1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static struct value *coerce_unspec_val_to_type (struct value *,
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
198 static int equiv_types (struct type *, struct type *);
200 static int is_name_suffix (const char *);
202 static int advance_wild_match (const char **, const char *, int);
204 static bool wild_match (const char *name, const char *patn);
206 static struct value *ada_coerce_ref (struct value *);
208 static LONGEST pos_atr (struct value *);
210 static struct value *value_pos_atr (struct type *, struct value *);
212 static struct value *value_val_atr (struct type *, struct value *);
214 static struct symbol *standard_lookup (const char *, const struct block *,
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 static struct value *ada_value_primitive_field (struct value *, int, int,
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
230 static int ada_is_direct_array_type (struct type *);
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
235 static struct value *ada_index_struct_field (int, struct value *, int,
238 static struct value *assign_aggregate (struct value *, struct value *,
242 static void aggregate_assign_from_choices (struct value *, struct value *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
247 static void aggregate_assign_positional (struct value *, struct value *,
249 int *, LONGEST *, int *, int,
253 static void aggregate_assign_others (struct value *, struct value *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 static void ada_forward_operator_length (struct expression *, int, int *,
267 static struct type *ada_find_any_type (const char *name);
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
274 /* The result of a symbol lookup to be stored in our symbol cache. */
278 /* The name used to perform the lookup. */
280 /* The namespace used during the lookup. */
282 /* The symbol returned by the lookup, or NULL if no matching symbol
285 /* The block where the symbol was found, or NULL if no matching
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
301 #define HASH_SIZE 1009
303 struct ada_symbol_cache
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
317 static const char ada_completer_word_break_characters[] =
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 /* Maintenance-related settings for this module. */
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
348 /* Implement the "maintenance set ada" (prefix) command. */
351 maint_set_ada_cmd (const char *args, int from_tty)
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 /* Implement the "maintenance show ada" (prefix) command. */
360 maint_show_ada_cmd (const char *args, int from_tty)
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367 static int ada_ignore_descriptive_types_p = 0;
369 /* Inferior-specific data. */
371 /* Per-inferior data for this module. */
373 struct ada_inferior_data
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
384 const struct exception_support_info *exception_info;
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
390 /* A cleanup routine for our inferior data. */
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 struct ada_inferior_data *data;
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
401 /* Return our inferior data for the given inferior (INF).
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
412 struct ada_inferior_data *data;
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
428 ada_inferior_exit (struct inferior *inf)
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
435 /* program-space-specific data. */
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
450 This function always returns a valid object. */
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
455 struct ada_pspace_data *data;
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 /* The cleanup callback for this module's per-program-space data. */
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
510 ada_typedef_target_type (struct type *type)
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
522 ada_unqualified_name (const char *decoded_name)
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
533 result = strrchr (decoded_name, '.');
535 result++; /* Skip the dot... */
537 result = decoded_name;
542 /* Return a string starting with '<', followed by STR, and '>'. */
545 add_angle_brackets (const char *str)
547 return string_printf ("<%s>", str);
551 ada_get_gdb_completer_word_break_characters (void)
553 return ada_completer_word_break_characters;
556 /* Print an array element index using the Ada syntax. */
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
566 /* la_watch_location_expression for Ada. */
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
584 if (*size < min_size)
587 if (*size < min_size)
589 vect = xrealloc (vect, *size * element_size);
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
598 field_name_match (const char *field_name, const char *target)
600 int len = strlen (target);
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
620 ada_get_field_index (const struct type *type, const char *field_name,
624 struct type *struct_type = check_typedef ((struct type *) type);
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
637 /* The length of the prefix of NAME prior to any "___" suffix. */
640 ada_name_prefix_len (const char *name)
646 const char *p = strstr (name, "___");
649 return strlen (name);
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
659 is_suffix (const char *str, const char *suffix)
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
681 struct value *result;
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
709 return valaddr + offset;
713 cond_offset_target (CORE_ADDR address, long offset)
718 return address + offset;
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731 lim_warning (const char *format, ...)
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
748 ada_ensure_varsize_limit (const struct type *type)
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
754 /* Maximum value of a SIZE-byte signed integer type. */
756 max_of_size (int size)
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
760 return top_bit | (top_bit - 1);
763 /* Minimum value of a SIZE-byte signed integer type. */
765 min_of_size (int size)
767 return -max_of_size (size) - 1;
770 /* Maximum value of a SIZE-byte unsigned integer type. */
772 umax_of_size (int size)
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
776 return top_bit | (top_bit - 1);
779 /* Maximum value of integral type T, as a signed quantity. */
781 max_of_type (struct type *t)
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 return max_of_size (TYPE_LENGTH (t));
789 /* Minimum value of integral type T, as a signed quantity. */
791 min_of_type (struct type *t)
793 if (TYPE_UNSIGNED (t))
796 return min_of_size (TYPE_LENGTH (t));
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
801 ada_discrete_type_high_bound (struct type *type)
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
814 return max_of_type (type);
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
822 ada_discrete_type_low_bound (struct type *type)
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
830 return TYPE_FIELD_ENUMVAL (type, 0);
835 return min_of_type (type);
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
845 get_base_type (struct type *type)
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 type = TYPE_TARGET_TYPE (type);
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
862 ada_get_decoded_value (struct value *value)
864 struct type *type = ada_check_typedef (value_type (value));
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
873 value = ada_coerce_to_simple_array (value);
876 value = ada_to_fixed_value (value);
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
887 ada_get_decoded_type (struct type *type)
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
897 /* Language Selection */
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
903 ada_update_initial_language (enum language lang)
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929 if (msym.minsym != NULL)
931 CORE_ADDR main_program_name_addr;
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
938 target_read_string (main_program_name_addr, &main_program_name,
943 return main_program_name.get ();
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
986 ada_encode_1 (const char *decoded, bool throw_errors)
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
1000 for (p = decoded; *p != '\0'; p += 1)
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1009 const struct ada_opname_map *mapping;
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1015 if (mapping->encoded == NULL)
1018 error (_("invalid Ada operator name: %s"), p);
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1028 encoding_buffer[k] = *p;
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1041 ada_encode (const char *decoded)
1043 return ada_encode_1 (decoded, true);
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1051 ada_fold_name (const char *name)
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059 if (name[0] == '\'')
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078 is_lower_alphanum (const char c)
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 while (i > 0 && isdigit (encoded[i]))
1104 if (i >= 0 && encoded[i] == '.')
1106 else if (i >= 0 && encoded[i] == '$')
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1115 /* Remove the suffix introduced by the compiler for protected object
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 /* Remove trailing N. */
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 if (encoded[i] != 'X')
1153 if (isalnum (encoded[i-1]))
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1166 ada_decode (const char *encoded)
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1193 len0 = strlen (encoded);
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1231 /* Make decoded big enough for possible expansion by operator name. */
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 else if (encoded[i] == '$')
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 && !isalnum (encoded[i + op_len]))
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1274 j += strlen (ada_opname_table[k].decoded);
1278 if (ada_opname_table[k].encoded != NULL)
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1308 /* Remove _E{DIGITS}+[sb] */
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1326 while (k < len0 && isdigit (encoded[k]))
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1337 || (k < len0 && encoded[k] == '_'))
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1377 /* Replace '__' by '.'. */
1385 /* It's a character part of the decoded name, so just copy it
1387 decoded[j] = encoded[i];
1392 decoded[j] = '\000';
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1401 if (strcmp (decoded, encoded) == 0)
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1441 if (!gsymbol->ada_mangled)
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1446 gsymbol->ada_mangled = 1;
1448 if (obstack != NULL)
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1462 *slot = xstrdup (decoded);
1471 ada_la_decode (const char *encoded, int options)
1473 return xstrdup (ada_decode (encoded));
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1481 const char *demangled = ada_decode (mangled);
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1547 if (index_desc_type == NULL)
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1581 /* Maximum number of array dimensions we are prepared to handle. */
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1586 /* The desc_* routines return primitive portions of array descriptors
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1592 static struct type *
1593 desc_base_type (struct type *type)
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1612 is_thin_pntr (struct type *type)
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1619 /* The descriptor type for thin pointer type TYPE. */
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1624 struct type *base_type = desc_base_type (type);
1626 if (base_type == NULL)
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1634 if (alt_type == NULL)
1641 /* A pointer to the array data for thin-pointer value VAL. */
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1649 data_type = lookup_pointer_type (data_type);
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1654 return value_from_longest (data_type, value_address (val));
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1660 is_thick_pntr (struct type *type)
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1675 type = desc_base_type (type);
1679 else if (is_thin_pntr (type))
1681 type = thin_descriptor_type (type);
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 return ada_check_typedef (r);
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1700 static struct value *
1701 desc_bounds (struct value *arr)
1703 struct type *type = ada_check_typedef (value_type (arr));
1705 if (is_thin_pntr (type))
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1720 addr = value_address (arr);
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1727 else if (is_thick_pntr (type))
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1744 error (_("Bad GNAT array descriptor"));
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1756 fat_pntr_bounds_bitpos (struct type *type)
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1765 fat_pntr_bounds_bitsize (struct type *type)
1767 type = desc_base_type (type);
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1783 type = desc_base_type (type);
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1803 static struct value *
1804 desc_data (struct value *arr)
1806 struct type *type = value_type (arr);
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1822 fat_pntr_data_bitpos (struct type *type)
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1831 fat_pntr_data_bitsize (struct type *type)
1833 type = desc_base_type (type);
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1857 desc_bound_bitpos (struct type *type, int i, int which)
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1867 desc_bound_bitsize (struct type *type, int i, int which)
1869 type = desc_base_type (type);
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1883 type = desc_base_type (type);
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1895 desc_arity (struct type *type)
1897 type = desc_base_type (type);
1900 return TYPE_NFIELDS (type) / 2;
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1909 ada_is_direct_array_type (struct type *type)
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1922 ada_is_array_type (struct type *type)
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1934 ada_is_simple_array_type (struct type *type)
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1948 ada_is_array_descriptor_type (struct type *type)
1950 struct type *data_type = desc_data_target_type (type);
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1966 ada_is_bogus_array_descriptor (struct type *type)
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1985 ada_type_of_array (struct value *arr, int bounds)
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2006 struct type *elt_type;
2008 struct value *descriptor;
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 return lookup_pointer_type (elt_type);
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2068 struct type *arrType = ada_type_of_array (arr, 1);
2070 if (arrType == NULL)
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2085 ada_coerce_to_simple_array (struct value *arr)
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2107 ada_coerce_to_simple_array_type (struct type *type)
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2121 ada_is_packed_array_type (struct type *type)
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2136 ada_is_constrained_packed_array_type (struct type *type)
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2156 decode_packed_array_bitsize (struct type *type)
2158 const char *raw_name;
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2168 raw_name = ada_type_name (ada_check_typedef (type));
2170 raw_name = ada_type_name (desc_base_type (type));
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2181 (_("could not understand bit size information on packed array"));
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2223 index_type = TYPE_INDEX_TYPE (type);
2225 new_type = alloc_type_copy (type);
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2259 struct type *shadow_type;
2263 raw_name = ada_type_name (desc_base_type (type));
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2277 if (shadow_type == NULL)
2279 lim_warning (_("could not find bounds information on packed array"));
2282 shadow_type = check_typedef (shadow_type);
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2317 type = decode_constrained_packed_array_type (value_type (arr));
2320 error (_("can't unpack array"));
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2334 mod = ada_modulus (value_type (arr)) - 1;
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2349 return coerce_unspec_val_to_type (arr, type);
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 /* Non-zero iff TYPE includes negative integer values. */
2407 has_negatives (struct type *type)
2409 switch (TYPE_CODE (type))
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2471 src_idx = src_len - 1;
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2483 unpacked_idx = unpacked_len - 1;
2487 /* Non-scalar values must be aligned at a byte boundary... */
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 while (src_bytes_left > 0)
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 src_bytes_left -= 1;
2535 while (unpacked_bytes_left > 0)
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2563 const gdb_byte *src; /* First byte containing data to unpack */
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2569 type = ada_check_typedef (type);
2572 src = valaddr + offset;
2574 src = value_contents (obj) + offset;
2576 if (is_dynamic_type (type))
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2629 long new_offset = offset;
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 set_value_offset (v, new_offset);
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2655 if (staging.size () == TYPE_LENGTH (type))
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2692 if (VALUE_LVAL (toval) == lval_memory
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2702 CORE_ADDR to_addr = value_address (toval);
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2727 return value_assign (toval, fromval);
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2743 value_assign_to_component (struct value *container, struct value *component,
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2752 val = value_cast (value_type (component), val);
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 bits = value_bitsize (component);
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2763 if (is_scalar_type (check_typedef (value_type (component))))
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2778 /* Determine if TYPE is an access to an unconstrained array. */
2781 ada_is_access_to_unconstrained_array (struct type *type)
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2796 struct type *elt_type;
2798 elt = ada_coerce_to_simple_array (arr);
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2805 for (k = 0; k < arity; k += 1)
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2832 elt_type = ada_check_typedef (value_type (elt));
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2854 struct value *array_ind = ada_value_ind (arr);
2856 = check_typedef (value_enclosing_type (array_ind));
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2862 for (k = 0; k < arity; k += 1)
2865 struct value *lwb_value;
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2877 return value_ind (arr);
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 warning (_("unable to get positions in slice, use bounds instead"));
2905 base_low_pos = base_low;
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2931 warning (_("unable to get positions in slice, use bounds instead"));
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2946 ada_array_arity (struct type *type)
2953 type = desc_base_type (type);
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2974 ada_array_element_type (struct type *type, int nindices)
2976 type = desc_base_type (type);
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2981 struct type *p_array_type;
2983 p_array_type = desc_data_target_type (type);
2985 k = ada_array_arity (type);
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2992 while (k > 0 && p_array_type != NULL)
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2997 return p_array_type;
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3003 type = TYPE_TARGET_TYPE (type);
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3021 struct type *result_type;
3023 type = desc_base_type (type);
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3028 if (ada_is_simple_array_type (type))
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3060 struct type *type, *index_type_desc, *index_type;
3063 gdb_assert (which == 0 || which == 1);
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3076 if (TYPE_FIXED_INSTANCE (type))
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3094 struct type *elt_type = check_typedef (type);
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3114 ada_array_bound (struct value *arr, int n, int which)
3116 struct type *arr_type;
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3137 ada_array_length (struct value *arr, int n)
3139 struct type *arr_type, *index_type;
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3149 if (ada_is_simple_array_type (arr_type))
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3168 base_type = index_type;
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3173 return high - low + 1;
3176 /* An empty array whose type is that of ARR_TYPE (an array type),
3177 with bounds LOW to LOW-1. */
3179 static struct value *
3180 empty_array (struct type *arr_type, int low)
3182 struct type *arr_type0 = ada_check_typedef (arr_type);
3183 struct type *index_type
3184 = create_static_range_type
3185 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3186 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3188 return allocate_value (create_array_type (NULL, elt_type, index_type));
3192 /* Name resolution */
3194 /* The "decoded" name for the user-definable Ada operator corresponding
3198 ada_decoded_op_name (enum exp_opcode op)
3202 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3204 if (ada_opname_table[i].op == op)
3205 return ada_opname_table[i].decoded;
3207 error (_("Could not find operator name for opcode"));
3211 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3212 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3213 undefined namespace) and converts operators that are
3214 user-defined into appropriate function calls. If CONTEXT_TYPE is
3215 non-null, it provides a preferred result type [at the moment, only
3216 type void has any effect---causing procedures to be preferred over
3217 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3218 return type is preferred. May change (expand) *EXP. */
3221 resolve (expression_up *expp, int void_context_p)
3223 struct type *context_type = NULL;
3227 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3229 resolve_subexp (expp, &pc, 1, context_type);
3232 /* Resolve the operator of the subexpression beginning at
3233 position *POS of *EXPP. "Resolving" consists of replacing
3234 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3235 with their resolutions, replacing built-in operators with
3236 function calls to user-defined operators, where appropriate, and,
3237 when DEPROCEDURE_P is non-zero, converting function-valued variables
3238 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3239 are as in ada_resolve, above. */
3241 static struct value *
3242 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3243 struct type *context_type)
3247 struct expression *exp; /* Convenience: == *expp. */
3248 enum exp_opcode op = (*expp)->elts[pc].opcode;
3249 struct value **argvec; /* Vector of operand types (alloca'ed). */
3250 int nargs; /* Number of operands. */
3257 /* Pass one: resolve operands, saving their types and updating *pos,
3262 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3263 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3268 resolve_subexp (expp, pos, 0, NULL);
3270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3275 resolve_subexp (expp, pos, 0, NULL);
3280 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3283 case OP_ATR_MODULUS:
3293 case TERNOP_IN_RANGE:
3294 case BINOP_IN_BOUNDS:
3300 case OP_DISCRETE_RANGE:
3302 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3311 arg1 = resolve_subexp (expp, pos, 0, NULL);
3313 resolve_subexp (expp, pos, 1, NULL);
3315 resolve_subexp (expp, pos, 1, value_type (arg1));
3332 case BINOP_LOGICAL_AND:
3333 case BINOP_LOGICAL_OR:
3334 case BINOP_BITWISE_AND:
3335 case BINOP_BITWISE_IOR:
3336 case BINOP_BITWISE_XOR:
3339 case BINOP_NOTEQUAL:
3346 case BINOP_SUBSCRIPT:
3354 case UNOP_LOGICAL_NOT:
3364 case OP_VAR_MSYM_VALUE:
3371 case OP_INTERNALVAR:
3381 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3384 case STRUCTOP_STRUCT:
3385 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3398 error (_("Unexpected operator during name resolution"));
3401 argvec = XALLOCAVEC (struct value *, nargs + 1);
3402 for (i = 0; i < nargs; i += 1)
3403 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3407 /* Pass two: perform any resolution on principal operator. */
3414 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3416 std::vector<struct block_symbol> candidates;
3420 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3421 (exp->elts[pc + 2].symbol),
3422 exp->elts[pc + 1].block, VAR_DOMAIN,
3425 if (n_candidates > 1)
3427 /* Types tend to get re-introduced locally, so if there
3428 are any local symbols that are not types, first filter
3431 for (j = 0; j < n_candidates; j += 1)
3432 switch (SYMBOL_CLASS (candidates[j].symbol))
3437 case LOC_REGPARM_ADDR:
3445 if (j < n_candidates)
3448 while (j < n_candidates)
3450 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3452 candidates[j] = candidates[n_candidates - 1];
3461 if (n_candidates == 0)
3462 error (_("No definition found for %s"),
3463 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3464 else if (n_candidates == 1)
3466 else if (deprocedure_p
3467 && !is_nonfunction (candidates.data (), n_candidates))
3469 i = ada_resolve_function
3470 (candidates.data (), n_candidates, NULL, 0,
3471 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3474 error (_("Could not find a match for %s"),
3475 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3479 printf_filtered (_("Multiple matches for %s\n"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 user_select_syms (candidates.data (), n_candidates, 1);
3485 exp->elts[pc + 1].block = candidates[i].block;
3486 exp->elts[pc + 2].symbol = candidates[i].symbol;
3487 innermost_block.update (candidates[i]);
3491 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3494 replace_operator_with_call (expp, pc, 0, 4,
3495 exp->elts[pc + 2].symbol,
3496 exp->elts[pc + 1].block);
3503 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3504 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3506 std::vector<struct block_symbol> candidates;
3510 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3511 (exp->elts[pc + 5].symbol),
3512 exp->elts[pc + 4].block, VAR_DOMAIN,
3515 if (n_candidates == 1)
3519 i = ada_resolve_function
3520 (candidates.data (), n_candidates,
3522 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3525 error (_("Could not find a match for %s"),
3526 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3529 exp->elts[pc + 4].block = candidates[i].block;
3530 exp->elts[pc + 5].symbol = candidates[i].symbol;
3531 innermost_block.update (candidates[i]);
3542 case BINOP_BITWISE_AND:
3543 case BINOP_BITWISE_IOR:
3544 case BINOP_BITWISE_XOR:
3546 case BINOP_NOTEQUAL:
3554 case UNOP_LOGICAL_NOT:
3556 if (possible_user_operator_p (op, argvec))
3558 std::vector<struct block_symbol> candidates;
3562 ada_lookup_symbol_list (ada_decoded_op_name (op),
3563 (struct block *) NULL, VAR_DOMAIN,
3566 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3567 nargs, ada_decoded_op_name (op), NULL);
3571 replace_operator_with_call (expp, pc, nargs, 1,
3572 candidates[i].symbol,
3573 candidates[i].block);
3584 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3585 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3586 exp->elts[pc + 1].objfile,
3587 exp->elts[pc + 2].msymbol);
3589 return evaluate_subexp_type (exp, pos);
3592 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3593 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3595 /* The term "match" here is rather loose. The match is heuristic and
3599 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3601 ftype = ada_check_typedef (ftype);
3602 atype = ada_check_typedef (atype);
3604 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3605 ftype = TYPE_TARGET_TYPE (ftype);
3606 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3607 atype = TYPE_TARGET_TYPE (atype);
3609 switch (TYPE_CODE (ftype))
3612 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3614 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3615 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3616 TYPE_TARGET_TYPE (atype), 0);
3619 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3621 case TYPE_CODE_ENUM:
3622 case TYPE_CODE_RANGE:
3623 switch (TYPE_CODE (atype))
3626 case TYPE_CODE_ENUM:
3627 case TYPE_CODE_RANGE:
3633 case TYPE_CODE_ARRAY:
3634 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3635 || ada_is_array_descriptor_type (atype));
3637 case TYPE_CODE_STRUCT:
3638 if (ada_is_array_descriptor_type (ftype))
3639 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3640 || ada_is_array_descriptor_type (atype));
3642 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3643 && !ada_is_array_descriptor_type (atype));
3645 case TYPE_CODE_UNION:
3647 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3651 /* Return non-zero if the formals of FUNC "sufficiently match" the
3652 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3653 may also be an enumeral, in which case it is treated as a 0-
3654 argument function. */
3657 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3660 struct type *func_type = SYMBOL_TYPE (func);
3662 if (SYMBOL_CLASS (func) == LOC_CONST
3663 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3664 return (n_actuals == 0);
3665 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3668 if (TYPE_NFIELDS (func_type) != n_actuals)
3671 for (i = 0; i < n_actuals; i += 1)
3673 if (actuals[i] == NULL)
3677 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3679 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3681 if (!ada_type_match (ftype, atype, 1))
3688 /* False iff function type FUNC_TYPE definitely does not produce a value
3689 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3690 FUNC_TYPE is not a valid function type with a non-null return type
3691 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3694 return_match (struct type *func_type, struct type *context_type)
3696 struct type *return_type;
3698 if (func_type == NULL)
3701 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3702 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3704 return_type = get_base_type (func_type);
3705 if (return_type == NULL)
3708 context_type = get_base_type (context_type);
3710 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3711 return context_type == NULL || return_type == context_type;
3712 else if (context_type == NULL)
3713 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3715 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3719 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3720 function (if any) that matches the types of the NARGS arguments in
3721 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3722 that returns that type, then eliminate matches that don't. If
3723 CONTEXT_TYPE is void and there is at least one match that does not
3724 return void, eliminate all matches that do.
3726 Asks the user if there is more than one match remaining. Returns -1
3727 if there is no such symbol or none is selected. NAME is used
3728 solely for messages. May re-arrange and modify SYMS in
3729 the process; the index returned is for the modified vector. */
3732 ada_resolve_function (struct block_symbol syms[],
3733 int nsyms, struct value **args, int nargs,
3734 const char *name, struct type *context_type)
3738 int m; /* Number of hits */
3741 /* In the first pass of the loop, we only accept functions matching
3742 context_type. If none are found, we add a second pass of the loop
3743 where every function is accepted. */
3744 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3746 for (k = 0; k < nsyms; k += 1)
3748 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3750 if (ada_args_match (syms[k].symbol, args, nargs)
3751 && (fallback || return_match (type, context_type)))
3759 /* If we got multiple matches, ask the user which one to use. Don't do this
3760 interactive thing during completion, though, as the purpose of the
3761 completion is providing a list of all possible matches. Prompting the
3762 user to filter it down would be completely unexpected in this case. */
3765 else if (m > 1 && !parse_completion)
3767 printf_filtered (_("Multiple matches for %s\n"), name);
3768 user_select_syms (syms, m, 1);
3774 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3775 in a listing of choices during disambiguation (see sort_choices, below).
3776 The idea is that overloadings of a subprogram name from the
3777 same package should sort in their source order. We settle for ordering
3778 such symbols by their trailing number (__N or $N). */
3781 encoded_ordered_before (const char *N0, const char *N1)
3785 else if (N0 == NULL)
3791 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3793 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3795 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3796 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3801 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3804 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3806 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3807 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3809 return (strcmp (N0, N1) < 0);
3813 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3817 sort_choices (struct block_symbol syms[], int nsyms)
3821 for (i = 1; i < nsyms; i += 1)
3823 struct block_symbol sym = syms[i];
3826 for (j = i - 1; j >= 0; j -= 1)
3828 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3829 SYMBOL_LINKAGE_NAME (sym.symbol)))
3831 syms[j + 1] = syms[j];
3837 /* Whether GDB should display formals and return types for functions in the
3838 overloads selection menu. */
3839 static int print_signatures = 1;
3841 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3842 all but functions, the signature is just the name of the symbol. For
3843 functions, this is the name of the function, the list of types for formals
3844 and the return type (if any). */
3847 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3848 const struct type_print_options *flags)
3850 struct type *type = SYMBOL_TYPE (sym);
3852 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3853 if (!print_signatures
3855 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3858 if (TYPE_NFIELDS (type) > 0)
3862 fprintf_filtered (stream, " (");
3863 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3866 fprintf_filtered (stream, "; ");
3867 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3870 fprintf_filtered (stream, ")");
3872 if (TYPE_TARGET_TYPE (type) != NULL
3873 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3875 fprintf_filtered (stream, " return ");
3876 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3880 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3881 by asking the user (if necessary), returning the number selected,
3882 and setting the first elements of SYMS items. Error if no symbols
3885 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3886 to be re-integrated one of these days. */
3889 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3892 int *chosen = XALLOCAVEC (int , nsyms);
3894 int first_choice = (max_results == 1) ? 1 : 2;
3895 const char *select_mode = multiple_symbols_select_mode ();
3897 if (max_results < 1)
3898 error (_("Request to select 0 symbols!"));
3902 if (select_mode == multiple_symbols_cancel)
3904 canceled because the command is ambiguous\n\
3905 See set/show multiple-symbol."));
3907 /* If select_mode is "all", then return all possible symbols.
3908 Only do that if more than one symbol can be selected, of course.
3909 Otherwise, display the menu as usual. */
3910 if (select_mode == multiple_symbols_all && max_results > 1)
3913 printf_unfiltered (_("[0] cancel\n"));
3914 if (max_results > 1)
3915 printf_unfiltered (_("[1] all\n"));
3917 sort_choices (syms, nsyms);
3919 for (i = 0; i < nsyms; i += 1)
3921 if (syms[i].symbol == NULL)
3924 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3926 struct symtab_and_line sal =
3927 find_function_start_sal (syms[i].symbol, 1);
3929 printf_unfiltered ("[%d] ", i + first_choice);
3930 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3931 &type_print_raw_options);
3932 if (sal.symtab == NULL)
3933 printf_unfiltered (_(" at <no source file available>:%d\n"),
3936 printf_unfiltered (_(" at %s:%d\n"),
3937 symtab_to_filename_for_display (sal.symtab),
3944 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3945 && SYMBOL_TYPE (syms[i].symbol) != NULL
3946 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3947 struct symtab *symtab = NULL;
3949 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3950 symtab = symbol_symtab (syms[i].symbol);
3952 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3954 printf_unfiltered ("[%d] ", i + first_choice);
3955 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3956 &type_print_raw_options);
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (symtab),
3959 SYMBOL_LINE (syms[i].symbol));
3961 else if (is_enumeral
3962 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3964 printf_unfiltered (("[%d] "), i + first_choice);
3965 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3966 gdb_stdout, -1, 0, &type_print_raw_options);
3967 printf_unfiltered (_("'(%s) (enumeral)\n"),
3968 SYMBOL_PRINT_NAME (syms[i].symbol));
3972 printf_unfiltered ("[%d] ", i + first_choice);
3973 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3974 &type_print_raw_options);
3977 printf_unfiltered (is_enumeral
3978 ? _(" in %s (enumeral)\n")
3980 symtab_to_filename_for_display (symtab));
3982 printf_unfiltered (is_enumeral
3983 ? _(" (enumeral)\n")
3989 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3992 for (i = 0; i < n_chosen; i += 1)
3993 syms[i] = syms[chosen[i]];
3998 /* Read and validate a set of numeric choices from the user in the
3999 range 0 .. N_CHOICES-1. Place the results in increasing
4000 order in CHOICES[0 .. N-1], and return N.
4002 The user types choices as a sequence of numbers on one line
4003 separated by blanks, encoding them as follows:
4005 + A choice of 0 means to cancel the selection, throwing an error.
4006 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4007 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4009 The user is not allowed to choose more than MAX_RESULTS values.
4011 ANNOTATION_SUFFIX, if present, is used to annotate the input
4012 prompts (for use with the -f switch). */
4015 get_selections (int *choices, int n_choices, int max_results,
4016 int is_all_choice, const char *annotation_suffix)
4021 int first_choice = is_all_choice ? 2 : 1;
4023 prompt = getenv ("PS2");
4027 args = command_line_input (prompt, annotation_suffix);
4030 error_no_arg (_("one or more choice numbers"));
4034 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4035 order, as given in args. Choices are validated. */
4041 args = skip_spaces (args);
4042 if (*args == '\0' && n_chosen == 0)
4043 error_no_arg (_("one or more choice numbers"));
4044 else if (*args == '\0')
4047 choice = strtol (args, &args2, 10);
4048 if (args == args2 || choice < 0
4049 || choice > n_choices + first_choice - 1)
4050 error (_("Argument must be choice number"));
4054 error (_("cancelled"));
4056 if (choice < first_choice)
4058 n_chosen = n_choices;
4059 for (j = 0; j < n_choices; j += 1)
4063 choice -= first_choice;
4065 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4069 if (j < 0 || choice != choices[j])
4073 for (k = n_chosen - 1; k > j; k -= 1)
4074 choices[k + 1] = choices[k];
4075 choices[j + 1] = choice;
4080 if (n_chosen > max_results)
4081 error (_("Select no more than %d of the above"), max_results);
4086 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4087 on the function identified by SYM and BLOCK, and taking NARGS
4088 arguments. Update *EXPP as needed to hold more space. */
4091 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4092 int oplen, struct symbol *sym,
4093 const struct block *block)
4095 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4096 symbol, -oplen for operator being replaced). */
4097 struct expression *newexp = (struct expression *)
4098 xzalloc (sizeof (struct expression)
4099 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4100 struct expression *exp = expp->get ();
4102 newexp->nelts = exp->nelts + 7 - oplen;
4103 newexp->language_defn = exp->language_defn;
4104 newexp->gdbarch = exp->gdbarch;
4105 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4106 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4107 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4109 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4110 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4112 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4113 newexp->elts[pc + 4].block = block;
4114 newexp->elts[pc + 5].symbol = sym;
4116 expp->reset (newexp);
4119 /* Type-class predicates */
4121 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4125 numeric_type_p (struct type *type)
4131 switch (TYPE_CODE (type))
4136 case TYPE_CODE_RANGE:
4137 return (type == TYPE_TARGET_TYPE (type)
4138 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4145 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4148 integer_type_p (struct type *type)
4154 switch (TYPE_CODE (type))
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || integer_type_p (TYPE_TARGET_TYPE (type)));
4167 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4170 scalar_type_p (struct type *type)
4176 switch (TYPE_CODE (type))
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_ENUM:
4189 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4192 discrete_type_p (struct type *type)
4198 switch (TYPE_CODE (type))
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
4203 case TYPE_CODE_BOOL:
4211 /* Returns non-zero if OP with operands in the vector ARGS could be
4212 a user-defined function. Errs on the side of pre-defined operators
4213 (i.e., result 0). */
4216 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4218 struct type *type0 =
4219 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4220 struct type *type1 =
4221 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4235 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4239 case BINOP_BITWISE_AND:
4240 case BINOP_BITWISE_IOR:
4241 case BINOP_BITWISE_XOR:
4242 return (!(integer_type_p (type0) && integer_type_p (type1)));
4245 case BINOP_NOTEQUAL:
4250 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4253 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4256 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4260 case UNOP_LOGICAL_NOT:
4262 return (!numeric_type_p (type0));
4271 1. In the following, we assume that a renaming type's name may
4272 have an ___XD suffix. It would be nice if this went away at some
4274 2. We handle both the (old) purely type-based representation of
4275 renamings and the (new) variable-based encoding. At some point,
4276 it is devoutly to be hoped that the former goes away
4277 (FIXME: hilfinger-2007-07-09).
4278 3. Subprogram renamings are not implemented, although the XRS
4279 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4281 /* If SYM encodes a renaming,
4283 <renaming> renames <renamed entity>,
4285 sets *LEN to the length of the renamed entity's name,
4286 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4287 the string describing the subcomponent selected from the renamed
4288 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4289 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4290 are undefined). Otherwise, returns a value indicating the category
4291 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4292 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4293 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4294 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4295 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4296 may be NULL, in which case they are not assigned.
4298 [Currently, however, GCC does not generate subprogram renamings.] */
4300 enum ada_renaming_category
4301 ada_parse_renaming (struct symbol *sym,
4302 const char **renamed_entity, int *len,
4303 const char **renaming_expr)
4305 enum ada_renaming_category kind;
4310 return ADA_NOT_RENAMING;
4311 switch (SYMBOL_CLASS (sym))
4314 return ADA_NOT_RENAMING;
4316 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4317 renamed_entity, len, renaming_expr);
4321 case LOC_OPTIMIZED_OUT:
4322 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4324 return ADA_NOT_RENAMING;
4328 kind = ADA_OBJECT_RENAMING;
4332 kind = ADA_EXCEPTION_RENAMING;
4336 kind = ADA_PACKAGE_RENAMING;
4340 kind = ADA_SUBPROGRAM_RENAMING;
4344 return ADA_NOT_RENAMING;
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (suffix == NULL || suffix == info)
4352 return ADA_NOT_RENAMING;
4354 *len = strlen (info) - strlen (suffix);
4356 if (renaming_expr != NULL)
4357 *renaming_expr = suffix;
4361 /* Assuming TYPE encodes a renaming according to the old encoding in
4362 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4363 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4364 ADA_NOT_RENAMING otherwise. */
4365 static enum ada_renaming_category
4366 parse_old_style_renaming (struct type *type,
4367 const char **renamed_entity, int *len,
4368 const char **renaming_expr)
4370 enum ada_renaming_category kind;
4375 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4376 || TYPE_NFIELDS (type) != 1)
4377 return ADA_NOT_RENAMING;
4379 name = TYPE_NAME (type);
4381 return ADA_NOT_RENAMING;
4383 name = strstr (name, "___XR");
4385 return ADA_NOT_RENAMING;
4390 kind = ADA_OBJECT_RENAMING;
4393 kind = ADA_EXCEPTION_RENAMING;
4396 kind = ADA_PACKAGE_RENAMING;
4399 kind = ADA_SUBPROGRAM_RENAMING;
4402 return ADA_NOT_RENAMING;
4405 info = TYPE_FIELD_NAME (type, 0);
4407 return ADA_NOT_RENAMING;
4408 if (renamed_entity != NULL)
4409 *renamed_entity = info;
4410 suffix = strstr (info, "___XE");
4411 if (renaming_expr != NULL)
4412 *renaming_expr = suffix + 5;
4413 if (suffix == NULL || suffix == info)
4414 return ADA_NOT_RENAMING;
4416 *len = suffix - info;
4420 /* Compute the value of the given RENAMING_SYM, which is expected to
4421 be a symbol encoding a renaming expression. BLOCK is the block
4422 used to evaluate the renaming. */
4424 static struct value *
4425 ada_read_renaming_var_value (struct symbol *renaming_sym,
4426 const struct block *block)
4428 const char *sym_name;
4430 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4431 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4432 return evaluate_expression (expr.get ());
4436 /* Evaluation: Function Calls */
4438 /* Return an lvalue containing the value VAL. This is the identity on
4439 lvalues, and otherwise has the side-effect of allocating memory
4440 in the inferior where a copy of the value contents is copied. */
4442 static struct value *
4443 ensure_lval (struct value *val)
4445 if (VALUE_LVAL (val) == not_lval
4446 || VALUE_LVAL (val) == lval_internalvar)
4448 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4449 const CORE_ADDR addr =
4450 value_as_long (value_allocate_space_in_inferior (len));
4452 VALUE_LVAL (val) = lval_memory;
4453 set_value_address (val, addr);
4454 write_memory (addr, value_contents (val), len);
4460 /* Return the value ACTUAL, converted to be an appropriate value for a
4461 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4462 allocating any necessary descriptors (fat pointers), or copies of
4463 values not residing in memory, updating it as needed. */
4466 ada_convert_actual (struct value *actual, struct type *formal_type0)
4468 struct type *actual_type = ada_check_typedef (value_type (actual));
4469 struct type *formal_type = ada_check_typedef (formal_type0);
4470 struct type *formal_target =
4471 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4472 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4473 struct type *actual_target =
4474 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4475 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4477 if (ada_is_array_descriptor_type (formal_target)
4478 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4479 return make_array_descriptor (formal_type, actual);
4480 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4483 struct value *result;
4485 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4486 && ada_is_array_descriptor_type (actual_target))
4487 result = desc_data (actual);
4488 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4490 if (VALUE_LVAL (actual) != lval_memory)
4494 actual_type = ada_check_typedef (value_type (actual));
4495 val = allocate_value (actual_type);
4496 memcpy ((char *) value_contents_raw (val),
4497 (char *) value_contents (actual),
4498 TYPE_LENGTH (actual_type));
4499 actual = ensure_lval (val);
4501 result = value_addr (actual);
4505 return value_cast_pointers (formal_type, result, 0);
4507 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4508 return ada_value_ind (actual);
4509 else if (ada_is_aligner_type (formal_type))
4511 /* We need to turn this parameter into an aligner type
4513 struct value *aligner = allocate_value (formal_type);
4514 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4516 value_assign_to_component (aligner, component, actual);
4523 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4524 type TYPE. This is usually an inefficient no-op except on some targets
4525 (such as AVR) where the representation of a pointer and an address
4529 value_pointer (struct value *value, struct type *type)
4531 struct gdbarch *gdbarch = get_type_arch (type);
4532 unsigned len = TYPE_LENGTH (type);
4533 gdb_byte *buf = (gdb_byte *) alloca (len);
4536 addr = value_address (value);
4537 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4538 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4543 /* Push a descriptor of type TYPE for array value ARR on the stack at
4544 *SP, updating *SP to reflect the new descriptor. Return either
4545 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4546 to-descriptor type rather than a descriptor type), a struct value *
4547 representing a pointer to this descriptor. */
4549 static struct value *
4550 make_array_descriptor (struct type *type, struct value *arr)
4552 struct type *bounds_type = desc_bounds_type (type);
4553 struct type *desc_type = desc_base_type (type);
4554 struct value *descriptor = allocate_value (desc_type);
4555 struct value *bounds = allocate_value (bounds_type);
4558 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 0),
4563 desc_bound_bitpos (bounds_type, i, 0),
4564 desc_bound_bitsize (bounds_type, i, 0));
4565 modify_field (value_type (bounds), value_contents_writeable (bounds),
4566 ada_array_bound (arr, i, 1),
4567 desc_bound_bitpos (bounds_type, i, 1),
4568 desc_bound_bitsize (bounds_type, i, 1));
4571 bounds = ensure_lval (bounds);
4573 modify_field (value_type (descriptor),
4574 value_contents_writeable (descriptor),
4575 value_pointer (ensure_lval (arr),
4576 TYPE_FIELD_TYPE (desc_type, 0)),
4577 fat_pntr_data_bitpos (desc_type),
4578 fat_pntr_data_bitsize (desc_type));
4580 modify_field (value_type (descriptor),
4581 value_contents_writeable (descriptor),
4582 value_pointer (bounds,
4583 TYPE_FIELD_TYPE (desc_type, 1)),
4584 fat_pntr_bounds_bitpos (desc_type),
4585 fat_pntr_bounds_bitsize (desc_type));
4587 descriptor = ensure_lval (descriptor);
4589 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4590 return value_addr (descriptor);
4595 /* Symbol Cache Module */
4597 /* Performance measurements made as of 2010-01-15 indicate that
4598 this cache does bring some noticeable improvements. Depending
4599 on the type of entity being printed, the cache can make it as much
4600 as an order of magnitude faster than without it.
4602 The descriptive type DWARF extension has significantly reduced
4603 the need for this cache, at least when DWARF is being used. However,
4604 even in this case, some expensive name-based symbol searches are still
4605 sometimes necessary - to find an XVZ variable, mostly. */
4607 /* Initialize the contents of SYM_CACHE. */
4610 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4612 obstack_init (&sym_cache->cache_space);
4613 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4616 /* Free the memory used by SYM_CACHE. */
4619 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4621 obstack_free (&sym_cache->cache_space, NULL);
4625 /* Return the symbol cache associated to the given program space PSPACE.
4626 If not allocated for this PSPACE yet, allocate and initialize one. */
4628 static struct ada_symbol_cache *
4629 ada_get_symbol_cache (struct program_space *pspace)
4631 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4633 if (pspace_data->sym_cache == NULL)
4635 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4636 ada_init_symbol_cache (pspace_data->sym_cache);
4639 return pspace_data->sym_cache;
4642 /* Clear all entries from the symbol cache. */
4645 ada_clear_symbol_cache (void)
4647 struct ada_symbol_cache *sym_cache
4648 = ada_get_symbol_cache (current_program_space);
4650 obstack_free (&sym_cache->cache_space, NULL);
4651 ada_init_symbol_cache (sym_cache);
4654 /* Search our cache for an entry matching NAME and DOMAIN.
4655 Return it if found, or NULL otherwise. */
4657 static struct cache_entry **
4658 find_entry (const char *name, domain_enum domain)
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662 int h = msymbol_hash (name) % HASH_SIZE;
4663 struct cache_entry **e;
4665 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4667 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4673 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4674 Return 1 if found, 0 otherwise.
4676 If an entry was found and SYM is not NULL, set *SYM to the entry's
4677 SYM. Same principle for BLOCK if not NULL. */
4680 lookup_cached_symbol (const char *name, domain_enum domain,
4681 struct symbol **sym, const struct block **block)
4683 struct cache_entry **e = find_entry (name, domain);
4690 *block = (*e)->block;
4694 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4695 in domain DOMAIN, save this result in our symbol cache. */
4698 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4699 const struct block *block)
4701 struct ada_symbol_cache *sym_cache
4702 = ada_get_symbol_cache (current_program_space);
4705 struct cache_entry *e;
4707 /* Symbols for builtin types don't have a block.
4708 For now don't cache such symbols. */
4709 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4712 /* If the symbol is a local symbol, then do not cache it, as a search
4713 for that symbol depends on the context. To determine whether
4714 the symbol is local or not, we check the block where we found it
4715 against the global and static blocks of its associated symtab. */
4717 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4718 GLOBAL_BLOCK) != block
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 STATIC_BLOCK) != block)
4723 h = msymbol_hash (name) % HASH_SIZE;
4724 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4725 e->next = sym_cache->root[h];
4726 sym_cache->root[h] = e;
4728 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4729 strcpy (copy, name);
4737 /* Return the symbol name match type that should be used used when
4738 searching for all symbols matching LOOKUP_NAME.
4740 LOOKUP_NAME is expected to be a symbol name after transformation
4743 static symbol_name_match_type
4744 name_match_type_from_name (const char *lookup_name)
4746 return (strstr (lookup_name, "__") == NULL
4747 ? symbol_name_match_type::WILD
4748 : symbol_name_match_type::FULL);
4751 /* Return the result of a standard (literal, C-like) lookup of NAME in
4752 given DOMAIN, visible from lexical block BLOCK. */
4754 static struct symbol *
4755 standard_lookup (const char *name, const struct block *block,
4758 /* Initialize it just to avoid a GCC false warning. */
4759 struct block_symbol sym = {NULL, NULL};
4761 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4763 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4764 cache_symbol (name, domain, sym.symbol, sym.block);
4769 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4770 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4771 since they contend in overloading in the same way. */
4773 is_nonfunction (struct block_symbol syms[], int n)
4777 for (i = 0; i < n; i += 1)
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4779 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4780 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4786 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4787 struct types. Otherwise, they may not. */
4790 equiv_types (struct type *type0, struct type *type1)
4794 if (type0 == NULL || type1 == NULL
4795 || TYPE_CODE (type0) != TYPE_CODE (type1))
4797 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4798 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4799 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4800 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4806 /* True iff SYM0 represents the same entity as SYM1, or one that is
4807 no more defined than that of SYM1. */
4810 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4814 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4815 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4818 switch (SYMBOL_CLASS (sym0))
4824 struct type *type0 = SYMBOL_TYPE (sym0);
4825 struct type *type1 = SYMBOL_TYPE (sym1);
4826 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4827 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4828 int len0 = strlen (name0);
4831 TYPE_CODE (type0) == TYPE_CODE (type1)
4832 && (equiv_types (type0, type1)
4833 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4834 && startswith (name1 + len0, "___XV")));
4837 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4838 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4844 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4845 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4848 add_defn_to_vec (struct obstack *obstackp,
4850 const struct block *block)
4853 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4855 /* Do not try to complete stub types, as the debugger is probably
4856 already scanning all symbols matching a certain name at the
4857 time when this function is called. Trying to replace the stub
4858 type by its associated full type will cause us to restart a scan
4859 which may lead to an infinite recursion. Instead, the client
4860 collecting the matching symbols will end up collecting several
4861 matches, with at least one of them complete. It can then filter
4862 out the stub ones if needed. */
4864 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4866 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4868 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4870 prevDefns[i].symbol = sym;
4871 prevDefns[i].block = block;
4877 struct block_symbol info;
4881 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4885 /* Number of block_symbol structures currently collected in current vector in
4889 num_defns_collected (struct obstack *obstackp)
4891 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4894 /* Vector of block_symbol structures currently collected in current vector in
4895 OBSTACKP. If FINISH, close off the vector and return its final address. */
4897 static struct block_symbol *
4898 defns_collected (struct obstack *obstackp, int finish)
4901 return (struct block_symbol *) obstack_finish (obstackp);
4903 return (struct block_symbol *) obstack_base (obstackp);
4906 /* Return a bound minimal symbol matching NAME according to Ada
4907 decoding rules. Returns an invalid symbol if there is no such
4908 minimal symbol. Names prefixed with "standard__" are handled
4909 specially: "standard__" is first stripped off, and only static and
4910 global symbols are searched. */
4912 struct bound_minimal_symbol
4913 ada_lookup_simple_minsym (const char *name)
4915 struct bound_minimal_symbol result;
4916 struct objfile *objfile;
4917 struct minimal_symbol *msymbol;
4919 memset (&result, 0, sizeof (result));
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4927 ALL_MSYMBOLS (objfile, msymbol)
4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4941 /* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4948 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4949 const lookup_name_info &lookup_name,
4954 /* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
4958 is_nondebugging_type (struct type *type)
4960 const char *name = ada_type_name (type);
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4965 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4973 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4987 /* All enumerals should also have the same name (modulo any numerical
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5008 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5013 For instance, consider the following code:
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5029 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5040 /* Quick check: All symbols should have an enum type. */
5041 for (i = 0; i < syms.size (); i++)
5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5045 /* Quick check: They should all have the same value. */
5046 for (i = 1; i < syms.size (); i++)
5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5050 /* Quick check: They should all have the same number of enumerals. */
5051 for (i = 1; i < syms.size (); i++)
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
5059 for (i = 1; i < syms.size (); i++)
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
5067 /* Remove any non-debugging symbols in SYMS that definitely
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
5075 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
5082 if (syms->size () < 2)
5083 return syms->size ();
5086 while (i < syms->size ())
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5093 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5094 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5096 for (j = 0; j < syms->size (); j++)
5099 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5100 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5102 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5110 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5111 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5114 for (j = 0; j < syms->size (); j += 1)
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5120 && SYMBOL_CLASS ((*syms)[i].symbol)
5121 == SYMBOL_CLASS ((*syms)[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5129 syms->erase (syms->begin () + i);
5134 /* If all the remaining symbols are identical enumerals, then
5135 just keep the first one and discard the rest.
5137 Unlike what we did previously, we do not discard any entry
5138 unless they are ALL identical. This is because the symbol
5139 comparison is not a strict comparison, but rather a practical
5140 comparison. If all symbols are considered identical, then
5141 we can just go ahead and use the first one and discard the rest.
5142 But if we cannot reduce the list to a single element, we have
5143 to ask the user to disambiguate anyways. And if we have to
5144 present a multiple-choice menu, it's less confusing if the list
5145 isn't missing some choices that were identical and yet distinct. */
5146 if (symbols_are_identical_enums (*syms))
5149 return syms->size ();
5152 /* Given a type that corresponds to a renaming entity, use the type name
5153 to extract the scope (package name or function name, fully qualified,
5154 and following the GNAT encoding convention) where this renaming has been
5158 xget_renaming_scope (struct type *renaming_type)
5160 /* The renaming types adhere to the following convention:
5161 <scope>__<rename>___<XR extension>.
5162 So, to extract the scope, we search for the "___XR" extension,
5163 and then backtrack until we find the first "__". */
5165 const char *name = TYPE_NAME (renaming_type);
5166 const char *suffix = strstr (name, "___XR");
5169 /* Now, backtrack a bit until we find the first "__". Start looking
5170 at suffix - 3, as the <rename> part is at least one character long. */
5172 for (last = suffix - 3; last > name; last--)
5173 if (last[0] == '_' && last[1] == '_')
5176 /* Make a copy of scope and return it. */
5177 return std::string (name, last);
5180 /* Return nonzero if NAME corresponds to a package name. */
5183 is_package_name (const char *name)
5185 /* Here, We take advantage of the fact that no symbols are generated
5186 for packages, while symbols are generated for each function.
5187 So the condition for NAME represent a package becomes equivalent
5188 to NAME not existing in our list of symbols. There is only one
5189 small complication with library-level functions (see below). */
5191 /* If it is a function that has not been defined at library level,
5192 then we should be able to look it up in the symbols. */
5193 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5196 /* Library-level function names start with "_ada_". See if function
5197 "_ada_" followed by NAME can be found. */
5199 /* Do a quick check that NAME does not contain "__", since library-level
5200 functions names cannot contain "__" in them. */
5201 if (strstr (name, "__") != NULL)
5204 std::string fun_name = string_printf ("_ada_%s", name);
5206 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5209 /* Return nonzero if SYM corresponds to a renaming entity that is
5210 not visible from FUNCTION_NAME. */
5213 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5215 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5218 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5220 /* If the rename has been defined in a package, then it is visible. */
5221 if (is_package_name (scope.c_str ()))
5224 /* Check that the rename is in the current function scope by checking
5225 that its name starts with SCOPE. */
5227 /* If the function name starts with "_ada_", it means that it is
5228 a library-level function. Strip this prefix before doing the
5229 comparison, as the encoding for the renaming does not contain
5231 if (startswith (function_name, "_ada_"))
5234 return !startswith (function_name, scope.c_str ());
5237 /* Remove entries from SYMS that corresponds to a renaming entity that
5238 is not visible from the function associated with CURRENT_BLOCK or
5239 that is superfluous due to the presence of more specific renaming
5240 information. Places surviving symbols in the initial entries of
5241 SYMS and returns the number of surviving symbols.
5244 First, in cases where an object renaming is implemented as a
5245 reference variable, GNAT may produce both the actual reference
5246 variable and the renaming encoding. In this case, we discard the
5249 Second, GNAT emits a type following a specified encoding for each renaming
5250 entity. Unfortunately, STABS currently does not support the definition
5251 of types that are local to a given lexical block, so all renamings types
5252 are emitted at library level. As a consequence, if an application
5253 contains two renaming entities using the same name, and a user tries to
5254 print the value of one of these entities, the result of the ada symbol
5255 lookup will also contain the wrong renaming type.
5257 This function partially covers for this limitation by attempting to
5258 remove from the SYMS list renaming symbols that should be visible
5259 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5260 method with the current information available. The implementation
5261 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5263 - When the user tries to print a rename in a function while there
5264 is another rename entity defined in a package: Normally, the
5265 rename in the function has precedence over the rename in the
5266 package, so the latter should be removed from the list. This is
5267 currently not the case.
5269 - This function will incorrectly remove valid renames if
5270 the CURRENT_BLOCK corresponds to a function which symbol name
5271 has been changed by an "Export" pragma. As a consequence,
5272 the user will be unable to print such rename entities. */
5275 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5276 const struct block *current_block)
5278 struct symbol *current_function;
5279 const char *current_function_name;
5281 int is_new_style_renaming;
5283 /* If there is both a renaming foo___XR... encoded as a variable and
5284 a simple variable foo in the same block, discard the latter.
5285 First, zero out such symbols, then compress. */
5286 is_new_style_renaming = 0;
5287 for (i = 0; i < syms->size (); i += 1)
5289 struct symbol *sym = (*syms)[i].symbol;
5290 const struct block *block = (*syms)[i].block;
5294 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5296 name = SYMBOL_LINKAGE_NAME (sym);
5297 suffix = strstr (name, "___XR");
5301 int name_len = suffix - name;
5304 is_new_style_renaming = 1;
5305 for (j = 0; j < syms->size (); j += 1)
5306 if (i != j && (*syms)[j].symbol != NULL
5307 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5309 && block == (*syms)[j].block)
5310 (*syms)[j].symbol = NULL;
5313 if (is_new_style_renaming)
5317 for (j = k = 0; j < syms->size (); j += 1)
5318 if ((*syms)[j].symbol != NULL)
5320 (*syms)[k] = (*syms)[j];
5326 /* Extract the function name associated to CURRENT_BLOCK.
5327 Abort if unable to do so. */
5329 if (current_block == NULL)
5330 return syms->size ();
5332 current_function = block_linkage_function (current_block);
5333 if (current_function == NULL)
5334 return syms->size ();
5336 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5337 if (current_function_name == NULL)
5338 return syms->size ();
5340 /* Check each of the symbols, and remove it from the list if it is
5341 a type corresponding to a renaming that is out of the scope of
5342 the current block. */
5345 while (i < syms->size ())
5347 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5348 == ADA_OBJECT_RENAMING
5349 && old_renaming_is_invisible ((*syms)[i].symbol,
5350 current_function_name))
5351 syms->erase (syms->begin () + i);
5356 return syms->size ();
5359 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5360 whose name and domain match NAME and DOMAIN respectively.
5361 If no match was found, then extend the search to "enclosing"
5362 routines (in other words, if we're inside a nested function,
5363 search the symbols defined inside the enclosing functions).
5364 If WILD_MATCH_P is nonzero, perform the naming matching in
5365 "wild" mode (see function "wild_match" for more info).
5367 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5370 ada_add_local_symbols (struct obstack *obstackp,
5371 const lookup_name_info &lookup_name,
5372 const struct block *block, domain_enum domain)
5374 int block_depth = 0;
5376 while (block != NULL)
5379 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5381 /* If we found a non-function match, assume that's the one. */
5382 if (is_nonfunction (defns_collected (obstackp, 0),
5383 num_defns_collected (obstackp)))
5386 block = BLOCK_SUPERBLOCK (block);
5389 /* If no luck so far, try to find NAME as a local symbol in some lexically
5390 enclosing subprogram. */
5391 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5392 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5395 /* An object of this type is used as the user_data argument when
5396 calling the map_matching_symbols method. */
5400 struct objfile *objfile;
5401 struct obstack *obstackp;
5402 struct symbol *arg_sym;
5406 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5407 to a list of symbols. DATA0 is a pointer to a struct match_data *
5408 containing the obstack that collects the symbol list, the file that SYM
5409 must come from, a flag indicating whether a non-argument symbol has
5410 been found in the current block, and the last argument symbol
5411 passed in SYM within the current block (if any). When SYM is null,
5412 marking the end of a block, the argument symbol is added if no
5413 other has been found. */
5416 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5418 struct match_data *data = (struct match_data *) data0;
5422 if (!data->found_sym && data->arg_sym != NULL)
5423 add_defn_to_vec (data->obstackp,
5424 fixup_symbol_section (data->arg_sym, data->objfile),
5426 data->found_sym = 0;
5427 data->arg_sym = NULL;
5431 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5433 else if (SYMBOL_IS_ARGUMENT (sym))
5434 data->arg_sym = sym;
5437 data->found_sym = 1;
5438 add_defn_to_vec (data->obstackp,
5439 fixup_symbol_section (sym, data->objfile),
5446 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5447 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5448 symbols to OBSTACKP. Return whether we found such symbols. */
5451 ada_add_block_renamings (struct obstack *obstackp,
5452 const struct block *block,
5453 const lookup_name_info &lookup_name,
5456 struct using_direct *renaming;
5457 int defns_mark = num_defns_collected (obstackp);
5459 symbol_name_matcher_ftype *name_match
5460 = ada_get_symbol_name_matcher (lookup_name);
5462 for (renaming = block_using (block);
5464 renaming = renaming->next)
5468 /* Avoid infinite recursions: skip this renaming if we are actually
5469 already traversing it.
5471 Currently, symbol lookup in Ada don't use the namespace machinery from
5472 C++/Fortran support: skip namespace imports that use them. */
5473 if (renaming->searched
5474 || (renaming->import_src != NULL
5475 && renaming->import_src[0] != '\0')
5476 || (renaming->import_dest != NULL
5477 && renaming->import_dest[0] != '\0'))
5479 renaming->searched = 1;
5481 /* TODO: here, we perform another name-based symbol lookup, which can
5482 pull its own multiple overloads. In theory, we should be able to do
5483 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5484 not a simple name. But in order to do this, we would need to enhance
5485 the DWARF reader to associate a symbol to this renaming, instead of a
5486 name. So, for now, we do something simpler: re-use the C++/Fortran
5487 namespace machinery. */
5488 r_name = (renaming->alias != NULL
5490 : renaming->declaration);
5491 if (name_match (r_name, lookup_name, NULL))
5493 lookup_name_info decl_lookup_name (renaming->declaration,
5494 lookup_name.match_type ());
5495 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5498 renaming->searched = 0;
5500 return num_defns_collected (obstackp) != defns_mark;
5503 /* Implements compare_names, but only applying the comparision using
5504 the given CASING. */
5507 compare_names_with_case (const char *string1, const char *string2,
5508 enum case_sensitivity casing)
5510 while (*string1 != '\0' && *string2 != '\0')
5514 if (isspace (*string1) || isspace (*string2))
5515 return strcmp_iw_ordered (string1, string2);
5517 if (casing == case_sensitive_off)
5519 c1 = tolower (*string1);
5520 c2 = tolower (*string2);
5537 return strcmp_iw_ordered (string1, string2);
5539 if (*string2 == '\0')
5541 if (is_name_suffix (string1))
5548 if (*string2 == '(')
5549 return strcmp_iw_ordered (string1, string2);
5552 if (casing == case_sensitive_off)
5553 return tolower (*string1) - tolower (*string2);
5555 return *string1 - *string2;
5560 /* Compare STRING1 to STRING2, with results as for strcmp.
5561 Compatible with strcmp_iw_ordered in that...
5563 strcmp_iw_ordered (STRING1, STRING2) <= 0
5567 compare_names (STRING1, STRING2) <= 0
5569 (they may differ as to what symbols compare equal). */
5572 compare_names (const char *string1, const char *string2)
5576 /* Similar to what strcmp_iw_ordered does, we need to perform
5577 a case-insensitive comparison first, and only resort to
5578 a second, case-sensitive, comparison if the first one was
5579 not sufficient to differentiate the two strings. */
5581 result = compare_names_with_case (string1, string2, case_sensitive_off);
5583 result = compare_names_with_case (string1, string2, case_sensitive_on);
5588 /* Convenience function to get at the Ada encoded lookup name for
5589 LOOKUP_NAME, as a C string. */
5592 ada_lookup_name (const lookup_name_info &lookup_name)
5594 return lookup_name.ada ().lookup_name ().c_str ();
5597 /* Add to OBSTACKP all non-local symbols whose name and domain match
5598 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5599 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5600 symbols otherwise. */
5603 add_nonlocal_symbols (struct obstack *obstackp,
5604 const lookup_name_info &lookup_name,
5605 domain_enum domain, int global)
5607 struct objfile *objfile;
5608 struct compunit_symtab *cu;
5609 struct match_data data;
5611 memset (&data, 0, sizeof data);
5612 data.obstackp = obstackp;
5614 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5616 ALL_OBJFILES (objfile)
5618 data.objfile = objfile;
5621 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5623 aux_add_nonlocal_symbols, &data,
5624 symbol_name_match_type::WILD,
5627 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5629 aux_add_nonlocal_symbols, &data,
5630 symbol_name_match_type::FULL,
5633 ALL_OBJFILE_COMPUNITS (objfile, cu)
5635 const struct block *global_block
5636 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5638 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5644 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5646 const char *name = ada_lookup_name (lookup_name);
5647 std::string name1 = std::string ("<_ada_") + name + '>';
5649 ALL_OBJFILES (objfile)
5651 data.objfile = objfile;
5652 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5654 aux_add_nonlocal_symbols,
5656 symbol_name_match_type::FULL,
5662 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5663 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5664 returning the number of matches. Add these to OBSTACKP.
5666 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5667 symbol match within the nest of blocks whose innermost member is BLOCK,
5668 is the one match returned (no other matches in that or
5669 enclosing blocks is returned). If there are any matches in or
5670 surrounding BLOCK, then these alone are returned.
5672 Names prefixed with "standard__" are handled specially:
5673 "standard__" is first stripped off (by the lookup_name
5674 constructor), and only static and global symbols are searched.
5676 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5677 to lookup global symbols. */
5680 ada_add_all_symbols (struct obstack *obstackp,
5681 const struct block *block,
5682 const lookup_name_info &lookup_name,
5685 int *made_global_lookup_p)
5689 if (made_global_lookup_p)
5690 *made_global_lookup_p = 0;
5692 /* Special case: If the user specifies a symbol name inside package
5693 Standard, do a non-wild matching of the symbol name without
5694 the "standard__" prefix. This was primarily introduced in order
5695 to allow the user to specifically access the standard exceptions
5696 using, for instance, Standard.Constraint_Error when Constraint_Error
5697 is ambiguous (due to the user defining its own Constraint_Error
5698 entity inside its program). */
5699 if (lookup_name.ada ().standard_p ())
5702 /* Check the non-global symbols. If we have ANY match, then we're done. */
5707 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5710 /* In the !full_search case we're are being called by
5711 ada_iterate_over_symbols, and we don't want to search
5713 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5715 if (num_defns_collected (obstackp) > 0 || !full_search)
5719 /* No non-global symbols found. Check our cache to see if we have
5720 already performed this search before. If we have, then return
5723 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5724 domain, &sym, &block))
5727 add_defn_to_vec (obstackp, sym, block);
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 1;
5734 /* Search symbols from all global blocks. */
5736 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5738 /* Now add symbols from all per-file blocks if we've gotten no hits
5739 (not strictly correct, but perhaps better than an error). */
5741 if (num_defns_collected (obstackp) == 0)
5742 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5745 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5746 is non-zero, enclosing scope and in global scopes, returning the number of
5748 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5749 found and the blocks and symbol tables (if any) in which they were
5752 When full_search is non-zero, any non-function/non-enumeral
5753 symbol match within the nest of blocks whose innermost member is BLOCK,
5754 is the one match returned (no other matches in that or
5755 enclosing blocks is returned). If there are any matches in or
5756 surrounding BLOCK, then these alone are returned.
5758 Names prefixed with "standard__" are handled specially: "standard__"
5759 is first stripped off, and only static and global symbols are searched. */
5762 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5763 const struct block *block,
5765 std::vector<struct block_symbol> *results,
5768 int syms_from_global_search;
5770 auto_obstack obstack;
5772 ada_add_all_symbols (&obstack, block, lookup_name,
5773 domain, full_search, &syms_from_global_search);
5775 ndefns = num_defns_collected (&obstack);
5777 struct block_symbol *base = defns_collected (&obstack, 1);
5778 for (int i = 0; i < ndefns; ++i)
5779 results->push_back (base[i]);
5781 ndefns = remove_extra_symbols (results);
5783 if (ndefns == 0 && full_search && syms_from_global_search)
5784 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5786 if (ndefns == 1 && full_search && syms_from_global_search)
5787 cache_symbol (ada_lookup_name (lookup_name), domain,
5788 (*results)[0].symbol, (*results)[0].block);
5790 ndefns = remove_irrelevant_renamings (results, block);
5795 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5796 in global scopes, returning the number of matches, and filling *RESULTS
5797 with (SYM,BLOCK) tuples.
5799 See ada_lookup_symbol_list_worker for further details. */
5802 ada_lookup_symbol_list (const char *name, const struct block *block,
5804 std::vector<struct block_symbol> *results)
5806 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5807 lookup_name_info lookup_name (name, name_match_type);
5809 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5812 /* Implementation of the la_iterate_over_symbols method. */
5815 ada_iterate_over_symbols
5816 (const struct block *block, const lookup_name_info &name,
5818 gdb::function_view<symbol_found_callback_ftype> callback)
5821 std::vector<struct block_symbol> results;
5823 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5825 for (i = 0; i < ndefs; ++i)
5827 if (!callback (&results[i]))
5832 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5833 to 1, but choosing the first symbol found if there are multiple
5836 The result is stored in *INFO, which must be non-NULL.
5837 If no match is found, INFO->SYM is set to NULL. */
5840 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5842 struct block_symbol *info)
5844 /* Since we already have an encoded name, wrap it in '<>' to force a
5845 verbatim match. Otherwise, if the name happens to not look like
5846 an encoded name (because it doesn't include a "__"),
5847 ada_lookup_name_info would re-encode/fold it again, and that
5848 would e.g., incorrectly lowercase object renaming names like
5849 "R28b" -> "r28b". */
5850 std::string verbatim = std::string ("<") + name + '>';
5852 gdb_assert (info != NULL);
5853 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5856 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5857 scope and in global scopes, or NULL if none. NAME is folded and
5858 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5859 choosing the first symbol if there are multiple choices.
5860 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5863 ada_lookup_symbol (const char *name, const struct block *block0,
5864 domain_enum domain, int *is_a_field_of_this)
5866 if (is_a_field_of_this != NULL)
5867 *is_a_field_of_this = 0;
5869 std::vector<struct block_symbol> candidates;
5872 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5874 if (n_candidates == 0)
5877 block_symbol info = candidates[0];
5878 info.symbol = fixup_symbol_section (info.symbol, NULL);
5882 static struct block_symbol
5883 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5885 const struct block *block,
5886 const domain_enum domain)
5888 struct block_symbol sym;
5890 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5891 if (sym.symbol != NULL)
5894 /* If we haven't found a match at this point, try the primitive
5895 types. In other languages, this search is performed before
5896 searching for global symbols in order to short-circuit that
5897 global-symbol search if it happens that the name corresponds
5898 to a primitive type. But we cannot do the same in Ada, because
5899 it is perfectly legitimate for a program to declare a type which
5900 has the same name as a standard type. If looking up a type in
5901 that situation, we have traditionally ignored the primitive type
5902 in favor of user-defined types. This is why, unlike most other
5903 languages, we search the primitive types this late and only after
5904 having searched the global symbols without success. */
5906 if (domain == VAR_DOMAIN)
5908 struct gdbarch *gdbarch;
5911 gdbarch = target_gdbarch ();
5913 gdbarch = block_gdbarch (block);
5914 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5915 if (sym.symbol != NULL)
5919 return (struct block_symbol) {NULL, NULL};
5923 /* True iff STR is a possible encoded suffix of a normal Ada name
5924 that is to be ignored for matching purposes. Suffixes of parallel
5925 names (e.g., XVE) are not included here. Currently, the possible suffixes
5926 are given by any of the regular expressions:
5928 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5929 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5930 TKB [subprogram suffix for task bodies]
5931 _E[0-9]+[bs]$ [protected object entry suffixes]
5932 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5934 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5935 match is performed. This sequence is used to differentiate homonyms,
5936 is an optional part of a valid name suffix. */
5939 is_name_suffix (const char *str)
5942 const char *matching;
5943 const int len = strlen (str);
5945 /* Skip optional leading __[0-9]+. */
5947 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5950 while (isdigit (str[0]))
5956 if (str[0] == '.' || str[0] == '$')
5959 while (isdigit (matching[0]))
5961 if (matching[0] == '\0')
5967 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5970 while (isdigit (matching[0]))
5972 if (matching[0] == '\0')
5976 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5978 if (strcmp (str, "TKB") == 0)
5982 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5983 with a N at the end. Unfortunately, the compiler uses the same
5984 convention for other internal types it creates. So treating
5985 all entity names that end with an "N" as a name suffix causes
5986 some regressions. For instance, consider the case of an enumerated
5987 type. To support the 'Image attribute, it creates an array whose
5989 Having a single character like this as a suffix carrying some
5990 information is a bit risky. Perhaps we should change the encoding
5991 to be something like "_N" instead. In the meantime, do not do
5992 the following check. */
5993 /* Protected Object Subprograms */
5994 if (len == 1 && str [0] == 'N')
5999 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6002 while (isdigit (matching[0]))
6004 if ((matching[0] == 'b' || matching[0] == 's')
6005 && matching [1] == '\0')
6009 /* ??? We should not modify STR directly, as we are doing below. This
6010 is fine in this case, but may become problematic later if we find
6011 that this alternative did not work, and want to try matching
6012 another one from the begining of STR. Since we modified it, we
6013 won't be able to find the begining of the string anymore! */
6017 while (str[0] != '_' && str[0] != '\0')
6019 if (str[0] != 'n' && str[0] != 'b')
6025 if (str[0] == '\000')
6030 if (str[1] != '_' || str[2] == '\000')
6034 if (strcmp (str + 3, "JM") == 0)
6036 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6037 the LJM suffix in favor of the JM one. But we will
6038 still accept LJM as a valid suffix for a reasonable
6039 amount of time, just to allow ourselves to debug programs
6040 compiled using an older version of GNAT. */
6041 if (strcmp (str + 3, "LJM") == 0)
6045 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6046 || str[4] == 'U' || str[4] == 'P')
6048 if (str[4] == 'R' && str[5] != 'T')
6052 if (!isdigit (str[2]))
6054 for (k = 3; str[k] != '\0'; k += 1)
6055 if (!isdigit (str[k]) && str[k] != '_')
6059 if (str[0] == '$' && isdigit (str[1]))
6061 for (k = 2; str[k] != '\0'; k += 1)
6062 if (!isdigit (str[k]) && str[k] != '_')
6069 /* Return non-zero if the string starting at NAME and ending before
6070 NAME_END contains no capital letters. */
6073 is_valid_name_for_wild_match (const char *name0)
6075 const char *decoded_name = ada_decode (name0);
6078 /* If the decoded name starts with an angle bracket, it means that
6079 NAME0 does not follow the GNAT encoding format. It should then
6080 not be allowed as a possible wild match. */
6081 if (decoded_name[0] == '<')
6084 for (i=0; decoded_name[i] != '\0'; i++)
6085 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6091 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6092 that could start a simple name. Assumes that *NAMEP points into
6093 the string beginning at NAME0. */
6096 advance_wild_match (const char **namep, const char *name0, int target0)
6098 const char *name = *namep;
6108 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6111 if (name == name0 + 5 && startswith (name0, "_ada"))
6116 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6117 || name[2] == target0))
6125 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6135 /* Return true iff NAME encodes a name of the form prefix.PATN.
6136 Ignores any informational suffixes of NAME (i.e., for which
6137 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6141 wild_match (const char *name, const char *patn)
6144 const char *name0 = name;
6148 const char *match = name;
6152 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6155 if (*p == '\0' && is_name_suffix (name))
6156 return match == name0 || is_valid_name_for_wild_match (name0);
6158 if (name[-1] == '_')
6161 if (!advance_wild_match (&name, name0, *patn))
6166 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6167 any trailing suffixes that encode debugging information or leading
6168 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6169 information that is ignored). */
6172 full_match (const char *sym_name, const char *search_name)
6174 size_t search_name_len = strlen (search_name);
6176 if (strncmp (sym_name, search_name, search_name_len) == 0
6177 && is_name_suffix (sym_name + search_name_len))
6180 if (startswith (sym_name, "_ada_")
6181 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6182 && is_name_suffix (sym_name + search_name_len + 5))
6188 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6189 *defn_symbols, updating the list of symbols in OBSTACKP (if
6190 necessary). OBJFILE is the section containing BLOCK. */
6193 ada_add_block_symbols (struct obstack *obstackp,
6194 const struct block *block,
6195 const lookup_name_info &lookup_name,
6196 domain_enum domain, struct objfile *objfile)
6198 struct block_iterator iter;
6199 /* A matching argument symbol, if any. */
6200 struct symbol *arg_sym;
6201 /* Set true when we find a matching non-argument symbol. */
6207 for (sym = block_iter_match_first (block, lookup_name, &iter);
6209 sym = block_iter_match_next (lookup_name, &iter))
6211 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6212 SYMBOL_DOMAIN (sym), domain))
6214 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6216 if (SYMBOL_IS_ARGUMENT (sym))
6221 add_defn_to_vec (obstackp,
6222 fixup_symbol_section (sym, objfile),
6229 /* Handle renamings. */
6231 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6234 if (!found_sym && arg_sym != NULL)
6236 add_defn_to_vec (obstackp,
6237 fixup_symbol_section (arg_sym, objfile),
6241 if (!lookup_name.ada ().wild_match_p ())
6245 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6246 const char *name = ada_lookup_name.c_str ();
6247 size_t name_len = ada_lookup_name.size ();
6249 ALL_BLOCK_SYMBOLS (block, iter, sym)
6251 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6252 SYMBOL_DOMAIN (sym), domain))
6256 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6259 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6261 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6266 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6268 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6270 if (SYMBOL_IS_ARGUMENT (sym))
6275 add_defn_to_vec (obstackp,
6276 fixup_symbol_section (sym, objfile),
6284 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6285 They aren't parameters, right? */
6286 if (!found_sym && arg_sym != NULL)
6288 add_defn_to_vec (obstackp,
6289 fixup_symbol_section (arg_sym, objfile),
6296 /* Symbol Completion */
6301 ada_lookup_name_info::matches
6302 (const char *sym_name,
6303 symbol_name_match_type match_type,
6304 completion_match_result *comp_match_res) const
6307 const char *text = m_encoded_name.c_str ();
6308 size_t text_len = m_encoded_name.size ();
6310 /* First, test against the fully qualified name of the symbol. */
6312 if (strncmp (sym_name, text, text_len) == 0)
6315 if (match && !m_encoded_p)
6317 /* One needed check before declaring a positive match is to verify
6318 that iff we are doing a verbatim match, the decoded version
6319 of the symbol name starts with '<'. Otherwise, this symbol name
6320 is not a suitable completion. */
6321 const char *sym_name_copy = sym_name;
6322 bool has_angle_bracket;
6324 sym_name = ada_decode (sym_name);
6325 has_angle_bracket = (sym_name[0] == '<');
6326 match = (has_angle_bracket == m_verbatim_p);
6327 sym_name = sym_name_copy;
6330 if (match && !m_verbatim_p)
6332 /* When doing non-verbatim match, another check that needs to
6333 be done is to verify that the potentially matching symbol name
6334 does not include capital letters, because the ada-mode would
6335 not be able to understand these symbol names without the
6336 angle bracket notation. */
6339 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6344 /* Second: Try wild matching... */
6346 if (!match && m_wild_match_p)
6348 /* Since we are doing wild matching, this means that TEXT
6349 may represent an unqualified symbol name. We therefore must
6350 also compare TEXT against the unqualified name of the symbol. */
6351 sym_name = ada_unqualified_name (ada_decode (sym_name));
6353 if (strncmp (sym_name, text, text_len) == 0)
6357 /* Finally: If we found a match, prepare the result to return. */
6362 if (comp_match_res != NULL)
6364 std::string &match_str = comp_match_res->match.storage ();
6367 match_str = ada_decode (sym_name);
6371 match_str = add_angle_brackets (sym_name);
6373 match_str = sym_name;
6377 comp_match_res->set_match (match_str.c_str ());
6383 /* Add the list of possible symbol names completing TEXT to TRACKER.
6384 WORD is the entire command on which completion is made. */
6387 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6388 complete_symbol_mode mode,
6389 symbol_name_match_type name_match_type,
6390 const char *text, const char *word,
6391 enum type_code code)
6394 struct compunit_symtab *s;
6395 struct minimal_symbol *msymbol;
6396 struct objfile *objfile;
6397 const struct block *b, *surrounding_static_block = 0;
6398 struct block_iterator iter;
6400 gdb_assert (code == TYPE_CODE_UNDEF);
6402 lookup_name_info lookup_name (text, name_match_type, true);
6404 /* First, look at the partial symtab symbols. */
6405 expand_symtabs_matching (NULL,
6411 /* At this point scan through the misc symbol vectors and add each
6412 symbol you find to the list. Eventually we want to ignore
6413 anything that isn't a text symbol (everything else will be
6414 handled by the psymtab code above). */
6416 ALL_MSYMBOLS (objfile, msymbol)
6420 if (completion_skip_symbol (mode, msymbol))
6423 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6425 /* Ada minimal symbols won't have their language set to Ada. If
6426 we let completion_list_add_name compare using the
6427 default/C-like matcher, then when completing e.g., symbols in a
6428 package named "pck", we'd match internal Ada symbols like
6429 "pckS", which are invalid in an Ada expression, unless you wrap
6430 them in '<' '>' to request a verbatim match.
6432 Unfortunately, some Ada encoded names successfully demangle as
6433 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6434 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6435 with the wrong language set. Paper over that issue here. */
6436 if (symbol_language == language_auto
6437 || symbol_language == language_cplus)
6438 symbol_language = language_ada;
6440 completion_list_add_name (tracker,
6442 MSYMBOL_LINKAGE_NAME (msymbol),
6443 lookup_name, text, word);
6446 /* Search upwards from currently selected frame (so that we can
6447 complete on local vars. */
6449 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6451 if (!BLOCK_SUPERBLOCK (b))
6452 surrounding_static_block = b; /* For elmin of dups */
6454 ALL_BLOCK_SYMBOLS (b, iter, sym)
6456 if (completion_skip_symbol (mode, sym))
6459 completion_list_add_name (tracker,
6460 SYMBOL_LANGUAGE (sym),
6461 SYMBOL_LINKAGE_NAME (sym),
6462 lookup_name, text, word);
6466 /* Go through the symtabs and check the externs and statics for
6467 symbols which match. */
6469 ALL_COMPUNITS (objfile, s)
6472 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6473 ALL_BLOCK_SYMBOLS (b, iter, sym)
6475 if (completion_skip_symbol (mode, sym))
6478 completion_list_add_name (tracker,
6479 SYMBOL_LANGUAGE (sym),
6480 SYMBOL_LINKAGE_NAME (sym),
6481 lookup_name, text, word);
6485 ALL_COMPUNITS (objfile, s)
6488 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6489 /* Don't do this block twice. */
6490 if (b == surrounding_static_block)
6492 ALL_BLOCK_SYMBOLS (b, iter, sym)
6494 if (completion_skip_symbol (mode, sym))
6497 completion_list_add_name (tracker,
6498 SYMBOL_LANGUAGE (sym),
6499 SYMBOL_LINKAGE_NAME (sym),
6500 lookup_name, text, word);
6507 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6508 for tagged types. */
6511 ada_is_dispatch_table_ptr_type (struct type *type)
6515 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6518 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6522 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6525 /* Return non-zero if TYPE is an interface tag. */
6528 ada_is_interface_tag (struct type *type)
6530 const char *name = TYPE_NAME (type);
6535 return (strcmp (name, "ada__tags__interface_tag") == 0);
6538 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6539 to be invisible to users. */
6542 ada_is_ignored_field (struct type *type, int field_num)
6544 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6547 /* Check the name of that field. */
6549 const char *name = TYPE_FIELD_NAME (type, field_num);
6551 /* Anonymous field names should not be printed.
6552 brobecker/2007-02-20: I don't think this can actually happen
6553 but we don't want to print the value of annonymous fields anyway. */
6557 /* Normally, fields whose name start with an underscore ("_")
6558 are fields that have been internally generated by the compiler,
6559 and thus should not be printed. The "_parent" field is special,
6560 however: This is a field internally generated by the compiler
6561 for tagged types, and it contains the components inherited from
6562 the parent type. This field should not be printed as is, but
6563 should not be ignored either. */
6564 if (name[0] == '_' && !startswith (name, "_parent"))
6568 /* If this is the dispatch table of a tagged type or an interface tag,
6570 if (ada_is_tagged_type (type, 1)
6571 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6572 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6575 /* Not a special field, so it should not be ignored. */
6579 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6580 pointer or reference type whose ultimate target has a tag field. */
6583 ada_is_tagged_type (struct type *type, int refok)
6585 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6588 /* True iff TYPE represents the type of X'Tag */
6591 ada_is_tag_type (struct type *type)
6593 type = ada_check_typedef (type);
6595 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6599 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6601 return (name != NULL
6602 && strcmp (name, "ada__tags__dispatch_table") == 0);
6606 /* The type of the tag on VAL. */
6609 ada_tag_type (struct value *val)
6611 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6614 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6615 retired at Ada 05). */
6618 is_ada95_tag (struct value *tag)
6620 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6623 /* The value of the tag on VAL. */
6626 ada_value_tag (struct value *val)
6628 return ada_value_struct_elt (val, "_tag", 0);
6631 /* The value of the tag on the object of type TYPE whose contents are
6632 saved at VALADDR, if it is non-null, or is at memory address
6635 static struct value *
6636 value_tag_from_contents_and_address (struct type *type,
6637 const gdb_byte *valaddr,
6640 int tag_byte_offset;
6641 struct type *tag_type;
6643 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6646 const gdb_byte *valaddr1 = ((valaddr == NULL)
6648 : valaddr + tag_byte_offset);
6649 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6651 return value_from_contents_and_address (tag_type, valaddr1, address1);
6656 static struct type *
6657 type_from_tag (struct value *tag)
6659 const char *type_name = ada_tag_name (tag);
6661 if (type_name != NULL)
6662 return ada_find_any_type (ada_encode (type_name));
6666 /* Given a value OBJ of a tagged type, return a value of this
6667 type at the base address of the object. The base address, as
6668 defined in Ada.Tags, it is the address of the primary tag of
6669 the object, and therefore where the field values of its full
6670 view can be fetched. */
6673 ada_tag_value_at_base_address (struct value *obj)
6676 LONGEST offset_to_top = 0;
6677 struct type *ptr_type, *obj_type;
6679 CORE_ADDR base_address;
6681 obj_type = value_type (obj);
6683 /* It is the responsability of the caller to deref pointers. */
6685 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6686 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6689 tag = ada_value_tag (obj);
6693 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6695 if (is_ada95_tag (tag))
6698 ptr_type = language_lookup_primitive_type
6699 (language_def (language_ada), target_gdbarch(), "storage_offset");
6700 ptr_type = lookup_pointer_type (ptr_type);
6701 val = value_cast (ptr_type, tag);
6705 /* It is perfectly possible that an exception be raised while
6706 trying to determine the base address, just like for the tag;
6707 see ada_tag_name for more details. We do not print the error
6708 message for the same reason. */
6712 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6715 CATCH (e, RETURN_MASK_ERROR)
6721 /* If offset is null, nothing to do. */
6723 if (offset_to_top == 0)
6726 /* -1 is a special case in Ada.Tags; however, what should be done
6727 is not quite clear from the documentation. So do nothing for
6730 if (offset_to_top == -1)
6733 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6734 from the base address. This was however incompatible with
6735 C++ dispatch table: C++ uses a *negative* value to *add*
6736 to the base address. Ada's convention has therefore been
6737 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6738 use the same convention. Here, we support both cases by
6739 checking the sign of OFFSET_TO_TOP. */
6741 if (offset_to_top > 0)
6742 offset_to_top = -offset_to_top;
6744 base_address = value_address (obj) + offset_to_top;
6745 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6747 /* Make sure that we have a proper tag at the new address.
6748 Otherwise, offset_to_top is bogus (which can happen when
6749 the object is not initialized yet). */
6754 obj_type = type_from_tag (tag);
6759 return value_from_contents_and_address (obj_type, NULL, base_address);
6762 /* Return the "ada__tags__type_specific_data" type. */
6764 static struct type *
6765 ada_get_tsd_type (struct inferior *inf)
6767 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6769 if (data->tsd_type == 0)
6770 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6771 return data->tsd_type;
6774 /* Return the TSD (type-specific data) associated to the given TAG.
6775 TAG is assumed to be the tag of a tagged-type entity.
6777 May return NULL if we are unable to get the TSD. */
6779 static struct value *
6780 ada_get_tsd_from_tag (struct value *tag)
6785 /* First option: The TSD is simply stored as a field of our TAG.
6786 Only older versions of GNAT would use this format, but we have
6787 to test it first, because there are no visible markers for
6788 the current approach except the absence of that field. */
6790 val = ada_value_struct_elt (tag, "tsd", 1);
6794 /* Try the second representation for the dispatch table (in which
6795 there is no explicit 'tsd' field in the referent of the tag pointer,
6796 and instead the tsd pointer is stored just before the dispatch
6799 type = ada_get_tsd_type (current_inferior());
6802 type = lookup_pointer_type (lookup_pointer_type (type));
6803 val = value_cast (type, tag);
6806 return value_ind (value_ptradd (val, -1));
6809 /* Given the TSD of a tag (type-specific data), return a string
6810 containing the name of the associated type.
6812 The returned value is good until the next call. May return NULL
6813 if we are unable to determine the tag name. */
6816 ada_tag_name_from_tsd (struct value *tsd)
6818 static char name[1024];
6822 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6825 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6826 for (p = name; *p != '\0'; p += 1)
6832 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6835 Return NULL if the TAG is not an Ada tag, or if we were unable to
6836 determine the name of that tag. The result is good until the next
6840 ada_tag_name (struct value *tag)
6844 if (!ada_is_tag_type (value_type (tag)))
6847 /* It is perfectly possible that an exception be raised while trying
6848 to determine the TAG's name, even under normal circumstances:
6849 The associated variable may be uninitialized or corrupted, for
6850 instance. We do not let any exception propagate past this point.
6851 instead we return NULL.
6853 We also do not print the error message either (which often is very
6854 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6855 the caller print a more meaningful message if necessary. */
6858 struct value *tsd = ada_get_tsd_from_tag (tag);
6861 name = ada_tag_name_from_tsd (tsd);
6863 CATCH (e, RETURN_MASK_ERROR)
6871 /* The parent type of TYPE, or NULL if none. */
6874 ada_parent_type (struct type *type)
6878 type = ada_check_typedef (type);
6880 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6883 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6884 if (ada_is_parent_field (type, i))
6886 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6888 /* If the _parent field is a pointer, then dereference it. */
6889 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6890 parent_type = TYPE_TARGET_TYPE (parent_type);
6891 /* If there is a parallel XVS type, get the actual base type. */
6892 parent_type = ada_get_base_type (parent_type);
6894 return ada_check_typedef (parent_type);
6900 /* True iff field number FIELD_NUM of structure type TYPE contains the
6901 parent-type (inherited) fields of a derived type. Assumes TYPE is
6902 a structure type with at least FIELD_NUM+1 fields. */
6905 ada_is_parent_field (struct type *type, int field_num)
6907 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6909 return (name != NULL
6910 && (startswith (name, "PARENT")
6911 || startswith (name, "_parent")));
6914 /* True iff field number FIELD_NUM of structure type TYPE is a
6915 transparent wrapper field (which should be silently traversed when doing
6916 field selection and flattened when printing). Assumes TYPE is a
6917 structure type with at least FIELD_NUM+1 fields. Such fields are always
6921 ada_is_wrapper_field (struct type *type, int field_num)
6923 const char *name = TYPE_FIELD_NAME (type, field_num);
6925 if (name != NULL && strcmp (name, "RETVAL") == 0)
6927 /* This happens in functions with "out" or "in out" parameters
6928 which are passed by copy. For such functions, GNAT describes
6929 the function's return type as being a struct where the return
6930 value is in a field called RETVAL, and where the other "out"
6931 or "in out" parameters are fields of that struct. This is not
6936 return (name != NULL
6937 && (startswith (name, "PARENT")
6938 || strcmp (name, "REP") == 0
6939 || startswith (name, "_parent")
6940 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6943 /* True iff field number FIELD_NUM of structure or union type TYPE
6944 is a variant wrapper. Assumes TYPE is a structure type with at least
6945 FIELD_NUM+1 fields. */
6948 ada_is_variant_part (struct type *type, int field_num)
6950 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6952 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6953 || (is_dynamic_field (type, field_num)
6954 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6955 == TYPE_CODE_UNION)));
6958 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6959 whose discriminants are contained in the record type OUTER_TYPE,
6960 returns the type of the controlling discriminant for the variant.
6961 May return NULL if the type could not be found. */
6964 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6966 const char *name = ada_variant_discrim_name (var_type);
6968 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6971 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6972 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6973 represents a 'when others' clause; otherwise 0. */
6976 ada_is_others_clause (struct type *type, int field_num)
6978 const char *name = TYPE_FIELD_NAME (type, field_num);
6980 return (name != NULL && name[0] == 'O');
6983 /* Assuming that TYPE0 is the type of the variant part of a record,
6984 returns the name of the discriminant controlling the variant.
6985 The value is valid until the next call to ada_variant_discrim_name. */
6988 ada_variant_discrim_name (struct type *type0)
6990 static char *result = NULL;
6991 static size_t result_len = 0;
6994 const char *discrim_end;
6995 const char *discrim_start;
6997 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6998 type = TYPE_TARGET_TYPE (type0);
7002 name = ada_type_name (type);
7004 if (name == NULL || name[0] == '\000')
7007 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7010 if (startswith (discrim_end, "___XVN"))
7013 if (discrim_end == name)
7016 for (discrim_start = discrim_end; discrim_start != name + 3;
7019 if (discrim_start == name + 1)
7021 if ((discrim_start > name + 3
7022 && startswith (discrim_start - 3, "___"))
7023 || discrim_start[-1] == '.')
7027 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7028 strncpy (result, discrim_start, discrim_end - discrim_start);
7029 result[discrim_end - discrim_start] = '\0';
7033 /* Scan STR for a subtype-encoded number, beginning at position K.
7034 Put the position of the character just past the number scanned in
7035 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7036 Return 1 if there was a valid number at the given position, and 0
7037 otherwise. A "subtype-encoded" number consists of the absolute value
7038 in decimal, followed by the letter 'm' to indicate a negative number.
7039 Assumes 0m does not occur. */
7042 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7046 if (!isdigit (str[k]))
7049 /* Do it the hard way so as not to make any assumption about
7050 the relationship of unsigned long (%lu scan format code) and
7053 while (isdigit (str[k]))
7055 RU = RU * 10 + (str[k] - '0');
7062 *R = (-(LONGEST) (RU - 1)) - 1;
7068 /* NOTE on the above: Technically, C does not say what the results of
7069 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7070 number representable as a LONGEST (although either would probably work
7071 in most implementations). When RU>0, the locution in the then branch
7072 above is always equivalent to the negative of RU. */
7079 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7080 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7081 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7084 ada_in_variant (LONGEST val, struct type *type, int field_num)
7086 const char *name = TYPE_FIELD_NAME (type, field_num);
7100 if (!ada_scan_number (name, p + 1, &W, &p))
7110 if (!ada_scan_number (name, p + 1, &L, &p)
7111 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7113 if (val >= L && val <= U)
7125 /* FIXME: Lots of redundancy below. Try to consolidate. */
7127 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7128 ARG_TYPE, extract and return the value of one of its (non-static)
7129 fields. FIELDNO says which field. Differs from value_primitive_field
7130 only in that it can handle packed values of arbitrary type. */
7132 static struct value *
7133 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7134 struct type *arg_type)
7138 arg_type = ada_check_typedef (arg_type);
7139 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7141 /* Handle packed fields. */
7143 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7145 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7146 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7148 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7149 offset + bit_pos / 8,
7150 bit_pos % 8, bit_size, type);
7153 return value_primitive_field (arg1, offset, fieldno, arg_type);
7156 /* Find field with name NAME in object of type TYPE. If found,
7157 set the following for each argument that is non-null:
7158 - *FIELD_TYPE_P to the field's type;
7159 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7160 an object of that type;
7161 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7162 - *BIT_SIZE_P to its size in bits if the field is packed, and
7164 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7165 fields up to but not including the desired field, or by the total
7166 number of fields if not found. A NULL value of NAME never
7167 matches; the function just counts visible fields in this case.
7169 Notice that we need to handle when a tagged record hierarchy
7170 has some components with the same name, like in this scenario:
7172 type Top_T is tagged record
7178 type Middle_T is new Top.Top_T with record
7179 N : Character := 'a';
7183 type Bottom_T is new Middle.Middle_T with record
7185 C : Character := '5';
7187 A : Character := 'J';
7190 Let's say we now have a variable declared and initialized as follow:
7192 TC : Top_A := new Bottom_T;
7194 And then we use this variable to call this function
7196 procedure Assign (Obj: in out Top_T; TV : Integer);
7200 Assign (Top_T (B), 12);
7202 Now, we're in the debugger, and we're inside that procedure
7203 then and we want to print the value of obj.c:
7205 Usually, the tagged record or one of the parent type owns the
7206 component to print and there's no issue but in this particular
7207 case, what does it mean to ask for Obj.C? Since the actual
7208 type for object is type Bottom_T, it could mean two things: type
7209 component C from the Middle_T view, but also component C from
7210 Bottom_T. So in that "undefined" case, when the component is
7211 not found in the non-resolved type (which includes all the
7212 components of the parent type), then resolve it and see if we
7213 get better luck once expanded.
7215 In the case of homonyms in the derived tagged type, we don't
7216 guaranty anything, and pick the one that's easiest for us
7219 Returns 1 if found, 0 otherwise. */
7222 find_struct_field (const char *name, struct type *type, int offset,
7223 struct type **field_type_p,
7224 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7228 int parent_offset = -1;
7230 type = ada_check_typedef (type);
7232 if (field_type_p != NULL)
7233 *field_type_p = NULL;
7234 if (byte_offset_p != NULL)
7236 if (bit_offset_p != NULL)
7238 if (bit_size_p != NULL)
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7243 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7244 int fld_offset = offset + bit_pos / 8;
7245 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7247 if (t_field_name == NULL)
7250 else if (ada_is_parent_field (type, i))
7252 /* This is a field pointing us to the parent type of a tagged
7253 type. As hinted in this function's documentation, we give
7254 preference to fields in the current record first, so what
7255 we do here is just record the index of this field before
7256 we skip it. If it turns out we couldn't find our field
7257 in the current record, then we'll get back to it and search
7258 inside it whether the field might exist in the parent. */
7264 else if (name != NULL && field_name_match (t_field_name, name))
7266 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7268 if (field_type_p != NULL)
7269 *field_type_p = TYPE_FIELD_TYPE (type, i);
7270 if (byte_offset_p != NULL)
7271 *byte_offset_p = fld_offset;
7272 if (bit_offset_p != NULL)
7273 *bit_offset_p = bit_pos % 8;
7274 if (bit_size_p != NULL)
7275 *bit_size_p = bit_size;
7278 else if (ada_is_wrapper_field (type, i))
7280 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7281 field_type_p, byte_offset_p, bit_offset_p,
7282 bit_size_p, index_p))
7285 else if (ada_is_variant_part (type, i))
7287 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7290 struct type *field_type
7291 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7293 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7295 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7297 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7298 field_type_p, byte_offset_p,
7299 bit_offset_p, bit_size_p, index_p))
7303 else if (index_p != NULL)
7307 /* Field not found so far. If this is a tagged type which
7308 has a parent, try finding that field in the parent now. */
7310 if (parent_offset != -1)
7312 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7313 int fld_offset = offset + bit_pos / 8;
7315 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7316 fld_offset, field_type_p, byte_offset_p,
7317 bit_offset_p, bit_size_p, index_p))
7324 /* Number of user-visible fields in record type TYPE. */
7327 num_visible_fields (struct type *type)
7332 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7336 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7337 and search in it assuming it has (class) type TYPE.
7338 If found, return value, else return NULL.
7340 Searches recursively through wrapper fields (e.g., '_parent').
7342 In the case of homonyms in the tagged types, please refer to the
7343 long explanation in find_struct_field's function documentation. */
7345 static struct value *
7346 ada_search_struct_field (const char *name, struct value *arg, int offset,
7350 int parent_offset = -1;
7352 type = ada_check_typedef (type);
7353 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7355 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7357 if (t_field_name == NULL)
7360 else if (ada_is_parent_field (type, i))
7362 /* This is a field pointing us to the parent type of a tagged
7363 type. As hinted in this function's documentation, we give
7364 preference to fields in the current record first, so what
7365 we do here is just record the index of this field before
7366 we skip it. If it turns out we couldn't find our field
7367 in the current record, then we'll get back to it and search
7368 inside it whether the field might exist in the parent. */
7374 else if (field_name_match (t_field_name, name))
7375 return ada_value_primitive_field (arg, offset, i, type);
7377 else if (ada_is_wrapper_field (type, i))
7379 struct value *v = /* Do not let indent join lines here. */
7380 ada_search_struct_field (name, arg,
7381 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7382 TYPE_FIELD_TYPE (type, i));
7388 else if (ada_is_variant_part (type, i))
7390 /* PNH: Do we ever get here? See find_struct_field. */
7392 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7394 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7396 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7398 struct value *v = ada_search_struct_field /* Force line
7401 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7402 TYPE_FIELD_TYPE (field_type, j));
7410 /* Field not found so far. If this is a tagged type which
7411 has a parent, try finding that field in the parent now. */
7413 if (parent_offset != -1)
7415 struct value *v = ada_search_struct_field (
7416 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7417 TYPE_FIELD_TYPE (type, parent_offset));
7426 static struct value *ada_index_struct_field_1 (int *, struct value *,
7427 int, struct type *);
7430 /* Return field #INDEX in ARG, where the index is that returned by
7431 * find_struct_field through its INDEX_P argument. Adjust the address
7432 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7433 * If found, return value, else return NULL. */
7435 static struct value *
7436 ada_index_struct_field (int index, struct value *arg, int offset,
7439 return ada_index_struct_field_1 (&index, arg, offset, type);
7443 /* Auxiliary function for ada_index_struct_field. Like
7444 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7447 static struct value *
7448 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7452 type = ada_check_typedef (type);
7454 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7456 if (TYPE_FIELD_NAME (type, i) == NULL)
7458 else if (ada_is_wrapper_field (type, i))
7460 struct value *v = /* Do not let indent join lines here. */
7461 ada_index_struct_field_1 (index_p, arg,
7462 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7463 TYPE_FIELD_TYPE (type, i));
7469 else if (ada_is_variant_part (type, i))
7471 /* PNH: Do we ever get here? See ada_search_struct_field,
7472 find_struct_field. */
7473 error (_("Cannot assign this kind of variant record"));
7475 else if (*index_p == 0)
7476 return ada_value_primitive_field (arg, offset, i, type);
7483 /* Given ARG, a value of type (pointer or reference to a)*
7484 structure/union, extract the component named NAME from the ultimate
7485 target structure/union and return it as a value with its
7488 The routine searches for NAME among all members of the structure itself
7489 and (recursively) among all members of any wrapper members
7492 If NO_ERR, then simply return NULL in case of error, rather than
7496 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7498 struct type *t, *t1;
7503 t1 = t = ada_check_typedef (value_type (arg));
7504 if (TYPE_CODE (t) == TYPE_CODE_REF)
7506 t1 = TYPE_TARGET_TYPE (t);
7509 t1 = ada_check_typedef (t1);
7510 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7512 arg = coerce_ref (arg);
7517 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7519 t1 = TYPE_TARGET_TYPE (t);
7522 t1 = ada_check_typedef (t1);
7523 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7525 arg = value_ind (arg);
7532 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7536 v = ada_search_struct_field (name, arg, 0, t);
7539 int bit_offset, bit_size, byte_offset;
7540 struct type *field_type;
7543 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7544 address = value_address (ada_value_ind (arg));
7546 address = value_address (ada_coerce_ref (arg));
7548 /* Check to see if this is a tagged type. We also need to handle
7549 the case where the type is a reference to a tagged type, but
7550 we have to be careful to exclude pointers to tagged types.
7551 The latter should be shown as usual (as a pointer), whereas
7552 a reference should mostly be transparent to the user. */
7554 if (ada_is_tagged_type (t1, 0)
7555 || (TYPE_CODE (t1) == TYPE_CODE_REF
7556 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7558 /* We first try to find the searched field in the current type.
7559 If not found then let's look in the fixed type. */
7561 if (!find_struct_field (name, t1, 0,
7562 &field_type, &byte_offset, &bit_offset,
7571 /* Convert to fixed type in all cases, so that we have proper
7572 offsets to each field in unconstrained record types. */
7573 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7574 address, NULL, check_tag);
7576 if (find_struct_field (name, t1, 0,
7577 &field_type, &byte_offset, &bit_offset,
7582 if (TYPE_CODE (t) == TYPE_CODE_REF)
7583 arg = ada_coerce_ref (arg);
7585 arg = ada_value_ind (arg);
7586 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7587 bit_offset, bit_size,
7591 v = value_at_lazy (field_type, address + byte_offset);
7595 if (v != NULL || no_err)
7598 error (_("There is no member named %s."), name);
7604 error (_("Attempt to extract a component of "
7605 "a value that is not a record."));
7608 /* Return a string representation of type TYPE. */
7611 type_as_string (struct type *type)
7613 string_file tmp_stream;
7615 type_print (type, "", &tmp_stream, -1);
7617 return std::move (tmp_stream.string ());
7620 /* Given a type TYPE, look up the type of the component of type named NAME.
7621 If DISPP is non-null, add its byte displacement from the beginning of a
7622 structure (pointed to by a value) of type TYPE to *DISPP (does not
7623 work for packed fields).
7625 Matches any field whose name has NAME as a prefix, possibly
7628 TYPE can be either a struct or union. If REFOK, TYPE may also
7629 be a (pointer or reference)+ to a struct or union, and the
7630 ultimate target type will be searched.
7632 Looks recursively into variant clauses and parent types.
7634 In the case of homonyms in the tagged types, please refer to the
7635 long explanation in find_struct_field's function documentation.
7637 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7638 TYPE is not a type of the right kind. */
7640 static struct type *
7641 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7645 int parent_offset = -1;
7650 if (refok && type != NULL)
7653 type = ada_check_typedef (type);
7654 if (TYPE_CODE (type) != TYPE_CODE_PTR
7655 && TYPE_CODE (type) != TYPE_CODE_REF)
7657 type = TYPE_TARGET_TYPE (type);
7661 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7662 && TYPE_CODE (type) != TYPE_CODE_UNION))
7667 error (_("Type %s is not a structure or union type"),
7668 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7671 type = to_static_fixed_type (type);
7673 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7675 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7678 if (t_field_name == NULL)
7681 else if (ada_is_parent_field (type, i))
7683 /* This is a field pointing us to the parent type of a tagged
7684 type. As hinted in this function's documentation, we give
7685 preference to fields in the current record first, so what
7686 we do here is just record the index of this field before
7687 we skip it. If it turns out we couldn't find our field
7688 in the current record, then we'll get back to it and search
7689 inside it whether the field might exist in the parent. */
7695 else if (field_name_match (t_field_name, name))
7696 return TYPE_FIELD_TYPE (type, i);
7698 else if (ada_is_wrapper_field (type, i))
7700 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7706 else if (ada_is_variant_part (type, i))
7709 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7712 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7714 /* FIXME pnh 2008/01/26: We check for a field that is
7715 NOT wrapped in a struct, since the compiler sometimes
7716 generates these for unchecked variant types. Revisit
7717 if the compiler changes this practice. */
7718 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7720 if (v_field_name != NULL
7721 && field_name_match (v_field_name, name))
7722 t = TYPE_FIELD_TYPE (field_type, j);
7724 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7735 /* Field not found so far. If this is a tagged type which
7736 has a parent, try finding that field in the parent now. */
7738 if (parent_offset != -1)
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7751 const char *name_str = name != NULL ? name : _("<null>");
7753 error (_("Type %s has no component named %s"),
7754 type_as_string (type).c_str (), name_str);
7760 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7761 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7762 represents an unchecked union (that is, the variant part of a
7763 record that is named in an Unchecked_Union pragma). */
7766 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7768 const char *discrim_name = ada_variant_discrim_name (var_type);
7770 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7774 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE that is stored in GDB at
7776 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7777 numbering from 0) is applicable. Returns -1 if none are. */
7780 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7781 const gdb_byte *outer_valaddr)
7785 const char *discrim_name = ada_variant_discrim_name (var_type);
7786 struct value *outer;
7787 struct value *discrim;
7788 LONGEST discrim_val;
7790 /* Using plain value_from_contents_and_address here causes problems
7791 because we will end up trying to resolve a type that is currently
7792 being constructed. */
7793 outer = value_from_contents_and_address_unresolved (outer_type,
7795 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7796 if (discrim == NULL)
7798 discrim_val = value_as_long (discrim);
7801 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7803 if (ada_is_others_clause (var_type, i))
7805 else if (ada_in_variant (discrim_val, var_type, i))
7809 return others_clause;
7814 /* Dynamic-Sized Records */
7816 /* Strategy: The type ostensibly attached to a value with dynamic size
7817 (i.e., a size that is not statically recorded in the debugging
7818 data) does not accurately reflect the size or layout of the value.
7819 Our strategy is to convert these values to values with accurate,
7820 conventional types that are constructed on the fly. */
7822 /* There is a subtle and tricky problem here. In general, we cannot
7823 determine the size of dynamic records without its data. However,
7824 the 'struct value' data structure, which GDB uses to represent
7825 quantities in the inferior process (the target), requires the size
7826 of the type at the time of its allocation in order to reserve space
7827 for GDB's internal copy of the data. That's why the
7828 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7829 rather than struct value*s.
7831 However, GDB's internal history variables ($1, $2, etc.) are
7832 struct value*s containing internal copies of the data that are not, in
7833 general, the same as the data at their corresponding addresses in
7834 the target. Fortunately, the types we give to these values are all
7835 conventional, fixed-size types (as per the strategy described
7836 above), so that we don't usually have to perform the
7837 'to_fixed_xxx_type' conversions to look at their values.
7838 Unfortunately, there is one exception: if one of the internal
7839 history variables is an array whose elements are unconstrained
7840 records, then we will need to create distinct fixed types for each
7841 element selected. */
7843 /* The upshot of all of this is that many routines take a (type, host
7844 address, target address) triple as arguments to represent a value.
7845 The host address, if non-null, is supposed to contain an internal
7846 copy of the relevant data; otherwise, the program is to consult the
7847 target at the target address. */
7849 /* Assuming that VAL0 represents a pointer value, the result of
7850 dereferencing it. Differs from value_ind in its treatment of
7851 dynamic-sized types. */
7854 ada_value_ind (struct value *val0)
7856 struct value *val = value_ind (val0);
7858 if (ada_is_tagged_type (value_type (val), 0))
7859 val = ada_tag_value_at_base_address (val);
7861 return ada_to_fixed_value (val);
7864 /* The value resulting from dereferencing any "reference to"
7865 qualifiers on VAL0. */
7867 static struct value *
7868 ada_coerce_ref (struct value *val0)
7870 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7872 struct value *val = val0;
7874 val = coerce_ref (val);
7876 if (ada_is_tagged_type (value_type (val), 0))
7877 val = ada_tag_value_at_base_address (val);
7879 return ada_to_fixed_value (val);
7885 /* Return OFF rounded upward if necessary to a multiple of
7886 ALIGNMENT (a power of 2). */
7889 align_value (unsigned int off, unsigned int alignment)
7891 return (off + alignment - 1) & ~(alignment - 1);
7894 /* Return the bit alignment required for field #F of template type TYPE. */
7897 field_alignment (struct type *type, int f)
7899 const char *name = TYPE_FIELD_NAME (type, f);
7903 /* The field name should never be null, unless the debugging information
7904 is somehow malformed. In this case, we assume the field does not
7905 require any alignment. */
7909 len = strlen (name);
7911 if (!isdigit (name[len - 1]))
7914 if (isdigit (name[len - 2]))
7915 align_offset = len - 2;
7917 align_offset = len - 1;
7919 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7920 return TARGET_CHAR_BIT;
7922 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7925 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7927 static struct symbol *
7928 ada_find_any_type_symbol (const char *name)
7932 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7933 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7936 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7940 /* Find a type named NAME. Ignores ambiguity. This routine will look
7941 solely for types defined by debug info, it will not search the GDB
7944 static struct type *
7945 ada_find_any_type (const char *name)
7947 struct symbol *sym = ada_find_any_type_symbol (name);
7950 return SYMBOL_TYPE (sym);
7955 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7956 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7957 symbol, in which case it is returned. Otherwise, this looks for
7958 symbols whose name is that of NAME_SYM suffixed with "___XR".
7959 Return symbol if found, and NULL otherwise. */
7962 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7964 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7967 if (strstr (name, "___XR") != NULL)
7970 sym = find_old_style_renaming_symbol (name, block);
7975 /* Not right yet. FIXME pnh 7/20/2007. */
7976 sym = ada_find_any_type_symbol (name);
7977 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7983 static struct symbol *
7984 find_old_style_renaming_symbol (const char *name, const struct block *block)
7986 const struct symbol *function_sym = block_linkage_function (block);
7989 if (function_sym != NULL)
7991 /* If the symbol is defined inside a function, NAME is not fully
7992 qualified. This means we need to prepend the function name
7993 as well as adding the ``___XR'' suffix to build the name of
7994 the associated renaming symbol. */
7995 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7996 /* Function names sometimes contain suffixes used
7997 for instance to qualify nested subprograms. When building
7998 the XR type name, we need to make sure that this suffix is
7999 not included. So do not include any suffix in the function
8000 name length below. */
8001 int function_name_len = ada_name_prefix_len (function_name);
8002 const int rename_len = function_name_len + 2 /* "__" */
8003 + strlen (name) + 6 /* "___XR\0" */ ;
8005 /* Strip the suffix if necessary. */
8006 ada_remove_trailing_digits (function_name, &function_name_len);
8007 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8008 ada_remove_Xbn_suffix (function_name, &function_name_len);
8010 /* Library-level functions are a special case, as GNAT adds
8011 a ``_ada_'' prefix to the function name to avoid namespace
8012 pollution. However, the renaming symbols themselves do not
8013 have this prefix, so we need to skip this prefix if present. */
8014 if (function_name_len > 5 /* "_ada_" */
8015 && strstr (function_name, "_ada_") == function_name)
8018 function_name_len -= 5;
8021 rename = (char *) alloca (rename_len * sizeof (char));
8022 strncpy (rename, function_name, function_name_len);
8023 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8028 const int rename_len = strlen (name) + 6;
8030 rename = (char *) alloca (rename_len * sizeof (char));
8031 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8034 return ada_find_any_type_symbol (rename);
8037 /* Because of GNAT encoding conventions, several GDB symbols may match a
8038 given type name. If the type denoted by TYPE0 is to be preferred to
8039 that of TYPE1 for purposes of type printing, return non-zero;
8040 otherwise return 0. */
8043 ada_prefer_type (struct type *type0, struct type *type1)
8047 else if (type0 == NULL)
8049 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8051 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8053 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8055 else if (ada_is_constrained_packed_array_type (type0))
8057 else if (ada_is_array_descriptor_type (type0)
8058 && !ada_is_array_descriptor_type (type1))
8062 const char *type0_name = TYPE_NAME (type0);
8063 const char *type1_name = TYPE_NAME (type1);
8065 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8066 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8072 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8076 ada_type_name (struct type *type)
8080 return TYPE_NAME (type);
8083 /* Search the list of "descriptive" types associated to TYPE for a type
8084 whose name is NAME. */
8086 static struct type *
8087 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8089 struct type *result, *tmp;
8091 if (ada_ignore_descriptive_types_p)
8094 /* If there no descriptive-type info, then there is no parallel type
8096 if (!HAVE_GNAT_AUX_INFO (type))
8099 result = TYPE_DESCRIPTIVE_TYPE (type);
8100 while (result != NULL)
8102 const char *result_name = ada_type_name (result);
8104 if (result_name == NULL)
8106 warning (_("unexpected null name on descriptive type"));
8110 /* If the names match, stop. */
8111 if (strcmp (result_name, name) == 0)
8114 /* Otherwise, look at the next item on the list, if any. */
8115 if (HAVE_GNAT_AUX_INFO (result))
8116 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8120 /* If not found either, try after having resolved the typedef. */
8125 result = check_typedef (result);
8126 if (HAVE_GNAT_AUX_INFO (result))
8127 result = TYPE_DESCRIPTIVE_TYPE (result);
8133 /* If we didn't find a match, see whether this is a packed array. With
8134 older compilers, the descriptive type information is either absent or
8135 irrelevant when it comes to packed arrays so the above lookup fails.
8136 Fall back to using a parallel lookup by name in this case. */
8137 if (result == NULL && ada_is_constrained_packed_array_type (type))
8138 return ada_find_any_type (name);
8143 /* Find a parallel type to TYPE with the specified NAME, using the
8144 descriptive type taken from the debugging information, if available,
8145 and otherwise using the (slower) name-based method. */
8147 static struct type *
8148 ada_find_parallel_type_with_name (struct type *type, const char *name)
8150 struct type *result = NULL;
8152 if (HAVE_GNAT_AUX_INFO (type))
8153 result = find_parallel_type_by_descriptive_type (type, name);
8155 result = ada_find_any_type (name);
8160 /* Same as above, but specify the name of the parallel type by appending
8161 SUFFIX to the name of TYPE. */
8164 ada_find_parallel_type (struct type *type, const char *suffix)
8167 const char *type_name = ada_type_name (type);
8170 if (type_name == NULL)
8173 len = strlen (type_name);
8175 name = (char *) alloca (len + strlen (suffix) + 1);
8177 strcpy (name, type_name);
8178 strcpy (name + len, suffix);
8180 return ada_find_parallel_type_with_name (type, name);
8183 /* If TYPE is a variable-size record type, return the corresponding template
8184 type describing its fields. Otherwise, return NULL. */
8186 static struct type *
8187 dynamic_template_type (struct type *type)
8189 type = ada_check_typedef (type);
8191 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8192 || ada_type_name (type) == NULL)
8196 int len = strlen (ada_type_name (type));
8198 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8201 return ada_find_parallel_type (type, "___XVE");
8205 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8206 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8209 is_dynamic_field (struct type *templ_type, int field_num)
8211 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8214 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8215 && strstr (name, "___XVL") != NULL;
8218 /* The index of the variant field of TYPE, or -1 if TYPE does not
8219 represent a variant record type. */
8222 variant_field_index (struct type *type)
8226 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8229 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8231 if (ada_is_variant_part (type, f))
8237 /* A record type with no fields. */
8239 static struct type *
8240 empty_record (struct type *templ)
8242 struct type *type = alloc_type_copy (templ);
8244 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8245 TYPE_NFIELDS (type) = 0;
8246 TYPE_FIELDS (type) = NULL;
8247 INIT_CPLUS_SPECIFIC (type);
8248 TYPE_NAME (type) = "<empty>";
8249 TYPE_LENGTH (type) = 0;
8253 /* An ordinary record type (with fixed-length fields) that describes
8254 the value of type TYPE at VALADDR or ADDRESS (see comments at
8255 the beginning of this section) VAL according to GNAT conventions.
8256 DVAL0 should describe the (portion of a) record that contains any
8257 necessary discriminants. It should be NULL if value_type (VAL) is
8258 an outer-level type (i.e., as opposed to a branch of a variant.) A
8259 variant field (unless unchecked) is replaced by a particular branch
8262 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8263 length are not statically known are discarded. As a consequence,
8264 VALADDR, ADDRESS and DVAL0 are ignored.
8266 NOTE: Limitations: For now, we assume that dynamic fields and
8267 variants occupy whole numbers of bytes. However, they need not be
8271 ada_template_to_fixed_record_type_1 (struct type *type,
8272 const gdb_byte *valaddr,
8273 CORE_ADDR address, struct value *dval0,
8274 int keep_dynamic_fields)
8276 struct value *mark = value_mark ();
8279 int nfields, bit_len;
8285 /* Compute the number of fields in this record type that are going
8286 to be processed: unless keep_dynamic_fields, this includes only
8287 fields whose position and length are static will be processed. */
8288 if (keep_dynamic_fields)
8289 nfields = TYPE_NFIELDS (type);
8293 while (nfields < TYPE_NFIELDS (type)
8294 && !ada_is_variant_part (type, nfields)
8295 && !is_dynamic_field (type, nfields))
8299 rtype = alloc_type_copy (type);
8300 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8301 INIT_CPLUS_SPECIFIC (rtype);
8302 TYPE_NFIELDS (rtype) = nfields;
8303 TYPE_FIELDS (rtype) = (struct field *)
8304 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8305 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8306 TYPE_NAME (rtype) = ada_type_name (type);
8307 TYPE_FIXED_INSTANCE (rtype) = 1;
8313 for (f = 0; f < nfields; f += 1)
8315 off = align_value (off, field_alignment (type, f))
8316 + TYPE_FIELD_BITPOS (type, f);
8317 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8318 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8320 if (ada_is_variant_part (type, f))
8325 else if (is_dynamic_field (type, f))
8327 const gdb_byte *field_valaddr = valaddr;
8328 CORE_ADDR field_address = address;
8329 struct type *field_type =
8330 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8334 /* rtype's length is computed based on the run-time
8335 value of discriminants. If the discriminants are not
8336 initialized, the type size may be completely bogus and
8337 GDB may fail to allocate a value for it. So check the
8338 size first before creating the value. */
8339 ada_ensure_varsize_limit (rtype);
8340 /* Using plain value_from_contents_and_address here
8341 causes problems because we will end up trying to
8342 resolve a type that is currently being
8344 dval = value_from_contents_and_address_unresolved (rtype,
8347 rtype = value_type (dval);
8352 /* If the type referenced by this field is an aligner type, we need
8353 to unwrap that aligner type, because its size might not be set.
8354 Keeping the aligner type would cause us to compute the wrong
8355 size for this field, impacting the offset of the all the fields
8356 that follow this one. */
8357 if (ada_is_aligner_type (field_type))
8359 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8361 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8362 field_address = cond_offset_target (field_address, field_offset);
8363 field_type = ada_aligned_type (field_type);
8366 field_valaddr = cond_offset_host (field_valaddr,
8367 off / TARGET_CHAR_BIT);
8368 field_address = cond_offset_target (field_address,
8369 off / TARGET_CHAR_BIT);
8371 /* Get the fixed type of the field. Note that, in this case,
8372 we do not want to get the real type out of the tag: if
8373 the current field is the parent part of a tagged record,
8374 we will get the tag of the object. Clearly wrong: the real
8375 type of the parent is not the real type of the child. We
8376 would end up in an infinite loop. */
8377 field_type = ada_get_base_type (field_type);
8378 field_type = ada_to_fixed_type (field_type, field_valaddr,
8379 field_address, dval, 0);
8380 /* If the field size is already larger than the maximum
8381 object size, then the record itself will necessarily
8382 be larger than the maximum object size. We need to make
8383 this check now, because the size might be so ridiculously
8384 large (due to an uninitialized variable in the inferior)
8385 that it would cause an overflow when adding it to the
8387 ada_ensure_varsize_limit (field_type);
8389 TYPE_FIELD_TYPE (rtype, f) = field_type;
8390 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8391 /* The multiplication can potentially overflow. But because
8392 the field length has been size-checked just above, and
8393 assuming that the maximum size is a reasonable value,
8394 an overflow should not happen in practice. So rather than
8395 adding overflow recovery code to this already complex code,
8396 we just assume that it's not going to happen. */
8398 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8402 /* Note: If this field's type is a typedef, it is important
8403 to preserve the typedef layer.
8405 Otherwise, we might be transforming a typedef to a fat
8406 pointer (encoding a pointer to an unconstrained array),
8407 into a basic fat pointer (encoding an unconstrained
8408 array). As both types are implemented using the same
8409 structure, the typedef is the only clue which allows us
8410 to distinguish between the two options. Stripping it
8411 would prevent us from printing this field appropriately. */
8412 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8413 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8414 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8416 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8419 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8421 /* We need to be careful of typedefs when computing
8422 the length of our field. If this is a typedef,
8423 get the length of the target type, not the length
8425 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8426 field_type = ada_typedef_target_type (field_type);
8429 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8432 if (off + fld_bit_len > bit_len)
8433 bit_len = off + fld_bit_len;
8435 TYPE_LENGTH (rtype) =
8436 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8439 /* We handle the variant part, if any, at the end because of certain
8440 odd cases in which it is re-ordered so as NOT to be the last field of
8441 the record. This can happen in the presence of representation
8443 if (variant_field >= 0)
8445 struct type *branch_type;
8447 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8451 /* Using plain value_from_contents_and_address here causes
8452 problems because we will end up trying to resolve a type
8453 that is currently being constructed. */
8454 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8456 rtype = value_type (dval);
8462 to_fixed_variant_branch_type
8463 (TYPE_FIELD_TYPE (type, variant_field),
8464 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8465 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8466 if (branch_type == NULL)
8468 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8469 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8470 TYPE_NFIELDS (rtype) -= 1;
8474 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8475 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8477 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8479 if (off + fld_bit_len > bit_len)
8480 bit_len = off + fld_bit_len;
8481 TYPE_LENGTH (rtype) =
8482 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8486 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8487 should contain the alignment of that record, which should be a strictly
8488 positive value. If null or negative, then something is wrong, most
8489 probably in the debug info. In that case, we don't round up the size
8490 of the resulting type. If this record is not part of another structure,
8491 the current RTYPE length might be good enough for our purposes. */
8492 if (TYPE_LENGTH (type) <= 0)
8494 if (TYPE_NAME (rtype))
8495 warning (_("Invalid type size for `%s' detected: %d."),
8496 TYPE_NAME (rtype), TYPE_LENGTH (type));
8498 warning (_("Invalid type size for <unnamed> detected: %d."),
8499 TYPE_LENGTH (type));
8503 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8504 TYPE_LENGTH (type));
8507 value_free_to_mark (mark);
8508 if (TYPE_LENGTH (rtype) > varsize_limit)
8509 error (_("record type with dynamic size is larger than varsize-limit"));
8513 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8516 static struct type *
8517 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8518 CORE_ADDR address, struct value *dval0)
8520 return ada_template_to_fixed_record_type_1 (type, valaddr,
8524 /* An ordinary record type in which ___XVL-convention fields and
8525 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8526 static approximations, containing all possible fields. Uses
8527 no runtime values. Useless for use in values, but that's OK,
8528 since the results are used only for type determinations. Works on both
8529 structs and unions. Representation note: to save space, we memorize
8530 the result of this function in the TYPE_TARGET_TYPE of the
8533 static struct type *
8534 template_to_static_fixed_type (struct type *type0)
8540 /* No need no do anything if the input type is already fixed. */
8541 if (TYPE_FIXED_INSTANCE (type0))
8544 /* Likewise if we already have computed the static approximation. */
8545 if (TYPE_TARGET_TYPE (type0) != NULL)
8546 return TYPE_TARGET_TYPE (type0);
8548 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8550 nfields = TYPE_NFIELDS (type0);
8552 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8553 recompute all over next time. */
8554 TYPE_TARGET_TYPE (type0) = type;
8556 for (f = 0; f < nfields; f += 1)
8558 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8559 struct type *new_type;
8561 if (is_dynamic_field (type0, f))
8563 field_type = ada_check_typedef (field_type);
8564 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8567 new_type = static_unwrap_type (field_type);
8569 if (new_type != field_type)
8571 /* Clone TYPE0 only the first time we get a new field type. */
8574 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8575 TYPE_CODE (type) = TYPE_CODE (type0);
8576 INIT_CPLUS_SPECIFIC (type);
8577 TYPE_NFIELDS (type) = nfields;
8578 TYPE_FIELDS (type) = (struct field *)
8579 TYPE_ALLOC (type, nfields * sizeof (struct field));
8580 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8581 sizeof (struct field) * nfields);
8582 TYPE_NAME (type) = ada_type_name (type0);
8583 TYPE_FIXED_INSTANCE (type) = 1;
8584 TYPE_LENGTH (type) = 0;
8586 TYPE_FIELD_TYPE (type, f) = new_type;
8587 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8594 /* Given an object of type TYPE whose contents are at VALADDR and
8595 whose address in memory is ADDRESS, returns a revision of TYPE,
8596 which should be a non-dynamic-sized record, in which the variant
8597 part, if any, is replaced with the appropriate branch. Looks
8598 for discriminant values in DVAL0, which can be NULL if the record
8599 contains the necessary discriminant values. */
8601 static struct type *
8602 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8603 CORE_ADDR address, struct value *dval0)
8605 struct value *mark = value_mark ();
8608 struct type *branch_type;
8609 int nfields = TYPE_NFIELDS (type);
8610 int variant_field = variant_field_index (type);
8612 if (variant_field == -1)
8617 dval = value_from_contents_and_address (type, valaddr, address);
8618 type = value_type (dval);
8623 rtype = alloc_type_copy (type);
8624 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8625 INIT_CPLUS_SPECIFIC (rtype);
8626 TYPE_NFIELDS (rtype) = nfields;
8627 TYPE_FIELDS (rtype) =
8628 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8629 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8630 sizeof (struct field) * nfields);
8631 TYPE_NAME (rtype) = ada_type_name (type);
8632 TYPE_FIXED_INSTANCE (rtype) = 1;
8633 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8635 branch_type = to_fixed_variant_branch_type
8636 (TYPE_FIELD_TYPE (type, variant_field),
8637 cond_offset_host (valaddr,
8638 TYPE_FIELD_BITPOS (type, variant_field)
8640 cond_offset_target (address,
8641 TYPE_FIELD_BITPOS (type, variant_field)
8642 / TARGET_CHAR_BIT), dval);
8643 if (branch_type == NULL)
8647 for (f = variant_field + 1; f < nfields; f += 1)
8648 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8649 TYPE_NFIELDS (rtype) -= 1;
8653 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8654 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8655 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8656 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8658 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8660 value_free_to_mark (mark);
8664 /* An ordinary record type (with fixed-length fields) that describes
8665 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8666 beginning of this section]. Any necessary discriminants' values
8667 should be in DVAL, a record value; it may be NULL if the object
8668 at ADDR itself contains any necessary discriminant values.
8669 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8670 values from the record are needed. Except in the case that DVAL,
8671 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8672 unchecked) is replaced by a particular branch of the variant.
8674 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8675 is questionable and may be removed. It can arise during the
8676 processing of an unconstrained-array-of-record type where all the
8677 variant branches have exactly the same size. This is because in
8678 such cases, the compiler does not bother to use the XVS convention
8679 when encoding the record. I am currently dubious of this
8680 shortcut and suspect the compiler should be altered. FIXME. */
8682 static struct type *
8683 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8684 CORE_ADDR address, struct value *dval)
8686 struct type *templ_type;
8688 if (TYPE_FIXED_INSTANCE (type0))
8691 templ_type = dynamic_template_type (type0);
8693 if (templ_type != NULL)
8694 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8695 else if (variant_field_index (type0) >= 0)
8697 if (dval == NULL && valaddr == NULL && address == 0)
8699 return to_record_with_fixed_variant_part (type0, valaddr, address,
8704 TYPE_FIXED_INSTANCE (type0) = 1;
8710 /* An ordinary record type (with fixed-length fields) that describes
8711 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8712 union type. Any necessary discriminants' values should be in DVAL,
8713 a record value. That is, this routine selects the appropriate
8714 branch of the union at ADDR according to the discriminant value
8715 indicated in the union's type name. Returns VAR_TYPE0 itself if
8716 it represents a variant subject to a pragma Unchecked_Union. */
8718 static struct type *
8719 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8720 CORE_ADDR address, struct value *dval)
8723 struct type *templ_type;
8724 struct type *var_type;
8726 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8727 var_type = TYPE_TARGET_TYPE (var_type0);
8729 var_type = var_type0;
8731 templ_type = ada_find_parallel_type (var_type, "___XVU");
8733 if (templ_type != NULL)
8734 var_type = templ_type;
8736 if (is_unchecked_variant (var_type, value_type (dval)))
8739 ada_which_variant_applies (var_type,
8740 value_type (dval), value_contents (dval));
8743 return empty_record (var_type);
8744 else if (is_dynamic_field (var_type, which))
8745 return to_fixed_record_type
8746 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8747 valaddr, address, dval);
8748 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8750 to_fixed_record_type
8751 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8753 return TYPE_FIELD_TYPE (var_type, which);
8756 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8757 ENCODING_TYPE, a type following the GNAT conventions for discrete
8758 type encodings, only carries redundant information. */
8761 ada_is_redundant_range_encoding (struct type *range_type,
8762 struct type *encoding_type)
8764 const char *bounds_str;
8768 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8770 if (TYPE_CODE (get_base_type (range_type))
8771 != TYPE_CODE (get_base_type (encoding_type)))
8773 /* The compiler probably used a simple base type to describe
8774 the range type instead of the range's actual base type,
8775 expecting us to get the real base type from the encoding
8776 anyway. In this situation, the encoding cannot be ignored
8781 if (is_dynamic_type (range_type))
8784 if (TYPE_NAME (encoding_type) == NULL)
8787 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8788 if (bounds_str == NULL)
8791 n = 8; /* Skip "___XDLU_". */
8792 if (!ada_scan_number (bounds_str, n, &lo, &n))
8794 if (TYPE_LOW_BOUND (range_type) != lo)
8797 n += 2; /* Skip the "__" separator between the two bounds. */
8798 if (!ada_scan_number (bounds_str, n, &hi, &n))
8800 if (TYPE_HIGH_BOUND (range_type) != hi)
8806 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8807 a type following the GNAT encoding for describing array type
8808 indices, only carries redundant information. */
8811 ada_is_redundant_index_type_desc (struct type *array_type,
8812 struct type *desc_type)
8814 struct type *this_layer = check_typedef (array_type);
8817 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8819 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8820 TYPE_FIELD_TYPE (desc_type, i)))
8822 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8828 /* Assuming that TYPE0 is an array type describing the type of a value
8829 at ADDR, and that DVAL describes a record containing any
8830 discriminants used in TYPE0, returns a type for the value that
8831 contains no dynamic components (that is, no components whose sizes
8832 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8833 true, gives an error message if the resulting type's size is over
8836 static struct type *
8837 to_fixed_array_type (struct type *type0, struct value *dval,
8840 struct type *index_type_desc;
8841 struct type *result;
8842 int constrained_packed_array_p;
8843 static const char *xa_suffix = "___XA";
8845 type0 = ada_check_typedef (type0);
8846 if (TYPE_FIXED_INSTANCE (type0))
8849 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8850 if (constrained_packed_array_p)
8851 type0 = decode_constrained_packed_array_type (type0);
8853 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8855 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8856 encoding suffixed with 'P' may still be generated. If so,
8857 it should be used to find the XA type. */
8859 if (index_type_desc == NULL)
8861 const char *type_name = ada_type_name (type0);
8863 if (type_name != NULL)
8865 const int len = strlen (type_name);
8866 char *name = (char *) alloca (len + strlen (xa_suffix));
8868 if (type_name[len - 1] == 'P')
8870 strcpy (name, type_name);
8871 strcpy (name + len - 1, xa_suffix);
8872 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8877 ada_fixup_array_indexes_type (index_type_desc);
8878 if (index_type_desc != NULL
8879 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8881 /* Ignore this ___XA parallel type, as it does not bring any
8882 useful information. This allows us to avoid creating fixed
8883 versions of the array's index types, which would be identical
8884 to the original ones. This, in turn, can also help avoid
8885 the creation of fixed versions of the array itself. */
8886 index_type_desc = NULL;
8889 if (index_type_desc == NULL)
8891 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8893 /* NOTE: elt_type---the fixed version of elt_type0---should never
8894 depend on the contents of the array in properly constructed
8896 /* Create a fixed version of the array element type.
8897 We're not providing the address of an element here,
8898 and thus the actual object value cannot be inspected to do
8899 the conversion. This should not be a problem, since arrays of
8900 unconstrained objects are not allowed. In particular, all
8901 the elements of an array of a tagged type should all be of
8902 the same type specified in the debugging info. No need to
8903 consult the object tag. */
8904 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8906 /* Make sure we always create a new array type when dealing with
8907 packed array types, since we're going to fix-up the array
8908 type length and element bitsize a little further down. */
8909 if (elt_type0 == elt_type && !constrained_packed_array_p)
8912 result = create_array_type (alloc_type_copy (type0),
8913 elt_type, TYPE_INDEX_TYPE (type0));
8918 struct type *elt_type0;
8921 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8922 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8924 /* NOTE: result---the fixed version of elt_type0---should never
8925 depend on the contents of the array in properly constructed
8927 /* Create a fixed version of the array element type.
8928 We're not providing the address of an element here,
8929 and thus the actual object value cannot be inspected to do
8930 the conversion. This should not be a problem, since arrays of
8931 unconstrained objects are not allowed. In particular, all
8932 the elements of an array of a tagged type should all be of
8933 the same type specified in the debugging info. No need to
8934 consult the object tag. */
8936 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8939 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8941 struct type *range_type =
8942 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8944 result = create_array_type (alloc_type_copy (elt_type0),
8945 result, range_type);
8946 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8948 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8949 error (_("array type with dynamic size is larger than varsize-limit"));
8952 /* We want to preserve the type name. This can be useful when
8953 trying to get the type name of a value that has already been
8954 printed (for instance, if the user did "print VAR; whatis $". */
8955 TYPE_NAME (result) = TYPE_NAME (type0);
8957 if (constrained_packed_array_p)
8959 /* So far, the resulting type has been created as if the original
8960 type was a regular (non-packed) array type. As a result, the
8961 bitsize of the array elements needs to be set again, and the array
8962 length needs to be recomputed based on that bitsize. */
8963 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8964 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8966 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8967 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8968 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8969 TYPE_LENGTH (result)++;
8972 TYPE_FIXED_INSTANCE (result) = 1;
8977 /* A standard type (containing no dynamically sized components)
8978 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8979 DVAL describes a record containing any discriminants used in TYPE0,
8980 and may be NULL if there are none, or if the object of type TYPE at
8981 ADDRESS or in VALADDR contains these discriminants.
8983 If CHECK_TAG is not null, in the case of tagged types, this function
8984 attempts to locate the object's tag and use it to compute the actual
8985 type. However, when ADDRESS is null, we cannot use it to determine the
8986 location of the tag, and therefore compute the tagged type's actual type.
8987 So we return the tagged type without consulting the tag. */
8989 static struct type *
8990 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8991 CORE_ADDR address, struct value *dval, int check_tag)
8993 type = ada_check_typedef (type);
8994 switch (TYPE_CODE (type))
8998 case TYPE_CODE_STRUCT:
9000 struct type *static_type = to_static_fixed_type (type);
9001 struct type *fixed_record_type =
9002 to_fixed_record_type (type, valaddr, address, NULL);
9004 /* If STATIC_TYPE is a tagged type and we know the object's address,
9005 then we can determine its tag, and compute the object's actual
9006 type from there. Note that we have to use the fixed record
9007 type (the parent part of the record may have dynamic fields
9008 and the way the location of _tag is expressed may depend on
9011 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9014 value_tag_from_contents_and_address
9018 struct type *real_type = type_from_tag (tag);
9020 value_from_contents_and_address (fixed_record_type,
9023 fixed_record_type = value_type (obj);
9024 if (real_type != NULL)
9025 return to_fixed_record_type
9027 value_address (ada_tag_value_at_base_address (obj)), NULL);
9030 /* Check to see if there is a parallel ___XVZ variable.
9031 If there is, then it provides the actual size of our type. */
9032 else if (ada_type_name (fixed_record_type) != NULL)
9034 const char *name = ada_type_name (fixed_record_type);
9036 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9037 bool xvz_found = false;
9040 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9043 xvz_found = get_int_var_value (xvz_name, size);
9045 CATCH (except, RETURN_MASK_ERROR)
9047 /* We found the variable, but somehow failed to read
9048 its value. Rethrow the same error, but with a little
9049 bit more information, to help the user understand
9050 what went wrong (Eg: the variable might have been
9052 throw_error (except.error,
9053 _("unable to read value of %s (%s)"),
9054 xvz_name, except.message);
9058 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9060 fixed_record_type = copy_type (fixed_record_type);
9061 TYPE_LENGTH (fixed_record_type) = size;
9063 /* The FIXED_RECORD_TYPE may have be a stub. We have
9064 observed this when the debugging info is STABS, and
9065 apparently it is something that is hard to fix.
9067 In practice, we don't need the actual type definition
9068 at all, because the presence of the XVZ variable allows us
9069 to assume that there must be a XVS type as well, which we
9070 should be able to use later, when we need the actual type
9073 In the meantime, pretend that the "fixed" type we are
9074 returning is NOT a stub, because this can cause trouble
9075 when using this type to create new types targeting it.
9076 Indeed, the associated creation routines often check
9077 whether the target type is a stub and will try to replace
9078 it, thus using a type with the wrong size. This, in turn,
9079 might cause the new type to have the wrong size too.
9080 Consider the case of an array, for instance, where the size
9081 of the array is computed from the number of elements in
9082 our array multiplied by the size of its element. */
9083 TYPE_STUB (fixed_record_type) = 0;
9086 return fixed_record_type;
9088 case TYPE_CODE_ARRAY:
9089 return to_fixed_array_type (type, dval, 1);
9090 case TYPE_CODE_UNION:
9094 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9098 /* The same as ada_to_fixed_type_1, except that it preserves the type
9099 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9101 The typedef layer needs be preserved in order to differentiate between
9102 arrays and array pointers when both types are implemented using the same
9103 fat pointer. In the array pointer case, the pointer is encoded as
9104 a typedef of the pointer type. For instance, considering:
9106 type String_Access is access String;
9107 S1 : String_Access := null;
9109 To the debugger, S1 is defined as a typedef of type String. But
9110 to the user, it is a pointer. So if the user tries to print S1,
9111 we should not dereference the array, but print the array address
9114 If we didn't preserve the typedef layer, we would lose the fact that
9115 the type is to be presented as a pointer (needs de-reference before
9116 being printed). And we would also use the source-level type name. */
9119 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9120 CORE_ADDR address, struct value *dval, int check_tag)
9123 struct type *fixed_type =
9124 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9126 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9127 then preserve the typedef layer.
9129 Implementation note: We can only check the main-type portion of
9130 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9131 from TYPE now returns a type that has the same instance flags
9132 as TYPE. For instance, if TYPE is a "typedef const", and its
9133 target type is a "struct", then the typedef elimination will return
9134 a "const" version of the target type. See check_typedef for more
9135 details about how the typedef layer elimination is done.
9137 brobecker/2010-11-19: It seems to me that the only case where it is
9138 useful to preserve the typedef layer is when dealing with fat pointers.
9139 Perhaps, we could add a check for that and preserve the typedef layer
9140 only in that situation. But this seems unecessary so far, probably
9141 because we call check_typedef/ada_check_typedef pretty much everywhere.
9143 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9144 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9145 == TYPE_MAIN_TYPE (fixed_type)))
9151 /* A standard (static-sized) type corresponding as well as possible to
9152 TYPE0, but based on no runtime data. */
9154 static struct type *
9155 to_static_fixed_type (struct type *type0)
9162 if (TYPE_FIXED_INSTANCE (type0))
9165 type0 = ada_check_typedef (type0);
9167 switch (TYPE_CODE (type0))
9171 case TYPE_CODE_STRUCT:
9172 type = dynamic_template_type (type0);
9174 return template_to_static_fixed_type (type);
9176 return template_to_static_fixed_type (type0);
9177 case TYPE_CODE_UNION:
9178 type = ada_find_parallel_type (type0, "___XVU");
9180 return template_to_static_fixed_type (type);
9182 return template_to_static_fixed_type (type0);
9186 /* A static approximation of TYPE with all type wrappers removed. */
9188 static struct type *
9189 static_unwrap_type (struct type *type)
9191 if (ada_is_aligner_type (type))
9193 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9194 if (ada_type_name (type1) == NULL)
9195 TYPE_NAME (type1) = ada_type_name (type);
9197 return static_unwrap_type (type1);
9201 struct type *raw_real_type = ada_get_base_type (type);
9203 if (raw_real_type == type)
9206 return to_static_fixed_type (raw_real_type);
9210 /* In some cases, incomplete and private types require
9211 cross-references that are not resolved as records (for example,
9213 type FooP is access Foo;
9215 type Foo is array ...;
9216 ). In these cases, since there is no mechanism for producing
9217 cross-references to such types, we instead substitute for FooP a
9218 stub enumeration type that is nowhere resolved, and whose tag is
9219 the name of the actual type. Call these types "non-record stubs". */
9221 /* A type equivalent to TYPE that is not a non-record stub, if one
9222 exists, otherwise TYPE. */
9225 ada_check_typedef (struct type *type)
9230 /* If our type is an access to an unconstrained array, which is encoded
9231 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9232 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9233 what allows us to distinguish between fat pointers that represent
9234 array types, and fat pointers that represent array access types
9235 (in both cases, the compiler implements them as fat pointers). */
9236 if (ada_is_access_to_unconstrained_array (type))
9239 type = check_typedef (type);
9240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9241 || !TYPE_STUB (type)
9242 || TYPE_NAME (type) == NULL)
9246 const char *name = TYPE_NAME (type);
9247 struct type *type1 = ada_find_any_type (name);
9252 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9253 stubs pointing to arrays, as we don't create symbols for array
9254 types, only for the typedef-to-array types). If that's the case,
9255 strip the typedef layer. */
9256 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9257 type1 = ada_check_typedef (type1);
9263 /* A value representing the data at VALADDR/ADDRESS as described by
9264 type TYPE0, but with a standard (static-sized) type that correctly
9265 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9266 type, then return VAL0 [this feature is simply to avoid redundant
9267 creation of struct values]. */
9269 static struct value *
9270 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9273 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9275 if (type == type0 && val0 != NULL)
9278 if (VALUE_LVAL (val0) != lval_memory)
9280 /* Our value does not live in memory; it could be a convenience
9281 variable, for instance. Create a not_lval value using val0's
9283 return value_from_contents (type, value_contents (val0));
9286 return value_from_contents_and_address (type, 0, address);
9289 /* A value representing VAL, but with a standard (static-sized) type
9290 that correctly describes it. Does not necessarily create a new
9294 ada_to_fixed_value (struct value *val)
9296 val = unwrap_value (val);
9297 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9304 /* Table mapping attribute numbers to names.
9305 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9307 static const char *attribute_names[] = {
9325 ada_attribute_name (enum exp_opcode n)
9327 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9328 return attribute_names[n - OP_ATR_FIRST + 1];
9330 return attribute_names[0];
9333 /* Evaluate the 'POS attribute applied to ARG. */
9336 pos_atr (struct value *arg)
9338 struct value *val = coerce_ref (arg);
9339 struct type *type = value_type (val);
9342 if (!discrete_type_p (type))
9343 error (_("'POS only defined on discrete types"));
9345 if (!discrete_position (type, value_as_long (val), &result))
9346 error (_("enumeration value is invalid: can't find 'POS"));
9351 static struct value *
9352 value_pos_atr (struct type *type, struct value *arg)
9354 return value_from_longest (type, pos_atr (arg));
9357 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9359 static struct value *
9360 value_val_atr (struct type *type, struct value *arg)
9362 if (!discrete_type_p (type))
9363 error (_("'VAL only defined on discrete types"));
9364 if (!integer_type_p (value_type (arg)))
9365 error (_("'VAL requires integral argument"));
9367 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9369 long pos = value_as_long (arg);
9371 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9372 error (_("argument to 'VAL out of range"));
9373 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9376 return value_from_longest (type, value_as_long (arg));
9382 /* True if TYPE appears to be an Ada character type.
9383 [At the moment, this is true only for Character and Wide_Character;
9384 It is a heuristic test that could stand improvement]. */
9387 ada_is_character_type (struct type *type)
9391 /* If the type code says it's a character, then assume it really is,
9392 and don't check any further. */
9393 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9396 /* Otherwise, assume it's a character type iff it is a discrete type
9397 with a known character type name. */
9398 name = ada_type_name (type);
9399 return (name != NULL
9400 && (TYPE_CODE (type) == TYPE_CODE_INT
9401 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9402 && (strcmp (name, "character") == 0
9403 || strcmp (name, "wide_character") == 0
9404 || strcmp (name, "wide_wide_character") == 0
9405 || strcmp (name, "unsigned char") == 0));
9408 /* True if TYPE appears to be an Ada string type. */
9411 ada_is_string_type (struct type *type)
9413 type = ada_check_typedef (type);
9415 && TYPE_CODE (type) != TYPE_CODE_PTR
9416 && (ada_is_simple_array_type (type)
9417 || ada_is_array_descriptor_type (type))
9418 && ada_array_arity (type) == 1)
9420 struct type *elttype = ada_array_element_type (type, 1);
9422 return ada_is_character_type (elttype);
9428 /* The compiler sometimes provides a parallel XVS type for a given
9429 PAD type. Normally, it is safe to follow the PAD type directly,
9430 but older versions of the compiler have a bug that causes the offset
9431 of its "F" field to be wrong. Following that field in that case
9432 would lead to incorrect results, but this can be worked around
9433 by ignoring the PAD type and using the associated XVS type instead.
9435 Set to True if the debugger should trust the contents of PAD types.
9436 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9437 static int trust_pad_over_xvs = 1;
9439 /* True if TYPE is a struct type introduced by the compiler to force the
9440 alignment of a value. Such types have a single field with a
9441 distinctive name. */
9444 ada_is_aligner_type (struct type *type)
9446 type = ada_check_typedef (type);
9448 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9451 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9452 && TYPE_NFIELDS (type) == 1
9453 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9456 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9457 the parallel type. */
9460 ada_get_base_type (struct type *raw_type)
9462 struct type *real_type_namer;
9463 struct type *raw_real_type;
9465 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9468 if (ada_is_aligner_type (raw_type))
9469 /* The encoding specifies that we should always use the aligner type.
9470 So, even if this aligner type has an associated XVS type, we should
9473 According to the compiler gurus, an XVS type parallel to an aligner
9474 type may exist because of a stabs limitation. In stabs, aligner
9475 types are empty because the field has a variable-sized type, and
9476 thus cannot actually be used as an aligner type. As a result,
9477 we need the associated parallel XVS type to decode the type.
9478 Since the policy in the compiler is to not change the internal
9479 representation based on the debugging info format, we sometimes
9480 end up having a redundant XVS type parallel to the aligner type. */
9483 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9484 if (real_type_namer == NULL
9485 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9486 || TYPE_NFIELDS (real_type_namer) != 1)
9489 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9491 /* This is an older encoding form where the base type needs to be
9492 looked up by name. We prefer the newer enconding because it is
9494 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9495 if (raw_real_type == NULL)
9498 return raw_real_type;
9501 /* The field in our XVS type is a reference to the base type. */
9502 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9505 /* The type of value designated by TYPE, with all aligners removed. */
9508 ada_aligned_type (struct type *type)
9510 if (ada_is_aligner_type (type))
9511 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9513 return ada_get_base_type (type);
9517 /* The address of the aligned value in an object at address VALADDR
9518 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9521 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9523 if (ada_is_aligner_type (type))
9524 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9526 TYPE_FIELD_BITPOS (type,
9527 0) / TARGET_CHAR_BIT);
9534 /* The printed representation of an enumeration literal with encoded
9535 name NAME. The value is good to the next call of ada_enum_name. */
9537 ada_enum_name (const char *name)
9539 static char *result;
9540 static size_t result_len = 0;
9543 /* First, unqualify the enumeration name:
9544 1. Search for the last '.' character. If we find one, then skip
9545 all the preceding characters, the unqualified name starts
9546 right after that dot.
9547 2. Otherwise, we may be debugging on a target where the compiler
9548 translates dots into "__". Search forward for double underscores,
9549 but stop searching when we hit an overloading suffix, which is
9550 of the form "__" followed by digits. */
9552 tmp = strrchr (name, '.');
9557 while ((tmp = strstr (name, "__")) != NULL)
9559 if (isdigit (tmp[2]))
9570 if (name[1] == 'U' || name[1] == 'W')
9572 if (sscanf (name + 2, "%x", &v) != 1)
9578 GROW_VECT (result, result_len, 16);
9579 if (isascii (v) && isprint (v))
9580 xsnprintf (result, result_len, "'%c'", v);
9581 else if (name[1] == 'U')
9582 xsnprintf (result, result_len, "[\"%02x\"]", v);
9584 xsnprintf (result, result_len, "[\"%04x\"]", v);
9590 tmp = strstr (name, "__");
9592 tmp = strstr (name, "$");
9595 GROW_VECT (result, result_len, tmp - name + 1);
9596 strncpy (result, name, tmp - name);
9597 result[tmp - name] = '\0';
9605 /* Evaluate the subexpression of EXP starting at *POS as for
9606 evaluate_type, updating *POS to point just past the evaluated
9609 static struct value *
9610 evaluate_subexp_type (struct expression *exp, int *pos)
9612 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9615 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9618 static struct value *
9619 unwrap_value (struct value *val)
9621 struct type *type = ada_check_typedef (value_type (val));
9623 if (ada_is_aligner_type (type))
9625 struct value *v = ada_value_struct_elt (val, "F", 0);
9626 struct type *val_type = ada_check_typedef (value_type (v));
9628 if (ada_type_name (val_type) == NULL)
9629 TYPE_NAME (val_type) = ada_type_name (type);
9631 return unwrap_value (v);
9635 struct type *raw_real_type =
9636 ada_check_typedef (ada_get_base_type (type));
9638 /* If there is no parallel XVS or XVE type, then the value is
9639 already unwrapped. Return it without further modification. */
9640 if ((type == raw_real_type)
9641 && ada_find_parallel_type (type, "___XVE") == NULL)
9645 coerce_unspec_val_to_type
9646 (val, ada_to_fixed_type (raw_real_type, 0,
9647 value_address (val),
9652 static struct value *
9653 cast_from_fixed (struct type *type, struct value *arg)
9655 struct value *scale = ada_scaling_factor (value_type (arg));
9656 arg = value_cast (value_type (scale), arg);
9658 arg = value_binop (arg, scale, BINOP_MUL);
9659 return value_cast (type, arg);
9662 static struct value *
9663 cast_to_fixed (struct type *type, struct value *arg)
9665 if (type == value_type (arg))
9668 struct value *scale = ada_scaling_factor (type);
9669 if (ada_is_fixed_point_type (value_type (arg)))
9670 arg = cast_from_fixed (value_type (scale), arg);
9672 arg = value_cast (value_type (scale), arg);
9674 arg = value_binop (arg, scale, BINOP_DIV);
9675 return value_cast (type, arg);
9678 /* Given two array types T1 and T2, return nonzero iff both arrays
9679 contain the same number of elements. */
9682 ada_same_array_size_p (struct type *t1, struct type *t2)
9684 LONGEST lo1, hi1, lo2, hi2;
9686 /* Get the array bounds in order to verify that the size of
9687 the two arrays match. */
9688 if (!get_array_bounds (t1, &lo1, &hi1)
9689 || !get_array_bounds (t2, &lo2, &hi2))
9690 error (_("unable to determine array bounds"));
9692 /* To make things easier for size comparison, normalize a bit
9693 the case of empty arrays by making sure that the difference
9694 between upper bound and lower bound is always -1. */
9700 return (hi1 - lo1 == hi2 - lo2);
9703 /* Assuming that VAL is an array of integrals, and TYPE represents
9704 an array with the same number of elements, but with wider integral
9705 elements, return an array "casted" to TYPE. In practice, this
9706 means that the returned array is built by casting each element
9707 of the original array into TYPE's (wider) element type. */
9709 static struct value *
9710 ada_promote_array_of_integrals (struct type *type, struct value *val)
9712 struct type *elt_type = TYPE_TARGET_TYPE (type);
9717 /* Verify that both val and type are arrays of scalars, and
9718 that the size of val's elements is smaller than the size
9719 of type's element. */
9720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9721 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9722 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9723 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9724 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9725 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9727 if (!get_array_bounds (type, &lo, &hi))
9728 error (_("unable to determine array bounds"));
9730 res = allocate_value (type);
9732 /* Promote each array element. */
9733 for (i = 0; i < hi - lo + 1; i++)
9735 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9737 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9738 value_contents_all (elt), TYPE_LENGTH (elt_type));
9744 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9745 return the converted value. */
9747 static struct value *
9748 coerce_for_assign (struct type *type, struct value *val)
9750 struct type *type2 = value_type (val);
9755 type2 = ada_check_typedef (type2);
9756 type = ada_check_typedef (type);
9758 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9759 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9761 val = ada_value_ind (val);
9762 type2 = value_type (val);
9765 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9766 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9768 if (!ada_same_array_size_p (type, type2))
9769 error (_("cannot assign arrays of different length"));
9771 if (is_integral_type (TYPE_TARGET_TYPE (type))
9772 && is_integral_type (TYPE_TARGET_TYPE (type2))
9773 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9774 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9776 /* Allow implicit promotion of the array elements to
9778 return ada_promote_array_of_integrals (type, val);
9781 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9782 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9783 error (_("Incompatible types in assignment"));
9784 deprecated_set_value_type (val, type);
9789 static struct value *
9790 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9793 struct type *type1, *type2;
9796 arg1 = coerce_ref (arg1);
9797 arg2 = coerce_ref (arg2);
9798 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9799 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9801 if (TYPE_CODE (type1) != TYPE_CODE_INT
9802 || TYPE_CODE (type2) != TYPE_CODE_INT)
9803 return value_binop (arg1, arg2, op);
9812 return value_binop (arg1, arg2, op);
9815 v2 = value_as_long (arg2);
9817 error (_("second operand of %s must not be zero."), op_string (op));
9819 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9820 return value_binop (arg1, arg2, op);
9822 v1 = value_as_long (arg1);
9827 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9828 v += v > 0 ? -1 : 1;
9836 /* Should not reach this point. */
9840 val = allocate_value (type1);
9841 store_unsigned_integer (value_contents_raw (val),
9842 TYPE_LENGTH (value_type (val)),
9843 gdbarch_byte_order (get_type_arch (type1)), v);
9848 ada_value_equal (struct value *arg1, struct value *arg2)
9850 if (ada_is_direct_array_type (value_type (arg1))
9851 || ada_is_direct_array_type (value_type (arg2)))
9853 struct type *arg1_type, *arg2_type;
9855 /* Automatically dereference any array reference before
9856 we attempt to perform the comparison. */
9857 arg1 = ada_coerce_ref (arg1);
9858 arg2 = ada_coerce_ref (arg2);
9860 arg1 = ada_coerce_to_simple_array (arg1);
9861 arg2 = ada_coerce_to_simple_array (arg2);
9863 arg1_type = ada_check_typedef (value_type (arg1));
9864 arg2_type = ada_check_typedef (value_type (arg2));
9866 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9867 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9868 error (_("Attempt to compare array with non-array"));
9869 /* FIXME: The following works only for types whose
9870 representations use all bits (no padding or undefined bits)
9871 and do not have user-defined equality. */
9872 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9873 && memcmp (value_contents (arg1), value_contents (arg2),
9874 TYPE_LENGTH (arg1_type)) == 0);
9876 return value_equal (arg1, arg2);
9879 /* Total number of component associations in the aggregate starting at
9880 index PC in EXP. Assumes that index PC is the start of an
9884 num_component_specs (struct expression *exp, int pc)
9888 m = exp->elts[pc + 1].longconst;
9891 for (i = 0; i < m; i += 1)
9893 switch (exp->elts[pc].opcode)
9899 n += exp->elts[pc + 1].longconst;
9902 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9907 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9908 component of LHS (a simple array or a record), updating *POS past
9909 the expression, assuming that LHS is contained in CONTAINER. Does
9910 not modify the inferior's memory, nor does it modify LHS (unless
9911 LHS == CONTAINER). */
9914 assign_component (struct value *container, struct value *lhs, LONGEST index,
9915 struct expression *exp, int *pos)
9917 struct value *mark = value_mark ();
9919 struct type *lhs_type = check_typedef (value_type (lhs));
9921 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9923 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9924 struct value *index_val = value_from_longest (index_type, index);
9926 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9930 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9931 elt = ada_to_fixed_value (elt);
9934 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9935 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9937 value_assign_to_component (container, elt,
9938 ada_evaluate_subexp (NULL, exp, pos,
9941 value_free_to_mark (mark);
9944 /* Assuming that LHS represents an lvalue having a record or array
9945 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9946 of that aggregate's value to LHS, advancing *POS past the
9947 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9948 lvalue containing LHS (possibly LHS itself). Does not modify
9949 the inferior's memory, nor does it modify the contents of
9950 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9952 static struct value *
9953 assign_aggregate (struct value *container,
9954 struct value *lhs, struct expression *exp,
9955 int *pos, enum noside noside)
9957 struct type *lhs_type;
9958 int n = exp->elts[*pos+1].longconst;
9959 LONGEST low_index, high_index;
9962 int max_indices, num_indices;
9966 if (noside != EVAL_NORMAL)
9968 for (i = 0; i < n; i += 1)
9969 ada_evaluate_subexp (NULL, exp, pos, noside);
9973 container = ada_coerce_ref (container);
9974 if (ada_is_direct_array_type (value_type (container)))
9975 container = ada_coerce_to_simple_array (container);
9976 lhs = ada_coerce_ref (lhs);
9977 if (!deprecated_value_modifiable (lhs))
9978 error (_("Left operand of assignment is not a modifiable lvalue."));
9980 lhs_type = check_typedef (value_type (lhs));
9981 if (ada_is_direct_array_type (lhs_type))
9983 lhs = ada_coerce_to_simple_array (lhs);
9984 lhs_type = check_typedef (value_type (lhs));
9985 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9986 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9988 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9991 high_index = num_visible_fields (lhs_type) - 1;
9994 error (_("Left-hand side must be array or record."));
9996 num_specs = num_component_specs (exp, *pos - 3);
9997 max_indices = 4 * num_specs + 4;
9998 indices = XALLOCAVEC (LONGEST, max_indices);
9999 indices[0] = indices[1] = low_index - 1;
10000 indices[2] = indices[3] = high_index + 1;
10003 for (i = 0; i < n; i += 1)
10005 switch (exp->elts[*pos].opcode)
10008 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10009 &num_indices, max_indices,
10010 low_index, high_index);
10012 case OP_POSITIONAL:
10013 aggregate_assign_positional (container, lhs, exp, pos, indices,
10014 &num_indices, max_indices,
10015 low_index, high_index);
10019 error (_("Misplaced 'others' clause"));
10020 aggregate_assign_others (container, lhs, exp, pos, indices,
10021 num_indices, low_index, high_index);
10024 error (_("Internal error: bad aggregate clause"));
10031 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10032 construct at *POS, updating *POS past the construct, given that
10033 the positions are relative to lower bound LOW, where HIGH is the
10034 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10035 updating *NUM_INDICES as needed. CONTAINER is as for
10036 assign_aggregate. */
10038 aggregate_assign_positional (struct value *container,
10039 struct value *lhs, struct expression *exp,
10040 int *pos, LONGEST *indices, int *num_indices,
10041 int max_indices, LONGEST low, LONGEST high)
10043 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10045 if (ind - 1 == high)
10046 warning (_("Extra components in aggregate ignored."));
10049 add_component_interval (ind, ind, indices, num_indices, max_indices);
10051 assign_component (container, lhs, ind, exp, pos);
10054 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10057 /* Assign into the components of LHS indexed by the OP_CHOICES
10058 construct at *POS, updating *POS past the construct, given that
10059 the allowable indices are LOW..HIGH. Record the indices assigned
10060 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10061 needed. CONTAINER is as for assign_aggregate. */
10063 aggregate_assign_from_choices (struct value *container,
10064 struct value *lhs, struct expression *exp,
10065 int *pos, LONGEST *indices, int *num_indices,
10066 int max_indices, LONGEST low, LONGEST high)
10069 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10070 int choice_pos, expr_pc;
10071 int is_array = ada_is_direct_array_type (value_type (lhs));
10073 choice_pos = *pos += 3;
10075 for (j = 0; j < n_choices; j += 1)
10076 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10078 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10080 for (j = 0; j < n_choices; j += 1)
10082 LONGEST lower, upper;
10083 enum exp_opcode op = exp->elts[choice_pos].opcode;
10085 if (op == OP_DISCRETE_RANGE)
10088 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10090 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10095 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10107 name = &exp->elts[choice_pos + 2].string;
10110 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10113 error (_("Invalid record component association."));
10115 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10117 if (! find_struct_field (name, value_type (lhs), 0,
10118 NULL, NULL, NULL, NULL, &ind))
10119 error (_("Unknown component name: %s."), name);
10120 lower = upper = ind;
10123 if (lower <= upper && (lower < low || upper > high))
10124 error (_("Index in component association out of bounds."));
10126 add_component_interval (lower, upper, indices, num_indices,
10128 while (lower <= upper)
10133 assign_component (container, lhs, lower, exp, &pos1);
10139 /* Assign the value of the expression in the OP_OTHERS construct in
10140 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10141 have not been previously assigned. The index intervals already assigned
10142 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10143 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10145 aggregate_assign_others (struct value *container,
10146 struct value *lhs, struct expression *exp,
10147 int *pos, LONGEST *indices, int num_indices,
10148 LONGEST low, LONGEST high)
10151 int expr_pc = *pos + 1;
10153 for (i = 0; i < num_indices - 2; i += 2)
10157 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10161 localpos = expr_pc;
10162 assign_component (container, lhs, ind, exp, &localpos);
10165 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10168 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10169 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10170 modifying *SIZE as needed. It is an error if *SIZE exceeds
10171 MAX_SIZE. The resulting intervals do not overlap. */
10173 add_component_interval (LONGEST low, LONGEST high,
10174 LONGEST* indices, int *size, int max_size)
10178 for (i = 0; i < *size; i += 2) {
10179 if (high >= indices[i] && low <= indices[i + 1])
10183 for (kh = i + 2; kh < *size; kh += 2)
10184 if (high < indices[kh])
10186 if (low < indices[i])
10188 indices[i + 1] = indices[kh - 1];
10189 if (high > indices[i + 1])
10190 indices[i + 1] = high;
10191 memcpy (indices + i + 2, indices + kh, *size - kh);
10192 *size -= kh - i - 2;
10195 else if (high < indices[i])
10199 if (*size == max_size)
10200 error (_("Internal error: miscounted aggregate components."));
10202 for (j = *size-1; j >= i+2; j -= 1)
10203 indices[j] = indices[j - 2];
10205 indices[i + 1] = high;
10208 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10211 static struct value *
10212 ada_value_cast (struct type *type, struct value *arg2)
10214 if (type == ada_check_typedef (value_type (arg2)))
10217 if (ada_is_fixed_point_type (type))
10218 return cast_to_fixed (type, arg2);
10220 if (ada_is_fixed_point_type (value_type (arg2)))
10221 return cast_from_fixed (type, arg2);
10223 return value_cast (type, arg2);
10226 /* Evaluating Ada expressions, and printing their result.
10227 ------------------------------------------------------
10232 We usually evaluate an Ada expression in order to print its value.
10233 We also evaluate an expression in order to print its type, which
10234 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10235 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10236 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10237 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10240 Evaluating expressions is a little more complicated for Ada entities
10241 than it is for entities in languages such as C. The main reason for
10242 this is that Ada provides types whose definition might be dynamic.
10243 One example of such types is variant records. Or another example
10244 would be an array whose bounds can only be known at run time.
10246 The following description is a general guide as to what should be
10247 done (and what should NOT be done) in order to evaluate an expression
10248 involving such types, and when. This does not cover how the semantic
10249 information is encoded by GNAT as this is covered separatly. For the
10250 document used as the reference for the GNAT encoding, see exp_dbug.ads
10251 in the GNAT sources.
10253 Ideally, we should embed each part of this description next to its
10254 associated code. Unfortunately, the amount of code is so vast right
10255 now that it's hard to see whether the code handling a particular
10256 situation might be duplicated or not. One day, when the code is
10257 cleaned up, this guide might become redundant with the comments
10258 inserted in the code, and we might want to remove it.
10260 2. ``Fixing'' an Entity, the Simple Case:
10261 -----------------------------------------
10263 When evaluating Ada expressions, the tricky issue is that they may
10264 reference entities whose type contents and size are not statically
10265 known. Consider for instance a variant record:
10267 type Rec (Empty : Boolean := True) is record
10270 when False => Value : Integer;
10273 Yes : Rec := (Empty => False, Value => 1);
10274 No : Rec := (empty => True);
10276 The size and contents of that record depends on the value of the
10277 descriminant (Rec.Empty). At this point, neither the debugging
10278 information nor the associated type structure in GDB are able to
10279 express such dynamic types. So what the debugger does is to create
10280 "fixed" versions of the type that applies to the specific object.
10281 We also informally refer to this opperation as "fixing" an object,
10282 which means creating its associated fixed type.
10284 Example: when printing the value of variable "Yes" above, its fixed
10285 type would look like this:
10292 On the other hand, if we printed the value of "No", its fixed type
10299 Things become a little more complicated when trying to fix an entity
10300 with a dynamic type that directly contains another dynamic type,
10301 such as an array of variant records, for instance. There are
10302 two possible cases: Arrays, and records.
10304 3. ``Fixing'' Arrays:
10305 ---------------------
10307 The type structure in GDB describes an array in terms of its bounds,
10308 and the type of its elements. By design, all elements in the array
10309 have the same type and we cannot represent an array of variant elements
10310 using the current type structure in GDB. When fixing an array,
10311 we cannot fix the array element, as we would potentially need one
10312 fixed type per element of the array. As a result, the best we can do
10313 when fixing an array is to produce an array whose bounds and size
10314 are correct (allowing us to read it from memory), but without having
10315 touched its element type. Fixing each element will be done later,
10316 when (if) necessary.
10318 Arrays are a little simpler to handle than records, because the same
10319 amount of memory is allocated for each element of the array, even if
10320 the amount of space actually used by each element differs from element
10321 to element. Consider for instance the following array of type Rec:
10323 type Rec_Array is array (1 .. 2) of Rec;
10325 The actual amount of memory occupied by each element might be different
10326 from element to element, depending on the value of their discriminant.
10327 But the amount of space reserved for each element in the array remains
10328 fixed regardless. So we simply need to compute that size using
10329 the debugging information available, from which we can then determine
10330 the array size (we multiply the number of elements of the array by
10331 the size of each element).
10333 The simplest case is when we have an array of a constrained element
10334 type. For instance, consider the following type declarations:
10336 type Bounded_String (Max_Size : Integer) is
10338 Buffer : String (1 .. Max_Size);
10340 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10342 In this case, the compiler describes the array as an array of
10343 variable-size elements (identified by its XVS suffix) for which
10344 the size can be read in the parallel XVZ variable.
10346 In the case of an array of an unconstrained element type, the compiler
10347 wraps the array element inside a private PAD type. This type should not
10348 be shown to the user, and must be "unwrap"'ed before printing. Note
10349 that we also use the adjective "aligner" in our code to designate
10350 these wrapper types.
10352 In some cases, the size allocated for each element is statically
10353 known. In that case, the PAD type already has the correct size,
10354 and the array element should remain unfixed.
10356 But there are cases when this size is not statically known.
10357 For instance, assuming that "Five" is an integer variable:
10359 type Dynamic is array (1 .. Five) of Integer;
10360 type Wrapper (Has_Length : Boolean := False) is record
10363 when True => Length : Integer;
10364 when False => null;
10367 type Wrapper_Array is array (1 .. 2) of Wrapper;
10369 Hello : Wrapper_Array := (others => (Has_Length => True,
10370 Data => (others => 17),
10374 The debugging info would describe variable Hello as being an
10375 array of a PAD type. The size of that PAD type is not statically
10376 known, but can be determined using a parallel XVZ variable.
10377 In that case, a copy of the PAD type with the correct size should
10378 be used for the fixed array.
10380 3. ``Fixing'' record type objects:
10381 ----------------------------------
10383 Things are slightly different from arrays in the case of dynamic
10384 record types. In this case, in order to compute the associated
10385 fixed type, we need to determine the size and offset of each of
10386 its components. This, in turn, requires us to compute the fixed
10387 type of each of these components.
10389 Consider for instance the example:
10391 type Bounded_String (Max_Size : Natural) is record
10392 Str : String (1 .. Max_Size);
10395 My_String : Bounded_String (Max_Size => 10);
10397 In that case, the position of field "Length" depends on the size
10398 of field Str, which itself depends on the value of the Max_Size
10399 discriminant. In order to fix the type of variable My_String,
10400 we need to fix the type of field Str. Therefore, fixing a variant
10401 record requires us to fix each of its components.
10403 However, if a component does not have a dynamic size, the component
10404 should not be fixed. In particular, fields that use a PAD type
10405 should not fixed. Here is an example where this might happen
10406 (assuming type Rec above):
10408 type Container (Big : Boolean) is record
10412 when True => Another : Integer;
10413 when False => null;
10416 My_Container : Container := (Big => False,
10417 First => (Empty => True),
10420 In that example, the compiler creates a PAD type for component First,
10421 whose size is constant, and then positions the component After just
10422 right after it. The offset of component After is therefore constant
10425 The debugger computes the position of each field based on an algorithm
10426 that uses, among other things, the actual position and size of the field
10427 preceding it. Let's now imagine that the user is trying to print
10428 the value of My_Container. If the type fixing was recursive, we would
10429 end up computing the offset of field After based on the size of the
10430 fixed version of field First. And since in our example First has
10431 only one actual field, the size of the fixed type is actually smaller
10432 than the amount of space allocated to that field, and thus we would
10433 compute the wrong offset of field After.
10435 To make things more complicated, we need to watch out for dynamic
10436 components of variant records (identified by the ___XVL suffix in
10437 the component name). Even if the target type is a PAD type, the size
10438 of that type might not be statically known. So the PAD type needs
10439 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10440 we might end up with the wrong size for our component. This can be
10441 observed with the following type declarations:
10443 type Octal is new Integer range 0 .. 7;
10444 type Octal_Array is array (Positive range <>) of Octal;
10445 pragma Pack (Octal_Array);
10447 type Octal_Buffer (Size : Positive) is record
10448 Buffer : Octal_Array (1 .. Size);
10452 In that case, Buffer is a PAD type whose size is unset and needs
10453 to be computed by fixing the unwrapped type.
10455 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10456 ----------------------------------------------------------
10458 Lastly, when should the sub-elements of an entity that remained unfixed
10459 thus far, be actually fixed?
10461 The answer is: Only when referencing that element. For instance
10462 when selecting one component of a record, this specific component
10463 should be fixed at that point in time. Or when printing the value
10464 of a record, each component should be fixed before its value gets
10465 printed. Similarly for arrays, the element of the array should be
10466 fixed when printing each element of the array, or when extracting
10467 one element out of that array. On the other hand, fixing should
10468 not be performed on the elements when taking a slice of an array!
10470 Note that one of the side effects of miscomputing the offset and
10471 size of each field is that we end up also miscomputing the size
10472 of the containing type. This can have adverse results when computing
10473 the value of an entity. GDB fetches the value of an entity based
10474 on the size of its type, and thus a wrong size causes GDB to fetch
10475 the wrong amount of memory. In the case where the computed size is
10476 too small, GDB fetches too little data to print the value of our
10477 entity. Results in this case are unpredictable, as we usually read
10478 past the buffer containing the data =:-o. */
10480 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10481 for that subexpression cast to TO_TYPE. Advance *POS over the
10485 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10486 enum noside noside, struct type *to_type)
10490 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10491 || exp->elts[pc].opcode == OP_VAR_VALUE)
10496 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10499 return value_zero (to_type, not_lval);
10501 val = evaluate_var_msym_value (noside,
10502 exp->elts[pc + 1].objfile,
10503 exp->elts[pc + 2].msymbol);
10506 val = evaluate_var_value (noside,
10507 exp->elts[pc + 1].block,
10508 exp->elts[pc + 2].symbol);
10510 if (noside == EVAL_SKIP)
10511 return eval_skip_value (exp);
10513 val = ada_value_cast (to_type, val);
10515 /* Follow the Ada language semantics that do not allow taking
10516 an address of the result of a cast (view conversion in Ada). */
10517 if (VALUE_LVAL (val) == lval_memory)
10519 if (value_lazy (val))
10520 value_fetch_lazy (val);
10521 VALUE_LVAL (val) = not_lval;
10526 value *val = evaluate_subexp (to_type, exp, pos, noside);
10527 if (noside == EVAL_SKIP)
10528 return eval_skip_value (exp);
10529 return ada_value_cast (to_type, val);
10532 /* Implement the evaluate_exp routine in the exp_descriptor structure
10533 for the Ada language. */
10535 static struct value *
10536 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10537 int *pos, enum noside noside)
10539 enum exp_opcode op;
10543 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10546 struct value **argvec;
10550 op = exp->elts[pc].opcode;
10556 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10558 if (noside == EVAL_NORMAL)
10559 arg1 = unwrap_value (arg1);
10561 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10562 then we need to perform the conversion manually, because
10563 evaluate_subexp_standard doesn't do it. This conversion is
10564 necessary in Ada because the different kinds of float/fixed
10565 types in Ada have different representations.
10567 Similarly, we need to perform the conversion from OP_LONG
10569 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10570 arg1 = ada_value_cast (expect_type, arg1);
10576 struct value *result;
10579 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10580 /* The result type will have code OP_STRING, bashed there from
10581 OP_ARRAY. Bash it back. */
10582 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10583 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10589 type = exp->elts[pc + 1].type;
10590 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10594 type = exp->elts[pc + 1].type;
10595 return ada_evaluate_subexp (type, exp, pos, noside);
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10601 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10602 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10604 return ada_value_assign (arg1, arg1);
10606 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10607 except if the lhs of our assignment is a convenience variable.
10608 In the case of assigning to a convenience variable, the lhs
10609 should be exactly the result of the evaluation of the rhs. */
10610 type = value_type (arg1);
10611 if (VALUE_LVAL (arg1) == lval_internalvar)
10613 arg2 = evaluate_subexp (type, exp, pos, noside);
10614 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10616 if (ada_is_fixed_point_type (value_type (arg1)))
10617 arg2 = cast_to_fixed (value_type (arg1), arg2);
10618 else if (ada_is_fixed_point_type (value_type (arg2)))
10620 (_("Fixed-point values must be assigned to fixed-point variables"));
10622 arg2 = coerce_for_assign (value_type (arg1), arg2);
10623 return ada_value_assign (arg1, arg2);
10626 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10627 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10628 if (noside == EVAL_SKIP)
10630 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10631 return (value_from_longest
10632 (value_type (arg1),
10633 value_as_long (arg1) + value_as_long (arg2)));
10634 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10635 return (value_from_longest
10636 (value_type (arg2),
10637 value_as_long (arg1) + value_as_long (arg2)));
10638 if ((ada_is_fixed_point_type (value_type (arg1))
10639 || ada_is_fixed_point_type (value_type (arg2)))
10640 && value_type (arg1) != value_type (arg2))
10641 error (_("Operands of fixed-point addition must have the same type"));
10642 /* Do the addition, and cast the result to the type of the first
10643 argument. We cannot cast the result to a reference type, so if
10644 ARG1 is a reference type, find its underlying type. */
10645 type = value_type (arg1);
10646 while (TYPE_CODE (type) == TYPE_CODE_REF)
10647 type = TYPE_TARGET_TYPE (type);
10648 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10649 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10652 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10653 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10654 if (noside == EVAL_SKIP)
10656 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10657 return (value_from_longest
10658 (value_type (arg1),
10659 value_as_long (arg1) - value_as_long (arg2)));
10660 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10661 return (value_from_longest
10662 (value_type (arg2),
10663 value_as_long (arg1) - value_as_long (arg2)));
10664 if ((ada_is_fixed_point_type (value_type (arg1))
10665 || ada_is_fixed_point_type (value_type (arg2)))
10666 && value_type (arg1) != value_type (arg2))
10667 error (_("Operands of fixed-point subtraction "
10668 "must have the same type"));
10669 /* Do the substraction, and cast the result to the type of the first
10670 argument. We cannot cast the result to a reference type, so if
10671 ARG1 is a reference type, find its underlying type. */
10672 type = value_type (arg1);
10673 while (TYPE_CODE (type) == TYPE_CODE_REF)
10674 type = TYPE_TARGET_TYPE (type);
10675 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10676 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10682 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10683 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10684 if (noside == EVAL_SKIP)
10686 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10689 return value_zero (value_type (arg1), not_lval);
10693 type = builtin_type (exp->gdbarch)->builtin_double;
10694 if (ada_is_fixed_point_type (value_type (arg1)))
10695 arg1 = cast_from_fixed (type, arg1);
10696 if (ada_is_fixed_point_type (value_type (arg2)))
10697 arg2 = cast_from_fixed (type, arg2);
10698 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10699 return ada_value_binop (arg1, arg2, op);
10703 case BINOP_NOTEQUAL:
10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10706 if (noside == EVAL_SKIP)
10708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10713 tem = ada_value_equal (arg1, arg2);
10715 if (op == BINOP_NOTEQUAL)
10717 type = language_bool_type (exp->language_defn, exp->gdbarch);
10718 return value_from_longest (type, (LONGEST) tem);
10721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10724 else if (ada_is_fixed_point_type (value_type (arg1)))
10725 return value_cast (value_type (arg1), value_neg (arg1));
10728 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10729 return value_neg (arg1);
10732 case BINOP_LOGICAL_AND:
10733 case BINOP_LOGICAL_OR:
10734 case UNOP_LOGICAL_NOT:
10739 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10740 type = language_bool_type (exp->language_defn, exp->gdbarch);
10741 return value_cast (type, val);
10744 case BINOP_BITWISE_AND:
10745 case BINOP_BITWISE_IOR:
10746 case BINOP_BITWISE_XOR:
10750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10754 return value_cast (value_type (arg1), val);
10760 if (noside == EVAL_SKIP)
10766 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10767 /* Only encountered when an unresolved symbol occurs in a
10768 context other than a function call, in which case, it is
10770 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10771 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10775 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10776 /* Check to see if this is a tagged type. We also need to handle
10777 the case where the type is a reference to a tagged type, but
10778 we have to be careful to exclude pointers to tagged types.
10779 The latter should be shown as usual (as a pointer), whereas
10780 a reference should mostly be transparent to the user. */
10781 if (ada_is_tagged_type (type, 0)
10782 || (TYPE_CODE (type) == TYPE_CODE_REF
10783 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10785 /* Tagged types are a little special in the fact that the real
10786 type is dynamic and can only be determined by inspecting the
10787 object's tag. This means that we need to get the object's
10788 value first (EVAL_NORMAL) and then extract the actual object
10791 Note that we cannot skip the final step where we extract
10792 the object type from its tag, because the EVAL_NORMAL phase
10793 results in dynamic components being resolved into fixed ones.
10794 This can cause problems when trying to print the type
10795 description of tagged types whose parent has a dynamic size:
10796 We use the type name of the "_parent" component in order
10797 to print the name of the ancestor type in the type description.
10798 If that component had a dynamic size, the resolution into
10799 a fixed type would result in the loss of that type name,
10800 thus preventing us from printing the name of the ancestor
10801 type in the type description. */
10802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10804 if (TYPE_CODE (type) != TYPE_CODE_REF)
10806 struct type *actual_type;
10808 actual_type = type_from_tag (ada_value_tag (arg1));
10809 if (actual_type == NULL)
10810 /* If, for some reason, we were unable to determine
10811 the actual type from the tag, then use the static
10812 approximation that we just computed as a fallback.
10813 This can happen if the debugging information is
10814 incomplete, for instance. */
10815 actual_type = type;
10816 return value_zero (actual_type, not_lval);
10820 /* In the case of a ref, ada_coerce_ref takes care
10821 of determining the actual type. But the evaluation
10822 should return a ref as it should be valid to ask
10823 for its address; so rebuild a ref after coerce. */
10824 arg1 = ada_coerce_ref (arg1);
10825 return value_ref (arg1, TYPE_CODE_REF);
10829 /* Records and unions for which GNAT encodings have been
10830 generated need to be statically fixed as well.
10831 Otherwise, non-static fixing produces a type where
10832 all dynamic properties are removed, which prevents "ptype"
10833 from being able to completely describe the type.
10834 For instance, a case statement in a variant record would be
10835 replaced by the relevant components based on the actual
10836 value of the discriminants. */
10837 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10838 && dynamic_template_type (type) != NULL)
10839 || (TYPE_CODE (type) == TYPE_CODE_UNION
10840 && ada_find_parallel_type (type, "___XVU") != NULL))
10843 return value_zero (to_static_fixed_type (type), not_lval);
10847 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10848 return ada_to_fixed_value (arg1);
10853 /* Allocate arg vector, including space for the function to be
10854 called in argvec[0] and a terminating NULL. */
10855 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10856 argvec = XALLOCAVEC (struct value *, nargs + 2);
10858 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10859 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10860 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10861 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10864 for (tem = 0; tem <= nargs; tem += 1)
10865 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10868 if (noside == EVAL_SKIP)
10872 if (ada_is_constrained_packed_array_type
10873 (desc_base_type (value_type (argvec[0]))))
10874 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10875 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10876 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10877 /* This is a packed array that has already been fixed, and
10878 therefore already coerced to a simple array. Nothing further
10881 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10883 /* Make sure we dereference references so that all the code below
10884 feels like it's really handling the referenced value. Wrapping
10885 types (for alignment) may be there, so make sure we strip them as
10887 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10889 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10890 && VALUE_LVAL (argvec[0]) == lval_memory)
10891 argvec[0] = value_addr (argvec[0]);
10893 type = ada_check_typedef (value_type (argvec[0]));
10895 /* Ada allows us to implicitly dereference arrays when subscripting
10896 them. So, if this is an array typedef (encoding use for array
10897 access types encoded as fat pointers), strip it now. */
10898 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10899 type = ada_typedef_target_type (type);
10901 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10903 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10905 case TYPE_CODE_FUNC:
10906 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10908 case TYPE_CODE_ARRAY:
10910 case TYPE_CODE_STRUCT:
10911 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10912 argvec[0] = ada_value_ind (argvec[0]);
10913 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10916 error (_("cannot subscript or call something of type `%s'"),
10917 ada_type_name (value_type (argvec[0])));
10922 switch (TYPE_CODE (type))
10924 case TYPE_CODE_FUNC:
10925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10927 if (TYPE_TARGET_TYPE (type) == NULL)
10928 error_call_unknown_return_type (NULL);
10929 return allocate_value (TYPE_TARGET_TYPE (type));
10931 return call_function_by_hand (argvec[0], NULL,
10932 gdb::make_array_view (argvec + 1,
10934 case TYPE_CODE_INTERNAL_FUNCTION:
10935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10936 /* We don't know anything about what the internal
10937 function might return, but we have to return
10939 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10942 return call_internal_function (exp->gdbarch, exp->language_defn,
10943 argvec[0], nargs, argvec + 1);
10945 case TYPE_CODE_STRUCT:
10949 arity = ada_array_arity (type);
10950 type = ada_array_element_type (type, nargs);
10952 error (_("cannot subscript or call a record"));
10953 if (arity != nargs)
10954 error (_("wrong number of subscripts; expecting %d"), arity);
10955 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10956 return value_zero (ada_aligned_type (type), lval_memory);
10958 unwrap_value (ada_value_subscript
10959 (argvec[0], nargs, argvec + 1));
10961 case TYPE_CODE_ARRAY:
10962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10964 type = ada_array_element_type (type, nargs);
10966 error (_("element type of array unknown"));
10968 return value_zero (ada_aligned_type (type), lval_memory);
10971 unwrap_value (ada_value_subscript
10972 (ada_coerce_to_simple_array (argvec[0]),
10973 nargs, argvec + 1));
10974 case TYPE_CODE_PTR: /* Pointer to array */
10975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10978 type = ada_array_element_type (type, nargs);
10980 error (_("element type of array unknown"));
10982 return value_zero (ada_aligned_type (type), lval_memory);
10985 unwrap_value (ada_value_ptr_subscript (argvec[0],
10986 nargs, argvec + 1));
10989 error (_("Attempt to index or call something other than an "
10990 "array or function"));
10995 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10996 struct value *low_bound_val =
10997 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10998 struct value *high_bound_val =
10999 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11001 LONGEST high_bound;
11003 low_bound_val = coerce_ref (low_bound_val);
11004 high_bound_val = coerce_ref (high_bound_val);
11005 low_bound = value_as_long (low_bound_val);
11006 high_bound = value_as_long (high_bound_val);
11008 if (noside == EVAL_SKIP)
11011 /* If this is a reference to an aligner type, then remove all
11013 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11014 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11015 TYPE_TARGET_TYPE (value_type (array)) =
11016 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11018 if (ada_is_constrained_packed_array_type (value_type (array)))
11019 error (_("cannot slice a packed array"));
11021 /* If this is a reference to an array or an array lvalue,
11022 convert to a pointer. */
11023 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11024 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11025 && VALUE_LVAL (array) == lval_memory))
11026 array = value_addr (array);
11028 if (noside == EVAL_AVOID_SIDE_EFFECTS
11029 && ada_is_array_descriptor_type (ada_check_typedef
11030 (value_type (array))))
11031 return empty_array (ada_type_of_array (array, 0), low_bound);
11033 array = ada_coerce_to_simple_array_ptr (array);
11035 /* If we have more than one level of pointer indirection,
11036 dereference the value until we get only one level. */
11037 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11038 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11040 array = value_ind (array);
11042 /* Make sure we really do have an array type before going further,
11043 to avoid a SEGV when trying to get the index type or the target
11044 type later down the road if the debug info generated by
11045 the compiler is incorrect or incomplete. */
11046 if (!ada_is_simple_array_type (value_type (array)))
11047 error (_("cannot take slice of non-array"));
11049 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11052 struct type *type0 = ada_check_typedef (value_type (array));
11054 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11055 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11058 struct type *arr_type0 =
11059 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11061 return ada_value_slice_from_ptr (array, arr_type0,
11062 longest_to_int (low_bound),
11063 longest_to_int (high_bound));
11066 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11068 else if (high_bound < low_bound)
11069 return empty_array (value_type (array), low_bound);
11071 return ada_value_slice (array, longest_to_int (low_bound),
11072 longest_to_int (high_bound));
11075 case UNOP_IN_RANGE:
11077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11078 type = check_typedef (exp->elts[pc + 1].type);
11080 if (noside == EVAL_SKIP)
11083 switch (TYPE_CODE (type))
11086 lim_warning (_("Membership test incompletely implemented; "
11087 "always returns true"));
11088 type = language_bool_type (exp->language_defn, exp->gdbarch);
11089 return value_from_longest (type, (LONGEST) 1);
11091 case TYPE_CODE_RANGE:
11092 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11093 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11095 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11096 type = language_bool_type (exp->language_defn, exp->gdbarch);
11098 value_from_longest (type,
11099 (value_less (arg1, arg3)
11100 || value_equal (arg1, arg3))
11101 && (value_less (arg2, arg1)
11102 || value_equal (arg2, arg1)));
11105 case BINOP_IN_BOUNDS:
11107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11110 if (noside == EVAL_SKIP)
11113 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11115 type = language_bool_type (exp->language_defn, exp->gdbarch);
11116 return value_zero (type, not_lval);
11119 tem = longest_to_int (exp->elts[pc + 1].longconst);
11121 type = ada_index_type (value_type (arg2), tem, "range");
11123 type = value_type (arg1);
11125 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11126 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11129 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11130 type = language_bool_type (exp->language_defn, exp->gdbarch);
11132 value_from_longest (type,
11133 (value_less (arg1, arg3)
11134 || value_equal (arg1, arg3))
11135 && (value_less (arg2, arg1)
11136 || value_equal (arg2, arg1)));
11138 case TERNOP_IN_RANGE:
11139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11141 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11143 if (noside == EVAL_SKIP)
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11148 type = language_bool_type (exp->language_defn, exp->gdbarch);
11150 value_from_longest (type,
11151 (value_less (arg1, arg3)
11152 || value_equal (arg1, arg3))
11153 && (value_less (arg2, arg1)
11154 || value_equal (arg2, arg1)));
11158 case OP_ATR_LENGTH:
11160 struct type *type_arg;
11162 if (exp->elts[*pos].opcode == OP_TYPE)
11164 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11166 type_arg = check_typedef (exp->elts[pc + 2].type);
11170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 if (exp->elts[*pos].opcode != OP_LONG)
11175 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11176 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11179 if (noside == EVAL_SKIP)
11182 if (type_arg == NULL)
11184 arg1 = ada_coerce_ref (arg1);
11186 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11187 arg1 = ada_coerce_to_simple_array (arg1);
11189 if (op == OP_ATR_LENGTH)
11190 type = builtin_type (exp->gdbarch)->builtin_int;
11193 type = ada_index_type (value_type (arg1), tem,
11194 ada_attribute_name (op));
11196 type = builtin_type (exp->gdbarch)->builtin_int;
11199 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11200 return allocate_value (type);
11204 default: /* Should never happen. */
11205 error (_("unexpected attribute encountered"));
11207 return value_from_longest
11208 (type, ada_array_bound (arg1, tem, 0));
11210 return value_from_longest
11211 (type, ada_array_bound (arg1, tem, 1));
11212 case OP_ATR_LENGTH:
11213 return value_from_longest
11214 (type, ada_array_length (arg1, tem));
11217 else if (discrete_type_p (type_arg))
11219 struct type *range_type;
11220 const char *name = ada_type_name (type_arg);
11223 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11224 range_type = to_fixed_range_type (type_arg, NULL);
11225 if (range_type == NULL)
11226 range_type = type_arg;
11230 error (_("unexpected attribute encountered"));
11232 return value_from_longest
11233 (range_type, ada_discrete_type_low_bound (range_type));
11235 return value_from_longest
11236 (range_type, ada_discrete_type_high_bound (range_type));
11237 case OP_ATR_LENGTH:
11238 error (_("the 'length attribute applies only to array types"));
11241 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11242 error (_("unimplemented type attribute"));
11247 if (ada_is_constrained_packed_array_type (type_arg))
11248 type_arg = decode_constrained_packed_array_type (type_arg);
11250 if (op == OP_ATR_LENGTH)
11251 type = builtin_type (exp->gdbarch)->builtin_int;
11254 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11256 type = builtin_type (exp->gdbarch)->builtin_int;
11259 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11260 return allocate_value (type);
11265 error (_("unexpected attribute encountered"));
11267 low = ada_array_bound_from_type (type_arg, tem, 0);
11268 return value_from_longest (type, low);
11270 high = ada_array_bound_from_type (type_arg, tem, 1);
11271 return value_from_longest (type, high);
11272 case OP_ATR_LENGTH:
11273 low = ada_array_bound_from_type (type_arg, tem, 0);
11274 high = ada_array_bound_from_type (type_arg, tem, 1);
11275 return value_from_longest (type, high - low + 1);
11281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11282 if (noside == EVAL_SKIP)
11285 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11286 return value_zero (ada_tag_type (arg1), not_lval);
11288 return ada_value_tag (arg1);
11292 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11295 if (noside == EVAL_SKIP)
11297 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11298 return value_zero (value_type (arg1), not_lval);
11301 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11302 return value_binop (arg1, arg2,
11303 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11306 case OP_ATR_MODULUS:
11308 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11310 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11311 if (noside == EVAL_SKIP)
11314 if (!ada_is_modular_type (type_arg))
11315 error (_("'modulus must be applied to modular type"));
11317 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11318 ada_modulus (type_arg));
11323 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11324 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11325 if (noside == EVAL_SKIP)
11327 type = builtin_type (exp->gdbarch)->builtin_int;
11328 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11329 return value_zero (type, not_lval);
11331 return value_pos_atr (type, arg1);
11334 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11335 type = value_type (arg1);
11337 /* If the argument is a reference, then dereference its type, since
11338 the user is really asking for the size of the actual object,
11339 not the size of the pointer. */
11340 if (TYPE_CODE (type) == TYPE_CODE_REF)
11341 type = TYPE_TARGET_TYPE (type);
11343 if (noside == EVAL_SKIP)
11345 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11346 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11348 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11349 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11353 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11354 type = exp->elts[pc + 2].type;
11355 if (noside == EVAL_SKIP)
11357 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11358 return value_zero (type, not_lval);
11360 return value_val_atr (type, arg1);
11363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11364 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11365 if (noside == EVAL_SKIP)
11367 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11368 return value_zero (value_type (arg1), not_lval);
11371 /* For integer exponentiation operations,
11372 only promote the first argument. */
11373 if (is_integral_type (value_type (arg2)))
11374 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11376 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11378 return value_binop (arg1, arg2, op);
11382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
11389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11390 if (noside == EVAL_SKIP)
11392 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11393 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11394 return value_neg (arg1);
11399 preeval_pos = *pos;
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
11403 type = ada_check_typedef (value_type (arg1));
11404 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11406 if (ada_is_array_descriptor_type (type))
11407 /* GDB allows dereferencing GNAT array descriptors. */
11409 struct type *arrType = ada_type_of_array (arg1, 0);
11411 if (arrType == NULL)
11412 error (_("Attempt to dereference null array pointer."));
11413 return value_at_lazy (arrType, 0);
11415 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11416 || TYPE_CODE (type) == TYPE_CODE_REF
11417 /* In C you can dereference an array to get the 1st elt. */
11418 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11420 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11421 only be determined by inspecting the object's tag.
11422 This means that we need to evaluate completely the
11423 expression in order to get its type. */
11425 if ((TYPE_CODE (type) == TYPE_CODE_REF
11426 || TYPE_CODE (type) == TYPE_CODE_PTR)
11427 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11429 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11431 type = value_type (ada_value_ind (arg1));
11435 type = to_static_fixed_type
11437 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11439 ada_ensure_varsize_limit (type);
11440 return value_zero (type, lval_memory);
11442 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11444 /* GDB allows dereferencing an int. */
11445 if (expect_type == NULL)
11446 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11451 to_static_fixed_type (ada_aligned_type (expect_type));
11452 return value_zero (expect_type, lval_memory);
11456 error (_("Attempt to take contents of a non-pointer value."));
11458 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11459 type = ada_check_typedef (value_type (arg1));
11461 if (TYPE_CODE (type) == TYPE_CODE_INT)
11462 /* GDB allows dereferencing an int. If we were given
11463 the expect_type, then use that as the target type.
11464 Otherwise, assume that the target type is an int. */
11466 if (expect_type != NULL)
11467 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11470 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11471 (CORE_ADDR) value_as_address (arg1));
11474 if (ada_is_array_descriptor_type (type))
11475 /* GDB allows dereferencing GNAT array descriptors. */
11476 return ada_coerce_to_simple_array (arg1);
11478 return ada_value_ind (arg1);
11480 case STRUCTOP_STRUCT:
11481 tem = longest_to_int (exp->elts[pc + 1].longconst);
11482 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11483 preeval_pos = *pos;
11484 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11485 if (noside == EVAL_SKIP)
11487 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11489 struct type *type1 = value_type (arg1);
11491 if (ada_is_tagged_type (type1, 1))
11493 type = ada_lookup_struct_elt_type (type1,
11494 &exp->elts[pc + 2].string,
11497 /* If the field is not found, check if it exists in the
11498 extension of this object's type. This means that we
11499 need to evaluate completely the expression. */
11503 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11505 arg1 = ada_value_struct_elt (arg1,
11506 &exp->elts[pc + 2].string,
11508 arg1 = unwrap_value (arg1);
11509 type = value_type (ada_to_fixed_value (arg1));
11514 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11517 return value_zero (ada_aligned_type (type), lval_memory);
11521 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11522 arg1 = unwrap_value (arg1);
11523 return ada_to_fixed_value (arg1);
11527 /* The value is not supposed to be used. This is here to make it
11528 easier to accommodate expressions that contain types. */
11530 if (noside == EVAL_SKIP)
11532 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11533 return allocate_value (exp->elts[pc + 1].type);
11535 error (_("Attempt to use a type name as an expression"));
11540 case OP_DISCRETE_RANGE:
11541 case OP_POSITIONAL:
11543 if (noside == EVAL_NORMAL)
11547 error (_("Undefined name, ambiguous name, or renaming used in "
11548 "component association: %s."), &exp->elts[pc+2].string);
11550 error (_("Aggregates only allowed on the right of an assignment"));
11552 internal_error (__FILE__, __LINE__,
11553 _("aggregate apparently mangled"));
11556 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11558 for (tem = 0; tem < nargs; tem += 1)
11559 ada_evaluate_subexp (NULL, exp, pos, noside);
11564 return eval_skip_value (exp);
11570 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11571 type name that encodes the 'small and 'delta information.
11572 Otherwise, return NULL. */
11574 static const char *
11575 fixed_type_info (struct type *type)
11577 const char *name = ada_type_name (type);
11578 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11580 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11582 const char *tail = strstr (name, "___XF_");
11589 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11590 return fixed_type_info (TYPE_TARGET_TYPE (type));
11595 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11598 ada_is_fixed_point_type (struct type *type)
11600 return fixed_type_info (type) != NULL;
11603 /* Return non-zero iff TYPE represents a System.Address type. */
11606 ada_is_system_address_type (struct type *type)
11608 return (TYPE_NAME (type)
11609 && strcmp (TYPE_NAME (type), "system__address") == 0);
11612 /* Assuming that TYPE is the representation of an Ada fixed-point
11613 type, return the target floating-point type to be used to represent
11614 of this type during internal computation. */
11616 static struct type *
11617 ada_scaling_type (struct type *type)
11619 return builtin_type (get_type_arch (type))->builtin_long_double;
11622 /* Assuming that TYPE is the representation of an Ada fixed-point
11623 type, return its delta, or NULL if the type is malformed and the
11624 delta cannot be determined. */
11627 ada_delta (struct type *type)
11629 const char *encoding = fixed_type_info (type);
11630 struct type *scale_type = ada_scaling_type (type);
11632 long long num, den;
11634 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11637 return value_binop (value_from_longest (scale_type, num),
11638 value_from_longest (scale_type, den), BINOP_DIV);
11641 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11642 factor ('SMALL value) associated with the type. */
11645 ada_scaling_factor (struct type *type)
11647 const char *encoding = fixed_type_info (type);
11648 struct type *scale_type = ada_scaling_type (type);
11650 long long num0, den0, num1, den1;
11653 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11654 &num0, &den0, &num1, &den1);
11657 return value_from_longest (scale_type, 1);
11659 return value_binop (value_from_longest (scale_type, num1),
11660 value_from_longest (scale_type, den1), BINOP_DIV);
11662 return value_binop (value_from_longest (scale_type, num0),
11663 value_from_longest (scale_type, den0), BINOP_DIV);
11670 /* Scan STR beginning at position K for a discriminant name, and
11671 return the value of that discriminant field of DVAL in *PX. If
11672 PNEW_K is not null, put the position of the character beyond the
11673 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11674 not alter *PX and *PNEW_K if unsuccessful. */
11677 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11680 static char *bound_buffer = NULL;
11681 static size_t bound_buffer_len = 0;
11682 const char *pstart, *pend, *bound;
11683 struct value *bound_val;
11685 if (dval == NULL || str == NULL || str[k] == '\0')
11689 pend = strstr (pstart, "__");
11693 k += strlen (bound);
11697 int len = pend - pstart;
11699 /* Strip __ and beyond. */
11700 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11701 strncpy (bound_buffer, pstart, len);
11702 bound_buffer[len] = '\0';
11704 bound = bound_buffer;
11708 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11709 if (bound_val == NULL)
11712 *px = value_as_long (bound_val);
11713 if (pnew_k != NULL)
11718 /* Value of variable named NAME in the current environment. If
11719 no such variable found, then if ERR_MSG is null, returns 0, and
11720 otherwise causes an error with message ERR_MSG. */
11722 static struct value *
11723 get_var_value (const char *name, const char *err_msg)
11725 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11727 std::vector<struct block_symbol> syms;
11728 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11729 get_selected_block (0),
11730 VAR_DOMAIN, &syms, 1);
11734 if (err_msg == NULL)
11737 error (("%s"), err_msg);
11740 return value_of_variable (syms[0].symbol, syms[0].block);
11743 /* Value of integer variable named NAME in the current environment.
11744 If no such variable is found, returns false. Otherwise, sets VALUE
11745 to the variable's value and returns true. */
11748 get_int_var_value (const char *name, LONGEST &value)
11750 struct value *var_val = get_var_value (name, 0);
11755 value = value_as_long (var_val);
11760 /* Return a range type whose base type is that of the range type named
11761 NAME in the current environment, and whose bounds are calculated
11762 from NAME according to the GNAT range encoding conventions.
11763 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11764 corresponding range type from debug information; fall back to using it
11765 if symbol lookup fails. If a new type must be created, allocate it
11766 like ORIG_TYPE was. The bounds information, in general, is encoded
11767 in NAME, the base type given in the named range type. */
11769 static struct type *
11770 to_fixed_range_type (struct type *raw_type, struct value *dval)
11773 struct type *base_type;
11774 const char *subtype_info;
11776 gdb_assert (raw_type != NULL);
11777 gdb_assert (TYPE_NAME (raw_type) != NULL);
11779 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11780 base_type = TYPE_TARGET_TYPE (raw_type);
11782 base_type = raw_type;
11784 name = TYPE_NAME (raw_type);
11785 subtype_info = strstr (name, "___XD");
11786 if (subtype_info == NULL)
11788 LONGEST L = ada_discrete_type_low_bound (raw_type);
11789 LONGEST U = ada_discrete_type_high_bound (raw_type);
11791 if (L < INT_MIN || U > INT_MAX)
11794 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11799 static char *name_buf = NULL;
11800 static size_t name_len = 0;
11801 int prefix_len = subtype_info - name;
11804 const char *bounds_str;
11807 GROW_VECT (name_buf, name_len, prefix_len + 5);
11808 strncpy (name_buf, name, prefix_len);
11809 name_buf[prefix_len] = '\0';
11812 bounds_str = strchr (subtype_info, '_');
11815 if (*subtype_info == 'L')
11817 if (!ada_scan_number (bounds_str, n, &L, &n)
11818 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11820 if (bounds_str[n] == '_')
11822 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11828 strcpy (name_buf + prefix_len, "___L");
11829 if (!get_int_var_value (name_buf, L))
11831 lim_warning (_("Unknown lower bound, using 1."));
11836 if (*subtype_info == 'U')
11838 if (!ada_scan_number (bounds_str, n, &U, &n)
11839 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11844 strcpy (name_buf + prefix_len, "___U");
11845 if (!get_int_var_value (name_buf, U))
11847 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11852 type = create_static_range_type (alloc_type_copy (raw_type),
11854 /* create_static_range_type alters the resulting type's length
11855 to match the size of the base_type, which is not what we want.
11856 Set it back to the original range type's length. */
11857 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11858 TYPE_NAME (type) = name;
11863 /* True iff NAME is the name of a range type. */
11866 ada_is_range_type_name (const char *name)
11868 return (name != NULL && strstr (name, "___XD"));
11872 /* Modular types */
11874 /* True iff TYPE is an Ada modular type. */
11877 ada_is_modular_type (struct type *type)
11879 struct type *subranged_type = get_base_type (type);
11881 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11882 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11883 && TYPE_UNSIGNED (subranged_type));
11886 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11889 ada_modulus (struct type *type)
11891 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11895 /* Ada exception catchpoint support:
11896 ---------------------------------
11898 We support 3 kinds of exception catchpoints:
11899 . catchpoints on Ada exceptions
11900 . catchpoints on unhandled Ada exceptions
11901 . catchpoints on failed assertions
11903 Exceptions raised during failed assertions, or unhandled exceptions
11904 could perfectly be caught with the general catchpoint on Ada exceptions.
11905 However, we can easily differentiate these two special cases, and having
11906 the option to distinguish these two cases from the rest can be useful
11907 to zero-in on certain situations.
11909 Exception catchpoints are a specialized form of breakpoint,
11910 since they rely on inserting breakpoints inside known routines
11911 of the GNAT runtime. The implementation therefore uses a standard
11912 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11915 Support in the runtime for exception catchpoints have been changed
11916 a few times already, and these changes affect the implementation
11917 of these catchpoints. In order to be able to support several
11918 variants of the runtime, we use a sniffer that will determine
11919 the runtime variant used by the program being debugged. */
11921 /* Ada's standard exceptions.
11923 The Ada 83 standard also defined Numeric_Error. But there so many
11924 situations where it was unclear from the Ada 83 Reference Manual
11925 (RM) whether Constraint_Error or Numeric_Error should be raised,
11926 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11927 Interpretation saying that anytime the RM says that Numeric_Error
11928 should be raised, the implementation may raise Constraint_Error.
11929 Ada 95 went one step further and pretty much removed Numeric_Error
11930 from the list of standard exceptions (it made it a renaming of
11931 Constraint_Error, to help preserve compatibility when compiling
11932 an Ada83 compiler). As such, we do not include Numeric_Error from
11933 this list of standard exceptions. */
11935 static const char *standard_exc[] = {
11936 "constraint_error",
11942 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11944 /* A structure that describes how to support exception catchpoints
11945 for a given executable. */
11947 struct exception_support_info
11949 /* The name of the symbol to break on in order to insert
11950 a catchpoint on exceptions. */
11951 const char *catch_exception_sym;
11953 /* The name of the symbol to break on in order to insert
11954 a catchpoint on unhandled exceptions. */
11955 const char *catch_exception_unhandled_sym;
11957 /* The name of the symbol to break on in order to insert
11958 a catchpoint on failed assertions. */
11959 const char *catch_assert_sym;
11961 /* The name of the symbol to break on in order to insert
11962 a catchpoint on exception handling. */
11963 const char *catch_handlers_sym;
11965 /* Assuming that the inferior just triggered an unhandled exception
11966 catchpoint, this function is responsible for returning the address
11967 in inferior memory where the name of that exception is stored.
11968 Return zero if the address could not be computed. */
11969 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11972 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11973 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11975 /* The following exception support info structure describes how to
11976 implement exception catchpoints with the latest version of the
11977 Ada runtime (as of 2007-03-06). */
11979 static const struct exception_support_info default_exception_support_info =
11981 "__gnat_debug_raise_exception", /* catch_exception_sym */
11982 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11983 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11984 "__gnat_begin_handler", /* catch_handlers_sym */
11985 ada_unhandled_exception_name_addr
11988 /* The following exception support info structure describes how to
11989 implement exception catchpoints with a slightly older version
11990 of the Ada runtime. */
11992 static const struct exception_support_info exception_support_info_fallback =
11994 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11995 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11996 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11997 "__gnat_begin_handler", /* catch_handlers_sym */
11998 ada_unhandled_exception_name_addr_from_raise
12001 /* Return nonzero if we can detect the exception support routines
12002 described in EINFO.
12004 This function errors out if an abnormal situation is detected
12005 (for instance, if we find the exception support routines, but
12006 that support is found to be incomplete). */
12009 ada_has_this_exception_support (const struct exception_support_info *einfo)
12011 struct symbol *sym;
12013 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12014 that should be compiled with debugging information. As a result, we
12015 expect to find that symbol in the symtabs. */
12017 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12020 /* Perhaps we did not find our symbol because the Ada runtime was
12021 compiled without debugging info, or simply stripped of it.
12022 It happens on some GNU/Linux distributions for instance, where
12023 users have to install a separate debug package in order to get
12024 the runtime's debugging info. In that situation, let the user
12025 know why we cannot insert an Ada exception catchpoint.
12027 Note: Just for the purpose of inserting our Ada exception
12028 catchpoint, we could rely purely on the associated minimal symbol.
12029 But we would be operating in degraded mode anyway, since we are
12030 still lacking the debugging info needed later on to extract
12031 the name of the exception being raised (this name is printed in
12032 the catchpoint message, and is also used when trying to catch
12033 a specific exception). We do not handle this case for now. */
12034 struct bound_minimal_symbol msym
12035 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12037 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12038 error (_("Your Ada runtime appears to be missing some debugging "
12039 "information.\nCannot insert Ada exception catchpoint "
12040 "in this configuration."));
12045 /* Make sure that the symbol we found corresponds to a function. */
12047 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12048 error (_("Symbol \"%s\" is not a function (class = %d)"),
12049 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12054 /* Inspect the Ada runtime and determine which exception info structure
12055 should be used to provide support for exception catchpoints.
12057 This function will always set the per-inferior exception_info,
12058 or raise an error. */
12061 ada_exception_support_info_sniffer (void)
12063 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12065 /* If the exception info is already known, then no need to recompute it. */
12066 if (data->exception_info != NULL)
12069 /* Check the latest (default) exception support info. */
12070 if (ada_has_this_exception_support (&default_exception_support_info))
12072 data->exception_info = &default_exception_support_info;
12076 /* Try our fallback exception suport info. */
12077 if (ada_has_this_exception_support (&exception_support_info_fallback))
12079 data->exception_info = &exception_support_info_fallback;
12083 /* Sometimes, it is normal for us to not be able to find the routine
12084 we are looking for. This happens when the program is linked with
12085 the shared version of the GNAT runtime, and the program has not been
12086 started yet. Inform the user of these two possible causes if
12089 if (ada_update_initial_language (language_unknown) != language_ada)
12090 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12092 /* If the symbol does not exist, then check that the program is
12093 already started, to make sure that shared libraries have been
12094 loaded. If it is not started, this may mean that the symbol is
12095 in a shared library. */
12097 if (inferior_ptid.pid () == 0)
12098 error (_("Unable to insert catchpoint. Try to start the program first."));
12100 /* At this point, we know that we are debugging an Ada program and
12101 that the inferior has been started, but we still are not able to
12102 find the run-time symbols. That can mean that we are in
12103 configurable run time mode, or that a-except as been optimized
12104 out by the linker... In any case, at this point it is not worth
12105 supporting this feature. */
12107 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12110 /* True iff FRAME is very likely to be that of a function that is
12111 part of the runtime system. This is all very heuristic, but is
12112 intended to be used as advice as to what frames are uninteresting
12116 is_known_support_routine (struct frame_info *frame)
12118 enum language func_lang;
12120 const char *fullname;
12122 /* If this code does not have any debugging information (no symtab),
12123 This cannot be any user code. */
12125 symtab_and_line sal = find_frame_sal (frame);
12126 if (sal.symtab == NULL)
12129 /* If there is a symtab, but the associated source file cannot be
12130 located, then assume this is not user code: Selecting a frame
12131 for which we cannot display the code would not be very helpful
12132 for the user. This should also take care of case such as VxWorks
12133 where the kernel has some debugging info provided for a few units. */
12135 fullname = symtab_to_fullname (sal.symtab);
12136 if (access (fullname, R_OK) != 0)
12139 /* Check the unit filename againt the Ada runtime file naming.
12140 We also check the name of the objfile against the name of some
12141 known system libraries that sometimes come with debugging info
12144 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12146 re_comp (known_runtime_file_name_patterns[i]);
12147 if (re_exec (lbasename (sal.symtab->filename)))
12149 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12150 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12154 /* Check whether the function is a GNAT-generated entity. */
12156 gdb::unique_xmalloc_ptr<char> func_name
12157 = find_frame_funname (frame, &func_lang, NULL);
12158 if (func_name == NULL)
12161 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12163 re_comp (known_auxiliary_function_name_patterns[i]);
12164 if (re_exec (func_name.get ()))
12171 /* Find the first frame that contains debugging information and that is not
12172 part of the Ada run-time, starting from FI and moving upward. */
12175 ada_find_printable_frame (struct frame_info *fi)
12177 for (; fi != NULL; fi = get_prev_frame (fi))
12179 if (!is_known_support_routine (fi))
12188 /* Assuming that the inferior just triggered an unhandled exception
12189 catchpoint, return the address in inferior memory where the name
12190 of the exception is stored.
12192 Return zero if the address could not be computed. */
12195 ada_unhandled_exception_name_addr (void)
12197 return parse_and_eval_address ("e.full_name");
12200 /* Same as ada_unhandled_exception_name_addr, except that this function
12201 should be used when the inferior uses an older version of the runtime,
12202 where the exception name needs to be extracted from a specific frame
12203 several frames up in the callstack. */
12206 ada_unhandled_exception_name_addr_from_raise (void)
12209 struct frame_info *fi;
12210 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12212 /* To determine the name of this exception, we need to select
12213 the frame corresponding to RAISE_SYM_NAME. This frame is
12214 at least 3 levels up, so we simply skip the first 3 frames
12215 without checking the name of their associated function. */
12216 fi = get_current_frame ();
12217 for (frame_level = 0; frame_level < 3; frame_level += 1)
12219 fi = get_prev_frame (fi);
12223 enum language func_lang;
12225 gdb::unique_xmalloc_ptr<char> func_name
12226 = find_frame_funname (fi, &func_lang, NULL);
12227 if (func_name != NULL)
12229 if (strcmp (func_name.get (),
12230 data->exception_info->catch_exception_sym) == 0)
12231 break; /* We found the frame we were looking for... */
12233 fi = get_prev_frame (fi);
12240 return parse_and_eval_address ("id.full_name");
12243 /* Assuming the inferior just triggered an Ada exception catchpoint
12244 (of any type), return the address in inferior memory where the name
12245 of the exception is stored, if applicable.
12247 Assumes the selected frame is the current frame.
12249 Return zero if the address could not be computed, or if not relevant. */
12252 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12253 struct breakpoint *b)
12255 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12259 case ada_catch_exception:
12260 return (parse_and_eval_address ("e.full_name"));
12263 case ada_catch_exception_unhandled:
12264 return data->exception_info->unhandled_exception_name_addr ();
12267 case ada_catch_handlers:
12268 return 0; /* The runtimes does not provide access to the exception
12272 case ada_catch_assert:
12273 return 0; /* Exception name is not relevant in this case. */
12277 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12281 return 0; /* Should never be reached. */
12284 /* Assuming the inferior is stopped at an exception catchpoint,
12285 return the message which was associated to the exception, if
12286 available. Return NULL if the message could not be retrieved.
12288 Note: The exception message can be associated to an exception
12289 either through the use of the Raise_Exception function, or
12290 more simply (Ada 2005 and later), via:
12292 raise Exception_Name with "exception message";
12296 static gdb::unique_xmalloc_ptr<char>
12297 ada_exception_message_1 (void)
12299 struct value *e_msg_val;
12302 /* For runtimes that support this feature, the exception message
12303 is passed as an unbounded string argument called "message". */
12304 e_msg_val = parse_and_eval ("message");
12305 if (e_msg_val == NULL)
12306 return NULL; /* Exception message not supported. */
12308 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12309 gdb_assert (e_msg_val != NULL);
12310 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12312 /* If the message string is empty, then treat it as if there was
12313 no exception message. */
12314 if (e_msg_len <= 0)
12317 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12318 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12319 e_msg.get ()[e_msg_len] = '\0';
12324 /* Same as ada_exception_message_1, except that all exceptions are
12325 contained here (returning NULL instead). */
12327 static gdb::unique_xmalloc_ptr<char>
12328 ada_exception_message (void)
12330 gdb::unique_xmalloc_ptr<char> e_msg;
12334 e_msg = ada_exception_message_1 ();
12336 CATCH (e, RETURN_MASK_ERROR)
12338 e_msg.reset (nullptr);
12345 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12346 any error that ada_exception_name_addr_1 might cause to be thrown.
12347 When an error is intercepted, a warning with the error message is printed,
12348 and zero is returned. */
12351 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12352 struct breakpoint *b)
12354 CORE_ADDR result = 0;
12358 result = ada_exception_name_addr_1 (ex, b);
12361 CATCH (e, RETURN_MASK_ERROR)
12363 warning (_("failed to get exception name: %s"), e.message);
12371 static std::string ada_exception_catchpoint_cond_string
12372 (const char *excep_string,
12373 enum ada_exception_catchpoint_kind ex);
12375 /* Ada catchpoints.
12377 In the case of catchpoints on Ada exceptions, the catchpoint will
12378 stop the target on every exception the program throws. When a user
12379 specifies the name of a specific exception, we translate this
12380 request into a condition expression (in text form), and then parse
12381 it into an expression stored in each of the catchpoint's locations.
12382 We then use this condition to check whether the exception that was
12383 raised is the one the user is interested in. If not, then the
12384 target is resumed again. We store the name of the requested
12385 exception, in order to be able to re-set the condition expression
12386 when symbols change. */
12388 /* An instance of this type is used to represent an Ada catchpoint
12389 breakpoint location. */
12391 class ada_catchpoint_location : public bp_location
12394 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12395 : bp_location (ops, owner)
12398 /* The condition that checks whether the exception that was raised
12399 is the specific exception the user specified on catchpoint
12401 expression_up excep_cond_expr;
12404 /* Implement the DTOR method in the bp_location_ops structure for all
12405 Ada exception catchpoint kinds. */
12408 ada_catchpoint_location_dtor (struct bp_location *bl)
12410 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12412 al->excep_cond_expr.reset ();
12415 /* The vtable to be used in Ada catchpoint locations. */
12417 static const struct bp_location_ops ada_catchpoint_location_ops =
12419 ada_catchpoint_location_dtor
12422 /* An instance of this type is used to represent an Ada catchpoint. */
12424 struct ada_catchpoint : public breakpoint
12426 /* The name of the specific exception the user specified. */
12427 std::string excep_string;
12430 /* Parse the exception condition string in the context of each of the
12431 catchpoint's locations, and store them for later evaluation. */
12434 create_excep_cond_exprs (struct ada_catchpoint *c,
12435 enum ada_exception_catchpoint_kind ex)
12437 struct bp_location *bl;
12439 /* Nothing to do if there's no specific exception to catch. */
12440 if (c->excep_string.empty ())
12443 /* Same if there are no locations... */
12444 if (c->loc == NULL)
12447 /* Compute the condition expression in text form, from the specific
12448 expection we want to catch. */
12449 std::string cond_string
12450 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12452 /* Iterate over all the catchpoint's locations, and parse an
12453 expression for each. */
12454 for (bl = c->loc; bl != NULL; bl = bl->next)
12456 struct ada_catchpoint_location *ada_loc
12457 = (struct ada_catchpoint_location *) bl;
12460 if (!bl->shlib_disabled)
12464 s = cond_string.c_str ();
12467 exp = parse_exp_1 (&s, bl->address,
12468 block_for_pc (bl->address),
12471 CATCH (e, RETURN_MASK_ERROR)
12473 warning (_("failed to reevaluate internal exception condition "
12474 "for catchpoint %d: %s"),
12475 c->number, e.message);
12480 ada_loc->excep_cond_expr = std::move (exp);
12484 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12485 structure for all exception catchpoint kinds. */
12487 static struct bp_location *
12488 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12489 struct breakpoint *self)
12491 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12494 /* Implement the RE_SET method in the breakpoint_ops structure for all
12495 exception catchpoint kinds. */
12498 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12500 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12502 /* Call the base class's method. This updates the catchpoint's
12504 bkpt_breakpoint_ops.re_set (b);
12506 /* Reparse the exception conditional expressions. One for each
12508 create_excep_cond_exprs (c, ex);
12511 /* Returns true if we should stop for this breakpoint hit. If the
12512 user specified a specific exception, we only want to cause a stop
12513 if the program thrown that exception. */
12516 should_stop_exception (const struct bp_location *bl)
12518 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12519 const struct ada_catchpoint_location *ada_loc
12520 = (const struct ada_catchpoint_location *) bl;
12523 /* With no specific exception, should always stop. */
12524 if (c->excep_string.empty ())
12527 if (ada_loc->excep_cond_expr == NULL)
12529 /* We will have a NULL expression if back when we were creating
12530 the expressions, this location's had failed to parse. */
12537 struct value *mark;
12539 mark = value_mark ();
12540 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12541 value_free_to_mark (mark);
12543 CATCH (ex, RETURN_MASK_ALL)
12545 exception_fprintf (gdb_stderr, ex,
12546 _("Error in testing exception condition:\n"));
12553 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12554 for all exception catchpoint kinds. */
12557 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12559 bs->stop = should_stop_exception (bs->bp_location_at);
12562 /* Implement the PRINT_IT method in the breakpoint_ops structure
12563 for all exception catchpoint kinds. */
12565 static enum print_stop_action
12566 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12568 struct ui_out *uiout = current_uiout;
12569 struct breakpoint *b = bs->breakpoint_at;
12571 annotate_catchpoint (b->number);
12573 if (uiout->is_mi_like_p ())
12575 uiout->field_string ("reason",
12576 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12577 uiout->field_string ("disp", bpdisp_text (b->disposition));
12580 uiout->text (b->disposition == disp_del
12581 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12582 uiout->field_int ("bkptno", b->number);
12583 uiout->text (", ");
12585 /* ada_exception_name_addr relies on the selected frame being the
12586 current frame. Need to do this here because this function may be
12587 called more than once when printing a stop, and below, we'll
12588 select the first frame past the Ada run-time (see
12589 ada_find_printable_frame). */
12590 select_frame (get_current_frame ());
12594 case ada_catch_exception:
12595 case ada_catch_exception_unhandled:
12596 case ada_catch_handlers:
12598 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12599 char exception_name[256];
12603 read_memory (addr, (gdb_byte *) exception_name,
12604 sizeof (exception_name) - 1);
12605 exception_name [sizeof (exception_name) - 1] = '\0';
12609 /* For some reason, we were unable to read the exception
12610 name. This could happen if the Runtime was compiled
12611 without debugging info, for instance. In that case,
12612 just replace the exception name by the generic string
12613 "exception" - it will read as "an exception" in the
12614 notification we are about to print. */
12615 memcpy (exception_name, "exception", sizeof ("exception"));
12617 /* In the case of unhandled exception breakpoints, we print
12618 the exception name as "unhandled EXCEPTION_NAME", to make
12619 it clearer to the user which kind of catchpoint just got
12620 hit. We used ui_out_text to make sure that this extra
12621 info does not pollute the exception name in the MI case. */
12622 if (ex == ada_catch_exception_unhandled)
12623 uiout->text ("unhandled ");
12624 uiout->field_string ("exception-name", exception_name);
12627 case ada_catch_assert:
12628 /* In this case, the name of the exception is not really
12629 important. Just print "failed assertion" to make it clearer
12630 that his program just hit an assertion-failure catchpoint.
12631 We used ui_out_text because this info does not belong in
12633 uiout->text ("failed assertion");
12637 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12638 if (exception_message != NULL)
12640 uiout->text (" (");
12641 uiout->field_string ("exception-message", exception_message.get ());
12645 uiout->text (" at ");
12646 ada_find_printable_frame (get_current_frame ());
12648 return PRINT_SRC_AND_LOC;
12651 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12652 for all exception catchpoint kinds. */
12655 print_one_exception (enum ada_exception_catchpoint_kind ex,
12656 struct breakpoint *b, struct bp_location **last_loc)
12658 struct ui_out *uiout = current_uiout;
12659 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12660 struct value_print_options opts;
12662 get_user_print_options (&opts);
12663 if (opts.addressprint)
12665 annotate_field (4);
12666 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12669 annotate_field (5);
12670 *last_loc = b->loc;
12673 case ada_catch_exception:
12674 if (!c->excep_string.empty ())
12676 std::string msg = string_printf (_("`%s' Ada exception"),
12677 c->excep_string.c_str ());
12679 uiout->field_string ("what", msg);
12682 uiout->field_string ("what", "all Ada exceptions");
12686 case ada_catch_exception_unhandled:
12687 uiout->field_string ("what", "unhandled Ada exceptions");
12690 case ada_catch_handlers:
12691 if (!c->excep_string.empty ())
12693 uiout->field_fmt ("what",
12694 _("`%s' Ada exception handlers"),
12695 c->excep_string.c_str ());
12698 uiout->field_string ("what", "all Ada exceptions handlers");
12701 case ada_catch_assert:
12702 uiout->field_string ("what", "failed Ada assertions");
12706 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12711 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12712 for all exception catchpoint kinds. */
12715 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12716 struct breakpoint *b)
12718 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12719 struct ui_out *uiout = current_uiout;
12721 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12722 : _("Catchpoint "));
12723 uiout->field_int ("bkptno", b->number);
12724 uiout->text (": ");
12728 case ada_catch_exception:
12729 if (!c->excep_string.empty ())
12731 std::string info = string_printf (_("`%s' Ada exception"),
12732 c->excep_string.c_str ());
12733 uiout->text (info.c_str ());
12736 uiout->text (_("all Ada exceptions"));
12739 case ada_catch_exception_unhandled:
12740 uiout->text (_("unhandled Ada exceptions"));
12743 case ada_catch_handlers:
12744 if (!c->excep_string.empty ())
12747 = string_printf (_("`%s' Ada exception handlers"),
12748 c->excep_string.c_str ());
12749 uiout->text (info.c_str ());
12752 uiout->text (_("all Ada exceptions handlers"));
12755 case ada_catch_assert:
12756 uiout->text (_("failed Ada assertions"));
12760 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12765 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12766 for all exception catchpoint kinds. */
12769 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12770 struct breakpoint *b, struct ui_file *fp)
12772 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12776 case ada_catch_exception:
12777 fprintf_filtered (fp, "catch exception");
12778 if (!c->excep_string.empty ())
12779 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12782 case ada_catch_exception_unhandled:
12783 fprintf_filtered (fp, "catch exception unhandled");
12786 case ada_catch_handlers:
12787 fprintf_filtered (fp, "catch handlers");
12790 case ada_catch_assert:
12791 fprintf_filtered (fp, "catch assert");
12795 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12797 print_recreate_thread (b, fp);
12800 /* Virtual table for "catch exception" breakpoints. */
12802 static struct bp_location *
12803 allocate_location_catch_exception (struct breakpoint *self)
12805 return allocate_location_exception (ada_catch_exception, self);
12809 re_set_catch_exception (struct breakpoint *b)
12811 re_set_exception (ada_catch_exception, b);
12815 check_status_catch_exception (bpstat bs)
12817 check_status_exception (ada_catch_exception, bs);
12820 static enum print_stop_action
12821 print_it_catch_exception (bpstat bs)
12823 return print_it_exception (ada_catch_exception, bs);
12827 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12829 print_one_exception (ada_catch_exception, b, last_loc);
12833 print_mention_catch_exception (struct breakpoint *b)
12835 print_mention_exception (ada_catch_exception, b);
12839 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12841 print_recreate_exception (ada_catch_exception, b, fp);
12844 static struct breakpoint_ops catch_exception_breakpoint_ops;
12846 /* Virtual table for "catch exception unhandled" breakpoints. */
12848 static struct bp_location *
12849 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12851 return allocate_location_exception (ada_catch_exception_unhandled, self);
12855 re_set_catch_exception_unhandled (struct breakpoint *b)
12857 re_set_exception (ada_catch_exception_unhandled, b);
12861 check_status_catch_exception_unhandled (bpstat bs)
12863 check_status_exception (ada_catch_exception_unhandled, bs);
12866 static enum print_stop_action
12867 print_it_catch_exception_unhandled (bpstat bs)
12869 return print_it_exception (ada_catch_exception_unhandled, bs);
12873 print_one_catch_exception_unhandled (struct breakpoint *b,
12874 struct bp_location **last_loc)
12876 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12880 print_mention_catch_exception_unhandled (struct breakpoint *b)
12882 print_mention_exception (ada_catch_exception_unhandled, b);
12886 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12887 struct ui_file *fp)
12889 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12892 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12894 /* Virtual table for "catch assert" breakpoints. */
12896 static struct bp_location *
12897 allocate_location_catch_assert (struct breakpoint *self)
12899 return allocate_location_exception (ada_catch_assert, self);
12903 re_set_catch_assert (struct breakpoint *b)
12905 re_set_exception (ada_catch_assert, b);
12909 check_status_catch_assert (bpstat bs)
12911 check_status_exception (ada_catch_assert, bs);
12914 static enum print_stop_action
12915 print_it_catch_assert (bpstat bs)
12917 return print_it_exception (ada_catch_assert, bs);
12921 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12923 print_one_exception (ada_catch_assert, b, last_loc);
12927 print_mention_catch_assert (struct breakpoint *b)
12929 print_mention_exception (ada_catch_assert, b);
12933 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12935 print_recreate_exception (ada_catch_assert, b, fp);
12938 static struct breakpoint_ops catch_assert_breakpoint_ops;
12940 /* Virtual table for "catch handlers" breakpoints. */
12942 static struct bp_location *
12943 allocate_location_catch_handlers (struct breakpoint *self)
12945 return allocate_location_exception (ada_catch_handlers, self);
12949 re_set_catch_handlers (struct breakpoint *b)
12951 re_set_exception (ada_catch_handlers, b);
12955 check_status_catch_handlers (bpstat bs)
12957 check_status_exception (ada_catch_handlers, bs);
12960 static enum print_stop_action
12961 print_it_catch_handlers (bpstat bs)
12963 return print_it_exception (ada_catch_handlers, bs);
12967 print_one_catch_handlers (struct breakpoint *b,
12968 struct bp_location **last_loc)
12970 print_one_exception (ada_catch_handlers, b, last_loc);
12974 print_mention_catch_handlers (struct breakpoint *b)
12976 print_mention_exception (ada_catch_handlers, b);
12980 print_recreate_catch_handlers (struct breakpoint *b,
12981 struct ui_file *fp)
12983 print_recreate_exception (ada_catch_handlers, b, fp);
12986 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12988 /* Split the arguments specified in a "catch exception" command.
12989 Set EX to the appropriate catchpoint type.
12990 Set EXCEP_STRING to the name of the specific exception if
12991 specified by the user.
12992 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12993 "catch handlers" command. False otherwise.
12994 If a condition is found at the end of the arguments, the condition
12995 expression is stored in COND_STRING (memory must be deallocated
12996 after use). Otherwise COND_STRING is set to NULL. */
12999 catch_ada_exception_command_split (const char *args,
13000 bool is_catch_handlers_cmd,
13001 enum ada_exception_catchpoint_kind *ex,
13002 std::string *excep_string,
13003 std::string *cond_string)
13005 std::string exception_name;
13007 exception_name = extract_arg (&args);
13008 if (exception_name == "if")
13010 /* This is not an exception name; this is the start of a condition
13011 expression for a catchpoint on all exceptions. So, "un-get"
13012 this token, and set exception_name to NULL. */
13013 exception_name.clear ();
13017 /* Check to see if we have a condition. */
13019 args = skip_spaces (args);
13020 if (startswith (args, "if")
13021 && (isspace (args[2]) || args[2] == '\0'))
13024 args = skip_spaces (args);
13026 if (args[0] == '\0')
13027 error (_("Condition missing after `if' keyword"));
13028 *cond_string = args;
13030 args += strlen (args);
13033 /* Check that we do not have any more arguments. Anything else
13036 if (args[0] != '\0')
13037 error (_("Junk at end of expression"));
13039 if (is_catch_handlers_cmd)
13041 /* Catch handling of exceptions. */
13042 *ex = ada_catch_handlers;
13043 *excep_string = exception_name;
13045 else if (exception_name.empty ())
13047 /* Catch all exceptions. */
13048 *ex = ada_catch_exception;
13049 excep_string->clear ();
13051 else if (exception_name == "unhandled")
13053 /* Catch unhandled exceptions. */
13054 *ex = ada_catch_exception_unhandled;
13055 excep_string->clear ();
13059 /* Catch a specific exception. */
13060 *ex = ada_catch_exception;
13061 *excep_string = exception_name;
13065 /* Return the name of the symbol on which we should break in order to
13066 implement a catchpoint of the EX kind. */
13068 static const char *
13069 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13071 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13073 gdb_assert (data->exception_info != NULL);
13077 case ada_catch_exception:
13078 return (data->exception_info->catch_exception_sym);
13080 case ada_catch_exception_unhandled:
13081 return (data->exception_info->catch_exception_unhandled_sym);
13083 case ada_catch_assert:
13084 return (data->exception_info->catch_assert_sym);
13086 case ada_catch_handlers:
13087 return (data->exception_info->catch_handlers_sym);
13090 internal_error (__FILE__, __LINE__,
13091 _("unexpected catchpoint kind (%d)"), ex);
13095 /* Return the breakpoint ops "virtual table" used for catchpoints
13098 static const struct breakpoint_ops *
13099 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13103 case ada_catch_exception:
13104 return (&catch_exception_breakpoint_ops);
13106 case ada_catch_exception_unhandled:
13107 return (&catch_exception_unhandled_breakpoint_ops);
13109 case ada_catch_assert:
13110 return (&catch_assert_breakpoint_ops);
13112 case ada_catch_handlers:
13113 return (&catch_handlers_breakpoint_ops);
13116 internal_error (__FILE__, __LINE__,
13117 _("unexpected catchpoint kind (%d)"), ex);
13121 /* Return the condition that will be used to match the current exception
13122 being raised with the exception that the user wants to catch. This
13123 assumes that this condition is used when the inferior just triggered
13124 an exception catchpoint.
13125 EX: the type of catchpoints used for catching Ada exceptions. */
13128 ada_exception_catchpoint_cond_string (const char *excep_string,
13129 enum ada_exception_catchpoint_kind ex)
13132 bool is_standard_exc = false;
13133 std::string result;
13135 if (ex == ada_catch_handlers)
13137 /* For exception handlers catchpoints, the condition string does
13138 not use the same parameter as for the other exceptions. */
13139 result = ("long_integer (GNAT_GCC_exception_Access"
13140 "(gcc_exception).all.occurrence.id)");
13143 result = "long_integer (e)";
13145 /* The standard exceptions are a special case. They are defined in
13146 runtime units that have been compiled without debugging info; if
13147 EXCEP_STRING is the not-fully-qualified name of a standard
13148 exception (e.g. "constraint_error") then, during the evaluation
13149 of the condition expression, the symbol lookup on this name would
13150 *not* return this standard exception. The catchpoint condition
13151 may then be set only on user-defined exceptions which have the
13152 same not-fully-qualified name (e.g. my_package.constraint_error).
13154 To avoid this unexcepted behavior, these standard exceptions are
13155 systematically prefixed by "standard". This means that "catch
13156 exception constraint_error" is rewritten into "catch exception
13157 standard.constraint_error".
13159 If an exception named contraint_error is defined in another package of
13160 the inferior program, then the only way to specify this exception as a
13161 breakpoint condition is to use its fully-qualified named:
13162 e.g. my_package.constraint_error. */
13164 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13166 if (strcmp (standard_exc [i], excep_string) == 0)
13168 is_standard_exc = true;
13175 if (is_standard_exc)
13176 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13178 string_appendf (result, "long_integer (&%s)", excep_string);
13183 /* Return the symtab_and_line that should be used to insert an exception
13184 catchpoint of the TYPE kind.
13186 ADDR_STRING returns the name of the function where the real
13187 breakpoint that implements the catchpoints is set, depending on the
13188 type of catchpoint we need to create. */
13190 static struct symtab_and_line
13191 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13192 const char **addr_string, const struct breakpoint_ops **ops)
13194 const char *sym_name;
13195 struct symbol *sym;
13197 /* First, find out which exception support info to use. */
13198 ada_exception_support_info_sniffer ();
13200 /* Then lookup the function on which we will break in order to catch
13201 the Ada exceptions requested by the user. */
13202 sym_name = ada_exception_sym_name (ex);
13203 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13206 error (_("Catchpoint symbol not found: %s"), sym_name);
13208 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13209 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13211 /* Set ADDR_STRING. */
13212 *addr_string = xstrdup (sym_name);
13215 *ops = ada_exception_breakpoint_ops (ex);
13217 return find_function_start_sal (sym, 1);
13220 /* Create an Ada exception catchpoint.
13222 EX_KIND is the kind of exception catchpoint to be created.
13224 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13225 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13226 of the exception to which this catchpoint applies.
13228 COND_STRING, if not empty, is the catchpoint condition.
13230 TEMPFLAG, if nonzero, means that the underlying breakpoint
13231 should be temporary.
13233 FROM_TTY is the usual argument passed to all commands implementations. */
13236 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13237 enum ada_exception_catchpoint_kind ex_kind,
13238 const std::string &excep_string,
13239 const std::string &cond_string,
13244 const char *addr_string = NULL;
13245 const struct breakpoint_ops *ops = NULL;
13246 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13248 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13249 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13250 ops, tempflag, disabled, from_tty);
13251 c->excep_string = excep_string;
13252 create_excep_cond_exprs (c.get (), ex_kind);
13253 if (!cond_string.empty ())
13254 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13255 install_breakpoint (0, std::move (c), 1);
13258 /* Implement the "catch exception" command. */
13261 catch_ada_exception_command (const char *arg_entry, int from_tty,
13262 struct cmd_list_element *command)
13264 const char *arg = arg_entry;
13265 struct gdbarch *gdbarch = get_current_arch ();
13267 enum ada_exception_catchpoint_kind ex_kind;
13268 std::string excep_string;
13269 std::string cond_string;
13271 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13275 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13277 create_ada_exception_catchpoint (gdbarch, ex_kind,
13278 excep_string, cond_string,
13279 tempflag, 1 /* enabled */,
13283 /* Implement the "catch handlers" command. */
13286 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13287 struct cmd_list_element *command)
13289 const char *arg = arg_entry;
13290 struct gdbarch *gdbarch = get_current_arch ();
13292 enum ada_exception_catchpoint_kind ex_kind;
13293 std::string excep_string;
13294 std::string cond_string;
13296 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13300 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13302 create_ada_exception_catchpoint (gdbarch, ex_kind,
13303 excep_string, cond_string,
13304 tempflag, 1 /* enabled */,
13308 /* Split the arguments specified in a "catch assert" command.
13310 ARGS contains the command's arguments (or the empty string if
13311 no arguments were passed).
13313 If ARGS contains a condition, set COND_STRING to that condition
13314 (the memory needs to be deallocated after use). */
13317 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13319 args = skip_spaces (args);
13321 /* Check whether a condition was provided. */
13322 if (startswith (args, "if")
13323 && (isspace (args[2]) || args[2] == '\0'))
13326 args = skip_spaces (args);
13327 if (args[0] == '\0')
13328 error (_("condition missing after `if' keyword"));
13329 cond_string.assign (args);
13332 /* Otherwise, there should be no other argument at the end of
13334 else if (args[0] != '\0')
13335 error (_("Junk at end of arguments."));
13338 /* Implement the "catch assert" command. */
13341 catch_assert_command (const char *arg_entry, int from_tty,
13342 struct cmd_list_element *command)
13344 const char *arg = arg_entry;
13345 struct gdbarch *gdbarch = get_current_arch ();
13347 std::string cond_string;
13349 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13353 catch_ada_assert_command_split (arg, cond_string);
13354 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13356 tempflag, 1 /* enabled */,
13360 /* Return non-zero if the symbol SYM is an Ada exception object. */
13363 ada_is_exception_sym (struct symbol *sym)
13365 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13367 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13368 && SYMBOL_CLASS (sym) != LOC_BLOCK
13369 && SYMBOL_CLASS (sym) != LOC_CONST
13370 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13371 && type_name != NULL && strcmp (type_name, "exception") == 0);
13374 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13375 Ada exception object. This matches all exceptions except the ones
13376 defined by the Ada language. */
13379 ada_is_non_standard_exception_sym (struct symbol *sym)
13383 if (!ada_is_exception_sym (sym))
13386 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13387 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13388 return 0; /* A standard exception. */
13390 /* Numeric_Error is also a standard exception, so exclude it.
13391 See the STANDARD_EXC description for more details as to why
13392 this exception is not listed in that array. */
13393 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13399 /* A helper function for std::sort, comparing two struct ada_exc_info
13402 The comparison is determined first by exception name, and then
13403 by exception address. */
13406 ada_exc_info::operator< (const ada_exc_info &other) const
13410 result = strcmp (name, other.name);
13413 if (result == 0 && addr < other.addr)
13419 ada_exc_info::operator== (const ada_exc_info &other) const
13421 return addr == other.addr && strcmp (name, other.name) == 0;
13424 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13425 routine, but keeping the first SKIP elements untouched.
13427 All duplicates are also removed. */
13430 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13433 std::sort (exceptions->begin () + skip, exceptions->end ());
13434 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13435 exceptions->end ());
13438 /* Add all exceptions defined by the Ada standard whose name match
13439 a regular expression.
13441 If PREG is not NULL, then this regexp_t object is used to
13442 perform the symbol name matching. Otherwise, no name-based
13443 filtering is performed.
13445 EXCEPTIONS is a vector of exceptions to which matching exceptions
13449 ada_add_standard_exceptions (compiled_regex *preg,
13450 std::vector<ada_exc_info> *exceptions)
13454 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13457 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13459 struct bound_minimal_symbol msymbol
13460 = ada_lookup_simple_minsym (standard_exc[i]);
13462 if (msymbol.minsym != NULL)
13464 struct ada_exc_info info
13465 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13467 exceptions->push_back (info);
13473 /* Add all Ada exceptions defined locally and accessible from the given
13476 If PREG is not NULL, then this regexp_t object is used to
13477 perform the symbol name matching. Otherwise, no name-based
13478 filtering is performed.
13480 EXCEPTIONS is a vector of exceptions to which matching exceptions
13484 ada_add_exceptions_from_frame (compiled_regex *preg,
13485 struct frame_info *frame,
13486 std::vector<ada_exc_info> *exceptions)
13488 const struct block *block = get_frame_block (frame, 0);
13492 struct block_iterator iter;
13493 struct symbol *sym;
13495 ALL_BLOCK_SYMBOLS (block, iter, sym)
13497 switch (SYMBOL_CLASS (sym))
13504 if (ada_is_exception_sym (sym))
13506 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13507 SYMBOL_VALUE_ADDRESS (sym)};
13509 exceptions->push_back (info);
13513 if (BLOCK_FUNCTION (block) != NULL)
13515 block = BLOCK_SUPERBLOCK (block);
13519 /* Return true if NAME matches PREG or if PREG is NULL. */
13522 name_matches_regex (const char *name, compiled_regex *preg)
13524 return (preg == NULL
13525 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13528 /* Add all exceptions defined globally whose name name match
13529 a regular expression, excluding standard exceptions.
13531 The reason we exclude standard exceptions is that they need
13532 to be handled separately: Standard exceptions are defined inside
13533 a runtime unit which is normally not compiled with debugging info,
13534 and thus usually do not show up in our symbol search. However,
13535 if the unit was in fact built with debugging info, we need to
13536 exclude them because they would duplicate the entry we found
13537 during the special loop that specifically searches for those
13538 standard exceptions.
13540 If PREG is not NULL, then this regexp_t object is used to
13541 perform the symbol name matching. Otherwise, no name-based
13542 filtering is performed.
13544 EXCEPTIONS is a vector of exceptions to which matching exceptions
13548 ada_add_global_exceptions (compiled_regex *preg,
13549 std::vector<ada_exc_info> *exceptions)
13551 struct objfile *objfile;
13552 struct compunit_symtab *s;
13554 /* In Ada, the symbol "search name" is a linkage name, whereas the
13555 regular expression used to do the matching refers to the natural
13556 name. So match against the decoded name. */
13557 expand_symtabs_matching (NULL,
13558 lookup_name_info::match_any (),
13559 [&] (const char *search_name)
13561 const char *decoded = ada_decode (search_name);
13562 return name_matches_regex (decoded, preg);
13567 ALL_COMPUNITS (objfile, s)
13569 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13572 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13574 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13575 struct block_iterator iter;
13576 struct symbol *sym;
13578 ALL_BLOCK_SYMBOLS (b, iter, sym)
13579 if (ada_is_non_standard_exception_sym (sym)
13580 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13582 struct ada_exc_info info
13583 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13585 exceptions->push_back (info);
13591 /* Implements ada_exceptions_list with the regular expression passed
13592 as a regex_t, rather than a string.
13594 If not NULL, PREG is used to filter out exceptions whose names
13595 do not match. Otherwise, all exceptions are listed. */
13597 static std::vector<ada_exc_info>
13598 ada_exceptions_list_1 (compiled_regex *preg)
13600 std::vector<ada_exc_info> result;
13603 /* First, list the known standard exceptions. These exceptions
13604 need to be handled separately, as they are usually defined in
13605 runtime units that have been compiled without debugging info. */
13607 ada_add_standard_exceptions (preg, &result);
13609 /* Next, find all exceptions whose scope is local and accessible
13610 from the currently selected frame. */
13612 if (has_stack_frames ())
13614 prev_len = result.size ();
13615 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13617 if (result.size () > prev_len)
13618 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13621 /* Add all exceptions whose scope is global. */
13623 prev_len = result.size ();
13624 ada_add_global_exceptions (preg, &result);
13625 if (result.size () > prev_len)
13626 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13631 /* Return a vector of ada_exc_info.
13633 If REGEXP is NULL, all exceptions are included in the result.
13634 Otherwise, it should contain a valid regular expression,
13635 and only the exceptions whose names match that regular expression
13636 are included in the result.
13638 The exceptions are sorted in the following order:
13639 - Standard exceptions (defined by the Ada language), in
13640 alphabetical order;
13641 - Exceptions only visible from the current frame, in
13642 alphabetical order;
13643 - Exceptions whose scope is global, in alphabetical order. */
13645 std::vector<ada_exc_info>
13646 ada_exceptions_list (const char *regexp)
13648 if (regexp == NULL)
13649 return ada_exceptions_list_1 (NULL);
13651 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13652 return ada_exceptions_list_1 (®);
13655 /* Implement the "info exceptions" command. */
13658 info_exceptions_command (const char *regexp, int from_tty)
13660 struct gdbarch *gdbarch = get_current_arch ();
13662 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13664 if (regexp != NULL)
13666 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13668 printf_filtered (_("All defined Ada exceptions:\n"));
13670 for (const ada_exc_info &info : exceptions)
13671 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13675 /* Information about operators given special treatment in functions
13677 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13679 #define ADA_OPERATORS \
13680 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13681 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13682 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13683 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13687 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13688 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13689 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13690 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13691 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13692 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13693 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13694 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13695 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13696 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13697 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13698 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13701 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13704 switch (exp->elts[pc - 1].opcode)
13707 operator_length_standard (exp, pc, oplenp, argsp);
13710 #define OP_DEFN(op, len, args, binop) \
13711 case op: *oplenp = len; *argsp = args; break;
13717 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13722 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13727 /* Implementation of the exp_descriptor method operator_check. */
13730 ada_operator_check (struct expression *exp, int pos,
13731 int (*objfile_func) (struct objfile *objfile, void *data),
13734 const union exp_element *const elts = exp->elts;
13735 struct type *type = NULL;
13737 switch (elts[pos].opcode)
13739 case UNOP_IN_RANGE:
13741 type = elts[pos + 1].type;
13745 return operator_check_standard (exp, pos, objfile_func, data);
13748 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13750 if (type && TYPE_OBJFILE (type)
13751 && (*objfile_func) (TYPE_OBJFILE (type), data))
13757 static const char *
13758 ada_op_name (enum exp_opcode opcode)
13763 return op_name_standard (opcode);
13765 #define OP_DEFN(op, len, args, binop) case op: return #op;
13770 return "OP_AGGREGATE";
13772 return "OP_CHOICES";
13778 /* As for operator_length, but assumes PC is pointing at the first
13779 element of the operator, and gives meaningful results only for the
13780 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13783 ada_forward_operator_length (struct expression *exp, int pc,
13784 int *oplenp, int *argsp)
13786 switch (exp->elts[pc].opcode)
13789 *oplenp = *argsp = 0;
13792 #define OP_DEFN(op, len, args, binop) \
13793 case op: *oplenp = len; *argsp = args; break;
13799 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13804 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13810 int len = longest_to_int (exp->elts[pc + 1].longconst);
13812 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13820 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13822 enum exp_opcode op = exp->elts[elt].opcode;
13827 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13831 /* Ada attributes ('Foo). */
13834 case OP_ATR_LENGTH:
13838 case OP_ATR_MODULUS:
13845 case UNOP_IN_RANGE:
13847 /* XXX: gdb_sprint_host_address, type_sprint */
13848 fprintf_filtered (stream, _("Type @"));
13849 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13850 fprintf_filtered (stream, " (");
13851 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13852 fprintf_filtered (stream, ")");
13854 case BINOP_IN_BOUNDS:
13855 fprintf_filtered (stream, " (%d)",
13856 longest_to_int (exp->elts[pc + 2].longconst));
13858 case TERNOP_IN_RANGE:
13863 case OP_DISCRETE_RANGE:
13864 case OP_POSITIONAL:
13871 char *name = &exp->elts[elt + 2].string;
13872 int len = longest_to_int (exp->elts[elt + 1].longconst);
13874 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13879 return dump_subexp_body_standard (exp, stream, elt);
13883 for (i = 0; i < nargs; i += 1)
13884 elt = dump_subexp (exp, stream, elt);
13889 /* The Ada extension of print_subexp (q.v.). */
13892 ada_print_subexp (struct expression *exp, int *pos,
13893 struct ui_file *stream, enum precedence prec)
13895 int oplen, nargs, i;
13897 enum exp_opcode op = exp->elts[pc].opcode;
13899 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13906 print_subexp_standard (exp, pos, stream, prec);
13910 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13913 case BINOP_IN_BOUNDS:
13914 /* XXX: sprint_subexp */
13915 print_subexp (exp, pos, stream, PREC_SUFFIX);
13916 fputs_filtered (" in ", stream);
13917 print_subexp (exp, pos, stream, PREC_SUFFIX);
13918 fputs_filtered ("'range", stream);
13919 if (exp->elts[pc + 1].longconst > 1)
13920 fprintf_filtered (stream, "(%ld)",
13921 (long) exp->elts[pc + 1].longconst);
13924 case TERNOP_IN_RANGE:
13925 if (prec >= PREC_EQUAL)
13926 fputs_filtered ("(", stream);
13927 /* XXX: sprint_subexp */
13928 print_subexp (exp, pos, stream, PREC_SUFFIX);
13929 fputs_filtered (" in ", stream);
13930 print_subexp (exp, pos, stream, PREC_EQUAL);
13931 fputs_filtered (" .. ", stream);
13932 print_subexp (exp, pos, stream, PREC_EQUAL);
13933 if (prec >= PREC_EQUAL)
13934 fputs_filtered (")", stream);
13939 case OP_ATR_LENGTH:
13943 case OP_ATR_MODULUS:
13948 if (exp->elts[*pos].opcode == OP_TYPE)
13950 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13951 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13952 &type_print_raw_options);
13956 print_subexp (exp, pos, stream, PREC_SUFFIX);
13957 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13962 for (tem = 1; tem < nargs; tem += 1)
13964 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13965 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13967 fputs_filtered (")", stream);
13972 type_print (exp->elts[pc + 1].type, "", stream, 0);
13973 fputs_filtered ("'(", stream);
13974 print_subexp (exp, pos, stream, PREC_PREFIX);
13975 fputs_filtered (")", stream);
13978 case UNOP_IN_RANGE:
13979 /* XXX: sprint_subexp */
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 fputs_filtered (" in ", stream);
13982 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13983 &type_print_raw_options);
13986 case OP_DISCRETE_RANGE:
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 fputs_filtered ("..", stream);
13989 print_subexp (exp, pos, stream, PREC_SUFFIX);
13993 fputs_filtered ("others => ", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 for (i = 0; i < nargs-1; i += 1)
14001 fputs_filtered ("|", stream);
14002 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 fputs_filtered (" => ", stream);
14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
14008 case OP_POSITIONAL:
14009 print_subexp (exp, pos, stream, PREC_SUFFIX);
14013 fputs_filtered ("(", stream);
14014 for (i = 0; i < nargs; i += 1)
14017 fputs_filtered (", ", stream);
14018 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 fputs_filtered (")", stream);
14025 /* Table mapping opcodes into strings for printing operators
14026 and precedences of the operators. */
14028 static const struct op_print ada_op_print_tab[] = {
14029 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14030 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14031 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14032 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14033 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14034 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14035 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14036 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14037 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14038 {">=", BINOP_GEQ, PREC_ORDER, 0},
14039 {">", BINOP_GTR, PREC_ORDER, 0},
14040 {"<", BINOP_LESS, PREC_ORDER, 0},
14041 {">>", BINOP_RSH, PREC_SHIFT, 0},
14042 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14043 {"+", BINOP_ADD, PREC_ADD, 0},
14044 {"-", BINOP_SUB, PREC_ADD, 0},
14045 {"&", BINOP_CONCAT, PREC_ADD, 0},
14046 {"*", BINOP_MUL, PREC_MUL, 0},
14047 {"/", BINOP_DIV, PREC_MUL, 0},
14048 {"rem", BINOP_REM, PREC_MUL, 0},
14049 {"mod", BINOP_MOD, PREC_MUL, 0},
14050 {"**", BINOP_EXP, PREC_REPEAT, 0},
14051 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14052 {"-", UNOP_NEG, PREC_PREFIX, 0},
14053 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14054 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14055 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14056 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14057 {".all", UNOP_IND, PREC_SUFFIX, 1},
14058 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14059 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14060 {NULL, OP_NULL, PREC_SUFFIX, 0}
14063 enum ada_primitive_types {
14064 ada_primitive_type_int,
14065 ada_primitive_type_long,
14066 ada_primitive_type_short,
14067 ada_primitive_type_char,
14068 ada_primitive_type_float,
14069 ada_primitive_type_double,
14070 ada_primitive_type_void,
14071 ada_primitive_type_long_long,
14072 ada_primitive_type_long_double,
14073 ada_primitive_type_natural,
14074 ada_primitive_type_positive,
14075 ada_primitive_type_system_address,
14076 ada_primitive_type_storage_offset,
14077 nr_ada_primitive_types
14081 ada_language_arch_info (struct gdbarch *gdbarch,
14082 struct language_arch_info *lai)
14084 const struct builtin_type *builtin = builtin_type (gdbarch);
14086 lai->primitive_type_vector
14087 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14090 lai->primitive_type_vector [ada_primitive_type_int]
14091 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14093 lai->primitive_type_vector [ada_primitive_type_long]
14094 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14095 0, "long_integer");
14096 lai->primitive_type_vector [ada_primitive_type_short]
14097 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14098 0, "short_integer");
14099 lai->string_char_type
14100 = lai->primitive_type_vector [ada_primitive_type_char]
14101 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14102 lai->primitive_type_vector [ada_primitive_type_float]
14103 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14104 "float", gdbarch_float_format (gdbarch));
14105 lai->primitive_type_vector [ada_primitive_type_double]
14106 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14107 "long_float", gdbarch_double_format (gdbarch));
14108 lai->primitive_type_vector [ada_primitive_type_long_long]
14109 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14110 0, "long_long_integer");
14111 lai->primitive_type_vector [ada_primitive_type_long_double]
14112 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14113 "long_long_float", gdbarch_long_double_format (gdbarch));
14114 lai->primitive_type_vector [ada_primitive_type_natural]
14115 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14117 lai->primitive_type_vector [ada_primitive_type_positive]
14118 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14120 lai->primitive_type_vector [ada_primitive_type_void]
14121 = builtin->builtin_void;
14123 lai->primitive_type_vector [ada_primitive_type_system_address]
14124 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14126 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14127 = "system__address";
14129 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14130 type. This is a signed integral type whose size is the same as
14131 the size of addresses. */
14133 unsigned int addr_length = TYPE_LENGTH
14134 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14136 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14137 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14141 lai->bool_type_symbol = NULL;
14142 lai->bool_type_default = builtin->builtin_bool;
14145 /* Language vector */
14147 /* Not really used, but needed in the ada_language_defn. */
14150 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14152 ada_emit_char (c, type, stream, quoter, 1);
14156 parse (struct parser_state *ps)
14158 warnings_issued = 0;
14159 return ada_parse (ps);
14162 static const struct exp_descriptor ada_exp_descriptor = {
14164 ada_operator_length,
14165 ada_operator_check,
14167 ada_dump_subexp_body,
14168 ada_evaluate_subexp
14171 /* symbol_name_matcher_ftype adapter for wild_match. */
14174 do_wild_match (const char *symbol_search_name,
14175 const lookup_name_info &lookup_name,
14176 completion_match_result *comp_match_res)
14178 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14181 /* symbol_name_matcher_ftype adapter for full_match. */
14184 do_full_match (const char *symbol_search_name,
14185 const lookup_name_info &lookup_name,
14186 completion_match_result *comp_match_res)
14188 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14191 /* Build the Ada lookup name for LOOKUP_NAME. */
14193 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14195 const std::string &user_name = lookup_name.name ();
14197 if (user_name[0] == '<')
14199 if (user_name.back () == '>')
14200 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14202 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14203 m_encoded_p = true;
14204 m_verbatim_p = true;
14205 m_wild_match_p = false;
14206 m_standard_p = false;
14210 m_verbatim_p = false;
14212 m_encoded_p = user_name.find ("__") != std::string::npos;
14216 const char *folded = ada_fold_name (user_name.c_str ());
14217 const char *encoded = ada_encode_1 (folded, false);
14218 if (encoded != NULL)
14219 m_encoded_name = encoded;
14221 m_encoded_name = user_name;
14224 m_encoded_name = user_name;
14226 /* Handle the 'package Standard' special case. See description
14227 of m_standard_p. */
14228 if (startswith (m_encoded_name.c_str (), "standard__"))
14230 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14231 m_standard_p = true;
14234 m_standard_p = false;
14236 /* If the name contains a ".", then the user is entering a fully
14237 qualified entity name, and the match must not be done in wild
14238 mode. Similarly, if the user wants to complete what looks
14239 like an encoded name, the match must not be done in wild
14240 mode. Also, in the standard__ special case always do
14241 non-wild matching. */
14243 = (lookup_name.match_type () != symbol_name_match_type::FULL
14246 && user_name.find ('.') == std::string::npos);
14250 /* symbol_name_matcher_ftype method for Ada. This only handles
14251 completion mode. */
14254 ada_symbol_name_matches (const char *symbol_search_name,
14255 const lookup_name_info &lookup_name,
14256 completion_match_result *comp_match_res)
14258 return lookup_name.ada ().matches (symbol_search_name,
14259 lookup_name.match_type (),
14263 /* A name matcher that matches the symbol name exactly, with
14267 literal_symbol_name_matcher (const char *symbol_search_name,
14268 const lookup_name_info &lookup_name,
14269 completion_match_result *comp_match_res)
14271 const std::string &name = lookup_name.name ();
14273 int cmp = (lookup_name.completion_mode ()
14274 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14275 : strcmp (symbol_search_name, name.c_str ()));
14278 if (comp_match_res != NULL)
14279 comp_match_res->set_match (symbol_search_name);
14286 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14289 static symbol_name_matcher_ftype *
14290 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14292 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14293 return literal_symbol_name_matcher;
14295 if (lookup_name.completion_mode ())
14296 return ada_symbol_name_matches;
14299 if (lookup_name.ada ().wild_match_p ())
14300 return do_wild_match;
14302 return do_full_match;
14306 /* Implement the "la_read_var_value" language_defn method for Ada. */
14308 static struct value *
14309 ada_read_var_value (struct symbol *var, const struct block *var_block,
14310 struct frame_info *frame)
14312 const struct block *frame_block = NULL;
14313 struct symbol *renaming_sym = NULL;
14315 /* The only case where default_read_var_value is not sufficient
14316 is when VAR is a renaming... */
14318 frame_block = get_frame_block (frame, NULL);
14320 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14321 if (renaming_sym != NULL)
14322 return ada_read_renaming_var_value (renaming_sym, frame_block);
14324 /* This is a typical case where we expect the default_read_var_value
14325 function to work. */
14326 return default_read_var_value (var, var_block, frame);
14329 static const char *ada_extensions[] =
14331 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14334 extern const struct language_defn ada_language_defn = {
14335 "ada", /* Language name */
14339 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14340 that's not quite what this means. */
14342 macro_expansion_no,
14344 &ada_exp_descriptor,
14347 ada_printchar, /* Print a character constant */
14348 ada_printstr, /* Function to print string constant */
14349 emit_char, /* Function to print single char (not used) */
14350 ada_print_type, /* Print a type using appropriate syntax */
14351 ada_print_typedef, /* Print a typedef using appropriate syntax */
14352 ada_val_print, /* Print a value using appropriate syntax */
14353 ada_value_print, /* Print a top-level value */
14354 ada_read_var_value, /* la_read_var_value */
14355 NULL, /* Language specific skip_trampoline */
14356 NULL, /* name_of_this */
14357 true, /* la_store_sym_names_in_linkage_form_p */
14358 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14359 basic_lookup_transparent_type, /* lookup_transparent_type */
14360 ada_la_decode, /* Language specific symbol demangler */
14361 ada_sniff_from_mangled_name,
14362 NULL, /* Language specific
14363 class_name_from_physname */
14364 ada_op_print_tab, /* expression operators for printing */
14365 0, /* c-style arrays */
14366 1, /* String lower bound */
14367 ada_get_gdb_completer_word_break_characters,
14368 ada_collect_symbol_completion_matches,
14369 ada_language_arch_info,
14370 ada_print_array_index,
14371 default_pass_by_reference,
14373 ada_watch_location_expression,
14374 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14375 ada_iterate_over_symbols,
14376 default_search_name_hash,
14383 /* Command-list for the "set/show ada" prefix command. */
14384 static struct cmd_list_element *set_ada_list;
14385 static struct cmd_list_element *show_ada_list;
14387 /* Implement the "set ada" prefix command. */
14390 set_ada_command (const char *arg, int from_tty)
14392 printf_unfiltered (_(\
14393 "\"set ada\" must be followed by the name of a setting.\n"));
14394 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14397 /* Implement the "show ada" prefix command. */
14400 show_ada_command (const char *args, int from_tty)
14402 cmd_show_list (show_ada_list, from_tty, "");
14406 initialize_ada_catchpoint_ops (void)
14408 struct breakpoint_ops *ops;
14410 initialize_breakpoint_ops ();
14412 ops = &catch_exception_breakpoint_ops;
14413 *ops = bkpt_breakpoint_ops;
14414 ops->allocate_location = allocate_location_catch_exception;
14415 ops->re_set = re_set_catch_exception;
14416 ops->check_status = check_status_catch_exception;
14417 ops->print_it = print_it_catch_exception;
14418 ops->print_one = print_one_catch_exception;
14419 ops->print_mention = print_mention_catch_exception;
14420 ops->print_recreate = print_recreate_catch_exception;
14422 ops = &catch_exception_unhandled_breakpoint_ops;
14423 *ops = bkpt_breakpoint_ops;
14424 ops->allocate_location = allocate_location_catch_exception_unhandled;
14425 ops->re_set = re_set_catch_exception_unhandled;
14426 ops->check_status = check_status_catch_exception_unhandled;
14427 ops->print_it = print_it_catch_exception_unhandled;
14428 ops->print_one = print_one_catch_exception_unhandled;
14429 ops->print_mention = print_mention_catch_exception_unhandled;
14430 ops->print_recreate = print_recreate_catch_exception_unhandled;
14432 ops = &catch_assert_breakpoint_ops;
14433 *ops = bkpt_breakpoint_ops;
14434 ops->allocate_location = allocate_location_catch_assert;
14435 ops->re_set = re_set_catch_assert;
14436 ops->check_status = check_status_catch_assert;
14437 ops->print_it = print_it_catch_assert;
14438 ops->print_one = print_one_catch_assert;
14439 ops->print_mention = print_mention_catch_assert;
14440 ops->print_recreate = print_recreate_catch_assert;
14442 ops = &catch_handlers_breakpoint_ops;
14443 *ops = bkpt_breakpoint_ops;
14444 ops->allocate_location = allocate_location_catch_handlers;
14445 ops->re_set = re_set_catch_handlers;
14446 ops->check_status = check_status_catch_handlers;
14447 ops->print_it = print_it_catch_handlers;
14448 ops->print_one = print_one_catch_handlers;
14449 ops->print_mention = print_mention_catch_handlers;
14450 ops->print_recreate = print_recreate_catch_handlers;
14453 /* This module's 'new_objfile' observer. */
14456 ada_new_objfile_observer (struct objfile *objfile)
14458 ada_clear_symbol_cache ();
14461 /* This module's 'free_objfile' observer. */
14464 ada_free_objfile_observer (struct objfile *objfile)
14466 ada_clear_symbol_cache ();
14470 _initialize_ada_language (void)
14472 initialize_ada_catchpoint_ops ();
14474 add_prefix_cmd ("ada", no_class, set_ada_command,
14475 _("Prefix command for changing Ada-specific settings"),
14476 &set_ada_list, "set ada ", 0, &setlist);
14478 add_prefix_cmd ("ada", no_class, show_ada_command,
14479 _("Generic command for showing Ada-specific settings."),
14480 &show_ada_list, "show ada ", 0, &showlist);
14482 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14483 &trust_pad_over_xvs, _("\
14484 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14485 Show whether an optimization trusting PAD types over XVS types is activated"),
14487 This is related to the encoding used by the GNAT compiler. The debugger\n\
14488 should normally trust the contents of PAD types, but certain older versions\n\
14489 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14490 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14491 work around this bug. It is always safe to turn this option \"off\", but\n\
14492 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14493 this option to \"off\" unless necessary."),
14494 NULL, NULL, &set_ada_list, &show_ada_list);
14496 add_setshow_boolean_cmd ("print-signatures", class_vars,
14497 &print_signatures, _("\
14498 Enable or disable the output of formal and return types for functions in the \
14499 overloads selection menu"), _("\
14500 Show whether the output of formal and return types for functions in the \
14501 overloads selection menu is activated"),
14502 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14504 add_catch_command ("exception", _("\
14505 Catch Ada exceptions, when raised.\n\
14506 With an argument, catch only exceptions with the given name."),
14507 catch_ada_exception_command,
14512 add_catch_command ("handlers", _("\
14513 Catch Ada exceptions, when handled.\n\
14514 With an argument, catch only exceptions with the given name."),
14515 catch_ada_handlers_command,
14519 add_catch_command ("assert", _("\
14520 Catch failed Ada assertions, when raised.\n\
14521 With an argument, catch only exceptions with the given name."),
14522 catch_assert_command,
14527 varsize_limit = 65536;
14528 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14529 &varsize_limit, _("\
14530 Set the maximum number of bytes allowed in a variable-size object."), _("\
14531 Show the maximum number of bytes allowed in a variable-size object."), _("\
14532 Attempts to access an object whose size is not a compile-time constant\n\
14533 and exceeds this limit will cause an error."),
14534 NULL, NULL, &setlist, &showlist);
14536 add_info ("exceptions", info_exceptions_command,
14538 List all Ada exception names.\n\
14539 If a regular expression is passed as an argument, only those matching\n\
14540 the regular expression are listed."));
14542 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14543 _("Set Ada maintenance-related variables."),
14544 &maint_set_ada_cmdlist, "maintenance set ada ",
14545 0/*allow-unknown*/, &maintenance_set_cmdlist);
14547 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14548 _("Show Ada maintenance-related variables"),
14549 &maint_show_ada_cmdlist, "maintenance show ada ",
14550 0/*allow-unknown*/, &maintenance_show_cmdlist);
14552 add_setshow_boolean_cmd
14553 ("ignore-descriptive-types", class_maintenance,
14554 &ada_ignore_descriptive_types_p,
14555 _("Set whether descriptive types generated by GNAT should be ignored."),
14556 _("Show whether descriptive types generated by GNAT should be ignored."),
14558 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14559 DWARF attribute."),
14560 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14562 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14563 NULL, xcalloc, xfree);
14565 /* The ada-lang observers. */
14566 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14567 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14568 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14570 /* Setup various context-specific data. */
14572 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14573 ada_pspace_data_handle
14574 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);