1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
52 #include "common/vec.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static struct value *coerce_unspec_val_to_type (struct value *,
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
198 static int equiv_types (struct type *, struct type *);
200 static int is_name_suffix (const char *);
202 static int advance_wild_match (const char **, const char *, int);
204 static bool wild_match (const char *name, const char *patn);
206 static struct value *ada_coerce_ref (struct value *);
208 static LONGEST pos_atr (struct value *);
210 static struct value *value_pos_atr (struct type *, struct value *);
212 static struct value *value_val_atr (struct type *, struct value *);
214 static struct symbol *standard_lookup (const char *, const struct block *,
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 static struct value *ada_value_primitive_field (struct value *, int, int,
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
230 static int ada_is_direct_array_type (struct type *);
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
235 static struct value *ada_index_struct_field (int, struct value *, int,
238 static struct value *assign_aggregate (struct value *, struct value *,
242 static void aggregate_assign_from_choices (struct value *, struct value *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
247 static void aggregate_assign_positional (struct value *, struct value *,
249 int *, LONGEST *, int *, int,
253 static void aggregate_assign_others (struct value *, struct value *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 static void ada_forward_operator_length (struct expression *, int, int *,
267 static struct type *ada_find_any_type (const char *name);
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
274 /* The result of a symbol lookup to be stored in our symbol cache. */
278 /* The name used to perform the lookup. */
280 /* The namespace used during the lookup. */
282 /* The symbol returned by the lookup, or NULL if no matching symbol
285 /* The block where the symbol was found, or NULL if no matching
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
301 #define HASH_SIZE 1009
303 struct ada_symbol_cache
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
317 static const char ada_completer_word_break_characters[] =
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 /* Maintenance-related settings for this module. */
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
348 /* Implement the "maintenance set ada" (prefix) command. */
351 maint_set_ada_cmd (const char *args, int from_tty)
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 /* Implement the "maintenance show ada" (prefix) command. */
360 maint_show_ada_cmd (const char *args, int from_tty)
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367 static int ada_ignore_descriptive_types_p = 0;
369 /* Inferior-specific data. */
371 /* Per-inferior data for this module. */
373 struct ada_inferior_data
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
384 const struct exception_support_info *exception_info;
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
390 /* A cleanup routine for our inferior data. */
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 struct ada_inferior_data *data;
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
401 /* Return our inferior data for the given inferior (INF).
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
412 struct ada_inferior_data *data;
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
428 ada_inferior_exit (struct inferior *inf)
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
435 /* program-space-specific data. */
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
450 This function always returns a valid object. */
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
455 struct ada_pspace_data *data;
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 /* The cleanup callback for this module's per-program-space data. */
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
510 ada_typedef_target_type (struct type *type)
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
522 ada_unqualified_name (const char *decoded_name)
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
533 result = strrchr (decoded_name, '.');
535 result++; /* Skip the dot... */
537 result = decoded_name;
542 /* Return a string starting with '<', followed by STR, and '>'. */
545 add_angle_brackets (const char *str)
547 return string_printf ("<%s>", str);
551 ada_get_gdb_completer_word_break_characters (void)
553 return ada_completer_word_break_characters;
556 /* Print an array element index using the Ada syntax. */
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
566 /* la_watch_location_expression for Ada. */
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
584 if (*size < min_size)
587 if (*size < min_size)
589 vect = xrealloc (vect, *size * element_size);
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
598 field_name_match (const char *field_name, const char *target)
600 int len = strlen (target);
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
620 ada_get_field_index (const struct type *type, const char *field_name,
624 struct type *struct_type = check_typedef ((struct type *) type);
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
637 /* The length of the prefix of NAME prior to any "___" suffix. */
640 ada_name_prefix_len (const char *name)
646 const char *p = strstr (name, "___");
649 return strlen (name);
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
659 is_suffix (const char *str, const char *suffix)
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
681 struct value *result;
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
709 return valaddr + offset;
713 cond_offset_target (CORE_ADDR address, long offset)
718 return address + offset;
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731 lim_warning (const char *format, ...)
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
748 ada_ensure_varsize_limit (const struct type *type)
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
754 /* Maximum value of a SIZE-byte signed integer type. */
756 max_of_size (int size)
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
760 return top_bit | (top_bit - 1);
763 /* Minimum value of a SIZE-byte signed integer type. */
765 min_of_size (int size)
767 return -max_of_size (size) - 1;
770 /* Maximum value of a SIZE-byte unsigned integer type. */
772 umax_of_size (int size)
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
776 return top_bit | (top_bit - 1);
779 /* Maximum value of integral type T, as a signed quantity. */
781 max_of_type (struct type *t)
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 return max_of_size (TYPE_LENGTH (t));
789 /* Minimum value of integral type T, as a signed quantity. */
791 min_of_type (struct type *t)
793 if (TYPE_UNSIGNED (t))
796 return min_of_size (TYPE_LENGTH (t));
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
801 ada_discrete_type_high_bound (struct type *type)
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
814 return max_of_type (type);
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
822 ada_discrete_type_low_bound (struct type *type)
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
830 return TYPE_FIELD_ENUMVAL (type, 0);
835 return min_of_type (type);
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
845 get_base_type (struct type *type)
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 type = TYPE_TARGET_TYPE (type);
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
862 ada_get_decoded_value (struct value *value)
864 struct type *type = ada_check_typedef (value_type (value));
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
873 value = ada_coerce_to_simple_array (value);
876 value = ada_to_fixed_value (value);
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
887 ada_get_decoded_type (struct type *type)
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
897 /* Language Selection */
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
903 ada_update_initial_language (enum language lang)
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929 if (msym.minsym != NULL)
931 CORE_ADDR main_program_name_addr;
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
938 target_read_string (main_program_name_addr, &main_program_name,
943 return main_program_name.get ();
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
986 ada_encode_1 (const char *decoded, bool throw_errors)
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
1000 for (p = decoded; *p != '\0'; p += 1)
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1009 const struct ada_opname_map *mapping;
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1015 if (mapping->encoded == NULL)
1018 error (_("invalid Ada operator name: %s"), p);
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1028 encoding_buffer[k] = *p;
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1041 ada_encode (const char *decoded)
1043 return ada_encode_1 (decoded, true);
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1051 ada_fold_name (const char *name)
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059 if (name[0] == '\'')
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078 is_lower_alphanum (const char c)
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 while (i > 0 && isdigit (encoded[i]))
1104 if (i >= 0 && encoded[i] == '.')
1106 else if (i >= 0 && encoded[i] == '$')
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1115 /* Remove the suffix introduced by the compiler for protected object
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 /* Remove trailing N. */
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 if (encoded[i] != 'X')
1153 if (isalnum (encoded[i-1]))
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1166 ada_decode (const char *encoded)
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1193 len0 = strlen (encoded);
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1231 /* Make decoded big enough for possible expansion by operator name. */
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 else if (encoded[i] == '$')
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 && !isalnum (encoded[i + op_len]))
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1274 j += strlen (ada_opname_table[k].decoded);
1278 if (ada_opname_table[k].encoded != NULL)
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1308 /* Remove _E{DIGITS}+[sb] */
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1326 while (k < len0 && isdigit (encoded[k]))
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1337 || (k < len0 && encoded[k] == '_'))
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1377 /* Replace '__' by '.'. */
1385 /* It's a character part of the decoded name, so just copy it
1387 decoded[j] = encoded[i];
1392 decoded[j] = '\000';
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1401 if (strcmp (decoded, encoded) == 0)
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1441 if (!gsymbol->ada_mangled)
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1446 gsymbol->ada_mangled = 1;
1448 if (obstack != NULL)
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1462 *slot = xstrdup (decoded);
1471 ada_la_decode (const char *encoded, int options)
1473 return xstrdup (ada_decode (encoded));
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1481 const char *demangled = ada_decode (mangled);
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1547 if (index_desc_type == NULL)
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1581 /* Maximum number of array dimensions we are prepared to handle. */
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1586 /* The desc_* routines return primitive portions of array descriptors
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1592 static struct type *
1593 desc_base_type (struct type *type)
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1612 is_thin_pntr (struct type *type)
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1619 /* The descriptor type for thin pointer type TYPE. */
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1624 struct type *base_type = desc_base_type (type);
1626 if (base_type == NULL)
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1634 if (alt_type == NULL)
1641 /* A pointer to the array data for thin-pointer value VAL. */
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1649 data_type = lookup_pointer_type (data_type);
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1654 return value_from_longest (data_type, value_address (val));
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1660 is_thick_pntr (struct type *type)
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1675 type = desc_base_type (type);
1679 else if (is_thin_pntr (type))
1681 type = thin_descriptor_type (type);
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 return ada_check_typedef (r);
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1700 static struct value *
1701 desc_bounds (struct value *arr)
1703 struct type *type = ada_check_typedef (value_type (arr));
1705 if (is_thin_pntr (type))
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1720 addr = value_address (arr);
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1727 else if (is_thick_pntr (type))
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1744 error (_("Bad GNAT array descriptor"));
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1756 fat_pntr_bounds_bitpos (struct type *type)
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1765 fat_pntr_bounds_bitsize (struct type *type)
1767 type = desc_base_type (type);
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1783 type = desc_base_type (type);
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1803 static struct value *
1804 desc_data (struct value *arr)
1806 struct type *type = value_type (arr);
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1822 fat_pntr_data_bitpos (struct type *type)
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1831 fat_pntr_data_bitsize (struct type *type)
1833 type = desc_base_type (type);
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1857 desc_bound_bitpos (struct type *type, int i, int which)
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1867 desc_bound_bitsize (struct type *type, int i, int which)
1869 type = desc_base_type (type);
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1883 type = desc_base_type (type);
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1895 desc_arity (struct type *type)
1897 type = desc_base_type (type);
1900 return TYPE_NFIELDS (type) / 2;
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1909 ada_is_direct_array_type (struct type *type)
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1922 ada_is_array_type (struct type *type)
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1934 ada_is_simple_array_type (struct type *type)
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1948 ada_is_array_descriptor_type (struct type *type)
1950 struct type *data_type = desc_data_target_type (type);
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1966 ada_is_bogus_array_descriptor (struct type *type)
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1985 ada_type_of_array (struct value *arr, int bounds)
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2006 struct type *elt_type;
2008 struct value *descriptor;
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 return lookup_pointer_type (elt_type);
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2068 struct type *arrType = ada_type_of_array (arr, 1);
2070 if (arrType == NULL)
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2085 ada_coerce_to_simple_array (struct value *arr)
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2107 ada_coerce_to_simple_array_type (struct type *type)
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2121 ada_is_packed_array_type (struct type *type)
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2136 ada_is_constrained_packed_array_type (struct type *type)
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2156 decode_packed_array_bitsize (struct type *type)
2158 const char *raw_name;
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2168 raw_name = ada_type_name (ada_check_typedef (type));
2170 raw_name = ada_type_name (desc_base_type (type));
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2181 (_("could not understand bit size information on packed array"));
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2223 index_type = TYPE_INDEX_TYPE (type);
2225 new_type = alloc_type_copy (type);
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2259 struct type *shadow_type;
2263 raw_name = ada_type_name (desc_base_type (type));
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2277 if (shadow_type == NULL)
2279 lim_warning (_("could not find bounds information on packed array"));
2282 shadow_type = check_typedef (shadow_type);
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2317 type = decode_constrained_packed_array_type (value_type (arr));
2320 error (_("can't unpack array"));
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2334 mod = ada_modulus (value_type (arr)) - 1;
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2349 return coerce_unspec_val_to_type (arr, type);
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 /* Non-zero iff TYPE includes negative integer values. */
2407 has_negatives (struct type *type)
2409 switch (TYPE_CODE (type))
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2471 src_idx = src_len - 1;
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2483 unpacked_idx = unpacked_len - 1;
2487 /* Non-scalar values must be aligned at a byte boundary... */
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 while (src_bytes_left > 0)
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 src_bytes_left -= 1;
2535 while (unpacked_bytes_left > 0)
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2563 const gdb_byte *src; /* First byte containing data to unpack */
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2569 type = ada_check_typedef (type);
2572 src = valaddr + offset;
2574 src = value_contents (obj) + offset;
2576 if (is_dynamic_type (type))
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2629 long new_offset = offset;
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 set_value_offset (v, new_offset);
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2655 if (staging.size () == TYPE_LENGTH (type))
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2692 if (VALUE_LVAL (toval) == lval_memory
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2702 CORE_ADDR to_addr = value_address (toval);
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2727 return value_assign (toval, fromval);
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2743 value_assign_to_component (struct value *container, struct value *component,
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2752 val = value_cast (value_type (component), val);
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 bits = value_bitsize (component);
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2763 if (is_scalar_type (check_typedef (value_type (component))))
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2778 /* Determine if TYPE is an access to an unconstrained array. */
2781 ada_is_access_to_unconstrained_array (struct type *type)
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2796 struct type *elt_type;
2798 elt = ada_coerce_to_simple_array (arr);
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2805 for (k = 0; k < arity; k += 1)
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2832 elt_type = ada_check_typedef (value_type (elt));
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2854 struct value *array_ind = ada_value_ind (arr);
2856 = check_typedef (value_enclosing_type (array_ind));
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2862 for (k = 0; k < arity; k += 1)
2865 struct value *lwb_value;
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2877 return value_ind (arr);
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 warning (_("unable to get positions in slice, use bounds instead"));
2905 base_low_pos = base_low;
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2931 warning (_("unable to get positions in slice, use bounds instead"));
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2946 ada_array_arity (struct type *type)
2953 type = desc_base_type (type);
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2974 ada_array_element_type (struct type *type, int nindices)
2976 type = desc_base_type (type);
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2981 struct type *p_array_type;
2983 p_array_type = desc_data_target_type (type);
2985 k = ada_array_arity (type);
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2992 while (k > 0 && p_array_type != NULL)
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2997 return p_array_type;
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3003 type = TYPE_TARGET_TYPE (type);
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3021 struct type *result_type;
3023 type = desc_base_type (type);
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3028 if (ada_is_simple_array_type (type))
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3060 struct type *type, *index_type_desc, *index_type;
3063 gdb_assert (which == 0 || which == 1);
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3076 if (TYPE_FIXED_INSTANCE (type))
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3094 struct type *elt_type = check_typedef (type);
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3114 ada_array_bound (struct value *arr, int n, int which)
3116 struct type *arr_type;
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3137 ada_array_length (struct value *arr, int n)
3139 struct type *arr_type, *index_type;
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3149 if (ada_is_simple_array_type (arr_type))
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3168 base_type = index_type;
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3173 return high - low + 1;
3176 /* An array whose type is that of ARR_TYPE (an array type), with
3177 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3178 less than LOW, then LOW-1 is used. */
3180 static struct value *
3181 empty_array (struct type *arr_type, int low, int high)
3183 struct type *arr_type0 = ada_check_typedef (arr_type);
3184 struct type *index_type
3185 = create_static_range_type
3186 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3187 high < low ? low - 1 : high);
3188 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3190 return allocate_value (create_array_type (NULL, elt_type, index_type));
3194 /* Name resolution */
3196 /* The "decoded" name for the user-definable Ada operator corresponding
3200 ada_decoded_op_name (enum exp_opcode op)
3204 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3206 if (ada_opname_table[i].op == op)
3207 return ada_opname_table[i].decoded;
3209 error (_("Could not find operator name for opcode"));
3213 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3214 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3215 undefined namespace) and converts operators that are
3216 user-defined into appropriate function calls. If CONTEXT_TYPE is
3217 non-null, it provides a preferred result type [at the moment, only
3218 type void has any effect---causing procedures to be preferred over
3219 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3220 return type is preferred. May change (expand) *EXP. */
3223 resolve (expression_up *expp, int void_context_p)
3225 struct type *context_type = NULL;
3229 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3231 resolve_subexp (expp, &pc, 1, context_type);
3234 /* Resolve the operator of the subexpression beginning at
3235 position *POS of *EXPP. "Resolving" consists of replacing
3236 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3237 with their resolutions, replacing built-in operators with
3238 function calls to user-defined operators, where appropriate, and,
3239 when DEPROCEDURE_P is non-zero, converting function-valued variables
3240 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3241 are as in ada_resolve, above. */
3243 static struct value *
3244 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3245 struct type *context_type)
3249 struct expression *exp; /* Convenience: == *expp. */
3250 enum exp_opcode op = (*expp)->elts[pc].opcode;
3251 struct value **argvec; /* Vector of operand types (alloca'ed). */
3252 int nargs; /* Number of operands. */
3259 /* Pass one: resolve operands, saving their types and updating *pos,
3264 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3265 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3270 resolve_subexp (expp, pos, 0, NULL);
3272 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3277 resolve_subexp (expp, pos, 0, NULL);
3282 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3285 case OP_ATR_MODULUS:
3295 case TERNOP_IN_RANGE:
3296 case BINOP_IN_BOUNDS:
3302 case OP_DISCRETE_RANGE:
3304 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3313 arg1 = resolve_subexp (expp, pos, 0, NULL);
3315 resolve_subexp (expp, pos, 1, NULL);
3317 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 case BINOP_LOGICAL_AND:
3335 case BINOP_LOGICAL_OR:
3336 case BINOP_BITWISE_AND:
3337 case BINOP_BITWISE_IOR:
3338 case BINOP_BITWISE_XOR:
3341 case BINOP_NOTEQUAL:
3348 case BINOP_SUBSCRIPT:
3356 case UNOP_LOGICAL_NOT:
3366 case OP_VAR_MSYM_VALUE:
3373 case OP_INTERNALVAR:
3383 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3386 case STRUCTOP_STRUCT:
3387 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 error (_("Unexpected operator during name resolution"));
3403 argvec = XALLOCAVEC (struct value *, nargs + 1);
3404 for (i = 0; i < nargs; i += 1)
3405 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3409 /* Pass two: perform any resolution on principal operator. */
3416 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3418 std::vector<struct block_symbol> candidates;
3422 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3423 (exp->elts[pc + 2].symbol),
3424 exp->elts[pc + 1].block, VAR_DOMAIN,
3427 if (n_candidates > 1)
3429 /* Types tend to get re-introduced locally, so if there
3430 are any local symbols that are not types, first filter
3433 for (j = 0; j < n_candidates; j += 1)
3434 switch (SYMBOL_CLASS (candidates[j].symbol))
3439 case LOC_REGPARM_ADDR:
3447 if (j < n_candidates)
3450 while (j < n_candidates)
3452 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3454 candidates[j] = candidates[n_candidates - 1];
3463 if (n_candidates == 0)
3464 error (_("No definition found for %s"),
3465 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3466 else if (n_candidates == 1)
3468 else if (deprocedure_p
3469 && !is_nonfunction (candidates.data (), n_candidates))
3471 i = ada_resolve_function
3472 (candidates.data (), n_candidates, NULL, 0,
3473 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3476 error (_("Could not find a match for %s"),
3477 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 printf_filtered (_("Multiple matches for %s\n"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 user_select_syms (candidates.data (), n_candidates, 1);
3487 exp->elts[pc + 1].block = candidates[i].block;
3488 exp->elts[pc + 2].symbol = candidates[i].symbol;
3489 innermost_block.update (candidates[i]);
3493 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3496 replace_operator_with_call (expp, pc, 0, 4,
3497 exp->elts[pc + 2].symbol,
3498 exp->elts[pc + 1].block);
3505 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3506 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3508 std::vector<struct block_symbol> candidates;
3512 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3513 (exp->elts[pc + 5].symbol),
3514 exp->elts[pc + 4].block, VAR_DOMAIN,
3517 if (n_candidates == 1)
3521 i = ada_resolve_function
3522 (candidates.data (), n_candidates,
3524 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3527 error (_("Could not find a match for %s"),
3528 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3531 exp->elts[pc + 4].block = candidates[i].block;
3532 exp->elts[pc + 5].symbol = candidates[i].symbol;
3533 innermost_block.update (candidates[i]);
3544 case BINOP_BITWISE_AND:
3545 case BINOP_BITWISE_IOR:
3546 case BINOP_BITWISE_XOR:
3548 case BINOP_NOTEQUAL:
3556 case UNOP_LOGICAL_NOT:
3558 if (possible_user_operator_p (op, argvec))
3560 std::vector<struct block_symbol> candidates;
3564 ada_lookup_symbol_list (ada_decoded_op_name (op),
3568 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3569 nargs, ada_decoded_op_name (op), NULL);
3573 replace_operator_with_call (expp, pc, nargs, 1,
3574 candidates[i].symbol,
3575 candidates[i].block);
3586 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3587 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3588 exp->elts[pc + 1].objfile,
3589 exp->elts[pc + 2].msymbol);
3591 return evaluate_subexp_type (exp, pos);
3594 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3595 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3597 /* The term "match" here is rather loose. The match is heuristic and
3601 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3603 ftype = ada_check_typedef (ftype);
3604 atype = ada_check_typedef (atype);
3606 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3607 ftype = TYPE_TARGET_TYPE (ftype);
3608 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3609 atype = TYPE_TARGET_TYPE (atype);
3611 switch (TYPE_CODE (ftype))
3614 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3616 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3617 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3618 TYPE_TARGET_TYPE (atype), 0);
3621 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3623 case TYPE_CODE_ENUM:
3624 case TYPE_CODE_RANGE:
3625 switch (TYPE_CODE (atype))
3628 case TYPE_CODE_ENUM:
3629 case TYPE_CODE_RANGE:
3635 case TYPE_CODE_ARRAY:
3636 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3637 || ada_is_array_descriptor_type (atype));
3639 case TYPE_CODE_STRUCT:
3640 if (ada_is_array_descriptor_type (ftype))
3641 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3642 || ada_is_array_descriptor_type (atype));
3644 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3645 && !ada_is_array_descriptor_type (atype));
3647 case TYPE_CODE_UNION:
3649 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3653 /* Return non-zero if the formals of FUNC "sufficiently match" the
3654 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3655 may also be an enumeral, in which case it is treated as a 0-
3656 argument function. */
3659 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3662 struct type *func_type = SYMBOL_TYPE (func);
3664 if (SYMBOL_CLASS (func) == LOC_CONST
3665 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3666 return (n_actuals == 0);
3667 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3670 if (TYPE_NFIELDS (func_type) != n_actuals)
3673 for (i = 0; i < n_actuals; i += 1)
3675 if (actuals[i] == NULL)
3679 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3681 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3683 if (!ada_type_match (ftype, atype, 1))
3690 /* False iff function type FUNC_TYPE definitely does not produce a value
3691 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3692 FUNC_TYPE is not a valid function type with a non-null return type
3693 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3696 return_match (struct type *func_type, struct type *context_type)
3698 struct type *return_type;
3700 if (func_type == NULL)
3703 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3704 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3706 return_type = get_base_type (func_type);
3707 if (return_type == NULL)
3710 context_type = get_base_type (context_type);
3712 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3713 return context_type == NULL || return_type == context_type;
3714 else if (context_type == NULL)
3715 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3717 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3721 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3722 function (if any) that matches the types of the NARGS arguments in
3723 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3724 that returns that type, then eliminate matches that don't. If
3725 CONTEXT_TYPE is void and there is at least one match that does not
3726 return void, eliminate all matches that do.
3728 Asks the user if there is more than one match remaining. Returns -1
3729 if there is no such symbol or none is selected. NAME is used
3730 solely for messages. May re-arrange and modify SYMS in
3731 the process; the index returned is for the modified vector. */
3734 ada_resolve_function (struct block_symbol syms[],
3735 int nsyms, struct value **args, int nargs,
3736 const char *name, struct type *context_type)
3740 int m; /* Number of hits */
3743 /* In the first pass of the loop, we only accept functions matching
3744 context_type. If none are found, we add a second pass of the loop
3745 where every function is accepted. */
3746 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3748 for (k = 0; k < nsyms; k += 1)
3750 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3752 if (ada_args_match (syms[k].symbol, args, nargs)
3753 && (fallback || return_match (type, context_type)))
3761 /* If we got multiple matches, ask the user which one to use. Don't do this
3762 interactive thing during completion, though, as the purpose of the
3763 completion is providing a list of all possible matches. Prompting the
3764 user to filter it down would be completely unexpected in this case. */
3767 else if (m > 1 && !parse_completion)
3769 printf_filtered (_("Multiple matches for %s\n"), name);
3770 user_select_syms (syms, m, 1);
3776 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3777 in a listing of choices during disambiguation (see sort_choices, below).
3778 The idea is that overloadings of a subprogram name from the
3779 same package should sort in their source order. We settle for ordering
3780 such symbols by their trailing number (__N or $N). */
3783 encoded_ordered_before (const char *N0, const char *N1)
3787 else if (N0 == NULL)
3793 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3795 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3797 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3798 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3803 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3806 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3808 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3809 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3811 return (strcmp (N0, N1) < 0);
3815 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3819 sort_choices (struct block_symbol syms[], int nsyms)
3823 for (i = 1; i < nsyms; i += 1)
3825 struct block_symbol sym = syms[i];
3828 for (j = i - 1; j >= 0; j -= 1)
3830 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3831 SYMBOL_LINKAGE_NAME (sym.symbol)))
3833 syms[j + 1] = syms[j];
3839 /* Whether GDB should display formals and return types for functions in the
3840 overloads selection menu. */
3841 static int print_signatures = 1;
3843 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3844 all but functions, the signature is just the name of the symbol. For
3845 functions, this is the name of the function, the list of types for formals
3846 and the return type (if any). */
3849 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3850 const struct type_print_options *flags)
3852 struct type *type = SYMBOL_TYPE (sym);
3854 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3855 if (!print_signatures
3857 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3860 if (TYPE_NFIELDS (type) > 0)
3864 fprintf_filtered (stream, " (");
3865 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3868 fprintf_filtered (stream, "; ");
3869 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3872 fprintf_filtered (stream, ")");
3874 if (TYPE_TARGET_TYPE (type) != NULL
3875 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3877 fprintf_filtered (stream, " return ");
3878 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3882 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3883 by asking the user (if necessary), returning the number selected,
3884 and setting the first elements of SYMS items. Error if no symbols
3887 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3888 to be re-integrated one of these days. */
3891 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3894 int *chosen = XALLOCAVEC (int , nsyms);
3896 int first_choice = (max_results == 1) ? 1 : 2;
3897 const char *select_mode = multiple_symbols_select_mode ();
3899 if (max_results < 1)
3900 error (_("Request to select 0 symbols!"));
3904 if (select_mode == multiple_symbols_cancel)
3906 canceled because the command is ambiguous\n\
3907 See set/show multiple-symbol."));
3909 /* If select_mode is "all", then return all possible symbols.
3910 Only do that if more than one symbol can be selected, of course.
3911 Otherwise, display the menu as usual. */
3912 if (select_mode == multiple_symbols_all && max_results > 1)
3915 printf_filtered (_("[0] cancel\n"));
3916 if (max_results > 1)
3917 printf_filtered (_("[1] all\n"));
3919 sort_choices (syms, nsyms);
3921 for (i = 0; i < nsyms; i += 1)
3923 if (syms[i].symbol == NULL)
3926 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3928 struct symtab_and_line sal =
3929 find_function_start_sal (syms[i].symbol, 1);
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934 if (sal.symtab == NULL)
3935 printf_filtered (_(" at <no source file available>:%d\n"),
3938 printf_filtered (_(" at %s:%d\n"),
3939 symtab_to_filename_for_display (sal.symtab),
3946 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3947 && SYMBOL_TYPE (syms[i].symbol) != NULL
3948 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3949 struct symtab *symtab = NULL;
3951 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3952 symtab = symbol_symtab (syms[i].symbol);
3954 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3956 printf_filtered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 printf_filtered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (symtab),
3961 SYMBOL_LINE (syms[i].symbol));
3963 else if (is_enumeral
3964 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3966 printf_filtered (("[%d] "), i + first_choice);
3967 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3968 gdb_stdout, -1, 0, &type_print_raw_options);
3969 printf_filtered (_("'(%s) (enumeral)\n"),
3970 SYMBOL_PRINT_NAME (syms[i].symbol));
3974 printf_filtered ("[%d] ", i + first_choice);
3975 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3976 &type_print_raw_options);
3979 printf_filtered (is_enumeral
3980 ? _(" in %s (enumeral)\n")
3982 symtab_to_filename_for_display (symtab));
3984 printf_filtered (is_enumeral
3985 ? _(" (enumeral)\n")
3991 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3994 for (i = 0; i < n_chosen; i += 1)
3995 syms[i] = syms[chosen[i]];
4000 /* Read and validate a set of numeric choices from the user in the
4001 range 0 .. N_CHOICES-1. Place the results in increasing
4002 order in CHOICES[0 .. N-1], and return N.
4004 The user types choices as a sequence of numbers on one line
4005 separated by blanks, encoding them as follows:
4007 + A choice of 0 means to cancel the selection, throwing an error.
4008 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4009 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4011 The user is not allowed to choose more than MAX_RESULTS values.
4013 ANNOTATION_SUFFIX, if present, is used to annotate the input
4014 prompts (for use with the -f switch). */
4017 get_selections (int *choices, int n_choices, int max_results,
4018 int is_all_choice, const char *annotation_suffix)
4023 int first_choice = is_all_choice ? 2 : 1;
4025 prompt = getenv ("PS2");
4029 args = command_line_input (prompt, annotation_suffix);
4032 error_no_arg (_("one or more choice numbers"));
4036 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4037 order, as given in args. Choices are validated. */
4043 args = skip_spaces (args);
4044 if (*args == '\0' && n_chosen == 0)
4045 error_no_arg (_("one or more choice numbers"));
4046 else if (*args == '\0')
4049 choice = strtol (args, &args2, 10);
4050 if (args == args2 || choice < 0
4051 || choice > n_choices + first_choice - 1)
4052 error (_("Argument must be choice number"));
4056 error (_("cancelled"));
4058 if (choice < first_choice)
4060 n_chosen = n_choices;
4061 for (j = 0; j < n_choices; j += 1)
4065 choice -= first_choice;
4067 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4071 if (j < 0 || choice != choices[j])
4075 for (k = n_chosen - 1; k > j; k -= 1)
4076 choices[k + 1] = choices[k];
4077 choices[j + 1] = choice;
4082 if (n_chosen > max_results)
4083 error (_("Select no more than %d of the above"), max_results);
4088 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4089 on the function identified by SYM and BLOCK, and taking NARGS
4090 arguments. Update *EXPP as needed to hold more space. */
4093 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4094 int oplen, struct symbol *sym,
4095 const struct block *block)
4097 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4098 symbol, -oplen for operator being replaced). */
4099 struct expression *newexp = (struct expression *)
4100 xzalloc (sizeof (struct expression)
4101 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4102 struct expression *exp = expp->get ();
4104 newexp->nelts = exp->nelts + 7 - oplen;
4105 newexp->language_defn = exp->language_defn;
4106 newexp->gdbarch = exp->gdbarch;
4107 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4108 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4109 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4111 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4112 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4114 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4115 newexp->elts[pc + 4].block = block;
4116 newexp->elts[pc + 5].symbol = sym;
4118 expp->reset (newexp);
4121 /* Type-class predicates */
4123 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4127 numeric_type_p (struct type *type)
4133 switch (TYPE_CODE (type))
4138 case TYPE_CODE_RANGE:
4139 return (type == TYPE_TARGET_TYPE (type)
4140 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4147 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4150 integer_type_p (struct type *type)
4156 switch (TYPE_CODE (type))
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || integer_type_p (TYPE_TARGET_TYPE (type)));
4169 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4172 scalar_type_p (struct type *type)
4178 switch (TYPE_CODE (type))
4181 case TYPE_CODE_RANGE:
4182 case TYPE_CODE_ENUM:
4191 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4194 discrete_type_p (struct type *type)
4200 switch (TYPE_CODE (type))
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_BOOL:
4213 /* Returns non-zero if OP with operands in the vector ARGS could be
4214 a user-defined function. Errs on the side of pre-defined operators
4215 (i.e., result 0). */
4218 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4220 struct type *type0 =
4221 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4222 struct type *type1 =
4223 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4237 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4241 case BINOP_BITWISE_AND:
4242 case BINOP_BITWISE_IOR:
4243 case BINOP_BITWISE_XOR:
4244 return (!(integer_type_p (type0) && integer_type_p (type1)));
4247 case BINOP_NOTEQUAL:
4252 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4255 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4258 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4262 case UNOP_LOGICAL_NOT:
4264 return (!numeric_type_p (type0));
4273 1. In the following, we assume that a renaming type's name may
4274 have an ___XD suffix. It would be nice if this went away at some
4276 2. We handle both the (old) purely type-based representation of
4277 renamings and the (new) variable-based encoding. At some point,
4278 it is devoutly to be hoped that the former goes away
4279 (FIXME: hilfinger-2007-07-09).
4280 3. Subprogram renamings are not implemented, although the XRS
4281 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4283 /* If SYM encodes a renaming,
4285 <renaming> renames <renamed entity>,
4287 sets *LEN to the length of the renamed entity's name,
4288 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4289 the string describing the subcomponent selected from the renamed
4290 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4291 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4292 are undefined). Otherwise, returns a value indicating the category
4293 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4294 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4295 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4296 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4297 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4298 may be NULL, in which case they are not assigned.
4300 [Currently, however, GCC does not generate subprogram renamings.] */
4302 enum ada_renaming_category
4303 ada_parse_renaming (struct symbol *sym,
4304 const char **renamed_entity, int *len,
4305 const char **renaming_expr)
4307 enum ada_renaming_category kind;
4312 return ADA_NOT_RENAMING;
4313 switch (SYMBOL_CLASS (sym))
4316 return ADA_NOT_RENAMING;
4318 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4319 renamed_entity, len, renaming_expr);
4323 case LOC_OPTIMIZED_OUT:
4324 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4326 return ADA_NOT_RENAMING;
4330 kind = ADA_OBJECT_RENAMING;
4334 kind = ADA_EXCEPTION_RENAMING;
4338 kind = ADA_PACKAGE_RENAMING;
4342 kind = ADA_SUBPROGRAM_RENAMING;
4346 return ADA_NOT_RENAMING;
4350 if (renamed_entity != NULL)
4351 *renamed_entity = info;
4352 suffix = strstr (info, "___XE");
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4356 *len = strlen (info) - strlen (suffix);
4358 if (renaming_expr != NULL)
4359 *renaming_expr = suffix;
4363 /* Assuming TYPE encodes a renaming according to the old encoding in
4364 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4365 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4366 ADA_NOT_RENAMING otherwise. */
4367 static enum ada_renaming_category
4368 parse_old_style_renaming (struct type *type,
4369 const char **renamed_entity, int *len,
4370 const char **renaming_expr)
4372 enum ada_renaming_category kind;
4377 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4378 || TYPE_NFIELDS (type) != 1)
4379 return ADA_NOT_RENAMING;
4381 name = TYPE_NAME (type);
4383 return ADA_NOT_RENAMING;
4385 name = strstr (name, "___XR");
4387 return ADA_NOT_RENAMING;
4392 kind = ADA_OBJECT_RENAMING;
4395 kind = ADA_EXCEPTION_RENAMING;
4398 kind = ADA_PACKAGE_RENAMING;
4401 kind = ADA_SUBPROGRAM_RENAMING;
4404 return ADA_NOT_RENAMING;
4407 info = TYPE_FIELD_NAME (type, 0);
4409 return ADA_NOT_RENAMING;
4410 if (renamed_entity != NULL)
4411 *renamed_entity = info;
4412 suffix = strstr (info, "___XE");
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix + 5;
4415 if (suffix == NULL || suffix == info)
4416 return ADA_NOT_RENAMING;
4418 *len = suffix - info;
4422 /* Compute the value of the given RENAMING_SYM, which is expected to
4423 be a symbol encoding a renaming expression. BLOCK is the block
4424 used to evaluate the renaming. */
4426 static struct value *
4427 ada_read_renaming_var_value (struct symbol *renaming_sym,
4428 const struct block *block)
4430 const char *sym_name;
4432 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4433 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4434 return evaluate_expression (expr.get ());
4438 /* Evaluation: Function Calls */
4440 /* Return an lvalue containing the value VAL. This is the identity on
4441 lvalues, and otherwise has the side-effect of allocating memory
4442 in the inferior where a copy of the value contents is copied. */
4444 static struct value *
4445 ensure_lval (struct value *val)
4447 if (VALUE_LVAL (val) == not_lval
4448 || VALUE_LVAL (val) == lval_internalvar)
4450 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4451 const CORE_ADDR addr =
4452 value_as_long (value_allocate_space_in_inferior (len));
4454 VALUE_LVAL (val) = lval_memory;
4455 set_value_address (val, addr);
4456 write_memory (addr, value_contents (val), len);
4462 /* Return the value ACTUAL, converted to be an appropriate value for a
4463 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4464 allocating any necessary descriptors (fat pointers), or copies of
4465 values not residing in memory, updating it as needed. */
4468 ada_convert_actual (struct value *actual, struct type *formal_type0)
4470 struct type *actual_type = ada_check_typedef (value_type (actual));
4471 struct type *formal_type = ada_check_typedef (formal_type0);
4472 struct type *formal_target =
4473 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4474 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4475 struct type *actual_target =
4476 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4477 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4479 if (ada_is_array_descriptor_type (formal_target)
4480 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4481 return make_array_descriptor (formal_type, actual);
4482 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4483 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4485 struct value *result;
4487 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4488 && ada_is_array_descriptor_type (actual_target))
4489 result = desc_data (actual);
4490 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4492 if (VALUE_LVAL (actual) != lval_memory)
4496 actual_type = ada_check_typedef (value_type (actual));
4497 val = allocate_value (actual_type);
4498 memcpy ((char *) value_contents_raw (val),
4499 (char *) value_contents (actual),
4500 TYPE_LENGTH (actual_type));
4501 actual = ensure_lval (val);
4503 result = value_addr (actual);
4507 return value_cast_pointers (formal_type, result, 0);
4509 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4510 return ada_value_ind (actual);
4511 else if (ada_is_aligner_type (formal_type))
4513 /* We need to turn this parameter into an aligner type
4515 struct value *aligner = allocate_value (formal_type);
4516 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4518 value_assign_to_component (aligner, component, actual);
4525 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4526 type TYPE. This is usually an inefficient no-op except on some targets
4527 (such as AVR) where the representation of a pointer and an address
4531 value_pointer (struct value *value, struct type *type)
4533 struct gdbarch *gdbarch = get_type_arch (type);
4534 unsigned len = TYPE_LENGTH (type);
4535 gdb_byte *buf = (gdb_byte *) alloca (len);
4538 addr = value_address (value);
4539 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4540 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4545 /* Push a descriptor of type TYPE for array value ARR on the stack at
4546 *SP, updating *SP to reflect the new descriptor. Return either
4547 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4548 to-descriptor type rather than a descriptor type), a struct value *
4549 representing a pointer to this descriptor. */
4551 static struct value *
4552 make_array_descriptor (struct type *type, struct value *arr)
4554 struct type *bounds_type = desc_bounds_type (type);
4555 struct type *desc_type = desc_base_type (type);
4556 struct value *descriptor = allocate_value (desc_type);
4557 struct value *bounds = allocate_value (bounds_type);
4560 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4563 modify_field (value_type (bounds), value_contents_writeable (bounds),
4564 ada_array_bound (arr, i, 0),
4565 desc_bound_bitpos (bounds_type, i, 0),
4566 desc_bound_bitsize (bounds_type, i, 0));
4567 modify_field (value_type (bounds), value_contents_writeable (bounds),
4568 ada_array_bound (arr, i, 1),
4569 desc_bound_bitpos (bounds_type, i, 1),
4570 desc_bound_bitsize (bounds_type, i, 1));
4573 bounds = ensure_lval (bounds);
4575 modify_field (value_type (descriptor),
4576 value_contents_writeable (descriptor),
4577 value_pointer (ensure_lval (arr),
4578 TYPE_FIELD_TYPE (desc_type, 0)),
4579 fat_pntr_data_bitpos (desc_type),
4580 fat_pntr_data_bitsize (desc_type));
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (bounds,
4585 TYPE_FIELD_TYPE (desc_type, 1)),
4586 fat_pntr_bounds_bitpos (desc_type),
4587 fat_pntr_bounds_bitsize (desc_type));
4589 descriptor = ensure_lval (descriptor);
4591 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4592 return value_addr (descriptor);
4597 /* Symbol Cache Module */
4599 /* Performance measurements made as of 2010-01-15 indicate that
4600 this cache does bring some noticeable improvements. Depending
4601 on the type of entity being printed, the cache can make it as much
4602 as an order of magnitude faster than without it.
4604 The descriptive type DWARF extension has significantly reduced
4605 the need for this cache, at least when DWARF is being used. However,
4606 even in this case, some expensive name-based symbol searches are still
4607 sometimes necessary - to find an XVZ variable, mostly. */
4609 /* Initialize the contents of SYM_CACHE. */
4612 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4614 obstack_init (&sym_cache->cache_space);
4615 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4618 /* Free the memory used by SYM_CACHE. */
4621 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4623 obstack_free (&sym_cache->cache_space, NULL);
4627 /* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
4630 static struct ada_symbol_cache *
4631 ada_get_symbol_cache (struct program_space *pspace)
4633 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4635 if (pspace_data->sym_cache == NULL)
4637 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4638 ada_init_symbol_cache (pspace_data->sym_cache);
4641 return pspace_data->sym_cache;
4644 /* Clear all entries from the symbol cache. */
4647 ada_clear_symbol_cache (void)
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4652 obstack_free (&sym_cache->cache_space, NULL);
4653 ada_init_symbol_cache (sym_cache);
4656 /* Search our cache for an entry matching NAME and DOMAIN.
4657 Return it if found, or NULL otherwise. */
4659 static struct cache_entry **
4660 find_entry (const char *name, domain_enum domain)
4662 struct ada_symbol_cache *sym_cache
4663 = ada_get_symbol_cache (current_program_space);
4664 int h = msymbol_hash (name) % HASH_SIZE;
4665 struct cache_entry **e;
4667 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4669 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4675 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4676 Return 1 if found, 0 otherwise.
4678 If an entry was found and SYM is not NULL, set *SYM to the entry's
4679 SYM. Same principle for BLOCK if not NULL. */
4682 lookup_cached_symbol (const char *name, domain_enum domain,
4683 struct symbol **sym, const struct block **block)
4685 struct cache_entry **e = find_entry (name, domain);
4692 *block = (*e)->block;
4696 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4697 in domain DOMAIN, save this result in our symbol cache. */
4700 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4701 const struct block *block)
4703 struct ada_symbol_cache *sym_cache
4704 = ada_get_symbol_cache (current_program_space);
4707 struct cache_entry *e;
4709 /* Symbols for builtin types don't have a block.
4710 For now don't cache such symbols. */
4711 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4714 /* If the symbol is a local symbol, then do not cache it, as a search
4715 for that symbol depends on the context. To determine whether
4716 the symbol is local or not, we check the block where we found it
4717 against the global and static blocks of its associated symtab. */
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 GLOBAL_BLOCK) != block
4721 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4722 STATIC_BLOCK) != block)
4725 h = msymbol_hash (name) % HASH_SIZE;
4726 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4727 e->next = sym_cache->root[h];
4728 sym_cache->root[h] = e;
4730 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4731 strcpy (copy, name);
4739 /* Return the symbol name match type that should be used used when
4740 searching for all symbols matching LOOKUP_NAME.
4742 LOOKUP_NAME is expected to be a symbol name after transformation
4745 static symbol_name_match_type
4746 name_match_type_from_name (const char *lookup_name)
4748 return (strstr (lookup_name, "__") == NULL
4749 ? symbol_name_match_type::WILD
4750 : symbol_name_match_type::FULL);
4753 /* Return the result of a standard (literal, C-like) lookup of NAME in
4754 given DOMAIN, visible from lexical block BLOCK. */
4756 static struct symbol *
4757 standard_lookup (const char *name, const struct block *block,
4760 /* Initialize it just to avoid a GCC false warning. */
4761 struct block_symbol sym = {};
4763 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4765 ada_lookup_encoded_symbol (name, block, domain, &sym);
4766 cache_symbol (name, domain, sym.symbol, sym.block);
4771 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4772 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4773 since they contend in overloading in the same way. */
4775 is_nonfunction (struct block_symbol syms[], int n)
4779 for (i = 0; i < n; i += 1)
4780 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4781 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4782 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4788 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4789 struct types. Otherwise, they may not. */
4792 equiv_types (struct type *type0, struct type *type1)
4796 if (type0 == NULL || type1 == NULL
4797 || TYPE_CODE (type0) != TYPE_CODE (type1))
4799 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4800 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4801 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4802 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4808 /* True iff SYM0 represents the same entity as SYM1, or one that is
4809 no more defined than that of SYM1. */
4812 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4816 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4817 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4820 switch (SYMBOL_CLASS (sym0))
4826 struct type *type0 = SYMBOL_TYPE (sym0);
4827 struct type *type1 = SYMBOL_TYPE (sym1);
4828 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4829 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4830 int len0 = strlen (name0);
4833 TYPE_CODE (type0) == TYPE_CODE (type1)
4834 && (equiv_types (type0, type1)
4835 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4836 && startswith (name1 + len0, "___XV")));
4839 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4840 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4846 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4847 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4850 add_defn_to_vec (struct obstack *obstackp,
4852 const struct block *block)
4855 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4857 /* Do not try to complete stub types, as the debugger is probably
4858 already scanning all symbols matching a certain name at the
4859 time when this function is called. Trying to replace the stub
4860 type by its associated full type will cause us to restart a scan
4861 which may lead to an infinite recursion. Instead, the client
4862 collecting the matching symbols will end up collecting several
4863 matches, with at least one of them complete. It can then filter
4864 out the stub ones if needed. */
4866 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4868 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4870 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4872 prevDefns[i].symbol = sym;
4873 prevDefns[i].block = block;
4879 struct block_symbol info;
4883 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4887 /* Number of block_symbol structures currently collected in current vector in
4891 num_defns_collected (struct obstack *obstackp)
4893 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4896 /* Vector of block_symbol structures currently collected in current vector in
4897 OBSTACKP. If FINISH, close off the vector and return its final address. */
4899 static struct block_symbol *
4900 defns_collected (struct obstack *obstackp, int finish)
4903 return (struct block_symbol *) obstack_finish (obstackp);
4905 return (struct block_symbol *) obstack_base (obstackp);
4908 /* Return a bound minimal symbol matching NAME according to Ada
4909 decoding rules. Returns an invalid symbol if there is no such
4910 minimal symbol. Names prefixed with "standard__" are handled
4911 specially: "standard__" is first stripped off, and only static and
4912 global symbols are searched. */
4914 struct bound_minimal_symbol
4915 ada_lookup_simple_minsym (const char *name)
4917 struct bound_minimal_symbol result;
4919 memset (&result, 0, sizeof (result));
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4927 for (objfile *objfile : current_program_space->objfiles ())
4929 for (minimal_symbol *msymbol : objfile->msymbols ())
4931 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4932 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4934 result.minsym = msymbol;
4935 result.objfile = objfile;
4944 /* For all subprograms that statically enclose the subprogram of the
4945 selected frame, add symbols matching identifier NAME in DOMAIN
4946 and their blocks to the list of data in OBSTACKP, as for
4947 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4948 with a wildcard prefix. */
4951 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4952 const lookup_name_info &lookup_name,
4957 /* True if TYPE is definitely an artificial type supplied to a symbol
4958 for which no debugging information was given in the symbol file. */
4961 is_nondebugging_type (struct type *type)
4963 const char *name = ada_type_name (type);
4965 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4968 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4969 that are deemed "identical" for practical purposes.
4971 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4972 types and that their number of enumerals is identical (in other
4973 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4976 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4980 /* The heuristic we use here is fairly conservative. We consider
4981 that 2 enumerate types are identical if they have the same
4982 number of enumerals and that all enumerals have the same
4983 underlying value and name. */
4985 /* All enums in the type should have an identical underlying value. */
4986 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4987 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4990 /* All enumerals should also have the same name (modulo any numerical
4992 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4994 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4995 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4996 int len_1 = strlen (name_1);
4997 int len_2 = strlen (name_2);
4999 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5000 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5002 || strncmp (TYPE_FIELD_NAME (type1, i),
5003 TYPE_FIELD_NAME (type2, i),
5011 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5012 that are deemed "identical" for practical purposes. Sometimes,
5013 enumerals are not strictly identical, but their types are so similar
5014 that they can be considered identical.
5016 For instance, consider the following code:
5018 type Color is (Black, Red, Green, Blue, White);
5019 type RGB_Color is new Color range Red .. Blue;
5021 Type RGB_Color is a subrange of an implicit type which is a copy
5022 of type Color. If we call that implicit type RGB_ColorB ("B" is
5023 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5024 As a result, when an expression references any of the enumeral
5025 by name (Eg. "print green"), the expression is technically
5026 ambiguous and the user should be asked to disambiguate. But
5027 doing so would only hinder the user, since it wouldn't matter
5028 what choice he makes, the outcome would always be the same.
5029 So, for practical purposes, we consider them as the same. */
5032 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5036 /* Before performing a thorough comparison check of each type,
5037 we perform a series of inexpensive checks. We expect that these
5038 checks will quickly fail in the vast majority of cases, and thus
5039 help prevent the unnecessary use of a more expensive comparison.
5040 Said comparison also expects us to make some of these checks
5041 (see ada_identical_enum_types_p). */
5043 /* Quick check: All symbols should have an enum type. */
5044 for (i = 0; i < syms.size (); i++)
5045 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5048 /* Quick check: They should all have the same value. */
5049 for (i = 1; i < syms.size (); i++)
5050 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5053 /* Quick check: They should all have the same number of enumerals. */
5054 for (i = 1; i < syms.size (); i++)
5055 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5056 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5059 /* All the sanity checks passed, so we might have a set of
5060 identical enumeration types. Perform a more complete
5061 comparison of the type of each symbol. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5064 SYMBOL_TYPE (syms[0].symbol)))
5070 /* Remove any non-debugging symbols in SYMS that definitely
5071 duplicate other symbols in the list (The only case I know of where
5072 this happens is when object files containing stabs-in-ecoff are
5073 linked with files containing ordinary ecoff debugging symbols (or no
5074 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5075 Returns the number of items in the modified list. */
5078 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5082 /* We should never be called with less than 2 symbols, as there
5083 cannot be any extra symbol in that case. But it's easy to
5084 handle, since we have nothing to do in that case. */
5085 if (syms->size () < 2)
5086 return syms->size ();
5089 while (i < syms->size ())
5093 /* If two symbols have the same name and one of them is a stub type,
5094 the get rid of the stub. */
5096 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5097 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5099 for (j = 0; j < syms->size (); j++)
5102 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5103 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5104 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5105 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5110 /* Two symbols with the same name, same class and same address
5111 should be identical. */
5113 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5114 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5115 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5117 for (j = 0; j < syms->size (); j += 1)
5120 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5121 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5122 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5123 && SYMBOL_CLASS ((*syms)[i].symbol)
5124 == SYMBOL_CLASS ((*syms)[j].symbol)
5125 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5126 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5132 syms->erase (syms->begin () + i);
5137 /* If all the remaining symbols are identical enumerals, then
5138 just keep the first one and discard the rest.
5140 Unlike what we did previously, we do not discard any entry
5141 unless they are ALL identical. This is because the symbol
5142 comparison is not a strict comparison, but rather a practical
5143 comparison. If all symbols are considered identical, then
5144 we can just go ahead and use the first one and discard the rest.
5145 But if we cannot reduce the list to a single element, we have
5146 to ask the user to disambiguate anyways. And if we have to
5147 present a multiple-choice menu, it's less confusing if the list
5148 isn't missing some choices that were identical and yet distinct. */
5149 if (symbols_are_identical_enums (*syms))
5152 return syms->size ();
5155 /* Given a type that corresponds to a renaming entity, use the type name
5156 to extract the scope (package name or function name, fully qualified,
5157 and following the GNAT encoding convention) where this renaming has been
5161 xget_renaming_scope (struct type *renaming_type)
5163 /* The renaming types adhere to the following convention:
5164 <scope>__<rename>___<XR extension>.
5165 So, to extract the scope, we search for the "___XR" extension,
5166 and then backtrack until we find the first "__". */
5168 const char *name = TYPE_NAME (renaming_type);
5169 const char *suffix = strstr (name, "___XR");
5172 /* Now, backtrack a bit until we find the first "__". Start looking
5173 at suffix - 3, as the <rename> part is at least one character long. */
5175 for (last = suffix - 3; last > name; last--)
5176 if (last[0] == '_' && last[1] == '_')
5179 /* Make a copy of scope and return it. */
5180 return std::string (name, last);
5183 /* Return nonzero if NAME corresponds to a package name. */
5186 is_package_name (const char *name)
5188 /* Here, We take advantage of the fact that no symbols are generated
5189 for packages, while symbols are generated for each function.
5190 So the condition for NAME represent a package becomes equivalent
5191 to NAME not existing in our list of symbols. There is only one
5192 small complication with library-level functions (see below). */
5194 /* If it is a function that has not been defined at library level,
5195 then we should be able to look it up in the symbols. */
5196 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5199 /* Library-level function names start with "_ada_". See if function
5200 "_ada_" followed by NAME can be found. */
5202 /* Do a quick check that NAME does not contain "__", since library-level
5203 functions names cannot contain "__" in them. */
5204 if (strstr (name, "__") != NULL)
5207 std::string fun_name = string_printf ("_ada_%s", name);
5209 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5212 /* Return nonzero if SYM corresponds to a renaming entity that is
5213 not visible from FUNCTION_NAME. */
5216 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5218 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5221 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5223 /* If the rename has been defined in a package, then it is visible. */
5224 if (is_package_name (scope.c_str ()))
5227 /* Check that the rename is in the current function scope by checking
5228 that its name starts with SCOPE. */
5230 /* If the function name starts with "_ada_", it means that it is
5231 a library-level function. Strip this prefix before doing the
5232 comparison, as the encoding for the renaming does not contain
5234 if (startswith (function_name, "_ada_"))
5237 return !startswith (function_name, scope.c_str ());
5240 /* Remove entries from SYMS that corresponds to a renaming entity that
5241 is not visible from the function associated with CURRENT_BLOCK or
5242 that is superfluous due to the presence of more specific renaming
5243 information. Places surviving symbols in the initial entries of
5244 SYMS and returns the number of surviving symbols.
5247 First, in cases where an object renaming is implemented as a
5248 reference variable, GNAT may produce both the actual reference
5249 variable and the renaming encoding. In this case, we discard the
5252 Second, GNAT emits a type following a specified encoding for each renaming
5253 entity. Unfortunately, STABS currently does not support the definition
5254 of types that are local to a given lexical block, so all renamings types
5255 are emitted at library level. As a consequence, if an application
5256 contains two renaming entities using the same name, and a user tries to
5257 print the value of one of these entities, the result of the ada symbol
5258 lookup will also contain the wrong renaming type.
5260 This function partially covers for this limitation by attempting to
5261 remove from the SYMS list renaming symbols that should be visible
5262 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5263 method with the current information available. The implementation
5264 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5266 - When the user tries to print a rename in a function while there
5267 is another rename entity defined in a package: Normally, the
5268 rename in the function has precedence over the rename in the
5269 package, so the latter should be removed from the list. This is
5270 currently not the case.
5272 - This function will incorrectly remove valid renames if
5273 the CURRENT_BLOCK corresponds to a function which symbol name
5274 has been changed by an "Export" pragma. As a consequence,
5275 the user will be unable to print such rename entities. */
5278 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5279 const struct block *current_block)
5281 struct symbol *current_function;
5282 const char *current_function_name;
5284 int is_new_style_renaming;
5286 /* If there is both a renaming foo___XR... encoded as a variable and
5287 a simple variable foo in the same block, discard the latter.
5288 First, zero out such symbols, then compress. */
5289 is_new_style_renaming = 0;
5290 for (i = 0; i < syms->size (); i += 1)
5292 struct symbol *sym = (*syms)[i].symbol;
5293 const struct block *block = (*syms)[i].block;
5297 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5299 name = SYMBOL_LINKAGE_NAME (sym);
5300 suffix = strstr (name, "___XR");
5304 int name_len = suffix - name;
5307 is_new_style_renaming = 1;
5308 for (j = 0; j < syms->size (); j += 1)
5309 if (i != j && (*syms)[j].symbol != NULL
5310 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5312 && block == (*syms)[j].block)
5313 (*syms)[j].symbol = NULL;
5316 if (is_new_style_renaming)
5320 for (j = k = 0; j < syms->size (); j += 1)
5321 if ((*syms)[j].symbol != NULL)
5323 (*syms)[k] = (*syms)[j];
5329 /* Extract the function name associated to CURRENT_BLOCK.
5330 Abort if unable to do so. */
5332 if (current_block == NULL)
5333 return syms->size ();
5335 current_function = block_linkage_function (current_block);
5336 if (current_function == NULL)
5337 return syms->size ();
5339 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5340 if (current_function_name == NULL)
5341 return syms->size ();
5343 /* Check each of the symbols, and remove it from the list if it is
5344 a type corresponding to a renaming that is out of the scope of
5345 the current block. */
5348 while (i < syms->size ())
5350 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5351 == ADA_OBJECT_RENAMING
5352 && old_renaming_is_invisible ((*syms)[i].symbol,
5353 current_function_name))
5354 syms->erase (syms->begin () + i);
5359 return syms->size ();
5362 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5363 whose name and domain match NAME and DOMAIN respectively.
5364 If no match was found, then extend the search to "enclosing"
5365 routines (in other words, if we're inside a nested function,
5366 search the symbols defined inside the enclosing functions).
5367 If WILD_MATCH_P is nonzero, perform the naming matching in
5368 "wild" mode (see function "wild_match" for more info).
5370 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5373 ada_add_local_symbols (struct obstack *obstackp,
5374 const lookup_name_info &lookup_name,
5375 const struct block *block, domain_enum domain)
5377 int block_depth = 0;
5379 while (block != NULL)
5382 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5384 /* If we found a non-function match, assume that's the one. */
5385 if (is_nonfunction (defns_collected (obstackp, 0),
5386 num_defns_collected (obstackp)))
5389 block = BLOCK_SUPERBLOCK (block);
5392 /* If no luck so far, try to find NAME as a local symbol in some lexically
5393 enclosing subprogram. */
5394 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5395 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5398 /* An object of this type is used as the user_data argument when
5399 calling the map_matching_symbols method. */
5403 struct objfile *objfile;
5404 struct obstack *obstackp;
5405 struct symbol *arg_sym;
5409 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5410 to a list of symbols. DATA0 is a pointer to a struct match_data *
5411 containing the obstack that collects the symbol list, the file that SYM
5412 must come from, a flag indicating whether a non-argument symbol has
5413 been found in the current block, and the last argument symbol
5414 passed in SYM within the current block (if any). When SYM is null,
5415 marking the end of a block, the argument symbol is added if no
5416 other has been found. */
5419 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5422 struct match_data *data = (struct match_data *) data0;
5426 if (!data->found_sym && data->arg_sym != NULL)
5427 add_defn_to_vec (data->obstackp,
5428 fixup_symbol_section (data->arg_sym, data->objfile),
5430 data->found_sym = 0;
5431 data->arg_sym = NULL;
5435 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5437 else if (SYMBOL_IS_ARGUMENT (sym))
5438 data->arg_sym = sym;
5441 data->found_sym = 1;
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (sym, data->objfile),
5450 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5451 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5452 symbols to OBSTACKP. Return whether we found such symbols. */
5455 ada_add_block_renamings (struct obstack *obstackp,
5456 const struct block *block,
5457 const lookup_name_info &lookup_name,
5460 struct using_direct *renaming;
5461 int defns_mark = num_defns_collected (obstackp);
5463 symbol_name_matcher_ftype *name_match
5464 = ada_get_symbol_name_matcher (lookup_name);
5466 for (renaming = block_using (block);
5468 renaming = renaming->next)
5472 /* Avoid infinite recursions: skip this renaming if we are actually
5473 already traversing it.
5475 Currently, symbol lookup in Ada don't use the namespace machinery from
5476 C++/Fortran support: skip namespace imports that use them. */
5477 if (renaming->searched
5478 || (renaming->import_src != NULL
5479 && renaming->import_src[0] != '\0')
5480 || (renaming->import_dest != NULL
5481 && renaming->import_dest[0] != '\0'))
5483 renaming->searched = 1;
5485 /* TODO: here, we perform another name-based symbol lookup, which can
5486 pull its own multiple overloads. In theory, we should be able to do
5487 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5488 not a simple name. But in order to do this, we would need to enhance
5489 the DWARF reader to associate a symbol to this renaming, instead of a
5490 name. So, for now, we do something simpler: re-use the C++/Fortran
5491 namespace machinery. */
5492 r_name = (renaming->alias != NULL
5494 : renaming->declaration);
5495 if (name_match (r_name, lookup_name, NULL))
5497 lookup_name_info decl_lookup_name (renaming->declaration,
5498 lookup_name.match_type ());
5499 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5502 renaming->searched = 0;
5504 return num_defns_collected (obstackp) != defns_mark;
5507 /* Implements compare_names, but only applying the comparision using
5508 the given CASING. */
5511 compare_names_with_case (const char *string1, const char *string2,
5512 enum case_sensitivity casing)
5514 while (*string1 != '\0' && *string2 != '\0')
5518 if (isspace (*string1) || isspace (*string2))
5519 return strcmp_iw_ordered (string1, string2);
5521 if (casing == case_sensitive_off)
5523 c1 = tolower (*string1);
5524 c2 = tolower (*string2);
5541 return strcmp_iw_ordered (string1, string2);
5543 if (*string2 == '\0')
5545 if (is_name_suffix (string1))
5552 if (*string2 == '(')
5553 return strcmp_iw_ordered (string1, string2);
5556 if (casing == case_sensitive_off)
5557 return tolower (*string1) - tolower (*string2);
5559 return *string1 - *string2;
5564 /* Compare STRING1 to STRING2, with results as for strcmp.
5565 Compatible with strcmp_iw_ordered in that...
5567 strcmp_iw_ordered (STRING1, STRING2) <= 0
5571 compare_names (STRING1, STRING2) <= 0
5573 (they may differ as to what symbols compare equal). */
5576 compare_names (const char *string1, const char *string2)
5580 /* Similar to what strcmp_iw_ordered does, we need to perform
5581 a case-insensitive comparison first, and only resort to
5582 a second, case-sensitive, comparison if the first one was
5583 not sufficient to differentiate the two strings. */
5585 result = compare_names_with_case (string1, string2, case_sensitive_off);
5587 result = compare_names_with_case (string1, string2, case_sensitive_on);
5592 /* Convenience function to get at the Ada encoded lookup name for
5593 LOOKUP_NAME, as a C string. */
5596 ada_lookup_name (const lookup_name_info &lookup_name)
5598 return lookup_name.ada ().lookup_name ().c_str ();
5601 /* Add to OBSTACKP all non-local symbols whose name and domain match
5602 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5603 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5604 symbols otherwise. */
5607 add_nonlocal_symbols (struct obstack *obstackp,
5608 const lookup_name_info &lookup_name,
5609 domain_enum domain, int global)
5611 struct match_data data;
5613 memset (&data, 0, sizeof data);
5614 data.obstackp = obstackp;
5616 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5618 for (objfile *objfile : current_program_space->objfiles ())
5620 data.objfile = objfile;
5623 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5625 aux_add_nonlocal_symbols, &data,
5626 symbol_name_match_type::WILD,
5629 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5631 aux_add_nonlocal_symbols, &data,
5632 symbol_name_match_type::FULL,
5635 for (compunit_symtab *cu : objfile->compunits ())
5637 const struct block *global_block
5638 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5640 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5646 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5648 const char *name = ada_lookup_name (lookup_name);
5649 std::string name1 = std::string ("<_ada_") + name + '>';
5651 for (objfile *objfile : current_program_space->objfiles ())
5653 data.objfile = objfile;
5654 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5656 aux_add_nonlocal_symbols,
5658 symbol_name_match_type::FULL,
5664 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5665 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5666 returning the number of matches. Add these to OBSTACKP.
5668 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5669 symbol match within the nest of blocks whose innermost member is BLOCK,
5670 is the one match returned (no other matches in that or
5671 enclosing blocks is returned). If there are any matches in or
5672 surrounding BLOCK, then these alone are returned.
5674 Names prefixed with "standard__" are handled specially:
5675 "standard__" is first stripped off (by the lookup_name
5676 constructor), and only static and global symbols are searched.
5678 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5679 to lookup global symbols. */
5682 ada_add_all_symbols (struct obstack *obstackp,
5683 const struct block *block,
5684 const lookup_name_info &lookup_name,
5687 int *made_global_lookup_p)
5691 if (made_global_lookup_p)
5692 *made_global_lookup_p = 0;
5694 /* Special case: If the user specifies a symbol name inside package
5695 Standard, do a non-wild matching of the symbol name without
5696 the "standard__" prefix. This was primarily introduced in order
5697 to allow the user to specifically access the standard exceptions
5698 using, for instance, Standard.Constraint_Error when Constraint_Error
5699 is ambiguous (due to the user defining its own Constraint_Error
5700 entity inside its program). */
5701 if (lookup_name.ada ().standard_p ())
5704 /* Check the non-global symbols. If we have ANY match, then we're done. */
5709 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5712 /* In the !full_search case we're are being called by
5713 ada_iterate_over_symbols, and we don't want to search
5715 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5717 if (num_defns_collected (obstackp) > 0 || !full_search)
5721 /* No non-global symbols found. Check our cache to see if we have
5722 already performed this search before. If we have, then return
5725 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5726 domain, &sym, &block))
5729 add_defn_to_vec (obstackp, sym, block);
5733 if (made_global_lookup_p)
5734 *made_global_lookup_p = 1;
5736 /* Search symbols from all global blocks. */
5738 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5740 /* Now add symbols from all per-file blocks if we've gotten no hits
5741 (not strictly correct, but perhaps better than an error). */
5743 if (num_defns_collected (obstackp) == 0)
5744 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5747 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5748 is non-zero, enclosing scope and in global scopes, returning the number of
5750 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5751 found and the blocks and symbol tables (if any) in which they were
5754 When full_search is non-zero, any non-function/non-enumeral
5755 symbol match within the nest of blocks whose innermost member is BLOCK,
5756 is the one match returned (no other matches in that or
5757 enclosing blocks is returned). If there are any matches in or
5758 surrounding BLOCK, then these alone are returned.
5760 Names prefixed with "standard__" are handled specially: "standard__"
5761 is first stripped off, and only static and global symbols are searched. */
5764 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5765 const struct block *block,
5767 std::vector<struct block_symbol> *results,
5770 int syms_from_global_search;
5772 auto_obstack obstack;
5774 ada_add_all_symbols (&obstack, block, lookup_name,
5775 domain, full_search, &syms_from_global_search);
5777 ndefns = num_defns_collected (&obstack);
5779 struct block_symbol *base = defns_collected (&obstack, 1);
5780 for (int i = 0; i < ndefns; ++i)
5781 results->push_back (base[i]);
5783 ndefns = remove_extra_symbols (results);
5785 if (ndefns == 0 && full_search && syms_from_global_search)
5786 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5788 if (ndefns == 1 && full_search && syms_from_global_search)
5789 cache_symbol (ada_lookup_name (lookup_name), domain,
5790 (*results)[0].symbol, (*results)[0].block);
5792 ndefns = remove_irrelevant_renamings (results, block);
5797 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5798 in global scopes, returning the number of matches, and filling *RESULTS
5799 with (SYM,BLOCK) tuples.
5801 See ada_lookup_symbol_list_worker for further details. */
5804 ada_lookup_symbol_list (const char *name, const struct block *block,
5806 std::vector<struct block_symbol> *results)
5808 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5809 lookup_name_info lookup_name (name, name_match_type);
5811 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5814 /* Implementation of the la_iterate_over_symbols method. */
5817 ada_iterate_over_symbols
5818 (const struct block *block, const lookup_name_info &name,
5820 gdb::function_view<symbol_found_callback_ftype> callback)
5823 std::vector<struct block_symbol> results;
5825 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5827 for (i = 0; i < ndefs; ++i)
5829 if (!callback (&results[i]))
5834 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5835 to 1, but choosing the first symbol found if there are multiple
5838 The result is stored in *INFO, which must be non-NULL.
5839 If no match is found, INFO->SYM is set to NULL. */
5842 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5844 struct block_symbol *info)
5846 /* Since we already have an encoded name, wrap it in '<>' to force a
5847 verbatim match. Otherwise, if the name happens to not look like
5848 an encoded name (because it doesn't include a "__"),
5849 ada_lookup_name_info would re-encode/fold it again, and that
5850 would e.g., incorrectly lowercase object renaming names like
5851 "R28b" -> "r28b". */
5852 std::string verbatim = std::string ("<") + name + '>';
5854 gdb_assert (info != NULL);
5855 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5858 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5859 scope and in global scopes, or NULL if none. NAME is folded and
5860 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5861 choosing the first symbol if there are multiple choices.
5862 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5865 ada_lookup_symbol (const char *name, const struct block *block0,
5866 domain_enum domain, int *is_a_field_of_this)
5868 if (is_a_field_of_this != NULL)
5869 *is_a_field_of_this = 0;
5871 std::vector<struct block_symbol> candidates;
5874 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5876 if (n_candidates == 0)
5879 block_symbol info = candidates[0];
5880 info.symbol = fixup_symbol_section (info.symbol, NULL);
5884 static struct block_symbol
5885 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5887 const struct block *block,
5888 const domain_enum domain)
5890 struct block_symbol sym;
5892 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5893 if (sym.symbol != NULL)
5896 /* If we haven't found a match at this point, try the primitive
5897 types. In other languages, this search is performed before
5898 searching for global symbols in order to short-circuit that
5899 global-symbol search if it happens that the name corresponds
5900 to a primitive type. But we cannot do the same in Ada, because
5901 it is perfectly legitimate for a program to declare a type which
5902 has the same name as a standard type. If looking up a type in
5903 that situation, we have traditionally ignored the primitive type
5904 in favor of user-defined types. This is why, unlike most other
5905 languages, we search the primitive types this late and only after
5906 having searched the global symbols without success. */
5908 if (domain == VAR_DOMAIN)
5910 struct gdbarch *gdbarch;
5913 gdbarch = target_gdbarch ();
5915 gdbarch = block_gdbarch (block);
5916 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5917 if (sym.symbol != NULL)
5925 /* True iff STR is a possible encoded suffix of a normal Ada name
5926 that is to be ignored for matching purposes. Suffixes of parallel
5927 names (e.g., XVE) are not included here. Currently, the possible suffixes
5928 are given by any of the regular expressions:
5930 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5931 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5932 TKB [subprogram suffix for task bodies]
5933 _E[0-9]+[bs]$ [protected object entry suffixes]
5934 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5936 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5937 match is performed. This sequence is used to differentiate homonyms,
5938 is an optional part of a valid name suffix. */
5941 is_name_suffix (const char *str)
5944 const char *matching;
5945 const int len = strlen (str);
5947 /* Skip optional leading __[0-9]+. */
5949 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5952 while (isdigit (str[0]))
5958 if (str[0] == '.' || str[0] == '$')
5961 while (isdigit (matching[0]))
5963 if (matching[0] == '\0')
5969 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5972 while (isdigit (matching[0]))
5974 if (matching[0] == '\0')
5978 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5980 if (strcmp (str, "TKB") == 0)
5984 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5985 with a N at the end. Unfortunately, the compiler uses the same
5986 convention for other internal types it creates. So treating
5987 all entity names that end with an "N" as a name suffix causes
5988 some regressions. For instance, consider the case of an enumerated
5989 type. To support the 'Image attribute, it creates an array whose
5991 Having a single character like this as a suffix carrying some
5992 information is a bit risky. Perhaps we should change the encoding
5993 to be something like "_N" instead. In the meantime, do not do
5994 the following check. */
5995 /* Protected Object Subprograms */
5996 if (len == 1 && str [0] == 'N')
6001 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6004 while (isdigit (matching[0]))
6006 if ((matching[0] == 'b' || matching[0] == 's')
6007 && matching [1] == '\0')
6011 /* ??? We should not modify STR directly, as we are doing below. This
6012 is fine in this case, but may become problematic later if we find
6013 that this alternative did not work, and want to try matching
6014 another one from the begining of STR. Since we modified it, we
6015 won't be able to find the begining of the string anymore! */
6019 while (str[0] != '_' && str[0] != '\0')
6021 if (str[0] != 'n' && str[0] != 'b')
6027 if (str[0] == '\000')
6032 if (str[1] != '_' || str[2] == '\000')
6036 if (strcmp (str + 3, "JM") == 0)
6038 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6039 the LJM suffix in favor of the JM one. But we will
6040 still accept LJM as a valid suffix for a reasonable
6041 amount of time, just to allow ourselves to debug programs
6042 compiled using an older version of GNAT. */
6043 if (strcmp (str + 3, "LJM") == 0)
6047 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6048 || str[4] == 'U' || str[4] == 'P')
6050 if (str[4] == 'R' && str[5] != 'T')
6054 if (!isdigit (str[2]))
6056 for (k = 3; str[k] != '\0'; k += 1)
6057 if (!isdigit (str[k]) && str[k] != '_')
6061 if (str[0] == '$' && isdigit (str[1]))
6063 for (k = 2; str[k] != '\0'; k += 1)
6064 if (!isdigit (str[k]) && str[k] != '_')
6071 /* Return non-zero if the string starting at NAME and ending before
6072 NAME_END contains no capital letters. */
6075 is_valid_name_for_wild_match (const char *name0)
6077 const char *decoded_name = ada_decode (name0);
6080 /* If the decoded name starts with an angle bracket, it means that
6081 NAME0 does not follow the GNAT encoding format. It should then
6082 not be allowed as a possible wild match. */
6083 if (decoded_name[0] == '<')
6086 for (i=0; decoded_name[i] != '\0'; i++)
6087 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6093 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6094 that could start a simple name. Assumes that *NAMEP points into
6095 the string beginning at NAME0. */
6098 advance_wild_match (const char **namep, const char *name0, int target0)
6100 const char *name = *namep;
6110 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6113 if (name == name0 + 5 && startswith (name0, "_ada"))
6118 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6119 || name[2] == target0))
6127 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6137 /* Return true iff NAME encodes a name of the form prefix.PATN.
6138 Ignores any informational suffixes of NAME (i.e., for which
6139 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6143 wild_match (const char *name, const char *patn)
6146 const char *name0 = name;
6150 const char *match = name;
6154 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6157 if (*p == '\0' && is_name_suffix (name))
6158 return match == name0 || is_valid_name_for_wild_match (name0);
6160 if (name[-1] == '_')
6163 if (!advance_wild_match (&name, name0, *patn))
6168 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6169 any trailing suffixes that encode debugging information or leading
6170 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6171 information that is ignored). */
6174 full_match (const char *sym_name, const char *search_name)
6176 size_t search_name_len = strlen (search_name);
6178 if (strncmp (sym_name, search_name, search_name_len) == 0
6179 && is_name_suffix (sym_name + search_name_len))
6182 if (startswith (sym_name, "_ada_")
6183 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6184 && is_name_suffix (sym_name + search_name_len + 5))
6190 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6191 *defn_symbols, updating the list of symbols in OBSTACKP (if
6192 necessary). OBJFILE is the section containing BLOCK. */
6195 ada_add_block_symbols (struct obstack *obstackp,
6196 const struct block *block,
6197 const lookup_name_info &lookup_name,
6198 domain_enum domain, struct objfile *objfile)
6200 struct block_iterator iter;
6201 /* A matching argument symbol, if any. */
6202 struct symbol *arg_sym;
6203 /* Set true when we find a matching non-argument symbol. */
6209 for (sym = block_iter_match_first (block, lookup_name, &iter);
6211 sym = block_iter_match_next (lookup_name, &iter))
6213 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6214 SYMBOL_DOMAIN (sym), domain))
6216 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6218 if (SYMBOL_IS_ARGUMENT (sym))
6223 add_defn_to_vec (obstackp,
6224 fixup_symbol_section (sym, objfile),
6231 /* Handle renamings. */
6233 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6236 if (!found_sym && arg_sym != NULL)
6238 add_defn_to_vec (obstackp,
6239 fixup_symbol_section (arg_sym, objfile),
6243 if (!lookup_name.ada ().wild_match_p ())
6247 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6248 const char *name = ada_lookup_name.c_str ();
6249 size_t name_len = ada_lookup_name.size ();
6251 ALL_BLOCK_SYMBOLS (block, iter, sym)
6253 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6254 SYMBOL_DOMAIN (sym), domain))
6258 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6261 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6263 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6268 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6272 if (SYMBOL_IS_ARGUMENT (sym))
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6286 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6287 They aren't parameters, right? */
6288 if (!found_sym && arg_sym != NULL)
6290 add_defn_to_vec (obstackp,
6291 fixup_symbol_section (arg_sym, objfile),
6298 /* Symbol Completion */
6303 ada_lookup_name_info::matches
6304 (const char *sym_name,
6305 symbol_name_match_type match_type,
6306 completion_match_result *comp_match_res) const
6309 const char *text = m_encoded_name.c_str ();
6310 size_t text_len = m_encoded_name.size ();
6312 /* First, test against the fully qualified name of the symbol. */
6314 if (strncmp (sym_name, text, text_len) == 0)
6317 if (match && !m_encoded_p)
6319 /* One needed check before declaring a positive match is to verify
6320 that iff we are doing a verbatim match, the decoded version
6321 of the symbol name starts with '<'. Otherwise, this symbol name
6322 is not a suitable completion. */
6323 const char *sym_name_copy = sym_name;
6324 bool has_angle_bracket;
6326 sym_name = ada_decode (sym_name);
6327 has_angle_bracket = (sym_name[0] == '<');
6328 match = (has_angle_bracket == m_verbatim_p);
6329 sym_name = sym_name_copy;
6332 if (match && !m_verbatim_p)
6334 /* When doing non-verbatim match, another check that needs to
6335 be done is to verify that the potentially matching symbol name
6336 does not include capital letters, because the ada-mode would
6337 not be able to understand these symbol names without the
6338 angle bracket notation. */
6341 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6346 /* Second: Try wild matching... */
6348 if (!match && m_wild_match_p)
6350 /* Since we are doing wild matching, this means that TEXT
6351 may represent an unqualified symbol name. We therefore must
6352 also compare TEXT against the unqualified name of the symbol. */
6353 sym_name = ada_unqualified_name (ada_decode (sym_name));
6355 if (strncmp (sym_name, text, text_len) == 0)
6359 /* Finally: If we found a match, prepare the result to return. */
6364 if (comp_match_res != NULL)
6366 std::string &match_str = comp_match_res->match.storage ();
6369 match_str = ada_decode (sym_name);
6373 match_str = add_angle_brackets (sym_name);
6375 match_str = sym_name;
6379 comp_match_res->set_match (match_str.c_str ());
6385 /* Add the list of possible symbol names completing TEXT to TRACKER.
6386 WORD is the entire command on which completion is made. */
6389 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6390 complete_symbol_mode mode,
6391 symbol_name_match_type name_match_type,
6392 const char *text, const char *word,
6393 enum type_code code)
6396 const struct block *b, *surrounding_static_block = 0;
6397 struct block_iterator iter;
6399 gdb_assert (code == TYPE_CODE_UNDEF);
6401 lookup_name_info lookup_name (text, name_match_type, true);
6403 /* First, look at the partial symtab symbols. */
6404 expand_symtabs_matching (NULL,
6410 /* At this point scan through the misc symbol vectors and add each
6411 symbol you find to the list. Eventually we want to ignore
6412 anything that isn't a text symbol (everything else will be
6413 handled by the psymtab code above). */
6415 for (objfile *objfile : current_program_space->objfiles ())
6417 for (minimal_symbol *msymbol : objfile->msymbols ())
6421 if (completion_skip_symbol (mode, msymbol))
6424 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6426 /* Ada minimal symbols won't have their language set to Ada. If
6427 we let completion_list_add_name compare using the
6428 default/C-like matcher, then when completing e.g., symbols in a
6429 package named "pck", we'd match internal Ada symbols like
6430 "pckS", which are invalid in an Ada expression, unless you wrap
6431 them in '<' '>' to request a verbatim match.
6433 Unfortunately, some Ada encoded names successfully demangle as
6434 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6435 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6436 with the wrong language set. Paper over that issue here. */
6437 if (symbol_language == language_auto
6438 || symbol_language == language_cplus)
6439 symbol_language = language_ada;
6441 completion_list_add_name (tracker,
6443 MSYMBOL_LINKAGE_NAME (msymbol),
6444 lookup_name, text, word);
6448 /* Search upwards from currently selected frame (so that we can
6449 complete on local vars. */
6451 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6453 if (!BLOCK_SUPERBLOCK (b))
6454 surrounding_static_block = b; /* For elmin of dups */
6456 ALL_BLOCK_SYMBOLS (b, iter, sym)
6458 if (completion_skip_symbol (mode, sym))
6461 completion_list_add_name (tracker,
6462 SYMBOL_LANGUAGE (sym),
6463 SYMBOL_LINKAGE_NAME (sym),
6464 lookup_name, text, word);
6468 /* Go through the symtabs and check the externs and statics for
6469 symbols which match. */
6471 for (objfile *objfile : current_program_space->objfiles ())
6473 for (compunit_symtab *s : objfile->compunits ())
6476 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6477 ALL_BLOCK_SYMBOLS (b, iter, sym)
6479 if (completion_skip_symbol (mode, sym))
6482 completion_list_add_name (tracker,
6483 SYMBOL_LANGUAGE (sym),
6484 SYMBOL_LINKAGE_NAME (sym),
6485 lookup_name, text, word);
6490 for (objfile *objfile : current_program_space->objfiles ())
6492 for (compunit_symtab *s : objfile->compunits ())
6495 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6496 /* Don't do this block twice. */
6497 if (b == surrounding_static_block)
6499 ALL_BLOCK_SYMBOLS (b, iter, sym)
6501 if (completion_skip_symbol (mode, sym))
6504 completion_list_add_name (tracker,
6505 SYMBOL_LANGUAGE (sym),
6506 SYMBOL_LINKAGE_NAME (sym),
6507 lookup_name, text, word);
6515 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6516 for tagged types. */
6519 ada_is_dispatch_table_ptr_type (struct type *type)
6523 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6526 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6530 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6533 /* Return non-zero if TYPE is an interface tag. */
6536 ada_is_interface_tag (struct type *type)
6538 const char *name = TYPE_NAME (type);
6543 return (strcmp (name, "ada__tags__interface_tag") == 0);
6546 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6547 to be invisible to users. */
6550 ada_is_ignored_field (struct type *type, int field_num)
6552 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6555 /* Check the name of that field. */
6557 const char *name = TYPE_FIELD_NAME (type, field_num);
6559 /* Anonymous field names should not be printed.
6560 brobecker/2007-02-20: I don't think this can actually happen
6561 but we don't want to print the value of annonymous fields anyway. */
6565 /* Normally, fields whose name start with an underscore ("_")
6566 are fields that have been internally generated by the compiler,
6567 and thus should not be printed. The "_parent" field is special,
6568 however: This is a field internally generated by the compiler
6569 for tagged types, and it contains the components inherited from
6570 the parent type. This field should not be printed as is, but
6571 should not be ignored either. */
6572 if (name[0] == '_' && !startswith (name, "_parent"))
6576 /* If this is the dispatch table of a tagged type or an interface tag,
6578 if (ada_is_tagged_type (type, 1)
6579 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6580 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6583 /* Not a special field, so it should not be ignored. */
6587 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6588 pointer or reference type whose ultimate target has a tag field. */
6591 ada_is_tagged_type (struct type *type, int refok)
6593 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6596 /* True iff TYPE represents the type of X'Tag */
6599 ada_is_tag_type (struct type *type)
6601 type = ada_check_typedef (type);
6603 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6607 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6609 return (name != NULL
6610 && strcmp (name, "ada__tags__dispatch_table") == 0);
6614 /* The type of the tag on VAL. */
6617 ada_tag_type (struct value *val)
6619 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6622 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6623 retired at Ada 05). */
6626 is_ada95_tag (struct value *tag)
6628 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6631 /* The value of the tag on VAL. */
6634 ada_value_tag (struct value *val)
6636 return ada_value_struct_elt (val, "_tag", 0);
6639 /* The value of the tag on the object of type TYPE whose contents are
6640 saved at VALADDR, if it is non-null, or is at memory address
6643 static struct value *
6644 value_tag_from_contents_and_address (struct type *type,
6645 const gdb_byte *valaddr,
6648 int tag_byte_offset;
6649 struct type *tag_type;
6651 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6654 const gdb_byte *valaddr1 = ((valaddr == NULL)
6656 : valaddr + tag_byte_offset);
6657 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6659 return value_from_contents_and_address (tag_type, valaddr1, address1);
6664 static struct type *
6665 type_from_tag (struct value *tag)
6667 const char *type_name = ada_tag_name (tag);
6669 if (type_name != NULL)
6670 return ada_find_any_type (ada_encode (type_name));
6674 /* Given a value OBJ of a tagged type, return a value of this
6675 type at the base address of the object. The base address, as
6676 defined in Ada.Tags, it is the address of the primary tag of
6677 the object, and therefore where the field values of its full
6678 view can be fetched. */
6681 ada_tag_value_at_base_address (struct value *obj)
6684 LONGEST offset_to_top = 0;
6685 struct type *ptr_type, *obj_type;
6687 CORE_ADDR base_address;
6689 obj_type = value_type (obj);
6691 /* It is the responsability of the caller to deref pointers. */
6693 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6694 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6697 tag = ada_value_tag (obj);
6701 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6703 if (is_ada95_tag (tag))
6706 ptr_type = language_lookup_primitive_type
6707 (language_def (language_ada), target_gdbarch(), "storage_offset");
6708 ptr_type = lookup_pointer_type (ptr_type);
6709 val = value_cast (ptr_type, tag);
6713 /* It is perfectly possible that an exception be raised while
6714 trying to determine the base address, just like for the tag;
6715 see ada_tag_name for more details. We do not print the error
6716 message for the same reason. */
6720 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6723 CATCH (e, RETURN_MASK_ERROR)
6729 /* If offset is null, nothing to do. */
6731 if (offset_to_top == 0)
6734 /* -1 is a special case in Ada.Tags; however, what should be done
6735 is not quite clear from the documentation. So do nothing for
6738 if (offset_to_top == -1)
6741 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6742 from the base address. This was however incompatible with
6743 C++ dispatch table: C++ uses a *negative* value to *add*
6744 to the base address. Ada's convention has therefore been
6745 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6746 use the same convention. Here, we support both cases by
6747 checking the sign of OFFSET_TO_TOP. */
6749 if (offset_to_top > 0)
6750 offset_to_top = -offset_to_top;
6752 base_address = value_address (obj) + offset_to_top;
6753 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6755 /* Make sure that we have a proper tag at the new address.
6756 Otherwise, offset_to_top is bogus (which can happen when
6757 the object is not initialized yet). */
6762 obj_type = type_from_tag (tag);
6767 return value_from_contents_and_address (obj_type, NULL, base_address);
6770 /* Return the "ada__tags__type_specific_data" type. */
6772 static struct type *
6773 ada_get_tsd_type (struct inferior *inf)
6775 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6777 if (data->tsd_type == 0)
6778 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6779 return data->tsd_type;
6782 /* Return the TSD (type-specific data) associated to the given TAG.
6783 TAG is assumed to be the tag of a tagged-type entity.
6785 May return NULL if we are unable to get the TSD. */
6787 static struct value *
6788 ada_get_tsd_from_tag (struct value *tag)
6793 /* First option: The TSD is simply stored as a field of our TAG.
6794 Only older versions of GNAT would use this format, but we have
6795 to test it first, because there are no visible markers for
6796 the current approach except the absence of that field. */
6798 val = ada_value_struct_elt (tag, "tsd", 1);
6802 /* Try the second representation for the dispatch table (in which
6803 there is no explicit 'tsd' field in the referent of the tag pointer,
6804 and instead the tsd pointer is stored just before the dispatch
6807 type = ada_get_tsd_type (current_inferior());
6810 type = lookup_pointer_type (lookup_pointer_type (type));
6811 val = value_cast (type, tag);
6814 return value_ind (value_ptradd (val, -1));
6817 /* Given the TSD of a tag (type-specific data), return a string
6818 containing the name of the associated type.
6820 The returned value is good until the next call. May return NULL
6821 if we are unable to determine the tag name. */
6824 ada_tag_name_from_tsd (struct value *tsd)
6826 static char name[1024];
6830 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6833 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6834 for (p = name; *p != '\0'; p += 1)
6840 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6843 Return NULL if the TAG is not an Ada tag, or if we were unable to
6844 determine the name of that tag. The result is good until the next
6848 ada_tag_name (struct value *tag)
6852 if (!ada_is_tag_type (value_type (tag)))
6855 /* It is perfectly possible that an exception be raised while trying
6856 to determine the TAG's name, even under normal circumstances:
6857 The associated variable may be uninitialized or corrupted, for
6858 instance. We do not let any exception propagate past this point.
6859 instead we return NULL.
6861 We also do not print the error message either (which often is very
6862 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6863 the caller print a more meaningful message if necessary. */
6866 struct value *tsd = ada_get_tsd_from_tag (tag);
6869 name = ada_tag_name_from_tsd (tsd);
6871 CATCH (e, RETURN_MASK_ERROR)
6879 /* The parent type of TYPE, or NULL if none. */
6882 ada_parent_type (struct type *type)
6886 type = ada_check_typedef (type);
6888 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6891 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6892 if (ada_is_parent_field (type, i))
6894 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6896 /* If the _parent field is a pointer, then dereference it. */
6897 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6898 parent_type = TYPE_TARGET_TYPE (parent_type);
6899 /* If there is a parallel XVS type, get the actual base type. */
6900 parent_type = ada_get_base_type (parent_type);
6902 return ada_check_typedef (parent_type);
6908 /* True iff field number FIELD_NUM of structure type TYPE contains the
6909 parent-type (inherited) fields of a derived type. Assumes TYPE is
6910 a structure type with at least FIELD_NUM+1 fields. */
6913 ada_is_parent_field (struct type *type, int field_num)
6915 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6917 return (name != NULL
6918 && (startswith (name, "PARENT")
6919 || startswith (name, "_parent")));
6922 /* True iff field number FIELD_NUM of structure type TYPE is a
6923 transparent wrapper field (which should be silently traversed when doing
6924 field selection and flattened when printing). Assumes TYPE is a
6925 structure type with at least FIELD_NUM+1 fields. Such fields are always
6929 ada_is_wrapper_field (struct type *type, int field_num)
6931 const char *name = TYPE_FIELD_NAME (type, field_num);
6933 if (name != NULL && strcmp (name, "RETVAL") == 0)
6935 /* This happens in functions with "out" or "in out" parameters
6936 which are passed by copy. For such functions, GNAT describes
6937 the function's return type as being a struct where the return
6938 value is in a field called RETVAL, and where the other "out"
6939 or "in out" parameters are fields of that struct. This is not
6944 return (name != NULL
6945 && (startswith (name, "PARENT")
6946 || strcmp (name, "REP") == 0
6947 || startswith (name, "_parent")
6948 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6951 /* True iff field number FIELD_NUM of structure or union type TYPE
6952 is a variant wrapper. Assumes TYPE is a structure type with at least
6953 FIELD_NUM+1 fields. */
6956 ada_is_variant_part (struct type *type, int field_num)
6958 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6960 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6961 || (is_dynamic_field (type, field_num)
6962 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6963 == TYPE_CODE_UNION)));
6966 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6967 whose discriminants are contained in the record type OUTER_TYPE,
6968 returns the type of the controlling discriminant for the variant.
6969 May return NULL if the type could not be found. */
6972 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6974 const char *name = ada_variant_discrim_name (var_type);
6976 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6979 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6980 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6981 represents a 'when others' clause; otherwise 0. */
6984 ada_is_others_clause (struct type *type, int field_num)
6986 const char *name = TYPE_FIELD_NAME (type, field_num);
6988 return (name != NULL && name[0] == 'O');
6991 /* Assuming that TYPE0 is the type of the variant part of a record,
6992 returns the name of the discriminant controlling the variant.
6993 The value is valid until the next call to ada_variant_discrim_name. */
6996 ada_variant_discrim_name (struct type *type0)
6998 static char *result = NULL;
6999 static size_t result_len = 0;
7002 const char *discrim_end;
7003 const char *discrim_start;
7005 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7006 type = TYPE_TARGET_TYPE (type0);
7010 name = ada_type_name (type);
7012 if (name == NULL || name[0] == '\000')
7015 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7018 if (startswith (discrim_end, "___XVN"))
7021 if (discrim_end == name)
7024 for (discrim_start = discrim_end; discrim_start != name + 3;
7027 if (discrim_start == name + 1)
7029 if ((discrim_start > name + 3
7030 && startswith (discrim_start - 3, "___"))
7031 || discrim_start[-1] == '.')
7035 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7036 strncpy (result, discrim_start, discrim_end - discrim_start);
7037 result[discrim_end - discrim_start] = '\0';
7041 /* Scan STR for a subtype-encoded number, beginning at position K.
7042 Put the position of the character just past the number scanned in
7043 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7044 Return 1 if there was a valid number at the given position, and 0
7045 otherwise. A "subtype-encoded" number consists of the absolute value
7046 in decimal, followed by the letter 'm' to indicate a negative number.
7047 Assumes 0m does not occur. */
7050 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7054 if (!isdigit (str[k]))
7057 /* Do it the hard way so as not to make any assumption about
7058 the relationship of unsigned long (%lu scan format code) and
7061 while (isdigit (str[k]))
7063 RU = RU * 10 + (str[k] - '0');
7070 *R = (-(LONGEST) (RU - 1)) - 1;
7076 /* NOTE on the above: Technically, C does not say what the results of
7077 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7078 number representable as a LONGEST (although either would probably work
7079 in most implementations). When RU>0, the locution in the then branch
7080 above is always equivalent to the negative of RU. */
7087 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7088 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7089 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7092 ada_in_variant (LONGEST val, struct type *type, int field_num)
7094 const char *name = TYPE_FIELD_NAME (type, field_num);
7108 if (!ada_scan_number (name, p + 1, &W, &p))
7118 if (!ada_scan_number (name, p + 1, &L, &p)
7119 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7121 if (val >= L && val <= U)
7133 /* FIXME: Lots of redundancy below. Try to consolidate. */
7135 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7136 ARG_TYPE, extract and return the value of one of its (non-static)
7137 fields. FIELDNO says which field. Differs from value_primitive_field
7138 only in that it can handle packed values of arbitrary type. */
7140 static struct value *
7141 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7142 struct type *arg_type)
7146 arg_type = ada_check_typedef (arg_type);
7147 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7149 /* Handle packed fields. */
7151 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7153 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7154 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7156 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7157 offset + bit_pos / 8,
7158 bit_pos % 8, bit_size, type);
7161 return value_primitive_field (arg1, offset, fieldno, arg_type);
7164 /* Find field with name NAME in object of type TYPE. If found,
7165 set the following for each argument that is non-null:
7166 - *FIELD_TYPE_P to the field's type;
7167 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7168 an object of that type;
7169 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7170 - *BIT_SIZE_P to its size in bits if the field is packed, and
7172 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7173 fields up to but not including the desired field, or by the total
7174 number of fields if not found. A NULL value of NAME never
7175 matches; the function just counts visible fields in this case.
7177 Notice that we need to handle when a tagged record hierarchy
7178 has some components with the same name, like in this scenario:
7180 type Top_T is tagged record
7186 type Middle_T is new Top.Top_T with record
7187 N : Character := 'a';
7191 type Bottom_T is new Middle.Middle_T with record
7193 C : Character := '5';
7195 A : Character := 'J';
7198 Let's say we now have a variable declared and initialized as follow:
7200 TC : Top_A := new Bottom_T;
7202 And then we use this variable to call this function
7204 procedure Assign (Obj: in out Top_T; TV : Integer);
7208 Assign (Top_T (B), 12);
7210 Now, we're in the debugger, and we're inside that procedure
7211 then and we want to print the value of obj.c:
7213 Usually, the tagged record or one of the parent type owns the
7214 component to print and there's no issue but in this particular
7215 case, what does it mean to ask for Obj.C? Since the actual
7216 type for object is type Bottom_T, it could mean two things: type
7217 component C from the Middle_T view, but also component C from
7218 Bottom_T. So in that "undefined" case, when the component is
7219 not found in the non-resolved type (which includes all the
7220 components of the parent type), then resolve it and see if we
7221 get better luck once expanded.
7223 In the case of homonyms in the derived tagged type, we don't
7224 guaranty anything, and pick the one that's easiest for us
7227 Returns 1 if found, 0 otherwise. */
7230 find_struct_field (const char *name, struct type *type, int offset,
7231 struct type **field_type_p,
7232 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7236 int parent_offset = -1;
7238 type = ada_check_typedef (type);
7240 if (field_type_p != NULL)
7241 *field_type_p = NULL;
7242 if (byte_offset_p != NULL)
7244 if (bit_offset_p != NULL)
7246 if (bit_size_p != NULL)
7249 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7251 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7252 int fld_offset = offset + bit_pos / 8;
7253 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7255 if (t_field_name == NULL)
7258 else if (ada_is_parent_field (type, i))
7260 /* This is a field pointing us to the parent type of a tagged
7261 type. As hinted in this function's documentation, we give
7262 preference to fields in the current record first, so what
7263 we do here is just record the index of this field before
7264 we skip it. If it turns out we couldn't find our field
7265 in the current record, then we'll get back to it and search
7266 inside it whether the field might exist in the parent. */
7272 else if (name != NULL && field_name_match (t_field_name, name))
7274 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7276 if (field_type_p != NULL)
7277 *field_type_p = TYPE_FIELD_TYPE (type, i);
7278 if (byte_offset_p != NULL)
7279 *byte_offset_p = fld_offset;
7280 if (bit_offset_p != NULL)
7281 *bit_offset_p = bit_pos % 8;
7282 if (bit_size_p != NULL)
7283 *bit_size_p = bit_size;
7286 else if (ada_is_wrapper_field (type, i))
7288 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7289 field_type_p, byte_offset_p, bit_offset_p,
7290 bit_size_p, index_p))
7293 else if (ada_is_variant_part (type, i))
7295 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7298 struct type *field_type
7299 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7301 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7303 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7305 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7306 field_type_p, byte_offset_p,
7307 bit_offset_p, bit_size_p, index_p))
7311 else if (index_p != NULL)
7315 /* Field not found so far. If this is a tagged type which
7316 has a parent, try finding that field in the parent now. */
7318 if (parent_offset != -1)
7320 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7321 int fld_offset = offset + bit_pos / 8;
7323 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7324 fld_offset, field_type_p, byte_offset_p,
7325 bit_offset_p, bit_size_p, index_p))
7332 /* Number of user-visible fields in record type TYPE. */
7335 num_visible_fields (struct type *type)
7340 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7344 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7345 and search in it assuming it has (class) type TYPE.
7346 If found, return value, else return NULL.
7348 Searches recursively through wrapper fields (e.g., '_parent').
7350 In the case of homonyms in the tagged types, please refer to the
7351 long explanation in find_struct_field's function documentation. */
7353 static struct value *
7354 ada_search_struct_field (const char *name, struct value *arg, int offset,
7358 int parent_offset = -1;
7360 type = ada_check_typedef (type);
7361 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7363 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7365 if (t_field_name == NULL)
7368 else if (ada_is_parent_field (type, i))
7370 /* This is a field pointing us to the parent type of a tagged
7371 type. As hinted in this function's documentation, we give
7372 preference to fields in the current record first, so what
7373 we do here is just record the index of this field before
7374 we skip it. If it turns out we couldn't find our field
7375 in the current record, then we'll get back to it and search
7376 inside it whether the field might exist in the parent. */
7382 else if (field_name_match (t_field_name, name))
7383 return ada_value_primitive_field (arg, offset, i, type);
7385 else if (ada_is_wrapper_field (type, i))
7387 struct value *v = /* Do not let indent join lines here. */
7388 ada_search_struct_field (name, arg,
7389 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7390 TYPE_FIELD_TYPE (type, i));
7396 else if (ada_is_variant_part (type, i))
7398 /* PNH: Do we ever get here? See find_struct_field. */
7400 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7402 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7404 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7406 struct value *v = ada_search_struct_field /* Force line
7409 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7410 TYPE_FIELD_TYPE (field_type, j));
7418 /* Field not found so far. If this is a tagged type which
7419 has a parent, try finding that field in the parent now. */
7421 if (parent_offset != -1)
7423 struct value *v = ada_search_struct_field (
7424 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7425 TYPE_FIELD_TYPE (type, parent_offset));
7434 static struct value *ada_index_struct_field_1 (int *, struct value *,
7435 int, struct type *);
7438 /* Return field #INDEX in ARG, where the index is that returned by
7439 * find_struct_field through its INDEX_P argument. Adjust the address
7440 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7441 * If found, return value, else return NULL. */
7443 static struct value *
7444 ada_index_struct_field (int index, struct value *arg, int offset,
7447 return ada_index_struct_field_1 (&index, arg, offset, type);
7451 /* Auxiliary function for ada_index_struct_field. Like
7452 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7455 static struct value *
7456 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7460 type = ada_check_typedef (type);
7462 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7464 if (TYPE_FIELD_NAME (type, i) == NULL)
7466 else if (ada_is_wrapper_field (type, i))
7468 struct value *v = /* Do not let indent join lines here. */
7469 ada_index_struct_field_1 (index_p, arg,
7470 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7471 TYPE_FIELD_TYPE (type, i));
7477 else if (ada_is_variant_part (type, i))
7479 /* PNH: Do we ever get here? See ada_search_struct_field,
7480 find_struct_field. */
7481 error (_("Cannot assign this kind of variant record"));
7483 else if (*index_p == 0)
7484 return ada_value_primitive_field (arg, offset, i, type);
7491 /* Given ARG, a value of type (pointer or reference to a)*
7492 structure/union, extract the component named NAME from the ultimate
7493 target structure/union and return it as a value with its
7496 The routine searches for NAME among all members of the structure itself
7497 and (recursively) among all members of any wrapper members
7500 If NO_ERR, then simply return NULL in case of error, rather than
7504 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7506 struct type *t, *t1;
7511 t1 = t = ada_check_typedef (value_type (arg));
7512 if (TYPE_CODE (t) == TYPE_CODE_REF)
7514 t1 = TYPE_TARGET_TYPE (t);
7517 t1 = ada_check_typedef (t1);
7518 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7520 arg = coerce_ref (arg);
7525 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7527 t1 = TYPE_TARGET_TYPE (t);
7530 t1 = ada_check_typedef (t1);
7531 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7533 arg = value_ind (arg);
7540 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7544 v = ada_search_struct_field (name, arg, 0, t);
7547 int bit_offset, bit_size, byte_offset;
7548 struct type *field_type;
7551 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7552 address = value_address (ada_value_ind (arg));
7554 address = value_address (ada_coerce_ref (arg));
7556 /* Check to see if this is a tagged type. We also need to handle
7557 the case where the type is a reference to a tagged type, but
7558 we have to be careful to exclude pointers to tagged types.
7559 The latter should be shown as usual (as a pointer), whereas
7560 a reference should mostly be transparent to the user. */
7562 if (ada_is_tagged_type (t1, 0)
7563 || (TYPE_CODE (t1) == TYPE_CODE_REF
7564 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7566 /* We first try to find the searched field in the current type.
7567 If not found then let's look in the fixed type. */
7569 if (!find_struct_field (name, t1, 0,
7570 &field_type, &byte_offset, &bit_offset,
7579 /* Convert to fixed type in all cases, so that we have proper
7580 offsets to each field in unconstrained record types. */
7581 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7582 address, NULL, check_tag);
7584 if (find_struct_field (name, t1, 0,
7585 &field_type, &byte_offset, &bit_offset,
7590 if (TYPE_CODE (t) == TYPE_CODE_REF)
7591 arg = ada_coerce_ref (arg);
7593 arg = ada_value_ind (arg);
7594 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7595 bit_offset, bit_size,
7599 v = value_at_lazy (field_type, address + byte_offset);
7603 if (v != NULL || no_err)
7606 error (_("There is no member named %s."), name);
7612 error (_("Attempt to extract a component of "
7613 "a value that is not a record."));
7616 /* Return a string representation of type TYPE. */
7619 type_as_string (struct type *type)
7621 string_file tmp_stream;
7623 type_print (type, "", &tmp_stream, -1);
7625 return std::move (tmp_stream.string ());
7628 /* Given a type TYPE, look up the type of the component of type named NAME.
7629 If DISPP is non-null, add its byte displacement from the beginning of a
7630 structure (pointed to by a value) of type TYPE to *DISPP (does not
7631 work for packed fields).
7633 Matches any field whose name has NAME as a prefix, possibly
7636 TYPE can be either a struct or union. If REFOK, TYPE may also
7637 be a (pointer or reference)+ to a struct or union, and the
7638 ultimate target type will be searched.
7640 Looks recursively into variant clauses and parent types.
7642 In the case of homonyms in the tagged types, please refer to the
7643 long explanation in find_struct_field's function documentation.
7645 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7646 TYPE is not a type of the right kind. */
7648 static struct type *
7649 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7653 int parent_offset = -1;
7658 if (refok && type != NULL)
7661 type = ada_check_typedef (type);
7662 if (TYPE_CODE (type) != TYPE_CODE_PTR
7663 && TYPE_CODE (type) != TYPE_CODE_REF)
7665 type = TYPE_TARGET_TYPE (type);
7669 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7670 && TYPE_CODE (type) != TYPE_CODE_UNION))
7675 error (_("Type %s is not a structure or union type"),
7676 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7679 type = to_static_fixed_type (type);
7681 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7683 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7686 if (t_field_name == NULL)
7689 else if (ada_is_parent_field (type, i))
7691 /* This is a field pointing us to the parent type of a tagged
7692 type. As hinted in this function's documentation, we give
7693 preference to fields in the current record first, so what
7694 we do here is just record the index of this field before
7695 we skip it. If it turns out we couldn't find our field
7696 in the current record, then we'll get back to it and search
7697 inside it whether the field might exist in the parent. */
7703 else if (field_name_match (t_field_name, name))
7704 return TYPE_FIELD_TYPE (type, i);
7706 else if (ada_is_wrapper_field (type, i))
7708 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7714 else if (ada_is_variant_part (type, i))
7717 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7720 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7722 /* FIXME pnh 2008/01/26: We check for a field that is
7723 NOT wrapped in a struct, since the compiler sometimes
7724 generates these for unchecked variant types. Revisit
7725 if the compiler changes this practice. */
7726 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7728 if (v_field_name != NULL
7729 && field_name_match (v_field_name, name))
7730 t = TYPE_FIELD_TYPE (field_type, j);
7732 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7743 /* Field not found so far. If this is a tagged type which
7744 has a parent, try finding that field in the parent now. */
7746 if (parent_offset != -1)
7750 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7759 const char *name_str = name != NULL ? name : _("<null>");
7761 error (_("Type %s has no component named %s"),
7762 type_as_string (type).c_str (), name_str);
7768 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7769 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7770 represents an unchecked union (that is, the variant part of a
7771 record that is named in an Unchecked_Union pragma). */
7774 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7776 const char *discrim_name = ada_variant_discrim_name (var_type);
7778 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7782 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7783 within a value of type OUTER_TYPE that is stored in GDB at
7784 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7785 numbering from 0) is applicable. Returns -1 if none are. */
7788 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7789 const gdb_byte *outer_valaddr)
7793 const char *discrim_name = ada_variant_discrim_name (var_type);
7794 struct value *outer;
7795 struct value *discrim;
7796 LONGEST discrim_val;
7798 /* Using plain value_from_contents_and_address here causes problems
7799 because we will end up trying to resolve a type that is currently
7800 being constructed. */
7801 outer = value_from_contents_and_address_unresolved (outer_type,
7803 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7804 if (discrim == NULL)
7806 discrim_val = value_as_long (discrim);
7809 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7811 if (ada_is_others_clause (var_type, i))
7813 else if (ada_in_variant (discrim_val, var_type, i))
7817 return others_clause;
7822 /* Dynamic-Sized Records */
7824 /* Strategy: The type ostensibly attached to a value with dynamic size
7825 (i.e., a size that is not statically recorded in the debugging
7826 data) does not accurately reflect the size or layout of the value.
7827 Our strategy is to convert these values to values with accurate,
7828 conventional types that are constructed on the fly. */
7830 /* There is a subtle and tricky problem here. In general, we cannot
7831 determine the size of dynamic records without its data. However,
7832 the 'struct value' data structure, which GDB uses to represent
7833 quantities in the inferior process (the target), requires the size
7834 of the type at the time of its allocation in order to reserve space
7835 for GDB's internal copy of the data. That's why the
7836 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7837 rather than struct value*s.
7839 However, GDB's internal history variables ($1, $2, etc.) are
7840 struct value*s containing internal copies of the data that are not, in
7841 general, the same as the data at their corresponding addresses in
7842 the target. Fortunately, the types we give to these values are all
7843 conventional, fixed-size types (as per the strategy described
7844 above), so that we don't usually have to perform the
7845 'to_fixed_xxx_type' conversions to look at their values.
7846 Unfortunately, there is one exception: if one of the internal
7847 history variables is an array whose elements are unconstrained
7848 records, then we will need to create distinct fixed types for each
7849 element selected. */
7851 /* The upshot of all of this is that many routines take a (type, host
7852 address, target address) triple as arguments to represent a value.
7853 The host address, if non-null, is supposed to contain an internal
7854 copy of the relevant data; otherwise, the program is to consult the
7855 target at the target address. */
7857 /* Assuming that VAL0 represents a pointer value, the result of
7858 dereferencing it. Differs from value_ind in its treatment of
7859 dynamic-sized types. */
7862 ada_value_ind (struct value *val0)
7864 struct value *val = value_ind (val0);
7866 if (ada_is_tagged_type (value_type (val), 0))
7867 val = ada_tag_value_at_base_address (val);
7869 return ada_to_fixed_value (val);
7872 /* The value resulting from dereferencing any "reference to"
7873 qualifiers on VAL0. */
7875 static struct value *
7876 ada_coerce_ref (struct value *val0)
7878 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7880 struct value *val = val0;
7882 val = coerce_ref (val);
7884 if (ada_is_tagged_type (value_type (val), 0))
7885 val = ada_tag_value_at_base_address (val);
7887 return ada_to_fixed_value (val);
7893 /* Return OFF rounded upward if necessary to a multiple of
7894 ALIGNMENT (a power of 2). */
7897 align_value (unsigned int off, unsigned int alignment)
7899 return (off + alignment - 1) & ~(alignment - 1);
7902 /* Return the bit alignment required for field #F of template type TYPE. */
7905 field_alignment (struct type *type, int f)
7907 const char *name = TYPE_FIELD_NAME (type, f);
7911 /* The field name should never be null, unless the debugging information
7912 is somehow malformed. In this case, we assume the field does not
7913 require any alignment. */
7917 len = strlen (name);
7919 if (!isdigit (name[len - 1]))
7922 if (isdigit (name[len - 2]))
7923 align_offset = len - 2;
7925 align_offset = len - 1;
7927 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7928 return TARGET_CHAR_BIT;
7930 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7933 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7935 static struct symbol *
7936 ada_find_any_type_symbol (const char *name)
7940 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7941 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7944 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7948 /* Find a type named NAME. Ignores ambiguity. This routine will look
7949 solely for types defined by debug info, it will not search the GDB
7952 static struct type *
7953 ada_find_any_type (const char *name)
7955 struct symbol *sym = ada_find_any_type_symbol (name);
7958 return SYMBOL_TYPE (sym);
7963 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7964 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7965 symbol, in which case it is returned. Otherwise, this looks for
7966 symbols whose name is that of NAME_SYM suffixed with "___XR".
7967 Return symbol if found, and NULL otherwise. */
7970 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7972 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7975 if (strstr (name, "___XR") != NULL)
7978 sym = find_old_style_renaming_symbol (name, block);
7983 /* Not right yet. FIXME pnh 7/20/2007. */
7984 sym = ada_find_any_type_symbol (name);
7985 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7991 static struct symbol *
7992 find_old_style_renaming_symbol (const char *name, const struct block *block)
7994 const struct symbol *function_sym = block_linkage_function (block);
7997 if (function_sym != NULL)
7999 /* If the symbol is defined inside a function, NAME is not fully
8000 qualified. This means we need to prepend the function name
8001 as well as adding the ``___XR'' suffix to build the name of
8002 the associated renaming symbol. */
8003 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8004 /* Function names sometimes contain suffixes used
8005 for instance to qualify nested subprograms. When building
8006 the XR type name, we need to make sure that this suffix is
8007 not included. So do not include any suffix in the function
8008 name length below. */
8009 int function_name_len = ada_name_prefix_len (function_name);
8010 const int rename_len = function_name_len + 2 /* "__" */
8011 + strlen (name) + 6 /* "___XR\0" */ ;
8013 /* Strip the suffix if necessary. */
8014 ada_remove_trailing_digits (function_name, &function_name_len);
8015 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8016 ada_remove_Xbn_suffix (function_name, &function_name_len);
8018 /* Library-level functions are a special case, as GNAT adds
8019 a ``_ada_'' prefix to the function name to avoid namespace
8020 pollution. However, the renaming symbols themselves do not
8021 have this prefix, so we need to skip this prefix if present. */
8022 if (function_name_len > 5 /* "_ada_" */
8023 && strstr (function_name, "_ada_") == function_name)
8026 function_name_len -= 5;
8029 rename = (char *) alloca (rename_len * sizeof (char));
8030 strncpy (rename, function_name, function_name_len);
8031 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8036 const int rename_len = strlen (name) + 6;
8038 rename = (char *) alloca (rename_len * sizeof (char));
8039 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8042 return ada_find_any_type_symbol (rename);
8045 /* Because of GNAT encoding conventions, several GDB symbols may match a
8046 given type name. If the type denoted by TYPE0 is to be preferred to
8047 that of TYPE1 for purposes of type printing, return non-zero;
8048 otherwise return 0. */
8051 ada_prefer_type (struct type *type0, struct type *type1)
8055 else if (type0 == NULL)
8057 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8059 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8061 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8063 else if (ada_is_constrained_packed_array_type (type0))
8065 else if (ada_is_array_descriptor_type (type0)
8066 && !ada_is_array_descriptor_type (type1))
8070 const char *type0_name = TYPE_NAME (type0);
8071 const char *type1_name = TYPE_NAME (type1);
8073 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8074 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8080 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8084 ada_type_name (struct type *type)
8088 return TYPE_NAME (type);
8091 /* Search the list of "descriptive" types associated to TYPE for a type
8092 whose name is NAME. */
8094 static struct type *
8095 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8097 struct type *result, *tmp;
8099 if (ada_ignore_descriptive_types_p)
8102 /* If there no descriptive-type info, then there is no parallel type
8104 if (!HAVE_GNAT_AUX_INFO (type))
8107 result = TYPE_DESCRIPTIVE_TYPE (type);
8108 while (result != NULL)
8110 const char *result_name = ada_type_name (result);
8112 if (result_name == NULL)
8114 warning (_("unexpected null name on descriptive type"));
8118 /* If the names match, stop. */
8119 if (strcmp (result_name, name) == 0)
8122 /* Otherwise, look at the next item on the list, if any. */
8123 if (HAVE_GNAT_AUX_INFO (result))
8124 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8128 /* If not found either, try after having resolved the typedef. */
8133 result = check_typedef (result);
8134 if (HAVE_GNAT_AUX_INFO (result))
8135 result = TYPE_DESCRIPTIVE_TYPE (result);
8141 /* If we didn't find a match, see whether this is a packed array. With
8142 older compilers, the descriptive type information is either absent or
8143 irrelevant when it comes to packed arrays so the above lookup fails.
8144 Fall back to using a parallel lookup by name in this case. */
8145 if (result == NULL && ada_is_constrained_packed_array_type (type))
8146 return ada_find_any_type (name);
8151 /* Find a parallel type to TYPE with the specified NAME, using the
8152 descriptive type taken from the debugging information, if available,
8153 and otherwise using the (slower) name-based method. */
8155 static struct type *
8156 ada_find_parallel_type_with_name (struct type *type, const char *name)
8158 struct type *result = NULL;
8160 if (HAVE_GNAT_AUX_INFO (type))
8161 result = find_parallel_type_by_descriptive_type (type, name);
8163 result = ada_find_any_type (name);
8168 /* Same as above, but specify the name of the parallel type by appending
8169 SUFFIX to the name of TYPE. */
8172 ada_find_parallel_type (struct type *type, const char *suffix)
8175 const char *type_name = ada_type_name (type);
8178 if (type_name == NULL)
8181 len = strlen (type_name);
8183 name = (char *) alloca (len + strlen (suffix) + 1);
8185 strcpy (name, type_name);
8186 strcpy (name + len, suffix);
8188 return ada_find_parallel_type_with_name (type, name);
8191 /* If TYPE is a variable-size record type, return the corresponding template
8192 type describing its fields. Otherwise, return NULL. */
8194 static struct type *
8195 dynamic_template_type (struct type *type)
8197 type = ada_check_typedef (type);
8199 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8200 || ada_type_name (type) == NULL)
8204 int len = strlen (ada_type_name (type));
8206 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8209 return ada_find_parallel_type (type, "___XVE");
8213 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8214 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8217 is_dynamic_field (struct type *templ_type, int field_num)
8219 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8222 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8223 && strstr (name, "___XVL") != NULL;
8226 /* The index of the variant field of TYPE, or -1 if TYPE does not
8227 represent a variant record type. */
8230 variant_field_index (struct type *type)
8234 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8237 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8239 if (ada_is_variant_part (type, f))
8245 /* A record type with no fields. */
8247 static struct type *
8248 empty_record (struct type *templ)
8250 struct type *type = alloc_type_copy (templ);
8252 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8253 TYPE_NFIELDS (type) = 0;
8254 TYPE_FIELDS (type) = NULL;
8255 INIT_CPLUS_SPECIFIC (type);
8256 TYPE_NAME (type) = "<empty>";
8257 TYPE_LENGTH (type) = 0;
8261 /* An ordinary record type (with fixed-length fields) that describes
8262 the value of type TYPE at VALADDR or ADDRESS (see comments at
8263 the beginning of this section) VAL according to GNAT conventions.
8264 DVAL0 should describe the (portion of a) record that contains any
8265 necessary discriminants. It should be NULL if value_type (VAL) is
8266 an outer-level type (i.e., as opposed to a branch of a variant.) A
8267 variant field (unless unchecked) is replaced by a particular branch
8270 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8271 length are not statically known are discarded. As a consequence,
8272 VALADDR, ADDRESS and DVAL0 are ignored.
8274 NOTE: Limitations: For now, we assume that dynamic fields and
8275 variants occupy whole numbers of bytes. However, they need not be
8279 ada_template_to_fixed_record_type_1 (struct type *type,
8280 const gdb_byte *valaddr,
8281 CORE_ADDR address, struct value *dval0,
8282 int keep_dynamic_fields)
8284 struct value *mark = value_mark ();
8287 int nfields, bit_len;
8293 /* Compute the number of fields in this record type that are going
8294 to be processed: unless keep_dynamic_fields, this includes only
8295 fields whose position and length are static will be processed. */
8296 if (keep_dynamic_fields)
8297 nfields = TYPE_NFIELDS (type);
8301 while (nfields < TYPE_NFIELDS (type)
8302 && !ada_is_variant_part (type, nfields)
8303 && !is_dynamic_field (type, nfields))
8307 rtype = alloc_type_copy (type);
8308 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8309 INIT_CPLUS_SPECIFIC (rtype);
8310 TYPE_NFIELDS (rtype) = nfields;
8311 TYPE_FIELDS (rtype) = (struct field *)
8312 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8313 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8314 TYPE_NAME (rtype) = ada_type_name (type);
8315 TYPE_FIXED_INSTANCE (rtype) = 1;
8321 for (f = 0; f < nfields; f += 1)
8323 off = align_value (off, field_alignment (type, f))
8324 + TYPE_FIELD_BITPOS (type, f);
8325 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8326 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8328 if (ada_is_variant_part (type, f))
8333 else if (is_dynamic_field (type, f))
8335 const gdb_byte *field_valaddr = valaddr;
8336 CORE_ADDR field_address = address;
8337 struct type *field_type =
8338 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8342 /* rtype's length is computed based on the run-time
8343 value of discriminants. If the discriminants are not
8344 initialized, the type size may be completely bogus and
8345 GDB may fail to allocate a value for it. So check the
8346 size first before creating the value. */
8347 ada_ensure_varsize_limit (rtype);
8348 /* Using plain value_from_contents_and_address here
8349 causes problems because we will end up trying to
8350 resolve a type that is currently being
8352 dval = value_from_contents_and_address_unresolved (rtype,
8355 rtype = value_type (dval);
8360 /* If the type referenced by this field is an aligner type, we need
8361 to unwrap that aligner type, because its size might not be set.
8362 Keeping the aligner type would cause us to compute the wrong
8363 size for this field, impacting the offset of the all the fields
8364 that follow this one. */
8365 if (ada_is_aligner_type (field_type))
8367 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8369 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8370 field_address = cond_offset_target (field_address, field_offset);
8371 field_type = ada_aligned_type (field_type);
8374 field_valaddr = cond_offset_host (field_valaddr,
8375 off / TARGET_CHAR_BIT);
8376 field_address = cond_offset_target (field_address,
8377 off / TARGET_CHAR_BIT);
8379 /* Get the fixed type of the field. Note that, in this case,
8380 we do not want to get the real type out of the tag: if
8381 the current field is the parent part of a tagged record,
8382 we will get the tag of the object. Clearly wrong: the real
8383 type of the parent is not the real type of the child. We
8384 would end up in an infinite loop. */
8385 field_type = ada_get_base_type (field_type);
8386 field_type = ada_to_fixed_type (field_type, field_valaddr,
8387 field_address, dval, 0);
8388 /* If the field size is already larger than the maximum
8389 object size, then the record itself will necessarily
8390 be larger than the maximum object size. We need to make
8391 this check now, because the size might be so ridiculously
8392 large (due to an uninitialized variable in the inferior)
8393 that it would cause an overflow when adding it to the
8395 ada_ensure_varsize_limit (field_type);
8397 TYPE_FIELD_TYPE (rtype, f) = field_type;
8398 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8399 /* The multiplication can potentially overflow. But because
8400 the field length has been size-checked just above, and
8401 assuming that the maximum size is a reasonable value,
8402 an overflow should not happen in practice. So rather than
8403 adding overflow recovery code to this already complex code,
8404 we just assume that it's not going to happen. */
8406 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8410 /* Note: If this field's type is a typedef, it is important
8411 to preserve the typedef layer.
8413 Otherwise, we might be transforming a typedef to a fat
8414 pointer (encoding a pointer to an unconstrained array),
8415 into a basic fat pointer (encoding an unconstrained
8416 array). As both types are implemented using the same
8417 structure, the typedef is the only clue which allows us
8418 to distinguish between the two options. Stripping it
8419 would prevent us from printing this field appropriately. */
8420 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8421 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8422 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8424 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8427 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8429 /* We need to be careful of typedefs when computing
8430 the length of our field. If this is a typedef,
8431 get the length of the target type, not the length
8433 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8434 field_type = ada_typedef_target_type (field_type);
8437 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8440 if (off + fld_bit_len > bit_len)
8441 bit_len = off + fld_bit_len;
8443 TYPE_LENGTH (rtype) =
8444 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8447 /* We handle the variant part, if any, at the end because of certain
8448 odd cases in which it is re-ordered so as NOT to be the last field of
8449 the record. This can happen in the presence of representation
8451 if (variant_field >= 0)
8453 struct type *branch_type;
8455 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8459 /* Using plain value_from_contents_and_address here causes
8460 problems because we will end up trying to resolve a type
8461 that is currently being constructed. */
8462 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8464 rtype = value_type (dval);
8470 to_fixed_variant_branch_type
8471 (TYPE_FIELD_TYPE (type, variant_field),
8472 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8473 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8474 if (branch_type == NULL)
8476 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8477 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8478 TYPE_NFIELDS (rtype) -= 1;
8482 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8483 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8485 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8487 if (off + fld_bit_len > bit_len)
8488 bit_len = off + fld_bit_len;
8489 TYPE_LENGTH (rtype) =
8490 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8494 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8495 should contain the alignment of that record, which should be a strictly
8496 positive value. If null or negative, then something is wrong, most
8497 probably in the debug info. In that case, we don't round up the size
8498 of the resulting type. If this record is not part of another structure,
8499 the current RTYPE length might be good enough for our purposes. */
8500 if (TYPE_LENGTH (type) <= 0)
8502 if (TYPE_NAME (rtype))
8503 warning (_("Invalid type size for `%s' detected: %d."),
8504 TYPE_NAME (rtype), TYPE_LENGTH (type));
8506 warning (_("Invalid type size for <unnamed> detected: %d."),
8507 TYPE_LENGTH (type));
8511 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8512 TYPE_LENGTH (type));
8515 value_free_to_mark (mark);
8516 if (TYPE_LENGTH (rtype) > varsize_limit)
8517 error (_("record type with dynamic size is larger than varsize-limit"));
8521 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8524 static struct type *
8525 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8526 CORE_ADDR address, struct value *dval0)
8528 return ada_template_to_fixed_record_type_1 (type, valaddr,
8532 /* An ordinary record type in which ___XVL-convention fields and
8533 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8534 static approximations, containing all possible fields. Uses
8535 no runtime values. Useless for use in values, but that's OK,
8536 since the results are used only for type determinations. Works on both
8537 structs and unions. Representation note: to save space, we memorize
8538 the result of this function in the TYPE_TARGET_TYPE of the
8541 static struct type *
8542 template_to_static_fixed_type (struct type *type0)
8548 /* No need no do anything if the input type is already fixed. */
8549 if (TYPE_FIXED_INSTANCE (type0))
8552 /* Likewise if we already have computed the static approximation. */
8553 if (TYPE_TARGET_TYPE (type0) != NULL)
8554 return TYPE_TARGET_TYPE (type0);
8556 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8558 nfields = TYPE_NFIELDS (type0);
8560 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8561 recompute all over next time. */
8562 TYPE_TARGET_TYPE (type0) = type;
8564 for (f = 0; f < nfields; f += 1)
8566 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8567 struct type *new_type;
8569 if (is_dynamic_field (type0, f))
8571 field_type = ada_check_typedef (field_type);
8572 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8575 new_type = static_unwrap_type (field_type);
8577 if (new_type != field_type)
8579 /* Clone TYPE0 only the first time we get a new field type. */
8582 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8583 TYPE_CODE (type) = TYPE_CODE (type0);
8584 INIT_CPLUS_SPECIFIC (type);
8585 TYPE_NFIELDS (type) = nfields;
8586 TYPE_FIELDS (type) = (struct field *)
8587 TYPE_ALLOC (type, nfields * sizeof (struct field));
8588 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8589 sizeof (struct field) * nfields);
8590 TYPE_NAME (type) = ada_type_name (type0);
8591 TYPE_FIXED_INSTANCE (type) = 1;
8592 TYPE_LENGTH (type) = 0;
8594 TYPE_FIELD_TYPE (type, f) = new_type;
8595 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8602 /* Given an object of type TYPE whose contents are at VALADDR and
8603 whose address in memory is ADDRESS, returns a revision of TYPE,
8604 which should be a non-dynamic-sized record, in which the variant
8605 part, if any, is replaced with the appropriate branch. Looks
8606 for discriminant values in DVAL0, which can be NULL if the record
8607 contains the necessary discriminant values. */
8609 static struct type *
8610 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8611 CORE_ADDR address, struct value *dval0)
8613 struct value *mark = value_mark ();
8616 struct type *branch_type;
8617 int nfields = TYPE_NFIELDS (type);
8618 int variant_field = variant_field_index (type);
8620 if (variant_field == -1)
8625 dval = value_from_contents_and_address (type, valaddr, address);
8626 type = value_type (dval);
8631 rtype = alloc_type_copy (type);
8632 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8633 INIT_CPLUS_SPECIFIC (rtype);
8634 TYPE_NFIELDS (rtype) = nfields;
8635 TYPE_FIELDS (rtype) =
8636 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8637 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8638 sizeof (struct field) * nfields);
8639 TYPE_NAME (rtype) = ada_type_name (type);
8640 TYPE_FIXED_INSTANCE (rtype) = 1;
8641 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8643 branch_type = to_fixed_variant_branch_type
8644 (TYPE_FIELD_TYPE (type, variant_field),
8645 cond_offset_host (valaddr,
8646 TYPE_FIELD_BITPOS (type, variant_field)
8648 cond_offset_target (address,
8649 TYPE_FIELD_BITPOS (type, variant_field)
8650 / TARGET_CHAR_BIT), dval);
8651 if (branch_type == NULL)
8655 for (f = variant_field + 1; f < nfields; f += 1)
8656 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8657 TYPE_NFIELDS (rtype) -= 1;
8661 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8662 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8663 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8664 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8666 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8668 value_free_to_mark (mark);
8672 /* An ordinary record type (with fixed-length fields) that describes
8673 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8674 beginning of this section]. Any necessary discriminants' values
8675 should be in DVAL, a record value; it may be NULL if the object
8676 at ADDR itself contains any necessary discriminant values.
8677 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8678 values from the record are needed. Except in the case that DVAL,
8679 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8680 unchecked) is replaced by a particular branch of the variant.
8682 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8683 is questionable and may be removed. It can arise during the
8684 processing of an unconstrained-array-of-record type where all the
8685 variant branches have exactly the same size. This is because in
8686 such cases, the compiler does not bother to use the XVS convention
8687 when encoding the record. I am currently dubious of this
8688 shortcut and suspect the compiler should be altered. FIXME. */
8690 static struct type *
8691 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8692 CORE_ADDR address, struct value *dval)
8694 struct type *templ_type;
8696 if (TYPE_FIXED_INSTANCE (type0))
8699 templ_type = dynamic_template_type (type0);
8701 if (templ_type != NULL)
8702 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8703 else if (variant_field_index (type0) >= 0)
8705 if (dval == NULL && valaddr == NULL && address == 0)
8707 return to_record_with_fixed_variant_part (type0, valaddr, address,
8712 TYPE_FIXED_INSTANCE (type0) = 1;
8718 /* An ordinary record type (with fixed-length fields) that describes
8719 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8720 union type. Any necessary discriminants' values should be in DVAL,
8721 a record value. That is, this routine selects the appropriate
8722 branch of the union at ADDR according to the discriminant value
8723 indicated in the union's type name. Returns VAR_TYPE0 itself if
8724 it represents a variant subject to a pragma Unchecked_Union. */
8726 static struct type *
8727 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8728 CORE_ADDR address, struct value *dval)
8731 struct type *templ_type;
8732 struct type *var_type;
8734 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8735 var_type = TYPE_TARGET_TYPE (var_type0);
8737 var_type = var_type0;
8739 templ_type = ada_find_parallel_type (var_type, "___XVU");
8741 if (templ_type != NULL)
8742 var_type = templ_type;
8744 if (is_unchecked_variant (var_type, value_type (dval)))
8747 ada_which_variant_applies (var_type,
8748 value_type (dval), value_contents (dval));
8751 return empty_record (var_type);
8752 else if (is_dynamic_field (var_type, which))
8753 return to_fixed_record_type
8754 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8755 valaddr, address, dval);
8756 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8758 to_fixed_record_type
8759 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8761 return TYPE_FIELD_TYPE (var_type, which);
8764 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8765 ENCODING_TYPE, a type following the GNAT conventions for discrete
8766 type encodings, only carries redundant information. */
8769 ada_is_redundant_range_encoding (struct type *range_type,
8770 struct type *encoding_type)
8772 const char *bounds_str;
8776 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8778 if (TYPE_CODE (get_base_type (range_type))
8779 != TYPE_CODE (get_base_type (encoding_type)))
8781 /* The compiler probably used a simple base type to describe
8782 the range type instead of the range's actual base type,
8783 expecting us to get the real base type from the encoding
8784 anyway. In this situation, the encoding cannot be ignored
8789 if (is_dynamic_type (range_type))
8792 if (TYPE_NAME (encoding_type) == NULL)
8795 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8796 if (bounds_str == NULL)
8799 n = 8; /* Skip "___XDLU_". */
8800 if (!ada_scan_number (bounds_str, n, &lo, &n))
8802 if (TYPE_LOW_BOUND (range_type) != lo)
8805 n += 2; /* Skip the "__" separator between the two bounds. */
8806 if (!ada_scan_number (bounds_str, n, &hi, &n))
8808 if (TYPE_HIGH_BOUND (range_type) != hi)
8814 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8815 a type following the GNAT encoding for describing array type
8816 indices, only carries redundant information. */
8819 ada_is_redundant_index_type_desc (struct type *array_type,
8820 struct type *desc_type)
8822 struct type *this_layer = check_typedef (array_type);
8825 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8827 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8828 TYPE_FIELD_TYPE (desc_type, i)))
8830 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8836 /* Assuming that TYPE0 is an array type describing the type of a value
8837 at ADDR, and that DVAL describes a record containing any
8838 discriminants used in TYPE0, returns a type for the value that
8839 contains no dynamic components (that is, no components whose sizes
8840 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8841 true, gives an error message if the resulting type's size is over
8844 static struct type *
8845 to_fixed_array_type (struct type *type0, struct value *dval,
8848 struct type *index_type_desc;
8849 struct type *result;
8850 int constrained_packed_array_p;
8851 static const char *xa_suffix = "___XA";
8853 type0 = ada_check_typedef (type0);
8854 if (TYPE_FIXED_INSTANCE (type0))
8857 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8858 if (constrained_packed_array_p)
8859 type0 = decode_constrained_packed_array_type (type0);
8861 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8863 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8864 encoding suffixed with 'P' may still be generated. If so,
8865 it should be used to find the XA type. */
8867 if (index_type_desc == NULL)
8869 const char *type_name = ada_type_name (type0);
8871 if (type_name != NULL)
8873 const int len = strlen (type_name);
8874 char *name = (char *) alloca (len + strlen (xa_suffix));
8876 if (type_name[len - 1] == 'P')
8878 strcpy (name, type_name);
8879 strcpy (name + len - 1, xa_suffix);
8880 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8885 ada_fixup_array_indexes_type (index_type_desc);
8886 if (index_type_desc != NULL
8887 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8889 /* Ignore this ___XA parallel type, as it does not bring any
8890 useful information. This allows us to avoid creating fixed
8891 versions of the array's index types, which would be identical
8892 to the original ones. This, in turn, can also help avoid
8893 the creation of fixed versions of the array itself. */
8894 index_type_desc = NULL;
8897 if (index_type_desc == NULL)
8899 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8901 /* NOTE: elt_type---the fixed version of elt_type0---should never
8902 depend on the contents of the array in properly constructed
8904 /* Create a fixed version of the array element type.
8905 We're not providing the address of an element here,
8906 and thus the actual object value cannot be inspected to do
8907 the conversion. This should not be a problem, since arrays of
8908 unconstrained objects are not allowed. In particular, all
8909 the elements of an array of a tagged type should all be of
8910 the same type specified in the debugging info. No need to
8911 consult the object tag. */
8912 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8914 /* Make sure we always create a new array type when dealing with
8915 packed array types, since we're going to fix-up the array
8916 type length and element bitsize a little further down. */
8917 if (elt_type0 == elt_type && !constrained_packed_array_p)
8920 result = create_array_type (alloc_type_copy (type0),
8921 elt_type, TYPE_INDEX_TYPE (type0));
8926 struct type *elt_type0;
8929 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8930 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8932 /* NOTE: result---the fixed version of elt_type0---should never
8933 depend on the contents of the array in properly constructed
8935 /* Create a fixed version of the array element type.
8936 We're not providing the address of an element here,
8937 and thus the actual object value cannot be inspected to do
8938 the conversion. This should not be a problem, since arrays of
8939 unconstrained objects are not allowed. In particular, all
8940 the elements of an array of a tagged type should all be of
8941 the same type specified in the debugging info. No need to
8942 consult the object tag. */
8944 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8947 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8949 struct type *range_type =
8950 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8952 result = create_array_type (alloc_type_copy (elt_type0),
8953 result, range_type);
8954 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8956 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8957 error (_("array type with dynamic size is larger than varsize-limit"));
8960 /* We want to preserve the type name. This can be useful when
8961 trying to get the type name of a value that has already been
8962 printed (for instance, if the user did "print VAR; whatis $". */
8963 TYPE_NAME (result) = TYPE_NAME (type0);
8965 if (constrained_packed_array_p)
8967 /* So far, the resulting type has been created as if the original
8968 type was a regular (non-packed) array type. As a result, the
8969 bitsize of the array elements needs to be set again, and the array
8970 length needs to be recomputed based on that bitsize. */
8971 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8972 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8974 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8975 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8976 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8977 TYPE_LENGTH (result)++;
8980 TYPE_FIXED_INSTANCE (result) = 1;
8985 /* A standard type (containing no dynamically sized components)
8986 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8987 DVAL describes a record containing any discriminants used in TYPE0,
8988 and may be NULL if there are none, or if the object of type TYPE at
8989 ADDRESS or in VALADDR contains these discriminants.
8991 If CHECK_TAG is not null, in the case of tagged types, this function
8992 attempts to locate the object's tag and use it to compute the actual
8993 type. However, when ADDRESS is null, we cannot use it to determine the
8994 location of the tag, and therefore compute the tagged type's actual type.
8995 So we return the tagged type without consulting the tag. */
8997 static struct type *
8998 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8999 CORE_ADDR address, struct value *dval, int check_tag)
9001 type = ada_check_typedef (type);
9002 switch (TYPE_CODE (type))
9006 case TYPE_CODE_STRUCT:
9008 struct type *static_type = to_static_fixed_type (type);
9009 struct type *fixed_record_type =
9010 to_fixed_record_type (type, valaddr, address, NULL);
9012 /* If STATIC_TYPE is a tagged type and we know the object's address,
9013 then we can determine its tag, and compute the object's actual
9014 type from there. Note that we have to use the fixed record
9015 type (the parent part of the record may have dynamic fields
9016 and the way the location of _tag is expressed may depend on
9019 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9022 value_tag_from_contents_and_address
9026 struct type *real_type = type_from_tag (tag);
9028 value_from_contents_and_address (fixed_record_type,
9031 fixed_record_type = value_type (obj);
9032 if (real_type != NULL)
9033 return to_fixed_record_type
9035 value_address (ada_tag_value_at_base_address (obj)), NULL);
9038 /* Check to see if there is a parallel ___XVZ variable.
9039 If there is, then it provides the actual size of our type. */
9040 else if (ada_type_name (fixed_record_type) != NULL)
9042 const char *name = ada_type_name (fixed_record_type);
9044 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9045 bool xvz_found = false;
9048 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9051 xvz_found = get_int_var_value (xvz_name, size);
9053 CATCH (except, RETURN_MASK_ERROR)
9055 /* We found the variable, but somehow failed to read
9056 its value. Rethrow the same error, but with a little
9057 bit more information, to help the user understand
9058 what went wrong (Eg: the variable might have been
9060 throw_error (except.error,
9061 _("unable to read value of %s (%s)"),
9062 xvz_name, except.message);
9066 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9068 fixed_record_type = copy_type (fixed_record_type);
9069 TYPE_LENGTH (fixed_record_type) = size;
9071 /* The FIXED_RECORD_TYPE may have be a stub. We have
9072 observed this when the debugging info is STABS, and
9073 apparently it is something that is hard to fix.
9075 In practice, we don't need the actual type definition
9076 at all, because the presence of the XVZ variable allows us
9077 to assume that there must be a XVS type as well, which we
9078 should be able to use later, when we need the actual type
9081 In the meantime, pretend that the "fixed" type we are
9082 returning is NOT a stub, because this can cause trouble
9083 when using this type to create new types targeting it.
9084 Indeed, the associated creation routines often check
9085 whether the target type is a stub and will try to replace
9086 it, thus using a type with the wrong size. This, in turn,
9087 might cause the new type to have the wrong size too.
9088 Consider the case of an array, for instance, where the size
9089 of the array is computed from the number of elements in
9090 our array multiplied by the size of its element. */
9091 TYPE_STUB (fixed_record_type) = 0;
9094 return fixed_record_type;
9096 case TYPE_CODE_ARRAY:
9097 return to_fixed_array_type (type, dval, 1);
9098 case TYPE_CODE_UNION:
9102 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9106 /* The same as ada_to_fixed_type_1, except that it preserves the type
9107 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9109 The typedef layer needs be preserved in order to differentiate between
9110 arrays and array pointers when both types are implemented using the same
9111 fat pointer. In the array pointer case, the pointer is encoded as
9112 a typedef of the pointer type. For instance, considering:
9114 type String_Access is access String;
9115 S1 : String_Access := null;
9117 To the debugger, S1 is defined as a typedef of type String. But
9118 to the user, it is a pointer. So if the user tries to print S1,
9119 we should not dereference the array, but print the array address
9122 If we didn't preserve the typedef layer, we would lose the fact that
9123 the type is to be presented as a pointer (needs de-reference before
9124 being printed). And we would also use the source-level type name. */
9127 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9128 CORE_ADDR address, struct value *dval, int check_tag)
9131 struct type *fixed_type =
9132 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9134 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9135 then preserve the typedef layer.
9137 Implementation note: We can only check the main-type portion of
9138 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9139 from TYPE now returns a type that has the same instance flags
9140 as TYPE. For instance, if TYPE is a "typedef const", and its
9141 target type is a "struct", then the typedef elimination will return
9142 a "const" version of the target type. See check_typedef for more
9143 details about how the typedef layer elimination is done.
9145 brobecker/2010-11-19: It seems to me that the only case where it is
9146 useful to preserve the typedef layer is when dealing with fat pointers.
9147 Perhaps, we could add a check for that and preserve the typedef layer
9148 only in that situation. But this seems unecessary so far, probably
9149 because we call check_typedef/ada_check_typedef pretty much everywhere.
9151 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9152 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9153 == TYPE_MAIN_TYPE (fixed_type)))
9159 /* A standard (static-sized) type corresponding as well as possible to
9160 TYPE0, but based on no runtime data. */
9162 static struct type *
9163 to_static_fixed_type (struct type *type0)
9170 if (TYPE_FIXED_INSTANCE (type0))
9173 type0 = ada_check_typedef (type0);
9175 switch (TYPE_CODE (type0))
9179 case TYPE_CODE_STRUCT:
9180 type = dynamic_template_type (type0);
9182 return template_to_static_fixed_type (type);
9184 return template_to_static_fixed_type (type0);
9185 case TYPE_CODE_UNION:
9186 type = ada_find_parallel_type (type0, "___XVU");
9188 return template_to_static_fixed_type (type);
9190 return template_to_static_fixed_type (type0);
9194 /* A static approximation of TYPE with all type wrappers removed. */
9196 static struct type *
9197 static_unwrap_type (struct type *type)
9199 if (ada_is_aligner_type (type))
9201 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9202 if (ada_type_name (type1) == NULL)
9203 TYPE_NAME (type1) = ada_type_name (type);
9205 return static_unwrap_type (type1);
9209 struct type *raw_real_type = ada_get_base_type (type);
9211 if (raw_real_type == type)
9214 return to_static_fixed_type (raw_real_type);
9218 /* In some cases, incomplete and private types require
9219 cross-references that are not resolved as records (for example,
9221 type FooP is access Foo;
9223 type Foo is array ...;
9224 ). In these cases, since there is no mechanism for producing
9225 cross-references to such types, we instead substitute for FooP a
9226 stub enumeration type that is nowhere resolved, and whose tag is
9227 the name of the actual type. Call these types "non-record stubs". */
9229 /* A type equivalent to TYPE that is not a non-record stub, if one
9230 exists, otherwise TYPE. */
9233 ada_check_typedef (struct type *type)
9238 /* If our type is an access to an unconstrained array, which is encoded
9239 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9240 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9241 what allows us to distinguish between fat pointers that represent
9242 array types, and fat pointers that represent array access types
9243 (in both cases, the compiler implements them as fat pointers). */
9244 if (ada_is_access_to_unconstrained_array (type))
9247 type = check_typedef (type);
9248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9249 || !TYPE_STUB (type)
9250 || TYPE_NAME (type) == NULL)
9254 const char *name = TYPE_NAME (type);
9255 struct type *type1 = ada_find_any_type (name);
9260 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9261 stubs pointing to arrays, as we don't create symbols for array
9262 types, only for the typedef-to-array types). If that's the case,
9263 strip the typedef layer. */
9264 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9265 type1 = ada_check_typedef (type1);
9271 /* A value representing the data at VALADDR/ADDRESS as described by
9272 type TYPE0, but with a standard (static-sized) type that correctly
9273 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9274 type, then return VAL0 [this feature is simply to avoid redundant
9275 creation of struct values]. */
9277 static struct value *
9278 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9281 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9283 if (type == type0 && val0 != NULL)
9286 if (VALUE_LVAL (val0) != lval_memory)
9288 /* Our value does not live in memory; it could be a convenience
9289 variable, for instance. Create a not_lval value using val0's
9291 return value_from_contents (type, value_contents (val0));
9294 return value_from_contents_and_address (type, 0, address);
9297 /* A value representing VAL, but with a standard (static-sized) type
9298 that correctly describes it. Does not necessarily create a new
9302 ada_to_fixed_value (struct value *val)
9304 val = unwrap_value (val);
9305 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9312 /* Table mapping attribute numbers to names.
9313 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9315 static const char *attribute_names[] = {
9333 ada_attribute_name (enum exp_opcode n)
9335 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9336 return attribute_names[n - OP_ATR_FIRST + 1];
9338 return attribute_names[0];
9341 /* Evaluate the 'POS attribute applied to ARG. */
9344 pos_atr (struct value *arg)
9346 struct value *val = coerce_ref (arg);
9347 struct type *type = value_type (val);
9350 if (!discrete_type_p (type))
9351 error (_("'POS only defined on discrete types"));
9353 if (!discrete_position (type, value_as_long (val), &result))
9354 error (_("enumeration value is invalid: can't find 'POS"));
9359 static struct value *
9360 value_pos_atr (struct type *type, struct value *arg)
9362 return value_from_longest (type, pos_atr (arg));
9365 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9367 static struct value *
9368 value_val_atr (struct type *type, struct value *arg)
9370 if (!discrete_type_p (type))
9371 error (_("'VAL only defined on discrete types"));
9372 if (!integer_type_p (value_type (arg)))
9373 error (_("'VAL requires integral argument"));
9375 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9377 long pos = value_as_long (arg);
9379 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9380 error (_("argument to 'VAL out of range"));
9381 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9384 return value_from_longest (type, value_as_long (arg));
9390 /* True if TYPE appears to be an Ada character type.
9391 [At the moment, this is true only for Character and Wide_Character;
9392 It is a heuristic test that could stand improvement]. */
9395 ada_is_character_type (struct type *type)
9399 /* If the type code says it's a character, then assume it really is,
9400 and don't check any further. */
9401 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9404 /* Otherwise, assume it's a character type iff it is a discrete type
9405 with a known character type name. */
9406 name = ada_type_name (type);
9407 return (name != NULL
9408 && (TYPE_CODE (type) == TYPE_CODE_INT
9409 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9410 && (strcmp (name, "character") == 0
9411 || strcmp (name, "wide_character") == 0
9412 || strcmp (name, "wide_wide_character") == 0
9413 || strcmp (name, "unsigned char") == 0));
9416 /* True if TYPE appears to be an Ada string type. */
9419 ada_is_string_type (struct type *type)
9421 type = ada_check_typedef (type);
9423 && TYPE_CODE (type) != TYPE_CODE_PTR
9424 && (ada_is_simple_array_type (type)
9425 || ada_is_array_descriptor_type (type))
9426 && ada_array_arity (type) == 1)
9428 struct type *elttype = ada_array_element_type (type, 1);
9430 return ada_is_character_type (elttype);
9436 /* The compiler sometimes provides a parallel XVS type for a given
9437 PAD type. Normally, it is safe to follow the PAD type directly,
9438 but older versions of the compiler have a bug that causes the offset
9439 of its "F" field to be wrong. Following that field in that case
9440 would lead to incorrect results, but this can be worked around
9441 by ignoring the PAD type and using the associated XVS type instead.
9443 Set to True if the debugger should trust the contents of PAD types.
9444 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9445 static int trust_pad_over_xvs = 1;
9447 /* True if TYPE is a struct type introduced by the compiler to force the
9448 alignment of a value. Such types have a single field with a
9449 distinctive name. */
9452 ada_is_aligner_type (struct type *type)
9454 type = ada_check_typedef (type);
9456 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9459 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9460 && TYPE_NFIELDS (type) == 1
9461 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9464 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9465 the parallel type. */
9468 ada_get_base_type (struct type *raw_type)
9470 struct type *real_type_namer;
9471 struct type *raw_real_type;
9473 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9476 if (ada_is_aligner_type (raw_type))
9477 /* The encoding specifies that we should always use the aligner type.
9478 So, even if this aligner type has an associated XVS type, we should
9481 According to the compiler gurus, an XVS type parallel to an aligner
9482 type may exist because of a stabs limitation. In stabs, aligner
9483 types are empty because the field has a variable-sized type, and
9484 thus cannot actually be used as an aligner type. As a result,
9485 we need the associated parallel XVS type to decode the type.
9486 Since the policy in the compiler is to not change the internal
9487 representation based on the debugging info format, we sometimes
9488 end up having a redundant XVS type parallel to the aligner type. */
9491 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9492 if (real_type_namer == NULL
9493 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9494 || TYPE_NFIELDS (real_type_namer) != 1)
9497 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9499 /* This is an older encoding form where the base type needs to be
9500 looked up by name. We prefer the newer enconding because it is
9502 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9503 if (raw_real_type == NULL)
9506 return raw_real_type;
9509 /* The field in our XVS type is a reference to the base type. */
9510 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9513 /* The type of value designated by TYPE, with all aligners removed. */
9516 ada_aligned_type (struct type *type)
9518 if (ada_is_aligner_type (type))
9519 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9521 return ada_get_base_type (type);
9525 /* The address of the aligned value in an object at address VALADDR
9526 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9529 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9531 if (ada_is_aligner_type (type))
9532 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9534 TYPE_FIELD_BITPOS (type,
9535 0) / TARGET_CHAR_BIT);
9542 /* The printed representation of an enumeration literal with encoded
9543 name NAME. The value is good to the next call of ada_enum_name. */
9545 ada_enum_name (const char *name)
9547 static char *result;
9548 static size_t result_len = 0;
9551 /* First, unqualify the enumeration name:
9552 1. Search for the last '.' character. If we find one, then skip
9553 all the preceding characters, the unqualified name starts
9554 right after that dot.
9555 2. Otherwise, we may be debugging on a target where the compiler
9556 translates dots into "__". Search forward for double underscores,
9557 but stop searching when we hit an overloading suffix, which is
9558 of the form "__" followed by digits. */
9560 tmp = strrchr (name, '.');
9565 while ((tmp = strstr (name, "__")) != NULL)
9567 if (isdigit (tmp[2]))
9578 if (name[1] == 'U' || name[1] == 'W')
9580 if (sscanf (name + 2, "%x", &v) != 1)
9586 GROW_VECT (result, result_len, 16);
9587 if (isascii (v) && isprint (v))
9588 xsnprintf (result, result_len, "'%c'", v);
9589 else if (name[1] == 'U')
9590 xsnprintf (result, result_len, "[\"%02x\"]", v);
9592 xsnprintf (result, result_len, "[\"%04x\"]", v);
9598 tmp = strstr (name, "__");
9600 tmp = strstr (name, "$");
9603 GROW_VECT (result, result_len, tmp - name + 1);
9604 strncpy (result, name, tmp - name);
9605 result[tmp - name] = '\0';
9613 /* Evaluate the subexpression of EXP starting at *POS as for
9614 evaluate_type, updating *POS to point just past the evaluated
9617 static struct value *
9618 evaluate_subexp_type (struct expression *exp, int *pos)
9620 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9623 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9626 static struct value *
9627 unwrap_value (struct value *val)
9629 struct type *type = ada_check_typedef (value_type (val));
9631 if (ada_is_aligner_type (type))
9633 struct value *v = ada_value_struct_elt (val, "F", 0);
9634 struct type *val_type = ada_check_typedef (value_type (v));
9636 if (ada_type_name (val_type) == NULL)
9637 TYPE_NAME (val_type) = ada_type_name (type);
9639 return unwrap_value (v);
9643 struct type *raw_real_type =
9644 ada_check_typedef (ada_get_base_type (type));
9646 /* If there is no parallel XVS or XVE type, then the value is
9647 already unwrapped. Return it without further modification. */
9648 if ((type == raw_real_type)
9649 && ada_find_parallel_type (type, "___XVE") == NULL)
9653 coerce_unspec_val_to_type
9654 (val, ada_to_fixed_type (raw_real_type, 0,
9655 value_address (val),
9660 static struct value *
9661 cast_from_fixed (struct type *type, struct value *arg)
9663 struct value *scale = ada_scaling_factor (value_type (arg));
9664 arg = value_cast (value_type (scale), arg);
9666 arg = value_binop (arg, scale, BINOP_MUL);
9667 return value_cast (type, arg);
9670 static struct value *
9671 cast_to_fixed (struct type *type, struct value *arg)
9673 if (type == value_type (arg))
9676 struct value *scale = ada_scaling_factor (type);
9677 if (ada_is_fixed_point_type (value_type (arg)))
9678 arg = cast_from_fixed (value_type (scale), arg);
9680 arg = value_cast (value_type (scale), arg);
9682 arg = value_binop (arg, scale, BINOP_DIV);
9683 return value_cast (type, arg);
9686 /* Given two array types T1 and T2, return nonzero iff both arrays
9687 contain the same number of elements. */
9690 ada_same_array_size_p (struct type *t1, struct type *t2)
9692 LONGEST lo1, hi1, lo2, hi2;
9694 /* Get the array bounds in order to verify that the size of
9695 the two arrays match. */
9696 if (!get_array_bounds (t1, &lo1, &hi1)
9697 || !get_array_bounds (t2, &lo2, &hi2))
9698 error (_("unable to determine array bounds"));
9700 /* To make things easier for size comparison, normalize a bit
9701 the case of empty arrays by making sure that the difference
9702 between upper bound and lower bound is always -1. */
9708 return (hi1 - lo1 == hi2 - lo2);
9711 /* Assuming that VAL is an array of integrals, and TYPE represents
9712 an array with the same number of elements, but with wider integral
9713 elements, return an array "casted" to TYPE. In practice, this
9714 means that the returned array is built by casting each element
9715 of the original array into TYPE's (wider) element type. */
9717 static struct value *
9718 ada_promote_array_of_integrals (struct type *type, struct value *val)
9720 struct type *elt_type = TYPE_TARGET_TYPE (type);
9725 /* Verify that both val and type are arrays of scalars, and
9726 that the size of val's elements is smaller than the size
9727 of type's element. */
9728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9729 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9730 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9731 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9732 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9733 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9735 if (!get_array_bounds (type, &lo, &hi))
9736 error (_("unable to determine array bounds"));
9738 res = allocate_value (type);
9740 /* Promote each array element. */
9741 for (i = 0; i < hi - lo + 1; i++)
9743 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9745 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9746 value_contents_all (elt), TYPE_LENGTH (elt_type));
9752 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9753 return the converted value. */
9755 static struct value *
9756 coerce_for_assign (struct type *type, struct value *val)
9758 struct type *type2 = value_type (val);
9763 type2 = ada_check_typedef (type2);
9764 type = ada_check_typedef (type);
9766 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9767 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9769 val = ada_value_ind (val);
9770 type2 = value_type (val);
9773 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9774 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9776 if (!ada_same_array_size_p (type, type2))
9777 error (_("cannot assign arrays of different length"));
9779 if (is_integral_type (TYPE_TARGET_TYPE (type))
9780 && is_integral_type (TYPE_TARGET_TYPE (type2))
9781 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9782 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9784 /* Allow implicit promotion of the array elements to
9786 return ada_promote_array_of_integrals (type, val);
9789 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9791 error (_("Incompatible types in assignment"));
9792 deprecated_set_value_type (val, type);
9797 static struct value *
9798 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9801 struct type *type1, *type2;
9804 arg1 = coerce_ref (arg1);
9805 arg2 = coerce_ref (arg2);
9806 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9807 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9809 if (TYPE_CODE (type1) != TYPE_CODE_INT
9810 || TYPE_CODE (type2) != TYPE_CODE_INT)
9811 return value_binop (arg1, arg2, op);
9820 return value_binop (arg1, arg2, op);
9823 v2 = value_as_long (arg2);
9825 error (_("second operand of %s must not be zero."), op_string (op));
9827 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9828 return value_binop (arg1, arg2, op);
9830 v1 = value_as_long (arg1);
9835 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9836 v += v > 0 ? -1 : 1;
9844 /* Should not reach this point. */
9848 val = allocate_value (type1);
9849 store_unsigned_integer (value_contents_raw (val),
9850 TYPE_LENGTH (value_type (val)),
9851 gdbarch_byte_order (get_type_arch (type1)), v);
9856 ada_value_equal (struct value *arg1, struct value *arg2)
9858 if (ada_is_direct_array_type (value_type (arg1))
9859 || ada_is_direct_array_type (value_type (arg2)))
9861 struct type *arg1_type, *arg2_type;
9863 /* Automatically dereference any array reference before
9864 we attempt to perform the comparison. */
9865 arg1 = ada_coerce_ref (arg1);
9866 arg2 = ada_coerce_ref (arg2);
9868 arg1 = ada_coerce_to_simple_array (arg1);
9869 arg2 = ada_coerce_to_simple_array (arg2);
9871 arg1_type = ada_check_typedef (value_type (arg1));
9872 arg2_type = ada_check_typedef (value_type (arg2));
9874 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9875 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9876 error (_("Attempt to compare array with non-array"));
9877 /* FIXME: The following works only for types whose
9878 representations use all bits (no padding or undefined bits)
9879 and do not have user-defined equality. */
9880 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9881 && memcmp (value_contents (arg1), value_contents (arg2),
9882 TYPE_LENGTH (arg1_type)) == 0);
9884 return value_equal (arg1, arg2);
9887 /* Total number of component associations in the aggregate starting at
9888 index PC in EXP. Assumes that index PC is the start of an
9892 num_component_specs (struct expression *exp, int pc)
9896 m = exp->elts[pc + 1].longconst;
9899 for (i = 0; i < m; i += 1)
9901 switch (exp->elts[pc].opcode)
9907 n += exp->elts[pc + 1].longconst;
9910 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9915 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9916 component of LHS (a simple array or a record), updating *POS past
9917 the expression, assuming that LHS is contained in CONTAINER. Does
9918 not modify the inferior's memory, nor does it modify LHS (unless
9919 LHS == CONTAINER). */
9922 assign_component (struct value *container, struct value *lhs, LONGEST index,
9923 struct expression *exp, int *pos)
9925 struct value *mark = value_mark ();
9927 struct type *lhs_type = check_typedef (value_type (lhs));
9929 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9931 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9932 struct value *index_val = value_from_longest (index_type, index);
9934 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9938 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9939 elt = ada_to_fixed_value (elt);
9942 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9943 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9945 value_assign_to_component (container, elt,
9946 ada_evaluate_subexp (NULL, exp, pos,
9949 value_free_to_mark (mark);
9952 /* Assuming that LHS represents an lvalue having a record or array
9953 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9954 of that aggregate's value to LHS, advancing *POS past the
9955 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9956 lvalue containing LHS (possibly LHS itself). Does not modify
9957 the inferior's memory, nor does it modify the contents of
9958 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9960 static struct value *
9961 assign_aggregate (struct value *container,
9962 struct value *lhs, struct expression *exp,
9963 int *pos, enum noside noside)
9965 struct type *lhs_type;
9966 int n = exp->elts[*pos+1].longconst;
9967 LONGEST low_index, high_index;
9970 int max_indices, num_indices;
9974 if (noside != EVAL_NORMAL)
9976 for (i = 0; i < n; i += 1)
9977 ada_evaluate_subexp (NULL, exp, pos, noside);
9981 container = ada_coerce_ref (container);
9982 if (ada_is_direct_array_type (value_type (container)))
9983 container = ada_coerce_to_simple_array (container);
9984 lhs = ada_coerce_ref (lhs);
9985 if (!deprecated_value_modifiable (lhs))
9986 error (_("Left operand of assignment is not a modifiable lvalue."));
9988 lhs_type = check_typedef (value_type (lhs));
9989 if (ada_is_direct_array_type (lhs_type))
9991 lhs = ada_coerce_to_simple_array (lhs);
9992 lhs_type = check_typedef (value_type (lhs));
9993 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9994 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9996 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9999 high_index = num_visible_fields (lhs_type) - 1;
10002 error (_("Left-hand side must be array or record."));
10004 num_specs = num_component_specs (exp, *pos - 3);
10005 max_indices = 4 * num_specs + 4;
10006 indices = XALLOCAVEC (LONGEST, max_indices);
10007 indices[0] = indices[1] = low_index - 1;
10008 indices[2] = indices[3] = high_index + 1;
10011 for (i = 0; i < n; i += 1)
10013 switch (exp->elts[*pos].opcode)
10016 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10017 &num_indices, max_indices,
10018 low_index, high_index);
10020 case OP_POSITIONAL:
10021 aggregate_assign_positional (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10027 error (_("Misplaced 'others' clause"));
10028 aggregate_assign_others (container, lhs, exp, pos, indices,
10029 num_indices, low_index, high_index);
10032 error (_("Internal error: bad aggregate clause"));
10039 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10040 construct at *POS, updating *POS past the construct, given that
10041 the positions are relative to lower bound LOW, where HIGH is the
10042 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10043 updating *NUM_INDICES as needed. CONTAINER is as for
10044 assign_aggregate. */
10046 aggregate_assign_positional (struct value *container,
10047 struct value *lhs, struct expression *exp,
10048 int *pos, LONGEST *indices, int *num_indices,
10049 int max_indices, LONGEST low, LONGEST high)
10051 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10053 if (ind - 1 == high)
10054 warning (_("Extra components in aggregate ignored."));
10057 add_component_interval (ind, ind, indices, num_indices, max_indices);
10059 assign_component (container, lhs, ind, exp, pos);
10062 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10065 /* Assign into the components of LHS indexed by the OP_CHOICES
10066 construct at *POS, updating *POS past the construct, given that
10067 the allowable indices are LOW..HIGH. Record the indices assigned
10068 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10069 needed. CONTAINER is as for assign_aggregate. */
10071 aggregate_assign_from_choices (struct value *container,
10072 struct value *lhs, struct expression *exp,
10073 int *pos, LONGEST *indices, int *num_indices,
10074 int max_indices, LONGEST low, LONGEST high)
10077 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10078 int choice_pos, expr_pc;
10079 int is_array = ada_is_direct_array_type (value_type (lhs));
10081 choice_pos = *pos += 3;
10083 for (j = 0; j < n_choices; j += 1)
10084 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10086 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10088 for (j = 0; j < n_choices; j += 1)
10090 LONGEST lower, upper;
10091 enum exp_opcode op = exp->elts[choice_pos].opcode;
10093 if (op == OP_DISCRETE_RANGE)
10096 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10098 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10103 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10115 name = &exp->elts[choice_pos + 2].string;
10118 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10121 error (_("Invalid record component association."));
10123 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10125 if (! find_struct_field (name, value_type (lhs), 0,
10126 NULL, NULL, NULL, NULL, &ind))
10127 error (_("Unknown component name: %s."), name);
10128 lower = upper = ind;
10131 if (lower <= upper && (lower < low || upper > high))
10132 error (_("Index in component association out of bounds."));
10134 add_component_interval (lower, upper, indices, num_indices,
10136 while (lower <= upper)
10141 assign_component (container, lhs, lower, exp, &pos1);
10147 /* Assign the value of the expression in the OP_OTHERS construct in
10148 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10149 have not been previously assigned. The index intervals already assigned
10150 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10151 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10153 aggregate_assign_others (struct value *container,
10154 struct value *lhs, struct expression *exp,
10155 int *pos, LONGEST *indices, int num_indices,
10156 LONGEST low, LONGEST high)
10159 int expr_pc = *pos + 1;
10161 for (i = 0; i < num_indices - 2; i += 2)
10165 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10169 localpos = expr_pc;
10170 assign_component (container, lhs, ind, exp, &localpos);
10173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10176 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10177 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10178 modifying *SIZE as needed. It is an error if *SIZE exceeds
10179 MAX_SIZE. The resulting intervals do not overlap. */
10181 add_component_interval (LONGEST low, LONGEST high,
10182 LONGEST* indices, int *size, int max_size)
10186 for (i = 0; i < *size; i += 2) {
10187 if (high >= indices[i] && low <= indices[i + 1])
10191 for (kh = i + 2; kh < *size; kh += 2)
10192 if (high < indices[kh])
10194 if (low < indices[i])
10196 indices[i + 1] = indices[kh - 1];
10197 if (high > indices[i + 1])
10198 indices[i + 1] = high;
10199 memcpy (indices + i + 2, indices + kh, *size - kh);
10200 *size -= kh - i - 2;
10203 else if (high < indices[i])
10207 if (*size == max_size)
10208 error (_("Internal error: miscounted aggregate components."));
10210 for (j = *size-1; j >= i+2; j -= 1)
10211 indices[j] = indices[j - 2];
10213 indices[i + 1] = high;
10216 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10219 static struct value *
10220 ada_value_cast (struct type *type, struct value *arg2)
10222 if (type == ada_check_typedef (value_type (arg2)))
10225 if (ada_is_fixed_point_type (type))
10226 return cast_to_fixed (type, arg2);
10228 if (ada_is_fixed_point_type (value_type (arg2)))
10229 return cast_from_fixed (type, arg2);
10231 return value_cast (type, arg2);
10234 /* Evaluating Ada expressions, and printing their result.
10235 ------------------------------------------------------
10240 We usually evaluate an Ada expression in order to print its value.
10241 We also evaluate an expression in order to print its type, which
10242 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10243 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10244 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10245 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10248 Evaluating expressions is a little more complicated for Ada entities
10249 than it is for entities in languages such as C. The main reason for
10250 this is that Ada provides types whose definition might be dynamic.
10251 One example of such types is variant records. Or another example
10252 would be an array whose bounds can only be known at run time.
10254 The following description is a general guide as to what should be
10255 done (and what should NOT be done) in order to evaluate an expression
10256 involving such types, and when. This does not cover how the semantic
10257 information is encoded by GNAT as this is covered separatly. For the
10258 document used as the reference for the GNAT encoding, see exp_dbug.ads
10259 in the GNAT sources.
10261 Ideally, we should embed each part of this description next to its
10262 associated code. Unfortunately, the amount of code is so vast right
10263 now that it's hard to see whether the code handling a particular
10264 situation might be duplicated or not. One day, when the code is
10265 cleaned up, this guide might become redundant with the comments
10266 inserted in the code, and we might want to remove it.
10268 2. ``Fixing'' an Entity, the Simple Case:
10269 -----------------------------------------
10271 When evaluating Ada expressions, the tricky issue is that they may
10272 reference entities whose type contents and size are not statically
10273 known. Consider for instance a variant record:
10275 type Rec (Empty : Boolean := True) is record
10278 when False => Value : Integer;
10281 Yes : Rec := (Empty => False, Value => 1);
10282 No : Rec := (empty => True);
10284 The size and contents of that record depends on the value of the
10285 descriminant (Rec.Empty). At this point, neither the debugging
10286 information nor the associated type structure in GDB are able to
10287 express such dynamic types. So what the debugger does is to create
10288 "fixed" versions of the type that applies to the specific object.
10289 We also informally refer to this opperation as "fixing" an object,
10290 which means creating its associated fixed type.
10292 Example: when printing the value of variable "Yes" above, its fixed
10293 type would look like this:
10300 On the other hand, if we printed the value of "No", its fixed type
10307 Things become a little more complicated when trying to fix an entity
10308 with a dynamic type that directly contains another dynamic type,
10309 such as an array of variant records, for instance. There are
10310 two possible cases: Arrays, and records.
10312 3. ``Fixing'' Arrays:
10313 ---------------------
10315 The type structure in GDB describes an array in terms of its bounds,
10316 and the type of its elements. By design, all elements in the array
10317 have the same type and we cannot represent an array of variant elements
10318 using the current type structure in GDB. When fixing an array,
10319 we cannot fix the array element, as we would potentially need one
10320 fixed type per element of the array. As a result, the best we can do
10321 when fixing an array is to produce an array whose bounds and size
10322 are correct (allowing us to read it from memory), but without having
10323 touched its element type. Fixing each element will be done later,
10324 when (if) necessary.
10326 Arrays are a little simpler to handle than records, because the same
10327 amount of memory is allocated for each element of the array, even if
10328 the amount of space actually used by each element differs from element
10329 to element. Consider for instance the following array of type Rec:
10331 type Rec_Array is array (1 .. 2) of Rec;
10333 The actual amount of memory occupied by each element might be different
10334 from element to element, depending on the value of their discriminant.
10335 But the amount of space reserved for each element in the array remains
10336 fixed regardless. So we simply need to compute that size using
10337 the debugging information available, from which we can then determine
10338 the array size (we multiply the number of elements of the array by
10339 the size of each element).
10341 The simplest case is when we have an array of a constrained element
10342 type. For instance, consider the following type declarations:
10344 type Bounded_String (Max_Size : Integer) is
10346 Buffer : String (1 .. Max_Size);
10348 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10350 In this case, the compiler describes the array as an array of
10351 variable-size elements (identified by its XVS suffix) for which
10352 the size can be read in the parallel XVZ variable.
10354 In the case of an array of an unconstrained element type, the compiler
10355 wraps the array element inside a private PAD type. This type should not
10356 be shown to the user, and must be "unwrap"'ed before printing. Note
10357 that we also use the adjective "aligner" in our code to designate
10358 these wrapper types.
10360 In some cases, the size allocated for each element is statically
10361 known. In that case, the PAD type already has the correct size,
10362 and the array element should remain unfixed.
10364 But there are cases when this size is not statically known.
10365 For instance, assuming that "Five" is an integer variable:
10367 type Dynamic is array (1 .. Five) of Integer;
10368 type Wrapper (Has_Length : Boolean := False) is record
10371 when True => Length : Integer;
10372 when False => null;
10375 type Wrapper_Array is array (1 .. 2) of Wrapper;
10377 Hello : Wrapper_Array := (others => (Has_Length => True,
10378 Data => (others => 17),
10382 The debugging info would describe variable Hello as being an
10383 array of a PAD type. The size of that PAD type is not statically
10384 known, but can be determined using a parallel XVZ variable.
10385 In that case, a copy of the PAD type with the correct size should
10386 be used for the fixed array.
10388 3. ``Fixing'' record type objects:
10389 ----------------------------------
10391 Things are slightly different from arrays in the case of dynamic
10392 record types. In this case, in order to compute the associated
10393 fixed type, we need to determine the size and offset of each of
10394 its components. This, in turn, requires us to compute the fixed
10395 type of each of these components.
10397 Consider for instance the example:
10399 type Bounded_String (Max_Size : Natural) is record
10400 Str : String (1 .. Max_Size);
10403 My_String : Bounded_String (Max_Size => 10);
10405 In that case, the position of field "Length" depends on the size
10406 of field Str, which itself depends on the value of the Max_Size
10407 discriminant. In order to fix the type of variable My_String,
10408 we need to fix the type of field Str. Therefore, fixing a variant
10409 record requires us to fix each of its components.
10411 However, if a component does not have a dynamic size, the component
10412 should not be fixed. In particular, fields that use a PAD type
10413 should not fixed. Here is an example where this might happen
10414 (assuming type Rec above):
10416 type Container (Big : Boolean) is record
10420 when True => Another : Integer;
10421 when False => null;
10424 My_Container : Container := (Big => False,
10425 First => (Empty => True),
10428 In that example, the compiler creates a PAD type for component First,
10429 whose size is constant, and then positions the component After just
10430 right after it. The offset of component After is therefore constant
10433 The debugger computes the position of each field based on an algorithm
10434 that uses, among other things, the actual position and size of the field
10435 preceding it. Let's now imagine that the user is trying to print
10436 the value of My_Container. If the type fixing was recursive, we would
10437 end up computing the offset of field After based on the size of the
10438 fixed version of field First. And since in our example First has
10439 only one actual field, the size of the fixed type is actually smaller
10440 than the amount of space allocated to that field, and thus we would
10441 compute the wrong offset of field After.
10443 To make things more complicated, we need to watch out for dynamic
10444 components of variant records (identified by the ___XVL suffix in
10445 the component name). Even if the target type is a PAD type, the size
10446 of that type might not be statically known. So the PAD type needs
10447 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10448 we might end up with the wrong size for our component. This can be
10449 observed with the following type declarations:
10451 type Octal is new Integer range 0 .. 7;
10452 type Octal_Array is array (Positive range <>) of Octal;
10453 pragma Pack (Octal_Array);
10455 type Octal_Buffer (Size : Positive) is record
10456 Buffer : Octal_Array (1 .. Size);
10460 In that case, Buffer is a PAD type whose size is unset and needs
10461 to be computed by fixing the unwrapped type.
10463 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10464 ----------------------------------------------------------
10466 Lastly, when should the sub-elements of an entity that remained unfixed
10467 thus far, be actually fixed?
10469 The answer is: Only when referencing that element. For instance
10470 when selecting one component of a record, this specific component
10471 should be fixed at that point in time. Or when printing the value
10472 of a record, each component should be fixed before its value gets
10473 printed. Similarly for arrays, the element of the array should be
10474 fixed when printing each element of the array, or when extracting
10475 one element out of that array. On the other hand, fixing should
10476 not be performed on the elements when taking a slice of an array!
10478 Note that one of the side effects of miscomputing the offset and
10479 size of each field is that we end up also miscomputing the size
10480 of the containing type. This can have adverse results when computing
10481 the value of an entity. GDB fetches the value of an entity based
10482 on the size of its type, and thus a wrong size causes GDB to fetch
10483 the wrong amount of memory. In the case where the computed size is
10484 too small, GDB fetches too little data to print the value of our
10485 entity. Results in this case are unpredictable, as we usually read
10486 past the buffer containing the data =:-o. */
10488 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10489 for that subexpression cast to TO_TYPE. Advance *POS over the
10493 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10494 enum noside noside, struct type *to_type)
10498 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10499 || exp->elts[pc].opcode == OP_VAR_VALUE)
10504 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 return value_zero (to_type, not_lval);
10509 val = evaluate_var_msym_value (noside,
10510 exp->elts[pc + 1].objfile,
10511 exp->elts[pc + 2].msymbol);
10514 val = evaluate_var_value (noside,
10515 exp->elts[pc + 1].block,
10516 exp->elts[pc + 2].symbol);
10518 if (noside == EVAL_SKIP)
10519 return eval_skip_value (exp);
10521 val = ada_value_cast (to_type, val);
10523 /* Follow the Ada language semantics that do not allow taking
10524 an address of the result of a cast (view conversion in Ada). */
10525 if (VALUE_LVAL (val) == lval_memory)
10527 if (value_lazy (val))
10528 value_fetch_lazy (val);
10529 VALUE_LVAL (val) = not_lval;
10534 value *val = evaluate_subexp (to_type, exp, pos, noside);
10535 if (noside == EVAL_SKIP)
10536 return eval_skip_value (exp);
10537 return ada_value_cast (to_type, val);
10540 /* Implement the evaluate_exp routine in the exp_descriptor structure
10541 for the Ada language. */
10543 static struct value *
10544 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10545 int *pos, enum noside noside)
10547 enum exp_opcode op;
10551 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10554 struct value **argvec;
10558 op = exp->elts[pc].opcode;
10564 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10566 if (noside == EVAL_NORMAL)
10567 arg1 = unwrap_value (arg1);
10569 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10570 then we need to perform the conversion manually, because
10571 evaluate_subexp_standard doesn't do it. This conversion is
10572 necessary in Ada because the different kinds of float/fixed
10573 types in Ada have different representations.
10575 Similarly, we need to perform the conversion from OP_LONG
10577 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10578 arg1 = ada_value_cast (expect_type, arg1);
10584 struct value *result;
10587 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10588 /* The result type will have code OP_STRING, bashed there from
10589 OP_ARRAY. Bash it back. */
10590 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10591 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10597 type = exp->elts[pc + 1].type;
10598 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10602 type = exp->elts[pc + 1].type;
10603 return ada_evaluate_subexp (type, exp, pos, noside);
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10609 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10610 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10612 return ada_value_assign (arg1, arg1);
10614 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10615 except if the lhs of our assignment is a convenience variable.
10616 In the case of assigning to a convenience variable, the lhs
10617 should be exactly the result of the evaluation of the rhs. */
10618 type = value_type (arg1);
10619 if (VALUE_LVAL (arg1) == lval_internalvar)
10621 arg2 = evaluate_subexp (type, exp, pos, noside);
10622 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10624 if (ada_is_fixed_point_type (value_type (arg1)))
10625 arg2 = cast_to_fixed (value_type (arg1), arg2);
10626 else if (ada_is_fixed_point_type (value_type (arg2)))
10628 (_("Fixed-point values must be assigned to fixed-point variables"));
10630 arg2 = coerce_for_assign (value_type (arg1), arg2);
10631 return ada_value_assign (arg1, arg2);
10634 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10635 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10636 if (noside == EVAL_SKIP)
10638 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10639 return (value_from_longest
10640 (value_type (arg1),
10641 value_as_long (arg1) + value_as_long (arg2)));
10642 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10643 return (value_from_longest
10644 (value_type (arg2),
10645 value_as_long (arg1) + value_as_long (arg2)));
10646 if ((ada_is_fixed_point_type (value_type (arg1))
10647 || ada_is_fixed_point_type (value_type (arg2)))
10648 && value_type (arg1) != value_type (arg2))
10649 error (_("Operands of fixed-point addition must have the same type"));
10650 /* Do the addition, and cast the result to the type of the first
10651 argument. We cannot cast the result to a reference type, so if
10652 ARG1 is a reference type, find its underlying type. */
10653 type = value_type (arg1);
10654 while (TYPE_CODE (type) == TYPE_CODE_REF)
10655 type = TYPE_TARGET_TYPE (type);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10657 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10660 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10661 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10662 if (noside == EVAL_SKIP)
10664 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10665 return (value_from_longest
10666 (value_type (arg1),
10667 value_as_long (arg1) - value_as_long (arg2)));
10668 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10669 return (value_from_longest
10670 (value_type (arg2),
10671 value_as_long (arg1) - value_as_long (arg2)));
10672 if ((ada_is_fixed_point_type (value_type (arg1))
10673 || ada_is_fixed_point_type (value_type (arg2)))
10674 && value_type (arg1) != value_type (arg2))
10675 error (_("Operands of fixed-point subtraction "
10676 "must have the same type"));
10677 /* Do the substraction, and cast the result to the type of the first
10678 argument. We cannot cast the result to a reference type, so if
10679 ARG1 is a reference type, find its underlying type. */
10680 type = value_type (arg1);
10681 while (TYPE_CODE (type) == TYPE_CODE_REF)
10682 type = TYPE_TARGET_TYPE (type);
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10684 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 if (noside == EVAL_SKIP)
10694 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10696 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10697 return value_zero (value_type (arg1), not_lval);
10701 type = builtin_type (exp->gdbarch)->builtin_double;
10702 if (ada_is_fixed_point_type (value_type (arg1)))
10703 arg1 = cast_from_fixed (type, arg1);
10704 if (ada_is_fixed_point_type (value_type (arg2)))
10705 arg2 = cast_from_fixed (type, arg2);
10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10707 return ada_value_binop (arg1, arg2, op);
10711 case BINOP_NOTEQUAL:
10712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10713 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10714 if (noside == EVAL_SKIP)
10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10721 tem = ada_value_equal (arg1, arg2);
10723 if (op == BINOP_NOTEQUAL)
10725 type = language_bool_type (exp->language_defn, exp->gdbarch);
10726 return value_from_longest (type, (LONGEST) tem);
10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10732 else if (ada_is_fixed_point_type (value_type (arg1)))
10733 return value_cast (value_type (arg1), value_neg (arg1));
10736 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10737 return value_neg (arg1);
10740 case BINOP_LOGICAL_AND:
10741 case BINOP_LOGICAL_OR:
10742 case UNOP_LOGICAL_NOT:
10747 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10748 type = language_bool_type (exp->language_defn, exp->gdbarch);
10749 return value_cast (type, val);
10752 case BINOP_BITWISE_AND:
10753 case BINOP_BITWISE_IOR:
10754 case BINOP_BITWISE_XOR:
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10760 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10762 return value_cast (value_type (arg1), val);
10768 if (noside == EVAL_SKIP)
10774 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10775 /* Only encountered when an unresolved symbol occurs in a
10776 context other than a function call, in which case, it is
10778 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10779 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10783 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10784 /* Check to see if this is a tagged type. We also need to handle
10785 the case where the type is a reference to a tagged type, but
10786 we have to be careful to exclude pointers to tagged types.
10787 The latter should be shown as usual (as a pointer), whereas
10788 a reference should mostly be transparent to the user. */
10789 if (ada_is_tagged_type (type, 0)
10790 || (TYPE_CODE (type) == TYPE_CODE_REF
10791 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10793 /* Tagged types are a little special in the fact that the real
10794 type is dynamic and can only be determined by inspecting the
10795 object's tag. This means that we need to get the object's
10796 value first (EVAL_NORMAL) and then extract the actual object
10799 Note that we cannot skip the final step where we extract
10800 the object type from its tag, because the EVAL_NORMAL phase
10801 results in dynamic components being resolved into fixed ones.
10802 This can cause problems when trying to print the type
10803 description of tagged types whose parent has a dynamic size:
10804 We use the type name of the "_parent" component in order
10805 to print the name of the ancestor type in the type description.
10806 If that component had a dynamic size, the resolution into
10807 a fixed type would result in the loss of that type name,
10808 thus preventing us from printing the name of the ancestor
10809 type in the type description. */
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10812 if (TYPE_CODE (type) != TYPE_CODE_REF)
10814 struct type *actual_type;
10816 actual_type = type_from_tag (ada_value_tag (arg1));
10817 if (actual_type == NULL)
10818 /* If, for some reason, we were unable to determine
10819 the actual type from the tag, then use the static
10820 approximation that we just computed as a fallback.
10821 This can happen if the debugging information is
10822 incomplete, for instance. */
10823 actual_type = type;
10824 return value_zero (actual_type, not_lval);
10828 /* In the case of a ref, ada_coerce_ref takes care
10829 of determining the actual type. But the evaluation
10830 should return a ref as it should be valid to ask
10831 for its address; so rebuild a ref after coerce. */
10832 arg1 = ada_coerce_ref (arg1);
10833 return value_ref (arg1, TYPE_CODE_REF);
10837 /* Records and unions for which GNAT encodings have been
10838 generated need to be statically fixed as well.
10839 Otherwise, non-static fixing produces a type where
10840 all dynamic properties are removed, which prevents "ptype"
10841 from being able to completely describe the type.
10842 For instance, a case statement in a variant record would be
10843 replaced by the relevant components based on the actual
10844 value of the discriminants. */
10845 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10846 && dynamic_template_type (type) != NULL)
10847 || (TYPE_CODE (type) == TYPE_CODE_UNION
10848 && ada_find_parallel_type (type, "___XVU") != NULL))
10851 return value_zero (to_static_fixed_type (type), not_lval);
10855 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10856 return ada_to_fixed_value (arg1);
10861 /* Allocate arg vector, including space for the function to be
10862 called in argvec[0] and a terminating NULL. */
10863 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10864 argvec = XALLOCAVEC (struct value *, nargs + 2);
10866 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10868 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10869 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10872 for (tem = 0; tem <= nargs; tem += 1)
10873 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10876 if (noside == EVAL_SKIP)
10880 if (ada_is_constrained_packed_array_type
10881 (desc_base_type (value_type (argvec[0]))))
10882 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10884 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10885 /* This is a packed array that has already been fixed, and
10886 therefore already coerced to a simple array. Nothing further
10889 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10891 /* Make sure we dereference references so that all the code below
10892 feels like it's really handling the referenced value. Wrapping
10893 types (for alignment) may be there, so make sure we strip them as
10895 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10898 && VALUE_LVAL (argvec[0]) == lval_memory)
10899 argvec[0] = value_addr (argvec[0]);
10901 type = ada_check_typedef (value_type (argvec[0]));
10903 /* Ada allows us to implicitly dereference arrays when subscripting
10904 them. So, if this is an array typedef (encoding use for array
10905 access types encoded as fat pointers), strip it now. */
10906 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10907 type = ada_typedef_target_type (type);
10909 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10911 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10913 case TYPE_CODE_FUNC:
10914 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10916 case TYPE_CODE_ARRAY:
10918 case TYPE_CODE_STRUCT:
10919 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10920 argvec[0] = ada_value_ind (argvec[0]);
10921 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10924 error (_("cannot subscript or call something of type `%s'"),
10925 ada_type_name (value_type (argvec[0])));
10930 switch (TYPE_CODE (type))
10932 case TYPE_CODE_FUNC:
10933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10935 if (TYPE_TARGET_TYPE (type) == NULL)
10936 error_call_unknown_return_type (NULL);
10937 return allocate_value (TYPE_TARGET_TYPE (type));
10939 return call_function_by_hand (argvec[0], NULL,
10940 gdb::make_array_view (argvec + 1,
10942 case TYPE_CODE_INTERNAL_FUNCTION:
10943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 /* We don't know anything about what the internal
10945 function might return, but we have to return
10947 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10950 return call_internal_function (exp->gdbarch, exp->language_defn,
10951 argvec[0], nargs, argvec + 1);
10953 case TYPE_CODE_STRUCT:
10957 arity = ada_array_arity (type);
10958 type = ada_array_element_type (type, nargs);
10960 error (_("cannot subscript or call a record"));
10961 if (arity != nargs)
10962 error (_("wrong number of subscripts; expecting %d"), arity);
10963 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10964 return value_zero (ada_aligned_type (type), lval_memory);
10966 unwrap_value (ada_value_subscript
10967 (argvec[0], nargs, argvec + 1));
10969 case TYPE_CODE_ARRAY:
10970 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10972 type = ada_array_element_type (type, nargs);
10974 error (_("element type of array unknown"));
10976 return value_zero (ada_aligned_type (type), lval_memory);
10979 unwrap_value (ada_value_subscript
10980 (ada_coerce_to_simple_array (argvec[0]),
10981 nargs, argvec + 1));
10982 case TYPE_CODE_PTR: /* Pointer to array */
10983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10986 type = ada_array_element_type (type, nargs);
10988 error (_("element type of array unknown"));
10990 return value_zero (ada_aligned_type (type), lval_memory);
10993 unwrap_value (ada_value_ptr_subscript (argvec[0],
10994 nargs, argvec + 1));
10997 error (_("Attempt to index or call something other than an "
10998 "array or function"));
11003 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 struct value *low_bound_val =
11005 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 struct value *high_bound_val =
11007 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 LONGEST high_bound;
11011 low_bound_val = coerce_ref (low_bound_val);
11012 high_bound_val = coerce_ref (high_bound_val);
11013 low_bound = value_as_long (low_bound_val);
11014 high_bound = value_as_long (high_bound_val);
11016 if (noside == EVAL_SKIP)
11019 /* If this is a reference to an aligner type, then remove all
11021 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11022 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11023 TYPE_TARGET_TYPE (value_type (array)) =
11024 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11026 if (ada_is_constrained_packed_array_type (value_type (array)))
11027 error (_("cannot slice a packed array"));
11029 /* If this is a reference to an array or an array lvalue,
11030 convert to a pointer. */
11031 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11032 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11033 && VALUE_LVAL (array) == lval_memory))
11034 array = value_addr (array);
11036 if (noside == EVAL_AVOID_SIDE_EFFECTS
11037 && ada_is_array_descriptor_type (ada_check_typedef
11038 (value_type (array))))
11039 return empty_array (ada_type_of_array (array, 0), low_bound,
11042 array = ada_coerce_to_simple_array_ptr (array);
11044 /* If we have more than one level of pointer indirection,
11045 dereference the value until we get only one level. */
11046 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11047 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11049 array = value_ind (array);
11051 /* Make sure we really do have an array type before going further,
11052 to avoid a SEGV when trying to get the index type or the target
11053 type later down the road if the debug info generated by
11054 the compiler is incorrect or incomplete. */
11055 if (!ada_is_simple_array_type (value_type (array)))
11056 error (_("cannot take slice of non-array"));
11058 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11061 struct type *type0 = ada_check_typedef (value_type (array));
11063 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11064 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11067 struct type *arr_type0 =
11068 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11070 return ada_value_slice_from_ptr (array, arr_type0,
11071 longest_to_int (low_bound),
11072 longest_to_int (high_bound));
11075 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11077 else if (high_bound < low_bound)
11078 return empty_array (value_type (array), low_bound, high_bound);
11080 return ada_value_slice (array, longest_to_int (low_bound),
11081 longest_to_int (high_bound));
11084 case UNOP_IN_RANGE:
11086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11087 type = check_typedef (exp->elts[pc + 1].type);
11089 if (noside == EVAL_SKIP)
11092 switch (TYPE_CODE (type))
11095 lim_warning (_("Membership test incompletely implemented; "
11096 "always returns true"));
11097 type = language_bool_type (exp->language_defn, exp->gdbarch);
11098 return value_from_longest (type, (LONGEST) 1);
11100 case TYPE_CODE_RANGE:
11101 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11102 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11103 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11104 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11105 type = language_bool_type (exp->language_defn, exp->gdbarch);
11107 value_from_longest (type,
11108 (value_less (arg1, arg3)
11109 || value_equal (arg1, arg3))
11110 && (value_less (arg2, arg1)
11111 || value_equal (arg2, arg1)));
11114 case BINOP_IN_BOUNDS:
11116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11117 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 if (noside == EVAL_SKIP)
11122 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 type = language_bool_type (exp->language_defn, exp->gdbarch);
11125 return value_zero (type, not_lval);
11128 tem = longest_to_int (exp->elts[pc + 1].longconst);
11130 type = ada_index_type (value_type (arg2), tem, "range");
11132 type = value_type (arg1);
11134 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11135 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11139 type = language_bool_type (exp->language_defn, exp->gdbarch);
11141 value_from_longest (type,
11142 (value_less (arg1, arg3)
11143 || value_equal (arg1, arg3))
11144 && (value_less (arg2, arg1)
11145 || value_equal (arg2, arg1)));
11147 case TERNOP_IN_RANGE:
11148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11149 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 if (noside == EVAL_SKIP)
11155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11157 type = language_bool_type (exp->language_defn, exp->gdbarch);
11159 value_from_longest (type,
11160 (value_less (arg1, arg3)
11161 || value_equal (arg1, arg3))
11162 && (value_less (arg2, arg1)
11163 || value_equal (arg2, arg1)));
11167 case OP_ATR_LENGTH:
11169 struct type *type_arg;
11171 if (exp->elts[*pos].opcode == OP_TYPE)
11173 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11175 type_arg = check_typedef (exp->elts[pc + 2].type);
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 if (exp->elts[*pos].opcode != OP_LONG)
11184 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11185 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11188 if (noside == EVAL_SKIP)
11191 if (type_arg == NULL)
11193 arg1 = ada_coerce_ref (arg1);
11195 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11196 arg1 = ada_coerce_to_simple_array (arg1);
11198 if (op == OP_ATR_LENGTH)
11199 type = builtin_type (exp->gdbarch)->builtin_int;
11202 type = ada_index_type (value_type (arg1), tem,
11203 ada_attribute_name (op));
11205 type = builtin_type (exp->gdbarch)->builtin_int;
11208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11209 return allocate_value (type);
11213 default: /* Should never happen. */
11214 error (_("unexpected attribute encountered"));
11216 return value_from_longest
11217 (type, ada_array_bound (arg1, tem, 0));
11219 return value_from_longest
11220 (type, ada_array_bound (arg1, tem, 1));
11221 case OP_ATR_LENGTH:
11222 return value_from_longest
11223 (type, ada_array_length (arg1, tem));
11226 else if (discrete_type_p (type_arg))
11228 struct type *range_type;
11229 const char *name = ada_type_name (type_arg);
11232 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11233 range_type = to_fixed_range_type (type_arg, NULL);
11234 if (range_type == NULL)
11235 range_type = type_arg;
11239 error (_("unexpected attribute encountered"));
11241 return value_from_longest
11242 (range_type, ada_discrete_type_low_bound (range_type));
11244 return value_from_longest
11245 (range_type, ada_discrete_type_high_bound (range_type));
11246 case OP_ATR_LENGTH:
11247 error (_("the 'length attribute applies only to array types"));
11250 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11251 error (_("unimplemented type attribute"));
11256 if (ada_is_constrained_packed_array_type (type_arg))
11257 type_arg = decode_constrained_packed_array_type (type_arg);
11259 if (op == OP_ATR_LENGTH)
11260 type = builtin_type (exp->gdbarch)->builtin_int;
11263 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11265 type = builtin_type (exp->gdbarch)->builtin_int;
11268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11269 return allocate_value (type);
11274 error (_("unexpected attribute encountered"));
11276 low = ada_array_bound_from_type (type_arg, tem, 0);
11277 return value_from_longest (type, low);
11279 high = ada_array_bound_from_type (type_arg, tem, 1);
11280 return value_from_longest (type, high);
11281 case OP_ATR_LENGTH:
11282 low = ada_array_bound_from_type (type_arg, tem, 0);
11283 high = ada_array_bound_from_type (type_arg, tem, 1);
11284 return value_from_longest (type, high - low + 1);
11290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11291 if (noside == EVAL_SKIP)
11294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11295 return value_zero (ada_tag_type (arg1), not_lval);
11297 return ada_value_tag (arg1);
11301 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11303 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11304 if (noside == EVAL_SKIP)
11306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11307 return value_zero (value_type (arg1), not_lval);
11310 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11311 return value_binop (arg1, arg2,
11312 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11315 case OP_ATR_MODULUS:
11317 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11320 if (noside == EVAL_SKIP)
11323 if (!ada_is_modular_type (type_arg))
11324 error (_("'modulus must be applied to modular type"));
11326 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11327 ada_modulus (type_arg));
11332 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11334 if (noside == EVAL_SKIP)
11336 type = builtin_type (exp->gdbarch)->builtin_int;
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return value_zero (type, not_lval);
11340 return value_pos_atr (type, arg1);
11343 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 type = value_type (arg1);
11346 /* If the argument is a reference, then dereference its type, since
11347 the user is really asking for the size of the actual object,
11348 not the size of the pointer. */
11349 if (TYPE_CODE (type) == TYPE_CODE_REF)
11350 type = TYPE_TARGET_TYPE (type);
11352 if (noside == EVAL_SKIP)
11354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11355 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11357 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11358 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11361 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11363 type = exp->elts[pc + 2].type;
11364 if (noside == EVAL_SKIP)
11366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11367 return value_zero (type, not_lval);
11369 return value_val_atr (type, arg1);
11372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11374 if (noside == EVAL_SKIP)
11376 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11377 return value_zero (value_type (arg1), not_lval);
11380 /* For integer exponentiation operations,
11381 only promote the first argument. */
11382 if (is_integral_type (value_type (arg2)))
11383 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11385 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11387 return value_binop (arg1, arg2, op);
11391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11392 if (noside == EVAL_SKIP)
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11399 if (noside == EVAL_SKIP)
11401 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11402 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11403 return value_neg (arg1);
11408 preeval_pos = *pos;
11409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11410 if (noside == EVAL_SKIP)
11412 type = ada_check_typedef (value_type (arg1));
11413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11415 if (ada_is_array_descriptor_type (type))
11416 /* GDB allows dereferencing GNAT array descriptors. */
11418 struct type *arrType = ada_type_of_array (arg1, 0);
11420 if (arrType == NULL)
11421 error (_("Attempt to dereference null array pointer."));
11422 return value_at_lazy (arrType, 0);
11424 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11425 || TYPE_CODE (type) == TYPE_CODE_REF
11426 /* In C you can dereference an array to get the 1st elt. */
11427 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11429 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11430 only be determined by inspecting the object's tag.
11431 This means that we need to evaluate completely the
11432 expression in order to get its type. */
11434 if ((TYPE_CODE (type) == TYPE_CODE_REF
11435 || TYPE_CODE (type) == TYPE_CODE_PTR)
11436 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11440 type = value_type (ada_value_ind (arg1));
11444 type = to_static_fixed_type
11446 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11448 ada_ensure_varsize_limit (type);
11449 return value_zero (type, lval_memory);
11451 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11453 /* GDB allows dereferencing an int. */
11454 if (expect_type == NULL)
11455 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11460 to_static_fixed_type (ada_aligned_type (expect_type));
11461 return value_zero (expect_type, lval_memory);
11465 error (_("Attempt to take contents of a non-pointer value."));
11467 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11468 type = ada_check_typedef (value_type (arg1));
11470 if (TYPE_CODE (type) == TYPE_CODE_INT)
11471 /* GDB allows dereferencing an int. If we were given
11472 the expect_type, then use that as the target type.
11473 Otherwise, assume that the target type is an int. */
11475 if (expect_type != NULL)
11476 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11479 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11480 (CORE_ADDR) value_as_address (arg1));
11483 if (ada_is_array_descriptor_type (type))
11484 /* GDB allows dereferencing GNAT array descriptors. */
11485 return ada_coerce_to_simple_array (arg1);
11487 return ada_value_ind (arg1);
11489 case STRUCTOP_STRUCT:
11490 tem = longest_to_int (exp->elts[pc + 1].longconst);
11491 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11492 preeval_pos = *pos;
11493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11494 if (noside == EVAL_SKIP)
11496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11498 struct type *type1 = value_type (arg1);
11500 if (ada_is_tagged_type (type1, 1))
11502 type = ada_lookup_struct_elt_type (type1,
11503 &exp->elts[pc + 2].string,
11506 /* If the field is not found, check if it exists in the
11507 extension of this object's type. This means that we
11508 need to evaluate completely the expression. */
11512 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11514 arg1 = ada_value_struct_elt (arg1,
11515 &exp->elts[pc + 2].string,
11517 arg1 = unwrap_value (arg1);
11518 type = value_type (ada_to_fixed_value (arg1));
11523 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11526 return value_zero (ada_aligned_type (type), lval_memory);
11530 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11531 arg1 = unwrap_value (arg1);
11532 return ada_to_fixed_value (arg1);
11536 /* The value is not supposed to be used. This is here to make it
11537 easier to accommodate expressions that contain types. */
11539 if (noside == EVAL_SKIP)
11541 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11542 return allocate_value (exp->elts[pc + 1].type);
11544 error (_("Attempt to use a type name as an expression"));
11549 case OP_DISCRETE_RANGE:
11550 case OP_POSITIONAL:
11552 if (noside == EVAL_NORMAL)
11556 error (_("Undefined name, ambiguous name, or renaming used in "
11557 "component association: %s."), &exp->elts[pc+2].string);
11559 error (_("Aggregates only allowed on the right of an assignment"));
11561 internal_error (__FILE__, __LINE__,
11562 _("aggregate apparently mangled"));
11565 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11567 for (tem = 0; tem < nargs; tem += 1)
11568 ada_evaluate_subexp (NULL, exp, pos, noside);
11573 return eval_skip_value (exp);
11579 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11580 type name that encodes the 'small and 'delta information.
11581 Otherwise, return NULL. */
11583 static const char *
11584 fixed_type_info (struct type *type)
11586 const char *name = ada_type_name (type);
11587 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11589 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11591 const char *tail = strstr (name, "___XF_");
11598 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11599 return fixed_type_info (TYPE_TARGET_TYPE (type));
11604 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11607 ada_is_fixed_point_type (struct type *type)
11609 return fixed_type_info (type) != NULL;
11612 /* Return non-zero iff TYPE represents a System.Address type. */
11615 ada_is_system_address_type (struct type *type)
11617 return (TYPE_NAME (type)
11618 && strcmp (TYPE_NAME (type), "system__address") == 0);
11621 /* Assuming that TYPE is the representation of an Ada fixed-point
11622 type, return the target floating-point type to be used to represent
11623 of this type during internal computation. */
11625 static struct type *
11626 ada_scaling_type (struct type *type)
11628 return builtin_type (get_type_arch (type))->builtin_long_double;
11631 /* Assuming that TYPE is the representation of an Ada fixed-point
11632 type, return its delta, or NULL if the type is malformed and the
11633 delta cannot be determined. */
11636 ada_delta (struct type *type)
11638 const char *encoding = fixed_type_info (type);
11639 struct type *scale_type = ada_scaling_type (type);
11641 long long num, den;
11643 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11646 return value_binop (value_from_longest (scale_type, num),
11647 value_from_longest (scale_type, den), BINOP_DIV);
11650 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11651 factor ('SMALL value) associated with the type. */
11654 ada_scaling_factor (struct type *type)
11656 const char *encoding = fixed_type_info (type);
11657 struct type *scale_type = ada_scaling_type (type);
11659 long long num0, den0, num1, den1;
11662 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11663 &num0, &den0, &num1, &den1);
11666 return value_from_longest (scale_type, 1);
11668 return value_binop (value_from_longest (scale_type, num1),
11669 value_from_longest (scale_type, den1), BINOP_DIV);
11671 return value_binop (value_from_longest (scale_type, num0),
11672 value_from_longest (scale_type, den0), BINOP_DIV);
11679 /* Scan STR beginning at position K for a discriminant name, and
11680 return the value of that discriminant field of DVAL in *PX. If
11681 PNEW_K is not null, put the position of the character beyond the
11682 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11683 not alter *PX and *PNEW_K if unsuccessful. */
11686 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11689 static char *bound_buffer = NULL;
11690 static size_t bound_buffer_len = 0;
11691 const char *pstart, *pend, *bound;
11692 struct value *bound_val;
11694 if (dval == NULL || str == NULL || str[k] == '\0')
11698 pend = strstr (pstart, "__");
11702 k += strlen (bound);
11706 int len = pend - pstart;
11708 /* Strip __ and beyond. */
11709 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11710 strncpy (bound_buffer, pstart, len);
11711 bound_buffer[len] = '\0';
11713 bound = bound_buffer;
11717 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11718 if (bound_val == NULL)
11721 *px = value_as_long (bound_val);
11722 if (pnew_k != NULL)
11727 /* Value of variable named NAME in the current environment. If
11728 no such variable found, then if ERR_MSG is null, returns 0, and
11729 otherwise causes an error with message ERR_MSG. */
11731 static struct value *
11732 get_var_value (const char *name, const char *err_msg)
11734 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11736 std::vector<struct block_symbol> syms;
11737 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11738 get_selected_block (0),
11739 VAR_DOMAIN, &syms, 1);
11743 if (err_msg == NULL)
11746 error (("%s"), err_msg);
11749 return value_of_variable (syms[0].symbol, syms[0].block);
11752 /* Value of integer variable named NAME in the current environment.
11753 If no such variable is found, returns false. Otherwise, sets VALUE
11754 to the variable's value and returns true. */
11757 get_int_var_value (const char *name, LONGEST &value)
11759 struct value *var_val = get_var_value (name, 0);
11764 value = value_as_long (var_val);
11769 /* Return a range type whose base type is that of the range type named
11770 NAME in the current environment, and whose bounds are calculated
11771 from NAME according to the GNAT range encoding conventions.
11772 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11773 corresponding range type from debug information; fall back to using it
11774 if symbol lookup fails. If a new type must be created, allocate it
11775 like ORIG_TYPE was. The bounds information, in general, is encoded
11776 in NAME, the base type given in the named range type. */
11778 static struct type *
11779 to_fixed_range_type (struct type *raw_type, struct value *dval)
11782 struct type *base_type;
11783 const char *subtype_info;
11785 gdb_assert (raw_type != NULL);
11786 gdb_assert (TYPE_NAME (raw_type) != NULL);
11788 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11789 base_type = TYPE_TARGET_TYPE (raw_type);
11791 base_type = raw_type;
11793 name = TYPE_NAME (raw_type);
11794 subtype_info = strstr (name, "___XD");
11795 if (subtype_info == NULL)
11797 LONGEST L = ada_discrete_type_low_bound (raw_type);
11798 LONGEST U = ada_discrete_type_high_bound (raw_type);
11800 if (L < INT_MIN || U > INT_MAX)
11803 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11808 static char *name_buf = NULL;
11809 static size_t name_len = 0;
11810 int prefix_len = subtype_info - name;
11813 const char *bounds_str;
11816 GROW_VECT (name_buf, name_len, prefix_len + 5);
11817 strncpy (name_buf, name, prefix_len);
11818 name_buf[prefix_len] = '\0';
11821 bounds_str = strchr (subtype_info, '_');
11824 if (*subtype_info == 'L')
11826 if (!ada_scan_number (bounds_str, n, &L, &n)
11827 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11829 if (bounds_str[n] == '_')
11831 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11837 strcpy (name_buf + prefix_len, "___L");
11838 if (!get_int_var_value (name_buf, L))
11840 lim_warning (_("Unknown lower bound, using 1."));
11845 if (*subtype_info == 'U')
11847 if (!ada_scan_number (bounds_str, n, &U, &n)
11848 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11853 strcpy (name_buf + prefix_len, "___U");
11854 if (!get_int_var_value (name_buf, U))
11856 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11861 type = create_static_range_type (alloc_type_copy (raw_type),
11863 /* create_static_range_type alters the resulting type's length
11864 to match the size of the base_type, which is not what we want.
11865 Set it back to the original range type's length. */
11866 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11867 TYPE_NAME (type) = name;
11872 /* True iff NAME is the name of a range type. */
11875 ada_is_range_type_name (const char *name)
11877 return (name != NULL && strstr (name, "___XD"));
11881 /* Modular types */
11883 /* True iff TYPE is an Ada modular type. */
11886 ada_is_modular_type (struct type *type)
11888 struct type *subranged_type = get_base_type (type);
11890 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11891 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11892 && TYPE_UNSIGNED (subranged_type));
11895 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11898 ada_modulus (struct type *type)
11900 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11904 /* Ada exception catchpoint support:
11905 ---------------------------------
11907 We support 3 kinds of exception catchpoints:
11908 . catchpoints on Ada exceptions
11909 . catchpoints on unhandled Ada exceptions
11910 . catchpoints on failed assertions
11912 Exceptions raised during failed assertions, or unhandled exceptions
11913 could perfectly be caught with the general catchpoint on Ada exceptions.
11914 However, we can easily differentiate these two special cases, and having
11915 the option to distinguish these two cases from the rest can be useful
11916 to zero-in on certain situations.
11918 Exception catchpoints are a specialized form of breakpoint,
11919 since they rely on inserting breakpoints inside known routines
11920 of the GNAT runtime. The implementation therefore uses a standard
11921 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11924 Support in the runtime for exception catchpoints have been changed
11925 a few times already, and these changes affect the implementation
11926 of these catchpoints. In order to be able to support several
11927 variants of the runtime, we use a sniffer that will determine
11928 the runtime variant used by the program being debugged. */
11930 /* Ada's standard exceptions.
11932 The Ada 83 standard also defined Numeric_Error. But there so many
11933 situations where it was unclear from the Ada 83 Reference Manual
11934 (RM) whether Constraint_Error or Numeric_Error should be raised,
11935 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11936 Interpretation saying that anytime the RM says that Numeric_Error
11937 should be raised, the implementation may raise Constraint_Error.
11938 Ada 95 went one step further and pretty much removed Numeric_Error
11939 from the list of standard exceptions (it made it a renaming of
11940 Constraint_Error, to help preserve compatibility when compiling
11941 an Ada83 compiler). As such, we do not include Numeric_Error from
11942 this list of standard exceptions. */
11944 static const char *standard_exc[] = {
11945 "constraint_error",
11951 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11953 /* A structure that describes how to support exception catchpoints
11954 for a given executable. */
11956 struct exception_support_info
11958 /* The name of the symbol to break on in order to insert
11959 a catchpoint on exceptions. */
11960 const char *catch_exception_sym;
11962 /* The name of the symbol to break on in order to insert
11963 a catchpoint on unhandled exceptions. */
11964 const char *catch_exception_unhandled_sym;
11966 /* The name of the symbol to break on in order to insert
11967 a catchpoint on failed assertions. */
11968 const char *catch_assert_sym;
11970 /* The name of the symbol to break on in order to insert
11971 a catchpoint on exception handling. */
11972 const char *catch_handlers_sym;
11974 /* Assuming that the inferior just triggered an unhandled exception
11975 catchpoint, this function is responsible for returning the address
11976 in inferior memory where the name of that exception is stored.
11977 Return zero if the address could not be computed. */
11978 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11981 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11982 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11984 /* The following exception support info structure describes how to
11985 implement exception catchpoints with the latest version of the
11986 Ada runtime (as of 2007-03-06). */
11988 static const struct exception_support_info default_exception_support_info =
11990 "__gnat_debug_raise_exception", /* catch_exception_sym */
11991 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11992 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11993 "__gnat_begin_handler", /* catch_handlers_sym */
11994 ada_unhandled_exception_name_addr
11997 /* The following exception support info structure describes how to
11998 implement exception catchpoints with a slightly older version
11999 of the Ada runtime. */
12001 static const struct exception_support_info exception_support_info_fallback =
12003 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12004 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12005 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12006 "__gnat_begin_handler", /* catch_handlers_sym */
12007 ada_unhandled_exception_name_addr_from_raise
12010 /* Return nonzero if we can detect the exception support routines
12011 described in EINFO.
12013 This function errors out if an abnormal situation is detected
12014 (for instance, if we find the exception support routines, but
12015 that support is found to be incomplete). */
12018 ada_has_this_exception_support (const struct exception_support_info *einfo)
12020 struct symbol *sym;
12022 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12023 that should be compiled with debugging information. As a result, we
12024 expect to find that symbol in the symtabs. */
12026 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12029 /* Perhaps we did not find our symbol because the Ada runtime was
12030 compiled without debugging info, or simply stripped of it.
12031 It happens on some GNU/Linux distributions for instance, where
12032 users have to install a separate debug package in order to get
12033 the runtime's debugging info. In that situation, let the user
12034 know why we cannot insert an Ada exception catchpoint.
12036 Note: Just for the purpose of inserting our Ada exception
12037 catchpoint, we could rely purely on the associated minimal symbol.
12038 But we would be operating in degraded mode anyway, since we are
12039 still lacking the debugging info needed later on to extract
12040 the name of the exception being raised (this name is printed in
12041 the catchpoint message, and is also used when trying to catch
12042 a specific exception). We do not handle this case for now. */
12043 struct bound_minimal_symbol msym
12044 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12046 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12047 error (_("Your Ada runtime appears to be missing some debugging "
12048 "information.\nCannot insert Ada exception catchpoint "
12049 "in this configuration."));
12054 /* Make sure that the symbol we found corresponds to a function. */
12056 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12057 error (_("Symbol \"%s\" is not a function (class = %d)"),
12058 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12063 /* Inspect the Ada runtime and determine which exception info structure
12064 should be used to provide support for exception catchpoints.
12066 This function will always set the per-inferior exception_info,
12067 or raise an error. */
12070 ada_exception_support_info_sniffer (void)
12072 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12074 /* If the exception info is already known, then no need to recompute it. */
12075 if (data->exception_info != NULL)
12078 /* Check the latest (default) exception support info. */
12079 if (ada_has_this_exception_support (&default_exception_support_info))
12081 data->exception_info = &default_exception_support_info;
12085 /* Try our fallback exception suport info. */
12086 if (ada_has_this_exception_support (&exception_support_info_fallback))
12088 data->exception_info = &exception_support_info_fallback;
12092 /* Sometimes, it is normal for us to not be able to find the routine
12093 we are looking for. This happens when the program is linked with
12094 the shared version of the GNAT runtime, and the program has not been
12095 started yet. Inform the user of these two possible causes if
12098 if (ada_update_initial_language (language_unknown) != language_ada)
12099 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12101 /* If the symbol does not exist, then check that the program is
12102 already started, to make sure that shared libraries have been
12103 loaded. If it is not started, this may mean that the symbol is
12104 in a shared library. */
12106 if (inferior_ptid.pid () == 0)
12107 error (_("Unable to insert catchpoint. Try to start the program first."));
12109 /* At this point, we know that we are debugging an Ada program and
12110 that the inferior has been started, but we still are not able to
12111 find the run-time symbols. That can mean that we are in
12112 configurable run time mode, or that a-except as been optimized
12113 out by the linker... In any case, at this point it is not worth
12114 supporting this feature. */
12116 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12119 /* True iff FRAME is very likely to be that of a function that is
12120 part of the runtime system. This is all very heuristic, but is
12121 intended to be used as advice as to what frames are uninteresting
12125 is_known_support_routine (struct frame_info *frame)
12127 enum language func_lang;
12129 const char *fullname;
12131 /* If this code does not have any debugging information (no symtab),
12132 This cannot be any user code. */
12134 symtab_and_line sal = find_frame_sal (frame);
12135 if (sal.symtab == NULL)
12138 /* If there is a symtab, but the associated source file cannot be
12139 located, then assume this is not user code: Selecting a frame
12140 for which we cannot display the code would not be very helpful
12141 for the user. This should also take care of case such as VxWorks
12142 where the kernel has some debugging info provided for a few units. */
12144 fullname = symtab_to_fullname (sal.symtab);
12145 if (access (fullname, R_OK) != 0)
12148 /* Check the unit filename againt the Ada runtime file naming.
12149 We also check the name of the objfile against the name of some
12150 known system libraries that sometimes come with debugging info
12153 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12155 re_comp (known_runtime_file_name_patterns[i]);
12156 if (re_exec (lbasename (sal.symtab->filename)))
12158 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12159 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12163 /* Check whether the function is a GNAT-generated entity. */
12165 gdb::unique_xmalloc_ptr<char> func_name
12166 = find_frame_funname (frame, &func_lang, NULL);
12167 if (func_name == NULL)
12170 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12172 re_comp (known_auxiliary_function_name_patterns[i]);
12173 if (re_exec (func_name.get ()))
12180 /* Find the first frame that contains debugging information and that is not
12181 part of the Ada run-time, starting from FI and moving upward. */
12184 ada_find_printable_frame (struct frame_info *fi)
12186 for (; fi != NULL; fi = get_prev_frame (fi))
12188 if (!is_known_support_routine (fi))
12197 /* Assuming that the inferior just triggered an unhandled exception
12198 catchpoint, return the address in inferior memory where the name
12199 of the exception is stored.
12201 Return zero if the address could not be computed. */
12204 ada_unhandled_exception_name_addr (void)
12206 return parse_and_eval_address ("e.full_name");
12209 /* Same as ada_unhandled_exception_name_addr, except that this function
12210 should be used when the inferior uses an older version of the runtime,
12211 where the exception name needs to be extracted from a specific frame
12212 several frames up in the callstack. */
12215 ada_unhandled_exception_name_addr_from_raise (void)
12218 struct frame_info *fi;
12219 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12221 /* To determine the name of this exception, we need to select
12222 the frame corresponding to RAISE_SYM_NAME. This frame is
12223 at least 3 levels up, so we simply skip the first 3 frames
12224 without checking the name of their associated function. */
12225 fi = get_current_frame ();
12226 for (frame_level = 0; frame_level < 3; frame_level += 1)
12228 fi = get_prev_frame (fi);
12232 enum language func_lang;
12234 gdb::unique_xmalloc_ptr<char> func_name
12235 = find_frame_funname (fi, &func_lang, NULL);
12236 if (func_name != NULL)
12238 if (strcmp (func_name.get (),
12239 data->exception_info->catch_exception_sym) == 0)
12240 break; /* We found the frame we were looking for... */
12242 fi = get_prev_frame (fi);
12249 return parse_and_eval_address ("id.full_name");
12252 /* Assuming the inferior just triggered an Ada exception catchpoint
12253 (of any type), return the address in inferior memory where the name
12254 of the exception is stored, if applicable.
12256 Assumes the selected frame is the current frame.
12258 Return zero if the address could not be computed, or if not relevant. */
12261 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12262 struct breakpoint *b)
12264 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12268 case ada_catch_exception:
12269 return (parse_and_eval_address ("e.full_name"));
12272 case ada_catch_exception_unhandled:
12273 return data->exception_info->unhandled_exception_name_addr ();
12276 case ada_catch_handlers:
12277 return 0; /* The runtimes does not provide access to the exception
12281 case ada_catch_assert:
12282 return 0; /* Exception name is not relevant in this case. */
12286 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12290 return 0; /* Should never be reached. */
12293 /* Assuming the inferior is stopped at an exception catchpoint,
12294 return the message which was associated to the exception, if
12295 available. Return NULL if the message could not be retrieved.
12297 Note: The exception message can be associated to an exception
12298 either through the use of the Raise_Exception function, or
12299 more simply (Ada 2005 and later), via:
12301 raise Exception_Name with "exception message";
12305 static gdb::unique_xmalloc_ptr<char>
12306 ada_exception_message_1 (void)
12308 struct value *e_msg_val;
12311 /* For runtimes that support this feature, the exception message
12312 is passed as an unbounded string argument called "message". */
12313 e_msg_val = parse_and_eval ("message");
12314 if (e_msg_val == NULL)
12315 return NULL; /* Exception message not supported. */
12317 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12318 gdb_assert (e_msg_val != NULL);
12319 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12321 /* If the message string is empty, then treat it as if there was
12322 no exception message. */
12323 if (e_msg_len <= 0)
12326 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12327 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12328 e_msg.get ()[e_msg_len] = '\0';
12333 /* Same as ada_exception_message_1, except that all exceptions are
12334 contained here (returning NULL instead). */
12336 static gdb::unique_xmalloc_ptr<char>
12337 ada_exception_message (void)
12339 gdb::unique_xmalloc_ptr<char> e_msg;
12343 e_msg = ada_exception_message_1 ();
12345 CATCH (e, RETURN_MASK_ERROR)
12347 e_msg.reset (nullptr);
12354 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12355 any error that ada_exception_name_addr_1 might cause to be thrown.
12356 When an error is intercepted, a warning with the error message is printed,
12357 and zero is returned. */
12360 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12361 struct breakpoint *b)
12363 CORE_ADDR result = 0;
12367 result = ada_exception_name_addr_1 (ex, b);
12370 CATCH (e, RETURN_MASK_ERROR)
12372 warning (_("failed to get exception name: %s"), e.message);
12380 static std::string ada_exception_catchpoint_cond_string
12381 (const char *excep_string,
12382 enum ada_exception_catchpoint_kind ex);
12384 /* Ada catchpoints.
12386 In the case of catchpoints on Ada exceptions, the catchpoint will
12387 stop the target on every exception the program throws. When a user
12388 specifies the name of a specific exception, we translate this
12389 request into a condition expression (in text form), and then parse
12390 it into an expression stored in each of the catchpoint's locations.
12391 We then use this condition to check whether the exception that was
12392 raised is the one the user is interested in. If not, then the
12393 target is resumed again. We store the name of the requested
12394 exception, in order to be able to re-set the condition expression
12395 when symbols change. */
12397 /* An instance of this type is used to represent an Ada catchpoint
12398 breakpoint location. */
12400 class ada_catchpoint_location : public bp_location
12403 ada_catchpoint_location (breakpoint *owner)
12404 : bp_location (owner)
12407 /* The condition that checks whether the exception that was raised
12408 is the specific exception the user specified on catchpoint
12410 expression_up excep_cond_expr;
12413 /* An instance of this type is used to represent an Ada catchpoint. */
12415 struct ada_catchpoint : public breakpoint
12417 /* The name of the specific exception the user specified. */
12418 std::string excep_string;
12421 /* Parse the exception condition string in the context of each of the
12422 catchpoint's locations, and store them for later evaluation. */
12425 create_excep_cond_exprs (struct ada_catchpoint *c,
12426 enum ada_exception_catchpoint_kind ex)
12428 struct bp_location *bl;
12430 /* Nothing to do if there's no specific exception to catch. */
12431 if (c->excep_string.empty ())
12434 /* Same if there are no locations... */
12435 if (c->loc == NULL)
12438 /* Compute the condition expression in text form, from the specific
12439 expection we want to catch. */
12440 std::string cond_string
12441 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12443 /* Iterate over all the catchpoint's locations, and parse an
12444 expression for each. */
12445 for (bl = c->loc; bl != NULL; bl = bl->next)
12447 struct ada_catchpoint_location *ada_loc
12448 = (struct ada_catchpoint_location *) bl;
12451 if (!bl->shlib_disabled)
12455 s = cond_string.c_str ();
12458 exp = parse_exp_1 (&s, bl->address,
12459 block_for_pc (bl->address),
12462 CATCH (e, RETURN_MASK_ERROR)
12464 warning (_("failed to reevaluate internal exception condition "
12465 "for catchpoint %d: %s"),
12466 c->number, e.message);
12471 ada_loc->excep_cond_expr = std::move (exp);
12475 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12476 structure for all exception catchpoint kinds. */
12478 static struct bp_location *
12479 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12480 struct breakpoint *self)
12482 return new ada_catchpoint_location (self);
12485 /* Implement the RE_SET method in the breakpoint_ops structure for all
12486 exception catchpoint kinds. */
12489 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12491 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12493 /* Call the base class's method. This updates the catchpoint's
12495 bkpt_breakpoint_ops.re_set (b);
12497 /* Reparse the exception conditional expressions. One for each
12499 create_excep_cond_exprs (c, ex);
12502 /* Returns true if we should stop for this breakpoint hit. If the
12503 user specified a specific exception, we only want to cause a stop
12504 if the program thrown that exception. */
12507 should_stop_exception (const struct bp_location *bl)
12509 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12510 const struct ada_catchpoint_location *ada_loc
12511 = (const struct ada_catchpoint_location *) bl;
12514 /* With no specific exception, should always stop. */
12515 if (c->excep_string.empty ())
12518 if (ada_loc->excep_cond_expr == NULL)
12520 /* We will have a NULL expression if back when we were creating
12521 the expressions, this location's had failed to parse. */
12528 struct value *mark;
12530 mark = value_mark ();
12531 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12532 value_free_to_mark (mark);
12534 CATCH (ex, RETURN_MASK_ALL)
12536 exception_fprintf (gdb_stderr, ex,
12537 _("Error in testing exception condition:\n"));
12544 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12545 for all exception catchpoint kinds. */
12548 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12550 bs->stop = should_stop_exception (bs->bp_location_at);
12553 /* Implement the PRINT_IT method in the breakpoint_ops structure
12554 for all exception catchpoint kinds. */
12556 static enum print_stop_action
12557 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12559 struct ui_out *uiout = current_uiout;
12560 struct breakpoint *b = bs->breakpoint_at;
12562 annotate_catchpoint (b->number);
12564 if (uiout->is_mi_like_p ())
12566 uiout->field_string ("reason",
12567 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12568 uiout->field_string ("disp", bpdisp_text (b->disposition));
12571 uiout->text (b->disposition == disp_del
12572 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12573 uiout->field_int ("bkptno", b->number);
12574 uiout->text (", ");
12576 /* ada_exception_name_addr relies on the selected frame being the
12577 current frame. Need to do this here because this function may be
12578 called more than once when printing a stop, and below, we'll
12579 select the first frame past the Ada run-time (see
12580 ada_find_printable_frame). */
12581 select_frame (get_current_frame ());
12585 case ada_catch_exception:
12586 case ada_catch_exception_unhandled:
12587 case ada_catch_handlers:
12589 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12590 char exception_name[256];
12594 read_memory (addr, (gdb_byte *) exception_name,
12595 sizeof (exception_name) - 1);
12596 exception_name [sizeof (exception_name) - 1] = '\0';
12600 /* For some reason, we were unable to read the exception
12601 name. This could happen if the Runtime was compiled
12602 without debugging info, for instance. In that case,
12603 just replace the exception name by the generic string
12604 "exception" - it will read as "an exception" in the
12605 notification we are about to print. */
12606 memcpy (exception_name, "exception", sizeof ("exception"));
12608 /* In the case of unhandled exception breakpoints, we print
12609 the exception name as "unhandled EXCEPTION_NAME", to make
12610 it clearer to the user which kind of catchpoint just got
12611 hit. We used ui_out_text to make sure that this extra
12612 info does not pollute the exception name in the MI case. */
12613 if (ex == ada_catch_exception_unhandled)
12614 uiout->text ("unhandled ");
12615 uiout->field_string ("exception-name", exception_name);
12618 case ada_catch_assert:
12619 /* In this case, the name of the exception is not really
12620 important. Just print "failed assertion" to make it clearer
12621 that his program just hit an assertion-failure catchpoint.
12622 We used ui_out_text because this info does not belong in
12624 uiout->text ("failed assertion");
12628 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12629 if (exception_message != NULL)
12631 uiout->text (" (");
12632 uiout->field_string ("exception-message", exception_message.get ());
12636 uiout->text (" at ");
12637 ada_find_printable_frame (get_current_frame ());
12639 return PRINT_SRC_AND_LOC;
12642 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12643 for all exception catchpoint kinds. */
12646 print_one_exception (enum ada_exception_catchpoint_kind ex,
12647 struct breakpoint *b, struct bp_location **last_loc)
12649 struct ui_out *uiout = current_uiout;
12650 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12651 struct value_print_options opts;
12653 get_user_print_options (&opts);
12654 if (opts.addressprint)
12656 annotate_field (4);
12657 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12660 annotate_field (5);
12661 *last_loc = b->loc;
12664 case ada_catch_exception:
12665 if (!c->excep_string.empty ())
12667 std::string msg = string_printf (_("`%s' Ada exception"),
12668 c->excep_string.c_str ());
12670 uiout->field_string ("what", msg);
12673 uiout->field_string ("what", "all Ada exceptions");
12677 case ada_catch_exception_unhandled:
12678 uiout->field_string ("what", "unhandled Ada exceptions");
12681 case ada_catch_handlers:
12682 if (!c->excep_string.empty ())
12684 uiout->field_fmt ("what",
12685 _("`%s' Ada exception handlers"),
12686 c->excep_string.c_str ());
12689 uiout->field_string ("what", "all Ada exceptions handlers");
12692 case ada_catch_assert:
12693 uiout->field_string ("what", "failed Ada assertions");
12697 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12702 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12703 for all exception catchpoint kinds. */
12706 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12707 struct breakpoint *b)
12709 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12710 struct ui_out *uiout = current_uiout;
12712 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12713 : _("Catchpoint "));
12714 uiout->field_int ("bkptno", b->number);
12715 uiout->text (": ");
12719 case ada_catch_exception:
12720 if (!c->excep_string.empty ())
12722 std::string info = string_printf (_("`%s' Ada exception"),
12723 c->excep_string.c_str ());
12724 uiout->text (info.c_str ());
12727 uiout->text (_("all Ada exceptions"));
12730 case ada_catch_exception_unhandled:
12731 uiout->text (_("unhandled Ada exceptions"));
12734 case ada_catch_handlers:
12735 if (!c->excep_string.empty ())
12738 = string_printf (_("`%s' Ada exception handlers"),
12739 c->excep_string.c_str ());
12740 uiout->text (info.c_str ());
12743 uiout->text (_("all Ada exceptions handlers"));
12746 case ada_catch_assert:
12747 uiout->text (_("failed Ada assertions"));
12751 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12756 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12757 for all exception catchpoint kinds. */
12760 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12761 struct breakpoint *b, struct ui_file *fp)
12763 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12767 case ada_catch_exception:
12768 fprintf_filtered (fp, "catch exception");
12769 if (!c->excep_string.empty ())
12770 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12773 case ada_catch_exception_unhandled:
12774 fprintf_filtered (fp, "catch exception unhandled");
12777 case ada_catch_handlers:
12778 fprintf_filtered (fp, "catch handlers");
12781 case ada_catch_assert:
12782 fprintf_filtered (fp, "catch assert");
12786 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12788 print_recreate_thread (b, fp);
12791 /* Virtual table for "catch exception" breakpoints. */
12793 static struct bp_location *
12794 allocate_location_catch_exception (struct breakpoint *self)
12796 return allocate_location_exception (ada_catch_exception, self);
12800 re_set_catch_exception (struct breakpoint *b)
12802 re_set_exception (ada_catch_exception, b);
12806 check_status_catch_exception (bpstat bs)
12808 check_status_exception (ada_catch_exception, bs);
12811 static enum print_stop_action
12812 print_it_catch_exception (bpstat bs)
12814 return print_it_exception (ada_catch_exception, bs);
12818 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12820 print_one_exception (ada_catch_exception, b, last_loc);
12824 print_mention_catch_exception (struct breakpoint *b)
12826 print_mention_exception (ada_catch_exception, b);
12830 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12832 print_recreate_exception (ada_catch_exception, b, fp);
12835 static struct breakpoint_ops catch_exception_breakpoint_ops;
12837 /* Virtual table for "catch exception unhandled" breakpoints. */
12839 static struct bp_location *
12840 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12842 return allocate_location_exception (ada_catch_exception_unhandled, self);
12846 re_set_catch_exception_unhandled (struct breakpoint *b)
12848 re_set_exception (ada_catch_exception_unhandled, b);
12852 check_status_catch_exception_unhandled (bpstat bs)
12854 check_status_exception (ada_catch_exception_unhandled, bs);
12857 static enum print_stop_action
12858 print_it_catch_exception_unhandled (bpstat bs)
12860 return print_it_exception (ada_catch_exception_unhandled, bs);
12864 print_one_catch_exception_unhandled (struct breakpoint *b,
12865 struct bp_location **last_loc)
12867 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12871 print_mention_catch_exception_unhandled (struct breakpoint *b)
12873 print_mention_exception (ada_catch_exception_unhandled, b);
12877 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12878 struct ui_file *fp)
12880 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12883 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12885 /* Virtual table for "catch assert" breakpoints. */
12887 static struct bp_location *
12888 allocate_location_catch_assert (struct breakpoint *self)
12890 return allocate_location_exception (ada_catch_assert, self);
12894 re_set_catch_assert (struct breakpoint *b)
12896 re_set_exception (ada_catch_assert, b);
12900 check_status_catch_assert (bpstat bs)
12902 check_status_exception (ada_catch_assert, bs);
12905 static enum print_stop_action
12906 print_it_catch_assert (bpstat bs)
12908 return print_it_exception (ada_catch_assert, bs);
12912 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12914 print_one_exception (ada_catch_assert, b, last_loc);
12918 print_mention_catch_assert (struct breakpoint *b)
12920 print_mention_exception (ada_catch_assert, b);
12924 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12926 print_recreate_exception (ada_catch_assert, b, fp);
12929 static struct breakpoint_ops catch_assert_breakpoint_ops;
12931 /* Virtual table for "catch handlers" breakpoints. */
12933 static struct bp_location *
12934 allocate_location_catch_handlers (struct breakpoint *self)
12936 return allocate_location_exception (ada_catch_handlers, self);
12940 re_set_catch_handlers (struct breakpoint *b)
12942 re_set_exception (ada_catch_handlers, b);
12946 check_status_catch_handlers (bpstat bs)
12948 check_status_exception (ada_catch_handlers, bs);
12951 static enum print_stop_action
12952 print_it_catch_handlers (bpstat bs)
12954 return print_it_exception (ada_catch_handlers, bs);
12958 print_one_catch_handlers (struct breakpoint *b,
12959 struct bp_location **last_loc)
12961 print_one_exception (ada_catch_handlers, b, last_loc);
12965 print_mention_catch_handlers (struct breakpoint *b)
12967 print_mention_exception (ada_catch_handlers, b);
12971 print_recreate_catch_handlers (struct breakpoint *b,
12972 struct ui_file *fp)
12974 print_recreate_exception (ada_catch_handlers, b, fp);
12977 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12979 /* Split the arguments specified in a "catch exception" command.
12980 Set EX to the appropriate catchpoint type.
12981 Set EXCEP_STRING to the name of the specific exception if
12982 specified by the user.
12983 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12984 "catch handlers" command. False otherwise.
12985 If a condition is found at the end of the arguments, the condition
12986 expression is stored in COND_STRING (memory must be deallocated
12987 after use). Otherwise COND_STRING is set to NULL. */
12990 catch_ada_exception_command_split (const char *args,
12991 bool is_catch_handlers_cmd,
12992 enum ada_exception_catchpoint_kind *ex,
12993 std::string *excep_string,
12994 std::string *cond_string)
12996 std::string exception_name;
12998 exception_name = extract_arg (&args);
12999 if (exception_name == "if")
13001 /* This is not an exception name; this is the start of a condition
13002 expression for a catchpoint on all exceptions. So, "un-get"
13003 this token, and set exception_name to NULL. */
13004 exception_name.clear ();
13008 /* Check to see if we have a condition. */
13010 args = skip_spaces (args);
13011 if (startswith (args, "if")
13012 && (isspace (args[2]) || args[2] == '\0'))
13015 args = skip_spaces (args);
13017 if (args[0] == '\0')
13018 error (_("Condition missing after `if' keyword"));
13019 *cond_string = args;
13021 args += strlen (args);
13024 /* Check that we do not have any more arguments. Anything else
13027 if (args[0] != '\0')
13028 error (_("Junk at end of expression"));
13030 if (is_catch_handlers_cmd)
13032 /* Catch handling of exceptions. */
13033 *ex = ada_catch_handlers;
13034 *excep_string = exception_name;
13036 else if (exception_name.empty ())
13038 /* Catch all exceptions. */
13039 *ex = ada_catch_exception;
13040 excep_string->clear ();
13042 else if (exception_name == "unhandled")
13044 /* Catch unhandled exceptions. */
13045 *ex = ada_catch_exception_unhandled;
13046 excep_string->clear ();
13050 /* Catch a specific exception. */
13051 *ex = ada_catch_exception;
13052 *excep_string = exception_name;
13056 /* Return the name of the symbol on which we should break in order to
13057 implement a catchpoint of the EX kind. */
13059 static const char *
13060 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13062 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13064 gdb_assert (data->exception_info != NULL);
13068 case ada_catch_exception:
13069 return (data->exception_info->catch_exception_sym);
13071 case ada_catch_exception_unhandled:
13072 return (data->exception_info->catch_exception_unhandled_sym);
13074 case ada_catch_assert:
13075 return (data->exception_info->catch_assert_sym);
13077 case ada_catch_handlers:
13078 return (data->exception_info->catch_handlers_sym);
13081 internal_error (__FILE__, __LINE__,
13082 _("unexpected catchpoint kind (%d)"), ex);
13086 /* Return the breakpoint ops "virtual table" used for catchpoints
13089 static const struct breakpoint_ops *
13090 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13094 case ada_catch_exception:
13095 return (&catch_exception_breakpoint_ops);
13097 case ada_catch_exception_unhandled:
13098 return (&catch_exception_unhandled_breakpoint_ops);
13100 case ada_catch_assert:
13101 return (&catch_assert_breakpoint_ops);
13103 case ada_catch_handlers:
13104 return (&catch_handlers_breakpoint_ops);
13107 internal_error (__FILE__, __LINE__,
13108 _("unexpected catchpoint kind (%d)"), ex);
13112 /* Return the condition that will be used to match the current exception
13113 being raised with the exception that the user wants to catch. This
13114 assumes that this condition is used when the inferior just triggered
13115 an exception catchpoint.
13116 EX: the type of catchpoints used for catching Ada exceptions. */
13119 ada_exception_catchpoint_cond_string (const char *excep_string,
13120 enum ada_exception_catchpoint_kind ex)
13123 bool is_standard_exc = false;
13124 std::string result;
13126 if (ex == ada_catch_handlers)
13128 /* For exception handlers catchpoints, the condition string does
13129 not use the same parameter as for the other exceptions. */
13130 result = ("long_integer (GNAT_GCC_exception_Access"
13131 "(gcc_exception).all.occurrence.id)");
13134 result = "long_integer (e)";
13136 /* The standard exceptions are a special case. They are defined in
13137 runtime units that have been compiled without debugging info; if
13138 EXCEP_STRING is the not-fully-qualified name of a standard
13139 exception (e.g. "constraint_error") then, during the evaluation
13140 of the condition expression, the symbol lookup on this name would
13141 *not* return this standard exception. The catchpoint condition
13142 may then be set only on user-defined exceptions which have the
13143 same not-fully-qualified name (e.g. my_package.constraint_error).
13145 To avoid this unexcepted behavior, these standard exceptions are
13146 systematically prefixed by "standard". This means that "catch
13147 exception constraint_error" is rewritten into "catch exception
13148 standard.constraint_error".
13150 If an exception named contraint_error is defined in another package of
13151 the inferior program, then the only way to specify this exception as a
13152 breakpoint condition is to use its fully-qualified named:
13153 e.g. my_package.constraint_error. */
13155 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13157 if (strcmp (standard_exc [i], excep_string) == 0)
13159 is_standard_exc = true;
13166 if (is_standard_exc)
13167 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13169 string_appendf (result, "long_integer (&%s)", excep_string);
13174 /* Return the symtab_and_line that should be used to insert an exception
13175 catchpoint of the TYPE kind.
13177 ADDR_STRING returns the name of the function where the real
13178 breakpoint that implements the catchpoints is set, depending on the
13179 type of catchpoint we need to create. */
13181 static struct symtab_and_line
13182 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13183 std::string *addr_string, const struct breakpoint_ops **ops)
13185 const char *sym_name;
13186 struct symbol *sym;
13188 /* First, find out which exception support info to use. */
13189 ada_exception_support_info_sniffer ();
13191 /* Then lookup the function on which we will break in order to catch
13192 the Ada exceptions requested by the user. */
13193 sym_name = ada_exception_sym_name (ex);
13194 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13197 error (_("Catchpoint symbol not found: %s"), sym_name);
13199 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13200 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13202 /* Set ADDR_STRING. */
13203 *addr_string = sym_name;
13206 *ops = ada_exception_breakpoint_ops (ex);
13208 return find_function_start_sal (sym, 1);
13211 /* Create an Ada exception catchpoint.
13213 EX_KIND is the kind of exception catchpoint to be created.
13215 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13216 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13217 of the exception to which this catchpoint applies.
13219 COND_STRING, if not empty, is the catchpoint condition.
13221 TEMPFLAG, if nonzero, means that the underlying breakpoint
13222 should be temporary.
13224 FROM_TTY is the usual argument passed to all commands implementations. */
13227 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13228 enum ada_exception_catchpoint_kind ex_kind,
13229 const std::string &excep_string,
13230 const std::string &cond_string,
13235 std::string addr_string;
13236 const struct breakpoint_ops *ops = NULL;
13237 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13239 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13240 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13241 ops, tempflag, disabled, from_tty);
13242 c->excep_string = excep_string;
13243 create_excep_cond_exprs (c.get (), ex_kind);
13244 if (!cond_string.empty ())
13245 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13246 install_breakpoint (0, std::move (c), 1);
13249 /* Implement the "catch exception" command. */
13252 catch_ada_exception_command (const char *arg_entry, int from_tty,
13253 struct cmd_list_element *command)
13255 const char *arg = arg_entry;
13256 struct gdbarch *gdbarch = get_current_arch ();
13258 enum ada_exception_catchpoint_kind ex_kind;
13259 std::string excep_string;
13260 std::string cond_string;
13262 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13266 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13268 create_ada_exception_catchpoint (gdbarch, ex_kind,
13269 excep_string, cond_string,
13270 tempflag, 1 /* enabled */,
13274 /* Implement the "catch handlers" command. */
13277 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13278 struct cmd_list_element *command)
13280 const char *arg = arg_entry;
13281 struct gdbarch *gdbarch = get_current_arch ();
13283 enum ada_exception_catchpoint_kind ex_kind;
13284 std::string excep_string;
13285 std::string cond_string;
13287 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13291 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13293 create_ada_exception_catchpoint (gdbarch, ex_kind,
13294 excep_string, cond_string,
13295 tempflag, 1 /* enabled */,
13299 /* Split the arguments specified in a "catch assert" command.
13301 ARGS contains the command's arguments (or the empty string if
13302 no arguments were passed).
13304 If ARGS contains a condition, set COND_STRING to that condition
13305 (the memory needs to be deallocated after use). */
13308 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13310 args = skip_spaces (args);
13312 /* Check whether a condition was provided. */
13313 if (startswith (args, "if")
13314 && (isspace (args[2]) || args[2] == '\0'))
13317 args = skip_spaces (args);
13318 if (args[0] == '\0')
13319 error (_("condition missing after `if' keyword"));
13320 cond_string.assign (args);
13323 /* Otherwise, there should be no other argument at the end of
13325 else if (args[0] != '\0')
13326 error (_("Junk at end of arguments."));
13329 /* Implement the "catch assert" command. */
13332 catch_assert_command (const char *arg_entry, int from_tty,
13333 struct cmd_list_element *command)
13335 const char *arg = arg_entry;
13336 struct gdbarch *gdbarch = get_current_arch ();
13338 std::string cond_string;
13340 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13344 catch_ada_assert_command_split (arg, cond_string);
13345 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13347 tempflag, 1 /* enabled */,
13351 /* Return non-zero if the symbol SYM is an Ada exception object. */
13354 ada_is_exception_sym (struct symbol *sym)
13356 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13358 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13359 && SYMBOL_CLASS (sym) != LOC_BLOCK
13360 && SYMBOL_CLASS (sym) != LOC_CONST
13361 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13362 && type_name != NULL && strcmp (type_name, "exception") == 0);
13365 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13366 Ada exception object. This matches all exceptions except the ones
13367 defined by the Ada language. */
13370 ada_is_non_standard_exception_sym (struct symbol *sym)
13374 if (!ada_is_exception_sym (sym))
13377 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13378 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13379 return 0; /* A standard exception. */
13381 /* Numeric_Error is also a standard exception, so exclude it.
13382 See the STANDARD_EXC description for more details as to why
13383 this exception is not listed in that array. */
13384 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13390 /* A helper function for std::sort, comparing two struct ada_exc_info
13393 The comparison is determined first by exception name, and then
13394 by exception address. */
13397 ada_exc_info::operator< (const ada_exc_info &other) const
13401 result = strcmp (name, other.name);
13404 if (result == 0 && addr < other.addr)
13410 ada_exc_info::operator== (const ada_exc_info &other) const
13412 return addr == other.addr && strcmp (name, other.name) == 0;
13415 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13416 routine, but keeping the first SKIP elements untouched.
13418 All duplicates are also removed. */
13421 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13424 std::sort (exceptions->begin () + skip, exceptions->end ());
13425 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13426 exceptions->end ());
13429 /* Add all exceptions defined by the Ada standard whose name match
13430 a regular expression.
13432 If PREG is not NULL, then this regexp_t object is used to
13433 perform the symbol name matching. Otherwise, no name-based
13434 filtering is performed.
13436 EXCEPTIONS is a vector of exceptions to which matching exceptions
13440 ada_add_standard_exceptions (compiled_regex *preg,
13441 std::vector<ada_exc_info> *exceptions)
13445 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13448 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13450 struct bound_minimal_symbol msymbol
13451 = ada_lookup_simple_minsym (standard_exc[i]);
13453 if (msymbol.minsym != NULL)
13455 struct ada_exc_info info
13456 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13458 exceptions->push_back (info);
13464 /* Add all Ada exceptions defined locally and accessible from the given
13467 If PREG is not NULL, then this regexp_t object is used to
13468 perform the symbol name matching. Otherwise, no name-based
13469 filtering is performed.
13471 EXCEPTIONS is a vector of exceptions to which matching exceptions
13475 ada_add_exceptions_from_frame (compiled_regex *preg,
13476 struct frame_info *frame,
13477 std::vector<ada_exc_info> *exceptions)
13479 const struct block *block = get_frame_block (frame, 0);
13483 struct block_iterator iter;
13484 struct symbol *sym;
13486 ALL_BLOCK_SYMBOLS (block, iter, sym)
13488 switch (SYMBOL_CLASS (sym))
13495 if (ada_is_exception_sym (sym))
13497 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13498 SYMBOL_VALUE_ADDRESS (sym)};
13500 exceptions->push_back (info);
13504 if (BLOCK_FUNCTION (block) != NULL)
13506 block = BLOCK_SUPERBLOCK (block);
13510 /* Return true if NAME matches PREG or if PREG is NULL. */
13513 name_matches_regex (const char *name, compiled_regex *preg)
13515 return (preg == NULL
13516 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13519 /* Add all exceptions defined globally whose name name match
13520 a regular expression, excluding standard exceptions.
13522 The reason we exclude standard exceptions is that they need
13523 to be handled separately: Standard exceptions are defined inside
13524 a runtime unit which is normally not compiled with debugging info,
13525 and thus usually do not show up in our symbol search. However,
13526 if the unit was in fact built with debugging info, we need to
13527 exclude them because they would duplicate the entry we found
13528 during the special loop that specifically searches for those
13529 standard exceptions.
13531 If PREG is not NULL, then this regexp_t object is used to
13532 perform the symbol name matching. Otherwise, no name-based
13533 filtering is performed.
13535 EXCEPTIONS is a vector of exceptions to which matching exceptions
13539 ada_add_global_exceptions (compiled_regex *preg,
13540 std::vector<ada_exc_info> *exceptions)
13542 /* In Ada, the symbol "search name" is a linkage name, whereas the
13543 regular expression used to do the matching refers to the natural
13544 name. So match against the decoded name. */
13545 expand_symtabs_matching (NULL,
13546 lookup_name_info::match_any (),
13547 [&] (const char *search_name)
13549 const char *decoded = ada_decode (search_name);
13550 return name_matches_regex (decoded, preg);
13555 for (objfile *objfile : current_program_space->objfiles ())
13557 for (compunit_symtab *s : objfile->compunits ())
13559 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13562 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13564 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13565 struct block_iterator iter;
13566 struct symbol *sym;
13568 ALL_BLOCK_SYMBOLS (b, iter, sym)
13569 if (ada_is_non_standard_exception_sym (sym)
13570 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13572 struct ada_exc_info info
13573 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13575 exceptions->push_back (info);
13582 /* Implements ada_exceptions_list with the regular expression passed
13583 as a regex_t, rather than a string.
13585 If not NULL, PREG is used to filter out exceptions whose names
13586 do not match. Otherwise, all exceptions are listed. */
13588 static std::vector<ada_exc_info>
13589 ada_exceptions_list_1 (compiled_regex *preg)
13591 std::vector<ada_exc_info> result;
13594 /* First, list the known standard exceptions. These exceptions
13595 need to be handled separately, as they are usually defined in
13596 runtime units that have been compiled without debugging info. */
13598 ada_add_standard_exceptions (preg, &result);
13600 /* Next, find all exceptions whose scope is local and accessible
13601 from the currently selected frame. */
13603 if (has_stack_frames ())
13605 prev_len = result.size ();
13606 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13608 if (result.size () > prev_len)
13609 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13612 /* Add all exceptions whose scope is global. */
13614 prev_len = result.size ();
13615 ada_add_global_exceptions (preg, &result);
13616 if (result.size () > prev_len)
13617 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13622 /* Return a vector of ada_exc_info.
13624 If REGEXP is NULL, all exceptions are included in the result.
13625 Otherwise, it should contain a valid regular expression,
13626 and only the exceptions whose names match that regular expression
13627 are included in the result.
13629 The exceptions are sorted in the following order:
13630 - Standard exceptions (defined by the Ada language), in
13631 alphabetical order;
13632 - Exceptions only visible from the current frame, in
13633 alphabetical order;
13634 - Exceptions whose scope is global, in alphabetical order. */
13636 std::vector<ada_exc_info>
13637 ada_exceptions_list (const char *regexp)
13639 if (regexp == NULL)
13640 return ada_exceptions_list_1 (NULL);
13642 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13643 return ada_exceptions_list_1 (®);
13646 /* Implement the "info exceptions" command. */
13649 info_exceptions_command (const char *regexp, int from_tty)
13651 struct gdbarch *gdbarch = get_current_arch ();
13653 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13655 if (regexp != NULL)
13657 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13659 printf_filtered (_("All defined Ada exceptions:\n"));
13661 for (const ada_exc_info &info : exceptions)
13662 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13666 /* Information about operators given special treatment in functions
13668 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13670 #define ADA_OPERATORS \
13671 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13672 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13673 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13674 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13675 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13679 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13681 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13682 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13683 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13685 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13686 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13687 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13688 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13689 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13692 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13695 switch (exp->elts[pc - 1].opcode)
13698 operator_length_standard (exp, pc, oplenp, argsp);
13701 #define OP_DEFN(op, len, args, binop) \
13702 case op: *oplenp = len; *argsp = args; break;
13708 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13713 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13718 /* Implementation of the exp_descriptor method operator_check. */
13721 ada_operator_check (struct expression *exp, int pos,
13722 int (*objfile_func) (struct objfile *objfile, void *data),
13725 const union exp_element *const elts = exp->elts;
13726 struct type *type = NULL;
13728 switch (elts[pos].opcode)
13730 case UNOP_IN_RANGE:
13732 type = elts[pos + 1].type;
13736 return operator_check_standard (exp, pos, objfile_func, data);
13739 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13741 if (type && TYPE_OBJFILE (type)
13742 && (*objfile_func) (TYPE_OBJFILE (type), data))
13748 static const char *
13749 ada_op_name (enum exp_opcode opcode)
13754 return op_name_standard (opcode);
13756 #define OP_DEFN(op, len, args, binop) case op: return #op;
13761 return "OP_AGGREGATE";
13763 return "OP_CHOICES";
13769 /* As for operator_length, but assumes PC is pointing at the first
13770 element of the operator, and gives meaningful results only for the
13771 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13774 ada_forward_operator_length (struct expression *exp, int pc,
13775 int *oplenp, int *argsp)
13777 switch (exp->elts[pc].opcode)
13780 *oplenp = *argsp = 0;
13783 #define OP_DEFN(op, len, args, binop) \
13784 case op: *oplenp = len; *argsp = args; break;
13790 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13795 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13801 int len = longest_to_int (exp->elts[pc + 1].longconst);
13803 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13811 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13813 enum exp_opcode op = exp->elts[elt].opcode;
13818 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13822 /* Ada attributes ('Foo). */
13825 case OP_ATR_LENGTH:
13829 case OP_ATR_MODULUS:
13836 case UNOP_IN_RANGE:
13838 /* XXX: gdb_sprint_host_address, type_sprint */
13839 fprintf_filtered (stream, _("Type @"));
13840 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13841 fprintf_filtered (stream, " (");
13842 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13843 fprintf_filtered (stream, ")");
13845 case BINOP_IN_BOUNDS:
13846 fprintf_filtered (stream, " (%d)",
13847 longest_to_int (exp->elts[pc + 2].longconst));
13849 case TERNOP_IN_RANGE:
13854 case OP_DISCRETE_RANGE:
13855 case OP_POSITIONAL:
13862 char *name = &exp->elts[elt + 2].string;
13863 int len = longest_to_int (exp->elts[elt + 1].longconst);
13865 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13870 return dump_subexp_body_standard (exp, stream, elt);
13874 for (i = 0; i < nargs; i += 1)
13875 elt = dump_subexp (exp, stream, elt);
13880 /* The Ada extension of print_subexp (q.v.). */
13883 ada_print_subexp (struct expression *exp, int *pos,
13884 struct ui_file *stream, enum precedence prec)
13886 int oplen, nargs, i;
13888 enum exp_opcode op = exp->elts[pc].opcode;
13890 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13897 print_subexp_standard (exp, pos, stream, prec);
13901 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13904 case BINOP_IN_BOUNDS:
13905 /* XXX: sprint_subexp */
13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 fputs_filtered (" in ", stream);
13908 print_subexp (exp, pos, stream, PREC_SUFFIX);
13909 fputs_filtered ("'range", stream);
13910 if (exp->elts[pc + 1].longconst > 1)
13911 fprintf_filtered (stream, "(%ld)",
13912 (long) exp->elts[pc + 1].longconst);
13915 case TERNOP_IN_RANGE:
13916 if (prec >= PREC_EQUAL)
13917 fputs_filtered ("(", stream);
13918 /* XXX: sprint_subexp */
13919 print_subexp (exp, pos, stream, PREC_SUFFIX);
13920 fputs_filtered (" in ", stream);
13921 print_subexp (exp, pos, stream, PREC_EQUAL);
13922 fputs_filtered (" .. ", stream);
13923 print_subexp (exp, pos, stream, PREC_EQUAL);
13924 if (prec >= PREC_EQUAL)
13925 fputs_filtered (")", stream);
13930 case OP_ATR_LENGTH:
13934 case OP_ATR_MODULUS:
13939 if (exp->elts[*pos].opcode == OP_TYPE)
13941 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13942 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13943 &type_print_raw_options);
13947 print_subexp (exp, pos, stream, PREC_SUFFIX);
13948 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13953 for (tem = 1; tem < nargs; tem += 1)
13955 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13956 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13958 fputs_filtered (")", stream);
13963 type_print (exp->elts[pc + 1].type, "", stream, 0);
13964 fputs_filtered ("'(", stream);
13965 print_subexp (exp, pos, stream, PREC_PREFIX);
13966 fputs_filtered (")", stream);
13969 case UNOP_IN_RANGE:
13970 /* XXX: sprint_subexp */
13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 fputs_filtered (" in ", stream);
13973 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13974 &type_print_raw_options);
13977 case OP_DISCRETE_RANGE:
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 fputs_filtered ("..", stream);
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 fputs_filtered ("others => ", stream);
13985 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 for (i = 0; i < nargs-1; i += 1)
13992 fputs_filtered ("|", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 fputs_filtered (" => ", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13999 case OP_POSITIONAL:
14000 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 fputs_filtered ("(", stream);
14005 for (i = 0; i < nargs; i += 1)
14008 fputs_filtered (", ", stream);
14009 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 fputs_filtered (")", stream);
14016 /* Table mapping opcodes into strings for printing operators
14017 and precedences of the operators. */
14019 static const struct op_print ada_op_print_tab[] = {
14020 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14021 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14022 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14023 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14024 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14025 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14026 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14027 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14028 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14029 {">=", BINOP_GEQ, PREC_ORDER, 0},
14030 {">", BINOP_GTR, PREC_ORDER, 0},
14031 {"<", BINOP_LESS, PREC_ORDER, 0},
14032 {">>", BINOP_RSH, PREC_SHIFT, 0},
14033 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14034 {"+", BINOP_ADD, PREC_ADD, 0},
14035 {"-", BINOP_SUB, PREC_ADD, 0},
14036 {"&", BINOP_CONCAT, PREC_ADD, 0},
14037 {"*", BINOP_MUL, PREC_MUL, 0},
14038 {"/", BINOP_DIV, PREC_MUL, 0},
14039 {"rem", BINOP_REM, PREC_MUL, 0},
14040 {"mod", BINOP_MOD, PREC_MUL, 0},
14041 {"**", BINOP_EXP, PREC_REPEAT, 0},
14042 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14043 {"-", UNOP_NEG, PREC_PREFIX, 0},
14044 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14045 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14046 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14047 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14048 {".all", UNOP_IND, PREC_SUFFIX, 1},
14049 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14050 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14051 {NULL, OP_NULL, PREC_SUFFIX, 0}
14054 enum ada_primitive_types {
14055 ada_primitive_type_int,
14056 ada_primitive_type_long,
14057 ada_primitive_type_short,
14058 ada_primitive_type_char,
14059 ada_primitive_type_float,
14060 ada_primitive_type_double,
14061 ada_primitive_type_void,
14062 ada_primitive_type_long_long,
14063 ada_primitive_type_long_double,
14064 ada_primitive_type_natural,
14065 ada_primitive_type_positive,
14066 ada_primitive_type_system_address,
14067 ada_primitive_type_storage_offset,
14068 nr_ada_primitive_types
14072 ada_language_arch_info (struct gdbarch *gdbarch,
14073 struct language_arch_info *lai)
14075 const struct builtin_type *builtin = builtin_type (gdbarch);
14077 lai->primitive_type_vector
14078 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14081 lai->primitive_type_vector [ada_primitive_type_int]
14082 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14084 lai->primitive_type_vector [ada_primitive_type_long]
14085 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14086 0, "long_integer");
14087 lai->primitive_type_vector [ada_primitive_type_short]
14088 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14089 0, "short_integer");
14090 lai->string_char_type
14091 = lai->primitive_type_vector [ada_primitive_type_char]
14092 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14093 lai->primitive_type_vector [ada_primitive_type_float]
14094 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14095 "float", gdbarch_float_format (gdbarch));
14096 lai->primitive_type_vector [ada_primitive_type_double]
14097 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14098 "long_float", gdbarch_double_format (gdbarch));
14099 lai->primitive_type_vector [ada_primitive_type_long_long]
14100 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14101 0, "long_long_integer");
14102 lai->primitive_type_vector [ada_primitive_type_long_double]
14103 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14104 "long_long_float", gdbarch_long_double_format (gdbarch));
14105 lai->primitive_type_vector [ada_primitive_type_natural]
14106 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14108 lai->primitive_type_vector [ada_primitive_type_positive]
14109 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14111 lai->primitive_type_vector [ada_primitive_type_void]
14112 = builtin->builtin_void;
14114 lai->primitive_type_vector [ada_primitive_type_system_address]
14115 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14117 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14118 = "system__address";
14120 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14121 type. This is a signed integral type whose size is the same as
14122 the size of addresses. */
14124 unsigned int addr_length = TYPE_LENGTH
14125 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14127 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14128 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14132 lai->bool_type_symbol = NULL;
14133 lai->bool_type_default = builtin->builtin_bool;
14136 /* Language vector */
14138 /* Not really used, but needed in the ada_language_defn. */
14141 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14143 ada_emit_char (c, type, stream, quoter, 1);
14147 parse (struct parser_state *ps)
14149 warnings_issued = 0;
14150 return ada_parse (ps);
14153 static const struct exp_descriptor ada_exp_descriptor = {
14155 ada_operator_length,
14156 ada_operator_check,
14158 ada_dump_subexp_body,
14159 ada_evaluate_subexp
14162 /* symbol_name_matcher_ftype adapter for wild_match. */
14165 do_wild_match (const char *symbol_search_name,
14166 const lookup_name_info &lookup_name,
14167 completion_match_result *comp_match_res)
14169 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14172 /* symbol_name_matcher_ftype adapter for full_match. */
14175 do_full_match (const char *symbol_search_name,
14176 const lookup_name_info &lookup_name,
14177 completion_match_result *comp_match_res)
14179 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14182 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14185 do_exact_match (const char *symbol_search_name,
14186 const lookup_name_info &lookup_name,
14187 completion_match_result *comp_match_res)
14189 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14192 /* Build the Ada lookup name for LOOKUP_NAME. */
14194 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14196 const std::string &user_name = lookup_name.name ();
14198 if (user_name[0] == '<')
14200 if (user_name.back () == '>')
14201 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14203 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14204 m_encoded_p = true;
14205 m_verbatim_p = true;
14206 m_wild_match_p = false;
14207 m_standard_p = false;
14211 m_verbatim_p = false;
14213 m_encoded_p = user_name.find ("__") != std::string::npos;
14217 const char *folded = ada_fold_name (user_name.c_str ());
14218 const char *encoded = ada_encode_1 (folded, false);
14219 if (encoded != NULL)
14220 m_encoded_name = encoded;
14222 m_encoded_name = user_name;
14225 m_encoded_name = user_name;
14227 /* Handle the 'package Standard' special case. See description
14228 of m_standard_p. */
14229 if (startswith (m_encoded_name.c_str (), "standard__"))
14231 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14232 m_standard_p = true;
14235 m_standard_p = false;
14237 /* If the name contains a ".", then the user is entering a fully
14238 qualified entity name, and the match must not be done in wild
14239 mode. Similarly, if the user wants to complete what looks
14240 like an encoded name, the match must not be done in wild
14241 mode. Also, in the standard__ special case always do
14242 non-wild matching. */
14244 = (lookup_name.match_type () != symbol_name_match_type::FULL
14247 && user_name.find ('.') == std::string::npos);
14251 /* symbol_name_matcher_ftype method for Ada. This only handles
14252 completion mode. */
14255 ada_symbol_name_matches (const char *symbol_search_name,
14256 const lookup_name_info &lookup_name,
14257 completion_match_result *comp_match_res)
14259 return lookup_name.ada ().matches (symbol_search_name,
14260 lookup_name.match_type (),
14264 /* A name matcher that matches the symbol name exactly, with
14268 literal_symbol_name_matcher (const char *symbol_search_name,
14269 const lookup_name_info &lookup_name,
14270 completion_match_result *comp_match_res)
14272 const std::string &name = lookup_name.name ();
14274 int cmp = (lookup_name.completion_mode ()
14275 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14276 : strcmp (symbol_search_name, name.c_str ()));
14279 if (comp_match_res != NULL)
14280 comp_match_res->set_match (symbol_search_name);
14287 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14290 static symbol_name_matcher_ftype *
14291 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14293 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14294 return literal_symbol_name_matcher;
14296 if (lookup_name.completion_mode ())
14297 return ada_symbol_name_matches;
14300 if (lookup_name.ada ().wild_match_p ())
14301 return do_wild_match;
14302 else if (lookup_name.ada ().verbatim_p ())
14303 return do_exact_match;
14305 return do_full_match;
14309 /* Implement the "la_read_var_value" language_defn method for Ada. */
14311 static struct value *
14312 ada_read_var_value (struct symbol *var, const struct block *var_block,
14313 struct frame_info *frame)
14315 const struct block *frame_block = NULL;
14316 struct symbol *renaming_sym = NULL;
14318 /* The only case where default_read_var_value is not sufficient
14319 is when VAR is a renaming... */
14321 frame_block = get_frame_block (frame, NULL);
14323 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14324 if (renaming_sym != NULL)
14325 return ada_read_renaming_var_value (renaming_sym, frame_block);
14327 /* This is a typical case where we expect the default_read_var_value
14328 function to work. */
14329 return default_read_var_value (var, var_block, frame);
14332 static const char *ada_extensions[] =
14334 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14337 extern const struct language_defn ada_language_defn = {
14338 "ada", /* Language name */
14342 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14343 that's not quite what this means. */
14345 macro_expansion_no,
14347 &ada_exp_descriptor,
14350 ada_printchar, /* Print a character constant */
14351 ada_printstr, /* Function to print string constant */
14352 emit_char, /* Function to print single char (not used) */
14353 ada_print_type, /* Print a type using appropriate syntax */
14354 ada_print_typedef, /* Print a typedef using appropriate syntax */
14355 ada_val_print, /* Print a value using appropriate syntax */
14356 ada_value_print, /* Print a top-level value */
14357 ada_read_var_value, /* la_read_var_value */
14358 NULL, /* Language specific skip_trampoline */
14359 NULL, /* name_of_this */
14360 true, /* la_store_sym_names_in_linkage_form_p */
14361 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14362 basic_lookup_transparent_type, /* lookup_transparent_type */
14363 ada_la_decode, /* Language specific symbol demangler */
14364 ada_sniff_from_mangled_name,
14365 NULL, /* Language specific
14366 class_name_from_physname */
14367 ada_op_print_tab, /* expression operators for printing */
14368 0, /* c-style arrays */
14369 1, /* String lower bound */
14370 ada_get_gdb_completer_word_break_characters,
14371 ada_collect_symbol_completion_matches,
14372 ada_language_arch_info,
14373 ada_print_array_index,
14374 default_pass_by_reference,
14376 ada_watch_location_expression,
14377 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14378 ada_iterate_over_symbols,
14379 default_search_name_hash,
14386 /* Command-list for the "set/show ada" prefix command. */
14387 static struct cmd_list_element *set_ada_list;
14388 static struct cmd_list_element *show_ada_list;
14390 /* Implement the "set ada" prefix command. */
14393 set_ada_command (const char *arg, int from_tty)
14395 printf_unfiltered (_(\
14396 "\"set ada\" must be followed by the name of a setting.\n"));
14397 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14400 /* Implement the "show ada" prefix command. */
14403 show_ada_command (const char *args, int from_tty)
14405 cmd_show_list (show_ada_list, from_tty, "");
14409 initialize_ada_catchpoint_ops (void)
14411 struct breakpoint_ops *ops;
14413 initialize_breakpoint_ops ();
14415 ops = &catch_exception_breakpoint_ops;
14416 *ops = bkpt_breakpoint_ops;
14417 ops->allocate_location = allocate_location_catch_exception;
14418 ops->re_set = re_set_catch_exception;
14419 ops->check_status = check_status_catch_exception;
14420 ops->print_it = print_it_catch_exception;
14421 ops->print_one = print_one_catch_exception;
14422 ops->print_mention = print_mention_catch_exception;
14423 ops->print_recreate = print_recreate_catch_exception;
14425 ops = &catch_exception_unhandled_breakpoint_ops;
14426 *ops = bkpt_breakpoint_ops;
14427 ops->allocate_location = allocate_location_catch_exception_unhandled;
14428 ops->re_set = re_set_catch_exception_unhandled;
14429 ops->check_status = check_status_catch_exception_unhandled;
14430 ops->print_it = print_it_catch_exception_unhandled;
14431 ops->print_one = print_one_catch_exception_unhandled;
14432 ops->print_mention = print_mention_catch_exception_unhandled;
14433 ops->print_recreate = print_recreate_catch_exception_unhandled;
14435 ops = &catch_assert_breakpoint_ops;
14436 *ops = bkpt_breakpoint_ops;
14437 ops->allocate_location = allocate_location_catch_assert;
14438 ops->re_set = re_set_catch_assert;
14439 ops->check_status = check_status_catch_assert;
14440 ops->print_it = print_it_catch_assert;
14441 ops->print_one = print_one_catch_assert;
14442 ops->print_mention = print_mention_catch_assert;
14443 ops->print_recreate = print_recreate_catch_assert;
14445 ops = &catch_handlers_breakpoint_ops;
14446 *ops = bkpt_breakpoint_ops;
14447 ops->allocate_location = allocate_location_catch_handlers;
14448 ops->re_set = re_set_catch_handlers;
14449 ops->check_status = check_status_catch_handlers;
14450 ops->print_it = print_it_catch_handlers;
14451 ops->print_one = print_one_catch_handlers;
14452 ops->print_mention = print_mention_catch_handlers;
14453 ops->print_recreate = print_recreate_catch_handlers;
14456 /* This module's 'new_objfile' observer. */
14459 ada_new_objfile_observer (struct objfile *objfile)
14461 ada_clear_symbol_cache ();
14464 /* This module's 'free_objfile' observer. */
14467 ada_free_objfile_observer (struct objfile *objfile)
14469 ada_clear_symbol_cache ();
14473 _initialize_ada_language (void)
14475 initialize_ada_catchpoint_ops ();
14477 add_prefix_cmd ("ada", no_class, set_ada_command,
14478 _("Prefix command for changing Ada-specific settings"),
14479 &set_ada_list, "set ada ", 0, &setlist);
14481 add_prefix_cmd ("ada", no_class, show_ada_command,
14482 _("Generic command for showing Ada-specific settings."),
14483 &show_ada_list, "show ada ", 0, &showlist);
14485 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14486 &trust_pad_over_xvs, _("\
14487 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14488 Show whether an optimization trusting PAD types over XVS types is activated"),
14490 This is related to the encoding used by the GNAT compiler. The debugger\n\
14491 should normally trust the contents of PAD types, but certain older versions\n\
14492 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14493 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14494 work around this bug. It is always safe to turn this option \"off\", but\n\
14495 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14496 this option to \"off\" unless necessary."),
14497 NULL, NULL, &set_ada_list, &show_ada_list);
14499 add_setshow_boolean_cmd ("print-signatures", class_vars,
14500 &print_signatures, _("\
14501 Enable or disable the output of formal and return types for functions in the \
14502 overloads selection menu"), _("\
14503 Show whether the output of formal and return types for functions in the \
14504 overloads selection menu is activated"),
14505 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14507 add_catch_command ("exception", _("\
14508 Catch Ada exceptions, when raised.\n\
14509 Usage: catch exception [ ARG ]\n\
14511 Without any argument, stop when any Ada exception is raised.\n\
14512 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14513 being raised does not have a handler (and will therefore lead to the task's\n\
14515 Otherwise, the catchpoint only stops when the name of the exception being\n\
14516 raised is the same as ARG."),
14517 catch_ada_exception_command,
14522 add_catch_command ("handlers", _("\
14523 Catch Ada exceptions, when handled.\n\
14524 With an argument, catch only exceptions with the given name."),
14525 catch_ada_handlers_command,
14529 add_catch_command ("assert", _("\
14530 Catch failed Ada assertions, when raised.\n\
14531 With an argument, catch only exceptions with the given name."),
14532 catch_assert_command,
14537 varsize_limit = 65536;
14538 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14539 &varsize_limit, _("\
14540 Set the maximum number of bytes allowed in a variable-size object."), _("\
14541 Show the maximum number of bytes allowed in a variable-size object."), _("\
14542 Attempts to access an object whose size is not a compile-time constant\n\
14543 and exceeds this limit will cause an error."),
14544 NULL, NULL, &setlist, &showlist);
14546 add_info ("exceptions", info_exceptions_command,
14548 List all Ada exception names.\n\
14549 If a regular expression is passed as an argument, only those matching\n\
14550 the regular expression are listed."));
14552 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14553 _("Set Ada maintenance-related variables."),
14554 &maint_set_ada_cmdlist, "maintenance set ada ",
14555 0/*allow-unknown*/, &maintenance_set_cmdlist);
14557 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14558 _("Show Ada maintenance-related variables"),
14559 &maint_show_ada_cmdlist, "maintenance show ada ",
14560 0/*allow-unknown*/, &maintenance_show_cmdlist);
14562 add_setshow_boolean_cmd
14563 ("ignore-descriptive-types", class_maintenance,
14564 &ada_ignore_descriptive_types_p,
14565 _("Set whether descriptive types generated by GNAT should be ignored."),
14566 _("Show whether descriptive types generated by GNAT should be ignored."),
14568 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14569 DWARF attribute."),
14570 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14572 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14573 NULL, xcalloc, xfree);
14575 /* The ada-lang observers. */
14576 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14577 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14578 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14580 /* Setup various context-specific data. */
14582 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14583 ada_pspace_data_handle
14584 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);