1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 static void extract_string (CORE_ADDR addr, char *buf);
70 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_type_match (struct type *, struct type *, int);
102 static int ada_args_match (struct symbol *, struct value **, int);
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
114 static int is_nonfunction (struct ada_symbol_info *, int);
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 static int num_defns_collected (struct obstack *);
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
127 static struct value *resolve_subexp (struct expression **, int *, int,
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static int is_dynamic_field (struct type *, int);
162 static struct type *to_fixed_variant_branch_type (struct type *,
164 CORE_ADDR, struct value *);
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168 static struct type *to_fixed_range_type (char *, struct value *,
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
174 static struct value *unwrap_value (struct value *);
176 static struct type *packed_array_type (struct type *, long *);
178 static struct type *decode_packed_array_type (struct type *);
180 static struct value *decode_packed_array (struct value *);
182 static struct value *value_subscript_packed (struct value *, int,
185 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187 static struct value *coerce_unspec_val_to_type (struct value *,
190 static struct value *get_var_value (char *, char *);
192 static int lesseq_defined_than (struct symbol *, struct symbol *);
194 static int equiv_types (struct type *, struct type *);
196 static int is_name_suffix (const char *);
198 static int wild_match (const char *, int, const char *);
200 static struct value *ada_coerce_ref (struct value *);
202 static LONGEST pos_atr (struct value *);
204 static struct value *value_pos_atr (struct type *, struct value *);
206 static struct value *value_val_atr (struct type *, struct value *);
208 static struct symbol *standard_lookup (const char *, const struct block *,
211 static struct value *ada_search_struct_field (char *, struct value *, int,
214 static struct value *ada_value_primitive_field (struct value *, int, int,
217 static int find_struct_field (char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
220 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 static struct value *ada_to_fixed_value (struct value *);
225 static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
229 static struct value *ada_coerce_to_simple_array (struct value *);
231 static int ada_is_direct_array_type (struct type *);
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
236 static void check_size (const struct type *);
238 static struct value *ada_index_struct_field (int, struct value *, int,
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
244 static void aggregate_assign_from_choices (struct value *, struct value *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
249 static void aggregate_assign_positional (struct value *, struct value *,
251 int *, LONGEST *, int *, int,
255 static void aggregate_assign_others (struct value *, struct value *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 static void ada_forward_operator_length (struct expression *, int, int *,
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit;
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters =
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
285 = "__gnat_ada_main_program_name";
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit = 2;
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued = 0;
294 static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack;
307 /* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
312 ada_unqualified_name (const char *decoded_name)
314 const char *result = strrchr (decoded_name, '.');
317 result++; /* Skip the dot... */
319 result = decoded_name;
324 /* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
328 add_angle_brackets (const char *str)
330 static char *result = NULL;
333 result = xstrprintf ("<%s>", str);
338 ada_get_gdb_completer_word_break_characters (void)
340 return ada_completer_word_break_characters;
343 /* Print an array element index using the Ada syntax. */
346 ada_print_array_index (struct value *index_value, struct ui_file *stream,
347 const struct value_print_options *options)
349 LA_VALUE_PRINT (index_value, stream, options);
350 fprintf_filtered (stream, " => ");
353 /* Read the string located at ADDR from the inferior and store the
357 extract_string (CORE_ADDR addr, char *buf)
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
365 target_read_memory (addr + char_index * sizeof (char),
366 buf + char_index * sizeof (char), sizeof (char));
369 while (buf[char_index - 1] != '\000');
372 /* Assuming VECT points to an array of *SIZE objects of size
373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
374 updating *SIZE as necessary and returning the (new) array. */
377 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
379 if (*size < min_size)
382 if (*size < min_size)
384 vect = xrealloc (vect, *size * element_size);
389 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
390 suffix of FIELD_NAME beginning "___". */
393 field_name_match (const char *field_name, const char *target)
395 int len = strlen (target);
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
400 && strcmp (field_name + strlen (field_name) - 6,
405 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
414 ada_get_field_index (const struct type *type, const char *field_name,
418 struct type *struct_type = check_typedef ((struct type *) type);
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
425 error (_("Unable to find field %s in struct %s. Aborting"),
426 field_name, TYPE_NAME (struct_type));
431 /* The length of the prefix of NAME prior to any "___" suffix. */
434 ada_name_prefix_len (const char *name)
440 const char *p = strstr (name, "___");
442 return strlen (name);
448 /* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
452 is_suffix (const char *str, const char *suffix)
458 len2 = strlen (suffix);
459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
473 struct value *result;
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
479 result = allocate_value (type);
480 set_value_component_location (result, val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 set_value_address (result, value_address (val));
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
488 memcpy (value_contents_raw (result), value_contents (val),
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
500 return valaddr + offset;
504 cond_offset_target (CORE_ADDR address, long offset)
509 return address + offset;
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522 lim_warning (const char *format, ...)
525 va_start (args, format);
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
539 check_size (const struct type *type)
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
550 /* Maximum value of a SIZE-byte signed integer type. */
552 max_of_size (int size)
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
558 /* Minimum value of a SIZE-byte signed integer type. */
560 min_of_size (int size)
562 return -max_of_size (size) - 1;
565 /* Maximum value of a SIZE-byte unsigned integer type. */
567 umax_of_size (int size)
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
573 /* Maximum value of integral type T, as a signed quantity. */
575 max_of_type (struct type *t)
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
580 return max_of_size (TYPE_LENGTH (t));
583 /* Minimum value of integral type T, as a signed quantity. */
585 min_of_type (struct type *t)
587 if (TYPE_UNSIGNED (t))
590 return min_of_size (TYPE_LENGTH (t));
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
595 discrete_type_high_bound (struct type *type)
597 switch (TYPE_CODE (type))
599 case TYPE_CODE_RANGE:
600 return TYPE_HIGH_BOUND (type);
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
607 return max_of_type (type);
609 error (_("Unexpected type in discrete_type_high_bound."));
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 discrete_type_low_bound (struct type *type)
617 switch (TYPE_CODE (type))
619 case TYPE_CODE_RANGE:
620 return TYPE_LOW_BOUND (type);
622 return TYPE_FIELD_BITPOS (type, 0);
627 return min_of_type (type);
629 error (_("Unexpected type in discrete_type_low_bound."));
633 /* The identity on non-range types. For range types, the underlying
634 non-range scalar type. */
637 base_type (struct type *type)
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
643 type = TYPE_TARGET_TYPE (type);
649 /* Language Selection */
651 /* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
654 MAIN_PST is not used. */
657 ada_update_initial_language (enum language lang,
658 struct partial_symtab *main_pst)
660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
661 (struct objfile *) NULL) != NULL)
667 /* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
674 struct minimal_symbol *msym;
675 static char *main_program_name = NULL;
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
686 CORE_ADDR main_program_name_addr;
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
691 error (_("Invalid address for Ada main program name."));
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
699 return main_program_name;
702 /* The main procedure doesn't seem to be in Ada. */
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
740 ada_encode (const char *decoded)
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
754 for (p = decoded; *p != '\0'; p += 1)
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
763 const struct ada_opname_map *mapping;
765 for (mapping = ada_opname_table;
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
770 if (mapping->encoded == NULL)
771 error (_("invalid Ada operator name: %s"), p);
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
778 encoding_buffer[k] = *p;
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
792 ada_fold_name (const char *name)
794 static char *fold_buffer = NULL;
795 static size_t fold_buffer_size = 0;
797 int len = strlen (name);
798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
808 for (i = 0; i <= len; i += 1)
809 fold_buffer[i] = tolower (name[i]);
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
818 is_lower_alphanum (const char c)
820 return (isdigit (c) || (isalpha (c) && islower (c)));
823 /* Remove either of these suffixes:
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
833 ada_remove_trailing_digits (const char *encoded, int *len)
835 if (*len > 1 && isdigit (encoded[*len - 1]))
838 while (i > 0 && isdigit (encoded[i]))
840 if (i >= 0 && encoded[i] == '.')
842 else if (i >= 0 && encoded[i] == '$')
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
851 /* Remove the suffix introduced by the compiler for protected object
855 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
857 /* Remove trailing N. */
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
873 /* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 The resulting string is valid until the next call of ada_decode.
878 If the string is unchanged by decoding, the original string pointer
882 ada_decode (const char *encoded)
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
895 if (strncmp (encoded, "_ada_", 5) == 0)
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
901 if (encoded[0] == '_' || encoded[0] == '<')
904 len0 = strlen (encoded);
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 /* Make decoded big enough for possible expansion by operator name. */
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
950 else if (encoded[i] == '$')
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
963 /* Is this a symbol function? */
964 if (at_start_name && encoded[i] == 'O')
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
969 int op_len = strlen (ada_opname_table[k].encoded);
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
972 && !isalnum (encoded[i + op_len]))
974 strcpy (decoded + j, ada_opname_table[k].decoded);
977 j += strlen (ada_opname_table[k].decoded);
981 if (ada_opname_table[k].encoded != NULL)
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1011 /* Remove _E{DIGITS}+[sb] */
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1029 while (k < len0 && isdigit (encoded[k]))
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1040 || (k < len0 && encoded[k] == '_'))
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1080 /* Replace '__' by '.'. */
1088 /* It's a character part of the decoded name, so just copy it
1090 decoded[j] = encoded[i];
1095 decoded[j] = '\000';
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
1104 if (strcmp (decoded, encoded) == 0)
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1120 /* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125 static struct htab *decoded_names_store;
1127 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
1139 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1145 const char *decoded = ada_decode (gsymbol->name);
1146 if (gsymbol->obj_section != NULL)
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
1152 /* Sometimes, we can't find a corresponding objfile, in which
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
1156 if (*resultp == NULL)
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 *slot = xstrdup (decoded);
1170 ada_la_decode (const char *encoded, int options)
1172 return xstrdup (ada_decode (encoded));
1175 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
1183 ada_match_name (const char *sym_name, const char *name, int wild)
1185 if (sym_name == NULL || name == NULL)
1188 return wild_match (name, strlen (name), sym_name);
1191 int len_name = strlen (name);
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1205 static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210 /* Maximum number of array dimensions we are prepared to handle. */
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1214 /* Like modify_field, but allows bitpos > wordlength. */
1217 modify_general_field (struct type *type, char *addr,
1218 LONGEST fieldval, int bitpos, int bitsize)
1220 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1224 /* The desc_* routines return primitive portions of array descriptors
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1230 static struct type *
1231 desc_base_type (struct type *type)
1235 type = ada_check_typedef (type);
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1247 is_thin_pntr (struct type *type)
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1254 /* The descriptor type for thin pointer type TYPE. */
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1274 /* A pointer to the array data for thin-pointer value VAL. */
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1279 struct type *type = value_type (val);
1280 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1281 data_type = lookup_pointer_type (data_type);
1283 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1284 return value_cast (data_type, value_copy (val));
1286 return value_from_longest (data_type, value_address (val));
1289 /* True iff TYPE indicates a "thick" array pointer type. */
1292 is_thick_pntr (struct type *type)
1294 type = desc_base_type (type);
1295 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1296 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1299 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1300 pointer to one, the type of its bounds data; otherwise, NULL. */
1302 static struct type *
1303 desc_bounds_type (struct type *type)
1307 type = desc_base_type (type);
1311 else if (is_thin_pntr (type))
1313 type = thin_descriptor_type (type);
1316 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 return ada_check_typedef (r);
1320 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1329 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1330 one, a pointer to its bounds data. Otherwise NULL. */
1332 static struct value *
1333 desc_bounds (struct value *arr)
1335 struct type *type = ada_check_typedef (value_type (arr));
1336 if (is_thin_pntr (type))
1338 struct type *bounds_type =
1339 desc_bounds_type (thin_descriptor_type (type));
1342 if (bounds_type == NULL)
1343 error (_("Bad GNAT array descriptor"));
1345 /* NOTE: The following calculation is not really kosher, but
1346 since desc_type is an XVE-encoded type (and shouldn't be),
1347 the correct calculation is a real pain. FIXME (and fix GCC). */
1348 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1349 addr = value_as_long (arr);
1351 addr = value_address (arr);
1354 value_from_longest (lookup_pointer_type (bounds_type),
1355 addr - TYPE_LENGTH (bounds_type));
1358 else if (is_thick_pntr (type))
1359 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1360 _("Bad GNAT array descriptor"));
1365 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1366 position of the field containing the address of the bounds data. */
1369 fat_pntr_bounds_bitpos (struct type *type)
1371 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1374 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1375 size of the field containing the address of the bounds data. */
1378 fat_pntr_bounds_bitsize (struct type *type)
1380 type = desc_base_type (type);
1382 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1383 return TYPE_FIELD_BITSIZE (type, 1);
1385 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1388 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1389 pointer to one, the type of its array data (a array-with-no-bounds type);
1390 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1393 static struct type *
1394 desc_data_target_type (struct type *type)
1396 type = desc_base_type (type);
1398 /* NOTE: The following is bogus; see comment in desc_bounds. */
1399 if (is_thin_pntr (type))
1400 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1401 else if (is_thick_pntr (type))
1403 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1406 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1407 return TYPE_TARGET_TYPE (data_type);
1413 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1416 static struct value *
1417 desc_data (struct value *arr)
1419 struct type *type = value_type (arr);
1420 if (is_thin_pntr (type))
1421 return thin_data_pntr (arr);
1422 else if (is_thick_pntr (type))
1423 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1424 _("Bad GNAT array descriptor"));
1430 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1431 position of the field containing the address of the data. */
1434 fat_pntr_data_bitpos (struct type *type)
1436 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1439 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1440 size of the field containing the address of the data. */
1443 fat_pntr_data_bitsize (struct type *type)
1445 type = desc_base_type (type);
1447 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1448 return TYPE_FIELD_BITSIZE (type, 0);
1450 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1453 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1454 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1455 bound, if WHICH is 1. The first bound is I=1. */
1457 static struct value *
1458 desc_one_bound (struct value *bounds, int i, int which)
1460 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1461 _("Bad GNAT array descriptor bounds"));
1464 /* If BOUNDS is an array-bounds structure type, return the bit position
1465 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1466 bound, if WHICH is 1. The first bound is I=1. */
1469 desc_bound_bitpos (struct type *type, int i, int which)
1471 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1474 /* If BOUNDS is an array-bounds structure type, return the bit field size
1475 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1476 bound, if WHICH is 1. The first bound is I=1. */
1479 desc_bound_bitsize (struct type *type, int i, int which)
1481 type = desc_base_type (type);
1483 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1484 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1489 /* If TYPE is the type of an array-bounds structure, the type of its
1490 Ith bound (numbering from 1). Otherwise, NULL. */
1492 static struct type *
1493 desc_index_type (struct type *type, int i)
1495 type = desc_base_type (type);
1497 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1498 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1503 /* The number of index positions in the array-bounds type TYPE.
1504 Return 0 if TYPE is NULL. */
1507 desc_arity (struct type *type)
1509 type = desc_base_type (type);
1512 return TYPE_NFIELDS (type) / 2;
1516 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1517 an array descriptor type (representing an unconstrained array
1521 ada_is_direct_array_type (struct type *type)
1525 type = ada_check_typedef (type);
1526 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 || ada_is_array_descriptor_type (type));
1530 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1534 ada_is_array_type (struct type *type)
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 type = TYPE_TARGET_TYPE (type);
1540 return ada_is_direct_array_type (type);
1543 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1546 ada_is_simple_array_type (struct type *type)
1550 type = ada_check_typedef (type);
1551 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1552 || (TYPE_CODE (type) == TYPE_CODE_PTR
1553 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1556 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1559 ada_is_array_descriptor_type (struct type *type)
1561 struct type *data_type = desc_data_target_type (type);
1565 type = ada_check_typedef (type);
1566 return (data_type != NULL
1567 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1568 && desc_arity (desc_bounds_type (type)) > 0);
1571 /* Non-zero iff type is a partially mal-formed GNAT array
1572 descriptor. FIXME: This is to compensate for some problems with
1573 debugging output from GNAT. Re-examine periodically to see if it
1577 ada_is_bogus_array_descriptor (struct type *type)
1581 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1582 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1583 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1584 && !ada_is_array_descriptor_type (type);
1588 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1589 (fat pointer) returns the type of the array data described---specifically,
1590 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1591 in from the descriptor; otherwise, they are left unspecified. If
1592 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1593 returns NULL. The result is simply the type of ARR if ARR is not
1596 ada_type_of_array (struct value *arr, int bounds)
1598 if (ada_is_packed_array_type (value_type (arr)))
1599 return decode_packed_array_type (value_type (arr));
1601 if (!ada_is_array_descriptor_type (value_type (arr)))
1602 return value_type (arr);
1606 ada_check_typedef (desc_data_target_type (value_type (arr)));
1609 struct type *elt_type;
1611 struct value *descriptor;
1613 elt_type = ada_array_element_type (value_type (arr), -1);
1614 arity = ada_array_arity (value_type (arr));
1616 if (elt_type == NULL || arity == 0)
1617 return ada_check_typedef (value_type (arr));
1619 descriptor = desc_bounds (arr);
1620 if (value_as_long (descriptor) == 0)
1624 struct type *range_type = alloc_type_copy (value_type (arr));
1625 struct type *array_type = alloc_type_copy (value_type (arr));
1626 struct value *low = desc_one_bound (descriptor, arity, 0);
1627 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 create_range_type (range_type, value_type (low),
1631 longest_to_int (value_as_long (low)),
1632 longest_to_int (value_as_long (high)));
1633 elt_type = create_array_type (array_type, elt_type, range_type);
1636 return lookup_pointer_type (elt_type);
1640 /* If ARR does not represent an array, returns ARR unchanged.
1641 Otherwise, returns either a standard GDB array with bounds set
1642 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1643 GDB array. Returns NULL if ARR is a null fat pointer. */
1646 ada_coerce_to_simple_array_ptr (struct value *arr)
1648 if (ada_is_array_descriptor_type (value_type (arr)))
1650 struct type *arrType = ada_type_of_array (arr, 1);
1651 if (arrType == NULL)
1653 return value_cast (arrType, value_copy (desc_data (arr)));
1655 else if (ada_is_packed_array_type (value_type (arr)))
1656 return decode_packed_array (arr);
1661 /* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns a standard GDB array describing ARR (which may
1663 be ARR itself if it already is in the proper form). */
1665 static struct value *
1666 ada_coerce_to_simple_array (struct value *arr)
1668 if (ada_is_array_descriptor_type (value_type (arr)))
1670 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1672 error (_("Bounds unavailable for null array pointer."));
1673 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1674 return value_ind (arrVal);
1676 else if (ada_is_packed_array_type (value_type (arr)))
1677 return decode_packed_array (arr);
1682 /* If TYPE represents a GNAT array type, return it translated to an
1683 ordinary GDB array type (possibly with BITSIZE fields indicating
1684 packing). For other types, is the identity. */
1687 ada_coerce_to_simple_array_type (struct type *type)
1689 if (ada_is_packed_array_type (type))
1690 return decode_packed_array_type (type);
1692 if (ada_is_array_descriptor_type (type))
1693 return ada_check_typedef (desc_data_target_type (type));
1698 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701 ada_is_packed_array_type (struct type *type)
1705 type = desc_base_type (type);
1706 type = ada_check_typedef (type);
1708 ada_type_name (type) != NULL
1709 && strstr (ada_type_name (type), "___XP") != NULL;
1712 /* Given that TYPE is a standard GDB array type with all bounds filled
1713 in, and that the element size of its ultimate scalar constituents
1714 (that is, either its elements, or, if it is an array of arrays, its
1715 elements' elements, etc.) is *ELT_BITS, return an identical type,
1716 but with the bit sizes of its elements (and those of any
1717 constituent arrays) recorded in the BITSIZE components of its
1718 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 static struct type *
1722 packed_array_type (struct type *type, long *elt_bits)
1724 struct type *new_elt_type;
1725 struct type *new_type;
1726 LONGEST low_bound, high_bound;
1728 type = ada_check_typedef (type);
1729 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 new_type = alloc_type_copy (type);
1733 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1735 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1736 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1737 TYPE_NAME (new_type) = ada_type_name (type);
1739 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1740 &low_bound, &high_bound) < 0)
1741 low_bound = high_bound = 0;
1742 if (high_bound < low_bound)
1743 *elt_bits = TYPE_LENGTH (new_type) = 0;
1746 *elt_bits *= (high_bound - low_bound + 1);
1747 TYPE_LENGTH (new_type) =
1748 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1751 TYPE_FIXED_INSTANCE (new_type) = 1;
1755 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1757 static struct type *
1758 decode_packed_array_type (struct type *type)
1761 struct block **blocks;
1762 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 struct type *shadow_type;
1770 raw_name = ada_type_name (desc_base_type (type));
1775 name = (char *) alloca (strlen (raw_name) + 1);
1776 tail = strstr (raw_name, "___XP");
1777 type = desc_base_type (type);
1779 memcpy (name, raw_name, tail - raw_name);
1780 name[tail - raw_name] = '\000';
1782 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1783 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1785 lim_warning (_("could not find bounds information on packed array"));
1788 shadow_type = SYMBOL_TYPE (sym);
1789 CHECK_TYPEDEF (shadow_type);
1791 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1793 lim_warning (_("could not understand bounds information on packed array"));
1797 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 (_("could not understand bit size information on packed array"));
1804 return packed_array_type (shadow_type, &bits);
1807 /* Given that ARR is a struct value *indicating a GNAT packed array,
1808 returns a simple array that denotes that array. Its type is a
1809 standard GDB array type except that the BITSIZEs of the array
1810 target types are set to the number of bits in each element, and the
1811 type length is set appropriately. */
1813 static struct value *
1814 decode_packed_array (struct value *arr)
1818 arr = ada_coerce_ref (arr);
1820 /* If our value is a pointer, then dererence it. Make sure that
1821 this operation does not cause the target type to be fixed, as
1822 this would indirectly cause this array to be decoded. The rest
1823 of the routine assumes that the array hasn't been decoded yet,
1824 so we use the basic "value_ind" routine to perform the dereferencing,
1825 as opposed to using "ada_value_ind". */
1826 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1827 arr = value_ind (arr);
1829 type = decode_packed_array_type (value_type (arr));
1832 error (_("can't unpack array"));
1836 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1837 && ada_is_modular_type (value_type (arr)))
1839 /* This is a (right-justified) modular type representing a packed
1840 array with no wrapper. In order to interpret the value through
1841 the (left-justified) packed array type we just built, we must
1842 first left-justify it. */
1843 int bit_size, bit_pos;
1846 mod = ada_modulus (value_type (arr)) - 1;
1853 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1854 arr = ada_value_primitive_packed_val (arr, NULL,
1855 bit_pos / HOST_CHAR_BIT,
1856 bit_pos % HOST_CHAR_BIT,
1861 return coerce_unspec_val_to_type (arr, type);
1865 /* The value of the element of packed array ARR at the ARITY indices
1866 given in IND. ARR must be a simple array. */
1868 static struct value *
1869 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1872 int bits, elt_off, bit_off;
1873 long elt_total_bit_offset;
1874 struct type *elt_type;
1878 elt_total_bit_offset = 0;
1879 elt_type = ada_check_typedef (value_type (arr));
1880 for (i = 0; i < arity; i += 1)
1882 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1883 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1885 (_("attempt to do packed indexing of something other than a packed array"));
1888 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1889 LONGEST lowerbound, upperbound;
1892 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1894 lim_warning (_("don't know bounds of array"));
1895 lowerbound = upperbound = 0;
1898 idx = pos_atr (ind[i]);
1899 if (idx < lowerbound || idx > upperbound)
1900 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1901 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1902 elt_total_bit_offset += (idx - lowerbound) * bits;
1903 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1906 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1907 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1909 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1914 /* Non-zero iff TYPE includes negative integer values. */
1917 has_negatives (struct type *type)
1919 switch (TYPE_CODE (type))
1924 return !TYPE_UNSIGNED (type);
1925 case TYPE_CODE_RANGE:
1926 return TYPE_LOW_BOUND (type) < 0;
1931 /* Create a new value of type TYPE from the contents of OBJ starting
1932 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1933 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1934 assigning through the result will set the field fetched from.
1935 VALADDR is ignored unless OBJ is NULL, in which case,
1936 VALADDR+OFFSET must address the start of storage containing the
1937 packed value. The value returned in this case is never an lval.
1938 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1941 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1942 long offset, int bit_offset, int bit_size,
1946 int src, /* Index into the source area */
1947 targ, /* Index into the target area */
1948 srcBitsLeft, /* Number of source bits left to move */
1949 nsrc, ntarg, /* Number of source and target bytes */
1950 unusedLS, /* Number of bits in next significant
1951 byte of source that are unused */
1952 accumSize; /* Number of meaningful bits in accum */
1953 unsigned char *bytes; /* First byte containing data to unpack */
1954 unsigned char *unpacked;
1955 unsigned long accum; /* Staging area for bits being transferred */
1957 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1958 /* Transmit bytes from least to most significant; delta is the direction
1959 the indices move. */
1960 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
1962 type = ada_check_typedef (type);
1966 v = allocate_value (type);
1967 bytes = (unsigned char *) (valaddr + offset);
1969 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1972 value_address (obj) + offset);
1973 bytes = (unsigned char *) alloca (len);
1974 read_memory (value_address (v), bytes, len);
1978 v = allocate_value (type);
1979 bytes = (unsigned char *) value_contents (obj) + offset;
1985 set_value_component_location (v, obj);
1986 new_addr = value_address (obj) + offset;
1987 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1988 set_value_bitsize (v, bit_size);
1989 if (value_bitpos (v) >= HOST_CHAR_BIT)
1992 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1994 set_value_address (v, new_addr);
1997 set_value_bitsize (v, bit_size);
1998 unpacked = (unsigned char *) value_contents (v);
2000 srcBitsLeft = bit_size;
2002 ntarg = TYPE_LENGTH (type);
2006 memset (unpacked, 0, TYPE_LENGTH (type));
2009 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2012 if (has_negatives (type)
2013 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2017 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 switch (TYPE_CODE (type))
2022 case TYPE_CODE_ARRAY:
2023 case TYPE_CODE_UNION:
2024 case TYPE_CODE_STRUCT:
2025 /* Non-scalar values must be aligned at a byte boundary... */
2027 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2028 /* ... And are placed at the beginning (most-significant) bytes
2030 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2035 targ = TYPE_LENGTH (type) - 1;
2041 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044 unusedLS = bit_offset;
2047 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2054 /* Mask for removing bits of the next source byte that are not
2055 part of the value. */
2056 unsigned int unusedMSMask =
2057 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2059 /* Sign-extend bits for this byte. */
2060 unsigned int signMask = sign & ~unusedMSMask;
2062 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2063 accumSize += HOST_CHAR_BIT - unusedLS;
2064 if (accumSize >= HOST_CHAR_BIT)
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2072 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2079 accum |= sign << accumSize;
2080 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2081 accumSize -= HOST_CHAR_BIT;
2082 accum >>= HOST_CHAR_BIT;
2090 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2091 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2094 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2095 int src_offset, int n, int bits_big_endian_p)
2097 unsigned int accum, mask;
2098 int accum_bits, chunk_size;
2100 target += targ_offset / HOST_CHAR_BIT;
2101 targ_offset %= HOST_CHAR_BIT;
2102 source += src_offset / HOST_CHAR_BIT;
2103 src_offset %= HOST_CHAR_BIT;
2104 if (bits_big_endian_p)
2106 accum = (unsigned char) *source;
2108 accum_bits = HOST_CHAR_BIT - src_offset;
2113 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2114 accum_bits += HOST_CHAR_BIT;
2116 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2120 mask = ((1 << chunk_size) - 1) << unused_right;
2123 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2125 accum_bits -= chunk_size;
2132 accum = (unsigned char) *source >> src_offset;
2134 accum_bits = HOST_CHAR_BIT - src_offset;
2138 accum = accum + ((unsigned char) *source << accum_bits);
2139 accum_bits += HOST_CHAR_BIT;
2141 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 mask = ((1 << chunk_size) - 1) << targ_offset;
2145 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2147 accum_bits -= chunk_size;
2148 accum >>= chunk_size;
2155 /* Store the contents of FROMVAL into the location of TOVAL.
2156 Return a new value with the location of TOVAL and contents of
2157 FROMVAL. Handles assignment into packed fields that have
2158 floating-point or non-scalar types. */
2160 static struct value *
2161 ada_value_assign (struct value *toval, struct value *fromval)
2163 struct type *type = value_type (toval);
2164 int bits = value_bitsize (toval);
2166 toval = ada_coerce_ref (toval);
2167 fromval = ada_coerce_ref (fromval);
2169 if (ada_is_direct_array_type (value_type (toval)))
2170 toval = ada_coerce_to_simple_array (toval);
2171 if (ada_is_direct_array_type (value_type (fromval)))
2172 fromval = ada_coerce_to_simple_array (fromval);
2174 if (!deprecated_value_modifiable (toval))
2175 error (_("Left operand of assignment is not a modifiable lvalue."));
2177 if (VALUE_LVAL (toval) == lval_memory
2179 && (TYPE_CODE (type) == TYPE_CODE_FLT
2180 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2182 int len = (value_bitpos (toval)
2183 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2185 char *buffer = (char *) alloca (len);
2187 CORE_ADDR to_addr = value_address (toval);
2189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2190 fromval = value_cast (type, fromval);
2192 read_memory (to_addr, buffer, len);
2193 from_size = value_bitsize (fromval);
2195 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2196 if (gdbarch_bits_big_endian (get_type_arch (type)))
2197 move_bits (buffer, value_bitpos (toval),
2198 value_contents (fromval), from_size - bits, bits, 1);
2200 move_bits (buffer, value_bitpos (toval),
2201 value_contents (fromval), 0, bits, 0);
2202 write_memory (to_addr, buffer, len);
2203 if (deprecated_memory_changed_hook)
2204 deprecated_memory_changed_hook (to_addr, len);
2206 val = value_copy (toval);
2207 memcpy (value_contents_raw (val), value_contents (fromval),
2208 TYPE_LENGTH (type));
2209 deprecated_set_value_type (val, type);
2214 return value_assign (toval, fromval);
2218 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2219 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2220 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2221 * COMPONENT, and not the inferior's memory. The current contents
2222 * of COMPONENT are ignored. */
2224 value_assign_to_component (struct value *container, struct value *component,
2227 LONGEST offset_in_container =
2228 (LONGEST) (value_address (component) - value_address (container));
2229 int bit_offset_in_container =
2230 value_bitpos (component) - value_bitpos (container);
2233 val = value_cast (value_type (component), val);
2235 if (value_bitsize (component) == 0)
2236 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2238 bits = value_bitsize (component);
2240 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2241 move_bits (value_contents_writeable (container) + offset_in_container,
2242 value_bitpos (container) + bit_offset_in_container,
2243 value_contents (val),
2244 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 move_bits (value_contents_writeable (container) + offset_in_container,
2248 value_bitpos (container) + bit_offset_in_container,
2249 value_contents (val), 0, bits, 0);
2252 /* The value of the element of array ARR at the ARITY indices given in IND.
2253 ARR may be either a simple array, GNAT array descriptor, or pointer
2257 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2261 struct type *elt_type;
2263 elt = ada_coerce_to_simple_array (arr);
2265 elt_type = ada_check_typedef (value_type (elt));
2266 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2267 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2268 return value_subscript_packed (elt, arity, ind);
2270 for (k = 0; k < arity; k += 1)
2272 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2273 error (_("too many subscripts (%d expected)"), k);
2274 elt = value_subscript (elt, pos_atr (ind[k]));
2279 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2280 value of the element of *ARR at the ARITY indices given in
2281 IND. Does not read the entire array into memory. */
2283 static struct value *
2284 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2289 for (k = 0; k < arity; k += 1)
2293 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2294 error (_("too many subscripts (%d expected)"), k);
2295 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2297 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2298 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2299 type = TYPE_TARGET_TYPE (type);
2302 return value_ind (arr);
2305 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2306 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2307 elements starting at index LOW. The lower bound of this array is LOW, as
2309 static struct value *
2310 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 CORE_ADDR base = value_as_address (array_ptr)
2314 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2315 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2316 struct type *index_type =
2317 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2319 struct type *slice_type =
2320 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2321 return value_at_lazy (slice_type, base);
2325 static struct value *
2326 ada_value_slice (struct value *array, int low, int high)
2328 struct type *type = value_type (array);
2329 struct type *index_type =
2330 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2331 struct type *slice_type =
2332 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2333 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2336 /* If type is a record type in the form of a standard GNAT array
2337 descriptor, returns the number of dimensions for type. If arr is a
2338 simple array, returns the number of "array of"s that prefix its
2339 type designation. Otherwise, returns 0. */
2342 ada_array_arity (struct type *type)
2349 type = desc_base_type (type);
2352 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2353 return desc_arity (desc_bounds_type (type));
2355 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2358 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2364 /* If TYPE is a record type in the form of a standard GNAT array
2365 descriptor or a simple array type, returns the element type for
2366 TYPE after indexing by NINDICES indices, or by all indices if
2367 NINDICES is -1. Otherwise, returns NULL. */
2370 ada_array_element_type (struct type *type, int nindices)
2372 type = desc_base_type (type);
2374 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2377 struct type *p_array_type;
2379 p_array_type = desc_data_target_type (type);
2381 k = ada_array_arity (type);
2385 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2386 if (nindices >= 0 && k > nindices)
2388 while (k > 0 && p_array_type != NULL)
2390 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2393 return p_array_type;
2395 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2397 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2399 type = TYPE_TARGET_TYPE (type);
2408 /* The type of nth index in arrays of given type (n numbering from 1).
2409 Does not examine memory. Throws an error if N is invalid or TYPE
2410 is not an array type. NAME is the name of the Ada attribute being
2411 evaluated ('range, 'first, 'last, or 'length); it is used in building
2412 the error message. */
2414 static struct type *
2415 ada_index_type (struct type *type, int n, const char *name)
2417 struct type *result_type;
2419 type = desc_base_type (type);
2421 if (n < 0 || n > ada_array_arity (type))
2422 error (_("invalid dimension number to '%s"), name);
2424 if (ada_is_simple_array_type (type))
2428 for (i = 1; i < n; i += 1)
2429 type = TYPE_TARGET_TYPE (type);
2430 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2431 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2432 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2433 perhaps stabsread.c would make more sense. */
2434 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2439 result_type = desc_index_type (desc_bounds_type (type), n);
2440 if (result_type == NULL)
2441 error (_("attempt to take bound of something that is not an array"));
2447 /* Given that arr is an array type, returns the lower bound of the
2448 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2449 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2450 array-descriptor type. It works for other arrays with bounds supplied
2451 by run-time quantities other than discriminants. */
2454 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2456 struct type *type, *elt_type, *index_type_desc, *index_type;
2460 gdb_assert (which == 0 || which == 1);
2462 if (ada_is_packed_array_type (arr_type))
2463 arr_type = decode_packed_array_type (arr_type);
2465 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2466 return (LONGEST) - which;
2468 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2469 type = TYPE_TARGET_TYPE (arr_type);
2474 for (i = n; i > 1; i--)
2475 elt_type = TYPE_TARGET_TYPE (type);
2477 index_type_desc = ada_find_parallel_type (type, "___XA");
2478 if (index_type_desc != NULL)
2479 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2480 NULL, TYPE_INDEX_TYPE (elt_type));
2482 index_type = TYPE_INDEX_TYPE (elt_type);
2484 switch (TYPE_CODE (index_type))
2486 case TYPE_CODE_RANGE:
2487 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2488 : TYPE_HIGH_BOUND (index_type);
2490 case TYPE_CODE_ENUM:
2491 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2492 : TYPE_FIELD_BITPOS (index_type,
2493 TYPE_NFIELDS (index_type) - 1);
2496 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2502 /* Given that arr is an array value, returns the lower bound of the
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
2505 supplied by run-time quantities other than discriminants. */
2508 ada_array_bound (struct value *arr, int n, int which)
2510 struct type *arr_type = value_type (arr);
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
2514 else if (ada_is_simple_array_type (arr_type))
2515 return ada_array_bound_from_type (arr_type, n, which);
2517 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2520 /* Given that arr is an array value, returns the length of the
2521 nth index. This routine will also work for arrays with bounds
2522 supplied by run-time quantities other than discriminants.
2523 Does not work for arrays indexed by enumeration types with representation
2524 clauses at the moment. */
2527 ada_array_length (struct value *arr, int n)
2529 struct type *arr_type = ada_check_typedef (value_type (arr));
2531 if (ada_is_packed_array_type (arr_type))
2532 return ada_array_length (decode_packed_array (arr), n);
2534 if (ada_is_simple_array_type (arr_type))
2535 return (ada_array_bound_from_type (arr_type, n, 1)
2536 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2538 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2542 /* An empty array whose type is that of ARR_TYPE (an array type),
2543 with bounds LOW to LOW-1. */
2545 static struct value *
2546 empty_array (struct type *arr_type, int low)
2548 struct type *index_type =
2549 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2551 struct type *elt_type = ada_array_element_type (arr_type, 1);
2552 return allocate_value (create_array_type (NULL, elt_type, index_type));
2556 /* Name resolution */
2558 /* The "decoded" name for the user-definable Ada operator corresponding
2562 ada_decoded_op_name (enum exp_opcode op)
2566 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2568 if (ada_opname_table[i].op == op)
2569 return ada_opname_table[i].decoded;
2571 error (_("Could not find operator name for opcode"));
2575 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2576 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2577 undefined namespace) and converts operators that are
2578 user-defined into appropriate function calls. If CONTEXT_TYPE is
2579 non-null, it provides a preferred result type [at the moment, only
2580 type void has any effect---causing procedures to be preferred over
2581 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2582 return type is preferred. May change (expand) *EXP. */
2585 resolve (struct expression **expp, int void_context_p)
2587 struct type *context_type = NULL;
2591 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2593 resolve_subexp (expp, &pc, 1, context_type);
2596 /* Resolve the operator of the subexpression beginning at
2597 position *POS of *EXPP. "Resolving" consists of replacing
2598 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2599 with their resolutions, replacing built-in operators with
2600 function calls to user-defined operators, where appropriate, and,
2601 when DEPROCEDURE_P is non-zero, converting function-valued variables
2602 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2603 are as in ada_resolve, above. */
2605 static struct value *
2606 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2607 struct type *context_type)
2611 struct expression *exp; /* Convenience: == *expp. */
2612 enum exp_opcode op = (*expp)->elts[pc].opcode;
2613 struct value **argvec; /* Vector of operand types (alloca'ed). */
2614 int nargs; /* Number of operands. */
2621 /* Pass one: resolve operands, saving their types and updating *pos,
2626 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2632 resolve_subexp (expp, pos, 0, NULL);
2634 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2639 resolve_subexp (expp, pos, 0, NULL);
2644 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2647 case OP_ATR_MODULUS:
2657 case TERNOP_IN_RANGE:
2658 case BINOP_IN_BOUNDS:
2664 case OP_DISCRETE_RANGE:
2666 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2675 arg1 = resolve_subexp (expp, pos, 0, NULL);
2677 resolve_subexp (expp, pos, 1, NULL);
2679 resolve_subexp (expp, pos, 1, value_type (arg1));
2696 case BINOP_LOGICAL_AND:
2697 case BINOP_LOGICAL_OR:
2698 case BINOP_BITWISE_AND:
2699 case BINOP_BITWISE_IOR:
2700 case BINOP_BITWISE_XOR:
2703 case BINOP_NOTEQUAL:
2710 case BINOP_SUBSCRIPT:
2718 case UNOP_LOGICAL_NOT:
2734 case OP_INTERNALVAR:
2744 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2747 case STRUCTOP_STRUCT:
2748 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2761 error (_("Unexpected operator during name resolution"));
2764 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2765 for (i = 0; i < nargs; i += 1)
2766 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2770 /* Pass two: perform any resolution on principal operator. */
2777 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2779 struct ada_symbol_info *candidates;
2783 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2784 (exp->elts[pc + 2].symbol),
2785 exp->elts[pc + 1].block, VAR_DOMAIN,
2788 if (n_candidates > 1)
2790 /* Types tend to get re-introduced locally, so if there
2791 are any local symbols that are not types, first filter
2794 for (j = 0; j < n_candidates; j += 1)
2795 switch (SYMBOL_CLASS (candidates[j].sym))
2800 case LOC_REGPARM_ADDR:
2808 if (j < n_candidates)
2811 while (j < n_candidates)
2813 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2815 candidates[j] = candidates[n_candidates - 1];
2824 if (n_candidates == 0)
2825 error (_("No definition found for %s"),
2826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 else if (n_candidates == 1)
2829 else if (deprocedure_p
2830 && !is_nonfunction (candidates, n_candidates))
2832 i = ada_resolve_function
2833 (candidates, n_candidates, NULL, 0,
2834 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2837 error (_("Could not find a match for %s"),
2838 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2842 printf_filtered (_("Multiple matches for %s\n"),
2843 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2844 user_select_syms (candidates, n_candidates, 1);
2848 exp->elts[pc + 1].block = candidates[i].block;
2849 exp->elts[pc + 2].symbol = candidates[i].sym;
2850 if (innermost_block == NULL
2851 || contained_in (candidates[i].block, innermost_block))
2852 innermost_block = candidates[i].block;
2856 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2859 replace_operator_with_call (expp, pc, 0, 0,
2860 exp->elts[pc + 2].symbol,
2861 exp->elts[pc + 1].block);
2868 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2869 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2871 struct ada_symbol_info *candidates;
2875 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2876 (exp->elts[pc + 5].symbol),
2877 exp->elts[pc + 4].block, VAR_DOMAIN,
2879 if (n_candidates == 1)
2883 i = ada_resolve_function
2884 (candidates, n_candidates,
2886 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2889 error (_("Could not find a match for %s"),
2890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2893 exp->elts[pc + 4].block = candidates[i].block;
2894 exp->elts[pc + 5].symbol = candidates[i].sym;
2895 if (innermost_block == NULL
2896 || contained_in (candidates[i].block, innermost_block))
2897 innermost_block = candidates[i].block;
2908 case BINOP_BITWISE_AND:
2909 case BINOP_BITWISE_IOR:
2910 case BINOP_BITWISE_XOR:
2912 case BINOP_NOTEQUAL:
2920 case UNOP_LOGICAL_NOT:
2922 if (possible_user_operator_p (op, argvec))
2924 struct ada_symbol_info *candidates;
2928 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2929 (struct block *) NULL, VAR_DOMAIN,
2931 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2932 ada_decoded_op_name (op), NULL);
2936 replace_operator_with_call (expp, pc, nargs, 1,
2937 candidates[i].sym, candidates[i].block);
2948 return evaluate_subexp_type (exp, pos);
2951 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2952 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2953 a non-pointer. A type of 'void' (which is never a valid expression type)
2954 by convention matches anything. */
2955 /* The term "match" here is rather loose. The match is heuristic and
2956 liberal. FIXME: TOO liberal, in fact. */
2959 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2961 ftype = ada_check_typedef (ftype);
2962 atype = ada_check_typedef (atype);
2964 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2965 ftype = TYPE_TARGET_TYPE (ftype);
2966 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2967 atype = TYPE_TARGET_TYPE (atype);
2969 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2970 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2973 switch (TYPE_CODE (ftype))
2978 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2979 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2980 TYPE_TARGET_TYPE (atype), 0);
2983 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_RANGE:
2987 switch (TYPE_CODE (atype))
2990 case TYPE_CODE_ENUM:
2991 case TYPE_CODE_RANGE:
2997 case TYPE_CODE_ARRAY:
2998 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2999 || ada_is_array_descriptor_type (atype));
3001 case TYPE_CODE_STRUCT:
3002 if (ada_is_array_descriptor_type (ftype))
3003 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3004 || ada_is_array_descriptor_type (atype));
3006 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3007 && !ada_is_array_descriptor_type (atype));
3009 case TYPE_CODE_UNION:
3011 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3015 /* Return non-zero if the formals of FUNC "sufficiently match" the
3016 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3017 may also be an enumeral, in which case it is treated as a 0-
3018 argument function. */
3021 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3024 struct type *func_type = SYMBOL_TYPE (func);
3026 if (SYMBOL_CLASS (func) == LOC_CONST
3027 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3028 return (n_actuals == 0);
3029 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3032 if (TYPE_NFIELDS (func_type) != n_actuals)
3035 for (i = 0; i < n_actuals; i += 1)
3037 if (actuals[i] == NULL)
3041 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3042 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3044 if (!ada_type_match (ftype, atype, 1))
3051 /* False iff function type FUNC_TYPE definitely does not produce a value
3052 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3053 FUNC_TYPE is not a valid function type with a non-null return type
3054 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3057 return_match (struct type *func_type, struct type *context_type)
3059 struct type *return_type;
3061 if (func_type == NULL)
3064 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3065 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3067 return_type = base_type (func_type);
3068 if (return_type == NULL)
3071 context_type = base_type (context_type);
3073 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3074 return context_type == NULL || return_type == context_type;
3075 else if (context_type == NULL)
3076 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3078 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3082 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3083 function (if any) that matches the types of the NARGS arguments in
3084 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3085 that returns that type, then eliminate matches that don't. If
3086 CONTEXT_TYPE is void and there is at least one match that does not
3087 return void, eliminate all matches that do.
3089 Asks the user if there is more than one match remaining. Returns -1
3090 if there is no such symbol or none is selected. NAME is used
3091 solely for messages. May re-arrange and modify SYMS in
3092 the process; the index returned is for the modified vector. */
3095 ada_resolve_function (struct ada_symbol_info syms[],
3096 int nsyms, struct value **args, int nargs,
3097 const char *name, struct type *context_type)
3101 int m; /* Number of hits */
3104 /* In the first pass of the loop, we only accept functions matching
3105 context_type. If none are found, we add a second pass of the loop
3106 where every function is accepted. */
3107 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3109 for (k = 0; k < nsyms; k += 1)
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && (fallback || return_match (type, context_type)))
3126 printf_filtered (_("Multiple matches for %s\n"), name);
3127 user_select_syms (syms, m, 1);
3133 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3134 in a listing of choices during disambiguation (see sort_choices, below).
3135 The idea is that overloadings of a subprogram name from the
3136 same package should sort in their source order. We settle for ordering
3137 such symbols by their trailing number (__N or $N). */
3140 encoded_ordered_before (char *N0, char *N1)
3144 else if (N0 == NULL)
3149 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3151 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3153 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3154 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3158 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3161 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3163 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3164 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3166 return (strcmp (N0, N1) < 0);
3170 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3174 sort_choices (struct ada_symbol_info syms[], int nsyms)
3177 for (i = 1; i < nsyms; i += 1)
3179 struct ada_symbol_info sym = syms[i];
3182 for (j = i - 1; j >= 0; j -= 1)
3184 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3185 SYMBOL_LINKAGE_NAME (sym.sym)))
3187 syms[j + 1] = syms[j];
3193 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3194 by asking the user (if necessary), returning the number selected,
3195 and setting the first elements of SYMS items. Error if no symbols
3198 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3199 to be re-integrated one of these days. */
3202 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3205 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3207 int first_choice = (max_results == 1) ? 1 : 2;
3208 const char *select_mode = multiple_symbols_select_mode ();
3210 if (max_results < 1)
3211 error (_("Request to select 0 symbols!"));
3215 if (select_mode == multiple_symbols_cancel)
3217 canceled because the command is ambiguous\n\
3218 See set/show multiple-symbol."));
3220 /* If select_mode is "all", then return all possible symbols.
3221 Only do that if more than one symbol can be selected, of course.
3222 Otherwise, display the menu as usual. */
3223 if (select_mode == multiple_symbols_all && max_results > 1)
3226 printf_unfiltered (_("[0] cancel\n"));
3227 if (max_results > 1)
3228 printf_unfiltered (_("[1] all\n"));
3230 sort_choices (syms, nsyms);
3232 for (i = 0; i < nsyms; i += 1)
3234 if (syms[i].sym == NULL)
3237 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3239 struct symtab_and_line sal =
3240 find_function_start_sal (syms[i].sym, 1);
3241 if (sal.symtab == NULL)
3242 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3244 SYMBOL_PRINT_NAME (syms[i].sym),
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3248 SYMBOL_PRINT_NAME (syms[i].sym),
3249 sal.symtab->filename, sal.line);
3255 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3256 && SYMBOL_TYPE (syms[i].sym) != NULL
3257 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3258 struct symtab *symtab = syms[i].sym->symtab;
3260 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3261 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3263 SYMBOL_PRINT_NAME (syms[i].sym),
3264 symtab->filename, SYMBOL_LINE (syms[i].sym));
3265 else if (is_enumeral
3266 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3268 printf_unfiltered (("[%d] "), i + first_choice);
3269 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3271 printf_unfiltered (_("'(%s) (enumeral)\n"),
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3274 else if (symtab != NULL)
3275 printf_unfiltered (is_enumeral
3276 ? _("[%d] %s in %s (enumeral)\n")
3277 : _("[%d] %s at %s:?\n"),
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3282 printf_unfiltered (is_enumeral
3283 ? _("[%d] %s (enumeral)\n")
3284 : _("[%d] %s at ?\n"),
3286 SYMBOL_PRINT_NAME (syms[i].sym));
3290 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3293 for (i = 0; i < n_chosen; i += 1)
3294 syms[i] = syms[chosen[i]];
3299 /* Read and validate a set of numeric choices from the user in the
3300 range 0 .. N_CHOICES-1. Place the results in increasing
3301 order in CHOICES[0 .. N-1], and return N.
3303 The user types choices as a sequence of numbers on one line
3304 separated by blanks, encoding them as follows:
3306 + A choice of 0 means to cancel the selection, throwing an error.
3307 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3308 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3310 The user is not allowed to choose more than MAX_RESULTS values.
3312 ANNOTATION_SUFFIX, if present, is used to annotate the input
3313 prompts (for use with the -f switch). */
3316 get_selections (int *choices, int n_choices, int max_results,
3317 int is_all_choice, char *annotation_suffix)
3322 int first_choice = is_all_choice ? 2 : 1;
3324 prompt = getenv ("PS2");
3328 args = command_line_input (prompt, 0, annotation_suffix);
3331 error_no_arg (_("one or more choice numbers"));
3335 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3336 order, as given in args. Choices are validated. */
3342 while (isspace (*args))
3344 if (*args == '\0' && n_chosen == 0)
3345 error_no_arg (_("one or more choice numbers"));
3346 else if (*args == '\0')
3349 choice = strtol (args, &args2, 10);
3350 if (args == args2 || choice < 0
3351 || choice > n_choices + first_choice - 1)
3352 error (_("Argument must be choice number"));
3356 error (_("cancelled"));
3358 if (choice < first_choice)
3360 n_chosen = n_choices;
3361 for (j = 0; j < n_choices; j += 1)
3365 choice -= first_choice;
3367 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3371 if (j < 0 || choice != choices[j])
3374 for (k = n_chosen - 1; k > j; k -= 1)
3375 choices[k + 1] = choices[k];
3376 choices[j + 1] = choice;
3381 if (n_chosen > max_results)
3382 error (_("Select no more than %d of the above"), max_results);
3387 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3388 on the function identified by SYM and BLOCK, and taking NARGS
3389 arguments. Update *EXPP as needed to hold more space. */
3392 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3393 int oplen, struct symbol *sym,
3394 struct block *block)
3396 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3397 symbol, -oplen for operator being replaced). */
3398 struct expression *newexp = (struct expression *)
3399 xmalloc (sizeof (struct expression)
3400 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3401 struct expression *exp = *expp;
3403 newexp->nelts = exp->nelts + 7 - oplen;
3404 newexp->language_defn = exp->language_defn;
3405 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3406 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3407 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3409 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3410 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3412 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3413 newexp->elts[pc + 4].block = block;
3414 newexp->elts[pc + 5].symbol = sym;
3420 /* Type-class predicates */
3422 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3426 numeric_type_p (struct type *type)
3432 switch (TYPE_CODE (type))
3437 case TYPE_CODE_RANGE:
3438 return (type == TYPE_TARGET_TYPE (type)
3439 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3446 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3449 integer_type_p (struct type *type)
3455 switch (TYPE_CODE (type))
3459 case TYPE_CODE_RANGE:
3460 return (type == TYPE_TARGET_TYPE (type)
3461 || integer_type_p (TYPE_TARGET_TYPE (type)));
3468 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3471 scalar_type_p (struct type *type)
3477 switch (TYPE_CODE (type))
3480 case TYPE_CODE_RANGE:
3481 case TYPE_CODE_ENUM:
3490 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3493 discrete_type_p (struct type *type)
3499 switch (TYPE_CODE (type))
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_ENUM:
3511 /* Returns non-zero if OP with operands in the vector ARGS could be
3512 a user-defined function. Errs on the side of pre-defined operators
3513 (i.e., result 0). */
3516 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3518 struct type *type0 =
3519 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3520 struct type *type1 =
3521 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3535 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3539 case BINOP_BITWISE_AND:
3540 case BINOP_BITWISE_IOR:
3541 case BINOP_BITWISE_XOR:
3542 return (!(integer_type_p (type0) && integer_type_p (type1)));
3545 case BINOP_NOTEQUAL:
3550 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3553 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3556 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3560 case UNOP_LOGICAL_NOT:
3562 return (!numeric_type_p (type0));
3571 1. In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3574 2. We handle both the (old) purely type-based representation of
3575 renamings and the (new) variable-based encoding. At some point,
3576 it is devoutly to be hoped that the former goes away
3577 (FIXME: hilfinger-2007-07-09).
3578 3. Subprogram renamings are not implemented, although the XRS
3579 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3581 /* If SYM encodes a renaming,
3583 <renaming> renames <renamed entity>,
3585 sets *LEN to the length of the renamed entity's name,
3586 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3587 the string describing the subcomponent selected from the renamed
3588 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3589 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3590 are undefined). Otherwise, returns a value indicating the category
3591 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3592 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3593 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3594 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3595 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3596 may be NULL, in which case they are not assigned.
3598 [Currently, however, GCC does not generate subprogram renamings.] */
3600 enum ada_renaming_category
3601 ada_parse_renaming (struct symbol *sym,
3602 const char **renamed_entity, int *len,
3603 const char **renaming_expr)
3605 enum ada_renaming_category kind;
3610 return ADA_NOT_RENAMING;
3611 switch (SYMBOL_CLASS (sym))
3614 return ADA_NOT_RENAMING;
3616 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3617 renamed_entity, len, renaming_expr);
3621 case LOC_OPTIMIZED_OUT:
3622 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3624 return ADA_NOT_RENAMING;
3628 kind = ADA_OBJECT_RENAMING;
3632 kind = ADA_EXCEPTION_RENAMING;
3636 kind = ADA_PACKAGE_RENAMING;
3640 kind = ADA_SUBPROGRAM_RENAMING;
3644 return ADA_NOT_RENAMING;
3648 if (renamed_entity != NULL)
3649 *renamed_entity = info;
3650 suffix = strstr (info, "___XE");
3651 if (suffix == NULL || suffix == info)
3652 return ADA_NOT_RENAMING;
3654 *len = strlen (info) - strlen (suffix);
3656 if (renaming_expr != NULL)
3657 *renaming_expr = suffix;
3661 /* Assuming TYPE encodes a renaming according to the old encoding in
3662 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3663 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3664 ADA_NOT_RENAMING otherwise. */
3665 static enum ada_renaming_category
3666 parse_old_style_renaming (struct type *type,
3667 const char **renamed_entity, int *len,
3668 const char **renaming_expr)
3670 enum ada_renaming_category kind;
3675 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3676 || TYPE_NFIELDS (type) != 1)
3677 return ADA_NOT_RENAMING;
3679 name = type_name_no_tag (type);
3681 return ADA_NOT_RENAMING;
3683 name = strstr (name, "___XR");
3685 return ADA_NOT_RENAMING;
3690 kind = ADA_OBJECT_RENAMING;
3693 kind = ADA_EXCEPTION_RENAMING;
3696 kind = ADA_PACKAGE_RENAMING;
3699 kind = ADA_SUBPROGRAM_RENAMING;
3702 return ADA_NOT_RENAMING;
3705 info = TYPE_FIELD_NAME (type, 0);
3707 return ADA_NOT_RENAMING;
3708 if (renamed_entity != NULL)
3709 *renamed_entity = info;
3710 suffix = strstr (info, "___XE");
3711 if (renaming_expr != NULL)
3712 *renaming_expr = suffix + 5;
3713 if (suffix == NULL || suffix == info)
3714 return ADA_NOT_RENAMING;
3716 *len = suffix - info;
3722 /* Evaluation: Function Calls */
3724 /* Return an lvalue containing the value VAL. This is the identity on
3725 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3726 on the stack, using and updating *SP as the stack pointer, and
3727 returning an lvalue whose value_address points to the copy. */
3729 static struct value *
3730 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3732 if (! VALUE_LVAL (val))
3734 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3736 /* The following is taken from the structure-return code in
3737 call_function_by_hand. FIXME: Therefore, some refactoring seems
3739 if (gdbarch_inner_than (gdbarch, 1, 2))
3741 /* Stack grows downward. Align SP and value_address (val) after
3742 reserving sufficient space. */
3744 if (gdbarch_frame_align_p (gdbarch))
3745 *sp = gdbarch_frame_align (gdbarch, *sp);
3746 set_value_address (val, *sp);
3750 /* Stack grows upward. Align the frame, allocate space, and
3751 then again, re-align the frame. */
3752 if (gdbarch_frame_align_p (gdbarch))
3753 *sp = gdbarch_frame_align (gdbarch, *sp);
3754 set_value_address (val, *sp);
3756 if (gdbarch_frame_align_p (gdbarch))
3757 *sp = gdbarch_frame_align (gdbarch, *sp);
3759 VALUE_LVAL (val) = lval_memory;
3761 write_memory (value_address (val), value_contents_raw (val), len);
3767 /* Return the value ACTUAL, converted to be an appropriate value for a
3768 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3769 allocating any necessary descriptors (fat pointers), or copies of
3770 values not residing in memory, updating it as needed. */
3773 ada_convert_actual (struct value *actual, struct type *formal_type0,
3774 struct gdbarch *gdbarch, CORE_ADDR *sp)
3776 struct type *actual_type = ada_check_typedef (value_type (actual));
3777 struct type *formal_type = ada_check_typedef (formal_type0);
3778 struct type *formal_target =
3779 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3780 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3781 struct type *actual_target =
3782 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3783 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3785 if (ada_is_array_descriptor_type (formal_target)
3786 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3787 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3788 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3789 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3791 struct value *result;
3792 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3793 && ada_is_array_descriptor_type (actual_target))
3794 result = desc_data (actual);
3795 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3797 if (VALUE_LVAL (actual) != lval_memory)
3800 actual_type = ada_check_typedef (value_type (actual));
3801 val = allocate_value (actual_type);
3802 memcpy ((char *) value_contents_raw (val),
3803 (char *) value_contents (actual),
3804 TYPE_LENGTH (actual_type));
3805 actual = ensure_lval (val, gdbarch, sp);
3807 result = value_addr (actual);
3811 return value_cast_pointers (formal_type, result);
3813 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3814 return ada_value_ind (actual);
3820 /* Push a descriptor of type TYPE for array value ARR on the stack at
3821 *SP, updating *SP to reflect the new descriptor. Return either
3822 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3823 to-descriptor type rather than a descriptor type), a struct value *
3824 representing a pointer to this descriptor. */
3826 static struct value *
3827 make_array_descriptor (struct type *type, struct value *arr,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
3830 struct type *bounds_type = desc_bounds_type (type);
3831 struct type *desc_type = desc_base_type (type);
3832 struct value *descriptor = allocate_value (desc_type);
3833 struct value *bounds = allocate_value (bounds_type);
3836 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3838 modify_general_field (value_type (bounds),
3839 value_contents_writeable (bounds),
3840 ada_array_bound (arr, i, 0),
3841 desc_bound_bitpos (bounds_type, i, 0),
3842 desc_bound_bitsize (bounds_type, i, 0));
3843 modify_general_field (value_type (bounds),
3844 value_contents_writeable (bounds),
3845 ada_array_bound (arr, i, 1),
3846 desc_bound_bitpos (bounds_type, i, 1),
3847 desc_bound_bitsize (bounds_type, i, 1));
3850 bounds = ensure_lval (bounds, gdbarch, sp);
3852 modify_general_field (value_type (descriptor),
3853 value_contents_writeable (descriptor),
3854 value_address (ensure_lval (arr, gdbarch, sp)),
3855 fat_pntr_data_bitpos (desc_type),
3856 fat_pntr_data_bitsize (desc_type));
3858 modify_general_field (value_type (descriptor),
3859 value_contents_writeable (descriptor),
3860 value_address (bounds),
3861 fat_pntr_bounds_bitpos (desc_type),
3862 fat_pntr_bounds_bitsize (desc_type));
3864 descriptor = ensure_lval (descriptor, gdbarch, sp);
3866 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3867 return value_addr (descriptor);
3872 /* Dummy definitions for an experimental caching module that is not
3873 * used in the public sources. */
3876 lookup_cached_symbol (const char *name, domain_enum namespace,
3877 struct symbol **sym, struct block **block)
3883 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3884 struct block *block)
3890 /* Return the result of a standard (literal, C-like) lookup of NAME in
3891 given DOMAIN, visible from lexical block BLOCK. */
3893 static struct symbol *
3894 standard_lookup (const char *name, const struct block *block,
3899 if (lookup_cached_symbol (name, domain, &sym, NULL))
3901 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3902 cache_symbol (name, domain, sym, block_found);
3907 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3908 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3909 since they contend in overloading in the same way. */
3911 is_nonfunction (struct ada_symbol_info syms[], int n)
3915 for (i = 0; i < n; i += 1)
3916 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3917 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3918 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3924 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3925 struct types. Otherwise, they may not. */
3928 equiv_types (struct type *type0, struct type *type1)
3932 if (type0 == NULL || type1 == NULL
3933 || TYPE_CODE (type0) != TYPE_CODE (type1))
3935 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3936 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3937 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3938 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3944 /* True iff SYM0 represents the same entity as SYM1, or one that is
3945 no more defined than that of SYM1. */
3948 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3952 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3953 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3956 switch (SYMBOL_CLASS (sym0))
3962 struct type *type0 = SYMBOL_TYPE (sym0);
3963 struct type *type1 = SYMBOL_TYPE (sym1);
3964 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3965 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3966 int len0 = strlen (name0);
3968 TYPE_CODE (type0) == TYPE_CODE (type1)
3969 && (equiv_types (type0, type1)
3970 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3971 && strncmp (name1 + len0, "___XV", 5) == 0));
3974 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3975 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3981 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3982 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3985 add_defn_to_vec (struct obstack *obstackp,
3987 struct block *block)
3991 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3993 /* Do not try to complete stub types, as the debugger is probably
3994 already scanning all symbols matching a certain name at the
3995 time when this function is called. Trying to replace the stub
3996 type by its associated full type will cause us to restart a scan
3997 which may lead to an infinite recursion. Instead, the client
3998 collecting the matching symbols will end up collecting several
3999 matches, with at least one of them complete. It can then filter
4000 out the stub ones if needed. */
4002 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4004 if (lesseq_defined_than (sym, prevDefns[i].sym))
4006 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4008 prevDefns[i].sym = sym;
4009 prevDefns[i].block = block;
4015 struct ada_symbol_info info;
4019 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4023 /* Number of ada_symbol_info structures currently collected in
4024 current vector in *OBSTACKP. */
4027 num_defns_collected (struct obstack *obstackp)
4029 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4032 /* Vector of ada_symbol_info structures currently collected in current
4033 vector in *OBSTACKP. If FINISH, close off the vector and return
4034 its final address. */
4036 static struct ada_symbol_info *
4037 defns_collected (struct obstack *obstackp, int finish)
4040 return obstack_finish (obstackp);
4042 return (struct ada_symbol_info *) obstack_base (obstackp);
4045 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4046 Check the global symbols if GLOBAL, the static symbols if not.
4047 Do wild-card match if WILD. */
4049 static struct partial_symbol *
4050 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4051 int global, domain_enum namespace, int wild)
4053 struct partial_symbol **start;
4054 int name_len = strlen (name);
4055 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4064 pst->objfile->global_psymbols.list + pst->globals_offset :
4065 pst->objfile->static_psymbols.list + pst->statics_offset);
4069 for (i = 0; i < length; i += 1)
4071 struct partial_symbol *psym = start[i];
4073 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4074 SYMBOL_DOMAIN (psym), namespace)
4075 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4089 int M = (U + i) >> 1;
4090 struct partial_symbol *psym = start[M];
4091 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4093 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4095 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4106 struct partial_symbol *psym = start[i];
4108 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4109 SYMBOL_DOMAIN (psym), namespace))
4111 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4119 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4133 int M = (U + i) >> 1;
4134 struct partial_symbol *psym = start[M];
4135 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4137 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4139 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4150 struct partial_symbol *psym = start[i];
4152 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4153 SYMBOL_DOMAIN (psym), namespace))
4157 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4160 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4162 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4172 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4182 /* Return a minimal symbol matching NAME according to Ada decoding
4183 rules. Returns NULL if there is no such minimal symbol. Names
4184 prefixed with "standard__" are handled specially: "standard__" is
4185 first stripped off, and only static and global symbols are searched. */
4187 struct minimal_symbol *
4188 ada_lookup_simple_minsym (const char *name)
4190 struct objfile *objfile;
4191 struct minimal_symbol *msymbol;
4194 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4196 name += sizeof ("standard__") - 1;
4200 wild_match = (strstr (name, "__") == NULL);
4202 ALL_MSYMBOLS (objfile, msymbol)
4204 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4205 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4212 /* For all subprograms that statically enclose the subprogram of the
4213 selected frame, add symbols matching identifier NAME in DOMAIN
4214 and their blocks to the list of data in OBSTACKP, as for
4215 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4219 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4220 const char *name, domain_enum namespace,
4225 /* True if TYPE is definitely an artificial type supplied to a symbol
4226 for which no debugging information was given in the symbol file. */
4229 is_nondebugging_type (struct type *type)
4231 char *name = ada_type_name (type);
4232 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4235 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4236 duplicate other symbols in the list (The only case I know of where
4237 this happens is when object files containing stabs-in-ecoff are
4238 linked with files containing ordinary ecoff debugging symbols (or no
4239 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4240 Returns the number of items in the modified list. */
4243 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4252 /* If two symbols have the same name and one of them is a stub type,
4253 the get rid of the stub. */
4255 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4256 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4258 for (j = 0; j < nsyms; j++)
4261 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4262 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4263 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4264 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4269 /* Two symbols with the same name, same class and same address
4270 should be identical. */
4272 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4273 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4274 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4276 for (j = 0; j < nsyms; j += 1)
4279 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4280 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4281 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4282 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4283 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4284 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4291 for (j = i + 1; j < nsyms; j += 1)
4292 syms[j - 1] = syms[j];
4301 /* Given a type that corresponds to a renaming entity, use the type name
4302 to extract the scope (package name or function name, fully qualified,
4303 and following the GNAT encoding convention) where this renaming has been
4304 defined. The string returned needs to be deallocated after use. */
4307 xget_renaming_scope (struct type *renaming_type)
4309 /* The renaming types adhere to the following convention:
4310 <scope>__<rename>___<XR extension>.
4311 So, to extract the scope, we search for the "___XR" extension,
4312 and then backtrack until we find the first "__". */
4314 const char *name = type_name_no_tag (renaming_type);
4315 char *suffix = strstr (name, "___XR");
4320 /* Now, backtrack a bit until we find the first "__". Start looking
4321 at suffix - 3, as the <rename> part is at least one character long. */
4323 for (last = suffix - 3; last > name; last--)
4324 if (last[0] == '_' && last[1] == '_')
4327 /* Make a copy of scope and return it. */
4329 scope_len = last - name;
4330 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4332 strncpy (scope, name, scope_len);
4333 scope[scope_len] = '\0';
4338 /* Return nonzero if NAME corresponds to a package name. */
4341 is_package_name (const char *name)
4343 /* Here, We take advantage of the fact that no symbols are generated
4344 for packages, while symbols are generated for each function.
4345 So the condition for NAME represent a package becomes equivalent
4346 to NAME not existing in our list of symbols. There is only one
4347 small complication with library-level functions (see below). */
4351 /* If it is a function that has not been defined at library level,
4352 then we should be able to look it up in the symbols. */
4353 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4356 /* Library-level function names start with "_ada_". See if function
4357 "_ada_" followed by NAME can be found. */
4359 /* Do a quick check that NAME does not contain "__", since library-level
4360 functions names cannot contain "__" in them. */
4361 if (strstr (name, "__") != NULL)
4364 fun_name = xstrprintf ("_ada_%s", name);
4366 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4369 /* Return nonzero if SYM corresponds to a renaming entity that is
4370 not visible from FUNCTION_NAME. */
4373 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4377 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4380 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4382 make_cleanup (xfree, scope);
4384 /* If the rename has been defined in a package, then it is visible. */
4385 if (is_package_name (scope))
4388 /* Check that the rename is in the current function scope by checking
4389 that its name starts with SCOPE. */
4391 /* If the function name starts with "_ada_", it means that it is
4392 a library-level function. Strip this prefix before doing the
4393 comparison, as the encoding for the renaming does not contain
4395 if (strncmp (function_name, "_ada_", 5) == 0)
4398 return (strncmp (function_name, scope, strlen (scope)) != 0);
4401 /* Remove entries from SYMS that corresponds to a renaming entity that
4402 is not visible from the function associated with CURRENT_BLOCK or
4403 that is superfluous due to the presence of more specific renaming
4404 information. Places surviving symbols in the initial entries of
4405 SYMS and returns the number of surviving symbols.
4408 First, in cases where an object renaming is implemented as a
4409 reference variable, GNAT may produce both the actual reference
4410 variable and the renaming encoding. In this case, we discard the
4413 Second, GNAT emits a type following a specified encoding for each renaming
4414 entity. Unfortunately, STABS currently does not support the definition
4415 of types that are local to a given lexical block, so all renamings types
4416 are emitted at library level. As a consequence, if an application
4417 contains two renaming entities using the same name, and a user tries to
4418 print the value of one of these entities, the result of the ada symbol
4419 lookup will also contain the wrong renaming type.
4421 This function partially covers for this limitation by attempting to
4422 remove from the SYMS list renaming symbols that should be visible
4423 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4424 method with the current information available. The implementation
4425 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4427 - When the user tries to print a rename in a function while there
4428 is another rename entity defined in a package: Normally, the
4429 rename in the function has precedence over the rename in the
4430 package, so the latter should be removed from the list. This is
4431 currently not the case.
4433 - This function will incorrectly remove valid renames if
4434 the CURRENT_BLOCK corresponds to a function which symbol name
4435 has been changed by an "Export" pragma. As a consequence,
4436 the user will be unable to print such rename entities. */
4439 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4440 int nsyms, const struct block *current_block)
4442 struct symbol *current_function;
4443 char *current_function_name;
4445 int is_new_style_renaming;
4447 /* If there is both a renaming foo___XR... encoded as a variable and
4448 a simple variable foo in the same block, discard the latter.
4449 First, zero out such symbols, then compress. */
4450 is_new_style_renaming = 0;
4451 for (i = 0; i < nsyms; i += 1)
4453 struct symbol *sym = syms[i].sym;
4454 struct block *block = syms[i].block;
4458 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4460 name = SYMBOL_LINKAGE_NAME (sym);
4461 suffix = strstr (name, "___XR");
4465 int name_len = suffix - name;
4467 is_new_style_renaming = 1;
4468 for (j = 0; j < nsyms; j += 1)
4469 if (i != j && syms[j].sym != NULL
4470 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4472 && block == syms[j].block)
4476 if (is_new_style_renaming)
4480 for (j = k = 0; j < nsyms; j += 1)
4481 if (syms[j].sym != NULL)
4489 /* Extract the function name associated to CURRENT_BLOCK.
4490 Abort if unable to do so. */
4492 if (current_block == NULL)
4495 current_function = block_linkage_function (current_block);
4496 if (current_function == NULL)
4499 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4500 if (current_function_name == NULL)
4503 /* Check each of the symbols, and remove it from the list if it is
4504 a type corresponding to a renaming that is out of the scope of
4505 the current block. */
4510 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4511 == ADA_OBJECT_RENAMING
4512 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4515 for (j = i + 1; j < nsyms; j += 1)
4516 syms[j - 1] = syms[j];
4526 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4527 whose name and domain match NAME and DOMAIN respectively.
4528 If no match was found, then extend the search to "enclosing"
4529 routines (in other words, if we're inside a nested function,
4530 search the symbols defined inside the enclosing functions).
4532 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4535 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4536 struct block *block, domain_enum domain,
4539 int block_depth = 0;
4541 while (block != NULL)
4544 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4546 /* If we found a non-function match, assume that's the one. */
4547 if (is_nonfunction (defns_collected (obstackp, 0),
4548 num_defns_collected (obstackp)))
4551 block = BLOCK_SUPERBLOCK (block);
4554 /* If no luck so far, try to find NAME as a local symbol in some lexically
4555 enclosing subprogram. */
4556 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4557 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4560 /* Add to OBSTACKP all non-local symbols whose name and domain match
4561 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4562 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4565 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4566 domain_enum domain, int global,
4569 struct objfile *objfile;
4570 struct partial_symtab *ps;
4572 ALL_PSYMTABS (objfile, ps)
4576 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4578 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4579 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4581 if (s == NULL || !s->primary)
4583 ada_add_block_symbols (obstackp,
4584 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4585 name, domain, objfile, wild_match);
4590 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4591 scope and in global scopes, returning the number of matches. Sets
4592 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4593 indicating the symbols found and the blocks and symbol tables (if
4594 any) in which they were found. This vector are transient---good only to
4595 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4596 symbol match within the nest of blocks whose innermost member is BLOCK0,
4597 is the one match returned (no other matches in that or
4598 enclosing blocks is returned). If there are any matches in or
4599 surrounding BLOCK0, then these alone are returned. Otherwise, the
4600 search extends to global and file-scope (static) symbol tables.
4601 Names prefixed with "standard__" are handled specially: "standard__"
4602 is first stripped off, and only static and global symbols are searched. */
4605 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4606 domain_enum namespace,
4607 struct ada_symbol_info **results)
4610 struct block *block;
4616 obstack_free (&symbol_list_obstack, NULL);
4617 obstack_init (&symbol_list_obstack);
4621 /* Search specified block and its superiors. */
4623 wild_match = (strstr (name0, "__") == NULL);
4625 block = (struct block *) block0; /* FIXME: No cast ought to be
4626 needed, but adding const will
4627 have a cascade effect. */
4629 /* Special case: If the user specifies a symbol name inside package
4630 Standard, do a non-wild matching of the symbol name without
4631 the "standard__" prefix. This was primarily introduced in order
4632 to allow the user to specifically access the standard exceptions
4633 using, for instance, Standard.Constraint_Error when Constraint_Error
4634 is ambiguous (due to the user defining its own Constraint_Error
4635 entity inside its program). */
4636 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4640 name = name0 + sizeof ("standard__") - 1;
4643 /* Check the non-global symbols. If we have ANY match, then we're done. */
4645 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4647 if (num_defns_collected (&symbol_list_obstack) > 0)
4650 /* No non-global symbols found. Check our cache to see if we have
4651 already performed this search before. If we have, then return
4655 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4658 add_defn_to_vec (&symbol_list_obstack, sym, block);
4662 /* Search symbols from all global blocks. */
4664 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4667 /* Now add symbols from all per-file blocks if we've gotten no hits
4668 (not strictly correct, but perhaps better than an error). */
4670 if (num_defns_collected (&symbol_list_obstack) == 0)
4671 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4675 ndefns = num_defns_collected (&symbol_list_obstack);
4676 *results = defns_collected (&symbol_list_obstack, 1);
4678 ndefns = remove_extra_symbols (*results, ndefns);
4681 cache_symbol (name0, namespace, NULL, NULL);
4683 if (ndefns == 1 && cacheIfUnique)
4684 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4686 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4692 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4693 domain_enum namespace, struct block **block_found)
4695 struct ada_symbol_info *candidates;
4698 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4700 if (n_candidates == 0)
4703 if (block_found != NULL)
4704 *block_found = candidates[0].block;
4706 return fixup_symbol_section (candidates[0].sym, NULL);
4709 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4710 scope and in global scopes, or NULL if none. NAME is folded and
4711 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4712 choosing the first symbol if there are multiple choices.
4713 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4714 table in which the symbol was found (in both cases, these
4715 assignments occur only if the pointers are non-null). */
4717 ada_lookup_symbol (const char *name, const struct block *block0,
4718 domain_enum namespace, int *is_a_field_of_this)
4720 if (is_a_field_of_this != NULL)
4721 *is_a_field_of_this = 0;
4724 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4725 block0, namespace, NULL);
4728 static struct symbol *
4729 ada_lookup_symbol_nonlocal (const char *name,
4730 const char *linkage_name,
4731 const struct block *block,
4732 const domain_enum domain)
4734 if (linkage_name == NULL)
4735 linkage_name = name;
4736 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4741 /* True iff STR is a possible encoded suffix of a normal Ada name
4742 that is to be ignored for matching purposes. Suffixes of parallel
4743 names (e.g., XVE) are not included here. Currently, the possible suffixes
4744 are given by any of the regular expressions:
4746 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4747 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4748 _E[0-9]+[bs]$ [protected object entry suffixes]
4749 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4751 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4752 match is performed. This sequence is used to differentiate homonyms,
4753 is an optional part of a valid name suffix. */
4756 is_name_suffix (const char *str)
4759 const char *matching;
4760 const int len = strlen (str);
4762 /* Skip optional leading __[0-9]+. */
4764 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4767 while (isdigit (str[0]))
4773 if (str[0] == '.' || str[0] == '$')
4776 while (isdigit (matching[0]))
4778 if (matching[0] == '\0')
4784 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4787 while (isdigit (matching[0]))
4789 if (matching[0] == '\0')
4794 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4795 with a N at the end. Unfortunately, the compiler uses the same
4796 convention for other internal types it creates. So treating
4797 all entity names that end with an "N" as a name suffix causes
4798 some regressions. For instance, consider the case of an enumerated
4799 type. To support the 'Image attribute, it creates an array whose
4801 Having a single character like this as a suffix carrying some
4802 information is a bit risky. Perhaps we should change the encoding
4803 to be something like "_N" instead. In the meantime, do not do
4804 the following check. */
4805 /* Protected Object Subprograms */
4806 if (len == 1 && str [0] == 'N')
4811 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4814 while (isdigit (matching[0]))
4816 if ((matching[0] == 'b' || matching[0] == 's')
4817 && matching [1] == '\0')
4821 /* ??? We should not modify STR directly, as we are doing below. This
4822 is fine in this case, but may become problematic later if we find
4823 that this alternative did not work, and want to try matching
4824 another one from the begining of STR. Since we modified it, we
4825 won't be able to find the begining of the string anymore! */
4829 while (str[0] != '_' && str[0] != '\0')
4831 if (str[0] != 'n' && str[0] != 'b')
4837 if (str[0] == '\000')
4842 if (str[1] != '_' || str[2] == '\000')
4846 if (strcmp (str + 3, "JM") == 0)
4848 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4849 the LJM suffix in favor of the JM one. But we will
4850 still accept LJM as a valid suffix for a reasonable
4851 amount of time, just to allow ourselves to debug programs
4852 compiled using an older version of GNAT. */
4853 if (strcmp (str + 3, "LJM") == 0)
4857 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4858 || str[4] == 'U' || str[4] == 'P')
4860 if (str[4] == 'R' && str[5] != 'T')
4864 if (!isdigit (str[2]))
4866 for (k = 3; str[k] != '\0'; k += 1)
4867 if (!isdigit (str[k]) && str[k] != '_')
4871 if (str[0] == '$' && isdigit (str[1]))
4873 for (k = 2; str[k] != '\0'; k += 1)
4874 if (!isdigit (str[k]) && str[k] != '_')
4881 /* Return non-zero if the string starting at NAME and ending before
4882 NAME_END contains no capital letters. */
4885 is_valid_name_for_wild_match (const char *name0)
4887 const char *decoded_name = ada_decode (name0);
4890 /* If the decoded name starts with an angle bracket, it means that
4891 NAME0 does not follow the GNAT encoding format. It should then
4892 not be allowed as a possible wild match. */
4893 if (decoded_name[0] == '<')
4896 for (i=0; decoded_name[i] != '\0'; i++)
4897 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4903 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4904 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4905 informational suffixes of NAME (i.e., for which is_name_suffix is
4909 wild_match (const char *patn0, int patn_len, const char *name0)
4916 match = strstr (start, patn0);
4921 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4922 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4923 && is_name_suffix (match + patn_len))
4924 return (match == name0 || is_valid_name_for_wild_match (name0));
4929 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4930 vector *defn_symbols, updating the list of symbols in OBSTACKP
4931 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4932 OBJFILE is the section containing BLOCK.
4933 SYMTAB is recorded with each symbol added. */
4936 ada_add_block_symbols (struct obstack *obstackp,
4937 struct block *block, const char *name,
4938 domain_enum domain, struct objfile *objfile,
4941 struct dict_iterator iter;
4942 int name_len = strlen (name);
4943 /* A matching argument symbol, if any. */
4944 struct symbol *arg_sym;
4945 /* Set true when we find a matching non-argument symbol. */
4954 ALL_BLOCK_SYMBOLS (block, iter, sym)
4956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4957 SYMBOL_DOMAIN (sym), domain)
4958 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4960 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4962 else if (SYMBOL_IS_ARGUMENT (sym))
4967 add_defn_to_vec (obstackp,
4968 fixup_symbol_section (sym, objfile),
4976 ALL_BLOCK_SYMBOLS (block, iter, sym)
4978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4979 SYMBOL_DOMAIN (sym), domain))
4981 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4983 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4985 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4987 if (SYMBOL_IS_ARGUMENT (sym))
4992 add_defn_to_vec (obstackp,
4993 fixup_symbol_section (sym, objfile),
5002 if (!found_sym && arg_sym != NULL)
5004 add_defn_to_vec (obstackp,
5005 fixup_symbol_section (arg_sym, objfile),
5014 ALL_BLOCK_SYMBOLS (block, iter, sym)
5016 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5017 SYMBOL_DOMAIN (sym), domain))
5021 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5024 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5026 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5031 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5033 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5035 if (SYMBOL_IS_ARGUMENT (sym))
5040 add_defn_to_vec (obstackp,
5041 fixup_symbol_section (sym, objfile),
5049 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5050 They aren't parameters, right? */
5051 if (!found_sym && arg_sym != NULL)
5053 add_defn_to_vec (obstackp,
5054 fixup_symbol_section (arg_sym, objfile),
5061 /* Symbol Completion */
5063 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5064 name in a form that's appropriate for the completion. The result
5065 does not need to be deallocated, but is only good until the next call.
5067 TEXT_LEN is equal to the length of TEXT.
5068 Perform a wild match if WILD_MATCH is set.
5069 ENCODED should be set if TEXT represents the start of a symbol name
5070 in its encoded form. */
5073 symbol_completion_match (const char *sym_name,
5074 const char *text, int text_len,
5075 int wild_match, int encoded)
5078 const int verbatim_match = (text[0] == '<');
5083 /* Strip the leading angle bracket. */
5088 /* First, test against the fully qualified name of the symbol. */
5090 if (strncmp (sym_name, text, text_len) == 0)
5093 if (match && !encoded)
5095 /* One needed check before declaring a positive match is to verify
5096 that iff we are doing a verbatim match, the decoded version
5097 of the symbol name starts with '<'. Otherwise, this symbol name
5098 is not a suitable completion. */
5099 const char *sym_name_copy = sym_name;
5100 int has_angle_bracket;
5102 sym_name = ada_decode (sym_name);
5103 has_angle_bracket = (sym_name[0] == '<');
5104 match = (has_angle_bracket == verbatim_match);
5105 sym_name = sym_name_copy;
5108 if (match && !verbatim_match)
5110 /* When doing non-verbatim match, another check that needs to
5111 be done is to verify that the potentially matching symbol name
5112 does not include capital letters, because the ada-mode would
5113 not be able to understand these symbol names without the
5114 angle bracket notation. */
5117 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5122 /* Second: Try wild matching... */
5124 if (!match && wild_match)
5126 /* Since we are doing wild matching, this means that TEXT
5127 may represent an unqualified symbol name. We therefore must
5128 also compare TEXT against the unqualified name of the symbol. */
5129 sym_name = ada_unqualified_name (ada_decode (sym_name));
5131 if (strncmp (sym_name, text, text_len) == 0)
5135 /* Finally: If we found a mach, prepare the result to return. */
5141 sym_name = add_angle_brackets (sym_name);
5144 sym_name = ada_decode (sym_name);
5149 typedef char *char_ptr;
5150 DEF_VEC_P (char_ptr);
5152 /* A companion function to ada_make_symbol_completion_list().
5153 Check if SYM_NAME represents a symbol which name would be suitable
5154 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5155 it is appended at the end of the given string vector SV.
5157 ORIG_TEXT is the string original string from the user command
5158 that needs to be completed. WORD is the entire command on which
5159 completion should be performed. These two parameters are used to
5160 determine which part of the symbol name should be added to the
5162 if WILD_MATCH is set, then wild matching is performed.
5163 ENCODED should be set if TEXT represents a symbol name in its
5164 encoded formed (in which case the completion should also be
5168 symbol_completion_add (VEC(char_ptr) **sv,
5169 const char *sym_name,
5170 const char *text, int text_len,
5171 const char *orig_text, const char *word,
5172 int wild_match, int encoded)
5174 const char *match = symbol_completion_match (sym_name, text, text_len,
5175 wild_match, encoded);
5181 /* We found a match, so add the appropriate completion to the given
5184 if (word == orig_text)
5186 completion = xmalloc (strlen (match) + 5);
5187 strcpy (completion, match);
5189 else if (word > orig_text)
5191 /* Return some portion of sym_name. */
5192 completion = xmalloc (strlen (match) + 5);
5193 strcpy (completion, match + (word - orig_text));
5197 /* Return some of ORIG_TEXT plus sym_name. */
5198 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5199 strncpy (completion, word, orig_text - word);
5200 completion[orig_text - word] = '\0';
5201 strcat (completion, match);
5204 VEC_safe_push (char_ptr, *sv, completion);
5207 /* Return a list of possible symbol names completing TEXT0. The list
5208 is NULL terminated. WORD is the entire command on which completion
5212 ada_make_symbol_completion_list (char *text0, char *word)
5218 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5221 struct partial_symtab *ps;
5222 struct minimal_symbol *msymbol;
5223 struct objfile *objfile;
5224 struct block *b, *surrounding_static_block = 0;
5226 struct dict_iterator iter;
5228 if (text0[0] == '<')
5230 text = xstrdup (text0);
5231 make_cleanup (xfree, text);
5232 text_len = strlen (text);
5238 text = xstrdup (ada_encode (text0));
5239 make_cleanup (xfree, text);
5240 text_len = strlen (text);
5241 for (i = 0; i < text_len; i++)
5242 text[i] = tolower (text[i]);
5244 encoded = (strstr (text0, "__") != NULL);
5245 /* If the name contains a ".", then the user is entering a fully
5246 qualified entity name, and the match must not be done in wild
5247 mode. Similarly, if the user wants to complete what looks like
5248 an encoded name, the match must not be done in wild mode. */
5249 wild_match = (strchr (text0, '.') == NULL && !encoded);
5252 /* First, look at the partial symtab symbols. */
5253 ALL_PSYMTABS (objfile, ps)
5255 struct partial_symbol **psym;
5257 /* If the psymtab's been read in we'll get it when we search
5258 through the blockvector. */
5262 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5263 psym < (objfile->global_psymbols.list + ps->globals_offset
5264 + ps->n_global_syms); psym++)
5267 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5268 text, text_len, text0, word,
5269 wild_match, encoded);
5272 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5273 psym < (objfile->static_psymbols.list + ps->statics_offset
5274 + ps->n_static_syms); psym++)
5277 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5278 text, text_len, text0, word,
5279 wild_match, encoded);
5283 /* At this point scan through the misc symbol vectors and add each
5284 symbol you find to the list. Eventually we want to ignore
5285 anything that isn't a text symbol (everything else will be
5286 handled by the psymtab code above). */
5288 ALL_MSYMBOLS (objfile, msymbol)
5291 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5292 text, text_len, text0, word, wild_match, encoded);
5295 /* Search upwards from currently selected frame (so that we can
5296 complete on local vars. */
5298 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5300 if (!BLOCK_SUPERBLOCK (b))
5301 surrounding_static_block = b; /* For elmin of dups */
5303 ALL_BLOCK_SYMBOLS (b, iter, sym)
5305 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5306 text, text_len, text0, word,
5307 wild_match, encoded);
5311 /* Go through the symtabs and check the externs and statics for
5312 symbols which match. */
5314 ALL_SYMTABS (objfile, s)
5317 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5318 ALL_BLOCK_SYMBOLS (b, iter, sym)
5320 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5321 text, text_len, text0, word,
5322 wild_match, encoded);
5326 ALL_SYMTABS (objfile, s)
5329 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5330 /* Don't do this block twice. */
5331 if (b == surrounding_static_block)
5333 ALL_BLOCK_SYMBOLS (b, iter, sym)
5335 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5336 text, text_len, text0, word,
5337 wild_match, encoded);
5341 /* Append the closing NULL entry. */
5342 VEC_safe_push (char_ptr, completions, NULL);
5344 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5345 return the copy. It's unfortunate that we have to make a copy
5346 of an array that we're about to destroy, but there is nothing much
5347 we can do about it. Fortunately, it's typically not a very large
5350 const size_t completions_size =
5351 VEC_length (char_ptr, completions) * sizeof (char *);
5352 char **result = malloc (completions_size);
5354 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5356 VEC_free (char_ptr, completions);
5363 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5364 for tagged types. */
5367 ada_is_dispatch_table_ptr_type (struct type *type)
5371 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5374 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5378 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5381 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5382 to be invisible to users. */
5385 ada_is_ignored_field (struct type *type, int field_num)
5387 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5390 /* Check the name of that field. */
5392 const char *name = TYPE_FIELD_NAME (type, field_num);
5394 /* Anonymous field names should not be printed.
5395 brobecker/2007-02-20: I don't think this can actually happen
5396 but we don't want to print the value of annonymous fields anyway. */
5400 /* A field named "_parent" is internally generated by GNAT for
5401 tagged types, and should not be printed either. */
5402 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5406 /* If this is the dispatch table of a tagged type, then ignore. */
5407 if (ada_is_tagged_type (type, 1)
5408 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5411 /* Not a special field, so it should not be ignored. */
5415 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5416 pointer or reference type whose ultimate target has a tag field. */
5419 ada_is_tagged_type (struct type *type, int refok)
5421 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5424 /* True iff TYPE represents the type of X'Tag */
5427 ada_is_tag_type (struct type *type)
5429 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5433 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5434 return (name != NULL
5435 && strcmp (name, "ada__tags__dispatch_table") == 0);
5439 /* The type of the tag on VAL. */
5442 ada_tag_type (struct value *val)
5444 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5447 /* The value of the tag on VAL. */
5450 ada_value_tag (struct value *val)
5452 return ada_value_struct_elt (val, "_tag", 0);
5455 /* The value of the tag on the object of type TYPE whose contents are
5456 saved at VALADDR, if it is non-null, or is at memory address
5459 static struct value *
5460 value_tag_from_contents_and_address (struct type *type,
5461 const gdb_byte *valaddr,
5464 int tag_byte_offset, dummy1, dummy2;
5465 struct type *tag_type;
5466 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5469 const gdb_byte *valaddr1 = ((valaddr == NULL)
5471 : valaddr + tag_byte_offset);
5472 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5474 return value_from_contents_and_address (tag_type, valaddr1, address1);
5479 static struct type *
5480 type_from_tag (struct value *tag)
5482 const char *type_name = ada_tag_name (tag);
5483 if (type_name != NULL)
5484 return ada_find_any_type (ada_encode (type_name));
5495 static int ada_tag_name_1 (void *);
5496 static int ada_tag_name_2 (struct tag_args *);
5498 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5499 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5500 The value stored in ARGS->name is valid until the next call to
5504 ada_tag_name_1 (void *args0)
5506 struct tag_args *args = (struct tag_args *) args0;
5507 static char name[1024];
5511 val = ada_value_struct_elt (args->tag, "tsd", 1);
5513 return ada_tag_name_2 (args);
5514 val = ada_value_struct_elt (val, "expanded_name", 1);
5517 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5518 for (p = name; *p != '\0'; p += 1)
5525 /* Utility function for ada_tag_name_1 that tries the second
5526 representation for the dispatch table (in which there is no
5527 explicit 'tsd' field in the referent of the tag pointer, and instead
5528 the tsd pointer is stored just before the dispatch table. */
5531 ada_tag_name_2 (struct tag_args *args)
5533 struct type *info_type;
5534 static char name[1024];
5536 struct value *val, *valp;
5539 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5540 if (info_type == NULL)
5542 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5543 valp = value_cast (info_type, args->tag);
5546 val = value_ind (value_ptradd (valp, -1));
5549 val = ada_value_struct_elt (val, "expanded_name", 1);
5552 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5553 for (p = name; *p != '\0'; p += 1)
5560 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5564 ada_tag_name (struct value *tag)
5566 struct tag_args args;
5567 if (!ada_is_tag_type (value_type (tag)))
5571 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5575 /* The parent type of TYPE, or NULL if none. */
5578 ada_parent_type (struct type *type)
5582 type = ada_check_typedef (type);
5584 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5587 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5588 if (ada_is_parent_field (type, i))
5590 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5592 /* If the _parent field is a pointer, then dereference it. */
5593 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5594 parent_type = TYPE_TARGET_TYPE (parent_type);
5595 /* If there is a parallel XVS type, get the actual base type. */
5596 parent_type = ada_get_base_type (parent_type);
5598 return ada_check_typedef (parent_type);
5604 /* True iff field number FIELD_NUM of structure type TYPE contains the
5605 parent-type (inherited) fields of a derived type. Assumes TYPE is
5606 a structure type with at least FIELD_NUM+1 fields. */
5609 ada_is_parent_field (struct type *type, int field_num)
5611 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5612 return (name != NULL
5613 && (strncmp (name, "PARENT", 6) == 0
5614 || strncmp (name, "_parent", 7) == 0));
5617 /* True iff field number FIELD_NUM of structure type TYPE is a
5618 transparent wrapper field (which should be silently traversed when doing
5619 field selection and flattened when printing). Assumes TYPE is a
5620 structure type with at least FIELD_NUM+1 fields. Such fields are always
5624 ada_is_wrapper_field (struct type *type, int field_num)
5626 const char *name = TYPE_FIELD_NAME (type, field_num);
5627 return (name != NULL
5628 && (strncmp (name, "PARENT", 6) == 0
5629 || strcmp (name, "REP") == 0
5630 || strncmp (name, "_parent", 7) == 0
5631 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5634 /* True iff field number FIELD_NUM of structure or union type TYPE
5635 is a variant wrapper. Assumes TYPE is a structure type with at least
5636 FIELD_NUM+1 fields. */
5639 ada_is_variant_part (struct type *type, int field_num)
5641 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5642 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5643 || (is_dynamic_field (type, field_num)
5644 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5645 == TYPE_CODE_UNION)));
5648 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5649 whose discriminants are contained in the record type OUTER_TYPE,
5650 returns the type of the controlling discriminant for the variant.
5651 May return NULL if the type could not be found. */
5654 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5656 char *name = ada_variant_discrim_name (var_type);
5657 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5660 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5661 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5662 represents a 'when others' clause; otherwise 0. */
5665 ada_is_others_clause (struct type *type, int field_num)
5667 const char *name = TYPE_FIELD_NAME (type, field_num);
5668 return (name != NULL && name[0] == 'O');
5671 /* Assuming that TYPE0 is the type of the variant part of a record,
5672 returns the name of the discriminant controlling the variant.
5673 The value is valid until the next call to ada_variant_discrim_name. */
5676 ada_variant_discrim_name (struct type *type0)
5678 static char *result = NULL;
5679 static size_t result_len = 0;
5682 const char *discrim_end;
5683 const char *discrim_start;
5685 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5686 type = TYPE_TARGET_TYPE (type0);
5690 name = ada_type_name (type);
5692 if (name == NULL || name[0] == '\000')
5695 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5698 if (strncmp (discrim_end, "___XVN", 6) == 0)
5701 if (discrim_end == name)
5704 for (discrim_start = discrim_end; discrim_start != name + 3;
5707 if (discrim_start == name + 1)
5709 if ((discrim_start > name + 3
5710 && strncmp (discrim_start - 3, "___", 3) == 0)
5711 || discrim_start[-1] == '.')
5715 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5716 strncpy (result, discrim_start, discrim_end - discrim_start);
5717 result[discrim_end - discrim_start] = '\0';
5721 /* Scan STR for a subtype-encoded number, beginning at position K.
5722 Put the position of the character just past the number scanned in
5723 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5724 Return 1 if there was a valid number at the given position, and 0
5725 otherwise. A "subtype-encoded" number consists of the absolute value
5726 in decimal, followed by the letter 'm' to indicate a negative number.
5727 Assumes 0m does not occur. */
5730 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5734 if (!isdigit (str[k]))
5737 /* Do it the hard way so as not to make any assumption about
5738 the relationship of unsigned long (%lu scan format code) and
5741 while (isdigit (str[k]))
5743 RU = RU * 10 + (str[k] - '0');
5750 *R = (-(LONGEST) (RU - 1)) - 1;
5756 /* NOTE on the above: Technically, C does not say what the results of
5757 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5758 number representable as a LONGEST (although either would probably work
5759 in most implementations). When RU>0, the locution in the then branch
5760 above is always equivalent to the negative of RU. */
5767 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5768 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5769 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5772 ada_in_variant (LONGEST val, struct type *type, int field_num)
5774 const char *name = TYPE_FIELD_NAME (type, field_num);
5787 if (!ada_scan_number (name, p + 1, &W, &p))
5796 if (!ada_scan_number (name, p + 1, &L, &p)
5797 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5799 if (val >= L && val <= U)
5811 /* FIXME: Lots of redundancy below. Try to consolidate. */
5813 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5814 ARG_TYPE, extract and return the value of one of its (non-static)
5815 fields. FIELDNO says which field. Differs from value_primitive_field
5816 only in that it can handle packed values of arbitrary type. */
5818 static struct value *
5819 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5820 struct type *arg_type)
5824 arg_type = ada_check_typedef (arg_type);
5825 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5827 /* Handle packed fields. */
5829 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5831 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5832 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5834 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5835 offset + bit_pos / 8,
5836 bit_pos % 8, bit_size, type);
5839 return value_primitive_field (arg1, offset, fieldno, arg_type);
5842 /* Find field with name NAME in object of type TYPE. If found,
5843 set the following for each argument that is non-null:
5844 - *FIELD_TYPE_P to the field's type;
5845 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5846 an object of that type;
5847 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5848 - *BIT_SIZE_P to its size in bits if the field is packed, and
5850 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5851 fields up to but not including the desired field, or by the total
5852 number of fields if not found. A NULL value of NAME never
5853 matches; the function just counts visible fields in this case.
5855 Returns 1 if found, 0 otherwise. */
5858 find_struct_field (char *name, struct type *type, int offset,
5859 struct type **field_type_p,
5860 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5865 type = ada_check_typedef (type);
5867 if (field_type_p != NULL)
5868 *field_type_p = NULL;
5869 if (byte_offset_p != NULL)
5871 if (bit_offset_p != NULL)
5873 if (bit_size_p != NULL)
5876 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5878 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5879 int fld_offset = offset + bit_pos / 8;
5880 char *t_field_name = TYPE_FIELD_NAME (type, i);
5882 if (t_field_name == NULL)
5885 else if (name != NULL && field_name_match (t_field_name, name))
5887 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5888 if (field_type_p != NULL)
5889 *field_type_p = TYPE_FIELD_TYPE (type, i);
5890 if (byte_offset_p != NULL)
5891 *byte_offset_p = fld_offset;
5892 if (bit_offset_p != NULL)
5893 *bit_offset_p = bit_pos % 8;
5894 if (bit_size_p != NULL)
5895 *bit_size_p = bit_size;
5898 else if (ada_is_wrapper_field (type, i))
5900 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5901 field_type_p, byte_offset_p, bit_offset_p,
5902 bit_size_p, index_p))
5905 else if (ada_is_variant_part (type, i))
5907 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5910 struct type *field_type
5911 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5913 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5915 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5917 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5918 field_type_p, byte_offset_p,
5919 bit_offset_p, bit_size_p, index_p))
5923 else if (index_p != NULL)
5929 /* Number of user-visible fields in record type TYPE. */
5932 num_visible_fields (struct type *type)
5936 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5940 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5941 and search in it assuming it has (class) type TYPE.
5942 If found, return value, else return NULL.
5944 Searches recursively through wrapper fields (e.g., '_parent'). */
5946 static struct value *
5947 ada_search_struct_field (char *name, struct value *arg, int offset,
5951 type = ada_check_typedef (type);
5953 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5955 char *t_field_name = TYPE_FIELD_NAME (type, i);
5957 if (t_field_name == NULL)
5960 else if (field_name_match (t_field_name, name))
5961 return ada_value_primitive_field (arg, offset, i, type);
5963 else if (ada_is_wrapper_field (type, i))
5965 struct value *v = /* Do not let indent join lines here. */
5966 ada_search_struct_field (name, arg,
5967 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5968 TYPE_FIELD_TYPE (type, i));
5973 else if (ada_is_variant_part (type, i))
5975 /* PNH: Do we ever get here? See find_struct_field. */
5977 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5978 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5980 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5982 struct value *v = ada_search_struct_field /* Force line break. */
5984 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5985 TYPE_FIELD_TYPE (field_type, j));
5994 static struct value *ada_index_struct_field_1 (int *, struct value *,
5995 int, struct type *);
5998 /* Return field #INDEX in ARG, where the index is that returned by
5999 * find_struct_field through its INDEX_P argument. Adjust the address
6000 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6001 * If found, return value, else return NULL. */
6003 static struct value *
6004 ada_index_struct_field (int index, struct value *arg, int offset,
6007 return ada_index_struct_field_1 (&index, arg, offset, type);
6011 /* Auxiliary function for ada_index_struct_field. Like
6012 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6015 static struct value *
6016 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6020 type = ada_check_typedef (type);
6022 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6024 if (TYPE_FIELD_NAME (type, i) == NULL)
6026 else if (ada_is_wrapper_field (type, i))
6028 struct value *v = /* Do not let indent join lines here. */
6029 ada_index_struct_field_1 (index_p, arg,
6030 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6031 TYPE_FIELD_TYPE (type, i));
6036 else if (ada_is_variant_part (type, i))
6038 /* PNH: Do we ever get here? See ada_search_struct_field,
6039 find_struct_field. */
6040 error (_("Cannot assign this kind of variant record"));
6042 else if (*index_p == 0)
6043 return ada_value_primitive_field (arg, offset, i, type);
6050 /* Given ARG, a value of type (pointer or reference to a)*
6051 structure/union, extract the component named NAME from the ultimate
6052 target structure/union and return it as a value with its
6055 The routine searches for NAME among all members of the structure itself
6056 and (recursively) among all members of any wrapper members
6059 If NO_ERR, then simply return NULL in case of error, rather than
6063 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6065 struct type *t, *t1;
6069 t1 = t = ada_check_typedef (value_type (arg));
6070 if (TYPE_CODE (t) == TYPE_CODE_REF)
6072 t1 = TYPE_TARGET_TYPE (t);
6075 t1 = ada_check_typedef (t1);
6076 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6078 arg = coerce_ref (arg);
6083 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6085 t1 = TYPE_TARGET_TYPE (t);
6088 t1 = ada_check_typedef (t1);
6089 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6091 arg = value_ind (arg);
6098 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6102 v = ada_search_struct_field (name, arg, 0, t);
6105 int bit_offset, bit_size, byte_offset;
6106 struct type *field_type;
6109 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6110 address = value_as_address (arg);
6112 address = unpack_pointer (t, value_contents (arg));
6114 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6115 if (find_struct_field (name, t1, 0,
6116 &field_type, &byte_offset, &bit_offset,
6121 if (TYPE_CODE (t) == TYPE_CODE_REF)
6122 arg = ada_coerce_ref (arg);
6124 arg = ada_value_ind (arg);
6125 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6126 bit_offset, bit_size,
6130 v = value_at_lazy (field_type, address + byte_offset);
6134 if (v != NULL || no_err)
6137 error (_("There is no member named %s."), name);
6143 error (_("Attempt to extract a component of a value that is not a record."));
6146 /* Given a type TYPE, look up the type of the component of type named NAME.
6147 If DISPP is non-null, add its byte displacement from the beginning of a
6148 structure (pointed to by a value) of type TYPE to *DISPP (does not
6149 work for packed fields).
6151 Matches any field whose name has NAME as a prefix, possibly
6154 TYPE can be either a struct or union. If REFOK, TYPE may also
6155 be a (pointer or reference)+ to a struct or union, and the
6156 ultimate target type will be searched.
6158 Looks recursively into variant clauses and parent types.
6160 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6161 TYPE is not a type of the right kind. */
6163 static struct type *
6164 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6165 int noerr, int *dispp)
6172 if (refok && type != NULL)
6175 type = ada_check_typedef (type);
6176 if (TYPE_CODE (type) != TYPE_CODE_PTR
6177 && TYPE_CODE (type) != TYPE_CODE_REF)
6179 type = TYPE_TARGET_TYPE (type);
6183 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6184 && TYPE_CODE (type) != TYPE_CODE_UNION))
6190 target_terminal_ours ();
6191 gdb_flush (gdb_stdout);
6193 error (_("Type (null) is not a structure or union type"));
6196 /* XXX: type_sprint */
6197 fprintf_unfiltered (gdb_stderr, _("Type "));
6198 type_print (type, "", gdb_stderr, -1);
6199 error (_(" is not a structure or union type"));
6204 type = to_static_fixed_type (type);
6206 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6208 char *t_field_name = TYPE_FIELD_NAME (type, i);
6212 if (t_field_name == NULL)
6215 else if (field_name_match (t_field_name, name))
6218 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6219 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6222 else if (ada_is_wrapper_field (type, i))
6225 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6230 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6235 else if (ada_is_variant_part (type, i))
6238 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6240 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6242 /* FIXME pnh 2008/01/26: We check for a field that is
6243 NOT wrapped in a struct, since the compiler sometimes
6244 generates these for unchecked variant types. Revisit
6245 if the compiler changes this practice. */
6246 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6248 if (v_field_name != NULL
6249 && field_name_match (v_field_name, name))
6250 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6258 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6269 target_terminal_ours ();
6270 gdb_flush (gdb_stdout);
6273 /* XXX: type_sprint */
6274 fprintf_unfiltered (gdb_stderr, _("Type "));
6275 type_print (type, "", gdb_stderr, -1);
6276 error (_(" has no component named <null>"));
6280 /* XXX: type_sprint */
6281 fprintf_unfiltered (gdb_stderr, _("Type "));
6282 type_print (type, "", gdb_stderr, -1);
6283 error (_(" has no component named %s"), name);
6290 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6291 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6292 represents an unchecked union (that is, the variant part of a
6293 record that is named in an Unchecked_Union pragma). */
6296 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6298 char *discrim_name = ada_variant_discrim_name (var_type);
6299 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6304 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6305 within a value of type OUTER_TYPE that is stored in GDB at
6306 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6307 numbering from 0) is applicable. Returns -1 if none are. */
6310 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6311 const gdb_byte *outer_valaddr)
6315 char *discrim_name = ada_variant_discrim_name (var_type);
6316 struct value *outer;
6317 struct value *discrim;
6318 LONGEST discrim_val;
6320 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6321 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6322 if (discrim == NULL)
6324 discrim_val = value_as_long (discrim);
6327 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6329 if (ada_is_others_clause (var_type, i))
6331 else if (ada_in_variant (discrim_val, var_type, i))
6335 return others_clause;
6340 /* Dynamic-Sized Records */
6342 /* Strategy: The type ostensibly attached to a value with dynamic size
6343 (i.e., a size that is not statically recorded in the debugging
6344 data) does not accurately reflect the size or layout of the value.
6345 Our strategy is to convert these values to values with accurate,
6346 conventional types that are constructed on the fly. */
6348 /* There is a subtle and tricky problem here. In general, we cannot
6349 determine the size of dynamic records without its data. However,
6350 the 'struct value' data structure, which GDB uses to represent
6351 quantities in the inferior process (the target), requires the size
6352 of the type at the time of its allocation in order to reserve space
6353 for GDB's internal copy of the data. That's why the
6354 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6355 rather than struct value*s.
6357 However, GDB's internal history variables ($1, $2, etc.) are
6358 struct value*s containing internal copies of the data that are not, in
6359 general, the same as the data at their corresponding addresses in
6360 the target. Fortunately, the types we give to these values are all
6361 conventional, fixed-size types (as per the strategy described
6362 above), so that we don't usually have to perform the
6363 'to_fixed_xxx_type' conversions to look at their values.
6364 Unfortunately, there is one exception: if one of the internal
6365 history variables is an array whose elements are unconstrained
6366 records, then we will need to create distinct fixed types for each
6367 element selected. */
6369 /* The upshot of all of this is that many routines take a (type, host
6370 address, target address) triple as arguments to represent a value.
6371 The host address, if non-null, is supposed to contain an internal
6372 copy of the relevant data; otherwise, the program is to consult the
6373 target at the target address. */
6375 /* Assuming that VAL0 represents a pointer value, the result of
6376 dereferencing it. Differs from value_ind in its treatment of
6377 dynamic-sized types. */
6380 ada_value_ind (struct value *val0)
6382 struct value *val = unwrap_value (value_ind (val0));
6383 return ada_to_fixed_value (val);
6386 /* The value resulting from dereferencing any "reference to"
6387 qualifiers on VAL0. */
6389 static struct value *
6390 ada_coerce_ref (struct value *val0)
6392 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6394 struct value *val = val0;
6395 val = coerce_ref (val);
6396 val = unwrap_value (val);
6397 return ada_to_fixed_value (val);
6403 /* Return OFF rounded upward if necessary to a multiple of
6404 ALIGNMENT (a power of 2). */
6407 align_value (unsigned int off, unsigned int alignment)
6409 return (off + alignment - 1) & ~(alignment - 1);
6412 /* Return the bit alignment required for field #F of template type TYPE. */
6415 field_alignment (struct type *type, int f)
6417 const char *name = TYPE_FIELD_NAME (type, f);
6421 /* The field name should never be null, unless the debugging information
6422 is somehow malformed. In this case, we assume the field does not
6423 require any alignment. */
6427 len = strlen (name);
6429 if (!isdigit (name[len - 1]))
6432 if (isdigit (name[len - 2]))
6433 align_offset = len - 2;
6435 align_offset = len - 1;
6437 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6438 return TARGET_CHAR_BIT;
6440 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6443 /* Find a symbol named NAME. Ignores ambiguity. */
6446 ada_find_any_symbol (const char *name)
6450 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6451 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6454 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6458 /* Find a type named NAME. Ignores ambiguity. This routine will look
6459 solely for types defined by debug info, it will not search the GDB
6463 ada_find_any_type (const char *name)
6465 struct symbol *sym = ada_find_any_symbol (name);
6468 return SYMBOL_TYPE (sym);
6473 /* Given NAME and an associated BLOCK, search all symbols for
6474 NAME suffixed with "___XR", which is the ``renaming'' symbol
6475 associated to NAME. Return this symbol if found, return
6479 ada_find_renaming_symbol (const char *name, struct block *block)
6483 sym = find_old_style_renaming_symbol (name, block);
6488 /* Not right yet. FIXME pnh 7/20/2007. */
6489 sym = ada_find_any_symbol (name);
6490 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6496 static struct symbol *
6497 find_old_style_renaming_symbol (const char *name, struct block *block)
6499 const struct symbol *function_sym = block_linkage_function (block);
6502 if (function_sym != NULL)
6504 /* If the symbol is defined inside a function, NAME is not fully
6505 qualified. This means we need to prepend the function name
6506 as well as adding the ``___XR'' suffix to build the name of
6507 the associated renaming symbol. */
6508 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6509 /* Function names sometimes contain suffixes used
6510 for instance to qualify nested subprograms. When building
6511 the XR type name, we need to make sure that this suffix is
6512 not included. So do not include any suffix in the function
6513 name length below. */
6514 const int function_name_len = ada_name_prefix_len (function_name);
6515 const int rename_len = function_name_len + 2 /* "__" */
6516 + strlen (name) + 6 /* "___XR\0" */ ;
6518 /* Strip the suffix if necessary. */
6519 function_name[function_name_len] = '\0';
6521 /* Library-level functions are a special case, as GNAT adds
6522 a ``_ada_'' prefix to the function name to avoid namespace
6523 pollution. However, the renaming symbols themselves do not
6524 have this prefix, so we need to skip this prefix if present. */
6525 if (function_name_len > 5 /* "_ada_" */
6526 && strstr (function_name, "_ada_") == function_name)
6527 function_name = function_name + 5;
6529 rename = (char *) alloca (rename_len * sizeof (char));
6530 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6531 function_name, name);
6535 const int rename_len = strlen (name) + 6;
6536 rename = (char *) alloca (rename_len * sizeof (char));
6537 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6540 return ada_find_any_symbol (rename);
6543 /* Because of GNAT encoding conventions, several GDB symbols may match a
6544 given type name. If the type denoted by TYPE0 is to be preferred to
6545 that of TYPE1 for purposes of type printing, return non-zero;
6546 otherwise return 0. */
6549 ada_prefer_type (struct type *type0, struct type *type1)
6553 else if (type0 == NULL)
6555 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6557 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6559 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6561 else if (ada_is_packed_array_type (type0))
6563 else if (ada_is_array_descriptor_type (type0)
6564 && !ada_is_array_descriptor_type (type1))
6568 const char *type0_name = type_name_no_tag (type0);
6569 const char *type1_name = type_name_no_tag (type1);
6571 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6572 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6578 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6579 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6582 ada_type_name (struct type *type)
6586 else if (TYPE_NAME (type) != NULL)
6587 return TYPE_NAME (type);
6589 return TYPE_TAG_NAME (type);
6592 /* Find a parallel type to TYPE whose name is formed by appending
6593 SUFFIX to the name of TYPE. */
6596 ada_find_parallel_type (struct type *type, const char *suffix)
6599 static size_t name_len = 0;
6601 char *typename = ada_type_name (type);
6603 if (typename == NULL)
6606 len = strlen (typename);
6608 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6610 strcpy (name, typename);
6611 strcpy (name + len, suffix);
6613 return ada_find_any_type (name);
6617 /* If TYPE is a variable-size record type, return the corresponding template
6618 type describing its fields. Otherwise, return NULL. */
6620 static struct type *
6621 dynamic_template_type (struct type *type)
6623 type = ada_check_typedef (type);
6625 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6626 || ada_type_name (type) == NULL)
6630 int len = strlen (ada_type_name (type));
6631 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6634 return ada_find_parallel_type (type, "___XVE");
6638 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6639 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6642 is_dynamic_field (struct type *templ_type, int field_num)
6644 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6646 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6647 && strstr (name, "___XVL") != NULL;
6650 /* The index of the variant field of TYPE, or -1 if TYPE does not
6651 represent a variant record type. */
6654 variant_field_index (struct type *type)
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6661 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6663 if (ada_is_variant_part (type, f))
6669 /* A record type with no fields. */
6671 static struct type *
6672 empty_record (struct type *template)
6674 struct type *type = alloc_type_copy (template);
6675 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6676 TYPE_NFIELDS (type) = 0;
6677 TYPE_FIELDS (type) = NULL;
6678 INIT_CPLUS_SPECIFIC (type);
6679 TYPE_NAME (type) = "<empty>";
6680 TYPE_TAG_NAME (type) = NULL;
6681 TYPE_LENGTH (type) = 0;
6685 /* An ordinary record type (with fixed-length fields) that describes
6686 the value of type TYPE at VALADDR or ADDRESS (see comments at
6687 the beginning of this section) VAL according to GNAT conventions.
6688 DVAL0 should describe the (portion of a) record that contains any
6689 necessary discriminants. It should be NULL if value_type (VAL) is
6690 an outer-level type (i.e., as opposed to a branch of a variant.) A
6691 variant field (unless unchecked) is replaced by a particular branch
6694 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6695 length are not statically known are discarded. As a consequence,
6696 VALADDR, ADDRESS and DVAL0 are ignored.
6698 NOTE: Limitations: For now, we assume that dynamic fields and
6699 variants occupy whole numbers of bytes. However, they need not be
6703 ada_template_to_fixed_record_type_1 (struct type *type,
6704 const gdb_byte *valaddr,
6705 CORE_ADDR address, struct value *dval0,
6706 int keep_dynamic_fields)
6708 struct value *mark = value_mark ();
6711 int nfields, bit_len;
6714 int fld_bit_len, bit_incr;
6717 /* Compute the number of fields in this record type that are going
6718 to be processed: unless keep_dynamic_fields, this includes only
6719 fields whose position and length are static will be processed. */
6720 if (keep_dynamic_fields)
6721 nfields = TYPE_NFIELDS (type);
6725 while (nfields < TYPE_NFIELDS (type)
6726 && !ada_is_variant_part (type, nfields)
6727 && !is_dynamic_field (type, nfields))
6731 rtype = alloc_type_copy (type);
6732 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6733 INIT_CPLUS_SPECIFIC (rtype);
6734 TYPE_NFIELDS (rtype) = nfields;
6735 TYPE_FIELDS (rtype) = (struct field *)
6736 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6737 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6738 TYPE_NAME (rtype) = ada_type_name (type);
6739 TYPE_TAG_NAME (rtype) = NULL;
6740 TYPE_FIXED_INSTANCE (rtype) = 1;
6746 for (f = 0; f < nfields; f += 1)
6748 off = align_value (off, field_alignment (type, f))
6749 + TYPE_FIELD_BITPOS (type, f);
6750 TYPE_FIELD_BITPOS (rtype, f) = off;
6751 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6753 if (ada_is_variant_part (type, f))
6756 fld_bit_len = bit_incr = 0;
6758 else if (is_dynamic_field (type, f))
6760 const gdb_byte *field_valaddr = valaddr;
6761 CORE_ADDR field_address = address;
6762 struct type *field_type =
6763 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6767 /* rtype's length is computed based on the run-time
6768 value of discriminants. If the discriminants are not
6769 initialized, the type size may be completely bogus and
6770 GDB may fail to allocate a value for it. So check the
6771 size first before creating the value. */
6773 dval = value_from_contents_and_address (rtype, valaddr, address);
6778 /* If the type referenced by this field is an aligner type, we need
6779 to unwrap that aligner type, because its size might not be set.
6780 Keeping the aligner type would cause us to compute the wrong
6781 size for this field, impacting the offset of the all the fields
6782 that follow this one. */
6783 if (ada_is_aligner_type (field_type))
6785 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6787 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6788 field_address = cond_offset_target (field_address, field_offset);
6789 field_type = ada_aligned_type (field_type);
6792 field_valaddr = cond_offset_host (field_valaddr,
6793 off / TARGET_CHAR_BIT);
6794 field_address = cond_offset_target (field_address,
6795 off / TARGET_CHAR_BIT);
6797 /* Get the fixed type of the field. Note that, in this case,
6798 we do not want to get the real type out of the tag: if
6799 the current field is the parent part of a tagged record,
6800 we will get the tag of the object. Clearly wrong: the real
6801 type of the parent is not the real type of the child. We
6802 would end up in an infinite loop. */
6803 field_type = ada_get_base_type (field_type);
6804 field_type = ada_to_fixed_type (field_type, field_valaddr,
6805 field_address, dval, 0);
6807 TYPE_FIELD_TYPE (rtype, f) = field_type;
6808 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6809 bit_incr = fld_bit_len =
6810 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6814 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6815 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6816 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6817 bit_incr = fld_bit_len =
6818 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6820 bit_incr = fld_bit_len =
6821 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6823 if (off + fld_bit_len > bit_len)
6824 bit_len = off + fld_bit_len;
6826 TYPE_LENGTH (rtype) =
6827 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6830 /* We handle the variant part, if any, at the end because of certain
6831 odd cases in which it is re-ordered so as NOT to be the last field of
6832 the record. This can happen in the presence of representation
6834 if (variant_field >= 0)
6836 struct type *branch_type;
6838 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6841 dval = value_from_contents_and_address (rtype, valaddr, address);
6846 to_fixed_variant_branch_type
6847 (TYPE_FIELD_TYPE (type, variant_field),
6848 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6849 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6850 if (branch_type == NULL)
6852 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6853 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6854 TYPE_NFIELDS (rtype) -= 1;
6858 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6859 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6861 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6863 if (off + fld_bit_len > bit_len)
6864 bit_len = off + fld_bit_len;
6865 TYPE_LENGTH (rtype) =
6866 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6870 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6871 should contain the alignment of that record, which should be a strictly
6872 positive value. If null or negative, then something is wrong, most
6873 probably in the debug info. In that case, we don't round up the size
6874 of the resulting type. If this record is not part of another structure,
6875 the current RTYPE length might be good enough for our purposes. */
6876 if (TYPE_LENGTH (type) <= 0)
6878 if (TYPE_NAME (rtype))
6879 warning (_("Invalid type size for `%s' detected: %d."),
6880 TYPE_NAME (rtype), TYPE_LENGTH (type));
6882 warning (_("Invalid type size for <unnamed> detected: %d."),
6883 TYPE_LENGTH (type));
6887 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6888 TYPE_LENGTH (type));
6891 value_free_to_mark (mark);
6892 if (TYPE_LENGTH (rtype) > varsize_limit)
6893 error (_("record type with dynamic size is larger than varsize-limit"));
6897 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6900 static struct type *
6901 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6902 CORE_ADDR address, struct value *dval0)
6904 return ada_template_to_fixed_record_type_1 (type, valaddr,
6908 /* An ordinary record type in which ___XVL-convention fields and
6909 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6910 static approximations, containing all possible fields. Uses
6911 no runtime values. Useless for use in values, but that's OK,
6912 since the results are used only for type determinations. Works on both
6913 structs and unions. Representation note: to save space, we memorize
6914 the result of this function in the TYPE_TARGET_TYPE of the
6917 static struct type *
6918 template_to_static_fixed_type (struct type *type0)
6924 if (TYPE_TARGET_TYPE (type0) != NULL)
6925 return TYPE_TARGET_TYPE (type0);
6927 nfields = TYPE_NFIELDS (type0);
6930 for (f = 0; f < nfields; f += 1)
6932 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6933 struct type *new_type;
6935 if (is_dynamic_field (type0, f))
6936 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6938 new_type = static_unwrap_type (field_type);
6939 if (type == type0 && new_type != field_type)
6941 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6942 TYPE_CODE (type) = TYPE_CODE (type0);
6943 INIT_CPLUS_SPECIFIC (type);
6944 TYPE_NFIELDS (type) = nfields;
6945 TYPE_FIELDS (type) = (struct field *)
6946 TYPE_ALLOC (type, nfields * sizeof (struct field));
6947 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6948 sizeof (struct field) * nfields);
6949 TYPE_NAME (type) = ada_type_name (type0);
6950 TYPE_TAG_NAME (type) = NULL;
6951 TYPE_FIXED_INSTANCE (type) = 1;
6952 TYPE_LENGTH (type) = 0;
6954 TYPE_FIELD_TYPE (type, f) = new_type;
6955 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6960 /* Given an object of type TYPE whose contents are at VALADDR and
6961 whose address in memory is ADDRESS, returns a revision of TYPE,
6962 which should be a non-dynamic-sized record, in which the variant
6963 part, if any, is replaced with the appropriate branch. Looks
6964 for discriminant values in DVAL0, which can be NULL if the record
6965 contains the necessary discriminant values. */
6967 static struct type *
6968 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6969 CORE_ADDR address, struct value *dval0)
6971 struct value *mark = value_mark ();
6974 struct type *branch_type;
6975 int nfields = TYPE_NFIELDS (type);
6976 int variant_field = variant_field_index (type);
6978 if (variant_field == -1)
6982 dval = value_from_contents_and_address (type, valaddr, address);
6986 rtype = alloc_type_copy (type);
6987 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6988 INIT_CPLUS_SPECIFIC (rtype);
6989 TYPE_NFIELDS (rtype) = nfields;
6990 TYPE_FIELDS (rtype) =
6991 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6992 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6993 sizeof (struct field) * nfields);
6994 TYPE_NAME (rtype) = ada_type_name (type);
6995 TYPE_TAG_NAME (rtype) = NULL;
6996 TYPE_FIXED_INSTANCE (rtype) = 1;
6997 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6999 branch_type = to_fixed_variant_branch_type
7000 (TYPE_FIELD_TYPE (type, variant_field),
7001 cond_offset_host (valaddr,
7002 TYPE_FIELD_BITPOS (type, variant_field)
7004 cond_offset_target (address,
7005 TYPE_FIELD_BITPOS (type, variant_field)
7006 / TARGET_CHAR_BIT), dval);
7007 if (branch_type == NULL)
7010 for (f = variant_field + 1; f < nfields; f += 1)
7011 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7012 TYPE_NFIELDS (rtype) -= 1;
7016 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7017 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7018 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7019 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7021 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7023 value_free_to_mark (mark);
7027 /* An ordinary record type (with fixed-length fields) that describes
7028 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7029 beginning of this section]. Any necessary discriminants' values
7030 should be in DVAL, a record value; it may be NULL if the object
7031 at ADDR itself contains any necessary discriminant values.
7032 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7033 values from the record are needed. Except in the case that DVAL,
7034 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7035 unchecked) is replaced by a particular branch of the variant.
7037 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7038 is questionable and may be removed. It can arise during the
7039 processing of an unconstrained-array-of-record type where all the
7040 variant branches have exactly the same size. This is because in
7041 such cases, the compiler does not bother to use the XVS convention
7042 when encoding the record. I am currently dubious of this
7043 shortcut and suspect the compiler should be altered. FIXME. */
7045 static struct type *
7046 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7047 CORE_ADDR address, struct value *dval)
7049 struct type *templ_type;
7051 if (TYPE_FIXED_INSTANCE (type0))
7054 templ_type = dynamic_template_type (type0);
7056 if (templ_type != NULL)
7057 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7058 else if (variant_field_index (type0) >= 0)
7060 if (dval == NULL && valaddr == NULL && address == 0)
7062 return to_record_with_fixed_variant_part (type0, valaddr, address,
7067 TYPE_FIXED_INSTANCE (type0) = 1;
7073 /* An ordinary record type (with fixed-length fields) that describes
7074 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7075 union type. Any necessary discriminants' values should be in DVAL,
7076 a record value. That is, this routine selects the appropriate
7077 branch of the union at ADDR according to the discriminant value
7078 indicated in the union's type name. Returns VAR_TYPE0 itself if
7079 it represents a variant subject to a pragma Unchecked_Union. */
7081 static struct type *
7082 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7083 CORE_ADDR address, struct value *dval)
7086 struct type *templ_type;
7087 struct type *var_type;
7089 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7090 var_type = TYPE_TARGET_TYPE (var_type0);
7092 var_type = var_type0;
7094 templ_type = ada_find_parallel_type (var_type, "___XVU");
7096 if (templ_type != NULL)
7097 var_type = templ_type;
7099 if (is_unchecked_variant (var_type, value_type (dval)))
7102 ada_which_variant_applies (var_type,
7103 value_type (dval), value_contents (dval));
7106 return empty_record (var_type);
7107 else if (is_dynamic_field (var_type, which))
7108 return to_fixed_record_type
7109 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7110 valaddr, address, dval);
7111 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7113 to_fixed_record_type
7114 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7116 return TYPE_FIELD_TYPE (var_type, which);
7119 /* Assuming that TYPE0 is an array type describing the type of a value
7120 at ADDR, and that DVAL describes a record containing any
7121 discriminants used in TYPE0, returns a type for the value that
7122 contains no dynamic components (that is, no components whose sizes
7123 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7124 true, gives an error message if the resulting type's size is over
7127 static struct type *
7128 to_fixed_array_type (struct type *type0, struct value *dval,
7131 struct type *index_type_desc;
7132 struct type *result;
7135 if (TYPE_FIXED_INSTANCE (type0))
7138 packed_array_p = ada_is_packed_array_type (type0);
7140 type0 = decode_packed_array_type (type0);
7142 index_type_desc = ada_find_parallel_type (type0, "___XA");
7143 if (index_type_desc == NULL)
7145 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7146 /* NOTE: elt_type---the fixed version of elt_type0---should never
7147 depend on the contents of the array in properly constructed
7149 /* Create a fixed version of the array element type.
7150 We're not providing the address of an element here,
7151 and thus the actual object value cannot be inspected to do
7152 the conversion. This should not be a problem, since arrays of
7153 unconstrained objects are not allowed. In particular, all
7154 the elements of an array of a tagged type should all be of
7155 the same type specified in the debugging info. No need to
7156 consult the object tag. */
7157 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7159 /* Make sure we always create a new array type when dealing with
7160 packed array types, since we're going to fix-up the array
7161 type length and element bitsize a little further down. */
7162 if (elt_type0 == elt_type && !packed_array_p)
7165 result = create_array_type (alloc_type_copy (type0),
7166 elt_type, TYPE_INDEX_TYPE (type0));
7171 struct type *elt_type0;
7174 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7175 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7177 /* NOTE: result---the fixed version of elt_type0---should never
7178 depend on the contents of the array in properly constructed
7180 /* Create a fixed version of the array element type.
7181 We're not providing the address of an element here,
7182 and thus the actual object value cannot be inspected to do
7183 the conversion. This should not be a problem, since arrays of
7184 unconstrained objects are not allowed. In particular, all
7185 the elements of an array of a tagged type should all be of
7186 the same type specified in the debugging info. No need to
7187 consult the object tag. */
7189 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7192 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7194 struct type *range_type =
7195 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7196 dval, TYPE_INDEX_TYPE (elt_type0));
7197 result = create_array_type (alloc_type_copy (elt_type0),
7198 result, range_type);
7199 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7201 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7202 error (_("array type with dynamic size is larger than varsize-limit"));
7207 /* So far, the resulting type has been created as if the original
7208 type was a regular (non-packed) array type. As a result, the
7209 bitsize of the array elements needs to be set again, and the array
7210 length needs to be recomputed based on that bitsize. */
7211 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7212 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7214 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7215 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7216 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7217 TYPE_LENGTH (result)++;
7220 TYPE_FIXED_INSTANCE (result) = 1;
7225 /* A standard type (containing no dynamically sized components)
7226 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7227 DVAL describes a record containing any discriminants used in TYPE0,
7228 and may be NULL if there are none, or if the object of type TYPE at
7229 ADDRESS or in VALADDR contains these discriminants.
7231 If CHECK_TAG is not null, in the case of tagged types, this function
7232 attempts to locate the object's tag and use it to compute the actual
7233 type. However, when ADDRESS is null, we cannot use it to determine the
7234 location of the tag, and therefore compute the tagged type's actual type.
7235 So we return the tagged type without consulting the tag. */
7237 static struct type *
7238 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7239 CORE_ADDR address, struct value *dval, int check_tag)
7241 type = ada_check_typedef (type);
7242 switch (TYPE_CODE (type))
7246 case TYPE_CODE_STRUCT:
7248 struct type *static_type = to_static_fixed_type (type);
7249 struct type *fixed_record_type =
7250 to_fixed_record_type (type, valaddr, address, NULL);
7251 /* If STATIC_TYPE is a tagged type and we know the object's address,
7252 then we can determine its tag, and compute the object's actual
7253 type from there. Note that we have to use the fixed record
7254 type (the parent part of the record may have dynamic fields
7255 and the way the location of _tag is expressed may depend on
7258 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7260 struct type *real_type =
7261 type_from_tag (value_tag_from_contents_and_address
7265 if (real_type != NULL)
7266 return to_fixed_record_type (real_type, valaddr, address, NULL);
7269 /* Check to see if there is a parallel ___XVZ variable.
7270 If there is, then it provides the actual size of our type. */
7271 else if (ada_type_name (fixed_record_type) != NULL)
7273 char *name = ada_type_name (fixed_record_type);
7274 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7278 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7279 size = get_int_var_value (xvz_name, &xvz_found);
7280 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7282 fixed_record_type = copy_type (fixed_record_type);
7283 TYPE_LENGTH (fixed_record_type) = size;
7285 /* The FIXED_RECORD_TYPE may have be a stub. We have
7286 observed this when the debugging info is STABS, and
7287 apparently it is something that is hard to fix.
7289 In practice, we don't need the actual type definition
7290 at all, because the presence of the XVZ variable allows us
7291 to assume that there must be a XVS type as well, which we
7292 should be able to use later, when we need the actual type
7295 In the meantime, pretend that the "fixed" type we are
7296 returning is NOT a stub, because this can cause trouble
7297 when using this type to create new types targeting it.
7298 Indeed, the associated creation routines often check
7299 whether the target type is a stub and will try to replace
7300 it, thus using a type with the wrong size. This, in turn,
7301 might cause the new type to have the wrong size too.
7302 Consider the case of an array, for instance, where the size
7303 of the array is computed from the number of elements in
7304 our array multiplied by the size of its element. */
7305 TYPE_STUB (fixed_record_type) = 0;
7308 return fixed_record_type;
7310 case TYPE_CODE_ARRAY:
7311 return to_fixed_array_type (type, dval, 1);
7312 case TYPE_CODE_UNION:
7316 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7320 /* The same as ada_to_fixed_type_1, except that it preserves the type
7321 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7322 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7325 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7326 CORE_ADDR address, struct value *dval, int check_tag)
7329 struct type *fixed_type =
7330 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7332 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7333 && TYPE_TARGET_TYPE (type) == fixed_type)
7339 /* A standard (static-sized) type corresponding as well as possible to
7340 TYPE0, but based on no runtime data. */
7342 static struct type *
7343 to_static_fixed_type (struct type *type0)
7350 if (TYPE_FIXED_INSTANCE (type0))
7353 type0 = ada_check_typedef (type0);
7355 switch (TYPE_CODE (type0))
7359 case TYPE_CODE_STRUCT:
7360 type = dynamic_template_type (type0);
7362 return template_to_static_fixed_type (type);
7364 return template_to_static_fixed_type (type0);
7365 case TYPE_CODE_UNION:
7366 type = ada_find_parallel_type (type0, "___XVU");
7368 return template_to_static_fixed_type (type);
7370 return template_to_static_fixed_type (type0);
7374 /* A static approximation of TYPE with all type wrappers removed. */
7376 static struct type *
7377 static_unwrap_type (struct type *type)
7379 if (ada_is_aligner_type (type))
7381 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7382 if (ada_type_name (type1) == NULL)
7383 TYPE_NAME (type1) = ada_type_name (type);
7385 return static_unwrap_type (type1);
7389 struct type *raw_real_type = ada_get_base_type (type);
7390 if (raw_real_type == type)
7393 return to_static_fixed_type (raw_real_type);
7397 /* In some cases, incomplete and private types require
7398 cross-references that are not resolved as records (for example,
7400 type FooP is access Foo;
7402 type Foo is array ...;
7403 ). In these cases, since there is no mechanism for producing
7404 cross-references to such types, we instead substitute for FooP a
7405 stub enumeration type that is nowhere resolved, and whose tag is
7406 the name of the actual type. Call these types "non-record stubs". */
7408 /* A type equivalent to TYPE that is not a non-record stub, if one
7409 exists, otherwise TYPE. */
7412 ada_check_typedef (struct type *type)
7417 CHECK_TYPEDEF (type);
7418 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7419 || !TYPE_STUB (type)
7420 || TYPE_TAG_NAME (type) == NULL)
7424 char *name = TYPE_TAG_NAME (type);
7425 struct type *type1 = ada_find_any_type (name);
7426 return (type1 == NULL) ? type : type1;
7430 /* A value representing the data at VALADDR/ADDRESS as described by
7431 type TYPE0, but with a standard (static-sized) type that correctly
7432 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7433 type, then return VAL0 [this feature is simply to avoid redundant
7434 creation of struct values]. */
7436 static struct value *
7437 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7440 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7441 if (type == type0 && val0 != NULL)
7444 return value_from_contents_and_address (type, 0, address);
7447 /* A value representing VAL, but with a standard (static-sized) type
7448 that correctly describes it. Does not necessarily create a new
7451 static struct value *
7452 ada_to_fixed_value (struct value *val)
7454 return ada_to_fixed_value_create (value_type (val),
7455 value_address (val),
7459 /* A value representing VAL, but with a standard (static-sized) type
7460 chosen to approximate the real type of VAL as well as possible, but
7461 without consulting any runtime values. For Ada dynamic-sized
7462 types, therefore, the type of the result is likely to be inaccurate. */
7464 static struct value *
7465 ada_to_static_fixed_value (struct value *val)
7468 to_static_fixed_type (static_unwrap_type (value_type (val)));
7469 if (type == value_type (val))
7472 return coerce_unspec_val_to_type (val, type);
7478 /* Table mapping attribute numbers to names.
7479 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7481 static const char *attribute_names[] = {
7499 ada_attribute_name (enum exp_opcode n)
7501 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7502 return attribute_names[n - OP_ATR_FIRST + 1];
7504 return attribute_names[0];
7507 /* Evaluate the 'POS attribute applied to ARG. */
7510 pos_atr (struct value *arg)
7512 struct value *val = coerce_ref (arg);
7513 struct type *type = value_type (val);
7515 if (!discrete_type_p (type))
7516 error (_("'POS only defined on discrete types"));
7518 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7521 LONGEST v = value_as_long (val);
7523 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7525 if (v == TYPE_FIELD_BITPOS (type, i))
7528 error (_("enumeration value is invalid: can't find 'POS"));
7531 return value_as_long (val);
7534 static struct value *
7535 value_pos_atr (struct type *type, struct value *arg)
7537 return value_from_longest (type, pos_atr (arg));
7540 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7542 static struct value *
7543 value_val_atr (struct type *type, struct value *arg)
7545 if (!discrete_type_p (type))
7546 error (_("'VAL only defined on discrete types"));
7547 if (!integer_type_p (value_type (arg)))
7548 error (_("'VAL requires integral argument"));
7550 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7552 long pos = value_as_long (arg);
7553 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7554 error (_("argument to 'VAL out of range"));
7555 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7558 return value_from_longest (type, value_as_long (arg));
7564 /* True if TYPE appears to be an Ada character type.
7565 [At the moment, this is true only for Character and Wide_Character;
7566 It is a heuristic test that could stand improvement]. */
7569 ada_is_character_type (struct type *type)
7573 /* If the type code says it's a character, then assume it really is,
7574 and don't check any further. */
7575 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7578 /* Otherwise, assume it's a character type iff it is a discrete type
7579 with a known character type name. */
7580 name = ada_type_name (type);
7581 return (name != NULL
7582 && (TYPE_CODE (type) == TYPE_CODE_INT
7583 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7584 && (strcmp (name, "character") == 0
7585 || strcmp (name, "wide_character") == 0
7586 || strcmp (name, "wide_wide_character") == 0
7587 || strcmp (name, "unsigned char") == 0));
7590 /* True if TYPE appears to be an Ada string type. */
7593 ada_is_string_type (struct type *type)
7595 type = ada_check_typedef (type);
7597 && TYPE_CODE (type) != TYPE_CODE_PTR
7598 && (ada_is_simple_array_type (type)
7599 || ada_is_array_descriptor_type (type))
7600 && ada_array_arity (type) == 1)
7602 struct type *elttype = ada_array_element_type (type, 1);
7604 return ada_is_character_type (elttype);
7611 /* True if TYPE is a struct type introduced by the compiler to force the
7612 alignment of a value. Such types have a single field with a
7613 distinctive name. */
7616 ada_is_aligner_type (struct type *type)
7618 type = ada_check_typedef (type);
7620 /* If we can find a parallel XVS type, then the XVS type should
7621 be used instead of this type. And hence, this is not an aligner
7623 if (ada_find_parallel_type (type, "___XVS") != NULL)
7626 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7627 && TYPE_NFIELDS (type) == 1
7628 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7631 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7632 the parallel type. */
7635 ada_get_base_type (struct type *raw_type)
7637 struct type *real_type_namer;
7638 struct type *raw_real_type;
7640 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7643 if (ada_is_aligner_type (raw_type))
7644 /* The encoding specifies that we should always use the aligner type.
7645 So, even if this aligner type has an associated XVS type, we should
7648 According to the compiler gurus, an XVS type parallel to an aligner
7649 type may exist because of a stabs limitation. In stabs, aligner
7650 types are empty because the field has a variable-sized type, and
7651 thus cannot actually be used as an aligner type. As a result,
7652 we need the associated parallel XVS type to decode the type.
7653 Since the policy in the compiler is to not change the internal
7654 representation based on the debugging info format, we sometimes
7655 end up having a redundant XVS type parallel to the aligner type. */
7658 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7659 if (real_type_namer == NULL
7660 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7661 || TYPE_NFIELDS (real_type_namer) != 1)
7664 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7665 if (raw_real_type == NULL)
7668 return raw_real_type;
7671 /* The type of value designated by TYPE, with all aligners removed. */
7674 ada_aligned_type (struct type *type)
7676 if (ada_is_aligner_type (type))
7677 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7679 return ada_get_base_type (type);
7683 /* The address of the aligned value in an object at address VALADDR
7684 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7687 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7689 if (ada_is_aligner_type (type))
7690 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7692 TYPE_FIELD_BITPOS (type,
7693 0) / TARGET_CHAR_BIT);
7700 /* The printed representation of an enumeration literal with encoded
7701 name NAME. The value is good to the next call of ada_enum_name. */
7703 ada_enum_name (const char *name)
7705 static char *result;
7706 static size_t result_len = 0;
7709 /* First, unqualify the enumeration name:
7710 1. Search for the last '.' character. If we find one, then skip
7711 all the preceeding characters, the unqualified name starts
7712 right after that dot.
7713 2. Otherwise, we may be debugging on a target where the compiler
7714 translates dots into "__". Search forward for double underscores,
7715 but stop searching when we hit an overloading suffix, which is
7716 of the form "__" followed by digits. */
7718 tmp = strrchr (name, '.');
7723 while ((tmp = strstr (name, "__")) != NULL)
7725 if (isdigit (tmp[2]))
7735 if (name[1] == 'U' || name[1] == 'W')
7737 if (sscanf (name + 2, "%x", &v) != 1)
7743 GROW_VECT (result, result_len, 16);
7744 if (isascii (v) && isprint (v))
7745 xsnprintf (result, result_len, "'%c'", v);
7746 else if (name[1] == 'U')
7747 xsnprintf (result, result_len, "[\"%02x\"]", v);
7749 xsnprintf (result, result_len, "[\"%04x\"]", v);
7755 tmp = strstr (name, "__");
7757 tmp = strstr (name, "$");
7760 GROW_VECT (result, result_len, tmp - name + 1);
7761 strncpy (result, name, tmp - name);
7762 result[tmp - name] = '\0';
7770 /* Evaluate the subexpression of EXP starting at *POS as for
7771 evaluate_type, updating *POS to point just past the evaluated
7774 static struct value *
7775 evaluate_subexp_type (struct expression *exp, int *pos)
7777 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7780 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7783 static struct value *
7784 unwrap_value (struct value *val)
7786 struct type *type = ada_check_typedef (value_type (val));
7787 if (ada_is_aligner_type (type))
7789 struct value *v = ada_value_struct_elt (val, "F", 0);
7790 struct type *val_type = ada_check_typedef (value_type (v));
7791 if (ada_type_name (val_type) == NULL)
7792 TYPE_NAME (val_type) = ada_type_name (type);
7794 return unwrap_value (v);
7798 struct type *raw_real_type =
7799 ada_check_typedef (ada_get_base_type (type));
7801 if (type == raw_real_type)
7805 coerce_unspec_val_to_type
7806 (val, ada_to_fixed_type (raw_real_type, 0,
7807 value_address (val),
7812 static struct value *
7813 cast_to_fixed (struct type *type, struct value *arg)
7817 if (type == value_type (arg))
7819 else if (ada_is_fixed_point_type (value_type (arg)))
7820 val = ada_float_to_fixed (type,
7821 ada_fixed_to_float (value_type (arg),
7822 value_as_long (arg)));
7825 DOUBLEST argd = value_as_double (arg);
7826 val = ada_float_to_fixed (type, argd);
7829 return value_from_longest (type, val);
7832 static struct value *
7833 cast_from_fixed (struct type *type, struct value *arg)
7835 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7836 value_as_long (arg));
7837 return value_from_double (type, val);
7840 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7841 return the converted value. */
7843 static struct value *
7844 coerce_for_assign (struct type *type, struct value *val)
7846 struct type *type2 = value_type (val);
7850 type2 = ada_check_typedef (type2);
7851 type = ada_check_typedef (type);
7853 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7854 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7856 val = ada_value_ind (val);
7857 type2 = value_type (val);
7860 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7861 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7863 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7864 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7865 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7866 error (_("Incompatible types in assignment"));
7867 deprecated_set_value_type (val, type);
7872 static struct value *
7873 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7876 struct type *type1, *type2;
7879 arg1 = coerce_ref (arg1);
7880 arg2 = coerce_ref (arg2);
7881 type1 = base_type (ada_check_typedef (value_type (arg1)));
7882 type2 = base_type (ada_check_typedef (value_type (arg2)));
7884 if (TYPE_CODE (type1) != TYPE_CODE_INT
7885 || TYPE_CODE (type2) != TYPE_CODE_INT)
7886 return value_binop (arg1, arg2, op);
7895 return value_binop (arg1, arg2, op);
7898 v2 = value_as_long (arg2);
7900 error (_("second operand of %s must not be zero."), op_string (op));
7902 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7903 return value_binop (arg1, arg2, op);
7905 v1 = value_as_long (arg1);
7910 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7911 v += v > 0 ? -1 : 1;
7919 /* Should not reach this point. */
7923 val = allocate_value (type1);
7924 store_unsigned_integer (value_contents_raw (val),
7925 TYPE_LENGTH (value_type (val)),
7926 gdbarch_byte_order (get_type_arch (type1)), v);
7931 ada_value_equal (struct value *arg1, struct value *arg2)
7933 if (ada_is_direct_array_type (value_type (arg1))
7934 || ada_is_direct_array_type (value_type (arg2)))
7936 /* Automatically dereference any array reference before
7937 we attempt to perform the comparison. */
7938 arg1 = ada_coerce_ref (arg1);
7939 arg2 = ada_coerce_ref (arg2);
7941 arg1 = ada_coerce_to_simple_array (arg1);
7942 arg2 = ada_coerce_to_simple_array (arg2);
7943 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7944 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7945 error (_("Attempt to compare array with non-array"));
7946 /* FIXME: The following works only for types whose
7947 representations use all bits (no padding or undefined bits)
7948 and do not have user-defined equality. */
7950 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7951 && memcmp (value_contents (arg1), value_contents (arg2),
7952 TYPE_LENGTH (value_type (arg1))) == 0;
7954 return value_equal (arg1, arg2);
7957 /* Total number of component associations in the aggregate starting at
7958 index PC in EXP. Assumes that index PC is the start of an
7962 num_component_specs (struct expression *exp, int pc)
7965 m = exp->elts[pc + 1].longconst;
7968 for (i = 0; i < m; i += 1)
7970 switch (exp->elts[pc].opcode)
7976 n += exp->elts[pc + 1].longconst;
7979 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7984 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7985 component of LHS (a simple array or a record), updating *POS past
7986 the expression, assuming that LHS is contained in CONTAINER. Does
7987 not modify the inferior's memory, nor does it modify LHS (unless
7988 LHS == CONTAINER). */
7991 assign_component (struct value *container, struct value *lhs, LONGEST index,
7992 struct expression *exp, int *pos)
7994 struct value *mark = value_mark ();
7996 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7998 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
7999 struct value *index_val = value_from_longest (index_type, index);
8000 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8004 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8005 elt = ada_to_fixed_value (unwrap_value (elt));
8008 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8009 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8011 value_assign_to_component (container, elt,
8012 ada_evaluate_subexp (NULL, exp, pos,
8015 value_free_to_mark (mark);
8018 /* Assuming that LHS represents an lvalue having a record or array
8019 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8020 of that aggregate's value to LHS, advancing *POS past the
8021 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8022 lvalue containing LHS (possibly LHS itself). Does not modify
8023 the inferior's memory, nor does it modify the contents of
8024 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8026 static struct value *
8027 assign_aggregate (struct value *container,
8028 struct value *lhs, struct expression *exp,
8029 int *pos, enum noside noside)
8031 struct type *lhs_type;
8032 int n = exp->elts[*pos+1].longconst;
8033 LONGEST low_index, high_index;
8036 int max_indices, num_indices;
8037 int is_array_aggregate;
8039 struct value *mark = value_mark ();
8042 if (noside != EVAL_NORMAL)
8045 for (i = 0; i < n; i += 1)
8046 ada_evaluate_subexp (NULL, exp, pos, noside);
8050 container = ada_coerce_ref (container);
8051 if (ada_is_direct_array_type (value_type (container)))
8052 container = ada_coerce_to_simple_array (container);
8053 lhs = ada_coerce_ref (lhs);
8054 if (!deprecated_value_modifiable (lhs))
8055 error (_("Left operand of assignment is not a modifiable lvalue."));
8057 lhs_type = value_type (lhs);
8058 if (ada_is_direct_array_type (lhs_type))
8060 lhs = ada_coerce_to_simple_array (lhs);
8061 lhs_type = value_type (lhs);
8062 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8063 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8064 is_array_aggregate = 1;
8066 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8069 high_index = num_visible_fields (lhs_type) - 1;
8070 is_array_aggregate = 0;
8073 error (_("Left-hand side must be array or record."));
8075 num_specs = num_component_specs (exp, *pos - 3);
8076 max_indices = 4 * num_specs + 4;
8077 indices = alloca (max_indices * sizeof (indices[0]));
8078 indices[0] = indices[1] = low_index - 1;
8079 indices[2] = indices[3] = high_index + 1;
8082 for (i = 0; i < n; i += 1)
8084 switch (exp->elts[*pos].opcode)
8087 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8088 &num_indices, max_indices,
8089 low_index, high_index);
8092 aggregate_assign_positional (container, lhs, exp, pos, indices,
8093 &num_indices, max_indices,
8094 low_index, high_index);
8098 error (_("Misplaced 'others' clause"));
8099 aggregate_assign_others (container, lhs, exp, pos, indices,
8100 num_indices, low_index, high_index);
8103 error (_("Internal error: bad aggregate clause"));
8110 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8111 construct at *POS, updating *POS past the construct, given that
8112 the positions are relative to lower bound LOW, where HIGH is the
8113 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8114 updating *NUM_INDICES as needed. CONTAINER is as for
8115 assign_aggregate. */
8117 aggregate_assign_positional (struct value *container,
8118 struct value *lhs, struct expression *exp,
8119 int *pos, LONGEST *indices, int *num_indices,
8120 int max_indices, LONGEST low, LONGEST high)
8122 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8124 if (ind - 1 == high)
8125 warning (_("Extra components in aggregate ignored."));
8128 add_component_interval (ind, ind, indices, num_indices, max_indices);
8130 assign_component (container, lhs, ind, exp, pos);
8133 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8136 /* Assign into the components of LHS indexed by the OP_CHOICES
8137 construct at *POS, updating *POS past the construct, given that
8138 the allowable indices are LOW..HIGH. Record the indices assigned
8139 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8140 needed. CONTAINER is as for assign_aggregate. */
8142 aggregate_assign_from_choices (struct value *container,
8143 struct value *lhs, struct expression *exp,
8144 int *pos, LONGEST *indices, int *num_indices,
8145 int max_indices, LONGEST low, LONGEST high)
8148 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8149 int choice_pos, expr_pc;
8150 int is_array = ada_is_direct_array_type (value_type (lhs));
8152 choice_pos = *pos += 3;
8154 for (j = 0; j < n_choices; j += 1)
8155 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8157 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8159 for (j = 0; j < n_choices; j += 1)
8161 LONGEST lower, upper;
8162 enum exp_opcode op = exp->elts[choice_pos].opcode;
8163 if (op == OP_DISCRETE_RANGE)
8166 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8168 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8173 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8184 name = &exp->elts[choice_pos + 2].string;
8187 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8190 error (_("Invalid record component association."));
8192 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8194 if (! find_struct_field (name, value_type (lhs), 0,
8195 NULL, NULL, NULL, NULL, &ind))
8196 error (_("Unknown component name: %s."), name);
8197 lower = upper = ind;
8200 if (lower <= upper && (lower < low || upper > high))
8201 error (_("Index in component association out of bounds."));
8203 add_component_interval (lower, upper, indices, num_indices,
8205 while (lower <= upper)
8209 assign_component (container, lhs, lower, exp, &pos1);
8215 /* Assign the value of the expression in the OP_OTHERS construct in
8216 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8217 have not been previously assigned. The index intervals already assigned
8218 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8219 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8221 aggregate_assign_others (struct value *container,
8222 struct value *lhs, struct expression *exp,
8223 int *pos, LONGEST *indices, int num_indices,
8224 LONGEST low, LONGEST high)
8227 int expr_pc = *pos+1;
8229 for (i = 0; i < num_indices - 2; i += 2)
8232 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8236 assign_component (container, lhs, ind, exp, &pos);
8239 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8242 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8243 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8244 modifying *SIZE as needed. It is an error if *SIZE exceeds
8245 MAX_SIZE. The resulting intervals do not overlap. */
8247 add_component_interval (LONGEST low, LONGEST high,
8248 LONGEST* indices, int *size, int max_size)
8251 for (i = 0; i < *size; i += 2) {
8252 if (high >= indices[i] && low <= indices[i + 1])
8255 for (kh = i + 2; kh < *size; kh += 2)
8256 if (high < indices[kh])
8258 if (low < indices[i])
8260 indices[i + 1] = indices[kh - 1];
8261 if (high > indices[i + 1])
8262 indices[i + 1] = high;
8263 memcpy (indices + i + 2, indices + kh, *size - kh);
8264 *size -= kh - i - 2;
8267 else if (high < indices[i])
8271 if (*size == max_size)
8272 error (_("Internal error: miscounted aggregate components."));
8274 for (j = *size-1; j >= i+2; j -= 1)
8275 indices[j] = indices[j - 2];
8277 indices[i + 1] = high;
8280 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8283 static struct value *
8284 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8286 if (type == ada_check_typedef (value_type (arg2)))
8289 if (ada_is_fixed_point_type (type))
8290 return (cast_to_fixed (type, arg2));
8292 if (ada_is_fixed_point_type (value_type (arg2)))
8293 return cast_from_fixed (type, arg2);
8295 return value_cast (type, arg2);
8298 /* Evaluating Ada expressions, and printing their result.
8299 ------------------------------------------------------
8301 We usually evaluate an Ada expression in order to print its value.
8302 We also evaluate an expression in order to print its type, which
8303 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8304 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8305 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8306 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8309 Evaluating expressions is a little more complicated for Ada entities
8310 than it is for entities in languages such as C. The main reason for
8311 this is that Ada provides types whose definition might be dynamic.
8312 One example of such types is variant records. Or another example
8313 would be an array whose bounds can only be known at run time.
8315 The following description is a general guide as to what should be
8316 done (and what should NOT be done) in order to evaluate an expression
8317 involving such types, and when. This does not cover how the semantic
8318 information is encoded by GNAT as this is covered separatly. For the
8319 document used as the reference for the GNAT encoding, see exp_dbug.ads
8320 in the GNAT sources.
8322 Ideally, we should embed each part of this description next to its
8323 associated code. Unfortunately, the amount of code is so vast right
8324 now that it's hard to see whether the code handling a particular
8325 situation might be duplicated or not. One day, when the code is
8326 cleaned up, this guide might become redundant with the comments
8327 inserted in the code, and we might want to remove it.
8329 When evaluating Ada expressions, the tricky issue is that they may
8330 reference entities whose type contents and size are not statically
8331 known. Consider for instance a variant record:
8333 type Rec (Empty : Boolean := True) is record
8336 when False => Value : Integer;
8339 Yes : Rec := (Empty => False, Value => 1);
8340 No : Rec := (empty => True);
8342 The size and contents of that record depends on the value of the
8343 descriminant (Rec.Empty). At this point, neither the debugging
8344 information nor the associated type structure in GDB are able to
8345 express such dynamic types. So what the debugger does is to create
8346 "fixed" versions of the type that applies to the specific object.
8347 We also informally refer to this opperation as "fixing" an object,
8348 which means creating its associated fixed type.
8350 Example: when printing the value of variable "Yes" above, its fixed
8351 type would look like this:
8358 On the other hand, if we printed the value of "No", its fixed type
8365 Things become a little more complicated when trying to fix an entity
8366 with a dynamic type that directly contains another dynamic type,
8367 such as an array of variant records, for instance. There are
8368 two possible cases: Arrays, and records.
8370 Arrays are a little simpler to handle, because the same amount of
8371 memory is allocated for each element of the array, even if the amount
8372 of space used by each element changes from element to element.
8373 Consider for instance the following array of type Rec:
8375 type Rec_Array is array (1 .. 2) of Rec;
8377 The type structure in GDB describes an array in terms of its
8378 bounds, and the type of its elements. By design, all elements
8379 in the array have the same type. So we cannot use a fixed type
8380 for the array elements in this case, since the fixed type depends
8381 on the actual value of each element.
8383 Fortunately, what happens in practice is that each element of
8384 the array has the same size, which is the maximum size that
8385 might be needed in order to hold an object of the element type.
8386 And the compiler shows it in the debugging information by wrapping
8387 the array element inside a private PAD type. This type should not
8388 be shown to the user, and must be "unwrap"'ed before printing. Note
8389 that we also use the adjective "aligner" in our code to designate
8390 these wrapper types.
8392 These wrapper types should have a constant size, which is the size
8393 of each element of the array. In the case when the size is statically
8394 known, the PAD type will already have the right size, and the array
8395 element type should remain unfixed. But there are cases when
8396 this size is not statically known. For instance, assuming that
8397 "Five" is an integer variable:
8399 type Dynamic is array (1 .. Five) of Integer;
8400 type Wrapper (Has_Length : Boolean := False) is record
8403 when True => Length : Integer;
8407 type Wrapper_Array is array (1 .. 2) of Wrapper;
8409 Hello : Wrapper_Array := (others => (Has_Length => True,
8410 Data => (others => 17),
8414 The debugging info would describe variable Hello as being an
8415 array of a PAD type. The size of that PAD type is not statically
8416 known, but can be determined using a parallel XVZ variable.
8417 In that case, a copy of the PAD type with the correct size should
8418 be used for the fixed array.
8420 However, things are slightly different in the case of dynamic
8421 record types. In this case, in order to compute the associated
8422 fixed type, we need to determine the size and offset of each of
8423 its components. This, in turn, requires us to compute the fixed
8424 type of each of these components.
8426 Consider for instance the example:
8428 type Bounded_String (Max_Size : Natural) is record
8429 Str : String (1 .. Max_Size);
8432 My_String : Bounded_String (Max_Size => 10);
8434 In that case, the position of field "Length" depends on the size
8435 of field Str, which itself depends on the value of the Max_Size
8436 discriminant. In order to fix the type of variable My_String,
8437 we need to fix the type of field Str. Therefore, fixing a variant
8438 record requires us to fix each of its components.
8440 However, if a component does not have a dynamic size, the component
8441 should not be fixed. In particular, fields that use a PAD type
8442 should not fixed. Here is an example where this might happen
8443 (assuming type Rec above):
8445 type Container (Big : Boolean) is record
8449 when True => Another : Integer;
8453 My_Container : Container := (Big => False,
8454 First => (Empty => True),
8457 In that example, the compiler creates a PAD type for component First,
8458 whose size is constant, and then positions the component After just
8459 right after it. The offset of component After is therefore constant
8462 The debugger computes the position of each field based on an algorithm
8463 that uses, among other things, the actual position and size of the field
8464 preceding it. Let's now imagine that the user is trying to print the
8465 value of My_Container. If the type fixing was recursive, we would
8466 end up computing the offset of field After based on the size of the
8467 fixed version of field First. And since in our example First has
8468 only one actual field, the size of the fixed type is actually smaller
8469 than the amount of space allocated to that field, and thus we would
8470 compute the wrong offset of field After.
8472 Unfortunately, we need to watch out for dynamic components of variant
8473 records (identified by the ___XVL suffix in the component name).
8474 Even if the target type is a PAD type, the size of that type might
8475 not be statically known. So the PAD type needs to be unwrapped and
8476 the resulting type needs to be fixed. Otherwise, we might end up
8477 with the wrong size for our component. This can be observed with
8478 the following type declarations:
8480 type Octal is new Integer range 0 .. 7;
8481 type Octal_Array is array (Positive range <>) of Octal;
8482 pragma Pack (Octal_Array);
8484 type Octal_Buffer (Size : Positive) is record
8485 Buffer : Octal_Array (1 .. Size);
8489 In that case, Buffer is a PAD type whose size is unset and needs
8490 to be computed by fixing the unwrapped type.
8492 Lastly, when should the sub-elements of a type that remained unfixed
8493 thus far, be actually fixed?
8495 The answer is: Only when referencing that element. For instance
8496 when selecting one component of a record, this specific component
8497 should be fixed at that point in time. Or when printing the value
8498 of a record, each component should be fixed before its value gets
8499 printed. Similarly for arrays, the element of the array should be
8500 fixed when printing each element of the array, or when extracting
8501 one element out of that array. On the other hand, fixing should
8502 not be performed on the elements when taking a slice of an array!
8504 Note that one of the side-effects of miscomputing the offset and
8505 size of each field is that we end up also miscomputing the size
8506 of the containing type. This can have adverse results when computing
8507 the value of an entity. GDB fetches the value of an entity based
8508 on the size of its type, and thus a wrong size causes GDB to fetch
8509 the wrong amount of memory. In the case where the computed size is
8510 too small, GDB fetches too little data to print the value of our
8511 entiry. Results in this case as unpredicatble, as we usually read
8512 past the buffer containing the data =:-o. */
8514 /* Implement the evaluate_exp routine in the exp_descriptor structure
8515 for the Ada language. */
8517 static struct value *
8518 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8519 int *pos, enum noside noside)
8522 int tem, tem2, tem3;
8524 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8527 struct value **argvec;
8531 op = exp->elts[pc].opcode;
8537 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8538 arg1 = unwrap_value (arg1);
8540 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8541 then we need to perform the conversion manually, because
8542 evaluate_subexp_standard doesn't do it. This conversion is
8543 necessary in Ada because the different kinds of float/fixed
8544 types in Ada have different representations.
8546 Similarly, we need to perform the conversion from OP_LONG
8548 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8549 arg1 = ada_value_cast (expect_type, arg1, noside);
8555 struct value *result;
8557 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8558 /* The result type will have code OP_STRING, bashed there from
8559 OP_ARRAY. Bash it back. */
8560 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8561 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8567 type = exp->elts[pc + 1].type;
8568 arg1 = evaluate_subexp (type, exp, pos, noside);
8569 if (noside == EVAL_SKIP)
8571 arg1 = ada_value_cast (type, arg1, noside);
8576 type = exp->elts[pc + 1].type;
8577 return ada_evaluate_subexp (type, exp, pos, noside);
8580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8581 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8583 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8584 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8586 return ada_value_assign (arg1, arg1);
8588 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8589 except if the lhs of our assignment is a convenience variable.
8590 In the case of assigning to a convenience variable, the lhs
8591 should be exactly the result of the evaluation of the rhs. */
8592 type = value_type (arg1);
8593 if (VALUE_LVAL (arg1) == lval_internalvar)
8595 arg2 = evaluate_subexp (type, exp, pos, noside);
8596 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8598 if (ada_is_fixed_point_type (value_type (arg1)))
8599 arg2 = cast_to_fixed (value_type (arg1), arg2);
8600 else if (ada_is_fixed_point_type (value_type (arg2)))
8602 (_("Fixed-point values must be assigned to fixed-point variables"));
8604 arg2 = coerce_for_assign (value_type (arg1), arg2);
8605 return ada_value_assign (arg1, arg2);
8608 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8609 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8610 if (noside == EVAL_SKIP)
8612 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8613 return (value_from_longest
8615 value_as_long (arg1) + value_as_long (arg2)));
8616 if ((ada_is_fixed_point_type (value_type (arg1))
8617 || ada_is_fixed_point_type (value_type (arg2)))
8618 && value_type (arg1) != value_type (arg2))
8619 error (_("Operands of fixed-point addition must have the same type"));
8620 /* Do the addition, and cast the result to the type of the first
8621 argument. We cannot cast the result to a reference type, so if
8622 ARG1 is a reference type, find its underlying type. */
8623 type = value_type (arg1);
8624 while (TYPE_CODE (type) == TYPE_CODE_REF)
8625 type = TYPE_TARGET_TYPE (type);
8626 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8627 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8630 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8631 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8632 if (noside == EVAL_SKIP)
8634 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8635 return (value_from_longest
8637 value_as_long (arg1) - value_as_long (arg2)));
8638 if ((ada_is_fixed_point_type (value_type (arg1))
8639 || ada_is_fixed_point_type (value_type (arg2)))
8640 && value_type (arg1) != value_type (arg2))
8641 error (_("Operands of fixed-point subtraction must have the same type"));
8642 /* Do the substraction, and cast the result to the type of the first
8643 argument. We cannot cast the result to a reference type, so if
8644 ARG1 is a reference type, find its underlying type. */
8645 type = value_type (arg1);
8646 while (TYPE_CODE (type) == TYPE_CODE_REF)
8647 type = TYPE_TARGET_TYPE (type);
8648 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8649 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8656 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8657 if (noside == EVAL_SKIP)
8659 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8662 return value_zero (value_type (arg1), not_lval);
8666 type = builtin_type (exp->gdbarch)->builtin_double;
8667 if (ada_is_fixed_point_type (value_type (arg1)))
8668 arg1 = cast_from_fixed (type, arg1);
8669 if (ada_is_fixed_point_type (value_type (arg2)))
8670 arg2 = cast_from_fixed (type, arg2);
8671 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8672 return ada_value_binop (arg1, arg2, op);
8676 case BINOP_NOTEQUAL:
8677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8678 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8679 if (noside == EVAL_SKIP)
8681 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8685 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8686 tem = ada_value_equal (arg1, arg2);
8688 if (op == BINOP_NOTEQUAL)
8690 type = language_bool_type (exp->language_defn, exp->gdbarch);
8691 return value_from_longest (type, (LONGEST) tem);
8694 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8695 if (noside == EVAL_SKIP)
8697 else if (ada_is_fixed_point_type (value_type (arg1)))
8698 return value_cast (value_type (arg1), value_neg (arg1));
8701 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8702 return value_neg (arg1);
8705 case BINOP_LOGICAL_AND:
8706 case BINOP_LOGICAL_OR:
8707 case UNOP_LOGICAL_NOT:
8712 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8713 type = language_bool_type (exp->language_defn, exp->gdbarch);
8714 return value_cast (type, val);
8717 case BINOP_BITWISE_AND:
8718 case BINOP_BITWISE_IOR:
8719 case BINOP_BITWISE_XOR:
8723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8725 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8727 return value_cast (value_type (arg1), val);
8733 if (noside == EVAL_SKIP)
8738 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8739 /* Only encountered when an unresolved symbol occurs in a
8740 context other than a function call, in which case, it is
8742 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8743 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8744 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8746 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8747 if (ada_is_tagged_type (type, 0))
8749 /* Tagged types are a little special in the fact that the real
8750 type is dynamic and can only be determined by inspecting the
8751 object's tag. This means that we need to get the object's
8752 value first (EVAL_NORMAL) and then extract the actual object
8755 Note that we cannot skip the final step where we extract
8756 the object type from its tag, because the EVAL_NORMAL phase
8757 results in dynamic components being resolved into fixed ones.
8758 This can cause problems when trying to print the type
8759 description of tagged types whose parent has a dynamic size:
8760 We use the type name of the "_parent" component in order
8761 to print the name of the ancestor type in the type description.
8762 If that component had a dynamic size, the resolution into
8763 a fixed type would result in the loss of that type name,
8764 thus preventing us from printing the name of the ancestor
8765 type in the type description. */
8766 struct type *actual_type;
8768 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8769 actual_type = type_from_tag (ada_value_tag (arg1));
8770 if (actual_type == NULL)
8771 /* If, for some reason, we were unable to determine
8772 the actual type from the tag, then use the static
8773 approximation that we just computed as a fallback.
8774 This can happen if the debugging information is
8775 incomplete, for instance. */
8778 return value_zero (actual_type, not_lval);
8783 (to_static_fixed_type
8784 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8789 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8790 arg1 = unwrap_value (arg1);
8791 return ada_to_fixed_value (arg1);
8797 /* Allocate arg vector, including space for the function to be
8798 called in argvec[0] and a terminating NULL. */
8799 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8801 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8803 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8804 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8805 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8806 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8809 for (tem = 0; tem <= nargs; tem += 1)
8810 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8813 if (noside == EVAL_SKIP)
8817 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8818 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8819 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8820 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8821 /* This is a packed array that has already been fixed, and
8822 therefore already coerced to a simple array. Nothing further
8825 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8826 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8827 && VALUE_LVAL (argvec[0]) == lval_memory))
8828 argvec[0] = value_addr (argvec[0]);
8830 type = ada_check_typedef (value_type (argvec[0]));
8831 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8833 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8835 case TYPE_CODE_FUNC:
8836 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8838 case TYPE_CODE_ARRAY:
8840 case TYPE_CODE_STRUCT:
8841 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8842 argvec[0] = ada_value_ind (argvec[0]);
8843 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8846 error (_("cannot subscript or call something of type `%s'"),
8847 ada_type_name (value_type (argvec[0])));
8852 switch (TYPE_CODE (type))
8854 case TYPE_CODE_FUNC:
8855 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8856 return allocate_value (TYPE_TARGET_TYPE (type));
8857 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8858 case TYPE_CODE_STRUCT:
8862 arity = ada_array_arity (type);
8863 type = ada_array_element_type (type, nargs);
8865 error (_("cannot subscript or call a record"));
8867 error (_("wrong number of subscripts; expecting %d"), arity);
8868 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8869 return value_zero (ada_aligned_type (type), lval_memory);
8871 unwrap_value (ada_value_subscript
8872 (argvec[0], nargs, argvec + 1));
8874 case TYPE_CODE_ARRAY:
8875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8877 type = ada_array_element_type (type, nargs);
8879 error (_("element type of array unknown"));
8881 return value_zero (ada_aligned_type (type), lval_memory);
8884 unwrap_value (ada_value_subscript
8885 (ada_coerce_to_simple_array (argvec[0]),
8886 nargs, argvec + 1));
8887 case TYPE_CODE_PTR: /* Pointer to array */
8888 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8889 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8891 type = ada_array_element_type (type, nargs);
8893 error (_("element type of array unknown"));
8895 return value_zero (ada_aligned_type (type), lval_memory);
8898 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8899 nargs, argvec + 1));
8902 error (_("Attempt to index or call something other than an "
8903 "array or function"));
8908 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8909 struct value *low_bound_val =
8910 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8911 struct value *high_bound_val =
8912 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8915 low_bound_val = coerce_ref (low_bound_val);
8916 high_bound_val = coerce_ref (high_bound_val);
8917 low_bound = pos_atr (low_bound_val);
8918 high_bound = pos_atr (high_bound_val);
8920 if (noside == EVAL_SKIP)
8923 /* If this is a reference to an aligner type, then remove all
8925 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8926 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8927 TYPE_TARGET_TYPE (value_type (array)) =
8928 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8930 if (ada_is_packed_array_type (value_type (array)))
8931 error (_("cannot slice a packed array"));
8933 /* If this is a reference to an array or an array lvalue,
8934 convert to a pointer. */
8935 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8936 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8937 && VALUE_LVAL (array) == lval_memory))
8938 array = value_addr (array);
8940 if (noside == EVAL_AVOID_SIDE_EFFECTS
8941 && ada_is_array_descriptor_type (ada_check_typedef
8942 (value_type (array))))
8943 return empty_array (ada_type_of_array (array, 0), low_bound);
8945 array = ada_coerce_to_simple_array_ptr (array);
8947 /* If we have more than one level of pointer indirection,
8948 dereference the value until we get only one level. */
8949 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8950 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8952 array = value_ind (array);
8954 /* Make sure we really do have an array type before going further,
8955 to avoid a SEGV when trying to get the index type or the target
8956 type later down the road if the debug info generated by
8957 the compiler is incorrect or incomplete. */
8958 if (!ada_is_simple_array_type (value_type (array)))
8959 error (_("cannot take slice of non-array"));
8961 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8963 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8964 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8968 struct type *arr_type0 =
8969 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8971 return ada_value_slice_from_ptr (array, arr_type0,
8972 longest_to_int (low_bound),
8973 longest_to_int (high_bound));
8976 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8978 else if (high_bound < low_bound)
8979 return empty_array (value_type (array), low_bound);
8981 return ada_value_slice (array, longest_to_int (low_bound),
8982 longest_to_int (high_bound));
8987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8988 type = check_typedef (exp->elts[pc + 1].type);
8990 if (noside == EVAL_SKIP)
8993 switch (TYPE_CODE (type))
8996 lim_warning (_("Membership test incompletely implemented; "
8997 "always returns true"));
8998 type = language_bool_type (exp->language_defn, exp->gdbarch);
8999 return value_from_longest (type, (LONGEST) 1);
9001 case TYPE_CODE_RANGE:
9002 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9003 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9006 type = language_bool_type (exp->language_defn, exp->gdbarch);
9008 value_from_longest (type,
9009 (value_less (arg1, arg3)
9010 || value_equal (arg1, arg3))
9011 && (value_less (arg2, arg1)
9012 || value_equal (arg2, arg1)));
9015 case BINOP_IN_BOUNDS:
9017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9018 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9020 if (noside == EVAL_SKIP)
9023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9025 type = language_bool_type (exp->language_defn, exp->gdbarch);
9026 return value_zero (type, not_lval);
9029 tem = longest_to_int (exp->elts[pc + 1].longconst);
9031 type = ada_index_type (value_type (arg2), tem, "range");
9033 type = value_type (arg1);
9035 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9036 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9039 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9040 type = language_bool_type (exp->language_defn, exp->gdbarch);
9042 value_from_longest (type,
9043 (value_less (arg1, arg3)
9044 || value_equal (arg1, arg3))
9045 && (value_less (arg2, arg1)
9046 || value_equal (arg2, arg1)));
9048 case TERNOP_IN_RANGE:
9049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9050 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9053 if (noside == EVAL_SKIP)
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9058 type = language_bool_type (exp->language_defn, exp->gdbarch);
9060 value_from_longest (type,
9061 (value_less (arg1, arg3)
9062 || value_equal (arg1, arg3))
9063 && (value_less (arg2, arg1)
9064 || value_equal (arg2, arg1)));
9070 struct type *type_arg;
9071 if (exp->elts[*pos].opcode == OP_TYPE)
9073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9075 type_arg = check_typedef (exp->elts[pc + 2].type);
9079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9083 if (exp->elts[*pos].opcode != OP_LONG)
9084 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9085 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9088 if (noside == EVAL_SKIP)
9091 if (type_arg == NULL)
9093 arg1 = ada_coerce_ref (arg1);
9095 if (ada_is_packed_array_type (value_type (arg1)))
9096 arg1 = ada_coerce_to_simple_array (arg1);
9098 type = ada_index_type (value_type (arg1), tem,
9099 ada_attribute_name (op));
9101 type = builtin_type (exp->gdbarch)->builtin_int;
9103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9104 return allocate_value (type);
9108 default: /* Should never happen. */
9109 error (_("unexpected attribute encountered"));
9111 return value_from_longest
9112 (type, ada_array_bound (arg1, tem, 0));
9114 return value_from_longest
9115 (type, ada_array_bound (arg1, tem, 1));
9117 return value_from_longest
9118 (type, ada_array_length (arg1, tem));
9121 else if (discrete_type_p (type_arg))
9123 struct type *range_type;
9124 char *name = ada_type_name (type_arg);
9126 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9127 range_type = to_fixed_range_type (name, NULL, type_arg);
9128 if (range_type == NULL)
9129 range_type = type_arg;
9133 error (_("unexpected attribute encountered"));
9135 return value_from_longest
9136 (range_type, discrete_type_low_bound (range_type));
9138 return value_from_longest
9139 (range_type, discrete_type_high_bound (range_type));
9141 error (_("the 'length attribute applies only to array types"));
9144 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9145 error (_("unimplemented type attribute"));
9150 if (ada_is_packed_array_type (type_arg))
9151 type_arg = decode_packed_array_type (type_arg);
9153 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9155 type = builtin_type (exp->gdbarch)->builtin_int;
9157 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9158 return allocate_value (type);
9163 error (_("unexpected attribute encountered"));
9165 low = ada_array_bound_from_type (type_arg, tem, 0);
9166 return value_from_longest (type, low);
9168 high = ada_array_bound_from_type (type_arg, tem, 1);
9169 return value_from_longest (type, high);
9171 low = ada_array_bound_from_type (type_arg, tem, 0);
9172 high = ada_array_bound_from_type (type_arg, tem, 1);
9173 return value_from_longest (type, high - low + 1);
9179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 if (noside == EVAL_SKIP)
9183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9184 return value_zero (ada_tag_type (arg1), not_lval);
9186 return ada_value_tag (arg1);
9190 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9192 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9193 if (noside == EVAL_SKIP)
9195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9196 return value_zero (value_type (arg1), not_lval);
9199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9200 return value_binop (arg1, arg2,
9201 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9204 case OP_ATR_MODULUS:
9206 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9207 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9209 if (noside == EVAL_SKIP)
9212 if (!ada_is_modular_type (type_arg))
9213 error (_("'modulus must be applied to modular type"));
9215 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9216 ada_modulus (type_arg));
9221 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9223 if (noside == EVAL_SKIP)
9225 type = builtin_type (exp->gdbarch)->builtin_int;
9226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9227 return value_zero (type, not_lval);
9229 return value_pos_atr (type, arg1);
9232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9233 type = value_type (arg1);
9235 /* If the argument is a reference, then dereference its type, since
9236 the user is really asking for the size of the actual object,
9237 not the size of the pointer. */
9238 if (TYPE_CODE (type) == TYPE_CODE_REF)
9239 type = TYPE_TARGET_TYPE (type);
9241 if (noside == EVAL_SKIP)
9243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9244 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9246 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9247 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9250 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9251 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9252 type = exp->elts[pc + 2].type;
9253 if (noside == EVAL_SKIP)
9255 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9256 return value_zero (type, not_lval);
9258 return value_val_atr (type, arg1);
9261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9263 if (noside == EVAL_SKIP)
9265 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9266 return value_zero (value_type (arg1), not_lval);
9269 /* For integer exponentiation operations,
9270 only promote the first argument. */
9271 if (is_integral_type (value_type (arg2)))
9272 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9274 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9276 return value_binop (arg1, arg2, op);
9280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9281 if (noside == EVAL_SKIP)
9287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9288 if (noside == EVAL_SKIP)
9290 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9291 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9292 return value_neg (arg1);
9297 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9298 if (noside == EVAL_SKIP)
9300 type = ada_check_typedef (value_type (arg1));
9301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9303 if (ada_is_array_descriptor_type (type))
9304 /* GDB allows dereferencing GNAT array descriptors. */
9306 struct type *arrType = ada_type_of_array (arg1, 0);
9307 if (arrType == NULL)
9308 error (_("Attempt to dereference null array pointer."));
9309 return value_at_lazy (arrType, 0);
9311 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9312 || TYPE_CODE (type) == TYPE_CODE_REF
9313 /* In C you can dereference an array to get the 1st elt. */
9314 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9316 type = to_static_fixed_type
9318 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9320 return value_zero (type, lval_memory);
9322 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9324 /* GDB allows dereferencing an int. */
9325 if (expect_type == NULL)
9326 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9331 to_static_fixed_type (ada_aligned_type (expect_type));
9332 return value_zero (expect_type, lval_memory);
9336 error (_("Attempt to take contents of a non-pointer value."));
9338 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9339 type = ada_check_typedef (value_type (arg1));
9341 if (TYPE_CODE (type) == TYPE_CODE_INT)
9342 /* GDB allows dereferencing an int. If we were given
9343 the expect_type, then use that as the target type.
9344 Otherwise, assume that the target type is an int. */
9346 if (expect_type != NULL)
9347 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9350 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9351 (CORE_ADDR) value_as_address (arg1));
9354 if (ada_is_array_descriptor_type (type))
9355 /* GDB allows dereferencing GNAT array descriptors. */
9356 return ada_coerce_to_simple_array (arg1);
9358 return ada_value_ind (arg1);
9360 case STRUCTOP_STRUCT:
9361 tem = longest_to_int (exp->elts[pc + 1].longconst);
9362 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9364 if (noside == EVAL_SKIP)
9366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9368 struct type *type1 = value_type (arg1);
9369 if (ada_is_tagged_type (type1, 1))
9371 type = ada_lookup_struct_elt_type (type1,
9372 &exp->elts[pc + 2].string,
9375 /* In this case, we assume that the field COULD exist
9376 in some extension of the type. Return an object of
9377 "type" void, which will match any formal
9378 (see ada_type_match). */
9379 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9384 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9387 return value_zero (ada_aligned_type (type), lval_memory);
9390 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9391 arg1 = unwrap_value (arg1);
9392 return ada_to_fixed_value (arg1);
9395 /* The value is not supposed to be used. This is here to make it
9396 easier to accommodate expressions that contain types. */
9398 if (noside == EVAL_SKIP)
9400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9401 return allocate_value (exp->elts[pc + 1].type);
9403 error (_("Attempt to use a type name as an expression"));
9408 case OP_DISCRETE_RANGE:
9411 if (noside == EVAL_NORMAL)
9415 error (_("Undefined name, ambiguous name, or renaming used in "
9416 "component association: %s."), &exp->elts[pc+2].string);
9418 error (_("Aggregates only allowed on the right of an assignment"));
9420 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9423 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9425 for (tem = 0; tem < nargs; tem += 1)
9426 ada_evaluate_subexp (NULL, exp, pos, noside);
9431 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9437 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9438 type name that encodes the 'small and 'delta information.
9439 Otherwise, return NULL. */
9442 fixed_type_info (struct type *type)
9444 const char *name = ada_type_name (type);
9445 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9447 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9449 const char *tail = strstr (name, "___XF_");
9455 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9456 return fixed_type_info (TYPE_TARGET_TYPE (type));
9461 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9464 ada_is_fixed_point_type (struct type *type)
9466 return fixed_type_info (type) != NULL;
9469 /* Return non-zero iff TYPE represents a System.Address type. */
9472 ada_is_system_address_type (struct type *type)
9474 return (TYPE_NAME (type)
9475 && strcmp (TYPE_NAME (type), "system__address") == 0);
9478 /* Assuming that TYPE is the representation of an Ada fixed-point
9479 type, return its delta, or -1 if the type is malformed and the
9480 delta cannot be determined. */
9483 ada_delta (struct type *type)
9485 const char *encoding = fixed_type_info (type);
9488 /* Strictly speaking, num and den are encoded as integer. However,
9489 they may not fit into a long, and they will have to be converted
9490 to DOUBLEST anyway. So scan them as DOUBLEST. */
9491 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9498 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9499 factor ('SMALL value) associated with the type. */
9502 scaling_factor (struct type *type)
9504 const char *encoding = fixed_type_info (type);
9505 DOUBLEST num0, den0, num1, den1;
9508 /* Strictly speaking, num's and den's are encoded as integer. However,
9509 they may not fit into a long, and they will have to be converted
9510 to DOUBLEST anyway. So scan them as DOUBLEST. */
9511 n = sscanf (encoding,
9512 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9513 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9514 &num0, &den0, &num1, &den1);
9525 /* Assuming that X is the representation of a value of fixed-point
9526 type TYPE, return its floating-point equivalent. */
9529 ada_fixed_to_float (struct type *type, LONGEST x)
9531 return (DOUBLEST) x *scaling_factor (type);
9534 /* The representation of a fixed-point value of type TYPE
9535 corresponding to the value X. */
9538 ada_float_to_fixed (struct type *type, DOUBLEST x)
9540 return (LONGEST) (x / scaling_factor (type) + 0.5);
9544 /* VAX floating formats */
9546 /* Non-zero iff TYPE represents one of the special VAX floating-point
9550 ada_is_vax_floating_type (struct type *type)
9553 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9556 && (TYPE_CODE (type) == TYPE_CODE_INT
9557 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9558 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9561 /* The type of special VAX floating-point type this is, assuming
9562 ada_is_vax_floating_point. */
9565 ada_vax_float_type_suffix (struct type *type)
9567 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9570 /* A value representing the special debugging function that outputs
9571 VAX floating-point values of the type represented by TYPE. Assumes
9572 ada_is_vax_floating_type (TYPE). */
9575 ada_vax_float_print_function (struct type *type)
9577 switch (ada_vax_float_type_suffix (type))
9580 return get_var_value ("DEBUG_STRING_F", 0);
9582 return get_var_value ("DEBUG_STRING_D", 0);
9584 return get_var_value ("DEBUG_STRING_G", 0);
9586 error (_("invalid VAX floating-point type"));
9593 /* Scan STR beginning at position K for a discriminant name, and
9594 return the value of that discriminant field of DVAL in *PX. If
9595 PNEW_K is not null, put the position of the character beyond the
9596 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9597 not alter *PX and *PNEW_K if unsuccessful. */
9600 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9603 static char *bound_buffer = NULL;
9604 static size_t bound_buffer_len = 0;
9607 struct value *bound_val;
9609 if (dval == NULL || str == NULL || str[k] == '\0')
9612 pend = strstr (str + k, "__");
9616 k += strlen (bound);
9620 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9621 bound = bound_buffer;
9622 strncpy (bound_buffer, str + k, pend - (str + k));
9623 bound[pend - (str + k)] = '\0';
9627 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9628 if (bound_val == NULL)
9631 *px = value_as_long (bound_val);
9637 /* Value of variable named NAME in the current environment. If
9638 no such variable found, then if ERR_MSG is null, returns 0, and
9639 otherwise causes an error with message ERR_MSG. */
9641 static struct value *
9642 get_var_value (char *name, char *err_msg)
9644 struct ada_symbol_info *syms;
9647 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9652 if (err_msg == NULL)
9655 error (("%s"), err_msg);
9658 return value_of_variable (syms[0].sym, syms[0].block);
9661 /* Value of integer variable named NAME in the current environment. If
9662 no such variable found, returns 0, and sets *FLAG to 0. If
9663 successful, sets *FLAG to 1. */
9666 get_int_var_value (char *name, int *flag)
9668 struct value *var_val = get_var_value (name, 0);
9680 return value_as_long (var_val);
9685 /* Return a range type whose base type is that of the range type named
9686 NAME in the current environment, and whose bounds are calculated
9687 from NAME according to the GNAT range encoding conventions.
9688 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9689 corresponding range type from debug information; fall back to using it
9690 if symbol lookup fails. If a new type must be created, allocate it
9691 like ORIG_TYPE was. The bounds information, in general, is encoded
9692 in NAME, the base type given in the named range type. */
9694 static struct type *
9695 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9697 struct type *raw_type = ada_find_any_type (name);
9698 struct type *base_type;
9701 /* Fall back to the original type if symbol lookup failed. */
9702 if (raw_type == NULL)
9703 raw_type = orig_type;
9705 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9706 base_type = TYPE_TARGET_TYPE (raw_type);
9708 base_type = raw_type;
9710 subtype_info = strstr (name, "___XD");
9711 if (subtype_info == NULL)
9713 LONGEST L = discrete_type_low_bound (raw_type);
9714 LONGEST U = discrete_type_high_bound (raw_type);
9715 if (L < INT_MIN || U > INT_MAX)
9718 return create_range_type (alloc_type_copy (orig_type), raw_type,
9719 discrete_type_low_bound (raw_type),
9720 discrete_type_high_bound (raw_type));
9724 static char *name_buf = NULL;
9725 static size_t name_len = 0;
9726 int prefix_len = subtype_info - name;
9732 GROW_VECT (name_buf, name_len, prefix_len + 5);
9733 strncpy (name_buf, name, prefix_len);
9734 name_buf[prefix_len] = '\0';
9737 bounds_str = strchr (subtype_info, '_');
9740 if (*subtype_info == 'L')
9742 if (!ada_scan_number (bounds_str, n, &L, &n)
9743 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9745 if (bounds_str[n] == '_')
9747 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9754 strcpy (name_buf + prefix_len, "___L");
9755 L = get_int_var_value (name_buf, &ok);
9758 lim_warning (_("Unknown lower bound, using 1."));
9763 if (*subtype_info == 'U')
9765 if (!ada_scan_number (bounds_str, n, &U, &n)
9766 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9772 strcpy (name_buf + prefix_len, "___U");
9773 U = get_int_var_value (name_buf, &ok);
9776 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9781 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9782 TYPE_NAME (type) = name;
9787 /* True iff NAME is the name of a range type. */
9790 ada_is_range_type_name (const char *name)
9792 return (name != NULL && strstr (name, "___XD"));
9798 /* True iff TYPE is an Ada modular type. */
9801 ada_is_modular_type (struct type *type)
9803 struct type *subranged_type = base_type (type);
9805 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9806 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9807 && TYPE_UNSIGNED (subranged_type));
9810 /* Try to determine the lower and upper bounds of the given modular type
9811 using the type name only. Return non-zero and set L and U as the lower
9812 and upper bounds (respectively) if successful. */
9815 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9817 char *name = ada_type_name (type);
9825 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9826 we are looking for static bounds, which means an __XDLU suffix.
9827 Moreover, we know that the lower bound of modular types is always
9828 zero, so the actual suffix should start with "__XDLU_0__", and
9829 then be followed by the upper bound value. */
9830 suffix = strstr (name, "__XDLU_0__");
9834 if (!ada_scan_number (suffix, k, &U, NULL))
9837 *modulus = (ULONGEST) U + 1;
9841 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9844 ada_modulus (struct type *type)
9848 /* Normally, the modulus of a modular type is equal to the value of
9849 its upper bound + 1. However, the upper bound is currently stored
9850 as an int, which is not always big enough to hold the actual bound
9851 value. To workaround this, try to take advantage of the encoding
9852 that GNAT uses with with discrete types. To avoid some unnecessary
9853 parsing, we do this only when the size of TYPE is greater than
9854 the size of the field holding the bound. */
9855 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9856 && ada_modulus_from_name (type, &modulus))
9859 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9863 /* Ada exception catchpoint support:
9864 ---------------------------------
9866 We support 3 kinds of exception catchpoints:
9867 . catchpoints on Ada exceptions
9868 . catchpoints on unhandled Ada exceptions
9869 . catchpoints on failed assertions
9871 Exceptions raised during failed assertions, or unhandled exceptions
9872 could perfectly be caught with the general catchpoint on Ada exceptions.
9873 However, we can easily differentiate these two special cases, and having
9874 the option to distinguish these two cases from the rest can be useful
9875 to zero-in on certain situations.
9877 Exception catchpoints are a specialized form of breakpoint,
9878 since they rely on inserting breakpoints inside known routines
9879 of the GNAT runtime. The implementation therefore uses a standard
9880 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9883 Support in the runtime for exception catchpoints have been changed
9884 a few times already, and these changes affect the implementation
9885 of these catchpoints. In order to be able to support several
9886 variants of the runtime, we use a sniffer that will determine
9887 the runtime variant used by the program being debugged.
9889 At this time, we do not support the use of conditions on Ada exception
9890 catchpoints. The COND and COND_STRING fields are therefore set
9891 to NULL (most of the time, see below).
9893 Conditions where EXP_STRING, COND, and COND_STRING are used:
9895 When a user specifies the name of a specific exception in the case
9896 of catchpoints on Ada exceptions, we store the name of that exception
9897 in the EXP_STRING. We then translate this request into an actual
9898 condition stored in COND_STRING, and then parse it into an expression
9901 /* The different types of catchpoints that we introduced for catching
9904 enum exception_catchpoint_kind
9907 ex_catch_exception_unhandled,
9911 /* Ada's standard exceptions. */
9913 static char *standard_exc[] = {
9920 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9922 /* A structure that describes how to support exception catchpoints
9923 for a given executable. */
9925 struct exception_support_info
9927 /* The name of the symbol to break on in order to insert
9928 a catchpoint on exceptions. */
9929 const char *catch_exception_sym;
9931 /* The name of the symbol to break on in order to insert
9932 a catchpoint on unhandled exceptions. */
9933 const char *catch_exception_unhandled_sym;
9935 /* The name of the symbol to break on in order to insert
9936 a catchpoint on failed assertions. */
9937 const char *catch_assert_sym;
9939 /* Assuming that the inferior just triggered an unhandled exception
9940 catchpoint, this function is responsible for returning the address
9941 in inferior memory where the name of that exception is stored.
9942 Return zero if the address could not be computed. */
9943 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9946 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9947 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9949 /* The following exception support info structure describes how to
9950 implement exception catchpoints with the latest version of the
9951 Ada runtime (as of 2007-03-06). */
9953 static const struct exception_support_info default_exception_support_info =
9955 "__gnat_debug_raise_exception", /* catch_exception_sym */
9956 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9957 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9958 ada_unhandled_exception_name_addr
9961 /* The following exception support info structure describes how to
9962 implement exception catchpoints with a slightly older version
9963 of the Ada runtime. */
9965 static const struct exception_support_info exception_support_info_fallback =
9967 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9968 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9969 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9970 ada_unhandled_exception_name_addr_from_raise
9973 /* For each executable, we sniff which exception info structure to use
9974 and cache it in the following global variable. */
9976 static const struct exception_support_info *exception_info = NULL;
9978 /* Inspect the Ada runtime and determine which exception info structure
9979 should be used to provide support for exception catchpoints.
9981 This function will always set exception_info, or raise an error. */
9984 ada_exception_support_info_sniffer (void)
9988 /* If the exception info is already known, then no need to recompute it. */
9989 if (exception_info != NULL)
9992 /* Check the latest (default) exception support info. */
9993 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9997 exception_info = &default_exception_support_info;
10001 /* Try our fallback exception suport info. */
10002 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10006 exception_info = &exception_support_info_fallback;
10010 /* Sometimes, it is normal for us to not be able to find the routine
10011 we are looking for. This happens when the program is linked with
10012 the shared version of the GNAT runtime, and the program has not been
10013 started yet. Inform the user of these two possible causes if
10016 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10017 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10019 /* If the symbol does not exist, then check that the program is
10020 already started, to make sure that shared libraries have been
10021 loaded. If it is not started, this may mean that the symbol is
10022 in a shared library. */
10024 if (ptid_get_pid (inferior_ptid) == 0)
10025 error (_("Unable to insert catchpoint. Try to start the program first."));
10027 /* At this point, we know that we are debugging an Ada program and
10028 that the inferior has been started, but we still are not able to
10029 find the run-time symbols. That can mean that we are in
10030 configurable run time mode, or that a-except as been optimized
10031 out by the linker... In any case, at this point it is not worth
10032 supporting this feature. */
10034 error (_("Cannot insert catchpoints in this configuration."));
10037 /* An observer of "executable_changed" events.
10038 Its role is to clear certain cached values that need to be recomputed
10039 each time a new executable is loaded by GDB. */
10042 ada_executable_changed_observer (void)
10044 /* If the executable changed, then it is possible that the Ada runtime
10045 is different. So we need to invalidate the exception support info
10047 exception_info = NULL;
10050 /* Return the name of the function at PC, NULL if could not find it.
10051 This function only checks the debugging information, not the symbol
10055 function_name_from_pc (CORE_ADDR pc)
10059 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10065 /* True iff FRAME is very likely to be that of a function that is
10066 part of the runtime system. This is all very heuristic, but is
10067 intended to be used as advice as to what frames are uninteresting
10071 is_known_support_routine (struct frame_info *frame)
10073 struct symtab_and_line sal;
10077 /* If this code does not have any debugging information (no symtab),
10078 This cannot be any user code. */
10080 find_frame_sal (frame, &sal);
10081 if (sal.symtab == NULL)
10084 /* If there is a symtab, but the associated source file cannot be
10085 located, then assume this is not user code: Selecting a frame
10086 for which we cannot display the code would not be very helpful
10087 for the user. This should also take care of case such as VxWorks
10088 where the kernel has some debugging info provided for a few units. */
10090 if (symtab_to_fullname (sal.symtab) == NULL)
10093 /* Check the unit filename againt the Ada runtime file naming.
10094 We also check the name of the objfile against the name of some
10095 known system libraries that sometimes come with debugging info
10098 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10100 re_comp (known_runtime_file_name_patterns[i]);
10101 if (re_exec (sal.symtab->filename))
10103 if (sal.symtab->objfile != NULL
10104 && re_exec (sal.symtab->objfile->name))
10108 /* Check whether the function is a GNAT-generated entity. */
10110 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10111 if (func_name == NULL)
10114 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10116 re_comp (known_auxiliary_function_name_patterns[i]);
10117 if (re_exec (func_name))
10124 /* Find the first frame that contains debugging information and that is not
10125 part of the Ada run-time, starting from FI and moving upward. */
10128 ada_find_printable_frame (struct frame_info *fi)
10130 for (; fi != NULL; fi = get_prev_frame (fi))
10132 if (!is_known_support_routine (fi))
10141 /* Assuming that the inferior just triggered an unhandled exception
10142 catchpoint, return the address in inferior memory where the name
10143 of the exception is stored.
10145 Return zero if the address could not be computed. */
10148 ada_unhandled_exception_name_addr (void)
10150 return parse_and_eval_address ("e.full_name");
10153 /* Same as ada_unhandled_exception_name_addr, except that this function
10154 should be used when the inferior uses an older version of the runtime,
10155 where the exception name needs to be extracted from a specific frame
10156 several frames up in the callstack. */
10159 ada_unhandled_exception_name_addr_from_raise (void)
10162 struct frame_info *fi;
10164 /* To determine the name of this exception, we need to select
10165 the frame corresponding to RAISE_SYM_NAME. This frame is
10166 at least 3 levels up, so we simply skip the first 3 frames
10167 without checking the name of their associated function. */
10168 fi = get_current_frame ();
10169 for (frame_level = 0; frame_level < 3; frame_level += 1)
10171 fi = get_prev_frame (fi);
10175 const char *func_name =
10176 function_name_from_pc (get_frame_address_in_block (fi));
10177 if (func_name != NULL
10178 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10179 break; /* We found the frame we were looking for... */
10180 fi = get_prev_frame (fi);
10187 return parse_and_eval_address ("id.full_name");
10190 /* Assuming the inferior just triggered an Ada exception catchpoint
10191 (of any type), return the address in inferior memory where the name
10192 of the exception is stored, if applicable.
10194 Return zero if the address could not be computed, or if not relevant. */
10197 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10198 struct breakpoint *b)
10202 case ex_catch_exception:
10203 return (parse_and_eval_address ("e.full_name"));
10206 case ex_catch_exception_unhandled:
10207 return exception_info->unhandled_exception_name_addr ();
10210 case ex_catch_assert:
10211 return 0; /* Exception name is not relevant in this case. */
10215 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10219 return 0; /* Should never be reached. */
10222 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10223 any error that ada_exception_name_addr_1 might cause to be thrown.
10224 When an error is intercepted, a warning with the error message is printed,
10225 and zero is returned. */
10228 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10229 struct breakpoint *b)
10231 struct gdb_exception e;
10232 CORE_ADDR result = 0;
10234 TRY_CATCH (e, RETURN_MASK_ERROR)
10236 result = ada_exception_name_addr_1 (ex, b);
10241 warning (_("failed to get exception name: %s"), e.message);
10248 /* Implement the PRINT_IT method in the breakpoint_ops structure
10249 for all exception catchpoint kinds. */
10251 static enum print_stop_action
10252 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10254 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10255 char exception_name[256];
10259 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10260 exception_name [sizeof (exception_name) - 1] = '\0';
10263 ada_find_printable_frame (get_current_frame ());
10265 annotate_catchpoint (b->number);
10268 case ex_catch_exception:
10270 printf_filtered (_("\nCatchpoint %d, %s at "),
10271 b->number, exception_name);
10273 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10275 case ex_catch_exception_unhandled:
10277 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10278 b->number, exception_name);
10280 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10283 case ex_catch_assert:
10284 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10289 return PRINT_SRC_AND_LOC;
10292 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10293 for all exception catchpoint kinds. */
10296 print_one_exception (enum exception_catchpoint_kind ex,
10297 struct breakpoint *b, struct bp_location **last_loc)
10299 struct value_print_options opts;
10301 get_user_print_options (&opts);
10302 if (opts.addressprint)
10304 annotate_field (4);
10305 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10308 annotate_field (5);
10309 *last_loc = b->loc;
10312 case ex_catch_exception:
10313 if (b->exp_string != NULL)
10315 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10317 ui_out_field_string (uiout, "what", msg);
10321 ui_out_field_string (uiout, "what", "all Ada exceptions");
10325 case ex_catch_exception_unhandled:
10326 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10329 case ex_catch_assert:
10330 ui_out_field_string (uiout, "what", "failed Ada assertions");
10334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10339 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10340 for all exception catchpoint kinds. */
10343 print_mention_exception (enum exception_catchpoint_kind ex,
10344 struct breakpoint *b)
10348 case ex_catch_exception:
10349 if (b->exp_string != NULL)
10350 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10351 b->number, b->exp_string);
10353 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10357 case ex_catch_exception_unhandled:
10358 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10362 case ex_catch_assert:
10363 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10372 /* Virtual table for "catch exception" breakpoints. */
10374 static enum print_stop_action
10375 print_it_catch_exception (struct breakpoint *b)
10377 return print_it_exception (ex_catch_exception, b);
10381 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10383 print_one_exception (ex_catch_exception, b, last_loc);
10387 print_mention_catch_exception (struct breakpoint *b)
10389 print_mention_exception (ex_catch_exception, b);
10392 static struct breakpoint_ops catch_exception_breakpoint_ops =
10396 NULL, /* breakpoint_hit */
10397 print_it_catch_exception,
10398 print_one_catch_exception,
10399 print_mention_catch_exception
10402 /* Virtual table for "catch exception unhandled" breakpoints. */
10404 static enum print_stop_action
10405 print_it_catch_exception_unhandled (struct breakpoint *b)
10407 return print_it_exception (ex_catch_exception_unhandled, b);
10411 print_one_catch_exception_unhandled (struct breakpoint *b,
10412 struct bp_location **last_loc)
10414 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10418 print_mention_catch_exception_unhandled (struct breakpoint *b)
10420 print_mention_exception (ex_catch_exception_unhandled, b);
10423 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10426 NULL, /* breakpoint_hit */
10427 print_it_catch_exception_unhandled,
10428 print_one_catch_exception_unhandled,
10429 print_mention_catch_exception_unhandled
10432 /* Virtual table for "catch assert" breakpoints. */
10434 static enum print_stop_action
10435 print_it_catch_assert (struct breakpoint *b)
10437 return print_it_exception (ex_catch_assert, b);
10441 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10443 print_one_exception (ex_catch_assert, b, last_loc);
10447 print_mention_catch_assert (struct breakpoint *b)
10449 print_mention_exception (ex_catch_assert, b);
10452 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10455 NULL, /* breakpoint_hit */
10456 print_it_catch_assert,
10457 print_one_catch_assert,
10458 print_mention_catch_assert
10461 /* Return non-zero if B is an Ada exception catchpoint. */
10464 ada_exception_catchpoint_p (struct breakpoint *b)
10466 return (b->ops == &catch_exception_breakpoint_ops
10467 || b->ops == &catch_exception_unhandled_breakpoint_ops
10468 || b->ops == &catch_assert_breakpoint_ops);
10471 /* Return a newly allocated copy of the first space-separated token
10472 in ARGSP, and then adjust ARGSP to point immediately after that
10475 Return NULL if ARGPS does not contain any more tokens. */
10478 ada_get_next_arg (char **argsp)
10480 char *args = *argsp;
10484 /* Skip any leading white space. */
10486 while (isspace (*args))
10489 if (args[0] == '\0')
10490 return NULL; /* No more arguments. */
10492 /* Find the end of the current argument. */
10495 while (*end != '\0' && !isspace (*end))
10498 /* Adjust ARGSP to point to the start of the next argument. */
10502 /* Make a copy of the current argument and return it. */
10504 result = xmalloc (end - args + 1);
10505 strncpy (result, args, end - args);
10506 result[end - args] = '\0';
10511 /* Split the arguments specified in a "catch exception" command.
10512 Set EX to the appropriate catchpoint type.
10513 Set EXP_STRING to the name of the specific exception if
10514 specified by the user. */
10517 catch_ada_exception_command_split (char *args,
10518 enum exception_catchpoint_kind *ex,
10521 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10522 char *exception_name;
10524 exception_name = ada_get_next_arg (&args);
10525 make_cleanup (xfree, exception_name);
10527 /* Check that we do not have any more arguments. Anything else
10530 while (isspace (*args))
10533 if (args[0] != '\0')
10534 error (_("Junk at end of expression"));
10536 discard_cleanups (old_chain);
10538 if (exception_name == NULL)
10540 /* Catch all exceptions. */
10541 *ex = ex_catch_exception;
10542 *exp_string = NULL;
10544 else if (strcmp (exception_name, "unhandled") == 0)
10546 /* Catch unhandled exceptions. */
10547 *ex = ex_catch_exception_unhandled;
10548 *exp_string = NULL;
10552 /* Catch a specific exception. */
10553 *ex = ex_catch_exception;
10554 *exp_string = exception_name;
10558 /* Return the name of the symbol on which we should break in order to
10559 implement a catchpoint of the EX kind. */
10561 static const char *
10562 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10564 gdb_assert (exception_info != NULL);
10568 case ex_catch_exception:
10569 return (exception_info->catch_exception_sym);
10571 case ex_catch_exception_unhandled:
10572 return (exception_info->catch_exception_unhandled_sym);
10574 case ex_catch_assert:
10575 return (exception_info->catch_assert_sym);
10578 internal_error (__FILE__, __LINE__,
10579 _("unexpected catchpoint kind (%d)"), ex);
10583 /* Return the breakpoint ops "virtual table" used for catchpoints
10586 static struct breakpoint_ops *
10587 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10591 case ex_catch_exception:
10592 return (&catch_exception_breakpoint_ops);
10594 case ex_catch_exception_unhandled:
10595 return (&catch_exception_unhandled_breakpoint_ops);
10597 case ex_catch_assert:
10598 return (&catch_assert_breakpoint_ops);
10601 internal_error (__FILE__, __LINE__,
10602 _("unexpected catchpoint kind (%d)"), ex);
10606 /* Return the condition that will be used to match the current exception
10607 being raised with the exception that the user wants to catch. This
10608 assumes that this condition is used when the inferior just triggered
10609 an exception catchpoint.
10611 The string returned is a newly allocated string that needs to be
10612 deallocated later. */
10615 ada_exception_catchpoint_cond_string (const char *exp_string)
10619 /* The standard exceptions are a special case. They are defined in
10620 runtime units that have been compiled without debugging info; if
10621 EXP_STRING is the not-fully-qualified name of a standard
10622 exception (e.g. "constraint_error") then, during the evaluation
10623 of the condition expression, the symbol lookup on this name would
10624 *not* return this standard exception. The catchpoint condition
10625 may then be set only on user-defined exceptions which have the
10626 same not-fully-qualified name (e.g. my_package.constraint_error).
10628 To avoid this unexcepted behavior, these standard exceptions are
10629 systematically prefixed by "standard". This means that "catch
10630 exception constraint_error" is rewritten into "catch exception
10631 standard.constraint_error".
10633 If an exception named contraint_error is defined in another package of
10634 the inferior program, then the only way to specify this exception as a
10635 breakpoint condition is to use its fully-qualified named:
10636 e.g. my_package.constraint_error. */
10638 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10640 if (strcmp (standard_exc [i], exp_string) == 0)
10642 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10646 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10649 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10651 static struct expression *
10652 ada_parse_catchpoint_condition (char *cond_string,
10653 struct symtab_and_line sal)
10655 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10658 /* Return the symtab_and_line that should be used to insert an exception
10659 catchpoint of the TYPE kind.
10661 EX_STRING should contain the name of a specific exception
10662 that the catchpoint should catch, or NULL otherwise.
10664 The idea behind all the remaining parameters is that their names match
10665 the name of certain fields in the breakpoint structure that are used to
10666 handle exception catchpoints. This function returns the value to which
10667 these fields should be set, depending on the type of catchpoint we need
10670 If COND and COND_STRING are both non-NULL, any value they might
10671 hold will be free'ed, and then replaced by newly allocated ones.
10672 These parameters are left untouched otherwise. */
10674 static struct symtab_and_line
10675 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10676 char **addr_string, char **cond_string,
10677 struct expression **cond, struct breakpoint_ops **ops)
10679 const char *sym_name;
10680 struct symbol *sym;
10681 struct symtab_and_line sal;
10683 /* First, find out which exception support info to use. */
10684 ada_exception_support_info_sniffer ();
10686 /* Then lookup the function on which we will break in order to catch
10687 the Ada exceptions requested by the user. */
10689 sym_name = ada_exception_sym_name (ex);
10690 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10692 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10693 that should be compiled with debugging information. As a result, we
10694 expect to find that symbol in the symtabs. If we don't find it, then
10695 the target most likely does not support Ada exceptions, or we cannot
10696 insert exception breakpoints yet, because the GNAT runtime hasn't been
10699 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10700 in such a way that no debugging information is produced for the symbol
10701 we are looking for. In this case, we could search the minimal symbols
10702 as a fall-back mechanism. This would still be operating in degraded
10703 mode, however, as we would still be missing the debugging information
10704 that is needed in order to extract the name of the exception being
10705 raised (this name is printed in the catchpoint message, and is also
10706 used when trying to catch a specific exception). We do not handle
10707 this case for now. */
10710 error (_("Unable to break on '%s' in this configuration."), sym_name);
10712 /* Make sure that the symbol we found corresponds to a function. */
10713 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10714 error (_("Symbol \"%s\" is not a function (class = %d)"),
10715 sym_name, SYMBOL_CLASS (sym));
10717 sal = find_function_start_sal (sym, 1);
10719 /* Set ADDR_STRING. */
10721 *addr_string = xstrdup (sym_name);
10723 /* Set the COND and COND_STRING (if not NULL). */
10725 if (cond_string != NULL && cond != NULL)
10727 if (*cond_string != NULL)
10729 xfree (*cond_string);
10730 *cond_string = NULL;
10737 if (exp_string != NULL)
10739 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10740 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10745 *ops = ada_exception_breakpoint_ops (ex);
10750 /* Parse the arguments (ARGS) of the "catch exception" command.
10752 Set TYPE to the appropriate exception catchpoint type.
10753 If the user asked the catchpoint to catch only a specific
10754 exception, then save the exception name in ADDR_STRING.
10756 See ada_exception_sal for a description of all the remaining
10757 function arguments of this function. */
10759 struct symtab_and_line
10760 ada_decode_exception_location (char *args, char **addr_string,
10761 char **exp_string, char **cond_string,
10762 struct expression **cond,
10763 struct breakpoint_ops **ops)
10765 enum exception_catchpoint_kind ex;
10767 catch_ada_exception_command_split (args, &ex, exp_string);
10768 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10772 struct symtab_and_line
10773 ada_decode_assert_location (char *args, char **addr_string,
10774 struct breakpoint_ops **ops)
10776 /* Check that no argument where provided at the end of the command. */
10780 while (isspace (*args))
10783 error (_("Junk at end of arguments."));
10786 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10791 /* Information about operators given special treatment in functions
10793 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10795 #define ADA_OPERATORS \
10796 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10797 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10798 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10799 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10800 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10801 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10802 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10803 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10804 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10805 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10806 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10807 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10808 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10809 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10810 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10811 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10812 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10813 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10814 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10817 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10819 switch (exp->elts[pc - 1].opcode)
10822 operator_length_standard (exp, pc, oplenp, argsp);
10825 #define OP_DEFN(op, len, args, binop) \
10826 case op: *oplenp = len; *argsp = args; break;
10832 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10837 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10843 ada_op_name (enum exp_opcode opcode)
10848 return op_name_standard (opcode);
10850 #define OP_DEFN(op, len, args, binop) case op: return #op;
10855 return "OP_AGGREGATE";
10857 return "OP_CHOICES";
10863 /* As for operator_length, but assumes PC is pointing at the first
10864 element of the operator, and gives meaningful results only for the
10865 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10868 ada_forward_operator_length (struct expression *exp, int pc,
10869 int *oplenp, int *argsp)
10871 switch (exp->elts[pc].opcode)
10874 *oplenp = *argsp = 0;
10877 #define OP_DEFN(op, len, args, binop) \
10878 case op: *oplenp = len; *argsp = args; break;
10884 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10889 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10895 int len = longest_to_int (exp->elts[pc + 1].longconst);
10896 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10904 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10906 enum exp_opcode op = exp->elts[elt].opcode;
10911 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10915 /* Ada attributes ('Foo). */
10918 case OP_ATR_LENGTH:
10922 case OP_ATR_MODULUS:
10929 case UNOP_IN_RANGE:
10931 /* XXX: gdb_sprint_host_address, type_sprint */
10932 fprintf_filtered (stream, _("Type @"));
10933 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10934 fprintf_filtered (stream, " (");
10935 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10936 fprintf_filtered (stream, ")");
10938 case BINOP_IN_BOUNDS:
10939 fprintf_filtered (stream, " (%d)",
10940 longest_to_int (exp->elts[pc + 2].longconst));
10942 case TERNOP_IN_RANGE:
10947 case OP_DISCRETE_RANGE:
10948 case OP_POSITIONAL:
10955 char *name = &exp->elts[elt + 2].string;
10956 int len = longest_to_int (exp->elts[elt + 1].longconst);
10957 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10962 return dump_subexp_body_standard (exp, stream, elt);
10966 for (i = 0; i < nargs; i += 1)
10967 elt = dump_subexp (exp, stream, elt);
10972 /* The Ada extension of print_subexp (q.v.). */
10975 ada_print_subexp (struct expression *exp, int *pos,
10976 struct ui_file *stream, enum precedence prec)
10978 int oplen, nargs, i;
10980 enum exp_opcode op = exp->elts[pc].opcode;
10982 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10989 print_subexp_standard (exp, pos, stream, prec);
10993 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10996 case BINOP_IN_BOUNDS:
10997 /* XXX: sprint_subexp */
10998 print_subexp (exp, pos, stream, PREC_SUFFIX);
10999 fputs_filtered (" in ", stream);
11000 print_subexp (exp, pos, stream, PREC_SUFFIX);
11001 fputs_filtered ("'range", stream);
11002 if (exp->elts[pc + 1].longconst > 1)
11003 fprintf_filtered (stream, "(%ld)",
11004 (long) exp->elts[pc + 1].longconst);
11007 case TERNOP_IN_RANGE:
11008 if (prec >= PREC_EQUAL)
11009 fputs_filtered ("(", stream);
11010 /* XXX: sprint_subexp */
11011 print_subexp (exp, pos, stream, PREC_SUFFIX);
11012 fputs_filtered (" in ", stream);
11013 print_subexp (exp, pos, stream, PREC_EQUAL);
11014 fputs_filtered (" .. ", stream);
11015 print_subexp (exp, pos, stream, PREC_EQUAL);
11016 if (prec >= PREC_EQUAL)
11017 fputs_filtered (")", stream);
11022 case OP_ATR_LENGTH:
11026 case OP_ATR_MODULUS:
11031 if (exp->elts[*pos].opcode == OP_TYPE)
11033 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11034 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11038 print_subexp (exp, pos, stream, PREC_SUFFIX);
11039 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11043 for (tem = 1; tem < nargs; tem += 1)
11045 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11046 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11048 fputs_filtered (")", stream);
11053 type_print (exp->elts[pc + 1].type, "", stream, 0);
11054 fputs_filtered ("'(", stream);
11055 print_subexp (exp, pos, stream, PREC_PREFIX);
11056 fputs_filtered (")", stream);
11059 case UNOP_IN_RANGE:
11060 /* XXX: sprint_subexp */
11061 print_subexp (exp, pos, stream, PREC_SUFFIX);
11062 fputs_filtered (" in ", stream);
11063 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11066 case OP_DISCRETE_RANGE:
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 fputs_filtered ("..", stream);
11069 print_subexp (exp, pos, stream, PREC_SUFFIX);
11073 fputs_filtered ("others => ", stream);
11074 print_subexp (exp, pos, stream, PREC_SUFFIX);
11078 for (i = 0; i < nargs-1; i += 1)
11081 fputs_filtered ("|", stream);
11082 print_subexp (exp, pos, stream, PREC_SUFFIX);
11084 fputs_filtered (" => ", stream);
11085 print_subexp (exp, pos, stream, PREC_SUFFIX);
11088 case OP_POSITIONAL:
11089 print_subexp (exp, pos, stream, PREC_SUFFIX);
11093 fputs_filtered ("(", stream);
11094 for (i = 0; i < nargs; i += 1)
11097 fputs_filtered (", ", stream);
11098 print_subexp (exp, pos, stream, PREC_SUFFIX);
11100 fputs_filtered (")", stream);
11105 /* Table mapping opcodes into strings for printing operators
11106 and precedences of the operators. */
11108 static const struct op_print ada_op_print_tab[] = {
11109 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11110 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11111 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11112 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11113 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11114 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11115 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11116 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11117 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11118 {">=", BINOP_GEQ, PREC_ORDER, 0},
11119 {">", BINOP_GTR, PREC_ORDER, 0},
11120 {"<", BINOP_LESS, PREC_ORDER, 0},
11121 {">>", BINOP_RSH, PREC_SHIFT, 0},
11122 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11123 {"+", BINOP_ADD, PREC_ADD, 0},
11124 {"-", BINOP_SUB, PREC_ADD, 0},
11125 {"&", BINOP_CONCAT, PREC_ADD, 0},
11126 {"*", BINOP_MUL, PREC_MUL, 0},
11127 {"/", BINOP_DIV, PREC_MUL, 0},
11128 {"rem", BINOP_REM, PREC_MUL, 0},
11129 {"mod", BINOP_MOD, PREC_MUL, 0},
11130 {"**", BINOP_EXP, PREC_REPEAT, 0},
11131 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11132 {"-", UNOP_NEG, PREC_PREFIX, 0},
11133 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11134 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11135 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11136 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11137 {".all", UNOP_IND, PREC_SUFFIX, 1},
11138 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11139 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11143 enum ada_primitive_types {
11144 ada_primitive_type_int,
11145 ada_primitive_type_long,
11146 ada_primitive_type_short,
11147 ada_primitive_type_char,
11148 ada_primitive_type_float,
11149 ada_primitive_type_double,
11150 ada_primitive_type_void,
11151 ada_primitive_type_long_long,
11152 ada_primitive_type_long_double,
11153 ada_primitive_type_natural,
11154 ada_primitive_type_positive,
11155 ada_primitive_type_system_address,
11156 nr_ada_primitive_types
11160 ada_language_arch_info (struct gdbarch *gdbarch,
11161 struct language_arch_info *lai)
11163 const struct builtin_type *builtin = builtin_type (gdbarch);
11164 lai->primitive_type_vector
11165 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11168 lai->primitive_type_vector [ada_primitive_type_int]
11169 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11171 lai->primitive_type_vector [ada_primitive_type_long]
11172 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11173 0, "long_integer");
11174 lai->primitive_type_vector [ada_primitive_type_short]
11175 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11176 0, "short_integer");
11177 lai->string_char_type
11178 = lai->primitive_type_vector [ada_primitive_type_char]
11179 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11180 lai->primitive_type_vector [ada_primitive_type_float]
11181 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11183 lai->primitive_type_vector [ada_primitive_type_double]
11184 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11185 "long_float", NULL);
11186 lai->primitive_type_vector [ada_primitive_type_long_long]
11187 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11188 0, "long_long_integer");
11189 lai->primitive_type_vector [ada_primitive_type_long_double]
11190 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11191 "long_long_float", NULL);
11192 lai->primitive_type_vector [ada_primitive_type_natural]
11193 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11195 lai->primitive_type_vector [ada_primitive_type_positive]
11196 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11198 lai->primitive_type_vector [ada_primitive_type_void]
11199 = builtin->builtin_void;
11201 lai->primitive_type_vector [ada_primitive_type_system_address]
11202 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11203 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11204 = "system__address";
11206 lai->bool_type_symbol = NULL;
11207 lai->bool_type_default = builtin->builtin_bool;
11210 /* Language vector */
11212 /* Not really used, but needed in the ada_language_defn. */
11215 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11217 ada_emit_char (c, type, stream, quoter, 1);
11223 warnings_issued = 0;
11224 return ada_parse ();
11227 static const struct exp_descriptor ada_exp_descriptor = {
11229 ada_operator_length,
11231 ada_dump_subexp_body,
11232 ada_evaluate_subexp
11235 const struct language_defn ada_language_defn = {
11236 "ada", /* Language name */
11240 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11241 that's not quite what this means. */
11243 macro_expansion_no,
11244 &ada_exp_descriptor,
11248 ada_printchar, /* Print a character constant */
11249 ada_printstr, /* Function to print string constant */
11250 emit_char, /* Function to print single char (not used) */
11251 ada_print_type, /* Print a type using appropriate syntax */
11252 default_print_typedef, /* Print a typedef using appropriate syntax */
11253 ada_val_print, /* Print a value using appropriate syntax */
11254 ada_value_print, /* Print a top-level value */
11255 NULL, /* Language specific skip_trampoline */
11256 NULL, /* name_of_this */
11257 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11258 basic_lookup_transparent_type, /* lookup_transparent_type */
11259 ada_la_decode, /* Language specific symbol demangler */
11260 NULL, /* Language specific class_name_from_physname */
11261 ada_op_print_tab, /* expression operators for printing */
11262 0, /* c-style arrays */
11263 1, /* String lower bound */
11264 ada_get_gdb_completer_word_break_characters,
11265 ada_make_symbol_completion_list,
11266 ada_language_arch_info,
11267 ada_print_array_index,
11268 default_pass_by_reference,
11273 /* Provide a prototype to silence -Wmissing-prototypes. */
11274 extern initialize_file_ftype _initialize_ada_language;
11277 _initialize_ada_language (void)
11279 add_language (&ada_language_defn);
11281 varsize_limit = 65536;
11283 obstack_init (&symbol_list_obstack);
11285 decoded_names_store = htab_create_alloc
11286 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11287 NULL, xcalloc, xfree);
11289 observer_attach_executable_changed (ada_executable_changed_observer);