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3150 else if (ada_is_simple_array_type (arr_type))
3151 return ada_array_bound_from_type (arr_type, n, which);
3153 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3156 /* Given that arr is an array value, returns the length of the
3157 nth index. This routine will also work for arrays with bounds
3158 supplied by run-time quantities other than discriminants.
3159 Does not work for arrays indexed by enumeration types with representation
3160 clauses at the moment. */
3163 ada_array_length (struct value *arr, int n)
3165 struct type *arr_type, *index_type;
3168 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3169 arr = value_ind (arr);
3170 arr_type = value_enclosing_type (arr);
3172 if (ada_is_constrained_packed_array_type (arr_type))
3173 return ada_array_length (decode_constrained_packed_array (arr), n);
3175 if (ada_is_simple_array_type (arr_type))
3177 low = ada_array_bound_from_type (arr_type, n, 0);
3178 high = ada_array_bound_from_type (arr_type, n, 1);
3182 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3183 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3186 arr_type = check_typedef (arr_type);
3187 index_type = TYPE_INDEX_TYPE (arr_type);
3188 if (index_type != NULL)
3190 struct type *base_type;
3191 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3192 base_type = TYPE_TARGET_TYPE (index_type);
3194 base_type = index_type;
3196 low = pos_atr (value_from_longest (base_type, low));
3197 high = pos_atr (value_from_longest (base_type, high));
3199 return high - low + 1;
3202 /* An empty array whose type is that of ARR_TYPE (an array type),
3203 with bounds LOW to LOW-1. */
3205 static struct value *
3206 empty_array (struct type *arr_type, int low)
3208 struct type *arr_type0 = ada_check_typedef (arr_type);
3209 struct type *index_type
3210 = create_static_range_type
3211 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3212 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3214 return allocate_value (create_array_type (NULL, elt_type, index_type));
3218 /* Name resolution */
3220 /* The "decoded" name for the user-definable Ada operator corresponding
3224 ada_decoded_op_name (enum exp_opcode op)
3228 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3230 if (ada_opname_table[i].op == op)
3231 return ada_opname_table[i].decoded;
3233 error (_("Could not find operator name for opcode"));
3237 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3238 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3239 undefined namespace) and converts operators that are
3240 user-defined into appropriate function calls. If CONTEXT_TYPE is
3241 non-null, it provides a preferred result type [at the moment, only
3242 type void has any effect---causing procedures to be preferred over
3243 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3244 return type is preferred. May change (expand) *EXP. */
3247 resolve (struct expression **expp, int void_context_p)
3249 struct type *context_type = NULL;
3253 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3255 resolve_subexp (expp, &pc, 1, context_type);
3258 /* Resolve the operator of the subexpression beginning at
3259 position *POS of *EXPP. "Resolving" consists of replacing
3260 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3261 with their resolutions, replacing built-in operators with
3262 function calls to user-defined operators, where appropriate, and,
3263 when DEPROCEDURE_P is non-zero, converting function-valued variables
3264 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3265 are as in ada_resolve, above. */
3267 static struct value *
3268 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3269 struct type *context_type)
3273 struct expression *exp; /* Convenience: == *expp. */
3274 enum exp_opcode op = (*expp)->elts[pc].opcode;
3275 struct value **argvec; /* Vector of operand types (alloca'ed). */
3276 int nargs; /* Number of operands. */
3283 /* Pass one: resolve operands, saving their types and updating *pos,
3288 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3289 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3294 resolve_subexp (expp, pos, 0, NULL);
3296 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3301 resolve_subexp (expp, pos, 0, NULL);
3306 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3309 case OP_ATR_MODULUS:
3319 case TERNOP_IN_RANGE:
3320 case BINOP_IN_BOUNDS:
3326 case OP_DISCRETE_RANGE:
3328 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3337 arg1 = resolve_subexp (expp, pos, 0, NULL);
3339 resolve_subexp (expp, pos, 1, NULL);
3341 resolve_subexp (expp, pos, 1, value_type (arg1));
3358 case BINOP_LOGICAL_AND:
3359 case BINOP_LOGICAL_OR:
3360 case BINOP_BITWISE_AND:
3361 case BINOP_BITWISE_IOR:
3362 case BINOP_BITWISE_XOR:
3365 case BINOP_NOTEQUAL:
3372 case BINOP_SUBSCRIPT:
3380 case UNOP_LOGICAL_NOT:
3396 case OP_INTERNALVAR:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3423 error (_("Unexpected operator during name resolution"));
3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3432 /* Pass two: perform any resolution on principal operator. */
3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3441 struct block_symbol *candidates;
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
3450 if (n_candidates > 1)
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3456 for (j = 0; j < n_candidates; j += 1)
3457 switch (SYMBOL_CLASS (candidates[j].symbol))
3462 case LOC_REGPARM_ADDR:
3470 if (j < n_candidates)
3473 while (j < n_candidates)
3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3477 candidates[j] = candidates[n_candidates - 1];
3486 if (n_candidates == 0)
3487 error (_("No definition found for %s"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3499 error (_("Could not find a match for %s"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 printf_filtered (_("Multiple matches for %s\n"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3510 exp->elts[pc + 1].block = candidates[i].block;
3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
3514 innermost_block = candidates[i].block;
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3533 struct block_symbol *candidates;
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
3541 if (n_candidates == 1)
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3551 error (_("Could not find a match for %s"),
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3555 exp->elts[pc + 4].block = candidates[i].block;
3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
3559 innermost_block = candidates[i].block;
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3574 case BINOP_NOTEQUAL:
3582 case UNOP_LOGICAL_NOT:
3584 if (possible_user_operator_p (op, argvec))
3586 struct block_symbol *candidates;
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3594 ada_decoded_op_name (op), NULL);
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
3611 return evaluate_subexp_type (exp, pos);
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 /* The term "match" here is rather loose. The match is heuristic and
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3631 switch (TYPE_CODE (ftype))
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3667 case TYPE_CODE_UNION:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3682 struct type *func_type = SYMBOL_TYPE (func);
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3693 for (i = 0; i < n_actuals; i += 1)
3695 if (actuals[i] == NULL)
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703 if (!ada_type_match (ftype, atype, 1))
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3716 return_match (struct type *func_type, struct type *context_type)
3718 struct type *return_type;
3720 if (func_type == NULL)
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3730 context_type = get_base_type (context_type);
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3760 int m; /* Number of hits */
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 for (k = 0; k < nsyms; k += 1)
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3787 else if (m > 1 && !parse_completion)
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3803 encoded_ordered_before (const char *N0, const char *N1)
3807 else if (N0 == NULL)
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 return (strcmp (N0, N1) < 0);
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3839 sort_choices (struct block_symbol syms[], int nsyms)
3843 for (i = 1; i < nsyms; i += 1)
3845 struct block_symbol sym = syms[i];
3848 for (j = i - 1; j >= 0; j -= 1)
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 syms[j + 1] = syms[j];
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3872 struct type *type = SYMBOL_TYPE (sym);
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3880 if (TYPE_NFIELDS (type) > 0)
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3892 fprintf_filtered (stream, ")");
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3914 int *chosen = XALLOCAVEC (int , nsyms);
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3924 if (select_mode == multiple_symbols_cancel)
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3939 sort_choices (syms, nsyms);
3941 for (i = 0; i < nsyms; i += 1)
3943 if (syms[i].symbol == NULL)
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4002 symtab_to_filename_for_display (symtab));
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031 The user is not allowed to choose more than MAX_RESULTS values.
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4043 int first_choice = is_all_choice ? 2 : 1;
4045 prompt = getenv ("PS2");
4049 args = command_line_input (prompt, 0, annotation_suffix);
4052 error_no_arg (_("one or more choice numbers"));
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4076 error (_("cancelled"));
4078 if (choice < first_choice)
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4085 choice -= first_choice;
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4091 if (j < 0 || choice != choices[j])
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4142 /* Type-class predicates */
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4148 numeric_type_p (struct type *type)
4154 switch (TYPE_CODE (type))
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4171 integer_type_p (struct type *type)
4177 switch (TYPE_CODE (type))
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4193 scalar_type_p (struct type *type)
4199 switch (TYPE_CODE (type))
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4215 discrete_type_p (struct type *type)
4221 switch (TYPE_CODE (type))
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4268 case BINOP_NOTEQUAL:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4283 case UNOP_LOGICAL_NOT:
4285 return (!numeric_type_p (type0));
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304 /* If SYM encodes a renaming,
4306 <renaming> renames <renamed entity>,
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4328 enum ada_renaming_category kind;
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4337 return ADA_NOT_RENAMING;
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 return ADA_NOT_RENAMING;
4351 kind = ADA_OBJECT_RENAMING;
4355 kind = ADA_EXCEPTION_RENAMING;
4359 kind = ADA_PACKAGE_RENAMING;
4363 kind = ADA_SUBPROGRAM_RENAMING;
4367 return ADA_NOT_RENAMING;
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4377 *len = strlen (info) - strlen (suffix);
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4393 enum ada_renaming_category kind;
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4402 name = type_name_no_tag (type);
4404 return ADA_NOT_RENAMING;
4406 name = strstr (name, "___XR");
4408 return ADA_NOT_RENAMING;
4413 kind = ADA_OBJECT_RENAMING;
4416 kind = ADA_EXCEPTION_RENAMING;
4419 kind = ADA_PACKAGE_RENAMING;
4422 kind = ADA_SUBPROGRAM_RENAMING;
4425 return ADA_NOT_RENAMING;
4428 info = TYPE_FIELD_NAME (type, 0);
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4439 *len = suffix - info;
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4451 const char *sym_name;
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4459 /* Evaluation: Function Calls */
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4465 static struct value *
4466 ensure_lval (struct value *val)
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4506 struct value *result;
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4513 if (VALUE_LVAL (actual) != lval_memory)
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4524 result = value_addr (actual);
4528 return value_cast_pointers (formal_type, result, 0);
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4534 /* We need to turn this parameter into an aligner type
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539 value_assign_to_component (aligner, component, actual);
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4552 value_pointer (struct value *value, struct type *type)
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4594 bounds = ensure_lval (bounds);
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4610 descriptor = ensure_lval (descriptor);
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4618 /* Symbol Cache Module */
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4630 /* Initialize the contents of SYM_CACHE. */
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4639 /* Free the memory used by SYM_CACHE. */
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4644 obstack_free (&sym_cache->cache_space, NULL);
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4656 if (pspace_data->sym_cache == NULL)
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4662 return pspace_data->sym_cache;
4665 /* Clear all entries from the symbol cache. */
4668 ada_clear_symbol_cache (void)
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4706 struct cache_entry **e = find_entry (name, domain);
4713 *block = (*e)->block;
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4728 struct cache_entry *e;
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4761 /* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4768 should_use_wild_match (const char *lookup_name)
4770 return (strstr (lookup_name, "__") == NULL);
4773 /* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4776 static struct symbol *
4777 standard_lookup (const char *name, const struct block *block,
4780 /* Initialize it just to avoid a GCC false warning. */
4781 struct block_symbol sym = {NULL, NULL};
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4791 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4795 is_nonfunction (struct block_symbol syms[], int n)
4799 for (i = 0; i < n; i += 1)
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4808 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4809 struct types. Otherwise, they may not. */
4812 equiv_types (struct type *type0, struct type *type1)
4816 if (type0 == NULL || type1 == NULL
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4828 /* True iff SYM0 represents the same entity as SYM1, or one that is
4829 no more defined than that of SYM1. */
4832 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 switch (SYMBOL_CLASS (sym0))
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4850 int len0 = strlen (name0);
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4856 && startswith (name1 + len0, "___XV")));
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4866 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870 add_defn_to_vec (struct obstack *obstackp,
4872 const struct block *block)
4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 prevDefns[i].symbol = sym;
4893 prevDefns[i].block = block;
4899 struct block_symbol info;
4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4907 /* Number of block_symbol structures currently collected in current vector in
4911 num_defns_collected (struct obstack *obstackp)
4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 /* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919 static struct block_symbol *
4920 defns_collected (struct obstack *obstackp, int finish)
4923 return (struct block_symbol *) obstack_finish (obstackp);
4925 return (struct block_symbol *) obstack_base (obstackp);
4928 /* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4934 struct bound_minimal_symbol
4935 ada_lookup_simple_minsym (const char *name)
4937 struct bound_minimal_symbol result;
4938 struct objfile *objfile;
4939 struct minimal_symbol *msymbol;
4940 const int wild_match_p = should_use_wild_match (name);
4942 memset (&result, 0, sizeof (result));
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
4951 if (startswith (name, "standard__"))
4952 name += sizeof ("standard__") - 1;
4954 ALL_MSYMBOLS (objfile, msymbol)
4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4968 /* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4975 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4976 const char *name, domain_enum domain,
4981 /* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
4985 is_nondebugging_type (struct type *type)
4987 const char *name = ada_type_name (type);
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 /* All enumerals should also have the same name (modulo any numerical
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5035 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5040 For instance, consider the following code:
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5056 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
5094 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
5102 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5123 for (j = 0; j < nsyms; j++)
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5141 for (j = 0; j < nsyms; j += 1)
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5183 /* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
5189 xget_renaming_scope (struct type *renaming_type)
5191 /* The renaming types adhere to the following convention:
5192 <scope>__<rename>___<XR extension>.
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
5196 const char *name = type_name_no_tag (renaming_type);
5197 const char *suffix = strstr (name, "___XR");
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5209 /* Make a copy of scope and return it. */
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
5220 /* Return nonzero if NAME corresponds to a package name. */
5223 is_package_name (const char *name)
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
5241 /* Do a quick check that NAME does not contain "__", since library-level
5242 functions names cannot contain "__" in them. */
5243 if (strstr (name, "__") != NULL)
5246 fun_name = xstrprintf ("_ada_%s", name);
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 /* Return nonzero if SYM corresponds to a renaming entity that is
5252 not visible from FUNCTION_NAME. */
5255 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 struct cleanup *old_chain;
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5264 old_chain = make_cleanup (xfree, scope);
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
5269 do_cleanups (old_chain);
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5280 if (startswith (function_name, "_ada_"))
5284 int is_invisible = !startswith (function_name, scope);
5286 do_cleanups (old_chain);
5287 return is_invisible;
5291 /* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5303 Second, GNAT emits a type following a specified encoding for each renaming
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
5329 remove_irrelevant_renamings (struct block_symbol *syms,
5330 int nsyms, const struct block *current_block)
5332 struct symbol *current_function;
5333 const char *current_function_name;
5335 int is_new_style_renaming;
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
5339 First, zero out such symbols, then compress. */
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5343 struct symbol *sym = syms[i].symbol;
5344 const struct block *block = syms[i].block;
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5355 int name_len = suffix - name;
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5363 && block == syms[j].block)
5364 syms[j].symbol = NULL;
5367 if (is_new_style_renaming)
5371 for (j = k = 0; j < nsyms; j += 1)
5372 if (syms[j].symbol != NULL)
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
5383 if (current_block == NULL)
5386 current_function = block_linkage_function (current_block);
5387 if (current_function == NULL)
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5402 == ADA_OBJECT_RENAMING
5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5407 for (j = i + 1; j < nsyms; j += 1)
5408 syms[j - 1] = syms[j];
5418 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5430 const struct block *block, domain_enum domain,
5433 int block_depth = 0;
5435 while (block != NULL)
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5446 block = BLOCK_SUPERBLOCK (block);
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 struct match_data *data = (struct match_data *) data0;
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5513 ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5522 for (renaming = block_using (block);
5524 renaming = renaming->next)
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5540 renaming->searched = 1;
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5551 : renaming->declaration);
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5557 renaming->searched = 0;
5559 return num_defns_collected (obstackp) != defns_mark;
5562 /* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5566 compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
5569 while (*string1 != '\0' && *string2 != '\0')
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
5576 if (casing == case_sensitive_off)
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5596 return strcmp_iw_ordered (string1, string2);
5598 if (*string2 == '\0')
5600 if (is_name_suffix (string1))
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5614 return *string1 - *string2;
5619 /* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5626 compare_names (STRING1, STRING2) <= 0
5628 (they may differ as to what symbols compare equal). */
5631 compare_names (const char *string1, const char *string2)
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5647 /* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5652 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5656 struct objfile *objfile;
5657 struct compunit_symtab *cu;
5658 struct match_data data;
5660 memset (&data, 0, sizeof data);
5661 data.obstackp = obstackp;
5663 ALL_OBJFILES (objfile)
5665 data.objfile = objfile;
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5689 ALL_OBJFILES (objfile)
5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5697 aux_add_nonlocal_symbols,
5699 full_match, compare_names);
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5705 non-zero, enclosing scope and in global scopes, returning the number of
5706 matches. Add these to OBSTACKP.
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
5710 is the one match returned (no other matches in that or
5711 enclosing blocks is returned). If there are any matches in or
5712 surrounding BLOCK, then these alone are returned.
5714 Names prefixed with "standard__" are handled specially: "standard__"
5715 is first stripped off, and only static and global symbols are searched.
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5721 ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5726 int *made_global_lookup_p)
5729 const int wild_match_p = should_use_wild_match (name);
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
5741 if (startswith (name, "standard__"))
5744 name = name + sizeof ("standard__") - 1;
5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5769 if (lookup_cached_symbol (name, domain, &sym, &block))
5772 add_defn_to_vec (obstackp, sym, block);
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
5779 /* Search symbols from all global blocks. */
5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5783 /* Now add symbols from all per-file blocks if we've gotten no hits
5784 (not strictly correct, but perhaps better than an error). */
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5790 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5808 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5810 struct block_symbol **results,
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5825 ndefns = remove_extra_symbols (*results, ndefns);
5827 if (ndefns == 0 && full_search && syms_from_global_search)
5828 cache_symbol (name, domain, NULL, NULL);
5830 if (ndefns == 1 && full_search && syms_from_global_search)
5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5837 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5843 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5844 domain_enum domain, struct block_symbol **results)
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5849 /* Implementation of the la_iterate_over_symbols method. */
5852 ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5857 struct block_symbol *results;
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5862 if (!callback (results[i].symbol))
5867 /* If NAME is the name of an entity, return a string that should
5868 be used to look that entity up in Ada units.
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5875 ada_name_for_lookup (const char *name)
5877 int nlen = strlen (name);
5879 if (name[0] == '<' && name[nlen - 1] == '>')
5880 return std::string (name + 1, nlen - 2);
5882 return ada_encode (ada_fold_name (name));
5885 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
5893 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5895 struct block_symbol *info)
5897 struct block_symbol *candidates;
5900 gdb_assert (info != NULL);
5901 memset (info, 0, sizeof (struct block_symbol));
5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5904 if (n_candidates == 0)
5907 *info = candidates[0];
5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5914 choosing the first symbol if there are multiple choices.
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918 ada_lookup_symbol (const char *name, const struct block *block0,
5919 domain_enum domain, int *is_a_field_of_this)
5921 struct block_symbol info;
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5927 block0, domain, &info);
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5934 const struct block *block,
5935 const domain_enum domain)
5937 struct block_symbol sym;
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940 if (sym.symbol != NULL)
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5955 if (domain == VAR_DOMAIN)
5957 struct gdbarch *gdbarch;
5960 gdbarch = target_gdbarch ();
5962 gdbarch = block_gdbarch (block);
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
5968 return (struct block_symbol) {NULL, NULL};
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5975 are given by any of the regular expressions:
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5979 TKB [subprogram suffix for task bodies]
5980 _E[0-9]+[bs]$ [protected object entry suffixes]
5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
5988 is_name_suffix (const char *str)
5991 const char *matching;
5992 const int len = strlen (str);
5994 /* Skip optional leading __[0-9]+. */
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 while (isdigit (str[0]))
6005 if (str[0] == '.' || str[0] == '$')
6008 while (isdigit (matching[0]))
6010 if (matching[0] == '\0')
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 while (isdigit (matching[0]))
6021 if (matching[0] == '\0')
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6027 if (strcmp (str, "TKB") == 0)
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
6034 all entity names that end with an "N" as a name suffix causes
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
6038 Having a single character like this as a suffix carrying some
6039 information is a bit risky. Perhaps we should change the encoding
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 while (isdigit (matching[0]))
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
6066 while (str[0] != '_' && str[0] != '\0')
6068 if (str[0] != 'n' && str[0] != 'b')
6074 if (str[0] == '\000')
6079 if (str[1] != '_' || str[2] == '\000')
6083 if (strcmp (str + 3, "JM") == 0)
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
6090 if (strcmp (str + 3, "LJM") == 0)
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
6097 if (str[4] == 'R' && str[5] != 'T')
6101 if (!isdigit (str[2]))
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6108 if (str[0] == '$' && isdigit (str[1]))
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6118 /* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
6122 is_valid_name_for_wild_match (const char *name0)
6124 const char *decoded_name = ada_decode (name0);
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6147 const char *name = *namep;
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 if (name == name0 + 5 && startswith (name0, "_ada"))
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6184 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6189 wild_match (const char *name, const char *patn)
6192 const char *name0 = name;
6196 const char *match = name;
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6206 if (name[-1] == '_')
6209 if (!advance_wild_match (&name, name0, *patn))
6214 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6218 full_match (const char *sym_name, const char *search_name)
6220 return !match_name (sym_name, search_name, 0);
6224 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6227 OBJFILE is the section containing BLOCK. */
6230 ada_add_block_symbols (struct obstack *obstackp,
6231 const struct block *block, const char *name,
6232 domain_enum domain, struct objfile *objfile,
6235 struct block_iterator iter;
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6278 if (SYMBOL_IS_ARGUMENT (sym))
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6292 /* Handle renamings. */
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 if (!found_sym && arg_sym != NULL)
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6330 if (SYMBOL_IS_ARGUMENT (sym))
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (arg_sym, objfile),
6356 /* Symbol Completion */
6358 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6362 TEXT_LEN is equal to the length of TEXT.
6363 Perform a wild match if WILD_MATCH_P is set.
6364 ENCODED_P should be set if TEXT represents the start of a symbol name
6365 in its encoded form. */
6368 symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6370 int wild_match_p, int encoded_p)
6372 const int verbatim_match = (text[0] == '<');
6377 /* Strip the leading angle bracket. */
6382 /* First, test against the fully qualified name of the symbol. */
6384 if (strncmp (sym_name, text, text_len) == 0)
6387 if (match && !encoded_p)
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6402 if (match && !verbatim_match)
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6416 /* Second: Try wild matching... */
6418 if (!match && wild_match_p)
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6425 if (strncmp (sym_name, text, text_len) == 0)
6429 /* Finally: If we found a mach, prepare the result to return. */
6435 sym_name = add_angle_brackets (sym_name);
6438 sym_name = ada_decode (sym_name);
6443 /* A companion function to ada_collect_symbol_completion_matches().
6444 Check if SYM_NAME represents a symbol which name would be suitable
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6446 is added as a completion match to TRACKER.
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6453 if WILD_MATCH_P is set, then wild matching is performed.
6454 ENCODED_P should be set if TEXT represents a symbol name in its
6455 encoded formed (in which case the completion should also be
6459 symbol_completion_add (completion_tracker &tracker,
6460 const char *sym_name,
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
6463 int wild_match_p, int encoded_p)
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
6466 wild_match_p, encoded_p);
6472 /* We found a match, so add the appropriate completion to the given
6475 if (word == orig_text)
6477 completion = (char *) xmalloc (strlen (match) + 5);
6478 strcpy (completion, match);
6480 else if (word > orig_text)
6482 /* Return some portion of sym_name. */
6483 completion = (char *) xmalloc (strlen (match) + 5);
6484 strcpy (completion, match + (word - orig_text));
6488 /* Return some of ORIG_TEXT plus sym_name. */
6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6495 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
6498 /* Add the list of possible symbol names completing TEXT0 to TRACKER.
6499 WORD is the entire command on which completion is made. */
6502 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6503 complete_symbol_mode mode,
6504 const char *text0, const char *word,
6505 enum type_code code)
6512 struct compunit_symtab *s;
6513 struct minimal_symbol *msymbol;
6514 struct objfile *objfile;
6515 const struct block *b, *surrounding_static_block = 0;
6517 struct block_iterator iter;
6518 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6520 gdb_assert (code == TYPE_CODE_UNDEF);
6522 if (text0[0] == '<')
6524 text = xstrdup (text0);
6525 make_cleanup (xfree, text);
6526 text_len = strlen (text);
6532 text = xstrdup (ada_encode (text0));
6533 make_cleanup (xfree, text);
6534 text_len = strlen (text);
6535 for (i = 0; i < text_len; i++)
6536 text[i] = tolower (text[i]);
6538 encoded_p = (strstr (text0, "__") != NULL);
6539 /* If the name contains a ".", then the user is entering a fully
6540 qualified entity name, and the match must not be done in wild
6541 mode. Similarly, if the user wants to complete what looks like
6542 an encoded name, the match must not be done in wild mode. */
6543 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6546 /* First, look at the partial symtab symbols. */
6547 expand_symtabs_matching (NULL,
6548 [&] (const char *symname)
6550 return symbol_completion_match (symname,
6558 /* At this point scan through the misc symbol vectors and add each
6559 symbol you find to the list. Eventually we want to ignore
6560 anything that isn't a text symbol (everything else will be
6561 handled by the psymtab code above). */
6563 ALL_MSYMBOLS (objfile, msymbol)
6566 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
6567 text, text_len, text0, word, wild_match_p,
6571 /* Search upwards from currently selected frame (so that we can
6572 complete on local vars. */
6574 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6576 if (!BLOCK_SUPERBLOCK (b))
6577 surrounding_static_block = b; /* For elmin of dups */
6579 ALL_BLOCK_SYMBOLS (b, iter, sym)
6581 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6582 text, text_len, text0, word,
6583 wild_match_p, encoded_p);
6587 /* Go through the symtabs and check the externs and statics for
6588 symbols which match. */
6590 ALL_COMPUNITS (objfile, s)
6593 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6594 ALL_BLOCK_SYMBOLS (b, iter, sym)
6596 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6597 text, text_len, text0, word,
6598 wild_match_p, encoded_p);
6602 ALL_COMPUNITS (objfile, s)
6605 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6606 /* Don't do this block twice. */
6607 if (b == surrounding_static_block)
6609 ALL_BLOCK_SYMBOLS (b, iter, sym)
6611 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6612 text, text_len, text0, word,
6613 wild_match_p, encoded_p);
6617 do_cleanups (old_chain);
6622 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6623 for tagged types. */
6626 ada_is_dispatch_table_ptr_type (struct type *type)
6630 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6633 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6637 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6640 /* Return non-zero if TYPE is an interface tag. */
6643 ada_is_interface_tag (struct type *type)
6645 const char *name = TYPE_NAME (type);
6650 return (strcmp (name, "ada__tags__interface_tag") == 0);
6653 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6654 to be invisible to users. */
6657 ada_is_ignored_field (struct type *type, int field_num)
6659 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6662 /* Check the name of that field. */
6664 const char *name = TYPE_FIELD_NAME (type, field_num);
6666 /* Anonymous field names should not be printed.
6667 brobecker/2007-02-20: I don't think this can actually happen
6668 but we don't want to print the value of annonymous fields anyway. */
6672 /* Normally, fields whose name start with an underscore ("_")
6673 are fields that have been internally generated by the compiler,
6674 and thus should not be printed. The "_parent" field is special,
6675 however: This is a field internally generated by the compiler
6676 for tagged types, and it contains the components inherited from
6677 the parent type. This field should not be printed as is, but
6678 should not be ignored either. */
6679 if (name[0] == '_' && !startswith (name, "_parent"))
6683 /* If this is the dispatch table of a tagged type or an interface tag,
6685 if (ada_is_tagged_type (type, 1)
6686 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6687 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6690 /* Not a special field, so it should not be ignored. */
6694 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6695 pointer or reference type whose ultimate target has a tag field. */
6698 ada_is_tagged_type (struct type *type, int refok)
6700 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6703 /* True iff TYPE represents the type of X'Tag */
6706 ada_is_tag_type (struct type *type)
6708 type = ada_check_typedef (type);
6710 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6714 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6716 return (name != NULL
6717 && strcmp (name, "ada__tags__dispatch_table") == 0);
6721 /* The type of the tag on VAL. */
6724 ada_tag_type (struct value *val)
6726 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6729 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6730 retired at Ada 05). */
6733 is_ada95_tag (struct value *tag)
6735 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6738 /* The value of the tag on VAL. */
6741 ada_value_tag (struct value *val)
6743 return ada_value_struct_elt (val, "_tag", 0);
6746 /* The value of the tag on the object of type TYPE whose contents are
6747 saved at VALADDR, if it is non-null, or is at memory address
6750 static struct value *
6751 value_tag_from_contents_and_address (struct type *type,
6752 const gdb_byte *valaddr,
6755 int tag_byte_offset;
6756 struct type *tag_type;
6758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6761 const gdb_byte *valaddr1 = ((valaddr == NULL)
6763 : valaddr + tag_byte_offset);
6764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6766 return value_from_contents_and_address (tag_type, valaddr1, address1);
6771 static struct type *
6772 type_from_tag (struct value *tag)
6774 const char *type_name = ada_tag_name (tag);
6776 if (type_name != NULL)
6777 return ada_find_any_type (ada_encode (type_name));
6781 /* Given a value OBJ of a tagged type, return a value of this
6782 type at the base address of the object. The base address, as
6783 defined in Ada.Tags, it is the address of the primary tag of
6784 the object, and therefore where the field values of its full
6785 view can be fetched. */
6788 ada_tag_value_at_base_address (struct value *obj)
6791 LONGEST offset_to_top = 0;
6792 struct type *ptr_type, *obj_type;
6794 CORE_ADDR base_address;
6796 obj_type = value_type (obj);
6798 /* It is the responsability of the caller to deref pointers. */
6800 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6801 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6804 tag = ada_value_tag (obj);
6808 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6810 if (is_ada95_tag (tag))
6813 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6814 ptr_type = lookup_pointer_type (ptr_type);
6815 val = value_cast (ptr_type, tag);
6819 /* It is perfectly possible that an exception be raised while
6820 trying to determine the base address, just like for the tag;
6821 see ada_tag_name for more details. We do not print the error
6822 message for the same reason. */
6826 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6829 CATCH (e, RETURN_MASK_ERROR)
6835 /* If offset is null, nothing to do. */
6837 if (offset_to_top == 0)
6840 /* -1 is a special case in Ada.Tags; however, what should be done
6841 is not quite clear from the documentation. So do nothing for
6844 if (offset_to_top == -1)
6847 base_address = value_address (obj) - offset_to_top;
6848 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6850 /* Make sure that we have a proper tag at the new address.
6851 Otherwise, offset_to_top is bogus (which can happen when
6852 the object is not initialized yet). */
6857 obj_type = type_from_tag (tag);
6862 return value_from_contents_and_address (obj_type, NULL, base_address);
6865 /* Return the "ada__tags__type_specific_data" type. */
6867 static struct type *
6868 ada_get_tsd_type (struct inferior *inf)
6870 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6872 if (data->tsd_type == 0)
6873 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6874 return data->tsd_type;
6877 /* Return the TSD (type-specific data) associated to the given TAG.
6878 TAG is assumed to be the tag of a tagged-type entity.
6880 May return NULL if we are unable to get the TSD. */
6882 static struct value *
6883 ada_get_tsd_from_tag (struct value *tag)
6888 /* First option: The TSD is simply stored as a field of our TAG.
6889 Only older versions of GNAT would use this format, but we have
6890 to test it first, because there are no visible markers for
6891 the current approach except the absence of that field. */
6893 val = ada_value_struct_elt (tag, "tsd", 1);
6897 /* Try the second representation for the dispatch table (in which
6898 there is no explicit 'tsd' field in the referent of the tag pointer,
6899 and instead the tsd pointer is stored just before the dispatch
6902 type = ada_get_tsd_type (current_inferior());
6905 type = lookup_pointer_type (lookup_pointer_type (type));
6906 val = value_cast (type, tag);
6909 return value_ind (value_ptradd (val, -1));
6912 /* Given the TSD of a tag (type-specific data), return a string
6913 containing the name of the associated type.
6915 The returned value is good until the next call. May return NULL
6916 if we are unable to determine the tag name. */
6919 ada_tag_name_from_tsd (struct value *tsd)
6921 static char name[1024];
6925 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6928 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6929 for (p = name; *p != '\0'; p += 1)
6935 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6938 Return NULL if the TAG is not an Ada tag, or if we were unable to
6939 determine the name of that tag. The result is good until the next
6943 ada_tag_name (struct value *tag)
6947 if (!ada_is_tag_type (value_type (tag)))
6950 /* It is perfectly possible that an exception be raised while trying
6951 to determine the TAG's name, even under normal circumstances:
6952 The associated variable may be uninitialized or corrupted, for
6953 instance. We do not let any exception propagate past this point.
6954 instead we return NULL.
6956 We also do not print the error message either (which often is very
6957 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6958 the caller print a more meaningful message if necessary. */
6961 struct value *tsd = ada_get_tsd_from_tag (tag);
6964 name = ada_tag_name_from_tsd (tsd);
6966 CATCH (e, RETURN_MASK_ERROR)
6974 /* The parent type of TYPE, or NULL if none. */
6977 ada_parent_type (struct type *type)
6981 type = ada_check_typedef (type);
6983 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987 if (ada_is_parent_field (type, i))
6989 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6991 /* If the _parent field is a pointer, then dereference it. */
6992 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6993 parent_type = TYPE_TARGET_TYPE (parent_type);
6994 /* If there is a parallel XVS type, get the actual base type. */
6995 parent_type = ada_get_base_type (parent_type);
6997 return ada_check_typedef (parent_type);
7003 /* True iff field number FIELD_NUM of structure type TYPE contains the
7004 parent-type (inherited) fields of a derived type. Assumes TYPE is
7005 a structure type with at least FIELD_NUM+1 fields. */
7008 ada_is_parent_field (struct type *type, int field_num)
7010 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7012 return (name != NULL
7013 && (startswith (name, "PARENT")
7014 || startswith (name, "_parent")));
7017 /* True iff field number FIELD_NUM of structure type TYPE is a
7018 transparent wrapper field (which should be silently traversed when doing
7019 field selection and flattened when printing). Assumes TYPE is a
7020 structure type with at least FIELD_NUM+1 fields. Such fields are always
7024 ada_is_wrapper_field (struct type *type, int field_num)
7026 const char *name = TYPE_FIELD_NAME (type, field_num);
7028 if (name != NULL && strcmp (name, "RETVAL") == 0)
7030 /* This happens in functions with "out" or "in out" parameters
7031 which are passed by copy. For such functions, GNAT describes
7032 the function's return type as being a struct where the return
7033 value is in a field called RETVAL, and where the other "out"
7034 or "in out" parameters are fields of that struct. This is not
7039 return (name != NULL
7040 && (startswith (name, "PARENT")
7041 || strcmp (name, "REP") == 0
7042 || startswith (name, "_parent")
7043 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7046 /* True iff field number FIELD_NUM of structure or union type TYPE
7047 is a variant wrapper. Assumes TYPE is a structure type with at least
7048 FIELD_NUM+1 fields. */
7051 ada_is_variant_part (struct type *type, int field_num)
7053 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7055 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7056 || (is_dynamic_field (type, field_num)
7057 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7058 == TYPE_CODE_UNION)));
7061 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7062 whose discriminants are contained in the record type OUTER_TYPE,
7063 returns the type of the controlling discriminant for the variant.
7064 May return NULL if the type could not be found. */
7067 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7069 const char *name = ada_variant_discrim_name (var_type);
7071 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7074 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7075 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7076 represents a 'when others' clause; otherwise 0. */
7079 ada_is_others_clause (struct type *type, int field_num)
7081 const char *name = TYPE_FIELD_NAME (type, field_num);
7083 return (name != NULL && name[0] == 'O');
7086 /* Assuming that TYPE0 is the type of the variant part of a record,
7087 returns the name of the discriminant controlling the variant.
7088 The value is valid until the next call to ada_variant_discrim_name. */
7091 ada_variant_discrim_name (struct type *type0)
7093 static char *result = NULL;
7094 static size_t result_len = 0;
7097 const char *discrim_end;
7098 const char *discrim_start;
7100 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7101 type = TYPE_TARGET_TYPE (type0);
7105 name = ada_type_name (type);
7107 if (name == NULL || name[0] == '\000')
7110 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7113 if (startswith (discrim_end, "___XVN"))
7116 if (discrim_end == name)
7119 for (discrim_start = discrim_end; discrim_start != name + 3;
7122 if (discrim_start == name + 1)
7124 if ((discrim_start > name + 3
7125 && startswith (discrim_start - 3, "___"))
7126 || discrim_start[-1] == '.')
7130 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7131 strncpy (result, discrim_start, discrim_end - discrim_start);
7132 result[discrim_end - discrim_start] = '\0';
7136 /* Scan STR for a subtype-encoded number, beginning at position K.
7137 Put the position of the character just past the number scanned in
7138 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7139 Return 1 if there was a valid number at the given position, and 0
7140 otherwise. A "subtype-encoded" number consists of the absolute value
7141 in decimal, followed by the letter 'm' to indicate a negative number.
7142 Assumes 0m does not occur. */
7145 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7149 if (!isdigit (str[k]))
7152 /* Do it the hard way so as not to make any assumption about
7153 the relationship of unsigned long (%lu scan format code) and
7156 while (isdigit (str[k]))
7158 RU = RU * 10 + (str[k] - '0');
7165 *R = (-(LONGEST) (RU - 1)) - 1;
7171 /* NOTE on the above: Technically, C does not say what the results of
7172 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7173 number representable as a LONGEST (although either would probably work
7174 in most implementations). When RU>0, the locution in the then branch
7175 above is always equivalent to the negative of RU. */
7182 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7183 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7184 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7187 ada_in_variant (LONGEST val, struct type *type, int field_num)
7189 const char *name = TYPE_FIELD_NAME (type, field_num);
7203 if (!ada_scan_number (name, p + 1, &W, &p))
7213 if (!ada_scan_number (name, p + 1, &L, &p)
7214 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7216 if (val >= L && val <= U)
7228 /* FIXME: Lots of redundancy below. Try to consolidate. */
7230 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7231 ARG_TYPE, extract and return the value of one of its (non-static)
7232 fields. FIELDNO says which field. Differs from value_primitive_field
7233 only in that it can handle packed values of arbitrary type. */
7235 static struct value *
7236 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7237 struct type *arg_type)
7241 arg_type = ada_check_typedef (arg_type);
7242 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7244 /* Handle packed fields. */
7246 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7248 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7249 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7251 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7252 offset + bit_pos / 8,
7253 bit_pos % 8, bit_size, type);
7256 return value_primitive_field (arg1, offset, fieldno, arg_type);
7259 /* Find field with name NAME in object of type TYPE. If found,
7260 set the following for each argument that is non-null:
7261 - *FIELD_TYPE_P to the field's type;
7262 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7263 an object of that type;
7264 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7265 - *BIT_SIZE_P to its size in bits if the field is packed, and
7267 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7268 fields up to but not including the desired field, or by the total
7269 number of fields if not found. A NULL value of NAME never
7270 matches; the function just counts visible fields in this case.
7272 Returns 1 if found, 0 otherwise. */
7275 find_struct_field (const char *name, struct type *type, int offset,
7276 struct type **field_type_p,
7277 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7282 type = ada_check_typedef (type);
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
7288 if (bit_offset_p != NULL)
7290 if (bit_size_p != NULL)
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7299 if (t_field_name == NULL)
7302 else if (name != NULL && field_name_match (t_field_name, name))
7304 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7306 if (field_type_p != NULL)
7307 *field_type_p = TYPE_FIELD_TYPE (type, i);
7308 if (byte_offset_p != NULL)
7309 *byte_offset_p = fld_offset;
7310 if (bit_offset_p != NULL)
7311 *bit_offset_p = bit_pos % 8;
7312 if (bit_size_p != NULL)
7313 *bit_size_p = bit_size;
7316 else if (ada_is_wrapper_field (type, i))
7318 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7319 field_type_p, byte_offset_p, bit_offset_p,
7320 bit_size_p, index_p))
7323 else if (ada_is_variant_part (type, i))
7325 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7328 struct type *field_type
7329 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7335 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336 field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7341 else if (index_p != NULL)
7347 /* Number of user-visible fields in record type TYPE. */
7350 num_visible_fields (struct type *type)
7355 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7359 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7360 and search in it assuming it has (class) type TYPE.
7361 If found, return value, else return NULL.
7363 Searches recursively through wrapper fields (e.g., '_parent'). */
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7371 type = ada_check_typedef (type);
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7374 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7376 if (t_field_name == NULL)
7379 else if (field_name_match (t_field_name, name))
7380 return ada_value_primitive_field (arg, offset, i, type);
7382 else if (ada_is_wrapper_field (type, i))
7384 struct value *v = /* Do not let indent join lines here. */
7385 ada_search_struct_field (name, arg,
7386 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387 TYPE_FIELD_TYPE (type, i));
7393 else if (ada_is_variant_part (type, i))
7395 /* PNH: Do we ever get here? See find_struct_field. */
7397 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7399 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7401 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7403 struct value *v = ada_search_struct_field /* Force line
7406 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407 TYPE_FIELD_TYPE (field_type, j));
7417 static struct value *ada_index_struct_field_1 (int *, struct value *,
7418 int, struct type *);
7421 /* Return field #INDEX in ARG, where the index is that returned by
7422 * find_struct_field through its INDEX_P argument. Adjust the address
7423 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7424 * If found, return value, else return NULL. */
7426 static struct value *
7427 ada_index_struct_field (int index, struct value *arg, int offset,
7430 return ada_index_struct_field_1 (&index, arg, offset, type);
7434 /* Auxiliary function for ada_index_struct_field. Like
7435 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7438 static struct value *
7439 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7443 type = ada_check_typedef (type);
7445 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7447 if (TYPE_FIELD_NAME (type, i) == NULL)
7449 else if (ada_is_wrapper_field (type, i))
7451 struct value *v = /* Do not let indent join lines here. */
7452 ada_index_struct_field_1 (index_p, arg,
7453 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7454 TYPE_FIELD_TYPE (type, i));
7460 else if (ada_is_variant_part (type, i))
7462 /* PNH: Do we ever get here? See ada_search_struct_field,
7463 find_struct_field. */
7464 error (_("Cannot assign this kind of variant record"));
7466 else if (*index_p == 0)
7467 return ada_value_primitive_field (arg, offset, i, type);
7474 /* Given ARG, a value of type (pointer or reference to a)*
7475 structure/union, extract the component named NAME from the ultimate
7476 target structure/union and return it as a value with its
7479 The routine searches for NAME among all members of the structure itself
7480 and (recursively) among all members of any wrapper members
7483 If NO_ERR, then simply return NULL in case of error, rather than
7487 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7489 struct type *t, *t1;
7493 t1 = t = ada_check_typedef (value_type (arg));
7494 if (TYPE_CODE (t) == TYPE_CODE_REF)
7496 t1 = TYPE_TARGET_TYPE (t);
7499 t1 = ada_check_typedef (t1);
7500 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7502 arg = coerce_ref (arg);
7507 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7509 t1 = TYPE_TARGET_TYPE (t);
7512 t1 = ada_check_typedef (t1);
7513 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7515 arg = value_ind (arg);
7522 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7526 v = ada_search_struct_field (name, arg, 0, t);
7529 int bit_offset, bit_size, byte_offset;
7530 struct type *field_type;
7533 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 address = value_address (ada_value_ind (arg));
7536 address = value_address (ada_coerce_ref (arg));
7538 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7539 if (find_struct_field (name, t1, 0,
7540 &field_type, &byte_offset, &bit_offset,
7545 if (TYPE_CODE (t) == TYPE_CODE_REF)
7546 arg = ada_coerce_ref (arg);
7548 arg = ada_value_ind (arg);
7549 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7550 bit_offset, bit_size,
7554 v = value_at_lazy (field_type, address + byte_offset);
7558 if (v != NULL || no_err)
7561 error (_("There is no member named %s."), name);
7567 error (_("Attempt to extract a component of "
7568 "a value that is not a record."));
7571 /* Return a string representation of type TYPE. */
7574 type_as_string (struct type *type)
7576 string_file tmp_stream;
7578 type_print (type, "", &tmp_stream, -1);
7580 return std::move (tmp_stream.string ());
7583 /* Given a type TYPE, look up the type of the component of type named NAME.
7584 If DISPP is non-null, add its byte displacement from the beginning of a
7585 structure (pointed to by a value) of type TYPE to *DISPP (does not
7586 work for packed fields).
7588 Matches any field whose name has NAME as a prefix, possibly
7591 TYPE can be either a struct or union. If REFOK, TYPE may also
7592 be a (pointer or reference)+ to a struct or union, and the
7593 ultimate target type will be searched.
7595 Looks recursively into variant clauses and parent types.
7597 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7598 TYPE is not a type of the right kind. */
7600 static struct type *
7601 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7602 int noerr, int *dispp)
7609 if (refok && type != NULL)
7612 type = ada_check_typedef (type);
7613 if (TYPE_CODE (type) != TYPE_CODE_PTR
7614 && TYPE_CODE (type) != TYPE_CODE_REF)
7616 type = TYPE_TARGET_TYPE (type);
7620 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7621 && TYPE_CODE (type) != TYPE_CODE_UNION))
7626 error (_("Type %s is not a structure or union type"),
7627 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7630 type = to_static_fixed_type (type);
7632 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7638 if (t_field_name == NULL)
7641 else if (field_name_match (t_field_name, name))
7644 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7645 return TYPE_FIELD_TYPE (type, i);
7648 else if (ada_is_wrapper_field (type, i))
7651 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7656 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7661 else if (ada_is_variant_part (type, i))
7664 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7667 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7669 /* FIXME pnh 2008/01/26: We check for a field that is
7670 NOT wrapped in a struct, since the compiler sometimes
7671 generates these for unchecked variant types. Revisit
7672 if the compiler changes this practice. */
7673 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7675 if (v_field_name != NULL
7676 && field_name_match (v_field_name, name))
7677 t = TYPE_FIELD_TYPE (field_type, j);
7679 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7686 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7697 const char *name_str = name != NULL ? name : _("<null>");
7699 error (_("Type %s has no component named %s"),
7700 type_as_string (type).c_str (), name_str);
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7708 represents an unchecked union (that is, the variant part of a
7709 record that is named in an Unchecked_Union pragma). */
7712 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7714 const char *discrim_name = ada_variant_discrim_name (var_type);
7716 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7721 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7722 within a value of type OUTER_TYPE that is stored in GDB at
7723 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7724 numbering from 0) is applicable. Returns -1 if none are. */
7727 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7728 const gdb_byte *outer_valaddr)
7732 const char *discrim_name = ada_variant_discrim_name (var_type);
7733 struct value *outer;
7734 struct value *discrim;
7735 LONGEST discrim_val;
7737 /* Using plain value_from_contents_and_address here causes problems
7738 because we will end up trying to resolve a type that is currently
7739 being constructed. */
7740 outer = value_from_contents_and_address_unresolved (outer_type,
7742 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7743 if (discrim == NULL)
7745 discrim_val = value_as_long (discrim);
7748 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7750 if (ada_is_others_clause (var_type, i))
7752 else if (ada_in_variant (discrim_val, var_type, i))
7756 return others_clause;
7761 /* Dynamic-Sized Records */
7763 /* Strategy: The type ostensibly attached to a value with dynamic size
7764 (i.e., a size that is not statically recorded in the debugging
7765 data) does not accurately reflect the size or layout of the value.
7766 Our strategy is to convert these values to values with accurate,
7767 conventional types that are constructed on the fly. */
7769 /* There is a subtle and tricky problem here. In general, we cannot
7770 determine the size of dynamic records without its data. However,
7771 the 'struct value' data structure, which GDB uses to represent
7772 quantities in the inferior process (the target), requires the size
7773 of the type at the time of its allocation in order to reserve space
7774 for GDB's internal copy of the data. That's why the
7775 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7776 rather than struct value*s.
7778 However, GDB's internal history variables ($1, $2, etc.) are
7779 struct value*s containing internal copies of the data that are not, in
7780 general, the same as the data at their corresponding addresses in
7781 the target. Fortunately, the types we give to these values are all
7782 conventional, fixed-size types (as per the strategy described
7783 above), so that we don't usually have to perform the
7784 'to_fixed_xxx_type' conversions to look at their values.
7785 Unfortunately, there is one exception: if one of the internal
7786 history variables is an array whose elements are unconstrained
7787 records, then we will need to create distinct fixed types for each
7788 element selected. */
7790 /* The upshot of all of this is that many routines take a (type, host
7791 address, target address) triple as arguments to represent a value.
7792 The host address, if non-null, is supposed to contain an internal
7793 copy of the relevant data; otherwise, the program is to consult the
7794 target at the target address. */
7796 /* Assuming that VAL0 represents a pointer value, the result of
7797 dereferencing it. Differs from value_ind in its treatment of
7798 dynamic-sized types. */
7801 ada_value_ind (struct value *val0)
7803 struct value *val = value_ind (val0);
7805 if (ada_is_tagged_type (value_type (val), 0))
7806 val = ada_tag_value_at_base_address (val);
7808 return ada_to_fixed_value (val);
7811 /* The value resulting from dereferencing any "reference to"
7812 qualifiers on VAL0. */
7814 static struct value *
7815 ada_coerce_ref (struct value *val0)
7817 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7819 struct value *val = val0;
7821 val = coerce_ref (val);
7823 if (ada_is_tagged_type (value_type (val), 0))
7824 val = ada_tag_value_at_base_address (val);
7826 return ada_to_fixed_value (val);
7832 /* Return OFF rounded upward if necessary to a multiple of
7833 ALIGNMENT (a power of 2). */
7836 align_value (unsigned int off, unsigned int alignment)
7838 return (off + alignment - 1) & ~(alignment - 1);
7841 /* Return the bit alignment required for field #F of template type TYPE. */
7844 field_alignment (struct type *type, int f)
7846 const char *name = TYPE_FIELD_NAME (type, f);
7850 /* The field name should never be null, unless the debugging information
7851 is somehow malformed. In this case, we assume the field does not
7852 require any alignment. */
7856 len = strlen (name);
7858 if (!isdigit (name[len - 1]))
7861 if (isdigit (name[len - 2]))
7862 align_offset = len - 2;
7864 align_offset = len - 1;
7866 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7867 return TARGET_CHAR_BIT;
7869 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7872 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7874 static struct symbol *
7875 ada_find_any_type_symbol (const char *name)
7879 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7880 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7883 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7887 /* Find a type named NAME. Ignores ambiguity. This routine will look
7888 solely for types defined by debug info, it will not search the GDB
7891 static struct type *
7892 ada_find_any_type (const char *name)
7894 struct symbol *sym = ada_find_any_type_symbol (name);
7897 return SYMBOL_TYPE (sym);
7902 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7903 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7904 symbol, in which case it is returned. Otherwise, this looks for
7905 symbols whose name is that of NAME_SYM suffixed with "___XR".
7906 Return symbol if found, and NULL otherwise. */
7909 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7911 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7914 if (strstr (name, "___XR") != NULL)
7917 sym = find_old_style_renaming_symbol (name, block);
7922 /* Not right yet. FIXME pnh 7/20/2007. */
7923 sym = ada_find_any_type_symbol (name);
7924 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7930 static struct symbol *
7931 find_old_style_renaming_symbol (const char *name, const struct block *block)
7933 const struct symbol *function_sym = block_linkage_function (block);
7936 if (function_sym != NULL)
7938 /* If the symbol is defined inside a function, NAME is not fully
7939 qualified. This means we need to prepend the function name
7940 as well as adding the ``___XR'' suffix to build the name of
7941 the associated renaming symbol. */
7942 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7943 /* Function names sometimes contain suffixes used
7944 for instance to qualify nested subprograms. When building
7945 the XR type name, we need to make sure that this suffix is
7946 not included. So do not include any suffix in the function
7947 name length below. */
7948 int function_name_len = ada_name_prefix_len (function_name);
7949 const int rename_len = function_name_len + 2 /* "__" */
7950 + strlen (name) + 6 /* "___XR\0" */ ;
7952 /* Strip the suffix if necessary. */
7953 ada_remove_trailing_digits (function_name, &function_name_len);
7954 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7955 ada_remove_Xbn_suffix (function_name, &function_name_len);
7957 /* Library-level functions are a special case, as GNAT adds
7958 a ``_ada_'' prefix to the function name to avoid namespace
7959 pollution. However, the renaming symbols themselves do not
7960 have this prefix, so we need to skip this prefix if present. */
7961 if (function_name_len > 5 /* "_ada_" */
7962 && strstr (function_name, "_ada_") == function_name)
7965 function_name_len -= 5;
7968 rename = (char *) alloca (rename_len * sizeof (char));
7969 strncpy (rename, function_name, function_name_len);
7970 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7975 const int rename_len = strlen (name) + 6;
7977 rename = (char *) alloca (rename_len * sizeof (char));
7978 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7981 return ada_find_any_type_symbol (rename);
7984 /* Because of GNAT encoding conventions, several GDB symbols may match a
7985 given type name. If the type denoted by TYPE0 is to be preferred to
7986 that of TYPE1 for purposes of type printing, return non-zero;
7987 otherwise return 0. */
7990 ada_prefer_type (struct type *type0, struct type *type1)
7994 else if (type0 == NULL)
7996 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7998 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8000 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8002 else if (ada_is_constrained_packed_array_type (type0))
8004 else if (ada_is_array_descriptor_type (type0)
8005 && !ada_is_array_descriptor_type (type1))
8009 const char *type0_name = type_name_no_tag (type0);
8010 const char *type1_name = type_name_no_tag (type1);
8012 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8013 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8019 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8020 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8023 ada_type_name (struct type *type)
8027 else if (TYPE_NAME (type) != NULL)
8028 return TYPE_NAME (type);
8030 return TYPE_TAG_NAME (type);
8033 /* Search the list of "descriptive" types associated to TYPE for a type
8034 whose name is NAME. */
8036 static struct type *
8037 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8039 struct type *result, *tmp;
8041 if (ada_ignore_descriptive_types_p)
8044 /* If there no descriptive-type info, then there is no parallel type
8046 if (!HAVE_GNAT_AUX_INFO (type))
8049 result = TYPE_DESCRIPTIVE_TYPE (type);
8050 while (result != NULL)
8052 const char *result_name = ada_type_name (result);
8054 if (result_name == NULL)
8056 warning (_("unexpected null name on descriptive type"));
8060 /* If the names match, stop. */
8061 if (strcmp (result_name, name) == 0)
8064 /* Otherwise, look at the next item on the list, if any. */
8065 if (HAVE_GNAT_AUX_INFO (result))
8066 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8070 /* If not found either, try after having resolved the typedef. */
8075 result = check_typedef (result);
8076 if (HAVE_GNAT_AUX_INFO (result))
8077 result = TYPE_DESCRIPTIVE_TYPE (result);
8083 /* If we didn't find a match, see whether this is a packed array. With
8084 older compilers, the descriptive type information is either absent or
8085 irrelevant when it comes to packed arrays so the above lookup fails.
8086 Fall back to using a parallel lookup by name in this case. */
8087 if (result == NULL && ada_is_constrained_packed_array_type (type))
8088 return ada_find_any_type (name);
8093 /* Find a parallel type to TYPE with the specified NAME, using the
8094 descriptive type taken from the debugging information, if available,
8095 and otherwise using the (slower) name-based method. */
8097 static struct type *
8098 ada_find_parallel_type_with_name (struct type *type, const char *name)
8100 struct type *result = NULL;
8102 if (HAVE_GNAT_AUX_INFO (type))
8103 result = find_parallel_type_by_descriptive_type (type, name);
8105 result = ada_find_any_type (name);
8110 /* Same as above, but specify the name of the parallel type by appending
8111 SUFFIX to the name of TYPE. */
8114 ada_find_parallel_type (struct type *type, const char *suffix)
8117 const char *type_name = ada_type_name (type);
8120 if (type_name == NULL)
8123 len = strlen (type_name);
8125 name = (char *) alloca (len + strlen (suffix) + 1);
8127 strcpy (name, type_name);
8128 strcpy (name + len, suffix);
8130 return ada_find_parallel_type_with_name (type, name);
8133 /* If TYPE is a variable-size record type, return the corresponding template
8134 type describing its fields. Otherwise, return NULL. */
8136 static struct type *
8137 dynamic_template_type (struct type *type)
8139 type = ada_check_typedef (type);
8141 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8142 || ada_type_name (type) == NULL)
8146 int len = strlen (ada_type_name (type));
8148 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8151 return ada_find_parallel_type (type, "___XVE");
8155 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8156 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8159 is_dynamic_field (struct type *templ_type, int field_num)
8161 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8164 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8165 && strstr (name, "___XVL") != NULL;
8168 /* The index of the variant field of TYPE, or -1 if TYPE does not
8169 represent a variant record type. */
8172 variant_field_index (struct type *type)
8176 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8179 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8181 if (ada_is_variant_part (type, f))
8187 /* A record type with no fields. */
8189 static struct type *
8190 empty_record (struct type *templ)
8192 struct type *type = alloc_type_copy (templ);
8194 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8195 TYPE_NFIELDS (type) = 0;
8196 TYPE_FIELDS (type) = NULL;
8197 INIT_CPLUS_SPECIFIC (type);
8198 TYPE_NAME (type) = "<empty>";
8199 TYPE_TAG_NAME (type) = NULL;
8200 TYPE_LENGTH (type) = 0;
8204 /* An ordinary record type (with fixed-length fields) that describes
8205 the value of type TYPE at VALADDR or ADDRESS (see comments at
8206 the beginning of this section) VAL according to GNAT conventions.
8207 DVAL0 should describe the (portion of a) record that contains any
8208 necessary discriminants. It should be NULL if value_type (VAL) is
8209 an outer-level type (i.e., as opposed to a branch of a variant.) A
8210 variant field (unless unchecked) is replaced by a particular branch
8213 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8214 length are not statically known are discarded. As a consequence,
8215 VALADDR, ADDRESS and DVAL0 are ignored.
8217 NOTE: Limitations: For now, we assume that dynamic fields and
8218 variants occupy whole numbers of bytes. However, they need not be
8222 ada_template_to_fixed_record_type_1 (struct type *type,
8223 const gdb_byte *valaddr,
8224 CORE_ADDR address, struct value *dval0,
8225 int keep_dynamic_fields)
8227 struct value *mark = value_mark ();
8230 int nfields, bit_len;
8236 /* Compute the number of fields in this record type that are going
8237 to be processed: unless keep_dynamic_fields, this includes only
8238 fields whose position and length are static will be processed. */
8239 if (keep_dynamic_fields)
8240 nfields = TYPE_NFIELDS (type);
8244 while (nfields < TYPE_NFIELDS (type)
8245 && !ada_is_variant_part (type, nfields)
8246 && !is_dynamic_field (type, nfields))
8250 rtype = alloc_type_copy (type);
8251 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8252 INIT_CPLUS_SPECIFIC (rtype);
8253 TYPE_NFIELDS (rtype) = nfields;
8254 TYPE_FIELDS (rtype) = (struct field *)
8255 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8256 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8257 TYPE_NAME (rtype) = ada_type_name (type);
8258 TYPE_TAG_NAME (rtype) = NULL;
8259 TYPE_FIXED_INSTANCE (rtype) = 1;
8265 for (f = 0; f < nfields; f += 1)
8267 off = align_value (off, field_alignment (type, f))
8268 + TYPE_FIELD_BITPOS (type, f);
8269 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8270 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8272 if (ada_is_variant_part (type, f))
8277 else if (is_dynamic_field (type, f))
8279 const gdb_byte *field_valaddr = valaddr;
8280 CORE_ADDR field_address = address;
8281 struct type *field_type =
8282 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8286 /* rtype's length is computed based on the run-time
8287 value of discriminants. If the discriminants are not
8288 initialized, the type size may be completely bogus and
8289 GDB may fail to allocate a value for it. So check the
8290 size first before creating the value. */
8291 ada_ensure_varsize_limit (rtype);
8292 /* Using plain value_from_contents_and_address here
8293 causes problems because we will end up trying to
8294 resolve a type that is currently being
8296 dval = value_from_contents_and_address_unresolved (rtype,
8299 rtype = value_type (dval);
8304 /* If the type referenced by this field is an aligner type, we need
8305 to unwrap that aligner type, because its size might not be set.
8306 Keeping the aligner type would cause us to compute the wrong
8307 size for this field, impacting the offset of the all the fields
8308 that follow this one. */
8309 if (ada_is_aligner_type (field_type))
8311 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8313 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8314 field_address = cond_offset_target (field_address, field_offset);
8315 field_type = ada_aligned_type (field_type);
8318 field_valaddr = cond_offset_host (field_valaddr,
8319 off / TARGET_CHAR_BIT);
8320 field_address = cond_offset_target (field_address,
8321 off / TARGET_CHAR_BIT);
8323 /* Get the fixed type of the field. Note that, in this case,
8324 we do not want to get the real type out of the tag: if
8325 the current field is the parent part of a tagged record,
8326 we will get the tag of the object. Clearly wrong: the real
8327 type of the parent is not the real type of the child. We
8328 would end up in an infinite loop. */
8329 field_type = ada_get_base_type (field_type);
8330 field_type = ada_to_fixed_type (field_type, field_valaddr,
8331 field_address, dval, 0);
8332 /* If the field size is already larger than the maximum
8333 object size, then the record itself will necessarily
8334 be larger than the maximum object size. We need to make
8335 this check now, because the size might be so ridiculously
8336 large (due to an uninitialized variable in the inferior)
8337 that it would cause an overflow when adding it to the
8339 ada_ensure_varsize_limit (field_type);
8341 TYPE_FIELD_TYPE (rtype, f) = field_type;
8342 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8343 /* The multiplication can potentially overflow. But because
8344 the field length has been size-checked just above, and
8345 assuming that the maximum size is a reasonable value,
8346 an overflow should not happen in practice. So rather than
8347 adding overflow recovery code to this already complex code,
8348 we just assume that it's not going to happen. */
8350 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8354 /* Note: If this field's type is a typedef, it is important
8355 to preserve the typedef layer.
8357 Otherwise, we might be transforming a typedef to a fat
8358 pointer (encoding a pointer to an unconstrained array),
8359 into a basic fat pointer (encoding an unconstrained
8360 array). As both types are implemented using the same
8361 structure, the typedef is the only clue which allows us
8362 to distinguish between the two options. Stripping it
8363 would prevent us from printing this field appropriately. */
8364 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8365 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8366 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8368 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8371 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8373 /* We need to be careful of typedefs when computing
8374 the length of our field. If this is a typedef,
8375 get the length of the target type, not the length
8377 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8378 field_type = ada_typedef_target_type (field_type);
8381 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8384 if (off + fld_bit_len > bit_len)
8385 bit_len = off + fld_bit_len;
8387 TYPE_LENGTH (rtype) =
8388 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8391 /* We handle the variant part, if any, at the end because of certain
8392 odd cases in which it is re-ordered so as NOT to be the last field of
8393 the record. This can happen in the presence of representation
8395 if (variant_field >= 0)
8397 struct type *branch_type;
8399 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8403 /* Using plain value_from_contents_and_address here causes
8404 problems because we will end up trying to resolve a type
8405 that is currently being constructed. */
8406 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8408 rtype = value_type (dval);
8414 to_fixed_variant_branch_type
8415 (TYPE_FIELD_TYPE (type, variant_field),
8416 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8417 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8418 if (branch_type == NULL)
8420 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8421 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8422 TYPE_NFIELDS (rtype) -= 1;
8426 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8427 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8429 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8431 if (off + fld_bit_len > bit_len)
8432 bit_len = off + fld_bit_len;
8433 TYPE_LENGTH (rtype) =
8434 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8438 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8439 should contain the alignment of that record, which should be a strictly
8440 positive value. If null or negative, then something is wrong, most
8441 probably in the debug info. In that case, we don't round up the size
8442 of the resulting type. If this record is not part of another structure,
8443 the current RTYPE length might be good enough for our purposes. */
8444 if (TYPE_LENGTH (type) <= 0)
8446 if (TYPE_NAME (rtype))
8447 warning (_("Invalid type size for `%s' detected: %d."),
8448 TYPE_NAME (rtype), TYPE_LENGTH (type));
8450 warning (_("Invalid type size for <unnamed> detected: %d."),
8451 TYPE_LENGTH (type));
8455 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8456 TYPE_LENGTH (type));
8459 value_free_to_mark (mark);
8460 if (TYPE_LENGTH (rtype) > varsize_limit)
8461 error (_("record type with dynamic size is larger than varsize-limit"));
8465 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8468 static struct type *
8469 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8470 CORE_ADDR address, struct value *dval0)
8472 return ada_template_to_fixed_record_type_1 (type, valaddr,
8476 /* An ordinary record type in which ___XVL-convention fields and
8477 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8478 static approximations, containing all possible fields. Uses
8479 no runtime values. Useless for use in values, but that's OK,
8480 since the results are used only for type determinations. Works on both
8481 structs and unions. Representation note: to save space, we memorize
8482 the result of this function in the TYPE_TARGET_TYPE of the
8485 static struct type *
8486 template_to_static_fixed_type (struct type *type0)
8492 /* No need no do anything if the input type is already fixed. */
8493 if (TYPE_FIXED_INSTANCE (type0))
8496 /* Likewise if we already have computed the static approximation. */
8497 if (TYPE_TARGET_TYPE (type0) != NULL)
8498 return TYPE_TARGET_TYPE (type0);
8500 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8502 nfields = TYPE_NFIELDS (type0);
8504 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8505 recompute all over next time. */
8506 TYPE_TARGET_TYPE (type0) = type;
8508 for (f = 0; f < nfields; f += 1)
8510 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8511 struct type *new_type;
8513 if (is_dynamic_field (type0, f))
8515 field_type = ada_check_typedef (field_type);
8516 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8519 new_type = static_unwrap_type (field_type);
8521 if (new_type != field_type)
8523 /* Clone TYPE0 only the first time we get a new field type. */
8526 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8527 TYPE_CODE (type) = TYPE_CODE (type0);
8528 INIT_CPLUS_SPECIFIC (type);
8529 TYPE_NFIELDS (type) = nfields;
8530 TYPE_FIELDS (type) = (struct field *)
8531 TYPE_ALLOC (type, nfields * sizeof (struct field));
8532 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8533 sizeof (struct field) * nfields);
8534 TYPE_NAME (type) = ada_type_name (type0);
8535 TYPE_TAG_NAME (type) = NULL;
8536 TYPE_FIXED_INSTANCE (type) = 1;
8537 TYPE_LENGTH (type) = 0;
8539 TYPE_FIELD_TYPE (type, f) = new_type;
8540 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8547 /* Given an object of type TYPE whose contents are at VALADDR and
8548 whose address in memory is ADDRESS, returns a revision of TYPE,
8549 which should be a non-dynamic-sized record, in which the variant
8550 part, if any, is replaced with the appropriate branch. Looks
8551 for discriminant values in DVAL0, which can be NULL if the record
8552 contains the necessary discriminant values. */
8554 static struct type *
8555 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8556 CORE_ADDR address, struct value *dval0)
8558 struct value *mark = value_mark ();
8561 struct type *branch_type;
8562 int nfields = TYPE_NFIELDS (type);
8563 int variant_field = variant_field_index (type);
8565 if (variant_field == -1)
8570 dval = value_from_contents_and_address (type, valaddr, address);
8571 type = value_type (dval);
8576 rtype = alloc_type_copy (type);
8577 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8578 INIT_CPLUS_SPECIFIC (rtype);
8579 TYPE_NFIELDS (rtype) = nfields;
8580 TYPE_FIELDS (rtype) =
8581 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8582 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8583 sizeof (struct field) * nfields);
8584 TYPE_NAME (rtype) = ada_type_name (type);
8585 TYPE_TAG_NAME (rtype) = NULL;
8586 TYPE_FIXED_INSTANCE (rtype) = 1;
8587 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8589 branch_type = to_fixed_variant_branch_type
8590 (TYPE_FIELD_TYPE (type, variant_field),
8591 cond_offset_host (valaddr,
8592 TYPE_FIELD_BITPOS (type, variant_field)
8594 cond_offset_target (address,
8595 TYPE_FIELD_BITPOS (type, variant_field)
8596 / TARGET_CHAR_BIT), dval);
8597 if (branch_type == NULL)
8601 for (f = variant_field + 1; f < nfields; f += 1)
8602 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8603 TYPE_NFIELDS (rtype) -= 1;
8607 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8608 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8609 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8610 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8612 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8614 value_free_to_mark (mark);
8618 /* An ordinary record type (with fixed-length fields) that describes
8619 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8620 beginning of this section]. Any necessary discriminants' values
8621 should be in DVAL, a record value; it may be NULL if the object
8622 at ADDR itself contains any necessary discriminant values.
8623 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8624 values from the record are needed. Except in the case that DVAL,
8625 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8626 unchecked) is replaced by a particular branch of the variant.
8628 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8629 is questionable and may be removed. It can arise during the
8630 processing of an unconstrained-array-of-record type where all the
8631 variant branches have exactly the same size. This is because in
8632 such cases, the compiler does not bother to use the XVS convention
8633 when encoding the record. I am currently dubious of this
8634 shortcut and suspect the compiler should be altered. FIXME. */
8636 static struct type *
8637 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8638 CORE_ADDR address, struct value *dval)
8640 struct type *templ_type;
8642 if (TYPE_FIXED_INSTANCE (type0))
8645 templ_type = dynamic_template_type (type0);
8647 if (templ_type != NULL)
8648 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8649 else if (variant_field_index (type0) >= 0)
8651 if (dval == NULL && valaddr == NULL && address == 0)
8653 return to_record_with_fixed_variant_part (type0, valaddr, address,
8658 TYPE_FIXED_INSTANCE (type0) = 1;
8664 /* An ordinary record type (with fixed-length fields) that describes
8665 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8666 union type. Any necessary discriminants' values should be in DVAL,
8667 a record value. That is, this routine selects the appropriate
8668 branch of the union at ADDR according to the discriminant value
8669 indicated in the union's type name. Returns VAR_TYPE0 itself if
8670 it represents a variant subject to a pragma Unchecked_Union. */
8672 static struct type *
8673 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8674 CORE_ADDR address, struct value *dval)
8677 struct type *templ_type;
8678 struct type *var_type;
8680 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8681 var_type = TYPE_TARGET_TYPE (var_type0);
8683 var_type = var_type0;
8685 templ_type = ada_find_parallel_type (var_type, "___XVU");
8687 if (templ_type != NULL)
8688 var_type = templ_type;
8690 if (is_unchecked_variant (var_type, value_type (dval)))
8693 ada_which_variant_applies (var_type,
8694 value_type (dval), value_contents (dval));
8697 return empty_record (var_type);
8698 else if (is_dynamic_field (var_type, which))
8699 return to_fixed_record_type
8700 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8701 valaddr, address, dval);
8702 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8704 to_fixed_record_type
8705 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8707 return TYPE_FIELD_TYPE (var_type, which);
8710 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8711 ENCODING_TYPE, a type following the GNAT conventions for discrete
8712 type encodings, only carries redundant information. */
8715 ada_is_redundant_range_encoding (struct type *range_type,
8716 struct type *encoding_type)
8718 struct type *fixed_range_type;
8719 const char *bounds_str;
8723 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8725 if (TYPE_CODE (get_base_type (range_type))
8726 != TYPE_CODE (get_base_type (encoding_type)))
8728 /* The compiler probably used a simple base type to describe
8729 the range type instead of the range's actual base type,
8730 expecting us to get the real base type from the encoding
8731 anyway. In this situation, the encoding cannot be ignored
8736 if (is_dynamic_type (range_type))
8739 if (TYPE_NAME (encoding_type) == NULL)
8742 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8743 if (bounds_str == NULL)
8746 n = 8; /* Skip "___XDLU_". */
8747 if (!ada_scan_number (bounds_str, n, &lo, &n))
8749 if (TYPE_LOW_BOUND (range_type) != lo)
8752 n += 2; /* Skip the "__" separator between the two bounds. */
8753 if (!ada_scan_number (bounds_str, n, &hi, &n))
8755 if (TYPE_HIGH_BOUND (range_type) != hi)
8761 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8762 a type following the GNAT encoding for describing array type
8763 indices, only carries redundant information. */
8766 ada_is_redundant_index_type_desc (struct type *array_type,
8767 struct type *desc_type)
8769 struct type *this_layer = check_typedef (array_type);
8772 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8774 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8775 TYPE_FIELD_TYPE (desc_type, i)))
8777 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8783 /* Assuming that TYPE0 is an array type describing the type of a value
8784 at ADDR, and that DVAL describes a record containing any
8785 discriminants used in TYPE0, returns a type for the value that
8786 contains no dynamic components (that is, no components whose sizes
8787 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8788 true, gives an error message if the resulting type's size is over
8791 static struct type *
8792 to_fixed_array_type (struct type *type0, struct value *dval,
8795 struct type *index_type_desc;
8796 struct type *result;
8797 int constrained_packed_array_p;
8798 static const char *xa_suffix = "___XA";
8800 type0 = ada_check_typedef (type0);
8801 if (TYPE_FIXED_INSTANCE (type0))
8804 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8805 if (constrained_packed_array_p)
8806 type0 = decode_constrained_packed_array_type (type0);
8808 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8810 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8811 encoding suffixed with 'P' may still be generated. If so,
8812 it should be used to find the XA type. */
8814 if (index_type_desc == NULL)
8816 const char *type_name = ada_type_name (type0);
8818 if (type_name != NULL)
8820 const int len = strlen (type_name);
8821 char *name = (char *) alloca (len + strlen (xa_suffix));
8823 if (type_name[len - 1] == 'P')
8825 strcpy (name, type_name);
8826 strcpy (name + len - 1, xa_suffix);
8827 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8832 ada_fixup_array_indexes_type (index_type_desc);
8833 if (index_type_desc != NULL
8834 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8836 /* Ignore this ___XA parallel type, as it does not bring any
8837 useful information. This allows us to avoid creating fixed
8838 versions of the array's index types, which would be identical
8839 to the original ones. This, in turn, can also help avoid
8840 the creation of fixed versions of the array itself. */
8841 index_type_desc = NULL;
8844 if (index_type_desc == NULL)
8846 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8848 /* NOTE: elt_type---the fixed version of elt_type0---should never
8849 depend on the contents of the array in properly constructed
8851 /* Create a fixed version of the array element type.
8852 We're not providing the address of an element here,
8853 and thus the actual object value cannot be inspected to do
8854 the conversion. This should not be a problem, since arrays of
8855 unconstrained objects are not allowed. In particular, all
8856 the elements of an array of a tagged type should all be of
8857 the same type specified in the debugging info. No need to
8858 consult the object tag. */
8859 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8861 /* Make sure we always create a new array type when dealing with
8862 packed array types, since we're going to fix-up the array
8863 type length and element bitsize a little further down. */
8864 if (elt_type0 == elt_type && !constrained_packed_array_p)
8867 result = create_array_type (alloc_type_copy (type0),
8868 elt_type, TYPE_INDEX_TYPE (type0));
8873 struct type *elt_type0;
8876 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8877 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8879 /* NOTE: result---the fixed version of elt_type0---should never
8880 depend on the contents of the array in properly constructed
8882 /* Create a fixed version of the array element type.
8883 We're not providing the address of an element here,
8884 and thus the actual object value cannot be inspected to do
8885 the conversion. This should not be a problem, since arrays of
8886 unconstrained objects are not allowed. In particular, all
8887 the elements of an array of a tagged type should all be of
8888 the same type specified in the debugging info. No need to
8889 consult the object tag. */
8891 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8894 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8896 struct type *range_type =
8897 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8899 result = create_array_type (alloc_type_copy (elt_type0),
8900 result, range_type);
8901 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8903 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8904 error (_("array type with dynamic size is larger than varsize-limit"));
8907 /* We want to preserve the type name. This can be useful when
8908 trying to get the type name of a value that has already been
8909 printed (for instance, if the user did "print VAR; whatis $". */
8910 TYPE_NAME (result) = TYPE_NAME (type0);
8912 if (constrained_packed_array_p)
8914 /* So far, the resulting type has been created as if the original
8915 type was a regular (non-packed) array type. As a result, the
8916 bitsize of the array elements needs to be set again, and the array
8917 length needs to be recomputed based on that bitsize. */
8918 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8919 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8921 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8922 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8923 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8924 TYPE_LENGTH (result)++;
8927 TYPE_FIXED_INSTANCE (result) = 1;
8932 /* A standard type (containing no dynamically sized components)
8933 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8934 DVAL describes a record containing any discriminants used in TYPE0,
8935 and may be NULL if there are none, or if the object of type TYPE at
8936 ADDRESS or in VALADDR contains these discriminants.
8938 If CHECK_TAG is not null, in the case of tagged types, this function
8939 attempts to locate the object's tag and use it to compute the actual
8940 type. However, when ADDRESS is null, we cannot use it to determine the
8941 location of the tag, and therefore compute the tagged type's actual type.
8942 So we return the tagged type without consulting the tag. */
8944 static struct type *
8945 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8946 CORE_ADDR address, struct value *dval, int check_tag)
8948 type = ada_check_typedef (type);
8949 switch (TYPE_CODE (type))
8953 case TYPE_CODE_STRUCT:
8955 struct type *static_type = to_static_fixed_type (type);
8956 struct type *fixed_record_type =
8957 to_fixed_record_type (type, valaddr, address, NULL);
8959 /* If STATIC_TYPE is a tagged type and we know the object's address,
8960 then we can determine its tag, and compute the object's actual
8961 type from there. Note that we have to use the fixed record
8962 type (the parent part of the record may have dynamic fields
8963 and the way the location of _tag is expressed may depend on
8966 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8969 value_tag_from_contents_and_address
8973 struct type *real_type = type_from_tag (tag);
8975 value_from_contents_and_address (fixed_record_type,
8978 fixed_record_type = value_type (obj);
8979 if (real_type != NULL)
8980 return to_fixed_record_type
8982 value_address (ada_tag_value_at_base_address (obj)), NULL);
8985 /* Check to see if there is a parallel ___XVZ variable.
8986 If there is, then it provides the actual size of our type. */
8987 else if (ada_type_name (fixed_record_type) != NULL)
8989 const char *name = ada_type_name (fixed_record_type);
8991 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8995 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8996 size = get_int_var_value (xvz_name, &xvz_found);
8997 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8999 fixed_record_type = copy_type (fixed_record_type);
9000 TYPE_LENGTH (fixed_record_type) = size;
9002 /* The FIXED_RECORD_TYPE may have be a stub. We have
9003 observed this when the debugging info is STABS, and
9004 apparently it is something that is hard to fix.
9006 In practice, we don't need the actual type definition
9007 at all, because the presence of the XVZ variable allows us
9008 to assume that there must be a XVS type as well, which we
9009 should be able to use later, when we need the actual type
9012 In the meantime, pretend that the "fixed" type we are
9013 returning is NOT a stub, because this can cause trouble
9014 when using this type to create new types targeting it.
9015 Indeed, the associated creation routines often check
9016 whether the target type is a stub and will try to replace
9017 it, thus using a type with the wrong size. This, in turn,
9018 might cause the new type to have the wrong size too.
9019 Consider the case of an array, for instance, where the size
9020 of the array is computed from the number of elements in
9021 our array multiplied by the size of its element. */
9022 TYPE_STUB (fixed_record_type) = 0;
9025 return fixed_record_type;
9027 case TYPE_CODE_ARRAY:
9028 return to_fixed_array_type (type, dval, 1);
9029 case TYPE_CODE_UNION:
9033 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9037 /* The same as ada_to_fixed_type_1, except that it preserves the type
9038 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9040 The typedef layer needs be preserved in order to differentiate between
9041 arrays and array pointers when both types are implemented using the same
9042 fat pointer. In the array pointer case, the pointer is encoded as
9043 a typedef of the pointer type. For instance, considering:
9045 type String_Access is access String;
9046 S1 : String_Access := null;
9048 To the debugger, S1 is defined as a typedef of type String. But
9049 to the user, it is a pointer. So if the user tries to print S1,
9050 we should not dereference the array, but print the array address
9053 If we didn't preserve the typedef layer, we would lose the fact that
9054 the type is to be presented as a pointer (needs de-reference before
9055 being printed). And we would also use the source-level type name. */
9058 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9059 CORE_ADDR address, struct value *dval, int check_tag)
9062 struct type *fixed_type =
9063 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9065 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9066 then preserve the typedef layer.
9068 Implementation note: We can only check the main-type portion of
9069 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9070 from TYPE now returns a type that has the same instance flags
9071 as TYPE. For instance, if TYPE is a "typedef const", and its
9072 target type is a "struct", then the typedef elimination will return
9073 a "const" version of the target type. See check_typedef for more
9074 details about how the typedef layer elimination is done.
9076 brobecker/2010-11-19: It seems to me that the only case where it is
9077 useful to preserve the typedef layer is when dealing with fat pointers.
9078 Perhaps, we could add a check for that and preserve the typedef layer
9079 only in that situation. But this seems unecessary so far, probably
9080 because we call check_typedef/ada_check_typedef pretty much everywhere.
9082 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9083 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9084 == TYPE_MAIN_TYPE (fixed_type)))
9090 /* A standard (static-sized) type corresponding as well as possible to
9091 TYPE0, but based on no runtime data. */
9093 static struct type *
9094 to_static_fixed_type (struct type *type0)
9101 if (TYPE_FIXED_INSTANCE (type0))
9104 type0 = ada_check_typedef (type0);
9106 switch (TYPE_CODE (type0))
9110 case TYPE_CODE_STRUCT:
9111 type = dynamic_template_type (type0);
9113 return template_to_static_fixed_type (type);
9115 return template_to_static_fixed_type (type0);
9116 case TYPE_CODE_UNION:
9117 type = ada_find_parallel_type (type0, "___XVU");
9119 return template_to_static_fixed_type (type);
9121 return template_to_static_fixed_type (type0);
9125 /* A static approximation of TYPE with all type wrappers removed. */
9127 static struct type *
9128 static_unwrap_type (struct type *type)
9130 if (ada_is_aligner_type (type))
9132 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9133 if (ada_type_name (type1) == NULL)
9134 TYPE_NAME (type1) = ada_type_name (type);
9136 return static_unwrap_type (type1);
9140 struct type *raw_real_type = ada_get_base_type (type);
9142 if (raw_real_type == type)
9145 return to_static_fixed_type (raw_real_type);
9149 /* In some cases, incomplete and private types require
9150 cross-references that are not resolved as records (for example,
9152 type FooP is access Foo;
9154 type Foo is array ...;
9155 ). In these cases, since there is no mechanism for producing
9156 cross-references to such types, we instead substitute for FooP a
9157 stub enumeration type that is nowhere resolved, and whose tag is
9158 the name of the actual type. Call these types "non-record stubs". */
9160 /* A type equivalent to TYPE that is not a non-record stub, if one
9161 exists, otherwise TYPE. */
9164 ada_check_typedef (struct type *type)
9169 /* If our type is a typedef type of a fat pointer, then we're done.
9170 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9171 what allows us to distinguish between fat pointers that represent
9172 array types, and fat pointers that represent array access types
9173 (in both cases, the compiler implements them as fat pointers). */
9174 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9175 && is_thick_pntr (ada_typedef_target_type (type)))
9178 type = check_typedef (type);
9179 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9180 || !TYPE_STUB (type)
9181 || TYPE_TAG_NAME (type) == NULL)
9185 const char *name = TYPE_TAG_NAME (type);
9186 struct type *type1 = ada_find_any_type (name);
9191 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9192 stubs pointing to arrays, as we don't create symbols for array
9193 types, only for the typedef-to-array types). If that's the case,
9194 strip the typedef layer. */
9195 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9196 type1 = ada_check_typedef (type1);
9202 /* A value representing the data at VALADDR/ADDRESS as described by
9203 type TYPE0, but with a standard (static-sized) type that correctly
9204 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9205 type, then return VAL0 [this feature is simply to avoid redundant
9206 creation of struct values]. */
9208 static struct value *
9209 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9212 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9214 if (type == type0 && val0 != NULL)
9217 return value_from_contents_and_address (type, 0, address);
9220 /* A value representing VAL, but with a standard (static-sized) type
9221 that correctly describes it. Does not necessarily create a new
9225 ada_to_fixed_value (struct value *val)
9227 val = unwrap_value (val);
9228 val = ada_to_fixed_value_create (value_type (val),
9229 value_address (val),
9237 /* Table mapping attribute numbers to names.
9238 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9240 static const char *attribute_names[] = {
9258 ada_attribute_name (enum exp_opcode n)
9260 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9261 return attribute_names[n - OP_ATR_FIRST + 1];
9263 return attribute_names[0];
9266 /* Evaluate the 'POS attribute applied to ARG. */
9269 pos_atr (struct value *arg)
9271 struct value *val = coerce_ref (arg);
9272 struct type *type = value_type (val);
9275 if (!discrete_type_p (type))
9276 error (_("'POS only defined on discrete types"));
9278 if (!discrete_position (type, value_as_long (val), &result))
9279 error (_("enumeration value is invalid: can't find 'POS"));
9284 static struct value *
9285 value_pos_atr (struct type *type, struct value *arg)
9287 return value_from_longest (type, pos_atr (arg));
9290 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9292 static struct value *
9293 value_val_atr (struct type *type, struct value *arg)
9295 if (!discrete_type_p (type))
9296 error (_("'VAL only defined on discrete types"));
9297 if (!integer_type_p (value_type (arg)))
9298 error (_("'VAL requires integral argument"));
9300 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9302 long pos = value_as_long (arg);
9304 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9305 error (_("argument to 'VAL out of range"));
9306 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9309 return value_from_longest (type, value_as_long (arg));
9315 /* True if TYPE appears to be an Ada character type.
9316 [At the moment, this is true only for Character and Wide_Character;
9317 It is a heuristic test that could stand improvement]. */
9320 ada_is_character_type (struct type *type)
9324 /* If the type code says it's a character, then assume it really is,
9325 and don't check any further. */
9326 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9329 /* Otherwise, assume it's a character type iff it is a discrete type
9330 with a known character type name. */
9331 name = ada_type_name (type);
9332 return (name != NULL
9333 && (TYPE_CODE (type) == TYPE_CODE_INT
9334 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9335 && (strcmp (name, "character") == 0
9336 || strcmp (name, "wide_character") == 0
9337 || strcmp (name, "wide_wide_character") == 0
9338 || strcmp (name, "unsigned char") == 0));
9341 /* True if TYPE appears to be an Ada string type. */
9344 ada_is_string_type (struct type *type)
9346 type = ada_check_typedef (type);
9348 && TYPE_CODE (type) != TYPE_CODE_PTR
9349 && (ada_is_simple_array_type (type)
9350 || ada_is_array_descriptor_type (type))
9351 && ada_array_arity (type) == 1)
9353 struct type *elttype = ada_array_element_type (type, 1);
9355 return ada_is_character_type (elttype);
9361 /* The compiler sometimes provides a parallel XVS type for a given
9362 PAD type. Normally, it is safe to follow the PAD type directly,
9363 but older versions of the compiler have a bug that causes the offset
9364 of its "F" field to be wrong. Following that field in that case
9365 would lead to incorrect results, but this can be worked around
9366 by ignoring the PAD type and using the associated XVS type instead.
9368 Set to True if the debugger should trust the contents of PAD types.
9369 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9370 static int trust_pad_over_xvs = 1;
9372 /* True if TYPE is a struct type introduced by the compiler to force the
9373 alignment of a value. Such types have a single field with a
9374 distinctive name. */
9377 ada_is_aligner_type (struct type *type)
9379 type = ada_check_typedef (type);
9381 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9384 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9385 && TYPE_NFIELDS (type) == 1
9386 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9389 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9390 the parallel type. */
9393 ada_get_base_type (struct type *raw_type)
9395 struct type *real_type_namer;
9396 struct type *raw_real_type;
9398 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9401 if (ada_is_aligner_type (raw_type))
9402 /* The encoding specifies that we should always use the aligner type.
9403 So, even if this aligner type has an associated XVS type, we should
9406 According to the compiler gurus, an XVS type parallel to an aligner
9407 type may exist because of a stabs limitation. In stabs, aligner
9408 types are empty because the field has a variable-sized type, and
9409 thus cannot actually be used as an aligner type. As a result,
9410 we need the associated parallel XVS type to decode the type.
9411 Since the policy in the compiler is to not change the internal
9412 representation based on the debugging info format, we sometimes
9413 end up having a redundant XVS type parallel to the aligner type. */
9416 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9417 if (real_type_namer == NULL
9418 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9419 || TYPE_NFIELDS (real_type_namer) != 1)
9422 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9424 /* This is an older encoding form where the base type needs to be
9425 looked up by name. We prefer the newer enconding because it is
9427 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9428 if (raw_real_type == NULL)
9431 return raw_real_type;
9434 /* The field in our XVS type is a reference to the base type. */
9435 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9438 /* The type of value designated by TYPE, with all aligners removed. */
9441 ada_aligned_type (struct type *type)
9443 if (ada_is_aligner_type (type))
9444 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9446 return ada_get_base_type (type);
9450 /* The address of the aligned value in an object at address VALADDR
9451 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9454 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9456 if (ada_is_aligner_type (type))
9457 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9459 TYPE_FIELD_BITPOS (type,
9460 0) / TARGET_CHAR_BIT);
9467 /* The printed representation of an enumeration literal with encoded
9468 name NAME. The value is good to the next call of ada_enum_name. */
9470 ada_enum_name (const char *name)
9472 static char *result;
9473 static size_t result_len = 0;
9476 /* First, unqualify the enumeration name:
9477 1. Search for the last '.' character. If we find one, then skip
9478 all the preceding characters, the unqualified name starts
9479 right after that dot.
9480 2. Otherwise, we may be debugging on a target where the compiler
9481 translates dots into "__". Search forward for double underscores,
9482 but stop searching when we hit an overloading suffix, which is
9483 of the form "__" followed by digits. */
9485 tmp = strrchr (name, '.');
9490 while ((tmp = strstr (name, "__")) != NULL)
9492 if (isdigit (tmp[2]))
9503 if (name[1] == 'U' || name[1] == 'W')
9505 if (sscanf (name + 2, "%x", &v) != 1)
9511 GROW_VECT (result, result_len, 16);
9512 if (isascii (v) && isprint (v))
9513 xsnprintf (result, result_len, "'%c'", v);
9514 else if (name[1] == 'U')
9515 xsnprintf (result, result_len, "[\"%02x\"]", v);
9517 xsnprintf (result, result_len, "[\"%04x\"]", v);
9523 tmp = strstr (name, "__");
9525 tmp = strstr (name, "$");
9528 GROW_VECT (result, result_len, tmp - name + 1);
9529 strncpy (result, name, tmp - name);
9530 result[tmp - name] = '\0';
9538 /* Evaluate the subexpression of EXP starting at *POS as for
9539 evaluate_type, updating *POS to point just past the evaluated
9542 static struct value *
9543 evaluate_subexp_type (struct expression *exp, int *pos)
9545 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9548 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9551 static struct value *
9552 unwrap_value (struct value *val)
9554 struct type *type = ada_check_typedef (value_type (val));
9556 if (ada_is_aligner_type (type))
9558 struct value *v = ada_value_struct_elt (val, "F", 0);
9559 struct type *val_type = ada_check_typedef (value_type (v));
9561 if (ada_type_name (val_type) == NULL)
9562 TYPE_NAME (val_type) = ada_type_name (type);
9564 return unwrap_value (v);
9568 struct type *raw_real_type =
9569 ada_check_typedef (ada_get_base_type (type));
9571 /* If there is no parallel XVS or XVE type, then the value is
9572 already unwrapped. Return it without further modification. */
9573 if ((type == raw_real_type)
9574 && ada_find_parallel_type (type, "___XVE") == NULL)
9578 coerce_unspec_val_to_type
9579 (val, ada_to_fixed_type (raw_real_type, 0,
9580 value_address (val),
9585 static struct value *
9586 cast_to_fixed (struct type *type, struct value *arg)
9590 if (type == value_type (arg))
9592 else if (ada_is_fixed_point_type (value_type (arg)))
9593 val = ada_float_to_fixed (type,
9594 ada_fixed_to_float (value_type (arg),
9595 value_as_long (arg)));
9598 DOUBLEST argd = value_as_double (arg);
9600 val = ada_float_to_fixed (type, argd);
9603 return value_from_longest (type, val);
9606 static struct value *
9607 cast_from_fixed (struct type *type, struct value *arg)
9609 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9610 value_as_long (arg));
9612 return value_from_double (type, val);
9615 /* Given two array types T1 and T2, return nonzero iff both arrays
9616 contain the same number of elements. */
9619 ada_same_array_size_p (struct type *t1, struct type *t2)
9621 LONGEST lo1, hi1, lo2, hi2;
9623 /* Get the array bounds in order to verify that the size of
9624 the two arrays match. */
9625 if (!get_array_bounds (t1, &lo1, &hi1)
9626 || !get_array_bounds (t2, &lo2, &hi2))
9627 error (_("unable to determine array bounds"));
9629 /* To make things easier for size comparison, normalize a bit
9630 the case of empty arrays by making sure that the difference
9631 between upper bound and lower bound is always -1. */
9637 return (hi1 - lo1 == hi2 - lo2);
9640 /* Assuming that VAL is an array of integrals, and TYPE represents
9641 an array with the same number of elements, but with wider integral
9642 elements, return an array "casted" to TYPE. In practice, this
9643 means that the returned array is built by casting each element
9644 of the original array into TYPE's (wider) element type. */
9646 static struct value *
9647 ada_promote_array_of_integrals (struct type *type, struct value *val)
9649 struct type *elt_type = TYPE_TARGET_TYPE (type);
9654 /* Verify that both val and type are arrays of scalars, and
9655 that the size of val's elements is smaller than the size
9656 of type's element. */
9657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9658 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9659 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9660 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9661 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9662 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9664 if (!get_array_bounds (type, &lo, &hi))
9665 error (_("unable to determine array bounds"));
9667 res = allocate_value (type);
9669 /* Promote each array element. */
9670 for (i = 0; i < hi - lo + 1; i++)
9672 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9674 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9675 value_contents_all (elt), TYPE_LENGTH (elt_type));
9681 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9682 return the converted value. */
9684 static struct value *
9685 coerce_for_assign (struct type *type, struct value *val)
9687 struct type *type2 = value_type (val);
9692 type2 = ada_check_typedef (type2);
9693 type = ada_check_typedef (type);
9695 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9696 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9698 val = ada_value_ind (val);
9699 type2 = value_type (val);
9702 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9703 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9705 if (!ada_same_array_size_p (type, type2))
9706 error (_("cannot assign arrays of different length"));
9708 if (is_integral_type (TYPE_TARGET_TYPE (type))
9709 && is_integral_type (TYPE_TARGET_TYPE (type2))
9710 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9711 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9713 /* Allow implicit promotion of the array elements to
9715 return ada_promote_array_of_integrals (type, val);
9718 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9719 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9720 error (_("Incompatible types in assignment"));
9721 deprecated_set_value_type (val, type);
9726 static struct value *
9727 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9730 struct type *type1, *type2;
9733 arg1 = coerce_ref (arg1);
9734 arg2 = coerce_ref (arg2);
9735 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9736 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9738 if (TYPE_CODE (type1) != TYPE_CODE_INT
9739 || TYPE_CODE (type2) != TYPE_CODE_INT)
9740 return value_binop (arg1, arg2, op);
9749 return value_binop (arg1, arg2, op);
9752 v2 = value_as_long (arg2);
9754 error (_("second operand of %s must not be zero."), op_string (op));
9756 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9757 return value_binop (arg1, arg2, op);
9759 v1 = value_as_long (arg1);
9764 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9765 v += v > 0 ? -1 : 1;
9773 /* Should not reach this point. */
9777 val = allocate_value (type1);
9778 store_unsigned_integer (value_contents_raw (val),
9779 TYPE_LENGTH (value_type (val)),
9780 gdbarch_byte_order (get_type_arch (type1)), v);
9785 ada_value_equal (struct value *arg1, struct value *arg2)
9787 if (ada_is_direct_array_type (value_type (arg1))
9788 || ada_is_direct_array_type (value_type (arg2)))
9790 /* Automatically dereference any array reference before
9791 we attempt to perform the comparison. */
9792 arg1 = ada_coerce_ref (arg1);
9793 arg2 = ada_coerce_ref (arg2);
9795 arg1 = ada_coerce_to_simple_array (arg1);
9796 arg2 = ada_coerce_to_simple_array (arg2);
9797 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9798 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9799 error (_("Attempt to compare array with non-array"));
9800 /* FIXME: The following works only for types whose
9801 representations use all bits (no padding or undefined bits)
9802 and do not have user-defined equality. */
9804 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9805 && memcmp (value_contents (arg1), value_contents (arg2),
9806 TYPE_LENGTH (value_type (arg1))) == 0;
9808 return value_equal (arg1, arg2);
9811 /* Total number of component associations in the aggregate starting at
9812 index PC in EXP. Assumes that index PC is the start of an
9816 num_component_specs (struct expression *exp, int pc)
9820 m = exp->elts[pc + 1].longconst;
9823 for (i = 0; i < m; i += 1)
9825 switch (exp->elts[pc].opcode)
9831 n += exp->elts[pc + 1].longconst;
9834 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9839 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9840 component of LHS (a simple array or a record), updating *POS past
9841 the expression, assuming that LHS is contained in CONTAINER. Does
9842 not modify the inferior's memory, nor does it modify LHS (unless
9843 LHS == CONTAINER). */
9846 assign_component (struct value *container, struct value *lhs, LONGEST index,
9847 struct expression *exp, int *pos)
9849 struct value *mark = value_mark ();
9852 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9854 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9855 struct value *index_val = value_from_longest (index_type, index);
9857 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9861 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9862 elt = ada_to_fixed_value (elt);
9865 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9866 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9868 value_assign_to_component (container, elt,
9869 ada_evaluate_subexp (NULL, exp, pos,
9872 value_free_to_mark (mark);
9875 /* Assuming that LHS represents an lvalue having a record or array
9876 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9877 of that aggregate's value to LHS, advancing *POS past the
9878 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9879 lvalue containing LHS (possibly LHS itself). Does not modify
9880 the inferior's memory, nor does it modify the contents of
9881 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9883 static struct value *
9884 assign_aggregate (struct value *container,
9885 struct value *lhs, struct expression *exp,
9886 int *pos, enum noside noside)
9888 struct type *lhs_type;
9889 int n = exp->elts[*pos+1].longconst;
9890 LONGEST low_index, high_index;
9893 int max_indices, num_indices;
9897 if (noside != EVAL_NORMAL)
9899 for (i = 0; i < n; i += 1)
9900 ada_evaluate_subexp (NULL, exp, pos, noside);
9904 container = ada_coerce_ref (container);
9905 if (ada_is_direct_array_type (value_type (container)))
9906 container = ada_coerce_to_simple_array (container);
9907 lhs = ada_coerce_ref (lhs);
9908 if (!deprecated_value_modifiable (lhs))
9909 error (_("Left operand of assignment is not a modifiable lvalue."));
9911 lhs_type = value_type (lhs);
9912 if (ada_is_direct_array_type (lhs_type))
9914 lhs = ada_coerce_to_simple_array (lhs);
9915 lhs_type = value_type (lhs);
9916 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9917 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9919 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9922 high_index = num_visible_fields (lhs_type) - 1;
9925 error (_("Left-hand side must be array or record."));
9927 num_specs = num_component_specs (exp, *pos - 3);
9928 max_indices = 4 * num_specs + 4;
9929 indices = XALLOCAVEC (LONGEST, max_indices);
9930 indices[0] = indices[1] = low_index - 1;
9931 indices[2] = indices[3] = high_index + 1;
9934 for (i = 0; i < n; i += 1)
9936 switch (exp->elts[*pos].opcode)
9939 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9940 &num_indices, max_indices,
9941 low_index, high_index);
9944 aggregate_assign_positional (container, lhs, exp, pos, indices,
9945 &num_indices, max_indices,
9946 low_index, high_index);
9950 error (_("Misplaced 'others' clause"));
9951 aggregate_assign_others (container, lhs, exp, pos, indices,
9952 num_indices, low_index, high_index);
9955 error (_("Internal error: bad aggregate clause"));
9962 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9963 construct at *POS, updating *POS past the construct, given that
9964 the positions are relative to lower bound LOW, where HIGH is the
9965 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9966 updating *NUM_INDICES as needed. CONTAINER is as for
9967 assign_aggregate. */
9969 aggregate_assign_positional (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, LONGEST *indices, int *num_indices,
9972 int max_indices, LONGEST low, LONGEST high)
9974 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9976 if (ind - 1 == high)
9977 warning (_("Extra components in aggregate ignored."));
9980 add_component_interval (ind, ind, indices, num_indices, max_indices);
9982 assign_component (container, lhs, ind, exp, pos);
9985 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9988 /* Assign into the components of LHS indexed by the OP_CHOICES
9989 construct at *POS, updating *POS past the construct, given that
9990 the allowable indices are LOW..HIGH. Record the indices assigned
9991 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9992 needed. CONTAINER is as for assign_aggregate. */
9994 aggregate_assign_from_choices (struct value *container,
9995 struct value *lhs, struct expression *exp,
9996 int *pos, LONGEST *indices, int *num_indices,
9997 int max_indices, LONGEST low, LONGEST high)
10000 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10001 int choice_pos, expr_pc;
10002 int is_array = ada_is_direct_array_type (value_type (lhs));
10004 choice_pos = *pos += 3;
10006 for (j = 0; j < n_choices; j += 1)
10007 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10009 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10011 for (j = 0; j < n_choices; j += 1)
10013 LONGEST lower, upper;
10014 enum exp_opcode op = exp->elts[choice_pos].opcode;
10016 if (op == OP_DISCRETE_RANGE)
10019 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10021 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10026 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10038 name = &exp->elts[choice_pos + 2].string;
10041 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10044 error (_("Invalid record component association."));
10046 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10048 if (! find_struct_field (name, value_type (lhs), 0,
10049 NULL, NULL, NULL, NULL, &ind))
10050 error (_("Unknown component name: %s."), name);
10051 lower = upper = ind;
10054 if (lower <= upper && (lower < low || upper > high))
10055 error (_("Index in component association out of bounds."));
10057 add_component_interval (lower, upper, indices, num_indices,
10059 while (lower <= upper)
10064 assign_component (container, lhs, lower, exp, &pos1);
10070 /* Assign the value of the expression in the OP_OTHERS construct in
10071 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10072 have not been previously assigned. The index intervals already assigned
10073 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10074 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10076 aggregate_assign_others (struct value *container,
10077 struct value *lhs, struct expression *exp,
10078 int *pos, LONGEST *indices, int num_indices,
10079 LONGEST low, LONGEST high)
10082 int expr_pc = *pos + 1;
10084 for (i = 0; i < num_indices - 2; i += 2)
10088 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10092 localpos = expr_pc;
10093 assign_component (container, lhs, ind, exp, &localpos);
10096 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10100 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10101 modifying *SIZE as needed. It is an error if *SIZE exceeds
10102 MAX_SIZE. The resulting intervals do not overlap. */
10104 add_component_interval (LONGEST low, LONGEST high,
10105 LONGEST* indices, int *size, int max_size)
10109 for (i = 0; i < *size; i += 2) {
10110 if (high >= indices[i] && low <= indices[i + 1])
10114 for (kh = i + 2; kh < *size; kh += 2)
10115 if (high < indices[kh])
10117 if (low < indices[i])
10119 indices[i + 1] = indices[kh - 1];
10120 if (high > indices[i + 1])
10121 indices[i + 1] = high;
10122 memcpy (indices + i + 2, indices + kh, *size - kh);
10123 *size -= kh - i - 2;
10126 else if (high < indices[i])
10130 if (*size == max_size)
10131 error (_("Internal error: miscounted aggregate components."));
10133 for (j = *size-1; j >= i+2; j -= 1)
10134 indices[j] = indices[j - 2];
10136 indices[i + 1] = high;
10139 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10142 static struct value *
10143 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10145 if (type == ada_check_typedef (value_type (arg2)))
10148 if (ada_is_fixed_point_type (type))
10149 return (cast_to_fixed (type, arg2));
10151 if (ada_is_fixed_point_type (value_type (arg2)))
10152 return cast_from_fixed (type, arg2);
10154 return value_cast (type, arg2);
10157 /* Evaluating Ada expressions, and printing their result.
10158 ------------------------------------------------------
10163 We usually evaluate an Ada expression in order to print its value.
10164 We also evaluate an expression in order to print its type, which
10165 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10166 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10167 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10168 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10171 Evaluating expressions is a little more complicated for Ada entities
10172 than it is for entities in languages such as C. The main reason for
10173 this is that Ada provides types whose definition might be dynamic.
10174 One example of such types is variant records. Or another example
10175 would be an array whose bounds can only be known at run time.
10177 The following description is a general guide as to what should be
10178 done (and what should NOT be done) in order to evaluate an expression
10179 involving such types, and when. This does not cover how the semantic
10180 information is encoded by GNAT as this is covered separatly. For the
10181 document used as the reference for the GNAT encoding, see exp_dbug.ads
10182 in the GNAT sources.
10184 Ideally, we should embed each part of this description next to its
10185 associated code. Unfortunately, the amount of code is so vast right
10186 now that it's hard to see whether the code handling a particular
10187 situation might be duplicated or not. One day, when the code is
10188 cleaned up, this guide might become redundant with the comments
10189 inserted in the code, and we might want to remove it.
10191 2. ``Fixing'' an Entity, the Simple Case:
10192 -----------------------------------------
10194 When evaluating Ada expressions, the tricky issue is that they may
10195 reference entities whose type contents and size are not statically
10196 known. Consider for instance a variant record:
10198 type Rec (Empty : Boolean := True) is record
10201 when False => Value : Integer;
10204 Yes : Rec := (Empty => False, Value => 1);
10205 No : Rec := (empty => True);
10207 The size and contents of that record depends on the value of the
10208 descriminant (Rec.Empty). At this point, neither the debugging
10209 information nor the associated type structure in GDB are able to
10210 express such dynamic types. So what the debugger does is to create
10211 "fixed" versions of the type that applies to the specific object.
10212 We also informally refer to this opperation as "fixing" an object,
10213 which means creating its associated fixed type.
10215 Example: when printing the value of variable "Yes" above, its fixed
10216 type would look like this:
10223 On the other hand, if we printed the value of "No", its fixed type
10230 Things become a little more complicated when trying to fix an entity
10231 with a dynamic type that directly contains another dynamic type,
10232 such as an array of variant records, for instance. There are
10233 two possible cases: Arrays, and records.
10235 3. ``Fixing'' Arrays:
10236 ---------------------
10238 The type structure in GDB describes an array in terms of its bounds,
10239 and the type of its elements. By design, all elements in the array
10240 have the same type and we cannot represent an array of variant elements
10241 using the current type structure in GDB. When fixing an array,
10242 we cannot fix the array element, as we would potentially need one
10243 fixed type per element of the array. As a result, the best we can do
10244 when fixing an array is to produce an array whose bounds and size
10245 are correct (allowing us to read it from memory), but without having
10246 touched its element type. Fixing each element will be done later,
10247 when (if) necessary.
10249 Arrays are a little simpler to handle than records, because the same
10250 amount of memory is allocated for each element of the array, even if
10251 the amount of space actually used by each element differs from element
10252 to element. Consider for instance the following array of type Rec:
10254 type Rec_Array is array (1 .. 2) of Rec;
10256 The actual amount of memory occupied by each element might be different
10257 from element to element, depending on the value of their discriminant.
10258 But the amount of space reserved for each element in the array remains
10259 fixed regardless. So we simply need to compute that size using
10260 the debugging information available, from which we can then determine
10261 the array size (we multiply the number of elements of the array by
10262 the size of each element).
10264 The simplest case is when we have an array of a constrained element
10265 type. For instance, consider the following type declarations:
10267 type Bounded_String (Max_Size : Integer) is
10269 Buffer : String (1 .. Max_Size);
10271 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10273 In this case, the compiler describes the array as an array of
10274 variable-size elements (identified by its XVS suffix) for which
10275 the size can be read in the parallel XVZ variable.
10277 In the case of an array of an unconstrained element type, the compiler
10278 wraps the array element inside a private PAD type. This type should not
10279 be shown to the user, and must be "unwrap"'ed before printing. Note
10280 that we also use the adjective "aligner" in our code to designate
10281 these wrapper types.
10283 In some cases, the size allocated for each element is statically
10284 known. In that case, the PAD type already has the correct size,
10285 and the array element should remain unfixed.
10287 But there are cases when this size is not statically known.
10288 For instance, assuming that "Five" is an integer variable:
10290 type Dynamic is array (1 .. Five) of Integer;
10291 type Wrapper (Has_Length : Boolean := False) is record
10294 when True => Length : Integer;
10295 when False => null;
10298 type Wrapper_Array is array (1 .. 2) of Wrapper;
10300 Hello : Wrapper_Array := (others => (Has_Length => True,
10301 Data => (others => 17),
10305 The debugging info would describe variable Hello as being an
10306 array of a PAD type. The size of that PAD type is not statically
10307 known, but can be determined using a parallel XVZ variable.
10308 In that case, a copy of the PAD type with the correct size should
10309 be used for the fixed array.
10311 3. ``Fixing'' record type objects:
10312 ----------------------------------
10314 Things are slightly different from arrays in the case of dynamic
10315 record types. In this case, in order to compute the associated
10316 fixed type, we need to determine the size and offset of each of
10317 its components. This, in turn, requires us to compute the fixed
10318 type of each of these components.
10320 Consider for instance the example:
10322 type Bounded_String (Max_Size : Natural) is record
10323 Str : String (1 .. Max_Size);
10326 My_String : Bounded_String (Max_Size => 10);
10328 In that case, the position of field "Length" depends on the size
10329 of field Str, which itself depends on the value of the Max_Size
10330 discriminant. In order to fix the type of variable My_String,
10331 we need to fix the type of field Str. Therefore, fixing a variant
10332 record requires us to fix each of its components.
10334 However, if a component does not have a dynamic size, the component
10335 should not be fixed. In particular, fields that use a PAD type
10336 should not fixed. Here is an example where this might happen
10337 (assuming type Rec above):
10339 type Container (Big : Boolean) is record
10343 when True => Another : Integer;
10344 when False => null;
10347 My_Container : Container := (Big => False,
10348 First => (Empty => True),
10351 In that example, the compiler creates a PAD type for component First,
10352 whose size is constant, and then positions the component After just
10353 right after it. The offset of component After is therefore constant
10356 The debugger computes the position of each field based on an algorithm
10357 that uses, among other things, the actual position and size of the field
10358 preceding it. Let's now imagine that the user is trying to print
10359 the value of My_Container. If the type fixing was recursive, we would
10360 end up computing the offset of field After based on the size of the
10361 fixed version of field First. And since in our example First has
10362 only one actual field, the size of the fixed type is actually smaller
10363 than the amount of space allocated to that field, and thus we would
10364 compute the wrong offset of field After.
10366 To make things more complicated, we need to watch out for dynamic
10367 components of variant records (identified by the ___XVL suffix in
10368 the component name). Even if the target type is a PAD type, the size
10369 of that type might not be statically known. So the PAD type needs
10370 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10371 we might end up with the wrong size for our component. This can be
10372 observed with the following type declarations:
10374 type Octal is new Integer range 0 .. 7;
10375 type Octal_Array is array (Positive range <>) of Octal;
10376 pragma Pack (Octal_Array);
10378 type Octal_Buffer (Size : Positive) is record
10379 Buffer : Octal_Array (1 .. Size);
10383 In that case, Buffer is a PAD type whose size is unset and needs
10384 to be computed by fixing the unwrapped type.
10386 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10387 ----------------------------------------------------------
10389 Lastly, when should the sub-elements of an entity that remained unfixed
10390 thus far, be actually fixed?
10392 The answer is: Only when referencing that element. For instance
10393 when selecting one component of a record, this specific component
10394 should be fixed at that point in time. Or when printing the value
10395 of a record, each component should be fixed before its value gets
10396 printed. Similarly for arrays, the element of the array should be
10397 fixed when printing each element of the array, or when extracting
10398 one element out of that array. On the other hand, fixing should
10399 not be performed on the elements when taking a slice of an array!
10401 Note that one of the side-effects of miscomputing the offset and
10402 size of each field is that we end up also miscomputing the size
10403 of the containing type. This can have adverse results when computing
10404 the value of an entity. GDB fetches the value of an entity based
10405 on the size of its type, and thus a wrong size causes GDB to fetch
10406 the wrong amount of memory. In the case where the computed size is
10407 too small, GDB fetches too little data to print the value of our
10408 entiry. Results in this case as unpredicatble, as we usually read
10409 past the buffer containing the data =:-o. */
10411 /* Implement the evaluate_exp routine in the exp_descriptor structure
10412 for the Ada language. */
10414 static struct value *
10415 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10416 int *pos, enum noside noside)
10418 enum exp_opcode op;
10422 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10425 struct value **argvec;
10429 op = exp->elts[pc].opcode;
10435 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10437 if (noside == EVAL_NORMAL)
10438 arg1 = unwrap_value (arg1);
10440 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10441 then we need to perform the conversion manually, because
10442 evaluate_subexp_standard doesn't do it. This conversion is
10443 necessary in Ada because the different kinds of float/fixed
10444 types in Ada have different representations.
10446 Similarly, we need to perform the conversion from OP_LONG
10448 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10449 arg1 = ada_value_cast (expect_type, arg1, noside);
10455 struct value *result;
10458 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459 /* The result type will have code OP_STRING, bashed there from
10460 OP_ARRAY. Bash it back. */
10461 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10462 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10468 type = exp->elts[pc + 1].type;
10469 arg1 = evaluate_subexp (type, exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10472 arg1 = ada_value_cast (type, arg1, noside);
10477 type = exp->elts[pc + 1].type;
10478 return ada_evaluate_subexp (type, exp, pos, noside);
10481 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10484 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10485 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10487 return ada_value_assign (arg1, arg1);
10489 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10490 except if the lhs of our assignment is a convenience variable.
10491 In the case of assigning to a convenience variable, the lhs
10492 should be exactly the result of the evaluation of the rhs. */
10493 type = value_type (arg1);
10494 if (VALUE_LVAL (arg1) == lval_internalvar)
10496 arg2 = evaluate_subexp (type, exp, pos, noside);
10497 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10499 if (ada_is_fixed_point_type (value_type (arg1)))
10500 arg2 = cast_to_fixed (value_type (arg1), arg2);
10501 else if (ada_is_fixed_point_type (value_type (arg2)))
10503 (_("Fixed-point values must be assigned to fixed-point variables"));
10505 arg2 = coerce_for_assign (value_type (arg1), arg2);
10506 return ada_value_assign (arg1, arg2);
10509 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10510 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10511 if (noside == EVAL_SKIP)
10513 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg1),
10516 value_as_long (arg1) + value_as_long (arg2)));
10517 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10518 return (value_from_longest
10519 (value_type (arg2),
10520 value_as_long (arg1) + value_as_long (arg2)));
10521 if ((ada_is_fixed_point_type (value_type (arg1))
10522 || ada_is_fixed_point_type (value_type (arg2)))
10523 && value_type (arg1) != value_type (arg2))
10524 error (_("Operands of fixed-point addition must have the same type"));
10525 /* Do the addition, and cast the result to the type of the first
10526 argument. We cannot cast the result to a reference type, so if
10527 ARG1 is a reference type, find its underlying type. */
10528 type = value_type (arg1);
10529 while (TYPE_CODE (type) == TYPE_CODE_REF)
10530 type = TYPE_TARGET_TYPE (type);
10531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10532 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10535 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10536 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10537 if (noside == EVAL_SKIP)
10539 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10540 return (value_from_longest
10541 (value_type (arg1),
10542 value_as_long (arg1) - value_as_long (arg2)));
10543 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10544 return (value_from_longest
10545 (value_type (arg2),
10546 value_as_long (arg1) - value_as_long (arg2)));
10547 if ((ada_is_fixed_point_type (value_type (arg1))
10548 || ada_is_fixed_point_type (value_type (arg2)))
10549 && value_type (arg1) != value_type (arg2))
10550 error (_("Operands of fixed-point subtraction "
10551 "must have the same type"));
10552 /* Do the substraction, and cast the result to the type of the first
10553 argument. We cannot cast the result to a reference type, so if
10554 ARG1 is a reference type, find its underlying type. */
10555 type = value_type (arg1);
10556 while (TYPE_CODE (type) == TYPE_CODE_REF)
10557 type = TYPE_TARGET_TYPE (type);
10558 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10559 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10567 if (noside == EVAL_SKIP)
10569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10571 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10572 return value_zero (value_type (arg1), not_lval);
10576 type = builtin_type (exp->gdbarch)->builtin_double;
10577 if (ada_is_fixed_point_type (value_type (arg1)))
10578 arg1 = cast_from_fixed (type, arg1);
10579 if (ada_is_fixed_point_type (value_type (arg2)))
10580 arg2 = cast_from_fixed (type, arg2);
10581 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10582 return ada_value_binop (arg1, arg2, op);
10586 case BINOP_NOTEQUAL:
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10591 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10595 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10596 tem = ada_value_equal (arg1, arg2);
10598 if (op == BINOP_NOTEQUAL)
10600 type = language_bool_type (exp->language_defn, exp->gdbarch);
10601 return value_from_longest (type, (LONGEST) tem);
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 if (noside == EVAL_SKIP)
10607 else if (ada_is_fixed_point_type (value_type (arg1)))
10608 return value_cast (value_type (arg1), value_neg (arg1));
10611 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10612 return value_neg (arg1);
10615 case BINOP_LOGICAL_AND:
10616 case BINOP_LOGICAL_OR:
10617 case UNOP_LOGICAL_NOT:
10622 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return value_cast (type, val);
10627 case BINOP_BITWISE_AND:
10628 case BINOP_BITWISE_IOR:
10629 case BINOP_BITWISE_XOR:
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10635 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10637 return value_cast (value_type (arg1), val);
10643 if (noside == EVAL_SKIP)
10649 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10650 /* Only encountered when an unresolved symbol occurs in a
10651 context other than a function call, in which case, it is
10653 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10654 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10658 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10659 /* Check to see if this is a tagged type. We also need to handle
10660 the case where the type is a reference to a tagged type, but
10661 we have to be careful to exclude pointers to tagged types.
10662 The latter should be shown as usual (as a pointer), whereas
10663 a reference should mostly be transparent to the user. */
10664 if (ada_is_tagged_type (type, 0)
10665 || (TYPE_CODE (type) == TYPE_CODE_REF
10666 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10668 /* Tagged types are a little special in the fact that the real
10669 type is dynamic and can only be determined by inspecting the
10670 object's tag. This means that we need to get the object's
10671 value first (EVAL_NORMAL) and then extract the actual object
10674 Note that we cannot skip the final step where we extract
10675 the object type from its tag, because the EVAL_NORMAL phase
10676 results in dynamic components being resolved into fixed ones.
10677 This can cause problems when trying to print the type
10678 description of tagged types whose parent has a dynamic size:
10679 We use the type name of the "_parent" component in order
10680 to print the name of the ancestor type in the type description.
10681 If that component had a dynamic size, the resolution into
10682 a fixed type would result in the loss of that type name,
10683 thus preventing us from printing the name of the ancestor
10684 type in the type description. */
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10687 if (TYPE_CODE (type) != TYPE_CODE_REF)
10689 struct type *actual_type;
10691 actual_type = type_from_tag (ada_value_tag (arg1));
10692 if (actual_type == NULL)
10693 /* If, for some reason, we were unable to determine
10694 the actual type from the tag, then use the static
10695 approximation that we just computed as a fallback.
10696 This can happen if the debugging information is
10697 incomplete, for instance. */
10698 actual_type = type;
10699 return value_zero (actual_type, not_lval);
10703 /* In the case of a ref, ada_coerce_ref takes care
10704 of determining the actual type. But the evaluation
10705 should return a ref as it should be valid to ask
10706 for its address; so rebuild a ref after coerce. */
10707 arg1 = ada_coerce_ref (arg1);
10708 return value_ref (arg1, TYPE_CODE_REF);
10712 /* Records and unions for which GNAT encodings have been
10713 generated need to be statically fixed as well.
10714 Otherwise, non-static fixing produces a type where
10715 all dynamic properties are removed, which prevents "ptype"
10716 from being able to completely describe the type.
10717 For instance, a case statement in a variant record would be
10718 replaced by the relevant components based on the actual
10719 value of the discriminants. */
10720 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10721 && dynamic_template_type (type) != NULL)
10722 || (TYPE_CODE (type) == TYPE_CODE_UNION
10723 && ada_find_parallel_type (type, "___XVU") != NULL))
10726 return value_zero (to_static_fixed_type (type), not_lval);
10730 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10731 return ada_to_fixed_value (arg1);
10736 /* Allocate arg vector, including space for the function to be
10737 called in argvec[0] and a terminating NULL. */
10738 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10739 argvec = XALLOCAVEC (struct value *, nargs + 2);
10741 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10742 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10743 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10744 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10747 for (tem = 0; tem <= nargs; tem += 1)
10748 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10751 if (noside == EVAL_SKIP)
10755 if (ada_is_constrained_packed_array_type
10756 (desc_base_type (value_type (argvec[0]))))
10757 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10758 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10759 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10760 /* This is a packed array that has already been fixed, and
10761 therefore already coerced to a simple array. Nothing further
10764 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10766 /* Make sure we dereference references so that all the code below
10767 feels like it's really handling the referenced value. Wrapping
10768 types (for alignment) may be there, so make sure we strip them as
10770 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10772 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10773 && VALUE_LVAL (argvec[0]) == lval_memory)
10774 argvec[0] = value_addr (argvec[0]);
10776 type = ada_check_typedef (value_type (argvec[0]));
10778 /* Ada allows us to implicitly dereference arrays when subscripting
10779 them. So, if this is an array typedef (encoding use for array
10780 access types encoded as fat pointers), strip it now. */
10781 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10782 type = ada_typedef_target_type (type);
10784 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10786 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10788 case TYPE_CODE_FUNC:
10789 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10791 case TYPE_CODE_ARRAY:
10793 case TYPE_CODE_STRUCT:
10794 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10795 argvec[0] = ada_value_ind (argvec[0]);
10796 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10799 error (_("cannot subscript or call something of type `%s'"),
10800 ada_type_name (value_type (argvec[0])));
10805 switch (TYPE_CODE (type))
10807 case TYPE_CODE_FUNC:
10808 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10810 struct type *rtype = TYPE_TARGET_TYPE (type);
10812 if (TYPE_GNU_IFUNC (type))
10813 return allocate_value (TYPE_TARGET_TYPE (rtype));
10814 return allocate_value (rtype);
10816 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10817 case TYPE_CODE_INTERNAL_FUNCTION:
10818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 /* We don't know anything about what the internal
10820 function might return, but we have to return
10822 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10825 return call_internal_function (exp->gdbarch, exp->language_defn,
10826 argvec[0], nargs, argvec + 1);
10828 case TYPE_CODE_STRUCT:
10832 arity = ada_array_arity (type);
10833 type = ada_array_element_type (type, nargs);
10835 error (_("cannot subscript or call a record"));
10836 if (arity != nargs)
10837 error (_("wrong number of subscripts; expecting %d"), arity);
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 return value_zero (ada_aligned_type (type), lval_memory);
10841 unwrap_value (ada_value_subscript
10842 (argvec[0], nargs, argvec + 1));
10844 case TYPE_CODE_ARRAY:
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10847 type = ada_array_element_type (type, nargs);
10849 error (_("element type of array unknown"));
10851 return value_zero (ada_aligned_type (type), lval_memory);
10854 unwrap_value (ada_value_subscript
10855 (ada_coerce_to_simple_array (argvec[0]),
10856 nargs, argvec + 1));
10857 case TYPE_CODE_PTR: /* Pointer to array */
10858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10860 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10861 type = ada_array_element_type (type, nargs);
10863 error (_("element type of array unknown"));
10865 return value_zero (ada_aligned_type (type), lval_memory);
10868 unwrap_value (ada_value_ptr_subscript (argvec[0],
10869 nargs, argvec + 1));
10872 error (_("Attempt to index or call something other than an "
10873 "array or function"));
10878 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 struct value *low_bound_val =
10880 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 struct value *high_bound_val =
10882 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10884 LONGEST high_bound;
10886 low_bound_val = coerce_ref (low_bound_val);
10887 high_bound_val = coerce_ref (high_bound_val);
10888 low_bound = value_as_long (low_bound_val);
10889 high_bound = value_as_long (high_bound_val);
10891 if (noside == EVAL_SKIP)
10894 /* If this is a reference to an aligner type, then remove all
10896 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10897 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10898 TYPE_TARGET_TYPE (value_type (array)) =
10899 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10901 if (ada_is_constrained_packed_array_type (value_type (array)))
10902 error (_("cannot slice a packed array"));
10904 /* If this is a reference to an array or an array lvalue,
10905 convert to a pointer. */
10906 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10907 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10908 && VALUE_LVAL (array) == lval_memory))
10909 array = value_addr (array);
10911 if (noside == EVAL_AVOID_SIDE_EFFECTS
10912 && ada_is_array_descriptor_type (ada_check_typedef
10913 (value_type (array))))
10914 return empty_array (ada_type_of_array (array, 0), low_bound);
10916 array = ada_coerce_to_simple_array_ptr (array);
10918 /* If we have more than one level of pointer indirection,
10919 dereference the value until we get only one level. */
10920 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10921 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10923 array = value_ind (array);
10925 /* Make sure we really do have an array type before going further,
10926 to avoid a SEGV when trying to get the index type or the target
10927 type later down the road if the debug info generated by
10928 the compiler is incorrect or incomplete. */
10929 if (!ada_is_simple_array_type (value_type (array)))
10930 error (_("cannot take slice of non-array"));
10932 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10935 struct type *type0 = ada_check_typedef (value_type (array));
10937 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10938 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10941 struct type *arr_type0 =
10942 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10944 return ada_value_slice_from_ptr (array, arr_type0,
10945 longest_to_int (low_bound),
10946 longest_to_int (high_bound));
10949 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10951 else if (high_bound < low_bound)
10952 return empty_array (value_type (array), low_bound);
10954 return ada_value_slice (array, longest_to_int (low_bound),
10955 longest_to_int (high_bound));
10958 case UNOP_IN_RANGE:
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 type = check_typedef (exp->elts[pc + 1].type);
10963 if (noside == EVAL_SKIP)
10966 switch (TYPE_CODE (type))
10969 lim_warning (_("Membership test incompletely implemented; "
10970 "always returns true"));
10971 type = language_bool_type (exp->language_defn, exp->gdbarch);
10972 return value_from_longest (type, (LONGEST) 1);
10974 case TYPE_CODE_RANGE:
10975 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10976 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
10981 value_from_longest (type,
10982 (value_less (arg1, arg3)
10983 || value_equal (arg1, arg3))
10984 && (value_less (arg2, arg1)
10985 || value_equal (arg2, arg1)));
10988 case BINOP_IN_BOUNDS:
10990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10993 if (noside == EVAL_SKIP)
10996 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10998 type = language_bool_type (exp->language_defn, exp->gdbarch);
10999 return value_zero (type, not_lval);
11002 tem = longest_to_int (exp->elts[pc + 1].longconst);
11004 type = ada_index_type (value_type (arg2), tem, "range");
11006 type = value_type (arg1);
11008 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11009 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11013 type = language_bool_type (exp->language_defn, exp->gdbarch);
11015 value_from_longest (type,
11016 (value_less (arg1, arg3)
11017 || value_equal (arg1, arg3))
11018 && (value_less (arg2, arg1)
11019 || value_equal (arg2, arg1)));
11021 case TERNOP_IN_RANGE:
11022 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 if (noside == EVAL_SKIP)
11029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11031 type = language_bool_type (exp->language_defn, exp->gdbarch);
11033 value_from_longest (type,
11034 (value_less (arg1, arg3)
11035 || value_equal (arg1, arg3))
11036 && (value_less (arg2, arg1)
11037 || value_equal (arg2, arg1)));
11041 case OP_ATR_LENGTH:
11043 struct type *type_arg;
11045 if (exp->elts[*pos].opcode == OP_TYPE)
11047 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11049 type_arg = check_typedef (exp->elts[pc + 2].type);
11053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11057 if (exp->elts[*pos].opcode != OP_LONG)
11058 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11059 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11062 if (noside == EVAL_SKIP)
11065 if (type_arg == NULL)
11067 arg1 = ada_coerce_ref (arg1);
11069 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11070 arg1 = ada_coerce_to_simple_array (arg1);
11072 if (op == OP_ATR_LENGTH)
11073 type = builtin_type (exp->gdbarch)->builtin_int;
11076 type = ada_index_type (value_type (arg1), tem,
11077 ada_attribute_name (op));
11079 type = builtin_type (exp->gdbarch)->builtin_int;
11082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11083 return allocate_value (type);
11087 default: /* Should never happen. */
11088 error (_("unexpected attribute encountered"));
11090 return value_from_longest
11091 (type, ada_array_bound (arg1, tem, 0));
11093 return value_from_longest
11094 (type, ada_array_bound (arg1, tem, 1));
11095 case OP_ATR_LENGTH:
11096 return value_from_longest
11097 (type, ada_array_length (arg1, tem));
11100 else if (discrete_type_p (type_arg))
11102 struct type *range_type;
11103 const char *name = ada_type_name (type_arg);
11106 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11107 range_type = to_fixed_range_type (type_arg, NULL);
11108 if (range_type == NULL)
11109 range_type = type_arg;
11113 error (_("unexpected attribute encountered"));
11115 return value_from_longest
11116 (range_type, ada_discrete_type_low_bound (range_type));
11118 return value_from_longest
11119 (range_type, ada_discrete_type_high_bound (range_type));
11120 case OP_ATR_LENGTH:
11121 error (_("the 'length attribute applies only to array types"));
11124 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11125 error (_("unimplemented type attribute"));
11130 if (ada_is_constrained_packed_array_type (type_arg))
11131 type_arg = decode_constrained_packed_array_type (type_arg);
11133 if (op == OP_ATR_LENGTH)
11134 type = builtin_type (exp->gdbarch)->builtin_int;
11137 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11139 type = builtin_type (exp->gdbarch)->builtin_int;
11142 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11143 return allocate_value (type);
11148 error (_("unexpected attribute encountered"));
11150 low = ada_array_bound_from_type (type_arg, tem, 0);
11151 return value_from_longest (type, low);
11153 high = ada_array_bound_from_type (type_arg, tem, 1);
11154 return value_from_longest (type, high);
11155 case OP_ATR_LENGTH:
11156 low = ada_array_bound_from_type (type_arg, tem, 0);
11157 high = ada_array_bound_from_type (type_arg, tem, 1);
11158 return value_from_longest (type, high - low + 1);
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 if (noside == EVAL_SKIP)
11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169 return value_zero (ada_tag_type (arg1), not_lval);
11171 return ada_value_tag (arg1);
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 if (noside == EVAL_SKIP)
11180 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11181 return value_zero (value_type (arg1), not_lval);
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11185 return value_binop (arg1, arg2,
11186 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11189 case OP_ATR_MODULUS:
11191 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11193 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11194 if (noside == EVAL_SKIP)
11197 if (!ada_is_modular_type (type_arg))
11198 error (_("'modulus must be applied to modular type"));
11200 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11201 ada_modulus (type_arg));
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11208 if (noside == EVAL_SKIP)
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11212 return value_zero (type, not_lval);
11214 return value_pos_atr (type, arg1);
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 type = value_type (arg1);
11220 /* If the argument is a reference, then dereference its type, since
11221 the user is really asking for the size of the actual object,
11222 not the size of the pointer. */
11223 if (TYPE_CODE (type) == TYPE_CODE_REF)
11224 type = TYPE_TARGET_TYPE (type);
11226 if (noside == EVAL_SKIP)
11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11231 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11232 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 type = exp->elts[pc + 2].type;
11238 if (noside == EVAL_SKIP)
11240 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (type, not_lval);
11243 return value_val_atr (type, arg1);
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251 return value_zero (value_type (arg1), not_lval);
11254 /* For integer exponentiation operations,
11255 only promote the first argument. */
11256 if (is_integral_type (value_type (arg2)))
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11259 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11261 return value_binop (arg1, arg2, op);
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273 if (noside == EVAL_SKIP)
11275 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11276 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11277 return value_neg (arg1);
11282 preeval_pos = *pos;
11283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11284 if (noside == EVAL_SKIP)
11286 type = ada_check_typedef (value_type (arg1));
11287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11289 if (ada_is_array_descriptor_type (type))
11290 /* GDB allows dereferencing GNAT array descriptors. */
11292 struct type *arrType = ada_type_of_array (arg1, 0);
11294 if (arrType == NULL)
11295 error (_("Attempt to dereference null array pointer."));
11296 return value_at_lazy (arrType, 0);
11298 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11299 || TYPE_CODE (type) == TYPE_CODE_REF
11300 /* In C you can dereference an array to get the 1st elt. */
11301 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11303 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11304 only be determined by inspecting the object's tag.
11305 This means that we need to evaluate completely the
11306 expression in order to get its type. */
11308 if ((TYPE_CODE (type) == TYPE_CODE_REF
11309 || TYPE_CODE (type) == TYPE_CODE_PTR)
11310 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11312 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11314 type = value_type (ada_value_ind (arg1));
11318 type = to_static_fixed_type
11320 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11322 ada_ensure_varsize_limit (type);
11323 return value_zero (type, lval_memory);
11325 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11327 /* GDB allows dereferencing an int. */
11328 if (expect_type == NULL)
11329 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11334 to_static_fixed_type (ada_aligned_type (expect_type));
11335 return value_zero (expect_type, lval_memory);
11339 error (_("Attempt to take contents of a non-pointer value."));
11341 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11342 type = ada_check_typedef (value_type (arg1));
11344 if (TYPE_CODE (type) == TYPE_CODE_INT)
11345 /* GDB allows dereferencing an int. If we were given
11346 the expect_type, then use that as the target type.
11347 Otherwise, assume that the target type is an int. */
11349 if (expect_type != NULL)
11350 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11353 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11354 (CORE_ADDR) value_as_address (arg1));
11357 if (ada_is_array_descriptor_type (type))
11358 /* GDB allows dereferencing GNAT array descriptors. */
11359 return ada_coerce_to_simple_array (arg1);
11361 return ada_value_ind (arg1);
11363 case STRUCTOP_STRUCT:
11364 tem = longest_to_int (exp->elts[pc + 1].longconst);
11365 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11366 preeval_pos = *pos;
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 if (noside == EVAL_SKIP)
11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 struct type *type1 = value_type (arg1);
11374 if (ada_is_tagged_type (type1, 1))
11376 type = ada_lookup_struct_elt_type (type1,
11377 &exp->elts[pc + 2].string,
11380 /* If the field is not found, check if it exists in the
11381 extension of this object's type. This means that we
11382 need to evaluate completely the expression. */
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11388 arg1 = ada_value_struct_elt (arg1,
11389 &exp->elts[pc + 2].string,
11391 arg1 = unwrap_value (arg1);
11392 type = value_type (ada_to_fixed_value (arg1));
11397 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11400 return value_zero (ada_aligned_type (type), lval_memory);
11404 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11405 arg1 = unwrap_value (arg1);
11406 return ada_to_fixed_value (arg1);
11410 /* The value is not supposed to be used. This is here to make it
11411 easier to accommodate expressions that contain types. */
11413 if (noside == EVAL_SKIP)
11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11416 return allocate_value (exp->elts[pc + 1].type);
11418 error (_("Attempt to use a type name as an expression"));
11423 case OP_DISCRETE_RANGE:
11424 case OP_POSITIONAL:
11426 if (noside == EVAL_NORMAL)
11430 error (_("Undefined name, ambiguous name, or renaming used in "
11431 "component association: %s."), &exp->elts[pc+2].string);
11433 error (_("Aggregates only allowed on the right of an assignment"));
11435 internal_error (__FILE__, __LINE__,
11436 _("aggregate apparently mangled"));
11439 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11441 for (tem = 0; tem < nargs; tem += 1)
11442 ada_evaluate_subexp (NULL, exp, pos, noside);
11447 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11453 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11454 type name that encodes the 'small and 'delta information.
11455 Otherwise, return NULL. */
11457 static const char *
11458 fixed_type_info (struct type *type)
11460 const char *name = ada_type_name (type);
11461 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11463 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11465 const char *tail = strstr (name, "___XF_");
11472 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11473 return fixed_type_info (TYPE_TARGET_TYPE (type));
11478 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11481 ada_is_fixed_point_type (struct type *type)
11483 return fixed_type_info (type) != NULL;
11486 /* Return non-zero iff TYPE represents a System.Address type. */
11489 ada_is_system_address_type (struct type *type)
11491 return (TYPE_NAME (type)
11492 && strcmp (TYPE_NAME (type), "system__address") == 0);
11495 /* Assuming that TYPE is the representation of an Ada fixed-point
11496 type, return its delta, or -1 if the type is malformed and the
11497 delta cannot be determined. */
11500 ada_delta (struct type *type)
11502 const char *encoding = fixed_type_info (type);
11505 /* Strictly speaking, num and den are encoded as integer. However,
11506 they may not fit into a long, and they will have to be converted
11507 to DOUBLEST anyway. So scan them as DOUBLEST. */
11508 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11515 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11516 factor ('SMALL value) associated with the type. */
11519 scaling_factor (struct type *type)
11521 const char *encoding = fixed_type_info (type);
11522 DOUBLEST num0, den0, num1, den1;
11525 /* Strictly speaking, num's and den's are encoded as integer. However,
11526 they may not fit into a long, and they will have to be converted
11527 to DOUBLEST anyway. So scan them as DOUBLEST. */
11528 n = sscanf (encoding,
11529 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11530 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11531 &num0, &den0, &num1, &den1);
11536 return num1 / den1;
11538 return num0 / den0;
11542 /* Assuming that X is the representation of a value of fixed-point
11543 type TYPE, return its floating-point equivalent. */
11546 ada_fixed_to_float (struct type *type, LONGEST x)
11548 return (DOUBLEST) x *scaling_factor (type);
11551 /* The representation of a fixed-point value of type TYPE
11552 corresponding to the value X. */
11555 ada_float_to_fixed (struct type *type, DOUBLEST x)
11557 return (LONGEST) (x / scaling_factor (type) + 0.5);
11564 /* Scan STR beginning at position K for a discriminant name, and
11565 return the value of that discriminant field of DVAL in *PX. If
11566 PNEW_K is not null, put the position of the character beyond the
11567 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11568 not alter *PX and *PNEW_K if unsuccessful. */
11571 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11574 static char *bound_buffer = NULL;
11575 static size_t bound_buffer_len = 0;
11576 const char *pstart, *pend, *bound;
11577 struct value *bound_val;
11579 if (dval == NULL || str == NULL || str[k] == '\0')
11583 pend = strstr (pstart, "__");
11587 k += strlen (bound);
11591 int len = pend - pstart;
11593 /* Strip __ and beyond. */
11594 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11595 strncpy (bound_buffer, pstart, len);
11596 bound_buffer[len] = '\0';
11598 bound = bound_buffer;
11602 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11603 if (bound_val == NULL)
11606 *px = value_as_long (bound_val);
11607 if (pnew_k != NULL)
11612 /* Value of variable named NAME in the current environment. If
11613 no such variable found, then if ERR_MSG is null, returns 0, and
11614 otherwise causes an error with message ERR_MSG. */
11616 static struct value *
11617 get_var_value (char *name, char *err_msg)
11619 struct block_symbol *syms;
11622 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11627 if (err_msg == NULL)
11630 error (("%s"), err_msg);
11633 return value_of_variable (syms[0].symbol, syms[0].block);
11636 /* Value of integer variable named NAME in the current environment. If
11637 no such variable found, returns 0, and sets *FLAG to 0. If
11638 successful, sets *FLAG to 1. */
11641 get_int_var_value (char *name, int *flag)
11643 struct value *var_val = get_var_value (name, 0);
11655 return value_as_long (var_val);
11660 /* Return a range type whose base type is that of the range type named
11661 NAME in the current environment, and whose bounds are calculated
11662 from NAME according to the GNAT range encoding conventions.
11663 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11664 corresponding range type from debug information; fall back to using it
11665 if symbol lookup fails. If a new type must be created, allocate it
11666 like ORIG_TYPE was. The bounds information, in general, is encoded
11667 in NAME, the base type given in the named range type. */
11669 static struct type *
11670 to_fixed_range_type (struct type *raw_type, struct value *dval)
11673 struct type *base_type;
11674 const char *subtype_info;
11676 gdb_assert (raw_type != NULL);
11677 gdb_assert (TYPE_NAME (raw_type) != NULL);
11679 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11680 base_type = TYPE_TARGET_TYPE (raw_type);
11682 base_type = raw_type;
11684 name = TYPE_NAME (raw_type);
11685 subtype_info = strstr (name, "___XD");
11686 if (subtype_info == NULL)
11688 LONGEST L = ada_discrete_type_low_bound (raw_type);
11689 LONGEST U = ada_discrete_type_high_bound (raw_type);
11691 if (L < INT_MIN || U > INT_MAX)
11694 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11699 static char *name_buf = NULL;
11700 static size_t name_len = 0;
11701 int prefix_len = subtype_info - name;
11704 const char *bounds_str;
11707 GROW_VECT (name_buf, name_len, prefix_len + 5);
11708 strncpy (name_buf, name, prefix_len);
11709 name_buf[prefix_len] = '\0';
11712 bounds_str = strchr (subtype_info, '_');
11715 if (*subtype_info == 'L')
11717 if (!ada_scan_number (bounds_str, n, &L, &n)
11718 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11720 if (bounds_str[n] == '_')
11722 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11730 strcpy (name_buf + prefix_len, "___L");
11731 L = get_int_var_value (name_buf, &ok);
11734 lim_warning (_("Unknown lower bound, using 1."));
11739 if (*subtype_info == 'U')
11741 if (!ada_scan_number (bounds_str, n, &U, &n)
11742 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11749 strcpy (name_buf + prefix_len, "___U");
11750 U = get_int_var_value (name_buf, &ok);
11753 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11758 type = create_static_range_type (alloc_type_copy (raw_type),
11760 TYPE_NAME (type) = name;
11765 /* True iff NAME is the name of a range type. */
11768 ada_is_range_type_name (const char *name)
11770 return (name != NULL && strstr (name, "___XD"));
11774 /* Modular types */
11776 /* True iff TYPE is an Ada modular type. */
11779 ada_is_modular_type (struct type *type)
11781 struct type *subranged_type = get_base_type (type);
11783 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11784 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11785 && TYPE_UNSIGNED (subranged_type));
11788 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11791 ada_modulus (struct type *type)
11793 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11797 /* Ada exception catchpoint support:
11798 ---------------------------------
11800 We support 3 kinds of exception catchpoints:
11801 . catchpoints on Ada exceptions
11802 . catchpoints on unhandled Ada exceptions
11803 . catchpoints on failed assertions
11805 Exceptions raised during failed assertions, or unhandled exceptions
11806 could perfectly be caught with the general catchpoint on Ada exceptions.
11807 However, we can easily differentiate these two special cases, and having
11808 the option to distinguish these two cases from the rest can be useful
11809 to zero-in on certain situations.
11811 Exception catchpoints are a specialized form of breakpoint,
11812 since they rely on inserting breakpoints inside known routines
11813 of the GNAT runtime. The implementation therefore uses a standard
11814 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11817 Support in the runtime for exception catchpoints have been changed
11818 a few times already, and these changes affect the implementation
11819 of these catchpoints. In order to be able to support several
11820 variants of the runtime, we use a sniffer that will determine
11821 the runtime variant used by the program being debugged. */
11823 /* Ada's standard exceptions.
11825 The Ada 83 standard also defined Numeric_Error. But there so many
11826 situations where it was unclear from the Ada 83 Reference Manual
11827 (RM) whether Constraint_Error or Numeric_Error should be raised,
11828 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11829 Interpretation saying that anytime the RM says that Numeric_Error
11830 should be raised, the implementation may raise Constraint_Error.
11831 Ada 95 went one step further and pretty much removed Numeric_Error
11832 from the list of standard exceptions (it made it a renaming of
11833 Constraint_Error, to help preserve compatibility when compiling
11834 an Ada83 compiler). As such, we do not include Numeric_Error from
11835 this list of standard exceptions. */
11837 static const char *standard_exc[] = {
11838 "constraint_error",
11844 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11846 /* A structure that describes how to support exception catchpoints
11847 for a given executable. */
11849 struct exception_support_info
11851 /* The name of the symbol to break on in order to insert
11852 a catchpoint on exceptions. */
11853 const char *catch_exception_sym;
11855 /* The name of the symbol to break on in order to insert
11856 a catchpoint on unhandled exceptions. */
11857 const char *catch_exception_unhandled_sym;
11859 /* The name of the symbol to break on in order to insert
11860 a catchpoint on failed assertions. */
11861 const char *catch_assert_sym;
11863 /* Assuming that the inferior just triggered an unhandled exception
11864 catchpoint, this function is responsible for returning the address
11865 in inferior memory where the name of that exception is stored.
11866 Return zero if the address could not be computed. */
11867 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11870 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11871 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11873 /* The following exception support info structure describes how to
11874 implement exception catchpoints with the latest version of the
11875 Ada runtime (as of 2007-03-06). */
11877 static const struct exception_support_info default_exception_support_info =
11879 "__gnat_debug_raise_exception", /* catch_exception_sym */
11880 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11881 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11882 ada_unhandled_exception_name_addr
11885 /* The following exception support info structure describes how to
11886 implement exception catchpoints with a slightly older version
11887 of the Ada runtime. */
11889 static const struct exception_support_info exception_support_info_fallback =
11891 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11892 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11893 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11894 ada_unhandled_exception_name_addr_from_raise
11897 /* Return nonzero if we can detect the exception support routines
11898 described in EINFO.
11900 This function errors out if an abnormal situation is detected
11901 (for instance, if we find the exception support routines, but
11902 that support is found to be incomplete). */
11905 ada_has_this_exception_support (const struct exception_support_info *einfo)
11907 struct symbol *sym;
11909 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11910 that should be compiled with debugging information. As a result, we
11911 expect to find that symbol in the symtabs. */
11913 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11916 /* Perhaps we did not find our symbol because the Ada runtime was
11917 compiled without debugging info, or simply stripped of it.
11918 It happens on some GNU/Linux distributions for instance, where
11919 users have to install a separate debug package in order to get
11920 the runtime's debugging info. In that situation, let the user
11921 know why we cannot insert an Ada exception catchpoint.
11923 Note: Just for the purpose of inserting our Ada exception
11924 catchpoint, we could rely purely on the associated minimal symbol.
11925 But we would be operating in degraded mode anyway, since we are
11926 still lacking the debugging info needed later on to extract
11927 the name of the exception being raised (this name is printed in
11928 the catchpoint message, and is also used when trying to catch
11929 a specific exception). We do not handle this case for now. */
11930 struct bound_minimal_symbol msym
11931 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11933 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11934 error (_("Your Ada runtime appears to be missing some debugging "
11935 "information.\nCannot insert Ada exception catchpoint "
11936 "in this configuration."));
11941 /* Make sure that the symbol we found corresponds to a function. */
11943 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11944 error (_("Symbol \"%s\" is not a function (class = %d)"),
11945 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11950 /* Inspect the Ada runtime and determine which exception info structure
11951 should be used to provide support for exception catchpoints.
11953 This function will always set the per-inferior exception_info,
11954 or raise an error. */
11957 ada_exception_support_info_sniffer (void)
11959 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11961 /* If the exception info is already known, then no need to recompute it. */
11962 if (data->exception_info != NULL)
11965 /* Check the latest (default) exception support info. */
11966 if (ada_has_this_exception_support (&default_exception_support_info))
11968 data->exception_info = &default_exception_support_info;
11972 /* Try our fallback exception suport info. */
11973 if (ada_has_this_exception_support (&exception_support_info_fallback))
11975 data->exception_info = &exception_support_info_fallback;
11979 /* Sometimes, it is normal for us to not be able to find the routine
11980 we are looking for. This happens when the program is linked with
11981 the shared version of the GNAT runtime, and the program has not been
11982 started yet. Inform the user of these two possible causes if
11985 if (ada_update_initial_language (language_unknown) != language_ada)
11986 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11988 /* If the symbol does not exist, then check that the program is
11989 already started, to make sure that shared libraries have been
11990 loaded. If it is not started, this may mean that the symbol is
11991 in a shared library. */
11993 if (ptid_get_pid (inferior_ptid) == 0)
11994 error (_("Unable to insert catchpoint. Try to start the program first."));
11996 /* At this point, we know that we are debugging an Ada program and
11997 that the inferior has been started, but we still are not able to
11998 find the run-time symbols. That can mean that we are in
11999 configurable run time mode, or that a-except as been optimized
12000 out by the linker... In any case, at this point it is not worth
12001 supporting this feature. */
12003 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12006 /* True iff FRAME is very likely to be that of a function that is
12007 part of the runtime system. This is all very heuristic, but is
12008 intended to be used as advice as to what frames are uninteresting
12012 is_known_support_routine (struct frame_info *frame)
12014 struct symtab_and_line sal;
12016 enum language func_lang;
12018 const char *fullname;
12020 /* If this code does not have any debugging information (no symtab),
12021 This cannot be any user code. */
12023 find_frame_sal (frame, &sal);
12024 if (sal.symtab == NULL)
12027 /* If there is a symtab, but the associated source file cannot be
12028 located, then assume this is not user code: Selecting a frame
12029 for which we cannot display the code would not be very helpful
12030 for the user. This should also take care of case such as VxWorks
12031 where the kernel has some debugging info provided for a few units. */
12033 fullname = symtab_to_fullname (sal.symtab);
12034 if (access (fullname, R_OK) != 0)
12037 /* Check the unit filename againt the Ada runtime file naming.
12038 We also check the name of the objfile against the name of some
12039 known system libraries that sometimes come with debugging info
12042 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12044 re_comp (known_runtime_file_name_patterns[i]);
12045 if (re_exec (lbasename (sal.symtab->filename)))
12047 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12048 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12052 /* Check whether the function is a GNAT-generated entity. */
12054 find_frame_funname (frame, &func_name, &func_lang, NULL);
12055 if (func_name == NULL)
12058 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12060 re_comp (known_auxiliary_function_name_patterns[i]);
12061 if (re_exec (func_name))
12072 /* Find the first frame that contains debugging information and that is not
12073 part of the Ada run-time, starting from FI and moving upward. */
12076 ada_find_printable_frame (struct frame_info *fi)
12078 for (; fi != NULL; fi = get_prev_frame (fi))
12080 if (!is_known_support_routine (fi))
12089 /* Assuming that the inferior just triggered an unhandled exception
12090 catchpoint, return the address in inferior memory where the name
12091 of the exception is stored.
12093 Return zero if the address could not be computed. */
12096 ada_unhandled_exception_name_addr (void)
12098 return parse_and_eval_address ("e.full_name");
12101 /* Same as ada_unhandled_exception_name_addr, except that this function
12102 should be used when the inferior uses an older version of the runtime,
12103 where the exception name needs to be extracted from a specific frame
12104 several frames up in the callstack. */
12107 ada_unhandled_exception_name_addr_from_raise (void)
12110 struct frame_info *fi;
12111 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12112 struct cleanup *old_chain;
12114 /* To determine the name of this exception, we need to select
12115 the frame corresponding to RAISE_SYM_NAME. This frame is
12116 at least 3 levels up, so we simply skip the first 3 frames
12117 without checking the name of their associated function. */
12118 fi = get_current_frame ();
12119 for (frame_level = 0; frame_level < 3; frame_level += 1)
12121 fi = get_prev_frame (fi);
12123 old_chain = make_cleanup (null_cleanup, NULL);
12127 enum language func_lang;
12129 find_frame_funname (fi, &func_name, &func_lang, NULL);
12130 if (func_name != NULL)
12132 make_cleanup (xfree, func_name);
12134 if (strcmp (func_name,
12135 data->exception_info->catch_exception_sym) == 0)
12136 break; /* We found the frame we were looking for... */
12137 fi = get_prev_frame (fi);
12140 do_cleanups (old_chain);
12146 return parse_and_eval_address ("id.full_name");
12149 /* Assuming the inferior just triggered an Ada exception catchpoint
12150 (of any type), return the address in inferior memory where the name
12151 of the exception is stored, if applicable.
12153 Assumes the selected frame is the current frame.
12155 Return zero if the address could not be computed, or if not relevant. */
12158 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12159 struct breakpoint *b)
12161 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12165 case ada_catch_exception:
12166 return (parse_and_eval_address ("e.full_name"));
12169 case ada_catch_exception_unhandled:
12170 return data->exception_info->unhandled_exception_name_addr ();
12173 case ada_catch_assert:
12174 return 0; /* Exception name is not relevant in this case. */
12178 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12182 return 0; /* Should never be reached. */
12185 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12186 any error that ada_exception_name_addr_1 might cause to be thrown.
12187 When an error is intercepted, a warning with the error message is printed,
12188 and zero is returned. */
12191 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12192 struct breakpoint *b)
12194 CORE_ADDR result = 0;
12198 result = ada_exception_name_addr_1 (ex, b);
12201 CATCH (e, RETURN_MASK_ERROR)
12203 warning (_("failed to get exception name: %s"), e.message);
12211 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12213 /* Ada catchpoints.
12215 In the case of catchpoints on Ada exceptions, the catchpoint will
12216 stop the target on every exception the program throws. When a user
12217 specifies the name of a specific exception, we translate this
12218 request into a condition expression (in text form), and then parse
12219 it into an expression stored in each of the catchpoint's locations.
12220 We then use this condition to check whether the exception that was
12221 raised is the one the user is interested in. If not, then the
12222 target is resumed again. We store the name of the requested
12223 exception, in order to be able to re-set the condition expression
12224 when symbols change. */
12226 /* An instance of this type is used to represent an Ada catchpoint
12227 breakpoint location. */
12229 class ada_catchpoint_location : public bp_location
12232 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12233 : bp_location (ops, owner)
12236 /* The condition that checks whether the exception that was raised
12237 is the specific exception the user specified on catchpoint
12239 expression_up excep_cond_expr;
12242 /* Implement the DTOR method in the bp_location_ops structure for all
12243 Ada exception catchpoint kinds. */
12246 ada_catchpoint_location_dtor (struct bp_location *bl)
12248 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12250 al->excep_cond_expr.reset ();
12253 /* The vtable to be used in Ada catchpoint locations. */
12255 static const struct bp_location_ops ada_catchpoint_location_ops =
12257 ada_catchpoint_location_dtor
12260 /* An instance of this type is used to represent an Ada catchpoint. */
12262 struct ada_catchpoint : public breakpoint
12264 ~ada_catchpoint () override;
12266 /* The name of the specific exception the user specified. */
12267 char *excep_string;
12270 /* Parse the exception condition string in the context of each of the
12271 catchpoint's locations, and store them for later evaluation. */
12274 create_excep_cond_exprs (struct ada_catchpoint *c)
12276 struct cleanup *old_chain;
12277 struct bp_location *bl;
12280 /* Nothing to do if there's no specific exception to catch. */
12281 if (c->excep_string == NULL)
12284 /* Same if there are no locations... */
12285 if (c->loc == NULL)
12288 /* Compute the condition expression in text form, from the specific
12289 expection we want to catch. */
12290 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12291 old_chain = make_cleanup (xfree, cond_string);
12293 /* Iterate over all the catchpoint's locations, and parse an
12294 expression for each. */
12295 for (bl = c->loc; bl != NULL; bl = bl->next)
12297 struct ada_catchpoint_location *ada_loc
12298 = (struct ada_catchpoint_location *) bl;
12301 if (!bl->shlib_disabled)
12308 exp = parse_exp_1 (&s, bl->address,
12309 block_for_pc (bl->address),
12312 CATCH (e, RETURN_MASK_ERROR)
12314 warning (_("failed to reevaluate internal exception condition "
12315 "for catchpoint %d: %s"),
12316 c->number, e.message);
12321 ada_loc->excep_cond_expr = std::move (exp);
12324 do_cleanups (old_chain);
12327 /* ada_catchpoint destructor. */
12329 ada_catchpoint::~ada_catchpoint ()
12331 xfree (this->excep_string);
12334 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12335 structure for all exception catchpoint kinds. */
12337 static struct bp_location *
12338 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12339 struct breakpoint *self)
12341 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12344 /* Implement the RE_SET method in the breakpoint_ops structure for all
12345 exception catchpoint kinds. */
12348 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12350 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12352 /* Call the base class's method. This updates the catchpoint's
12354 bkpt_breakpoint_ops.re_set (b);
12356 /* Reparse the exception conditional expressions. One for each
12358 create_excep_cond_exprs (c);
12361 /* Returns true if we should stop for this breakpoint hit. If the
12362 user specified a specific exception, we only want to cause a stop
12363 if the program thrown that exception. */
12366 should_stop_exception (const struct bp_location *bl)
12368 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12369 const struct ada_catchpoint_location *ada_loc
12370 = (const struct ada_catchpoint_location *) bl;
12373 /* With no specific exception, should always stop. */
12374 if (c->excep_string == NULL)
12377 if (ada_loc->excep_cond_expr == NULL)
12379 /* We will have a NULL expression if back when we were creating
12380 the expressions, this location's had failed to parse. */
12387 struct value *mark;
12389 mark = value_mark ();
12390 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12391 value_free_to_mark (mark);
12393 CATCH (ex, RETURN_MASK_ALL)
12395 exception_fprintf (gdb_stderr, ex,
12396 _("Error in testing exception condition:\n"));
12403 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12404 for all exception catchpoint kinds. */
12407 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12409 bs->stop = should_stop_exception (bs->bp_location_at);
12412 /* Implement the PRINT_IT method in the breakpoint_ops structure
12413 for all exception catchpoint kinds. */
12415 static enum print_stop_action
12416 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12418 struct ui_out *uiout = current_uiout;
12419 struct breakpoint *b = bs->breakpoint_at;
12421 annotate_catchpoint (b->number);
12423 if (uiout->is_mi_like_p ())
12425 uiout->field_string ("reason",
12426 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12427 uiout->field_string ("disp", bpdisp_text (b->disposition));
12430 uiout->text (b->disposition == disp_del
12431 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12432 uiout->field_int ("bkptno", b->number);
12433 uiout->text (", ");
12435 /* ada_exception_name_addr relies on the selected frame being the
12436 current frame. Need to do this here because this function may be
12437 called more than once when printing a stop, and below, we'll
12438 select the first frame past the Ada run-time (see
12439 ada_find_printable_frame). */
12440 select_frame (get_current_frame ());
12444 case ada_catch_exception:
12445 case ada_catch_exception_unhandled:
12447 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12448 char exception_name[256];
12452 read_memory (addr, (gdb_byte *) exception_name,
12453 sizeof (exception_name) - 1);
12454 exception_name [sizeof (exception_name) - 1] = '\0';
12458 /* For some reason, we were unable to read the exception
12459 name. This could happen if the Runtime was compiled
12460 without debugging info, for instance. In that case,
12461 just replace the exception name by the generic string
12462 "exception" - it will read as "an exception" in the
12463 notification we are about to print. */
12464 memcpy (exception_name, "exception", sizeof ("exception"));
12466 /* In the case of unhandled exception breakpoints, we print
12467 the exception name as "unhandled EXCEPTION_NAME", to make
12468 it clearer to the user which kind of catchpoint just got
12469 hit. We used ui_out_text to make sure that this extra
12470 info does not pollute the exception name in the MI case. */
12471 if (ex == ada_catch_exception_unhandled)
12472 uiout->text ("unhandled ");
12473 uiout->field_string ("exception-name", exception_name);
12476 case ada_catch_assert:
12477 /* In this case, the name of the exception is not really
12478 important. Just print "failed assertion" to make it clearer
12479 that his program just hit an assertion-failure catchpoint.
12480 We used ui_out_text because this info does not belong in
12482 uiout->text ("failed assertion");
12485 uiout->text (" at ");
12486 ada_find_printable_frame (get_current_frame ());
12488 return PRINT_SRC_AND_LOC;
12491 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12492 for all exception catchpoint kinds. */
12495 print_one_exception (enum ada_exception_catchpoint_kind ex,
12496 struct breakpoint *b, struct bp_location **last_loc)
12498 struct ui_out *uiout = current_uiout;
12499 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12500 struct value_print_options opts;
12502 get_user_print_options (&opts);
12503 if (opts.addressprint)
12505 annotate_field (4);
12506 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12509 annotate_field (5);
12510 *last_loc = b->loc;
12513 case ada_catch_exception:
12514 if (c->excep_string != NULL)
12516 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12518 uiout->field_string ("what", msg);
12522 uiout->field_string ("what", "all Ada exceptions");
12526 case ada_catch_exception_unhandled:
12527 uiout->field_string ("what", "unhandled Ada exceptions");
12530 case ada_catch_assert:
12531 uiout->field_string ("what", "failed Ada assertions");
12535 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12540 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12541 for all exception catchpoint kinds. */
12544 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12545 struct breakpoint *b)
12547 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12548 struct ui_out *uiout = current_uiout;
12550 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12551 : _("Catchpoint "));
12552 uiout->field_int ("bkptno", b->number);
12553 uiout->text (": ");
12557 case ada_catch_exception:
12558 if (c->excep_string != NULL)
12560 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12561 struct cleanup *old_chain = make_cleanup (xfree, info);
12563 uiout->text (info);
12564 do_cleanups (old_chain);
12567 uiout->text (_("all Ada exceptions"));
12570 case ada_catch_exception_unhandled:
12571 uiout->text (_("unhandled Ada exceptions"));
12574 case ada_catch_assert:
12575 uiout->text (_("failed Ada assertions"));
12579 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12584 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12585 for all exception catchpoint kinds. */
12588 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12589 struct breakpoint *b, struct ui_file *fp)
12591 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12595 case ada_catch_exception:
12596 fprintf_filtered (fp, "catch exception");
12597 if (c->excep_string != NULL)
12598 fprintf_filtered (fp, " %s", c->excep_string);
12601 case ada_catch_exception_unhandled:
12602 fprintf_filtered (fp, "catch exception unhandled");
12605 case ada_catch_assert:
12606 fprintf_filtered (fp, "catch assert");
12610 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12612 print_recreate_thread (b, fp);
12615 /* Virtual table for "catch exception" breakpoints. */
12617 static struct bp_location *
12618 allocate_location_catch_exception (struct breakpoint *self)
12620 return allocate_location_exception (ada_catch_exception, self);
12624 re_set_catch_exception (struct breakpoint *b)
12626 re_set_exception (ada_catch_exception, b);
12630 check_status_catch_exception (bpstat bs)
12632 check_status_exception (ada_catch_exception, bs);
12635 static enum print_stop_action
12636 print_it_catch_exception (bpstat bs)
12638 return print_it_exception (ada_catch_exception, bs);
12642 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12644 print_one_exception (ada_catch_exception, b, last_loc);
12648 print_mention_catch_exception (struct breakpoint *b)
12650 print_mention_exception (ada_catch_exception, b);
12654 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12656 print_recreate_exception (ada_catch_exception, b, fp);
12659 static struct breakpoint_ops catch_exception_breakpoint_ops;
12661 /* Virtual table for "catch exception unhandled" breakpoints. */
12663 static struct bp_location *
12664 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12666 return allocate_location_exception (ada_catch_exception_unhandled, self);
12670 re_set_catch_exception_unhandled (struct breakpoint *b)
12672 re_set_exception (ada_catch_exception_unhandled, b);
12676 check_status_catch_exception_unhandled (bpstat bs)
12678 check_status_exception (ada_catch_exception_unhandled, bs);
12681 static enum print_stop_action
12682 print_it_catch_exception_unhandled (bpstat bs)
12684 return print_it_exception (ada_catch_exception_unhandled, bs);
12688 print_one_catch_exception_unhandled (struct breakpoint *b,
12689 struct bp_location **last_loc)
12691 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12695 print_mention_catch_exception_unhandled (struct breakpoint *b)
12697 print_mention_exception (ada_catch_exception_unhandled, b);
12701 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12702 struct ui_file *fp)
12704 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12707 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12709 /* Virtual table for "catch assert" breakpoints. */
12711 static struct bp_location *
12712 allocate_location_catch_assert (struct breakpoint *self)
12714 return allocate_location_exception (ada_catch_assert, self);
12718 re_set_catch_assert (struct breakpoint *b)
12720 re_set_exception (ada_catch_assert, b);
12724 check_status_catch_assert (bpstat bs)
12726 check_status_exception (ada_catch_assert, bs);
12729 static enum print_stop_action
12730 print_it_catch_assert (bpstat bs)
12732 return print_it_exception (ada_catch_assert, bs);
12736 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12738 print_one_exception (ada_catch_assert, b, last_loc);
12742 print_mention_catch_assert (struct breakpoint *b)
12744 print_mention_exception (ada_catch_assert, b);
12748 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12750 print_recreate_exception (ada_catch_assert, b, fp);
12753 static struct breakpoint_ops catch_assert_breakpoint_ops;
12755 /* Return a newly allocated copy of the first space-separated token
12756 in ARGSP, and then adjust ARGSP to point immediately after that
12759 Return NULL if ARGPS does not contain any more tokens. */
12762 ada_get_next_arg (const char **argsp)
12764 const char *args = *argsp;
12768 args = skip_spaces_const (args);
12769 if (args[0] == '\0')
12770 return NULL; /* No more arguments. */
12772 /* Find the end of the current argument. */
12774 end = skip_to_space_const (args);
12776 /* Adjust ARGSP to point to the start of the next argument. */
12780 /* Make a copy of the current argument and return it. */
12782 result = (char *) xmalloc (end - args + 1);
12783 strncpy (result, args, end - args);
12784 result[end - args] = '\0';
12789 /* Split the arguments specified in a "catch exception" command.
12790 Set EX to the appropriate catchpoint type.
12791 Set EXCEP_STRING to the name of the specific exception if
12792 specified by the user.
12793 If a condition is found at the end of the arguments, the condition
12794 expression is stored in COND_STRING (memory must be deallocated
12795 after use). Otherwise COND_STRING is set to NULL. */
12798 catch_ada_exception_command_split (const char *args,
12799 enum ada_exception_catchpoint_kind *ex,
12800 char **excep_string,
12801 char **cond_string)
12803 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12804 char *exception_name;
12807 exception_name = ada_get_next_arg (&args);
12808 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12810 /* This is not an exception name; this is the start of a condition
12811 expression for a catchpoint on all exceptions. So, "un-get"
12812 this token, and set exception_name to NULL. */
12813 xfree (exception_name);
12814 exception_name = NULL;
12817 make_cleanup (xfree, exception_name);
12819 /* Check to see if we have a condition. */
12821 args = skip_spaces_const (args);
12822 if (startswith (args, "if")
12823 && (isspace (args[2]) || args[2] == '\0'))
12826 args = skip_spaces_const (args);
12828 if (args[0] == '\0')
12829 error (_("Condition missing after `if' keyword"));
12830 cond = xstrdup (args);
12831 make_cleanup (xfree, cond);
12833 args += strlen (args);
12836 /* Check that we do not have any more arguments. Anything else
12839 if (args[0] != '\0')
12840 error (_("Junk at end of expression"));
12842 discard_cleanups (old_chain);
12844 if (exception_name == NULL)
12846 /* Catch all exceptions. */
12847 *ex = ada_catch_exception;
12848 *excep_string = NULL;
12850 else if (strcmp (exception_name, "unhandled") == 0)
12852 /* Catch unhandled exceptions. */
12853 *ex = ada_catch_exception_unhandled;
12854 *excep_string = NULL;
12858 /* Catch a specific exception. */
12859 *ex = ada_catch_exception;
12860 *excep_string = exception_name;
12862 *cond_string = cond;
12865 /* Return the name of the symbol on which we should break in order to
12866 implement a catchpoint of the EX kind. */
12868 static const char *
12869 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12871 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12873 gdb_assert (data->exception_info != NULL);
12877 case ada_catch_exception:
12878 return (data->exception_info->catch_exception_sym);
12880 case ada_catch_exception_unhandled:
12881 return (data->exception_info->catch_exception_unhandled_sym);
12883 case ada_catch_assert:
12884 return (data->exception_info->catch_assert_sym);
12887 internal_error (__FILE__, __LINE__,
12888 _("unexpected catchpoint kind (%d)"), ex);
12892 /* Return the breakpoint ops "virtual table" used for catchpoints
12895 static const struct breakpoint_ops *
12896 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12900 case ada_catch_exception:
12901 return (&catch_exception_breakpoint_ops);
12903 case ada_catch_exception_unhandled:
12904 return (&catch_exception_unhandled_breakpoint_ops);
12906 case ada_catch_assert:
12907 return (&catch_assert_breakpoint_ops);
12910 internal_error (__FILE__, __LINE__,
12911 _("unexpected catchpoint kind (%d)"), ex);
12915 /* Return the condition that will be used to match the current exception
12916 being raised with the exception that the user wants to catch. This
12917 assumes that this condition is used when the inferior just triggered
12918 an exception catchpoint.
12920 The string returned is a newly allocated string that needs to be
12921 deallocated later. */
12924 ada_exception_catchpoint_cond_string (const char *excep_string)
12928 /* The standard exceptions are a special case. They are defined in
12929 runtime units that have been compiled without debugging info; if
12930 EXCEP_STRING is the not-fully-qualified name of a standard
12931 exception (e.g. "constraint_error") then, during the evaluation
12932 of the condition expression, the symbol lookup on this name would
12933 *not* return this standard exception. The catchpoint condition
12934 may then be set only on user-defined exceptions which have the
12935 same not-fully-qualified name (e.g. my_package.constraint_error).
12937 To avoid this unexcepted behavior, these standard exceptions are
12938 systematically prefixed by "standard". This means that "catch
12939 exception constraint_error" is rewritten into "catch exception
12940 standard.constraint_error".
12942 If an exception named contraint_error is defined in another package of
12943 the inferior program, then the only way to specify this exception as a
12944 breakpoint condition is to use its fully-qualified named:
12945 e.g. my_package.constraint_error. */
12947 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12949 if (strcmp (standard_exc [i], excep_string) == 0)
12951 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12955 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12958 /* Return the symtab_and_line that should be used to insert an exception
12959 catchpoint of the TYPE kind.
12961 EXCEP_STRING should contain the name of a specific exception that
12962 the catchpoint should catch, or NULL otherwise.
12964 ADDR_STRING returns the name of the function where the real
12965 breakpoint that implements the catchpoints is set, depending on the
12966 type of catchpoint we need to create. */
12968 static struct symtab_and_line
12969 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12970 char **addr_string, const struct breakpoint_ops **ops)
12972 const char *sym_name;
12973 struct symbol *sym;
12975 /* First, find out which exception support info to use. */
12976 ada_exception_support_info_sniffer ();
12978 /* Then lookup the function on which we will break in order to catch
12979 the Ada exceptions requested by the user. */
12980 sym_name = ada_exception_sym_name (ex);
12981 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12983 /* We can assume that SYM is not NULL at this stage. If the symbol
12984 did not exist, ada_exception_support_info_sniffer would have
12985 raised an exception.
12987 Also, ada_exception_support_info_sniffer should have already
12988 verified that SYM is a function symbol. */
12989 gdb_assert (sym != NULL);
12990 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12992 /* Set ADDR_STRING. */
12993 *addr_string = xstrdup (sym_name);
12996 *ops = ada_exception_breakpoint_ops (ex);
12998 return find_function_start_sal (sym, 1);
13001 /* Create an Ada exception catchpoint.
13003 EX_KIND is the kind of exception catchpoint to be created.
13005 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13006 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13007 of the exception to which this catchpoint applies. When not NULL,
13008 the string must be allocated on the heap, and its deallocation
13009 is no longer the responsibility of the caller.
13011 COND_STRING, if not NULL, is the catchpoint condition. This string
13012 must be allocated on the heap, and its deallocation is no longer
13013 the responsibility of the caller.
13015 TEMPFLAG, if nonzero, means that the underlying breakpoint
13016 should be temporary.
13018 FROM_TTY is the usual argument passed to all commands implementations. */
13021 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13022 enum ada_exception_catchpoint_kind ex_kind,
13023 char *excep_string,
13029 struct ada_catchpoint *c;
13030 char *addr_string = NULL;
13031 const struct breakpoint_ops *ops = NULL;
13032 struct symtab_and_line sal
13033 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13035 c = new ada_catchpoint ();
13036 init_ada_exception_breakpoint (c, gdbarch, sal, addr_string,
13037 ops, tempflag, disabled, from_tty);
13038 c->excep_string = excep_string;
13039 create_excep_cond_exprs (c);
13040 if (cond_string != NULL)
13041 set_breakpoint_condition (c, cond_string, from_tty);
13042 install_breakpoint (0, c, 1);
13045 /* Implement the "catch exception" command. */
13048 catch_ada_exception_command (char *arg_entry, int from_tty,
13049 struct cmd_list_element *command)
13051 const char *arg = arg_entry;
13052 struct gdbarch *gdbarch = get_current_arch ();
13054 enum ada_exception_catchpoint_kind ex_kind;
13055 char *excep_string = NULL;
13056 char *cond_string = NULL;
13058 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13062 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13064 create_ada_exception_catchpoint (gdbarch, ex_kind,
13065 excep_string, cond_string,
13066 tempflag, 1 /* enabled */,
13070 /* Split the arguments specified in a "catch assert" command.
13072 ARGS contains the command's arguments (or the empty string if
13073 no arguments were passed).
13075 If ARGS contains a condition, set COND_STRING to that condition
13076 (the memory needs to be deallocated after use). */
13079 catch_ada_assert_command_split (const char *args, char **cond_string)
13081 args = skip_spaces_const (args);
13083 /* Check whether a condition was provided. */
13084 if (startswith (args, "if")
13085 && (isspace (args[2]) || args[2] == '\0'))
13088 args = skip_spaces_const (args);
13089 if (args[0] == '\0')
13090 error (_("condition missing after `if' keyword"));
13091 *cond_string = xstrdup (args);
13094 /* Otherwise, there should be no other argument at the end of
13096 else if (args[0] != '\0')
13097 error (_("Junk at end of arguments."));
13100 /* Implement the "catch assert" command. */
13103 catch_assert_command (char *arg_entry, int from_tty,
13104 struct cmd_list_element *command)
13106 const char *arg = arg_entry;
13107 struct gdbarch *gdbarch = get_current_arch ();
13109 char *cond_string = NULL;
13111 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13115 catch_ada_assert_command_split (arg, &cond_string);
13116 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13118 tempflag, 1 /* enabled */,
13122 /* Return non-zero if the symbol SYM is an Ada exception object. */
13125 ada_is_exception_sym (struct symbol *sym)
13127 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13129 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13130 && SYMBOL_CLASS (sym) != LOC_BLOCK
13131 && SYMBOL_CLASS (sym) != LOC_CONST
13132 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13133 && type_name != NULL && strcmp (type_name, "exception") == 0);
13136 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13137 Ada exception object. This matches all exceptions except the ones
13138 defined by the Ada language. */
13141 ada_is_non_standard_exception_sym (struct symbol *sym)
13145 if (!ada_is_exception_sym (sym))
13148 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13149 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13150 return 0; /* A standard exception. */
13152 /* Numeric_Error is also a standard exception, so exclude it.
13153 See the STANDARD_EXC description for more details as to why
13154 this exception is not listed in that array. */
13155 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13161 /* A helper function for qsort, comparing two struct ada_exc_info
13164 The comparison is determined first by exception name, and then
13165 by exception address. */
13168 compare_ada_exception_info (const void *a, const void *b)
13170 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13171 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13174 result = strcmp (exc_a->name, exc_b->name);
13178 if (exc_a->addr < exc_b->addr)
13180 if (exc_a->addr > exc_b->addr)
13186 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13187 routine, but keeping the first SKIP elements untouched.
13189 All duplicates are also removed. */
13192 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13195 struct ada_exc_info *to_sort
13196 = VEC_address (ada_exc_info, *exceptions) + skip;
13198 = VEC_length (ada_exc_info, *exceptions) - skip;
13201 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13202 compare_ada_exception_info);
13204 for (i = 1, j = 1; i < to_sort_len; i++)
13205 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13206 to_sort[j++] = to_sort[i];
13208 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13211 /* Add all exceptions defined by the Ada standard whose name match
13212 a regular expression.
13214 If PREG is not NULL, then this regexp_t object is used to
13215 perform the symbol name matching. Otherwise, no name-based
13216 filtering is performed.
13218 EXCEPTIONS is a vector of exceptions to which matching exceptions
13222 ada_add_standard_exceptions (compiled_regex *preg,
13223 VEC(ada_exc_info) **exceptions)
13227 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13230 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13232 struct bound_minimal_symbol msymbol
13233 = ada_lookup_simple_minsym (standard_exc[i]);
13235 if (msymbol.minsym != NULL)
13237 struct ada_exc_info info
13238 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13240 VEC_safe_push (ada_exc_info, *exceptions, &info);
13246 /* Add all Ada exceptions defined locally and accessible from the given
13249 If PREG is not NULL, then this regexp_t object is used to
13250 perform the symbol name matching. Otherwise, no name-based
13251 filtering is performed.
13253 EXCEPTIONS is a vector of exceptions to which matching exceptions
13257 ada_add_exceptions_from_frame (compiled_regex *preg,
13258 struct frame_info *frame,
13259 VEC(ada_exc_info) **exceptions)
13261 const struct block *block = get_frame_block (frame, 0);
13265 struct block_iterator iter;
13266 struct symbol *sym;
13268 ALL_BLOCK_SYMBOLS (block, iter, sym)
13270 switch (SYMBOL_CLASS (sym))
13277 if (ada_is_exception_sym (sym))
13279 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13280 SYMBOL_VALUE_ADDRESS (sym)};
13282 VEC_safe_push (ada_exc_info, *exceptions, &info);
13286 if (BLOCK_FUNCTION (block) != NULL)
13288 block = BLOCK_SUPERBLOCK (block);
13292 /* Return true if NAME matches PREG or if PREG is NULL. */
13295 name_matches_regex (const char *name, compiled_regex *preg)
13297 return (preg == NULL
13298 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13301 /* Add all exceptions defined globally whose name name match
13302 a regular expression, excluding standard exceptions.
13304 The reason we exclude standard exceptions is that they need
13305 to be handled separately: Standard exceptions are defined inside
13306 a runtime unit which is normally not compiled with debugging info,
13307 and thus usually do not show up in our symbol search. However,
13308 if the unit was in fact built with debugging info, we need to
13309 exclude them because they would duplicate the entry we found
13310 during the special loop that specifically searches for those
13311 standard exceptions.
13313 If PREG is not NULL, then this regexp_t object is used to
13314 perform the symbol name matching. Otherwise, no name-based
13315 filtering is performed.
13317 EXCEPTIONS is a vector of exceptions to which matching exceptions
13321 ada_add_global_exceptions (compiled_regex *preg,
13322 VEC(ada_exc_info) **exceptions)
13324 struct objfile *objfile;
13325 struct compunit_symtab *s;
13327 /* In Ada, the symbol "search name" is a linkage name, whereas the
13328 regular expression used to do the matching refers to the natural
13329 name. So match against the decoded name. */
13330 expand_symtabs_matching (NULL,
13331 [&] (const char *search_name)
13333 const char *decoded = ada_decode (search_name);
13334 return name_matches_regex (decoded, preg);
13339 ALL_COMPUNITS (objfile, s)
13341 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13344 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13346 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13347 struct block_iterator iter;
13348 struct symbol *sym;
13350 ALL_BLOCK_SYMBOLS (b, iter, sym)
13351 if (ada_is_non_standard_exception_sym (sym)
13352 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13354 struct ada_exc_info info
13355 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13357 VEC_safe_push (ada_exc_info, *exceptions, &info);
13363 /* Implements ada_exceptions_list with the regular expression passed
13364 as a regex_t, rather than a string.
13366 If not NULL, PREG is used to filter out exceptions whose names
13367 do not match. Otherwise, all exceptions are listed. */
13369 static VEC(ada_exc_info) *
13370 ada_exceptions_list_1 (compiled_regex *preg)
13372 VEC(ada_exc_info) *result = NULL;
13373 struct cleanup *old_chain
13374 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13377 /* First, list the known standard exceptions. These exceptions
13378 need to be handled separately, as they are usually defined in
13379 runtime units that have been compiled without debugging info. */
13381 ada_add_standard_exceptions (preg, &result);
13383 /* Next, find all exceptions whose scope is local and accessible
13384 from the currently selected frame. */
13386 if (has_stack_frames ())
13388 prev_len = VEC_length (ada_exc_info, result);
13389 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13391 if (VEC_length (ada_exc_info, result) > prev_len)
13392 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13395 /* Add all exceptions whose scope is global. */
13397 prev_len = VEC_length (ada_exc_info, result);
13398 ada_add_global_exceptions (preg, &result);
13399 if (VEC_length (ada_exc_info, result) > prev_len)
13400 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13402 discard_cleanups (old_chain);
13406 /* Return a vector of ada_exc_info.
13408 If REGEXP is NULL, all exceptions are included in the result.
13409 Otherwise, it should contain a valid regular expression,
13410 and only the exceptions whose names match that regular expression
13411 are included in the result.
13413 The exceptions are sorted in the following order:
13414 - Standard exceptions (defined by the Ada language), in
13415 alphabetical order;
13416 - Exceptions only visible from the current frame, in
13417 alphabetical order;
13418 - Exceptions whose scope is global, in alphabetical order. */
13420 VEC(ada_exc_info) *
13421 ada_exceptions_list (const char *regexp)
13423 if (regexp == NULL)
13424 return ada_exceptions_list_1 (NULL);
13426 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13427 return ada_exceptions_list_1 (®);
13430 /* Implement the "info exceptions" command. */
13433 info_exceptions_command (char *regexp, int from_tty)
13435 VEC(ada_exc_info) *exceptions;
13436 struct cleanup *cleanup;
13437 struct gdbarch *gdbarch = get_current_arch ();
13439 struct ada_exc_info *info;
13441 exceptions = ada_exceptions_list (regexp);
13442 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13444 if (regexp != NULL)
13446 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13448 printf_filtered (_("All defined Ada exceptions:\n"));
13450 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13451 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13453 do_cleanups (cleanup);
13457 /* Information about operators given special treatment in functions
13459 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13461 #define ADA_OPERATORS \
13462 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13463 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13464 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13465 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13466 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13467 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13468 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13469 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13470 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13471 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13472 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13473 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13474 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13475 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13476 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13477 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13478 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13479 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13480 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13483 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13486 switch (exp->elts[pc - 1].opcode)
13489 operator_length_standard (exp, pc, oplenp, argsp);
13492 #define OP_DEFN(op, len, args, binop) \
13493 case op: *oplenp = len; *argsp = args; break;
13499 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13504 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13509 /* Implementation of the exp_descriptor method operator_check. */
13512 ada_operator_check (struct expression *exp, int pos,
13513 int (*objfile_func) (struct objfile *objfile, void *data),
13516 const union exp_element *const elts = exp->elts;
13517 struct type *type = NULL;
13519 switch (elts[pos].opcode)
13521 case UNOP_IN_RANGE:
13523 type = elts[pos + 1].type;
13527 return operator_check_standard (exp, pos, objfile_func, data);
13530 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13532 if (type && TYPE_OBJFILE (type)
13533 && (*objfile_func) (TYPE_OBJFILE (type), data))
13539 static const char *
13540 ada_op_name (enum exp_opcode opcode)
13545 return op_name_standard (opcode);
13547 #define OP_DEFN(op, len, args, binop) case op: return #op;
13552 return "OP_AGGREGATE";
13554 return "OP_CHOICES";
13560 /* As for operator_length, but assumes PC is pointing at the first
13561 element of the operator, and gives meaningful results only for the
13562 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13565 ada_forward_operator_length (struct expression *exp, int pc,
13566 int *oplenp, int *argsp)
13568 switch (exp->elts[pc].opcode)
13571 *oplenp = *argsp = 0;
13574 #define OP_DEFN(op, len, args, binop) \
13575 case op: *oplenp = len; *argsp = args; break;
13581 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13586 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13592 int len = longest_to_int (exp->elts[pc + 1].longconst);
13594 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13602 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13604 enum exp_opcode op = exp->elts[elt].opcode;
13609 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13613 /* Ada attributes ('Foo). */
13616 case OP_ATR_LENGTH:
13620 case OP_ATR_MODULUS:
13627 case UNOP_IN_RANGE:
13629 /* XXX: gdb_sprint_host_address, type_sprint */
13630 fprintf_filtered (stream, _("Type @"));
13631 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13632 fprintf_filtered (stream, " (");
13633 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13634 fprintf_filtered (stream, ")");
13636 case BINOP_IN_BOUNDS:
13637 fprintf_filtered (stream, " (%d)",
13638 longest_to_int (exp->elts[pc + 2].longconst));
13640 case TERNOP_IN_RANGE:
13645 case OP_DISCRETE_RANGE:
13646 case OP_POSITIONAL:
13653 char *name = &exp->elts[elt + 2].string;
13654 int len = longest_to_int (exp->elts[elt + 1].longconst);
13656 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13661 return dump_subexp_body_standard (exp, stream, elt);
13665 for (i = 0; i < nargs; i += 1)
13666 elt = dump_subexp (exp, stream, elt);
13671 /* The Ada extension of print_subexp (q.v.). */
13674 ada_print_subexp (struct expression *exp, int *pos,
13675 struct ui_file *stream, enum precedence prec)
13677 int oplen, nargs, i;
13679 enum exp_opcode op = exp->elts[pc].opcode;
13681 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13688 print_subexp_standard (exp, pos, stream, prec);
13692 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13695 case BINOP_IN_BOUNDS:
13696 /* XXX: sprint_subexp */
13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
13698 fputs_filtered (" in ", stream);
13699 print_subexp (exp, pos, stream, PREC_SUFFIX);
13700 fputs_filtered ("'range", stream);
13701 if (exp->elts[pc + 1].longconst > 1)
13702 fprintf_filtered (stream, "(%ld)",
13703 (long) exp->elts[pc + 1].longconst);
13706 case TERNOP_IN_RANGE:
13707 if (prec >= PREC_EQUAL)
13708 fputs_filtered ("(", stream);
13709 /* XXX: sprint_subexp */
13710 print_subexp (exp, pos, stream, PREC_SUFFIX);
13711 fputs_filtered (" in ", stream);
13712 print_subexp (exp, pos, stream, PREC_EQUAL);
13713 fputs_filtered (" .. ", stream);
13714 print_subexp (exp, pos, stream, PREC_EQUAL);
13715 if (prec >= PREC_EQUAL)
13716 fputs_filtered (")", stream);
13721 case OP_ATR_LENGTH:
13725 case OP_ATR_MODULUS:
13730 if (exp->elts[*pos].opcode == OP_TYPE)
13732 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13733 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13734 &type_print_raw_options);
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13744 for (tem = 1; tem < nargs; tem += 1)
13746 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13747 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13749 fputs_filtered (")", stream);
13754 type_print (exp->elts[pc + 1].type, "", stream, 0);
13755 fputs_filtered ("'(", stream);
13756 print_subexp (exp, pos, stream, PREC_PREFIX);
13757 fputs_filtered (")", stream);
13760 case UNOP_IN_RANGE:
13761 /* XXX: sprint_subexp */
13762 print_subexp (exp, pos, stream, PREC_SUFFIX);
13763 fputs_filtered (" in ", stream);
13764 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13765 &type_print_raw_options);
13768 case OP_DISCRETE_RANGE:
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 fputs_filtered ("..", stream);
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13775 fputs_filtered ("others => ", stream);
13776 print_subexp (exp, pos, stream, PREC_SUFFIX);
13780 for (i = 0; i < nargs-1; i += 1)
13783 fputs_filtered ("|", stream);
13784 print_subexp (exp, pos, stream, PREC_SUFFIX);
13786 fputs_filtered (" => ", stream);
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13790 case OP_POSITIONAL:
13791 print_subexp (exp, pos, stream, PREC_SUFFIX);
13795 fputs_filtered ("(", stream);
13796 for (i = 0; i < nargs; i += 1)
13799 fputs_filtered (", ", stream);
13800 print_subexp (exp, pos, stream, PREC_SUFFIX);
13802 fputs_filtered (")", stream);
13807 /* Table mapping opcodes into strings for printing operators
13808 and precedences of the operators. */
13810 static const struct op_print ada_op_print_tab[] = {
13811 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13812 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13813 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13814 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13815 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13816 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13817 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13818 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13819 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13820 {">=", BINOP_GEQ, PREC_ORDER, 0},
13821 {">", BINOP_GTR, PREC_ORDER, 0},
13822 {"<", BINOP_LESS, PREC_ORDER, 0},
13823 {">>", BINOP_RSH, PREC_SHIFT, 0},
13824 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13825 {"+", BINOP_ADD, PREC_ADD, 0},
13826 {"-", BINOP_SUB, PREC_ADD, 0},
13827 {"&", BINOP_CONCAT, PREC_ADD, 0},
13828 {"*", BINOP_MUL, PREC_MUL, 0},
13829 {"/", BINOP_DIV, PREC_MUL, 0},
13830 {"rem", BINOP_REM, PREC_MUL, 0},
13831 {"mod", BINOP_MOD, PREC_MUL, 0},
13832 {"**", BINOP_EXP, PREC_REPEAT, 0},
13833 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13834 {"-", UNOP_NEG, PREC_PREFIX, 0},
13835 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13836 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13837 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13838 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13839 {".all", UNOP_IND, PREC_SUFFIX, 1},
13840 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13841 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13842 {NULL, OP_NULL, PREC_SUFFIX, 0}
13845 enum ada_primitive_types {
13846 ada_primitive_type_int,
13847 ada_primitive_type_long,
13848 ada_primitive_type_short,
13849 ada_primitive_type_char,
13850 ada_primitive_type_float,
13851 ada_primitive_type_double,
13852 ada_primitive_type_void,
13853 ada_primitive_type_long_long,
13854 ada_primitive_type_long_double,
13855 ada_primitive_type_natural,
13856 ada_primitive_type_positive,
13857 ada_primitive_type_system_address,
13858 nr_ada_primitive_types
13862 ada_language_arch_info (struct gdbarch *gdbarch,
13863 struct language_arch_info *lai)
13865 const struct builtin_type *builtin = builtin_type (gdbarch);
13867 lai->primitive_type_vector
13868 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13871 lai->primitive_type_vector [ada_primitive_type_int]
13872 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13874 lai->primitive_type_vector [ada_primitive_type_long]
13875 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13876 0, "long_integer");
13877 lai->primitive_type_vector [ada_primitive_type_short]
13878 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13879 0, "short_integer");
13880 lai->string_char_type
13881 = lai->primitive_type_vector [ada_primitive_type_char]
13882 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13883 lai->primitive_type_vector [ada_primitive_type_float]
13884 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13885 "float", gdbarch_float_format (gdbarch));
13886 lai->primitive_type_vector [ada_primitive_type_double]
13887 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13888 "long_float", gdbarch_double_format (gdbarch));
13889 lai->primitive_type_vector [ada_primitive_type_long_long]
13890 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13891 0, "long_long_integer");
13892 lai->primitive_type_vector [ada_primitive_type_long_double]
13893 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13894 "long_long_float", gdbarch_long_double_format (gdbarch));
13895 lai->primitive_type_vector [ada_primitive_type_natural]
13896 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13898 lai->primitive_type_vector [ada_primitive_type_positive]
13899 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13901 lai->primitive_type_vector [ada_primitive_type_void]
13902 = builtin->builtin_void;
13904 lai->primitive_type_vector [ada_primitive_type_system_address]
13905 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13906 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13907 = "system__address";
13909 lai->bool_type_symbol = NULL;
13910 lai->bool_type_default = builtin->builtin_bool;
13913 /* Language vector */
13915 /* Not really used, but needed in the ada_language_defn. */
13918 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13920 ada_emit_char (c, type, stream, quoter, 1);
13924 parse (struct parser_state *ps)
13926 warnings_issued = 0;
13927 return ada_parse (ps);
13930 static const struct exp_descriptor ada_exp_descriptor = {
13932 ada_operator_length,
13933 ada_operator_check,
13935 ada_dump_subexp_body,
13936 ada_evaluate_subexp
13939 /* Implement the "la_get_symbol_name_cmp" language_defn method
13942 static symbol_name_cmp_ftype
13943 ada_get_symbol_name_cmp (const char *lookup_name)
13945 if (should_use_wild_match (lookup_name))
13948 return compare_names;
13951 /* Implement the "la_read_var_value" language_defn method for Ada. */
13953 static struct value *
13954 ada_read_var_value (struct symbol *var, const struct block *var_block,
13955 struct frame_info *frame)
13957 const struct block *frame_block = NULL;
13958 struct symbol *renaming_sym = NULL;
13960 /* The only case where default_read_var_value is not sufficient
13961 is when VAR is a renaming... */
13963 frame_block = get_frame_block (frame, NULL);
13965 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13966 if (renaming_sym != NULL)
13967 return ada_read_renaming_var_value (renaming_sym, frame_block);
13969 /* This is a typical case where we expect the default_read_var_value
13970 function to work. */
13971 return default_read_var_value (var, var_block, frame);
13974 static const char *ada_extensions[] =
13976 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13979 const struct language_defn ada_language_defn = {
13980 "ada", /* Language name */
13984 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13985 that's not quite what this means. */
13987 macro_expansion_no,
13989 &ada_exp_descriptor,
13993 ada_printchar, /* Print a character constant */
13994 ada_printstr, /* Function to print string constant */
13995 emit_char, /* Function to print single char (not used) */
13996 ada_print_type, /* Print a type using appropriate syntax */
13997 ada_print_typedef, /* Print a typedef using appropriate syntax */
13998 ada_val_print, /* Print a value using appropriate syntax */
13999 ada_value_print, /* Print a top-level value */
14000 ada_read_var_value, /* la_read_var_value */
14001 NULL, /* Language specific skip_trampoline */
14002 NULL, /* name_of_this */
14003 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14004 basic_lookup_transparent_type, /* lookup_transparent_type */
14005 ada_la_decode, /* Language specific symbol demangler */
14006 ada_sniff_from_mangled_name,
14007 NULL, /* Language specific
14008 class_name_from_physname */
14009 ada_op_print_tab, /* expression operators for printing */
14010 0, /* c-style arrays */
14011 1, /* String lower bound */
14012 ada_get_gdb_completer_word_break_characters,
14013 ada_collect_symbol_completion_matches,
14014 ada_language_arch_info,
14015 ada_print_array_index,
14016 default_pass_by_reference,
14018 c_watch_location_expression,
14019 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14020 ada_iterate_over_symbols,
14027 /* Provide a prototype to silence -Wmissing-prototypes. */
14028 extern initialize_file_ftype _initialize_ada_language;
14030 /* Command-list for the "set/show ada" prefix command. */
14031 static struct cmd_list_element *set_ada_list;
14032 static struct cmd_list_element *show_ada_list;
14034 /* Implement the "set ada" prefix command. */
14037 set_ada_command (char *arg, int from_tty)
14039 printf_unfiltered (_(\
14040 "\"set ada\" must be followed by the name of a setting.\n"));
14041 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14044 /* Implement the "show ada" prefix command. */
14047 show_ada_command (char *args, int from_tty)
14049 cmd_show_list (show_ada_list, from_tty, "");
14053 initialize_ada_catchpoint_ops (void)
14055 struct breakpoint_ops *ops;
14057 initialize_breakpoint_ops ();
14059 ops = &catch_exception_breakpoint_ops;
14060 *ops = bkpt_breakpoint_ops;
14061 ops->allocate_location = allocate_location_catch_exception;
14062 ops->re_set = re_set_catch_exception;
14063 ops->check_status = check_status_catch_exception;
14064 ops->print_it = print_it_catch_exception;
14065 ops->print_one = print_one_catch_exception;
14066 ops->print_mention = print_mention_catch_exception;
14067 ops->print_recreate = print_recreate_catch_exception;
14069 ops = &catch_exception_unhandled_breakpoint_ops;
14070 *ops = bkpt_breakpoint_ops;
14071 ops->allocate_location = allocate_location_catch_exception_unhandled;
14072 ops->re_set = re_set_catch_exception_unhandled;
14073 ops->check_status = check_status_catch_exception_unhandled;
14074 ops->print_it = print_it_catch_exception_unhandled;
14075 ops->print_one = print_one_catch_exception_unhandled;
14076 ops->print_mention = print_mention_catch_exception_unhandled;
14077 ops->print_recreate = print_recreate_catch_exception_unhandled;
14079 ops = &catch_assert_breakpoint_ops;
14080 *ops = bkpt_breakpoint_ops;
14081 ops->allocate_location = allocate_location_catch_assert;
14082 ops->re_set = re_set_catch_assert;
14083 ops->check_status = check_status_catch_assert;
14084 ops->print_it = print_it_catch_assert;
14085 ops->print_one = print_one_catch_assert;
14086 ops->print_mention = print_mention_catch_assert;
14087 ops->print_recreate = print_recreate_catch_assert;
14090 /* This module's 'new_objfile' observer. */
14093 ada_new_objfile_observer (struct objfile *objfile)
14095 ada_clear_symbol_cache ();
14098 /* This module's 'free_objfile' observer. */
14101 ada_free_objfile_observer (struct objfile *objfile)
14103 ada_clear_symbol_cache ();
14107 _initialize_ada_language (void)
14109 add_language (&ada_language_defn);
14111 initialize_ada_catchpoint_ops ();
14113 add_prefix_cmd ("ada", no_class, set_ada_command,
14114 _("Prefix command for changing Ada-specfic settings"),
14115 &set_ada_list, "set ada ", 0, &setlist);
14117 add_prefix_cmd ("ada", no_class, show_ada_command,
14118 _("Generic command for showing Ada-specific settings."),
14119 &show_ada_list, "show ada ", 0, &showlist);
14121 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14122 &trust_pad_over_xvs, _("\
14123 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14124 Show whether an optimization trusting PAD types over XVS types is activated"),
14126 This is related to the encoding used by the GNAT compiler. The debugger\n\
14127 should normally trust the contents of PAD types, but certain older versions\n\
14128 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14129 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14130 work around this bug. It is always safe to turn this option \"off\", but\n\
14131 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14132 this option to \"off\" unless necessary."),
14133 NULL, NULL, &set_ada_list, &show_ada_list);
14135 add_setshow_boolean_cmd ("print-signatures", class_vars,
14136 &print_signatures, _("\
14137 Enable or disable the output of formal and return types for functions in the \
14138 overloads selection menu"), _("\
14139 Show whether the output of formal and return types for functions in the \
14140 overloads selection menu is activated"),
14141 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14143 add_catch_command ("exception", _("\
14144 Catch Ada exceptions, when raised.\n\
14145 With an argument, catch only exceptions with the given name."),
14146 catch_ada_exception_command,
14150 add_catch_command ("assert", _("\
14151 Catch failed Ada assertions, when raised.\n\
14152 With an argument, catch only exceptions with the given name."),
14153 catch_assert_command,
14158 varsize_limit = 65536;
14160 add_info ("exceptions", info_exceptions_command,
14162 List all Ada exception names.\n\
14163 If a regular expression is passed as an argument, only those matching\n\
14164 the regular expression are listed."));
14166 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14167 _("Set Ada maintenance-related variables."),
14168 &maint_set_ada_cmdlist, "maintenance set ada ",
14169 0/*allow-unknown*/, &maintenance_set_cmdlist);
14171 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14172 _("Show Ada maintenance-related variables"),
14173 &maint_show_ada_cmdlist, "maintenance show ada ",
14174 0/*allow-unknown*/, &maintenance_show_cmdlist);
14176 add_setshow_boolean_cmd
14177 ("ignore-descriptive-types", class_maintenance,
14178 &ada_ignore_descriptive_types_p,
14179 _("Set whether descriptive types generated by GNAT should be ignored."),
14180 _("Show whether descriptive types generated by GNAT should be ignored."),
14182 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14183 DWARF attribute."),
14184 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14186 obstack_init (&symbol_list_obstack);
14188 decoded_names_store = htab_create_alloc
14189 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14190 NULL, xcalloc, xfree);
14192 /* The ada-lang observers. */
14193 observer_attach_new_objfile (ada_new_objfile_observer);
14194 observer_attach_free_objfile (ada_free_objfile_observer);
14195 observer_attach_inferior_exit (ada_inferior_exit);
14197 /* Setup various context-specific data. */
14199 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14200 ada_pspace_data_handle
14201 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);