1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type *desc_base_type (struct type *);
77 static struct type *desc_bounds_type (struct type *);
79 static struct value *desc_bounds (struct value *);
81 static int fat_pntr_bounds_bitpos (struct type *);
83 static int fat_pntr_bounds_bitsize (struct type *);
85 static struct type *desc_data_target_type (struct type *);
87 static struct value *desc_data (struct value *);
89 static int fat_pntr_data_bitpos (struct type *);
91 static int fat_pntr_data_bitsize (struct type *);
93 static struct value *desc_one_bound (struct value *, int, int);
95 static int desc_bound_bitpos (struct type *, int, int);
97 static int desc_bound_bitsize (struct type *, int, int);
99 static struct type *desc_index_type (struct type *, int);
101 static int desc_arity (struct type *);
103 static int ada_type_match (struct type *, struct type *, int);
105 static int ada_args_match (struct symbol *, struct value **, int);
107 static struct value *make_array_descriptor (struct type *, struct value *);
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
118 static int is_nonfunction (struct block_symbol *, int);
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
123 static int num_defns_collected (struct obstack *);
125 static struct block_symbol *defns_collected (struct obstack *, int);
127 static struct value *resolve_subexp (expression_up *, int *, int,
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
135 static const char *ada_op_name (enum exp_opcode);
137 static const char *ada_decoded_op_name (enum exp_opcode);
139 static int numeric_type_p (struct type *);
141 static int integer_type_p (struct type *);
143 static int scalar_type_p (struct type *);
145 static int discrete_type_p (struct type *);
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 static struct value *evaluate_subexp_type (struct expression *, int *);
160 static struct type *ada_find_parallel_type_with_name (struct type *,
163 static int is_dynamic_field (struct type *, int);
165 static struct type *to_fixed_variant_branch_type (struct type *,
167 CORE_ADDR, struct value *);
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171 static struct type *to_fixed_range_type (struct type *, struct value *);
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
176 static struct value *unwrap_value (struct value *);
178 static struct type *constrained_packed_array_type (struct type *, long *);
180 static struct type *decode_constrained_packed_array_type (struct type *);
182 static long decode_packed_array_bitsize (struct type *);
184 static struct value *decode_constrained_packed_array (struct value *);
186 static int ada_is_packed_array_type (struct type *);
188 static int ada_is_unconstrained_packed_array_type (struct type *);
190 static struct value *value_subscript_packed (struct value *, int,
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195 static struct value *coerce_unspec_val_to_type (struct value *,
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int advance_wild_match (const char **, const char *, int);
206 static bool wild_match (const char *name, const char *patn);
208 static struct value *ada_coerce_ref (struct value *);
210 static LONGEST pos_atr (struct value *);
212 static struct value *value_pos_atr (struct type *, struct value *);
214 static struct value *value_val_atr (struct type *, struct value *);
216 static struct symbol *standard_lookup (const char *, const struct block *,
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
222 static struct value *ada_value_primitive_field (struct value *, int, int,
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
232 static int ada_is_direct_array_type (struct type *);
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
237 static struct value *ada_index_struct_field (int, struct value *, int,
240 static struct value *assign_aggregate (struct value *, struct value *,
244 static void aggregate_assign_from_choices (struct value *, struct value *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
249 static void aggregate_assign_positional (struct value *, struct value *,
251 int *, LONGEST *, int *, int,
255 static void aggregate_assign_others (struct value *, struct value *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 static void ada_forward_operator_length (struct expression *, int, int *,
269 static struct type *ada_find_any_type (const char *name);
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
276 /* The result of a symbol lookup to be stored in our symbol cache. */
280 /* The name used to perform the lookup. */
282 /* The namespace used during the lookup. */
284 /* The symbol returned by the lookup, or NULL if no matching symbol
287 /* The block where the symbol was found, or NULL if no matching
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
303 #define HASH_SIZE 1009
305 struct ada_symbol_cache
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
319 static const char ada_completer_word_break_characters[] =
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Maintenance-related settings for this module. */
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
350 /* Implement the "maintenance set ada" (prefix) command. */
353 maint_set_ada_cmd (const char *args, int from_tty)
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 /* Implement the "maintenance show ada" (prefix) command. */
362 maint_show_ada_cmd (const char *args, int from_tty)
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369 static int ada_ignore_descriptive_types_p = 0;
371 /* Inferior-specific data. */
373 /* Per-inferior data for this module. */
375 struct ada_inferior_data
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
386 const struct exception_support_info *exception_info;
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
392 /* A cleanup routine for our inferior data. */
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 struct ada_inferior_data *data;
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
403 /* Return our inferior data for the given inferior (INF).
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
414 struct ada_inferior_data *data;
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
430 ada_inferior_exit (struct inferior *inf)
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
437 /* program-space-specific data. */
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
452 This function always returns a valid object. */
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
457 struct ada_pspace_data *data;
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
470 /* The cleanup callback for this module's per-program-space data. */
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
512 ada_typedef_target_type (struct type *type)
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
524 ada_unqualified_name (const char *decoded_name)
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
535 result = strrchr (decoded_name, '.');
537 result++; /* Skip the dot... */
539 result = decoded_name;
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
548 add_angle_brackets (const char *str)
550 static char *result = NULL;
553 result = xstrprintf ("<%s>", str);
558 ada_get_gdb_completer_word_break_characters (void)
560 return ada_completer_word_break_characters;
563 /* Print an array element index using the Ada syntax. */
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
580 if (*size < min_size)
583 if (*size < min_size)
585 vect = xrealloc (vect, *size * element_size);
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
594 field_name_match (const char *field_name, const char *target)
596 int len = strlen (target);
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
616 ada_get_field_index (const struct type *type, const char *field_name,
620 struct type *struct_type = check_typedef ((struct type *) type);
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
633 /* The length of the prefix of NAME prior to any "___" suffix. */
636 ada_name_prefix_len (const char *name)
642 const char *p = strstr (name, "___");
645 return strlen (name);
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
655 is_suffix (const char *str, const char *suffix)
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
677 struct value *result;
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
705 return valaddr + offset;
709 cond_offset_target (CORE_ADDR address, long offset)
714 return address + offset;
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
727 lim_warning (const char *format, ...)
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
744 ada_ensure_varsize_limit (const struct type *type)
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
750 /* Maximum value of a SIZE-byte signed integer type. */
752 max_of_size (int size)
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
756 return top_bit | (top_bit - 1);
759 /* Minimum value of a SIZE-byte signed integer type. */
761 min_of_size (int size)
763 return -max_of_size (size) - 1;
766 /* Maximum value of a SIZE-byte unsigned integer type. */
768 umax_of_size (int size)
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
772 return top_bit | (top_bit - 1);
775 /* Maximum value of integral type T, as a signed quantity. */
777 max_of_type (struct type *t)
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
782 return max_of_size (TYPE_LENGTH (t));
785 /* Minimum value of integral type T, as a signed quantity. */
787 min_of_type (struct type *t)
789 if (TYPE_UNSIGNED (t))
792 return min_of_size (TYPE_LENGTH (t));
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
797 ada_discrete_type_high_bound (struct type *type)
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 return max_of_type (type);
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
818 ada_discrete_type_low_bound (struct type *type)
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
826 return TYPE_FIELD_ENUMVAL (type, 0);
831 return min_of_type (type);
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
841 get_base_type (struct type *type)
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
847 type = TYPE_TARGET_TYPE (type);
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
858 ada_get_decoded_value (struct value *value)
860 struct type *type = ada_check_typedef (value_type (value));
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
869 value = ada_coerce_to_simple_array (value);
872 value = ada_to_fixed_value (value);
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
883 ada_get_decoded_type (struct type *type)
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
893 /* Language Selection */
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
899 ada_update_initial_language (enum language lang)
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
925 if (msym.minsym != NULL)
927 CORE_ADDR main_program_name_addr;
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
934 target_read_string (main_program_name_addr, &main_program_name,
939 return main_program_name.get ();
942 /* The main procedure doesn't seem to be in Ada. */
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
982 ada_encode_1 (const char *decoded, bool throw_errors)
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
996 for (p = decoded; *p != '\0'; p += 1)
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 const struct ada_opname_map *mapping;
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1011 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1024 encoding_buffer[k] = *p;
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1037 ada_encode (const char *decoded)
1039 return ada_encode_1 (decoded, true);
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1047 ada_fold_name (const char *name)
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1055 if (name[0] == '\'')
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1074 is_lower_alphanum (const char c)
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1098 while (i > 0 && isdigit (encoded[i]))
1100 if (i >= 0 && encoded[i] == '.')
1102 else if (i >= 0 && encoded[i] == '$')
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 /* Remove the suffix introduced by the compiler for protected object
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1117 /* Remove trailing N. */
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1143 if (encoded[i] != 'X')
1149 if (isalnum (encoded[i-1]))
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1162 ada_decode (const char *encoded)
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1184 len0 = strlen (encoded);
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1222 /* Make decoded big enough for possible expansion by operator name. */
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1237 else if (encoded[i] == '$')
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1260 && !isalnum (encoded[i + op_len]))
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1265 j += strlen (ada_opname_table[k].decoded);
1269 if (ada_opname_table[k].encoded != NULL)
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1299 /* Remove _E{DIGITS}+[sb] */
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1317 while (k < len0 && isdigit (encoded[k]))
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1328 || (k < len0 && encoded[k] == '_'))
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1368 /* Replace '__' by '.'. */
1376 /* It's a character part of the decoded name, so just copy it
1378 decoded[j] = encoded[i];
1383 decoded[j] = '\000';
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1392 if (strcmp (decoded, encoded) == 0)
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1432 if (!gsymbol->ada_mangled)
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1437 gsymbol->ada_mangled = 1;
1439 if (obstack != NULL)
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1453 *slot = xstrdup (decoded);
1462 ada_la_decode (const char *encoded, int options)
1464 return xstrdup (ada_decode (encoded));
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1472 const char *demangled = ada_decode (mangled);
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1538 if (index_desc_type == NULL)
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1572 /* Maximum number of array dimensions we are prepared to handle. */
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1577 /* The desc_* routines return primitive portions of array descriptors
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1583 static struct type *
1584 desc_base_type (struct type *type)
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1603 is_thin_pntr (struct type *type)
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1610 /* The descriptor type for thin pointer type TYPE. */
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1615 struct type *base_type = desc_base_type (type);
1617 if (base_type == NULL)
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1625 if (alt_type == NULL)
1632 /* A pointer to the array data for thin-pointer value VAL. */
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1640 data_type = lookup_pointer_type (data_type);
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1645 return value_from_longest (data_type, value_address (val));
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1651 is_thick_pntr (struct type *type)
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1666 type = desc_base_type (type);
1670 else if (is_thin_pntr (type))
1672 type = thin_descriptor_type (type);
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1677 return ada_check_typedef (r);
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1691 static struct value *
1692 desc_bounds (struct value *arr)
1694 struct type *type = ada_check_typedef (value_type (arr));
1696 if (is_thin_pntr (type))
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1711 addr = value_address (arr);
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1718 else if (is_thick_pntr (type))
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1735 error (_("Bad GNAT array descriptor"));
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1747 fat_pntr_bounds_bitpos (struct type *type)
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1756 fat_pntr_bounds_bitsize (struct type *type)
1758 type = desc_base_type (type);
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1774 type = desc_base_type (type);
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1794 static struct value *
1795 desc_data (struct value *arr)
1797 struct type *type = value_type (arr);
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1813 fat_pntr_data_bitpos (struct type *type)
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1822 fat_pntr_data_bitsize (struct type *type)
1824 type = desc_base_type (type);
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1848 desc_bound_bitpos (struct type *type, int i, int which)
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1858 desc_bound_bitsize (struct type *type, int i, int which)
1860 type = desc_base_type (type);
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1874 type = desc_base_type (type);
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1886 desc_arity (struct type *type)
1888 type = desc_base_type (type);
1891 return TYPE_NFIELDS (type) / 2;
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1900 ada_is_direct_array_type (struct type *type)
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1913 ada_is_array_type (struct type *type)
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1925 ada_is_simple_array_type (struct type *type)
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1939 ada_is_array_descriptor_type (struct type *type)
1941 struct type *data_type = desc_data_target_type (type);
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1957 ada_is_bogus_array_descriptor (struct type *type)
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1976 ada_type_of_array (struct value *arr, int bounds)
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1997 struct type *elt_type;
1999 struct value *descriptor;
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 return lookup_pointer_type (elt_type);
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2059 struct type *arrType = ada_type_of_array (arr, 1);
2061 if (arrType == NULL)
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2076 ada_coerce_to_simple_array (struct value *arr)
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2098 ada_coerce_to_simple_array_type (struct type *type)
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2112 ada_is_packed_array_type (struct type *type)
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2127 ada_is_constrained_packed_array_type (struct type *type)
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2147 decode_packed_array_bitsize (struct type *type)
2149 const char *raw_name;
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2159 raw_name = ada_type_name (ada_check_typedef (type));
2161 raw_name = ada_type_name (desc_base_type (type));
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2172 (_("could not understand bit size information on packed array"));
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2214 index_type = TYPE_INDEX_TYPE (type);
2216 new_type = alloc_type_copy (type);
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2250 struct type *shadow_type;
2254 raw_name = ada_type_name (desc_base_type (type));
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2268 if (shadow_type == NULL)
2270 lim_warning (_("could not find bounds information on packed array"));
2273 shadow_type = check_typedef (shadow_type);
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2308 type = decode_constrained_packed_array_type (value_type (arr));
2311 error (_("can't unpack array"));
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2325 mod = ada_modulus (value_type (arr)) - 1;
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2340 return coerce_unspec_val_to_type (arr, type);
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 /* Non-zero iff TYPE includes negative integer values. */
2398 has_negatives (struct type *type)
2400 switch (TYPE_CODE (type))
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2462 src_idx = src_len - 1;
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2474 unpacked_idx = unpacked_len - 1;
2478 /* Non-scalar values must be aligned at a byte boundary... */
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 while (src_bytes_left > 0)
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2523 src_bytes_left -= 1;
2526 while (unpacked_bytes_left > 0)
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2554 const gdb_byte *src; /* First byte containing data to unpack */
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2560 type = ada_check_typedef (type);
2563 src = valaddr + offset;
2565 src = value_contents (obj) + offset;
2567 if (is_dynamic_type (type))
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2620 long new_offset = offset;
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2630 set_value_offset (v, new_offset);
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2646 if (staging.size () == TYPE_LENGTH (type))
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2677 accum = (unsigned char) *source;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2697 accum_bits -= chunk_size;
2704 accum = (unsigned char) *source >> src_offset;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2749 if (VALUE_LVAL (toval) == lval_memory
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2759 CORE_ADDR to_addr = value_address (toval);
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2784 return value_assign (toval, fromval);
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2800 value_assign_to_component (struct value *container, struct value *component,
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2809 val = value_cast (value_type (component), val);
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2814 bits = value_bitsize (component);
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2837 struct type *elt_type;
2839 elt = ada_coerce_to_simple_array (arr);
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2846 for (k = 0; k < arity; k += 1)
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2871 struct value *array_ind = ada_value_ind (arr);
2873 = check_typedef (value_enclosing_type (array_ind));
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2879 for (k = 0; k < arity; k += 1)
2882 struct value *lwb_value;
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2894 return value_ind (arr);
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2920 warning (_("unable to get positions in slice, use bounds instead"));
2922 base_low_pos = base_low;
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2948 warning (_("unable to get positions in slice, use bounds instead"));
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2963 ada_array_arity (struct type *type)
2970 type = desc_base_type (type);
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2991 ada_array_element_type (struct type *type, int nindices)
2993 type = desc_base_type (type);
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2998 struct type *p_array_type;
3000 p_array_type = desc_data_target_type (type);
3002 k = ada_array_arity (type);
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3009 while (k > 0 && p_array_type != NULL)
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3014 return p_array_type;
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 type = TYPE_TARGET_TYPE (type);
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3038 struct type *result_type;
3040 type = desc_base_type (type);
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3045 if (ada_is_simple_array_type (type))
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3077 struct type *type, *index_type_desc, *index_type;
3080 gdb_assert (which == 0 || which == 1);
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3093 if (TYPE_FIXED_INSTANCE (type))
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 struct type *elt_type = check_typedef (type);
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3131 ada_array_bound (struct value *arr, int n, int which)
3133 struct type *arr_type;
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3154 ada_array_length (struct value *arr, int n)
3156 struct type *arr_type, *index_type;
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3166 if (ada_is_simple_array_type (arr_type))
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3185 base_type = index_type;
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3190 return high - low + 1;
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 /* Name resolution */
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3215 ada_decoded_op_name (enum exp_opcode op)
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3224 error (_("Could not find operator name for opcode"));
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3238 resolve (expression_up *expp, int void_context_p)
3240 struct type *context_type = NULL;
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3246 resolve_subexp (expp, &pc, 1, context_type);
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3274 /* Pass one: resolve operands, saving their types and updating *pos,
3279 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3280 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3285 resolve_subexp (expp, pos, 0, NULL);
3287 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3292 resolve_subexp (expp, pos, 0, NULL);
3297 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3300 case OP_ATR_MODULUS:
3310 case TERNOP_IN_RANGE:
3311 case BINOP_IN_BOUNDS:
3317 case OP_DISCRETE_RANGE:
3319 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3328 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 resolve_subexp (expp, pos, 1, NULL);
3332 resolve_subexp (expp, pos, 1, value_type (arg1));
3349 case BINOP_LOGICAL_AND:
3350 case BINOP_LOGICAL_OR:
3351 case BINOP_BITWISE_AND:
3352 case BINOP_BITWISE_IOR:
3353 case BINOP_BITWISE_XOR:
3356 case BINOP_NOTEQUAL:
3363 case BINOP_SUBSCRIPT:
3371 case UNOP_LOGICAL_NOT:
3381 case OP_VAR_MSYM_VALUE:
3388 case OP_INTERNALVAR:
3398 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3401 case STRUCTOP_STRUCT:
3402 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3415 error (_("Unexpected operator during name resolution"));
3418 argvec = XALLOCAVEC (struct value *, nargs + 1);
3419 for (i = 0; i < nargs; i += 1)
3420 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 /* Pass two: perform any resolution on principal operator. */
3431 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 std::vector<struct block_symbol> candidates;
3437 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3438 (exp->elts[pc + 2].symbol),
3439 exp->elts[pc + 1].block, VAR_DOMAIN,
3442 if (n_candidates > 1)
3444 /* Types tend to get re-introduced locally, so if there
3445 are any local symbols that are not types, first filter
3448 for (j = 0; j < n_candidates; j += 1)
3449 switch (SYMBOL_CLASS (candidates[j].symbol))
3454 case LOC_REGPARM_ADDR:
3462 if (j < n_candidates)
3465 while (j < n_candidates)
3467 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3469 candidates[j] = candidates[n_candidates - 1];
3478 if (n_candidates == 0)
3479 error (_("No definition found for %s"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 else if (n_candidates == 1)
3483 else if (deprocedure_p
3484 && !is_nonfunction (candidates.data (), n_candidates))
3486 i = ada_resolve_function
3487 (candidates.data (), n_candidates, NULL, 0,
3488 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 error (_("Could not find a match for %s"),
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 printf_filtered (_("Multiple matches for %s\n"),
3497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3498 user_select_syms (candidates.data (), n_candidates, 1);
3502 exp->elts[pc + 1].block = candidates[i].block;
3503 exp->elts[pc + 2].symbol = candidates[i].symbol;
3504 innermost_block.update (candidates[i]);
3508 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 replace_operator_with_call (expp, pc, 0, 0,
3512 exp->elts[pc + 2].symbol,
3513 exp->elts[pc + 1].block);
3520 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3521 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3523 std::vector<struct block_symbol> candidates;
3527 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3528 (exp->elts[pc + 5].symbol),
3529 exp->elts[pc + 4].block, VAR_DOMAIN,
3532 if (n_candidates == 1)
3536 i = ada_resolve_function
3537 (candidates.data (), n_candidates,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3542 error (_("Could not find a match for %s"),
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3546 exp->elts[pc + 4].block = candidates[i].block;
3547 exp->elts[pc + 5].symbol = candidates[i].symbol;
3548 innermost_block.update (candidates[i]);
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3563 case BINOP_NOTEQUAL:
3571 case UNOP_LOGICAL_NOT:
3573 if (possible_user_operator_p (op, argvec))
3575 std::vector<struct block_symbol> candidates;
3579 ada_lookup_symbol_list (ada_decoded_op_name (op),
3580 (struct block *) NULL, VAR_DOMAIN,
3583 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3584 nargs, ada_decoded_op_name (op), NULL);
3588 replace_operator_with_call (expp, pc, nargs, 1,
3589 candidates[i].symbol,
3590 candidates[i].block);
3601 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3602 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3603 exp->elts[pc + 1].objfile,
3604 exp->elts[pc + 2].msymbol);
3606 return evaluate_subexp_type (exp, pos);
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3612 /* The term "match" here is rather loose. The match is heuristic and
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3626 switch (TYPE_CODE (ftype))
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3662 case TYPE_CODE_UNION:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3677 struct type *func_type = SYMBOL_TYPE (func);
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3688 for (i = 0; i < n_actuals; i += 1)
3690 if (actuals[i] == NULL)
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3698 if (!ada_type_match (ftype, atype, 1))
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3711 return_match (struct type *func_type, struct type *context_type)
3713 struct type *return_type;
3715 if (func_type == NULL)
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3725 context_type = get_base_type (context_type);
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3755 int m; /* Number of hits */
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3763 for (k = 0; k < nsyms; k += 1)
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3782 else if (m > 1 && !parse_completion)
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3798 encoded_ordered_before (const char *N0, const char *N1)
3802 else if (N0 == NULL)
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3826 return (strcmp (N0, N1) < 0);
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3834 sort_choices (struct block_symbol syms[], int nsyms)
3838 for (i = 1; i < nsyms; i += 1)
3840 struct block_symbol sym = syms[i];
3843 for (j = i - 1; j >= 0; j -= 1)
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3848 syms[j + 1] = syms[j];
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3867 struct type *type = SYMBOL_TYPE (sym);
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3875 if (TYPE_NFIELDS (type) > 0)
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3887 fprintf_filtered (stream, ")");
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3909 int *chosen = XALLOCAVEC (int , nsyms);
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3919 if (select_mode == multiple_symbols_cancel)
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3934 sort_choices (syms, nsyms);
3936 for (i = 0; i < nsyms; i += 1)
3938 if (syms[i].symbol == NULL)
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3997 symtab_to_filename_for_display (symtab));
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4026 The user is not allowed to choose more than MAX_RESULTS values.
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4038 int first_choice = is_all_choice ? 2 : 1;
4040 prompt = getenv ("PS2");
4044 args = command_line_input (prompt, annotation_suffix);
4047 error_no_arg (_("one or more choice numbers"));
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4071 error (_("cancelled"));
4073 if (choice < first_choice)
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4080 choice -= first_choice;
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4086 if (j < 0 || choice != choices[j])
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4108 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = expp->get ();
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4133 expp->reset (newexp);
4136 /* Type-class predicates */
4138 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4142 numeric_type_p (struct type *type)
4148 switch (TYPE_CODE (type))
4153 case TYPE_CODE_RANGE:
4154 return (type == TYPE_TARGET_TYPE (type)
4155 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4165 integer_type_p (struct type *type)
4171 switch (TYPE_CODE (type))
4175 case TYPE_CODE_RANGE:
4176 return (type == TYPE_TARGET_TYPE (type)
4177 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4187 scalar_type_p (struct type *type)
4193 switch (TYPE_CODE (type))
4196 case TYPE_CODE_RANGE:
4197 case TYPE_CODE_ENUM:
4206 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4209 discrete_type_p (struct type *type)
4215 switch (TYPE_CODE (type))
4218 case TYPE_CODE_RANGE:
4219 case TYPE_CODE_ENUM:
4220 case TYPE_CODE_BOOL:
4228 /* Returns non-zero if OP with operands in the vector ARGS could be
4229 a user-defined function. Errs on the side of pre-defined operators
4230 (i.e., result 0). */
4233 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4235 struct type *type0 =
4236 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4237 struct type *type1 =
4238 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4252 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4256 case BINOP_BITWISE_AND:
4257 case BINOP_BITWISE_IOR:
4258 case BINOP_BITWISE_XOR:
4259 return (!(integer_type_p (type0) && integer_type_p (type1)));
4262 case BINOP_NOTEQUAL:
4267 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4270 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4273 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4277 case UNOP_LOGICAL_NOT:
4279 return (!numeric_type_p (type0));
4288 1. In the following, we assume that a renaming type's name may
4289 have an ___XD suffix. It would be nice if this went away at some
4291 2. We handle both the (old) purely type-based representation of
4292 renamings and the (new) variable-based encoding. At some point,
4293 it is devoutly to be hoped that the former goes away
4294 (FIXME: hilfinger-2007-07-09).
4295 3. Subprogram renamings are not implemented, although the XRS
4296 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4298 /* If SYM encodes a renaming,
4300 <renaming> renames <renamed entity>,
4302 sets *LEN to the length of the renamed entity's name,
4303 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4304 the string describing the subcomponent selected from the renamed
4305 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4306 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4307 are undefined). Otherwise, returns a value indicating the category
4308 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4309 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4310 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4311 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4312 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4313 may be NULL, in which case they are not assigned.
4315 [Currently, however, GCC does not generate subprogram renamings.] */
4317 enum ada_renaming_category
4318 ada_parse_renaming (struct symbol *sym,
4319 const char **renamed_entity, int *len,
4320 const char **renaming_expr)
4322 enum ada_renaming_category kind;
4327 return ADA_NOT_RENAMING;
4328 switch (SYMBOL_CLASS (sym))
4331 return ADA_NOT_RENAMING;
4333 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4334 renamed_entity, len, renaming_expr);
4338 case LOC_OPTIMIZED_OUT:
4339 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4341 return ADA_NOT_RENAMING;
4345 kind = ADA_OBJECT_RENAMING;
4349 kind = ADA_EXCEPTION_RENAMING;
4353 kind = ADA_PACKAGE_RENAMING;
4357 kind = ADA_SUBPROGRAM_RENAMING;
4361 return ADA_NOT_RENAMING;
4365 if (renamed_entity != NULL)
4366 *renamed_entity = info;
4367 suffix = strstr (info, "___XE");
4368 if (suffix == NULL || suffix == info)
4369 return ADA_NOT_RENAMING;
4371 *len = strlen (info) - strlen (suffix);
4373 if (renaming_expr != NULL)
4374 *renaming_expr = suffix;
4378 /* Assuming TYPE encodes a renaming according to the old encoding in
4379 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4380 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4381 ADA_NOT_RENAMING otherwise. */
4382 static enum ada_renaming_category
4383 parse_old_style_renaming (struct type *type,
4384 const char **renamed_entity, int *len,
4385 const char **renaming_expr)
4387 enum ada_renaming_category kind;
4392 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4393 || TYPE_NFIELDS (type) != 1)
4394 return ADA_NOT_RENAMING;
4396 name = TYPE_NAME (type);
4398 return ADA_NOT_RENAMING;
4400 name = strstr (name, "___XR");
4402 return ADA_NOT_RENAMING;
4407 kind = ADA_OBJECT_RENAMING;
4410 kind = ADA_EXCEPTION_RENAMING;
4413 kind = ADA_PACKAGE_RENAMING;
4416 kind = ADA_SUBPROGRAM_RENAMING;
4419 return ADA_NOT_RENAMING;
4422 info = TYPE_FIELD_NAME (type, 0);
4424 return ADA_NOT_RENAMING;
4425 if (renamed_entity != NULL)
4426 *renamed_entity = info;
4427 suffix = strstr (info, "___XE");
4428 if (renaming_expr != NULL)
4429 *renaming_expr = suffix + 5;
4430 if (suffix == NULL || suffix == info)
4431 return ADA_NOT_RENAMING;
4433 *len = suffix - info;
4437 /* Compute the value of the given RENAMING_SYM, which is expected to
4438 be a symbol encoding a renaming expression. BLOCK is the block
4439 used to evaluate the renaming. */
4441 static struct value *
4442 ada_read_renaming_var_value (struct symbol *renaming_sym,
4443 const struct block *block)
4445 const char *sym_name;
4447 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4448 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4449 return evaluate_expression (expr.get ());
4453 /* Evaluation: Function Calls */
4455 /* Return an lvalue containing the value VAL. This is the identity on
4456 lvalues, and otherwise has the side-effect of allocating memory
4457 in the inferior where a copy of the value contents is copied. */
4459 static struct value *
4460 ensure_lval (struct value *val)
4462 if (VALUE_LVAL (val) == not_lval
4463 || VALUE_LVAL (val) == lval_internalvar)
4465 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4466 const CORE_ADDR addr =
4467 value_as_long (value_allocate_space_in_inferior (len));
4469 VALUE_LVAL (val) = lval_memory;
4470 set_value_address (val, addr);
4471 write_memory (addr, value_contents (val), len);
4477 /* Return the value ACTUAL, converted to be an appropriate value for a
4478 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4479 allocating any necessary descriptors (fat pointers), or copies of
4480 values not residing in memory, updating it as needed. */
4483 ada_convert_actual (struct value *actual, struct type *formal_type0)
4485 struct type *actual_type = ada_check_typedef (value_type (actual));
4486 struct type *formal_type = ada_check_typedef (formal_type0);
4487 struct type *formal_target =
4488 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4489 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4490 struct type *actual_target =
4491 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4492 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4494 if (ada_is_array_descriptor_type (formal_target)
4495 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4496 return make_array_descriptor (formal_type, actual);
4497 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4498 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4500 struct value *result;
4502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4503 && ada_is_array_descriptor_type (actual_target))
4504 result = desc_data (actual);
4505 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4507 if (VALUE_LVAL (actual) != lval_memory)
4511 actual_type = ada_check_typedef (value_type (actual));
4512 val = allocate_value (actual_type);
4513 memcpy ((char *) value_contents_raw (val),
4514 (char *) value_contents (actual),
4515 TYPE_LENGTH (actual_type));
4516 actual = ensure_lval (val);
4518 result = value_addr (actual);
4522 return value_cast_pointers (formal_type, result, 0);
4524 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4525 return ada_value_ind (actual);
4526 else if (ada_is_aligner_type (formal_type))
4528 /* We need to turn this parameter into an aligner type
4530 struct value *aligner = allocate_value (formal_type);
4531 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4533 value_assign_to_component (aligner, component, actual);
4540 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4541 type TYPE. This is usually an inefficient no-op except on some targets
4542 (such as AVR) where the representation of a pointer and an address
4546 value_pointer (struct value *value, struct type *type)
4548 struct gdbarch *gdbarch = get_type_arch (type);
4549 unsigned len = TYPE_LENGTH (type);
4550 gdb_byte *buf = (gdb_byte *) alloca (len);
4553 addr = value_address (value);
4554 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4555 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4560 /* Push a descriptor of type TYPE for array value ARR on the stack at
4561 *SP, updating *SP to reflect the new descriptor. Return either
4562 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4563 to-descriptor type rather than a descriptor type), a struct value *
4564 representing a pointer to this descriptor. */
4566 static struct value *
4567 make_array_descriptor (struct type *type, struct value *arr)
4569 struct type *bounds_type = desc_bounds_type (type);
4570 struct type *desc_type = desc_base_type (type);
4571 struct value *descriptor = allocate_value (desc_type);
4572 struct value *bounds = allocate_value (bounds_type);
4575 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 0),
4580 desc_bound_bitpos (bounds_type, i, 0),
4581 desc_bound_bitsize (bounds_type, i, 0));
4582 modify_field (value_type (bounds), value_contents_writeable (bounds),
4583 ada_array_bound (arr, i, 1),
4584 desc_bound_bitpos (bounds_type, i, 1),
4585 desc_bound_bitsize (bounds_type, i, 1));
4588 bounds = ensure_lval (bounds);
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (ensure_lval (arr),
4593 TYPE_FIELD_TYPE (desc_type, 0)),
4594 fat_pntr_data_bitpos (desc_type),
4595 fat_pntr_data_bitsize (desc_type));
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (bounds,
4600 TYPE_FIELD_TYPE (desc_type, 1)),
4601 fat_pntr_bounds_bitpos (desc_type),
4602 fat_pntr_bounds_bitsize (desc_type));
4604 descriptor = ensure_lval (descriptor);
4606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4607 return value_addr (descriptor);
4612 /* Symbol Cache Module */
4614 /* Performance measurements made as of 2010-01-15 indicate that
4615 this cache does bring some noticeable improvements. Depending
4616 on the type of entity being printed, the cache can make it as much
4617 as an order of magnitude faster than without it.
4619 The descriptive type DWARF extension has significantly reduced
4620 the need for this cache, at least when DWARF is being used. However,
4621 even in this case, some expensive name-based symbol searches are still
4622 sometimes necessary - to find an XVZ variable, mostly. */
4624 /* Initialize the contents of SYM_CACHE. */
4627 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 obstack_init (&sym_cache->cache_space);
4630 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4633 /* Free the memory used by SYM_CACHE. */
4636 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4638 obstack_free (&sym_cache->cache_space, NULL);
4642 /* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
4645 static struct ada_symbol_cache *
4646 ada_get_symbol_cache (struct program_space *pspace)
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4650 if (pspace_data->sym_cache == NULL)
4652 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4653 ada_init_symbol_cache (pspace_data->sym_cache);
4656 return pspace_data->sym_cache;
4659 /* Clear all entries from the symbol cache. */
4662 ada_clear_symbol_cache (void)
4664 struct ada_symbol_cache *sym_cache
4665 = ada_get_symbol_cache (current_program_space);
4667 obstack_free (&sym_cache->cache_space, NULL);
4668 ada_init_symbol_cache (sym_cache);
4671 /* Search our cache for an entry matching NAME and DOMAIN.
4672 Return it if found, or NULL otherwise. */
4674 static struct cache_entry **
4675 find_entry (const char *name, domain_enum domain)
4677 struct ada_symbol_cache *sym_cache
4678 = ada_get_symbol_cache (current_program_space);
4679 int h = msymbol_hash (name) % HASH_SIZE;
4680 struct cache_entry **e;
4682 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4684 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4690 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4691 Return 1 if found, 0 otherwise.
4693 If an entry was found and SYM is not NULL, set *SYM to the entry's
4694 SYM. Same principle for BLOCK if not NULL. */
4697 lookup_cached_symbol (const char *name, domain_enum domain,
4698 struct symbol **sym, const struct block **block)
4700 struct cache_entry **e = find_entry (name, domain);
4707 *block = (*e)->block;
4711 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4712 in domain DOMAIN, save this result in our symbol cache. */
4715 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4716 const struct block *block)
4718 struct ada_symbol_cache *sym_cache
4719 = ada_get_symbol_cache (current_program_space);
4722 struct cache_entry *e;
4724 /* Symbols for builtin types don't have a block.
4725 For now don't cache such symbols. */
4726 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4729 /* If the symbol is a local symbol, then do not cache it, as a search
4730 for that symbol depends on the context. To determine whether
4731 the symbol is local or not, we check the block where we found it
4732 against the global and static blocks of its associated symtab. */
4734 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4735 GLOBAL_BLOCK) != block
4736 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4737 STATIC_BLOCK) != block)
4740 h = msymbol_hash (name) % HASH_SIZE;
4741 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4742 e->next = sym_cache->root[h];
4743 sym_cache->root[h] = e;
4745 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4746 strcpy (copy, name);
4754 /* Return the symbol name match type that should be used used when
4755 searching for all symbols matching LOOKUP_NAME.
4757 LOOKUP_NAME is expected to be a symbol name after transformation
4760 static symbol_name_match_type
4761 name_match_type_from_name (const char *lookup_name)
4763 return (strstr (lookup_name, "__") == NULL
4764 ? symbol_name_match_type::WILD
4765 : symbol_name_match_type::FULL);
4768 /* Return the result of a standard (literal, C-like) lookup of NAME in
4769 given DOMAIN, visible from lexical block BLOCK. */
4771 static struct symbol *
4772 standard_lookup (const char *name, const struct block *block,
4775 /* Initialize it just to avoid a GCC false warning. */
4776 struct block_symbol sym = {NULL, NULL};
4778 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4780 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4781 cache_symbol (name, domain, sym.symbol, sym.block);
4786 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4787 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4788 since they contend in overloading in the same way. */
4790 is_nonfunction (struct block_symbol syms[], int n)
4794 for (i = 0; i < n; i += 1)
4795 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4796 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4797 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4803 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4804 struct types. Otherwise, they may not. */
4807 equiv_types (struct type *type0, struct type *type1)
4811 if (type0 == NULL || type1 == NULL
4812 || TYPE_CODE (type0) != TYPE_CODE (type1))
4814 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4815 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4816 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4817 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4823 /* True iff SYM0 represents the same entity as SYM1, or one that is
4824 no more defined than that of SYM1. */
4827 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4831 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4832 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4835 switch (SYMBOL_CLASS (sym0))
4841 struct type *type0 = SYMBOL_TYPE (sym0);
4842 struct type *type1 = SYMBOL_TYPE (sym1);
4843 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4844 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4845 int len0 = strlen (name0);
4848 TYPE_CODE (type0) == TYPE_CODE (type1)
4849 && (equiv_types (type0, type1)
4850 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4851 && startswith (name1 + len0, "___XV")));
4854 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4855 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4861 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4862 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4865 add_defn_to_vec (struct obstack *obstackp,
4867 const struct block *block)
4870 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4872 /* Do not try to complete stub types, as the debugger is probably
4873 already scanning all symbols matching a certain name at the
4874 time when this function is called. Trying to replace the stub
4875 type by its associated full type will cause us to restart a scan
4876 which may lead to an infinite recursion. Instead, the client
4877 collecting the matching symbols will end up collecting several
4878 matches, with at least one of them complete. It can then filter
4879 out the stub ones if needed. */
4881 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4883 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4885 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4887 prevDefns[i].symbol = sym;
4888 prevDefns[i].block = block;
4894 struct block_symbol info;
4898 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4902 /* Number of block_symbol structures currently collected in current vector in
4906 num_defns_collected (struct obstack *obstackp)
4908 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4911 /* Vector of block_symbol structures currently collected in current vector in
4912 OBSTACKP. If FINISH, close off the vector and return its final address. */
4914 static struct block_symbol *
4915 defns_collected (struct obstack *obstackp, int finish)
4918 return (struct block_symbol *) obstack_finish (obstackp);
4920 return (struct block_symbol *) obstack_base (obstackp);
4923 /* Return a bound minimal symbol matching NAME according to Ada
4924 decoding rules. Returns an invalid symbol if there is no such
4925 minimal symbol. Names prefixed with "standard__" are handled
4926 specially: "standard__" is first stripped off, and only static and
4927 global symbols are searched. */
4929 struct bound_minimal_symbol
4930 ada_lookup_simple_minsym (const char *name)
4932 struct bound_minimal_symbol result;
4933 struct objfile *objfile;
4934 struct minimal_symbol *msymbol;
4936 memset (&result, 0, sizeof (result));
4938 symbol_name_match_type match_type = name_match_type_from_name (name);
4939 lookup_name_info lookup_name (name, match_type);
4941 symbol_name_matcher_ftype *match_name
4942 = ada_get_symbol_name_matcher (lookup_name);
4944 ALL_MSYMBOLS (objfile, msymbol)
4946 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4947 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4949 result.minsym = msymbol;
4950 result.objfile = objfile;
4958 /* For all subprograms that statically enclose the subprogram of the
4959 selected frame, add symbols matching identifier NAME in DOMAIN
4960 and their blocks to the list of data in OBSTACKP, as for
4961 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4962 with a wildcard prefix. */
4965 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4966 const lookup_name_info &lookup_name,
4971 /* True if TYPE is definitely an artificial type supplied to a symbol
4972 for which no debugging information was given in the symbol file. */
4975 is_nondebugging_type (struct type *type)
4977 const char *name = ada_type_name (type);
4979 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4983 that are deemed "identical" for practical purposes.
4985 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4986 types and that their number of enumerals is identical (in other
4987 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4994 /* The heuristic we use here is fairly conservative. We consider
4995 that 2 enumerate types are identical if they have the same
4996 number of enumerals and that all enumerals have the same
4997 underlying value and name. */
4999 /* All enums in the type should have an identical underlying value. */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5004 /* All enumerals should also have the same name (modulo any numerical
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5008 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5009 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5010 int len_1 = strlen (name_1);
5011 int len_2 = strlen (name_2);
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5014 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5016 || strncmp (TYPE_FIELD_NAME (type1, i),
5017 TYPE_FIELD_NAME (type2, i),
5025 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5026 that are deemed "identical" for practical purposes. Sometimes,
5027 enumerals are not strictly identical, but their types are so similar
5028 that they can be considered identical.
5030 For instance, consider the following code:
5032 type Color is (Black, Red, Green, Blue, White);
5033 type RGB_Color is new Color range Red .. Blue;
5035 Type RGB_Color is a subrange of an implicit type which is a copy
5036 of type Color. If we call that implicit type RGB_ColorB ("B" is
5037 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5038 As a result, when an expression references any of the enumeral
5039 by name (Eg. "print green"), the expression is technically
5040 ambiguous and the user should be asked to disambiguate. But
5041 doing so would only hinder the user, since it wouldn't matter
5042 what choice he makes, the outcome would always be the same.
5043 So, for practical purposes, we consider them as the same. */
5046 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5050 /* Before performing a thorough comparison check of each type,
5051 we perform a series of inexpensive checks. We expect that these
5052 checks will quickly fail in the vast majority of cases, and thus
5053 help prevent the unnecessary use of a more expensive comparison.
5054 Said comparison also expects us to make some of these checks
5055 (see ada_identical_enum_types_p). */
5057 /* Quick check: All symbols should have an enum type. */
5058 for (i = 0; i < syms.size (); i++)
5059 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5062 /* Quick check: They should all have the same value. */
5063 for (i = 1; i < syms.size (); i++)
5064 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5067 /* Quick check: They should all have the same number of enumerals. */
5068 for (i = 1; i < syms.size (); i++)
5069 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5070 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5073 /* All the sanity checks passed, so we might have a set of
5074 identical enumeration types. Perform a more complete
5075 comparison of the type of each symbol. */
5076 for (i = 1; i < syms.size (); i++)
5077 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5078 SYMBOL_TYPE (syms[0].symbol)))
5084 /* Remove any non-debugging symbols in SYMS that definitely
5085 duplicate other symbols in the list (The only case I know of where
5086 this happens is when object files containing stabs-in-ecoff are
5087 linked with files containing ordinary ecoff debugging symbols (or no
5088 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5089 Returns the number of items in the modified list. */
5092 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5096 /* We should never be called with less than 2 symbols, as there
5097 cannot be any extra symbol in that case. But it's easy to
5098 handle, since we have nothing to do in that case. */
5099 if (syms->size () < 2)
5100 return syms->size ();
5103 while (i < syms->size ())
5107 /* If two symbols have the same name and one of them is a stub type,
5108 the get rid of the stub. */
5110 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5113 for (j = 0; j < syms->size (); j++)
5116 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5124 /* Two symbols with the same name, same class and same address
5125 should be identical. */
5127 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5128 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5129 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5131 for (j = 0; j < syms->size (); j += 1)
5134 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5135 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5136 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5137 && SYMBOL_CLASS ((*syms)[i].symbol)
5138 == SYMBOL_CLASS ((*syms)[j].symbol)
5139 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5140 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5146 syms->erase (syms->begin () + i);
5151 /* If all the remaining symbols are identical enumerals, then
5152 just keep the first one and discard the rest.
5154 Unlike what we did previously, we do not discard any entry
5155 unless they are ALL identical. This is because the symbol
5156 comparison is not a strict comparison, but rather a practical
5157 comparison. If all symbols are considered identical, then
5158 we can just go ahead and use the first one and discard the rest.
5159 But if we cannot reduce the list to a single element, we have
5160 to ask the user to disambiguate anyways. And if we have to
5161 present a multiple-choice menu, it's less confusing if the list
5162 isn't missing some choices that were identical and yet distinct. */
5163 if (symbols_are_identical_enums (*syms))
5166 return syms->size ();
5169 /* Given a type that corresponds to a renaming entity, use the type name
5170 to extract the scope (package name or function name, fully qualified,
5171 and following the GNAT encoding convention) where this renaming has been
5175 xget_renaming_scope (struct type *renaming_type)
5177 /* The renaming types adhere to the following convention:
5178 <scope>__<rename>___<XR extension>.
5179 So, to extract the scope, we search for the "___XR" extension,
5180 and then backtrack until we find the first "__". */
5182 const char *name = TYPE_NAME (renaming_type);
5183 const char *suffix = strstr (name, "___XR");
5186 /* Now, backtrack a bit until we find the first "__". Start looking
5187 at suffix - 3, as the <rename> part is at least one character long. */
5189 for (last = suffix - 3; last > name; last--)
5190 if (last[0] == '_' && last[1] == '_')
5193 /* Make a copy of scope and return it. */
5194 return std::string (name, last);
5197 /* Return nonzero if NAME corresponds to a package name. */
5200 is_package_name (const char *name)
5202 /* Here, We take advantage of the fact that no symbols are generated
5203 for packages, while symbols are generated for each function.
5204 So the condition for NAME represent a package becomes equivalent
5205 to NAME not existing in our list of symbols. There is only one
5206 small complication with library-level functions (see below). */
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
5218 /* Do a quick check that NAME does not contain "__", since library-level
5219 functions names cannot contain "__" in them. */
5220 if (strstr (name, "__") != NULL)
5223 fun_name = xstrprintf ("_ada_%s", name);
5225 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5228 /* Return nonzero if SYM corresponds to a renaming entity that is
5229 not visible from FUNCTION_NAME. */
5232 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope.c_str ()))
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5250 if (startswith (function_name, "_ada_"))
5253 return !startswith (function_name, scope.c_str ());
5256 /* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5268 Second, GNAT emits a type following a specified encoding for each renaming
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
5294 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
5297 struct symbol *current_function;
5298 const char *current_function_name;
5300 int is_new_style_renaming;
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
5304 First, zero out such symbols, then compress. */
5305 is_new_style_renaming = 0;
5306 for (i = 0; i < syms->size (); i += 1)
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5315 name = SYMBOL_LINKAGE_NAME (sym);
5316 suffix = strstr (name, "___XR");
5320 int name_len = suffix - name;
5323 is_new_style_renaming = 1;
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
5332 if (is_new_style_renaming)
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
5339 (*syms)[k] = (*syms)[j];
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
5348 if (current_block == NULL)
5349 return syms->size ();
5351 current_function = block_linkage_function (current_block);
5352 if (current_function == NULL)
5353 return syms->size ();
5355 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5356 if (current_function_name == NULL)
5357 return syms->size ();
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5364 while (i < syms->size ())
5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5367 == ADA_OBJECT_RENAMING
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
5375 return syms->size ();
5378 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5389 ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
5393 int block_depth = 0;
5395 while (block != NULL)
5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5405 block = BLOCK_SUPERBLOCK (block);
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5414 /* An object of this type is used as the user_data argument when
5415 calling the map_matching_symbols method. */
5419 struct objfile *objfile;
5420 struct obstack *obstackp;
5421 struct symbol *arg_sym;
5425 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5426 to a list of symbols. DATA0 is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
5435 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5437 struct match_data *data = (struct match_data *) data0;
5441 if (!data->found_sym && data->arg_sym != NULL)
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (data->arg_sym, data->objfile),
5445 data->found_sym = 0;
5446 data->arg_sym = NULL;
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5453 data->arg_sym = sym;
5456 data->found_sym = 1;
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (sym, data->objfile),
5465 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5466 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5467 symbols to OBSTACKP. Return whether we found such symbols. */
5470 ada_add_block_renamings (struct obstack *obstackp,
5471 const struct block *block,
5472 const lookup_name_info &lookup_name,
5475 struct using_direct *renaming;
5476 int defns_mark = num_defns_collected (obstackp);
5478 symbol_name_matcher_ftype *name_match
5479 = ada_get_symbol_name_matcher (lookup_name);
5481 for (renaming = block_using (block);
5483 renaming = renaming->next)
5487 /* Avoid infinite recursions: skip this renaming if we are actually
5488 already traversing it.
5490 Currently, symbol lookup in Ada don't use the namespace machinery from
5491 C++/Fortran support: skip namespace imports that use them. */
5492 if (renaming->searched
5493 || (renaming->import_src != NULL
5494 && renaming->import_src[0] != '\0')
5495 || (renaming->import_dest != NULL
5496 && renaming->import_dest[0] != '\0'))
5498 renaming->searched = 1;
5500 /* TODO: here, we perform another name-based symbol lookup, which can
5501 pull its own multiple overloads. In theory, we should be able to do
5502 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5503 not a simple name. But in order to do this, we would need to enhance
5504 the DWARF reader to associate a symbol to this renaming, instead of a
5505 name. So, for now, we do something simpler: re-use the C++/Fortran
5506 namespace machinery. */
5507 r_name = (renaming->alias != NULL
5509 : renaming->declaration);
5510 if (name_match (r_name, lookup_name, NULL))
5512 lookup_name_info decl_lookup_name (renaming->declaration,
5513 lookup_name.match_type ());
5514 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5517 renaming->searched = 0;
5519 return num_defns_collected (obstackp) != defns_mark;
5522 /* Implements compare_names, but only applying the comparision using
5523 the given CASING. */
5526 compare_names_with_case (const char *string1, const char *string2,
5527 enum case_sensitivity casing)
5529 while (*string1 != '\0' && *string2 != '\0')
5533 if (isspace (*string1) || isspace (*string2))
5534 return strcmp_iw_ordered (string1, string2);
5536 if (casing == case_sensitive_off)
5538 c1 = tolower (*string1);
5539 c2 = tolower (*string2);
5556 return strcmp_iw_ordered (string1, string2);
5558 if (*string2 == '\0')
5560 if (is_name_suffix (string1))
5567 if (*string2 == '(')
5568 return strcmp_iw_ordered (string1, string2);
5571 if (casing == case_sensitive_off)
5572 return tolower (*string1) - tolower (*string2);
5574 return *string1 - *string2;
5579 /* Compare STRING1 to STRING2, with results as for strcmp.
5580 Compatible with strcmp_iw_ordered in that...
5582 strcmp_iw_ordered (STRING1, STRING2) <= 0
5586 compare_names (STRING1, STRING2) <= 0
5588 (they may differ as to what symbols compare equal). */
5591 compare_names (const char *string1, const char *string2)
5595 /* Similar to what strcmp_iw_ordered does, we need to perform
5596 a case-insensitive comparison first, and only resort to
5597 a second, case-sensitive, comparison if the first one was
5598 not sufficient to differentiate the two strings. */
5600 result = compare_names_with_case (string1, string2, case_sensitive_off);
5602 result = compare_names_with_case (string1, string2, case_sensitive_on);
5607 /* Convenience function to get at the Ada encoded lookup name for
5608 LOOKUP_NAME, as a C string. */
5611 ada_lookup_name (const lookup_name_info &lookup_name)
5613 return lookup_name.ada ().lookup_name ().c_str ();
5616 /* Add to OBSTACKP all non-local symbols whose name and domain match
5617 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5618 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5619 symbols otherwise. */
5622 add_nonlocal_symbols (struct obstack *obstackp,
5623 const lookup_name_info &lookup_name,
5624 domain_enum domain, int global)
5626 struct objfile *objfile;
5627 struct compunit_symtab *cu;
5628 struct match_data data;
5630 memset (&data, 0, sizeof data);
5631 data.obstackp = obstackp;
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5635 ALL_OBJFILES (objfile)
5637 data.objfile = objfile;
5640 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5642 aux_add_nonlocal_symbols, &data,
5643 symbol_name_match_type::WILD,
5646 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5648 aux_add_nonlocal_symbols, &data,
5649 symbol_name_match_type::FULL,
5652 ALL_OBJFILE_COMPUNITS (objfile, cu)
5654 const struct block *global_block
5655 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5657 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5663 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5665 const char *name = ada_lookup_name (lookup_name);
5666 std::string name1 = std::string ("<_ada_") + name + '>';
5668 ALL_OBJFILES (objfile)
5670 data.objfile = objfile;
5671 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5673 aux_add_nonlocal_symbols,
5675 symbol_name_match_type::FULL,
5681 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5682 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5683 returning the number of matches. Add these to OBSTACKP.
5685 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
5687 is the one match returned (no other matches in that or
5688 enclosing blocks is returned). If there are any matches in or
5689 surrounding BLOCK, then these alone are returned.
5691 Names prefixed with "standard__" are handled specially:
5692 "standard__" is first stripped off (by the lookup_name
5693 constructor), and only static and global symbols are searched.
5695 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5696 to lookup global symbols. */
5699 ada_add_all_symbols (struct obstack *obstackp,
5700 const struct block *block,
5701 const lookup_name_info &lookup_name,
5704 int *made_global_lookup_p)
5708 if (made_global_lookup_p)
5709 *made_global_lookup_p = 0;
5711 /* Special case: If the user specifies a symbol name inside package
5712 Standard, do a non-wild matching of the symbol name without
5713 the "standard__" prefix. This was primarily introduced in order
5714 to allow the user to specifically access the standard exceptions
5715 using, for instance, Standard.Constraint_Error when Constraint_Error
5716 is ambiguous (due to the user defining its own Constraint_Error
5717 entity inside its program). */
5718 if (lookup_name.ada ().standard_p ())
5721 /* Check the non-global symbols. If we have ANY match, then we're done. */
5726 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5729 /* In the !full_search case we're are being called by
5730 ada_iterate_over_symbols, and we don't want to search
5732 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5742 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5743 domain, &sym, &block))
5746 add_defn_to_vec (obstackp, sym, block);
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 1;
5753 /* Search symbols from all global blocks. */
5755 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5757 /* Now add symbols from all per-file blocks if we've gotten no hits
5758 (not strictly correct, but perhaps better than an error). */
5760 if (num_defns_collected (obstackp) == 0)
5761 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5764 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5765 is non-zero, enclosing scope and in global scopes, returning the number of
5767 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5768 found and the blocks and symbol tables (if any) in which they were
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5781 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5782 const struct block *block,
5784 std::vector<struct block_symbol> *results,
5787 int syms_from_global_search;
5790 auto_obstack obstack;
5792 ada_add_all_symbols (&obstack, block, lookup_name,
5793 domain, full_search, &syms_from_global_search);
5795 ndefns = num_defns_collected (&obstack);
5797 struct block_symbol *base = defns_collected (&obstack, 1);
5798 for (int i = 0; i < ndefns; ++i)
5799 results->push_back (base[i]);
5801 ndefns = remove_extra_symbols (results);
5803 if (ndefns == 0 && full_search && syms_from_global_search)
5804 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5806 if (ndefns == 1 && full_search && syms_from_global_search)
5807 cache_symbol (ada_lookup_name (lookup_name), domain,
5808 (*results)[0].symbol, (*results)[0].block);
5810 ndefns = remove_irrelevant_renamings (results, block);
5815 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5816 in global scopes, returning the number of matches, and filling *RESULTS
5817 with (SYM,BLOCK) tuples.
5819 See ada_lookup_symbol_list_worker for further details. */
5822 ada_lookup_symbol_list (const char *name, const struct block *block,
5824 std::vector<struct block_symbol> *results)
5826 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5827 lookup_name_info lookup_name (name, name_match_type);
5829 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5832 /* Implementation of the la_iterate_over_symbols method. */
5835 ada_iterate_over_symbols
5836 (const struct block *block, const lookup_name_info &name,
5838 gdb::function_view<symbol_found_callback_ftype> callback)
5841 std::vector<struct block_symbol> results;
5843 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5845 for (i = 0; i < ndefs; ++i)
5847 if (!callback (results[i].symbol))
5852 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5853 to 1, but choosing the first symbol found if there are multiple
5856 The result is stored in *INFO, which must be non-NULL.
5857 If no match is found, INFO->SYM is set to NULL. */
5860 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5862 struct block_symbol *info)
5864 /* Since we already have an encoded name, wrap it in '<>' to force a
5865 verbatim match. Otherwise, if the name happens to not look like
5866 an encoded name (because it doesn't include a "__"),
5867 ada_lookup_name_info would re-encode/fold it again, and that
5868 would e.g., incorrectly lowercase object renaming names like
5869 "R28b" -> "r28b". */
5870 std::string verbatim = std::string ("<") + name + '>';
5872 gdb_assert (info != NULL);
5873 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5876 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5877 scope and in global scopes, or NULL if none. NAME is folded and
5878 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5879 choosing the first symbol if there are multiple choices.
5880 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5883 ada_lookup_symbol (const char *name, const struct block *block0,
5884 domain_enum domain, int *is_a_field_of_this)
5886 if (is_a_field_of_this != NULL)
5887 *is_a_field_of_this = 0;
5889 std::vector<struct block_symbol> candidates;
5892 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5894 if (n_candidates == 0)
5897 block_symbol info = candidates[0];
5898 info.symbol = fixup_symbol_section (info.symbol, NULL);
5902 static struct block_symbol
5903 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5905 const struct block *block,
5906 const domain_enum domain)
5908 struct block_symbol sym;
5910 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5911 if (sym.symbol != NULL)
5914 /* If we haven't found a match at this point, try the primitive
5915 types. In other languages, this search is performed before
5916 searching for global symbols in order to short-circuit that
5917 global-symbol search if it happens that the name corresponds
5918 to a primitive type. But we cannot do the same in Ada, because
5919 it is perfectly legitimate for a program to declare a type which
5920 has the same name as a standard type. If looking up a type in
5921 that situation, we have traditionally ignored the primitive type
5922 in favor of user-defined types. This is why, unlike most other
5923 languages, we search the primitive types this late and only after
5924 having searched the global symbols without success. */
5926 if (domain == VAR_DOMAIN)
5928 struct gdbarch *gdbarch;
5931 gdbarch = target_gdbarch ();
5933 gdbarch = block_gdbarch (block);
5934 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5935 if (sym.symbol != NULL)
5939 return (struct block_symbol) {NULL, NULL};
5943 /* True iff STR is a possible encoded suffix of a normal Ada name
5944 that is to be ignored for matching purposes. Suffixes of parallel
5945 names (e.g., XVE) are not included here. Currently, the possible suffixes
5946 are given by any of the regular expressions:
5948 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5949 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5950 TKB [subprogram suffix for task bodies]
5951 _E[0-9]+[bs]$ [protected object entry suffixes]
5952 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5954 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5955 match is performed. This sequence is used to differentiate homonyms,
5956 is an optional part of a valid name suffix. */
5959 is_name_suffix (const char *str)
5962 const char *matching;
5963 const int len = strlen (str);
5965 /* Skip optional leading __[0-9]+. */
5967 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5970 while (isdigit (str[0]))
5976 if (str[0] == '.' || str[0] == '$')
5979 while (isdigit (matching[0]))
5981 if (matching[0] == '\0')
5987 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5990 while (isdigit (matching[0]))
5992 if (matching[0] == '\0')
5996 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5998 if (strcmp (str, "TKB") == 0)
6002 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6003 with a N at the end. Unfortunately, the compiler uses the same
6004 convention for other internal types it creates. So treating
6005 all entity names that end with an "N" as a name suffix causes
6006 some regressions. For instance, consider the case of an enumerated
6007 type. To support the 'Image attribute, it creates an array whose
6009 Having a single character like this as a suffix carrying some
6010 information is a bit risky. Perhaps we should change the encoding
6011 to be something like "_N" instead. In the meantime, do not do
6012 the following check. */
6013 /* Protected Object Subprograms */
6014 if (len == 1 && str [0] == 'N')
6019 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6022 while (isdigit (matching[0]))
6024 if ((matching[0] == 'b' || matching[0] == 's')
6025 && matching [1] == '\0')
6029 /* ??? We should not modify STR directly, as we are doing below. This
6030 is fine in this case, but may become problematic later if we find
6031 that this alternative did not work, and want to try matching
6032 another one from the begining of STR. Since we modified it, we
6033 won't be able to find the begining of the string anymore! */
6037 while (str[0] != '_' && str[0] != '\0')
6039 if (str[0] != 'n' && str[0] != 'b')
6045 if (str[0] == '\000')
6050 if (str[1] != '_' || str[2] == '\000')
6054 if (strcmp (str + 3, "JM") == 0)
6056 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6057 the LJM suffix in favor of the JM one. But we will
6058 still accept LJM as a valid suffix for a reasonable
6059 amount of time, just to allow ourselves to debug programs
6060 compiled using an older version of GNAT. */
6061 if (strcmp (str + 3, "LJM") == 0)
6065 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6066 || str[4] == 'U' || str[4] == 'P')
6068 if (str[4] == 'R' && str[5] != 'T')
6072 if (!isdigit (str[2]))
6074 for (k = 3; str[k] != '\0'; k += 1)
6075 if (!isdigit (str[k]) && str[k] != '_')
6079 if (str[0] == '$' && isdigit (str[1]))
6081 for (k = 2; str[k] != '\0'; k += 1)
6082 if (!isdigit (str[k]) && str[k] != '_')
6089 /* Return non-zero if the string starting at NAME and ending before
6090 NAME_END contains no capital letters. */
6093 is_valid_name_for_wild_match (const char *name0)
6095 const char *decoded_name = ada_decode (name0);
6098 /* If the decoded name starts with an angle bracket, it means that
6099 NAME0 does not follow the GNAT encoding format. It should then
6100 not be allowed as a possible wild match. */
6101 if (decoded_name[0] == '<')
6104 for (i=0; decoded_name[i] != '\0'; i++)
6105 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6111 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6112 that could start a simple name. Assumes that *NAMEP points into
6113 the string beginning at NAME0. */
6116 advance_wild_match (const char **namep, const char *name0, int target0)
6118 const char *name = *namep;
6128 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6131 if (name == name0 + 5 && startswith (name0, "_ada"))
6136 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6137 || name[2] == target0))
6145 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6155 /* Return true iff NAME encodes a name of the form prefix.PATN.
6156 Ignores any informational suffixes of NAME (i.e., for which
6157 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6161 wild_match (const char *name, const char *patn)
6164 const char *name0 = name;
6168 const char *match = name;
6172 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6175 if (*p == '\0' && is_name_suffix (name))
6176 return match == name0 || is_valid_name_for_wild_match (name0);
6178 if (name[-1] == '_')
6181 if (!advance_wild_match (&name, name0, *patn))
6186 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6187 any trailing suffixes that encode debugging information or leading
6188 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6189 information that is ignored). */
6192 full_match (const char *sym_name, const char *search_name)
6194 size_t search_name_len = strlen (search_name);
6196 if (strncmp (sym_name, search_name, search_name_len) == 0
6197 && is_name_suffix (sym_name + search_name_len))
6200 if (startswith (sym_name, "_ada_")
6201 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6202 && is_name_suffix (sym_name + search_name_len + 5))
6208 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6209 *defn_symbols, updating the list of symbols in OBSTACKP (if
6210 necessary). OBJFILE is the section containing BLOCK. */
6213 ada_add_block_symbols (struct obstack *obstackp,
6214 const struct block *block,
6215 const lookup_name_info &lookup_name,
6216 domain_enum domain, struct objfile *objfile)
6218 struct block_iterator iter;
6219 /* A matching argument symbol, if any. */
6220 struct symbol *arg_sym;
6221 /* Set true when we find a matching non-argument symbol. */
6227 for (sym = block_iter_match_first (block, lookup_name, &iter);
6229 sym = block_iter_match_next (lookup_name, &iter))
6231 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6232 SYMBOL_DOMAIN (sym), domain))
6234 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6236 if (SYMBOL_IS_ARGUMENT (sym))
6241 add_defn_to_vec (obstackp,
6242 fixup_symbol_section (sym, objfile),
6249 /* Handle renamings. */
6251 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6254 if (!found_sym && arg_sym != NULL)
6256 add_defn_to_vec (obstackp,
6257 fixup_symbol_section (arg_sym, objfile),
6261 if (!lookup_name.ada ().wild_match_p ())
6265 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6266 const char *name = ada_lookup_name.c_str ();
6267 size_t name_len = ada_lookup_name.size ();
6269 ALL_BLOCK_SYMBOLS (block, iter, sym)
6271 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6272 SYMBOL_DOMAIN (sym), domain))
6276 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6279 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6281 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6286 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6290 if (SYMBOL_IS_ARGUMENT (sym))
6295 add_defn_to_vec (obstackp,
6296 fixup_symbol_section (sym, objfile),
6304 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6305 They aren't parameters, right? */
6306 if (!found_sym && arg_sym != NULL)
6308 add_defn_to_vec (obstackp,
6309 fixup_symbol_section (arg_sym, objfile),
6316 /* Symbol Completion */
6321 ada_lookup_name_info::matches
6322 (const char *sym_name,
6323 symbol_name_match_type match_type,
6324 completion_match_result *comp_match_res) const
6327 const char *text = m_encoded_name.c_str ();
6328 size_t text_len = m_encoded_name.size ();
6330 /* First, test against the fully qualified name of the symbol. */
6332 if (strncmp (sym_name, text, text_len) == 0)
6335 if (match && !m_encoded_p)
6337 /* One needed check before declaring a positive match is to verify
6338 that iff we are doing a verbatim match, the decoded version
6339 of the symbol name starts with '<'. Otherwise, this symbol name
6340 is not a suitable completion. */
6341 const char *sym_name_copy = sym_name;
6342 bool has_angle_bracket;
6344 sym_name = ada_decode (sym_name);
6345 has_angle_bracket = (sym_name[0] == '<');
6346 match = (has_angle_bracket == m_verbatim_p);
6347 sym_name = sym_name_copy;
6350 if (match && !m_verbatim_p)
6352 /* When doing non-verbatim match, another check that needs to
6353 be done is to verify that the potentially matching symbol name
6354 does not include capital letters, because the ada-mode would
6355 not be able to understand these symbol names without the
6356 angle bracket notation. */
6359 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6364 /* Second: Try wild matching... */
6366 if (!match && m_wild_match_p)
6368 /* Since we are doing wild matching, this means that TEXT
6369 may represent an unqualified symbol name. We therefore must
6370 also compare TEXT against the unqualified name of the symbol. */
6371 sym_name = ada_unqualified_name (ada_decode (sym_name));
6373 if (strncmp (sym_name, text, text_len) == 0)
6377 /* Finally: If we found a match, prepare the result to return. */
6382 if (comp_match_res != NULL)
6384 std::string &match_str = comp_match_res->match.storage ();
6387 match_str = ada_decode (sym_name);
6391 match_str = add_angle_brackets (sym_name);
6393 match_str = sym_name;
6397 comp_match_res->set_match (match_str.c_str ());
6403 /* Add the list of possible symbol names completing TEXT to TRACKER.
6404 WORD is the entire command on which completion is made. */
6407 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6408 complete_symbol_mode mode,
6409 symbol_name_match_type name_match_type,
6410 const char *text, const char *word,
6411 enum type_code code)
6414 struct compunit_symtab *s;
6415 struct minimal_symbol *msymbol;
6416 struct objfile *objfile;
6417 const struct block *b, *surrounding_static_block = 0;
6418 struct block_iterator iter;
6420 gdb_assert (code == TYPE_CODE_UNDEF);
6422 lookup_name_info lookup_name (text, name_match_type, true);
6424 /* First, look at the partial symtab symbols. */
6425 expand_symtabs_matching (NULL,
6431 /* At this point scan through the misc symbol vectors and add each
6432 symbol you find to the list. Eventually we want to ignore
6433 anything that isn't a text symbol (everything else will be
6434 handled by the psymtab code above). */
6436 ALL_MSYMBOLS (objfile, msymbol)
6440 if (completion_skip_symbol (mode, msymbol))
6443 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6445 /* Ada minimal symbols won't have their language set to Ada. If
6446 we let completion_list_add_name compare using the
6447 default/C-like matcher, then when completing e.g., symbols in a
6448 package named "pck", we'd match internal Ada symbols like
6449 "pckS", which are invalid in an Ada expression, unless you wrap
6450 them in '<' '>' to request a verbatim match.
6452 Unfortunately, some Ada encoded names successfully demangle as
6453 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6454 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6455 with the wrong language set. Paper over that issue here. */
6456 if (symbol_language == language_auto
6457 || symbol_language == language_cplus)
6458 symbol_language = language_ada;
6460 completion_list_add_name (tracker,
6462 MSYMBOL_LINKAGE_NAME (msymbol),
6463 lookup_name, text, word);
6466 /* Search upwards from currently selected frame (so that we can
6467 complete on local vars. */
6469 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6471 if (!BLOCK_SUPERBLOCK (b))
6472 surrounding_static_block = b; /* For elmin of dups */
6474 ALL_BLOCK_SYMBOLS (b, iter, sym)
6476 if (completion_skip_symbol (mode, sym))
6479 completion_list_add_name (tracker,
6480 SYMBOL_LANGUAGE (sym),
6481 SYMBOL_LINKAGE_NAME (sym),
6482 lookup_name, text, word);
6486 /* Go through the symtabs and check the externs and statics for
6487 symbols which match. */
6489 ALL_COMPUNITS (objfile, s)
6492 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6493 ALL_BLOCK_SYMBOLS (b, iter, sym)
6495 if (completion_skip_symbol (mode, sym))
6498 completion_list_add_name (tracker,
6499 SYMBOL_LANGUAGE (sym),
6500 SYMBOL_LINKAGE_NAME (sym),
6501 lookup_name, text, word);
6505 ALL_COMPUNITS (objfile, s)
6508 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6509 /* Don't do this block twice. */
6510 if (b == surrounding_static_block)
6512 ALL_BLOCK_SYMBOLS (b, iter, sym)
6514 if (completion_skip_symbol (mode, sym))
6517 completion_list_add_name (tracker,
6518 SYMBOL_LANGUAGE (sym),
6519 SYMBOL_LINKAGE_NAME (sym),
6520 lookup_name, text, word);
6527 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6528 for tagged types. */
6531 ada_is_dispatch_table_ptr_type (struct type *type)
6535 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6538 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6542 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6545 /* Return non-zero if TYPE is an interface tag. */
6548 ada_is_interface_tag (struct type *type)
6550 const char *name = TYPE_NAME (type);
6555 return (strcmp (name, "ada__tags__interface_tag") == 0);
6558 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6559 to be invisible to users. */
6562 ada_is_ignored_field (struct type *type, int field_num)
6564 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6567 /* Check the name of that field. */
6569 const char *name = TYPE_FIELD_NAME (type, field_num);
6571 /* Anonymous field names should not be printed.
6572 brobecker/2007-02-20: I don't think this can actually happen
6573 but we don't want to print the value of annonymous fields anyway. */
6577 /* Normally, fields whose name start with an underscore ("_")
6578 are fields that have been internally generated by the compiler,
6579 and thus should not be printed. The "_parent" field is special,
6580 however: This is a field internally generated by the compiler
6581 for tagged types, and it contains the components inherited from
6582 the parent type. This field should not be printed as is, but
6583 should not be ignored either. */
6584 if (name[0] == '_' && !startswith (name, "_parent"))
6588 /* If this is the dispatch table of a tagged type or an interface tag,
6590 if (ada_is_tagged_type (type, 1)
6591 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6592 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6595 /* Not a special field, so it should not be ignored. */
6599 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6600 pointer or reference type whose ultimate target has a tag field. */
6603 ada_is_tagged_type (struct type *type, int refok)
6605 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6608 /* True iff TYPE represents the type of X'Tag */
6611 ada_is_tag_type (struct type *type)
6613 type = ada_check_typedef (type);
6615 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6619 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6621 return (name != NULL
6622 && strcmp (name, "ada__tags__dispatch_table") == 0);
6626 /* The type of the tag on VAL. */
6629 ada_tag_type (struct value *val)
6631 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6634 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6635 retired at Ada 05). */
6638 is_ada95_tag (struct value *tag)
6640 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6643 /* The value of the tag on VAL. */
6646 ada_value_tag (struct value *val)
6648 return ada_value_struct_elt (val, "_tag", 0);
6651 /* The value of the tag on the object of type TYPE whose contents are
6652 saved at VALADDR, if it is non-null, or is at memory address
6655 static struct value *
6656 value_tag_from_contents_and_address (struct type *type,
6657 const gdb_byte *valaddr,
6660 int tag_byte_offset;
6661 struct type *tag_type;
6663 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6666 const gdb_byte *valaddr1 = ((valaddr == NULL)
6668 : valaddr + tag_byte_offset);
6669 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6671 return value_from_contents_and_address (tag_type, valaddr1, address1);
6676 static struct type *
6677 type_from_tag (struct value *tag)
6679 const char *type_name = ada_tag_name (tag);
6681 if (type_name != NULL)
6682 return ada_find_any_type (ada_encode (type_name));
6686 /* Given a value OBJ of a tagged type, return a value of this
6687 type at the base address of the object. The base address, as
6688 defined in Ada.Tags, it is the address of the primary tag of
6689 the object, and therefore where the field values of its full
6690 view can be fetched. */
6693 ada_tag_value_at_base_address (struct value *obj)
6696 LONGEST offset_to_top = 0;
6697 struct type *ptr_type, *obj_type;
6699 CORE_ADDR base_address;
6701 obj_type = value_type (obj);
6703 /* It is the responsability of the caller to deref pointers. */
6705 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6706 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6709 tag = ada_value_tag (obj);
6713 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6715 if (is_ada95_tag (tag))
6718 ptr_type = language_lookup_primitive_type
6719 (language_def (language_ada), target_gdbarch(), "storage_offset");
6720 ptr_type = lookup_pointer_type (ptr_type);
6721 val = value_cast (ptr_type, tag);
6725 /* It is perfectly possible that an exception be raised while
6726 trying to determine the base address, just like for the tag;
6727 see ada_tag_name for more details. We do not print the error
6728 message for the same reason. */
6732 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6735 CATCH (e, RETURN_MASK_ERROR)
6741 /* If offset is null, nothing to do. */
6743 if (offset_to_top == 0)
6746 /* -1 is a special case in Ada.Tags; however, what should be done
6747 is not quite clear from the documentation. So do nothing for
6750 if (offset_to_top == -1)
6753 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6754 from the base address. This was however incompatible with
6755 C++ dispatch table: C++ uses a *negative* value to *add*
6756 to the base address. Ada's convention has therefore been
6757 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6758 use the same convention. Here, we support both cases by
6759 checking the sign of OFFSET_TO_TOP. */
6761 if (offset_to_top > 0)
6762 offset_to_top = -offset_to_top;
6764 base_address = value_address (obj) + offset_to_top;
6765 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6767 /* Make sure that we have a proper tag at the new address.
6768 Otherwise, offset_to_top is bogus (which can happen when
6769 the object is not initialized yet). */
6774 obj_type = type_from_tag (tag);
6779 return value_from_contents_and_address (obj_type, NULL, base_address);
6782 /* Return the "ada__tags__type_specific_data" type. */
6784 static struct type *
6785 ada_get_tsd_type (struct inferior *inf)
6787 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6789 if (data->tsd_type == 0)
6790 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6791 return data->tsd_type;
6794 /* Return the TSD (type-specific data) associated to the given TAG.
6795 TAG is assumed to be the tag of a tagged-type entity.
6797 May return NULL if we are unable to get the TSD. */
6799 static struct value *
6800 ada_get_tsd_from_tag (struct value *tag)
6805 /* First option: The TSD is simply stored as a field of our TAG.
6806 Only older versions of GNAT would use this format, but we have
6807 to test it first, because there are no visible markers for
6808 the current approach except the absence of that field. */
6810 val = ada_value_struct_elt (tag, "tsd", 1);
6814 /* Try the second representation for the dispatch table (in which
6815 there is no explicit 'tsd' field in the referent of the tag pointer,
6816 and instead the tsd pointer is stored just before the dispatch
6819 type = ada_get_tsd_type (current_inferior());
6822 type = lookup_pointer_type (lookup_pointer_type (type));
6823 val = value_cast (type, tag);
6826 return value_ind (value_ptradd (val, -1));
6829 /* Given the TSD of a tag (type-specific data), return a string
6830 containing the name of the associated type.
6832 The returned value is good until the next call. May return NULL
6833 if we are unable to determine the tag name. */
6836 ada_tag_name_from_tsd (struct value *tsd)
6838 static char name[1024];
6842 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6845 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6846 for (p = name; *p != '\0'; p += 1)
6852 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6855 Return NULL if the TAG is not an Ada tag, or if we were unable to
6856 determine the name of that tag. The result is good until the next
6860 ada_tag_name (struct value *tag)
6864 if (!ada_is_tag_type (value_type (tag)))
6867 /* It is perfectly possible that an exception be raised while trying
6868 to determine the TAG's name, even under normal circumstances:
6869 The associated variable may be uninitialized or corrupted, for
6870 instance. We do not let any exception propagate past this point.
6871 instead we return NULL.
6873 We also do not print the error message either (which often is very
6874 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6875 the caller print a more meaningful message if necessary. */
6878 struct value *tsd = ada_get_tsd_from_tag (tag);
6881 name = ada_tag_name_from_tsd (tsd);
6883 CATCH (e, RETURN_MASK_ERROR)
6891 /* The parent type of TYPE, or NULL if none. */
6894 ada_parent_type (struct type *type)
6898 type = ada_check_typedef (type);
6900 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6903 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6904 if (ada_is_parent_field (type, i))
6906 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6908 /* If the _parent field is a pointer, then dereference it. */
6909 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6910 parent_type = TYPE_TARGET_TYPE (parent_type);
6911 /* If there is a parallel XVS type, get the actual base type. */
6912 parent_type = ada_get_base_type (parent_type);
6914 return ada_check_typedef (parent_type);
6920 /* True iff field number FIELD_NUM of structure type TYPE contains the
6921 parent-type (inherited) fields of a derived type. Assumes TYPE is
6922 a structure type with at least FIELD_NUM+1 fields. */
6925 ada_is_parent_field (struct type *type, int field_num)
6927 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6929 return (name != NULL
6930 && (startswith (name, "PARENT")
6931 || startswith (name, "_parent")));
6934 /* True iff field number FIELD_NUM of structure type TYPE is a
6935 transparent wrapper field (which should be silently traversed when doing
6936 field selection and flattened when printing). Assumes TYPE is a
6937 structure type with at least FIELD_NUM+1 fields. Such fields are always
6941 ada_is_wrapper_field (struct type *type, int field_num)
6943 const char *name = TYPE_FIELD_NAME (type, field_num);
6945 if (name != NULL && strcmp (name, "RETVAL") == 0)
6947 /* This happens in functions with "out" or "in out" parameters
6948 which are passed by copy. For such functions, GNAT describes
6949 the function's return type as being a struct where the return
6950 value is in a field called RETVAL, and where the other "out"
6951 or "in out" parameters are fields of that struct. This is not
6956 return (name != NULL
6957 && (startswith (name, "PARENT")
6958 || strcmp (name, "REP") == 0
6959 || startswith (name, "_parent")
6960 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6963 /* True iff field number FIELD_NUM of structure or union type TYPE
6964 is a variant wrapper. Assumes TYPE is a structure type with at least
6965 FIELD_NUM+1 fields. */
6968 ada_is_variant_part (struct type *type, int field_num)
6970 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6972 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6973 || (is_dynamic_field (type, field_num)
6974 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6975 == TYPE_CODE_UNION)));
6978 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6979 whose discriminants are contained in the record type OUTER_TYPE,
6980 returns the type of the controlling discriminant for the variant.
6981 May return NULL if the type could not be found. */
6984 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6986 const char *name = ada_variant_discrim_name (var_type);
6988 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6991 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6992 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6993 represents a 'when others' clause; otherwise 0. */
6996 ada_is_others_clause (struct type *type, int field_num)
6998 const char *name = TYPE_FIELD_NAME (type, field_num);
7000 return (name != NULL && name[0] == 'O');
7003 /* Assuming that TYPE0 is the type of the variant part of a record,
7004 returns the name of the discriminant controlling the variant.
7005 The value is valid until the next call to ada_variant_discrim_name. */
7008 ada_variant_discrim_name (struct type *type0)
7010 static char *result = NULL;
7011 static size_t result_len = 0;
7014 const char *discrim_end;
7015 const char *discrim_start;
7017 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7018 type = TYPE_TARGET_TYPE (type0);
7022 name = ada_type_name (type);
7024 if (name == NULL || name[0] == '\000')
7027 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7030 if (startswith (discrim_end, "___XVN"))
7033 if (discrim_end == name)
7036 for (discrim_start = discrim_end; discrim_start != name + 3;
7039 if (discrim_start == name + 1)
7041 if ((discrim_start > name + 3
7042 && startswith (discrim_start - 3, "___"))
7043 || discrim_start[-1] == '.')
7047 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7048 strncpy (result, discrim_start, discrim_end - discrim_start);
7049 result[discrim_end - discrim_start] = '\0';
7053 /* Scan STR for a subtype-encoded number, beginning at position K.
7054 Put the position of the character just past the number scanned in
7055 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7056 Return 1 if there was a valid number at the given position, and 0
7057 otherwise. A "subtype-encoded" number consists of the absolute value
7058 in decimal, followed by the letter 'm' to indicate a negative number.
7059 Assumes 0m does not occur. */
7062 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7066 if (!isdigit (str[k]))
7069 /* Do it the hard way so as not to make any assumption about
7070 the relationship of unsigned long (%lu scan format code) and
7073 while (isdigit (str[k]))
7075 RU = RU * 10 + (str[k] - '0');
7082 *R = (-(LONGEST) (RU - 1)) - 1;
7088 /* NOTE on the above: Technically, C does not say what the results of
7089 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7090 number representable as a LONGEST (although either would probably work
7091 in most implementations). When RU>0, the locution in the then branch
7092 above is always equivalent to the negative of RU. */
7099 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7100 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7101 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7104 ada_in_variant (LONGEST val, struct type *type, int field_num)
7106 const char *name = TYPE_FIELD_NAME (type, field_num);
7120 if (!ada_scan_number (name, p + 1, &W, &p))
7130 if (!ada_scan_number (name, p + 1, &L, &p)
7131 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7133 if (val >= L && val <= U)
7145 /* FIXME: Lots of redundancy below. Try to consolidate. */
7147 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7148 ARG_TYPE, extract and return the value of one of its (non-static)
7149 fields. FIELDNO says which field. Differs from value_primitive_field
7150 only in that it can handle packed values of arbitrary type. */
7152 static struct value *
7153 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7154 struct type *arg_type)
7158 arg_type = ada_check_typedef (arg_type);
7159 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7161 /* Handle packed fields. */
7163 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7165 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7166 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7168 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7169 offset + bit_pos / 8,
7170 bit_pos % 8, bit_size, type);
7173 return value_primitive_field (arg1, offset, fieldno, arg_type);
7176 /* Find field with name NAME in object of type TYPE. If found,
7177 set the following for each argument that is non-null:
7178 - *FIELD_TYPE_P to the field's type;
7179 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7180 an object of that type;
7181 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7182 - *BIT_SIZE_P to its size in bits if the field is packed, and
7184 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7185 fields up to but not including the desired field, or by the total
7186 number of fields if not found. A NULL value of NAME never
7187 matches; the function just counts visible fields in this case.
7189 Notice that we need to handle when a tagged record hierarchy
7190 has some components with the same name, like in this scenario:
7192 type Top_T is tagged record
7198 type Middle_T is new Top.Top_T with record
7199 N : Character := 'a';
7203 type Bottom_T is new Middle.Middle_T with record
7205 C : Character := '5';
7207 A : Character := 'J';
7210 Let's say we now have a variable declared and initialized as follow:
7212 TC : Top_A := new Bottom_T;
7214 And then we use this variable to call this function
7216 procedure Assign (Obj: in out Top_T; TV : Integer);
7220 Assign (Top_T (B), 12);
7222 Now, we're in the debugger, and we're inside that procedure
7223 then and we want to print the value of obj.c:
7225 Usually, the tagged record or one of the parent type owns the
7226 component to print and there's no issue but in this particular
7227 case, what does it mean to ask for Obj.C? Since the actual
7228 type for object is type Bottom_T, it could mean two things: type
7229 component C from the Middle_T view, but also component C from
7230 Bottom_T. So in that "undefined" case, when the component is
7231 not found in the non-resolved type (which includes all the
7232 components of the parent type), then resolve it and see if we
7233 get better luck once expanded.
7235 In the case of homonyms in the derived tagged type, we don't
7236 guaranty anything, and pick the one that's easiest for us
7239 Returns 1 if found, 0 otherwise. */
7242 find_struct_field (const char *name, struct type *type, int offset,
7243 struct type **field_type_p,
7244 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7248 int parent_offset = -1;
7250 type = ada_check_typedef (type);
7252 if (field_type_p != NULL)
7253 *field_type_p = NULL;
7254 if (byte_offset_p != NULL)
7256 if (bit_offset_p != NULL)
7258 if (bit_size_p != NULL)
7261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7263 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7264 int fld_offset = offset + bit_pos / 8;
7265 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7267 if (t_field_name == NULL)
7270 else if (ada_is_parent_field (type, i))
7272 /* This is a field pointing us to the parent type of a tagged
7273 type. As hinted in this function's documentation, we give
7274 preference to fields in the current record first, so what
7275 we do here is just record the index of this field before
7276 we skip it. If it turns out we couldn't find our field
7277 in the current record, then we'll get back to it and search
7278 inside it whether the field might exist in the parent. */
7284 else if (name != NULL && field_name_match (t_field_name, name))
7286 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7288 if (field_type_p != NULL)
7289 *field_type_p = TYPE_FIELD_TYPE (type, i);
7290 if (byte_offset_p != NULL)
7291 *byte_offset_p = fld_offset;
7292 if (bit_offset_p != NULL)
7293 *bit_offset_p = bit_pos % 8;
7294 if (bit_size_p != NULL)
7295 *bit_size_p = bit_size;
7298 else if (ada_is_wrapper_field (type, i))
7300 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7301 field_type_p, byte_offset_p, bit_offset_p,
7302 bit_size_p, index_p))
7305 else if (ada_is_variant_part (type, i))
7307 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7310 struct type *field_type
7311 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7313 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7315 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7317 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7318 field_type_p, byte_offset_p,
7319 bit_offset_p, bit_size_p, index_p))
7323 else if (index_p != NULL)
7327 /* Field not found so far. If this is a tagged type which
7328 has a parent, try finding that field in the parent now. */
7330 if (parent_offset != -1)
7332 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7333 int fld_offset = offset + bit_pos / 8;
7335 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7336 fld_offset, field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7344 /* Number of user-visible fields in record type TYPE. */
7347 num_visible_fields (struct type *type)
7352 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7356 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7357 and search in it assuming it has (class) type TYPE.
7358 If found, return value, else return NULL.
7360 Searches recursively through wrapper fields (e.g., '_parent').
7362 In the case of homonyms in the tagged types, please refer to the
7363 long explanation in find_struct_field's function documentation. */
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7370 int parent_offset = -1;
7372 type = ada_check_typedef (type);
7373 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7375 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7377 if (t_field_name == NULL)
7380 else if (ada_is_parent_field (type, i))
7382 /* This is a field pointing us to the parent type of a tagged
7383 type. As hinted in this function's documentation, we give
7384 preference to fields in the current record first, so what
7385 we do here is just record the index of this field before
7386 we skip it. If it turns out we couldn't find our field
7387 in the current record, then we'll get back to it and search
7388 inside it whether the field might exist in the parent. */
7394 else if (field_name_match (t_field_name, name))
7395 return ada_value_primitive_field (arg, offset, i, type);
7397 else if (ada_is_wrapper_field (type, i))
7399 struct value *v = /* Do not let indent join lines here. */
7400 ada_search_struct_field (name, arg,
7401 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7402 TYPE_FIELD_TYPE (type, i));
7408 else if (ada_is_variant_part (type, i))
7410 /* PNH: Do we ever get here? See find_struct_field. */
7412 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7414 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7416 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7418 struct value *v = ada_search_struct_field /* Force line
7421 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7422 TYPE_FIELD_TYPE (field_type, j));
7430 /* Field not found so far. If this is a tagged type which
7431 has a parent, try finding that field in the parent now. */
7433 if (parent_offset != -1)
7435 struct value *v = ada_search_struct_field (
7436 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7437 TYPE_FIELD_TYPE (type, parent_offset));
7446 static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7450 /* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7453 * If found, return value, else return NULL. */
7455 static struct value *
7456 ada_index_struct_field (int index, struct value *arg, int offset,
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7463 /* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7467 static struct value *
7468 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7472 type = ada_check_typedef (type);
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7478 else if (ada_is_wrapper_field (type, i))
7480 struct value *v = /* Do not let indent join lines here. */
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
7489 else if (ada_is_variant_part (type, i))
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
7492 find_struct_field. */
7493 error (_("Cannot assign this kind of variant record"));
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7503 /* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
7512 If NO_ERR, then simply return NULL in case of error, rather than
7516 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7518 struct type *t, *t1;
7522 t1 = t = ada_check_typedef (value_type (arg));
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7525 t1 = TYPE_TARGET_TYPE (t);
7528 t1 = ada_check_typedef (t1);
7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7531 arg = coerce_ref (arg);
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7538 t1 = TYPE_TARGET_TYPE (t);
7541 t1 = ada_check_typedef (t1);
7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7544 arg = value_ind (arg);
7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7555 v = ada_search_struct_field (name, arg, 0, t);
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7563 address = value_address (ada_value_ind (arg));
7565 address = value_address (ada_coerce_ref (arg));
7567 /* Check to see if this is a tagged type. We also need to handle
7568 the case where the type is a reference to a tagged type, but
7569 we have to be careful to exclude pointers to tagged types.
7570 The latter should be shown as usual (as a pointer), whereas
7571 a reference should mostly be transparent to the user. */
7573 if (ada_is_tagged_type (t1, 0)
7574 || (TYPE_CODE (t1) == TYPE_CODE_REF
7575 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7577 /* We first try to find the searched field in the current type.
7578 If not found then let's look in the fixed type. */
7580 if (!find_struct_field (name, t1, 0,
7581 &field_type, &byte_offset, &bit_offset,
7583 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7590 if (find_struct_field (name, t1, 0,
7591 &field_type, &byte_offset, &bit_offset,
7596 if (TYPE_CODE (t) == TYPE_CODE_REF)
7597 arg = ada_coerce_ref (arg);
7599 arg = ada_value_ind (arg);
7600 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7601 bit_offset, bit_size,
7605 v = value_at_lazy (field_type, address + byte_offset);
7609 if (v != NULL || no_err)
7612 error (_("There is no member named %s."), name);
7618 error (_("Attempt to extract a component of "
7619 "a value that is not a record."));
7622 /* Return a string representation of type TYPE. */
7625 type_as_string (struct type *type)
7627 string_file tmp_stream;
7629 type_print (type, "", &tmp_stream, -1);
7631 return std::move (tmp_stream.string ());
7634 /* Given a type TYPE, look up the type of the component of type named NAME.
7635 If DISPP is non-null, add its byte displacement from the beginning of a
7636 structure (pointed to by a value) of type TYPE to *DISPP (does not
7637 work for packed fields).
7639 Matches any field whose name has NAME as a prefix, possibly
7642 TYPE can be either a struct or union. If REFOK, TYPE may also
7643 be a (pointer or reference)+ to a struct or union, and the
7644 ultimate target type will be searched.
7646 Looks recursively into variant clauses and parent types.
7648 In the case of homonyms in the tagged types, please refer to the
7649 long explanation in find_struct_field's function documentation.
7651 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7652 TYPE is not a type of the right kind. */
7654 static struct type *
7655 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7659 int parent_offset = -1;
7664 if (refok && type != NULL)
7667 type = ada_check_typedef (type);
7668 if (TYPE_CODE (type) != TYPE_CODE_PTR
7669 && TYPE_CODE (type) != TYPE_CODE_REF)
7671 type = TYPE_TARGET_TYPE (type);
7675 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7676 && TYPE_CODE (type) != TYPE_CODE_UNION))
7681 error (_("Type %s is not a structure or union type"),
7682 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7685 type = to_static_fixed_type (type);
7687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7689 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7692 if (t_field_name == NULL)
7695 else if (ada_is_parent_field (type, i))
7697 /* This is a field pointing us to the parent type of a tagged
7698 type. As hinted in this function's documentation, we give
7699 preference to fields in the current record first, so what
7700 we do here is just record the index of this field before
7701 we skip it. If it turns out we couldn't find our field
7702 in the current record, then we'll get back to it and search
7703 inside it whether the field might exist in the parent. */
7709 else if (field_name_match (t_field_name, name))
7710 return TYPE_FIELD_TYPE (type, i);
7712 else if (ada_is_wrapper_field (type, i))
7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7720 else if (ada_is_variant_part (type, i))
7723 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7726 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7728 /* FIXME pnh 2008/01/26: We check for a field that is
7729 NOT wrapped in a struct, since the compiler sometimes
7730 generates these for unchecked variant types. Revisit
7731 if the compiler changes this practice. */
7732 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7734 if (v_field_name != NULL
7735 && field_name_match (v_field_name, name))
7736 t = TYPE_FIELD_TYPE (field_type, j);
7738 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7749 /* Field not found so far. If this is a tagged type which
7750 has a parent, try finding that field in the parent now. */
7752 if (parent_offset != -1)
7756 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7765 const char *name_str = name != NULL ? name : _("<null>");
7767 error (_("Type %s has no component named %s"),
7768 type_as_string (type).c_str (), name_str);
7774 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7776 represents an unchecked union (that is, the variant part of a
7777 record that is named in an Unchecked_Union pragma). */
7780 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7782 const char *discrim_name = ada_variant_discrim_name (var_type);
7784 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7788 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE that is stored in GDB at
7790 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7791 numbering from 0) is applicable. Returns -1 if none are. */
7794 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7795 const gdb_byte *outer_valaddr)
7799 const char *discrim_name = ada_variant_discrim_name (var_type);
7800 struct value *outer;
7801 struct value *discrim;
7802 LONGEST discrim_val;
7804 /* Using plain value_from_contents_and_address here causes problems
7805 because we will end up trying to resolve a type that is currently
7806 being constructed. */
7807 outer = value_from_contents_and_address_unresolved (outer_type,
7809 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7810 if (discrim == NULL)
7812 discrim_val = value_as_long (discrim);
7815 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7817 if (ada_is_others_clause (var_type, i))
7819 else if (ada_in_variant (discrim_val, var_type, i))
7823 return others_clause;
7828 /* Dynamic-Sized Records */
7830 /* Strategy: The type ostensibly attached to a value with dynamic size
7831 (i.e., a size that is not statically recorded in the debugging
7832 data) does not accurately reflect the size or layout of the value.
7833 Our strategy is to convert these values to values with accurate,
7834 conventional types that are constructed on the fly. */
7836 /* There is a subtle and tricky problem here. In general, we cannot
7837 determine the size of dynamic records without its data. However,
7838 the 'struct value' data structure, which GDB uses to represent
7839 quantities in the inferior process (the target), requires the size
7840 of the type at the time of its allocation in order to reserve space
7841 for GDB's internal copy of the data. That's why the
7842 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7843 rather than struct value*s.
7845 However, GDB's internal history variables ($1, $2, etc.) are
7846 struct value*s containing internal copies of the data that are not, in
7847 general, the same as the data at their corresponding addresses in
7848 the target. Fortunately, the types we give to these values are all
7849 conventional, fixed-size types (as per the strategy described
7850 above), so that we don't usually have to perform the
7851 'to_fixed_xxx_type' conversions to look at their values.
7852 Unfortunately, there is one exception: if one of the internal
7853 history variables is an array whose elements are unconstrained
7854 records, then we will need to create distinct fixed types for each
7855 element selected. */
7857 /* The upshot of all of this is that many routines take a (type, host
7858 address, target address) triple as arguments to represent a value.
7859 The host address, if non-null, is supposed to contain an internal
7860 copy of the relevant data; otherwise, the program is to consult the
7861 target at the target address. */
7863 /* Assuming that VAL0 represents a pointer value, the result of
7864 dereferencing it. Differs from value_ind in its treatment of
7865 dynamic-sized types. */
7868 ada_value_ind (struct value *val0)
7870 struct value *val = value_ind (val0);
7872 if (ada_is_tagged_type (value_type (val), 0))
7873 val = ada_tag_value_at_base_address (val);
7875 return ada_to_fixed_value (val);
7878 /* The value resulting from dereferencing any "reference to"
7879 qualifiers on VAL0. */
7881 static struct value *
7882 ada_coerce_ref (struct value *val0)
7884 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7886 struct value *val = val0;
7888 val = coerce_ref (val);
7890 if (ada_is_tagged_type (value_type (val), 0))
7891 val = ada_tag_value_at_base_address (val);
7893 return ada_to_fixed_value (val);
7899 /* Return OFF rounded upward if necessary to a multiple of
7900 ALIGNMENT (a power of 2). */
7903 align_value (unsigned int off, unsigned int alignment)
7905 return (off + alignment - 1) & ~(alignment - 1);
7908 /* Return the bit alignment required for field #F of template type TYPE. */
7911 field_alignment (struct type *type, int f)
7913 const char *name = TYPE_FIELD_NAME (type, f);
7917 /* The field name should never be null, unless the debugging information
7918 is somehow malformed. In this case, we assume the field does not
7919 require any alignment. */
7923 len = strlen (name);
7925 if (!isdigit (name[len - 1]))
7928 if (isdigit (name[len - 2]))
7929 align_offset = len - 2;
7931 align_offset = len - 1;
7933 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7934 return TARGET_CHAR_BIT;
7936 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7939 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7941 static struct symbol *
7942 ada_find_any_type_symbol (const char *name)
7946 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7947 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7950 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7954 /* Find a type named NAME. Ignores ambiguity. This routine will look
7955 solely for types defined by debug info, it will not search the GDB
7958 static struct type *
7959 ada_find_any_type (const char *name)
7961 struct symbol *sym = ada_find_any_type_symbol (name);
7964 return SYMBOL_TYPE (sym);
7969 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7970 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7971 symbol, in which case it is returned. Otherwise, this looks for
7972 symbols whose name is that of NAME_SYM suffixed with "___XR".
7973 Return symbol if found, and NULL otherwise. */
7976 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7978 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7981 if (strstr (name, "___XR") != NULL)
7984 sym = find_old_style_renaming_symbol (name, block);
7989 /* Not right yet. FIXME pnh 7/20/2007. */
7990 sym = ada_find_any_type_symbol (name);
7991 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7997 static struct symbol *
7998 find_old_style_renaming_symbol (const char *name, const struct block *block)
8000 const struct symbol *function_sym = block_linkage_function (block);
8003 if (function_sym != NULL)
8005 /* If the symbol is defined inside a function, NAME is not fully
8006 qualified. This means we need to prepend the function name
8007 as well as adding the ``___XR'' suffix to build the name of
8008 the associated renaming symbol. */
8009 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8010 /* Function names sometimes contain suffixes used
8011 for instance to qualify nested subprograms. When building
8012 the XR type name, we need to make sure that this suffix is
8013 not included. So do not include any suffix in the function
8014 name length below. */
8015 int function_name_len = ada_name_prefix_len (function_name);
8016 const int rename_len = function_name_len + 2 /* "__" */
8017 + strlen (name) + 6 /* "___XR\0" */ ;
8019 /* Strip the suffix if necessary. */
8020 ada_remove_trailing_digits (function_name, &function_name_len);
8021 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8022 ada_remove_Xbn_suffix (function_name, &function_name_len);
8024 /* Library-level functions are a special case, as GNAT adds
8025 a ``_ada_'' prefix to the function name to avoid namespace
8026 pollution. However, the renaming symbols themselves do not
8027 have this prefix, so we need to skip this prefix if present. */
8028 if (function_name_len > 5 /* "_ada_" */
8029 && strstr (function_name, "_ada_") == function_name)
8032 function_name_len -= 5;
8035 rename = (char *) alloca (rename_len * sizeof (char));
8036 strncpy (rename, function_name, function_name_len);
8037 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8042 const int rename_len = strlen (name) + 6;
8044 rename = (char *) alloca (rename_len * sizeof (char));
8045 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8048 return ada_find_any_type_symbol (rename);
8051 /* Because of GNAT encoding conventions, several GDB symbols may match a
8052 given type name. If the type denoted by TYPE0 is to be preferred to
8053 that of TYPE1 for purposes of type printing, return non-zero;
8054 otherwise return 0. */
8057 ada_prefer_type (struct type *type0, struct type *type1)
8061 else if (type0 == NULL)
8063 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8065 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8067 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8069 else if (ada_is_constrained_packed_array_type (type0))
8071 else if (ada_is_array_descriptor_type (type0)
8072 && !ada_is_array_descriptor_type (type1))
8076 const char *type0_name = TYPE_NAME (type0);
8077 const char *type1_name = TYPE_NAME (type1);
8079 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8080 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8086 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8090 ada_type_name (struct type *type)
8094 return TYPE_NAME (type);
8097 /* Search the list of "descriptive" types associated to TYPE for a type
8098 whose name is NAME. */
8100 static struct type *
8101 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8103 struct type *result, *tmp;
8105 if (ada_ignore_descriptive_types_p)
8108 /* If there no descriptive-type info, then there is no parallel type
8110 if (!HAVE_GNAT_AUX_INFO (type))
8113 result = TYPE_DESCRIPTIVE_TYPE (type);
8114 while (result != NULL)
8116 const char *result_name = ada_type_name (result);
8118 if (result_name == NULL)
8120 warning (_("unexpected null name on descriptive type"));
8124 /* If the names match, stop. */
8125 if (strcmp (result_name, name) == 0)
8128 /* Otherwise, look at the next item on the list, if any. */
8129 if (HAVE_GNAT_AUX_INFO (result))
8130 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8134 /* If not found either, try after having resolved the typedef. */
8139 result = check_typedef (result);
8140 if (HAVE_GNAT_AUX_INFO (result))
8141 result = TYPE_DESCRIPTIVE_TYPE (result);
8147 /* If we didn't find a match, see whether this is a packed array. With
8148 older compilers, the descriptive type information is either absent or
8149 irrelevant when it comes to packed arrays so the above lookup fails.
8150 Fall back to using a parallel lookup by name in this case. */
8151 if (result == NULL && ada_is_constrained_packed_array_type (type))
8152 return ada_find_any_type (name);
8157 /* Find a parallel type to TYPE with the specified NAME, using the
8158 descriptive type taken from the debugging information, if available,
8159 and otherwise using the (slower) name-based method. */
8161 static struct type *
8162 ada_find_parallel_type_with_name (struct type *type, const char *name)
8164 struct type *result = NULL;
8166 if (HAVE_GNAT_AUX_INFO (type))
8167 result = find_parallel_type_by_descriptive_type (type, name);
8169 result = ada_find_any_type (name);
8174 /* Same as above, but specify the name of the parallel type by appending
8175 SUFFIX to the name of TYPE. */
8178 ada_find_parallel_type (struct type *type, const char *suffix)
8181 const char *type_name = ada_type_name (type);
8184 if (type_name == NULL)
8187 len = strlen (type_name);
8189 name = (char *) alloca (len + strlen (suffix) + 1);
8191 strcpy (name, type_name);
8192 strcpy (name + len, suffix);
8194 return ada_find_parallel_type_with_name (type, name);
8197 /* If TYPE is a variable-size record type, return the corresponding template
8198 type describing its fields. Otherwise, return NULL. */
8200 static struct type *
8201 dynamic_template_type (struct type *type)
8203 type = ada_check_typedef (type);
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8206 || ada_type_name (type) == NULL)
8210 int len = strlen (ada_type_name (type));
8212 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8215 return ada_find_parallel_type (type, "___XVE");
8219 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8220 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8223 is_dynamic_field (struct type *templ_type, int field_num)
8225 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8228 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8229 && strstr (name, "___XVL") != NULL;
8232 /* The index of the variant field of TYPE, or -1 if TYPE does not
8233 represent a variant record type. */
8236 variant_field_index (struct type *type)
8240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8243 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8245 if (ada_is_variant_part (type, f))
8251 /* A record type with no fields. */
8253 static struct type *
8254 empty_record (struct type *templ)
8256 struct type *type = alloc_type_copy (templ);
8258 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8259 TYPE_NFIELDS (type) = 0;
8260 TYPE_FIELDS (type) = NULL;
8261 INIT_CPLUS_SPECIFIC (type);
8262 TYPE_NAME (type) = "<empty>";
8263 TYPE_LENGTH (type) = 0;
8267 /* An ordinary record type (with fixed-length fields) that describes
8268 the value of type TYPE at VALADDR or ADDRESS (see comments at
8269 the beginning of this section) VAL according to GNAT conventions.
8270 DVAL0 should describe the (portion of a) record that contains any
8271 necessary discriminants. It should be NULL if value_type (VAL) is
8272 an outer-level type (i.e., as opposed to a branch of a variant.) A
8273 variant field (unless unchecked) is replaced by a particular branch
8276 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8277 length are not statically known are discarded. As a consequence,
8278 VALADDR, ADDRESS and DVAL0 are ignored.
8280 NOTE: Limitations: For now, we assume that dynamic fields and
8281 variants occupy whole numbers of bytes. However, they need not be
8285 ada_template_to_fixed_record_type_1 (struct type *type,
8286 const gdb_byte *valaddr,
8287 CORE_ADDR address, struct value *dval0,
8288 int keep_dynamic_fields)
8290 struct value *mark = value_mark ();
8293 int nfields, bit_len;
8299 /* Compute the number of fields in this record type that are going
8300 to be processed: unless keep_dynamic_fields, this includes only
8301 fields whose position and length are static will be processed. */
8302 if (keep_dynamic_fields)
8303 nfields = TYPE_NFIELDS (type);
8307 while (nfields < TYPE_NFIELDS (type)
8308 && !ada_is_variant_part (type, nfields)
8309 && !is_dynamic_field (type, nfields))
8313 rtype = alloc_type_copy (type);
8314 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8315 INIT_CPLUS_SPECIFIC (rtype);
8316 TYPE_NFIELDS (rtype) = nfields;
8317 TYPE_FIELDS (rtype) = (struct field *)
8318 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8319 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8320 TYPE_NAME (rtype) = ada_type_name (type);
8321 TYPE_FIXED_INSTANCE (rtype) = 1;
8327 for (f = 0; f < nfields; f += 1)
8329 off = align_value (off, field_alignment (type, f))
8330 + TYPE_FIELD_BITPOS (type, f);
8331 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8332 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8334 if (ada_is_variant_part (type, f))
8339 else if (is_dynamic_field (type, f))
8341 const gdb_byte *field_valaddr = valaddr;
8342 CORE_ADDR field_address = address;
8343 struct type *field_type =
8344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8348 /* rtype's length is computed based on the run-time
8349 value of discriminants. If the discriminants are not
8350 initialized, the type size may be completely bogus and
8351 GDB may fail to allocate a value for it. So check the
8352 size first before creating the value. */
8353 ada_ensure_varsize_limit (rtype);
8354 /* Using plain value_from_contents_and_address here
8355 causes problems because we will end up trying to
8356 resolve a type that is currently being
8358 dval = value_from_contents_and_address_unresolved (rtype,
8361 rtype = value_type (dval);
8366 /* If the type referenced by this field is an aligner type, we need
8367 to unwrap that aligner type, because its size might not be set.
8368 Keeping the aligner type would cause us to compute the wrong
8369 size for this field, impacting the offset of the all the fields
8370 that follow this one. */
8371 if (ada_is_aligner_type (field_type))
8373 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8375 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8376 field_address = cond_offset_target (field_address, field_offset);
8377 field_type = ada_aligned_type (field_type);
8380 field_valaddr = cond_offset_host (field_valaddr,
8381 off / TARGET_CHAR_BIT);
8382 field_address = cond_offset_target (field_address,
8383 off / TARGET_CHAR_BIT);
8385 /* Get the fixed type of the field. Note that, in this case,
8386 we do not want to get the real type out of the tag: if
8387 the current field is the parent part of a tagged record,
8388 we will get the tag of the object. Clearly wrong: the real
8389 type of the parent is not the real type of the child. We
8390 would end up in an infinite loop. */
8391 field_type = ada_get_base_type (field_type);
8392 field_type = ada_to_fixed_type (field_type, field_valaddr,
8393 field_address, dval, 0);
8394 /* If the field size is already larger than the maximum
8395 object size, then the record itself will necessarily
8396 be larger than the maximum object size. We need to make
8397 this check now, because the size might be so ridiculously
8398 large (due to an uninitialized variable in the inferior)
8399 that it would cause an overflow when adding it to the
8401 ada_ensure_varsize_limit (field_type);
8403 TYPE_FIELD_TYPE (rtype, f) = field_type;
8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8405 /* The multiplication can potentially overflow. But because
8406 the field length has been size-checked just above, and
8407 assuming that the maximum size is a reasonable value,
8408 an overflow should not happen in practice. So rather than
8409 adding overflow recovery code to this already complex code,
8410 we just assume that it's not going to happen. */
8412 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8416 /* Note: If this field's type is a typedef, it is important
8417 to preserve the typedef layer.
8419 Otherwise, we might be transforming a typedef to a fat
8420 pointer (encoding a pointer to an unconstrained array),
8421 into a basic fat pointer (encoding an unconstrained
8422 array). As both types are implemented using the same
8423 structure, the typedef is the only clue which allows us
8424 to distinguish between the two options. Stripping it
8425 would prevent us from printing this field appropriately. */
8426 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8427 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8428 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8430 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8433 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8435 /* We need to be careful of typedefs when computing
8436 the length of our field. If this is a typedef,
8437 get the length of the target type, not the length
8439 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8440 field_type = ada_typedef_target_type (field_type);
8443 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8446 if (off + fld_bit_len > bit_len)
8447 bit_len = off + fld_bit_len;
8449 TYPE_LENGTH (rtype) =
8450 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8453 /* We handle the variant part, if any, at the end because of certain
8454 odd cases in which it is re-ordered so as NOT to be the last field of
8455 the record. This can happen in the presence of representation
8457 if (variant_field >= 0)
8459 struct type *branch_type;
8461 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8465 /* Using plain value_from_contents_and_address here causes
8466 problems because we will end up trying to resolve a type
8467 that is currently being constructed. */
8468 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8470 rtype = value_type (dval);
8476 to_fixed_variant_branch_type
8477 (TYPE_FIELD_TYPE (type, variant_field),
8478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8480 if (branch_type == NULL)
8482 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8483 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8484 TYPE_NFIELDS (rtype) -= 1;
8488 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8489 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8493 if (off + fld_bit_len > bit_len)
8494 bit_len = off + fld_bit_len;
8495 TYPE_LENGTH (rtype) =
8496 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8501 should contain the alignment of that record, which should be a strictly
8502 positive value. If null or negative, then something is wrong, most
8503 probably in the debug info. In that case, we don't round up the size
8504 of the resulting type. If this record is not part of another structure,
8505 the current RTYPE length might be good enough for our purposes. */
8506 if (TYPE_LENGTH (type) <= 0)
8508 if (TYPE_NAME (rtype))
8509 warning (_("Invalid type size for `%s' detected: %d."),
8510 TYPE_NAME (rtype), TYPE_LENGTH (type));
8512 warning (_("Invalid type size for <unnamed> detected: %d."),
8513 TYPE_LENGTH (type));
8517 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8518 TYPE_LENGTH (type));
8521 value_free_to_mark (mark);
8522 if (TYPE_LENGTH (rtype) > varsize_limit)
8523 error (_("record type with dynamic size is larger than varsize-limit"));
8527 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8530 static struct type *
8531 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8532 CORE_ADDR address, struct value *dval0)
8534 return ada_template_to_fixed_record_type_1 (type, valaddr,
8538 /* An ordinary record type in which ___XVL-convention fields and
8539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8540 static approximations, containing all possible fields. Uses
8541 no runtime values. Useless for use in values, but that's OK,
8542 since the results are used only for type determinations. Works on both
8543 structs and unions. Representation note: to save space, we memorize
8544 the result of this function in the TYPE_TARGET_TYPE of the
8547 static struct type *
8548 template_to_static_fixed_type (struct type *type0)
8554 /* No need no do anything if the input type is already fixed. */
8555 if (TYPE_FIXED_INSTANCE (type0))
8558 /* Likewise if we already have computed the static approximation. */
8559 if (TYPE_TARGET_TYPE (type0) != NULL)
8560 return TYPE_TARGET_TYPE (type0);
8562 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8564 nfields = TYPE_NFIELDS (type0);
8566 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8567 recompute all over next time. */
8568 TYPE_TARGET_TYPE (type0) = type;
8570 for (f = 0; f < nfields; f += 1)
8572 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8573 struct type *new_type;
8575 if (is_dynamic_field (type0, f))
8577 field_type = ada_check_typedef (field_type);
8578 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8581 new_type = static_unwrap_type (field_type);
8583 if (new_type != field_type)
8585 /* Clone TYPE0 only the first time we get a new field type. */
8588 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8589 TYPE_CODE (type) = TYPE_CODE (type0);
8590 INIT_CPLUS_SPECIFIC (type);
8591 TYPE_NFIELDS (type) = nfields;
8592 TYPE_FIELDS (type) = (struct field *)
8593 TYPE_ALLOC (type, nfields * sizeof (struct field));
8594 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8595 sizeof (struct field) * nfields);
8596 TYPE_NAME (type) = ada_type_name (type0);
8597 TYPE_FIXED_INSTANCE (type) = 1;
8598 TYPE_LENGTH (type) = 0;
8600 TYPE_FIELD_TYPE (type, f) = new_type;
8601 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8608 /* Given an object of type TYPE whose contents are at VALADDR and
8609 whose address in memory is ADDRESS, returns a revision of TYPE,
8610 which should be a non-dynamic-sized record, in which the variant
8611 part, if any, is replaced with the appropriate branch. Looks
8612 for discriminant values in DVAL0, which can be NULL if the record
8613 contains the necessary discriminant values. */
8615 static struct type *
8616 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8617 CORE_ADDR address, struct value *dval0)
8619 struct value *mark = value_mark ();
8622 struct type *branch_type;
8623 int nfields = TYPE_NFIELDS (type);
8624 int variant_field = variant_field_index (type);
8626 if (variant_field == -1)
8631 dval = value_from_contents_and_address (type, valaddr, address);
8632 type = value_type (dval);
8637 rtype = alloc_type_copy (type);
8638 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8639 INIT_CPLUS_SPECIFIC (rtype);
8640 TYPE_NFIELDS (rtype) = nfields;
8641 TYPE_FIELDS (rtype) =
8642 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8643 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8644 sizeof (struct field) * nfields);
8645 TYPE_NAME (rtype) = ada_type_name (type);
8646 TYPE_FIXED_INSTANCE (rtype) = 1;
8647 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8649 branch_type = to_fixed_variant_branch_type
8650 (TYPE_FIELD_TYPE (type, variant_field),
8651 cond_offset_host (valaddr,
8652 TYPE_FIELD_BITPOS (type, variant_field)
8654 cond_offset_target (address,
8655 TYPE_FIELD_BITPOS (type, variant_field)
8656 / TARGET_CHAR_BIT), dval);
8657 if (branch_type == NULL)
8661 for (f = variant_field + 1; f < nfields; f += 1)
8662 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8663 TYPE_NFIELDS (rtype) -= 1;
8667 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8668 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8669 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8670 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8672 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8674 value_free_to_mark (mark);
8678 /* An ordinary record type (with fixed-length fields) that describes
8679 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8680 beginning of this section]. Any necessary discriminants' values
8681 should be in DVAL, a record value; it may be NULL if the object
8682 at ADDR itself contains any necessary discriminant values.
8683 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8684 values from the record are needed. Except in the case that DVAL,
8685 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8686 unchecked) is replaced by a particular branch of the variant.
8688 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8689 is questionable and may be removed. It can arise during the
8690 processing of an unconstrained-array-of-record type where all the
8691 variant branches have exactly the same size. This is because in
8692 such cases, the compiler does not bother to use the XVS convention
8693 when encoding the record. I am currently dubious of this
8694 shortcut and suspect the compiler should be altered. FIXME. */
8696 static struct type *
8697 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8698 CORE_ADDR address, struct value *dval)
8700 struct type *templ_type;
8702 if (TYPE_FIXED_INSTANCE (type0))
8705 templ_type = dynamic_template_type (type0);
8707 if (templ_type != NULL)
8708 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8709 else if (variant_field_index (type0) >= 0)
8711 if (dval == NULL && valaddr == NULL && address == 0)
8713 return to_record_with_fixed_variant_part (type0, valaddr, address,
8718 TYPE_FIXED_INSTANCE (type0) = 1;
8724 /* An ordinary record type (with fixed-length fields) that describes
8725 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8726 union type. Any necessary discriminants' values should be in DVAL,
8727 a record value. That is, this routine selects the appropriate
8728 branch of the union at ADDR according to the discriminant value
8729 indicated in the union's type name. Returns VAR_TYPE0 itself if
8730 it represents a variant subject to a pragma Unchecked_Union. */
8732 static struct type *
8733 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8734 CORE_ADDR address, struct value *dval)
8737 struct type *templ_type;
8738 struct type *var_type;
8740 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8741 var_type = TYPE_TARGET_TYPE (var_type0);
8743 var_type = var_type0;
8745 templ_type = ada_find_parallel_type (var_type, "___XVU");
8747 if (templ_type != NULL)
8748 var_type = templ_type;
8750 if (is_unchecked_variant (var_type, value_type (dval)))
8753 ada_which_variant_applies (var_type,
8754 value_type (dval), value_contents (dval));
8757 return empty_record (var_type);
8758 else if (is_dynamic_field (var_type, which))
8759 return to_fixed_record_type
8760 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8761 valaddr, address, dval);
8762 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8764 to_fixed_record_type
8765 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8767 return TYPE_FIELD_TYPE (var_type, which);
8770 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8771 ENCODING_TYPE, a type following the GNAT conventions for discrete
8772 type encodings, only carries redundant information. */
8775 ada_is_redundant_range_encoding (struct type *range_type,
8776 struct type *encoding_type)
8778 const char *bounds_str;
8782 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8784 if (TYPE_CODE (get_base_type (range_type))
8785 != TYPE_CODE (get_base_type (encoding_type)))
8787 /* The compiler probably used a simple base type to describe
8788 the range type instead of the range's actual base type,
8789 expecting us to get the real base type from the encoding
8790 anyway. In this situation, the encoding cannot be ignored
8795 if (is_dynamic_type (range_type))
8798 if (TYPE_NAME (encoding_type) == NULL)
8801 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8802 if (bounds_str == NULL)
8805 n = 8; /* Skip "___XDLU_". */
8806 if (!ada_scan_number (bounds_str, n, &lo, &n))
8808 if (TYPE_LOW_BOUND (range_type) != lo)
8811 n += 2; /* Skip the "__" separator between the two bounds. */
8812 if (!ada_scan_number (bounds_str, n, &hi, &n))
8814 if (TYPE_HIGH_BOUND (range_type) != hi)
8820 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8821 a type following the GNAT encoding for describing array type
8822 indices, only carries redundant information. */
8825 ada_is_redundant_index_type_desc (struct type *array_type,
8826 struct type *desc_type)
8828 struct type *this_layer = check_typedef (array_type);
8831 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8833 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8834 TYPE_FIELD_TYPE (desc_type, i)))
8836 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8842 /* Assuming that TYPE0 is an array type describing the type of a value
8843 at ADDR, and that DVAL describes a record containing any
8844 discriminants used in TYPE0, returns a type for the value that
8845 contains no dynamic components (that is, no components whose sizes
8846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8847 true, gives an error message if the resulting type's size is over
8850 static struct type *
8851 to_fixed_array_type (struct type *type0, struct value *dval,
8854 struct type *index_type_desc;
8855 struct type *result;
8856 int constrained_packed_array_p;
8857 static const char *xa_suffix = "___XA";
8859 type0 = ada_check_typedef (type0);
8860 if (TYPE_FIXED_INSTANCE (type0))
8863 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8864 if (constrained_packed_array_p)
8865 type0 = decode_constrained_packed_array_type (type0);
8867 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8869 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8870 encoding suffixed with 'P' may still be generated. If so,
8871 it should be used to find the XA type. */
8873 if (index_type_desc == NULL)
8875 const char *type_name = ada_type_name (type0);
8877 if (type_name != NULL)
8879 const int len = strlen (type_name);
8880 char *name = (char *) alloca (len + strlen (xa_suffix));
8882 if (type_name[len - 1] == 'P')
8884 strcpy (name, type_name);
8885 strcpy (name + len - 1, xa_suffix);
8886 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8891 ada_fixup_array_indexes_type (index_type_desc);
8892 if (index_type_desc != NULL
8893 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8895 /* Ignore this ___XA parallel type, as it does not bring any
8896 useful information. This allows us to avoid creating fixed
8897 versions of the array's index types, which would be identical
8898 to the original ones. This, in turn, can also help avoid
8899 the creation of fixed versions of the array itself. */
8900 index_type_desc = NULL;
8903 if (index_type_desc == NULL)
8905 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8907 /* NOTE: elt_type---the fixed version of elt_type0---should never
8908 depend on the contents of the array in properly constructed
8910 /* Create a fixed version of the array element type.
8911 We're not providing the address of an element here,
8912 and thus the actual object value cannot be inspected to do
8913 the conversion. This should not be a problem, since arrays of
8914 unconstrained objects are not allowed. In particular, all
8915 the elements of an array of a tagged type should all be of
8916 the same type specified in the debugging info. No need to
8917 consult the object tag. */
8918 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8920 /* Make sure we always create a new array type when dealing with
8921 packed array types, since we're going to fix-up the array
8922 type length and element bitsize a little further down. */
8923 if (elt_type0 == elt_type && !constrained_packed_array_p)
8926 result = create_array_type (alloc_type_copy (type0),
8927 elt_type, TYPE_INDEX_TYPE (type0));
8932 struct type *elt_type0;
8935 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8938 /* NOTE: result---the fixed version of elt_type0---should never
8939 depend on the contents of the array in properly constructed
8941 /* Create a fixed version of the array element type.
8942 We're not providing the address of an element here,
8943 and thus the actual object value cannot be inspected to do
8944 the conversion. This should not be a problem, since arrays of
8945 unconstrained objects are not allowed. In particular, all
8946 the elements of an array of a tagged type should all be of
8947 the same type specified in the debugging info. No need to
8948 consult the object tag. */
8950 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8953 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8955 struct type *range_type =
8956 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8958 result = create_array_type (alloc_type_copy (elt_type0),
8959 result, range_type);
8960 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8962 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8963 error (_("array type with dynamic size is larger than varsize-limit"));
8966 /* We want to preserve the type name. This can be useful when
8967 trying to get the type name of a value that has already been
8968 printed (for instance, if the user did "print VAR; whatis $". */
8969 TYPE_NAME (result) = TYPE_NAME (type0);
8971 if (constrained_packed_array_p)
8973 /* So far, the resulting type has been created as if the original
8974 type was a regular (non-packed) array type. As a result, the
8975 bitsize of the array elements needs to be set again, and the array
8976 length needs to be recomputed based on that bitsize. */
8977 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8978 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8980 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8981 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8982 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8983 TYPE_LENGTH (result)++;
8986 TYPE_FIXED_INSTANCE (result) = 1;
8991 /* A standard type (containing no dynamically sized components)
8992 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8993 DVAL describes a record containing any discriminants used in TYPE0,
8994 and may be NULL if there are none, or if the object of type TYPE at
8995 ADDRESS or in VALADDR contains these discriminants.
8997 If CHECK_TAG is not null, in the case of tagged types, this function
8998 attempts to locate the object's tag and use it to compute the actual
8999 type. However, when ADDRESS is null, we cannot use it to determine the
9000 location of the tag, and therefore compute the tagged type's actual type.
9001 So we return the tagged type without consulting the tag. */
9003 static struct type *
9004 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9005 CORE_ADDR address, struct value *dval, int check_tag)
9007 type = ada_check_typedef (type);
9008 switch (TYPE_CODE (type))
9012 case TYPE_CODE_STRUCT:
9014 struct type *static_type = to_static_fixed_type (type);
9015 struct type *fixed_record_type =
9016 to_fixed_record_type (type, valaddr, address, NULL);
9018 /* If STATIC_TYPE is a tagged type and we know the object's address,
9019 then we can determine its tag, and compute the object's actual
9020 type from there. Note that we have to use the fixed record
9021 type (the parent part of the record may have dynamic fields
9022 and the way the location of _tag is expressed may depend on
9025 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9028 value_tag_from_contents_and_address
9032 struct type *real_type = type_from_tag (tag);
9034 value_from_contents_and_address (fixed_record_type,
9037 fixed_record_type = value_type (obj);
9038 if (real_type != NULL)
9039 return to_fixed_record_type
9041 value_address (ada_tag_value_at_base_address (obj)), NULL);
9044 /* Check to see if there is a parallel ___XVZ variable.
9045 If there is, then it provides the actual size of our type. */
9046 else if (ada_type_name (fixed_record_type) != NULL)
9048 const char *name = ada_type_name (fixed_record_type);
9050 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9051 bool xvz_found = false;
9054 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9057 xvz_found = get_int_var_value (xvz_name, size);
9059 CATCH (except, RETURN_MASK_ERROR)
9061 /* We found the variable, but somehow failed to read
9062 its value. Rethrow the same error, but with a little
9063 bit more information, to help the user understand
9064 what went wrong (Eg: the variable might have been
9066 throw_error (except.error,
9067 _("unable to read value of %s (%s)"),
9068 xvz_name, except.message);
9072 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9074 fixed_record_type = copy_type (fixed_record_type);
9075 TYPE_LENGTH (fixed_record_type) = size;
9077 /* The FIXED_RECORD_TYPE may have be a stub. We have
9078 observed this when the debugging info is STABS, and
9079 apparently it is something that is hard to fix.
9081 In practice, we don't need the actual type definition
9082 at all, because the presence of the XVZ variable allows us
9083 to assume that there must be a XVS type as well, which we
9084 should be able to use later, when we need the actual type
9087 In the meantime, pretend that the "fixed" type we are
9088 returning is NOT a stub, because this can cause trouble
9089 when using this type to create new types targeting it.
9090 Indeed, the associated creation routines often check
9091 whether the target type is a stub and will try to replace
9092 it, thus using a type with the wrong size. This, in turn,
9093 might cause the new type to have the wrong size too.
9094 Consider the case of an array, for instance, where the size
9095 of the array is computed from the number of elements in
9096 our array multiplied by the size of its element. */
9097 TYPE_STUB (fixed_record_type) = 0;
9100 return fixed_record_type;
9102 case TYPE_CODE_ARRAY:
9103 return to_fixed_array_type (type, dval, 1);
9104 case TYPE_CODE_UNION:
9108 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9112 /* The same as ada_to_fixed_type_1, except that it preserves the type
9113 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9115 The typedef layer needs be preserved in order to differentiate between
9116 arrays and array pointers when both types are implemented using the same
9117 fat pointer. In the array pointer case, the pointer is encoded as
9118 a typedef of the pointer type. For instance, considering:
9120 type String_Access is access String;
9121 S1 : String_Access := null;
9123 To the debugger, S1 is defined as a typedef of type String. But
9124 to the user, it is a pointer. So if the user tries to print S1,
9125 we should not dereference the array, but print the array address
9128 If we didn't preserve the typedef layer, we would lose the fact that
9129 the type is to be presented as a pointer (needs de-reference before
9130 being printed). And we would also use the source-level type name. */
9133 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9134 CORE_ADDR address, struct value *dval, int check_tag)
9137 struct type *fixed_type =
9138 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9140 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9141 then preserve the typedef layer.
9143 Implementation note: We can only check the main-type portion of
9144 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9145 from TYPE now returns a type that has the same instance flags
9146 as TYPE. For instance, if TYPE is a "typedef const", and its
9147 target type is a "struct", then the typedef elimination will return
9148 a "const" version of the target type. See check_typedef for more
9149 details about how the typedef layer elimination is done.
9151 brobecker/2010-11-19: It seems to me that the only case where it is
9152 useful to preserve the typedef layer is when dealing with fat pointers.
9153 Perhaps, we could add a check for that and preserve the typedef layer
9154 only in that situation. But this seems unecessary so far, probably
9155 because we call check_typedef/ada_check_typedef pretty much everywhere.
9157 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9158 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9159 == TYPE_MAIN_TYPE (fixed_type)))
9165 /* A standard (static-sized) type corresponding as well as possible to
9166 TYPE0, but based on no runtime data. */
9168 static struct type *
9169 to_static_fixed_type (struct type *type0)
9176 if (TYPE_FIXED_INSTANCE (type0))
9179 type0 = ada_check_typedef (type0);
9181 switch (TYPE_CODE (type0))
9185 case TYPE_CODE_STRUCT:
9186 type = dynamic_template_type (type0);
9188 return template_to_static_fixed_type (type);
9190 return template_to_static_fixed_type (type0);
9191 case TYPE_CODE_UNION:
9192 type = ada_find_parallel_type (type0, "___XVU");
9194 return template_to_static_fixed_type (type);
9196 return template_to_static_fixed_type (type0);
9200 /* A static approximation of TYPE with all type wrappers removed. */
9202 static struct type *
9203 static_unwrap_type (struct type *type)
9205 if (ada_is_aligner_type (type))
9207 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9208 if (ada_type_name (type1) == NULL)
9209 TYPE_NAME (type1) = ada_type_name (type);
9211 return static_unwrap_type (type1);
9215 struct type *raw_real_type = ada_get_base_type (type);
9217 if (raw_real_type == type)
9220 return to_static_fixed_type (raw_real_type);
9224 /* In some cases, incomplete and private types require
9225 cross-references that are not resolved as records (for example,
9227 type FooP is access Foo;
9229 type Foo is array ...;
9230 ). In these cases, since there is no mechanism for producing
9231 cross-references to such types, we instead substitute for FooP a
9232 stub enumeration type that is nowhere resolved, and whose tag is
9233 the name of the actual type. Call these types "non-record stubs". */
9235 /* A type equivalent to TYPE that is not a non-record stub, if one
9236 exists, otherwise TYPE. */
9239 ada_check_typedef (struct type *type)
9244 /* If our type is a typedef type of a fat pointer, then we're done.
9245 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9246 what allows us to distinguish between fat pointers that represent
9247 array types, and fat pointers that represent array access types
9248 (in both cases, the compiler implements them as fat pointers). */
9249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9250 && is_thick_pntr (ada_typedef_target_type (type)))
9253 type = check_typedef (type);
9254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9255 || !TYPE_STUB (type)
9256 || TYPE_NAME (type) == NULL)
9260 const char *name = TYPE_NAME (type);
9261 struct type *type1 = ada_find_any_type (name);
9266 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9267 stubs pointing to arrays, as we don't create symbols for array
9268 types, only for the typedef-to-array types). If that's the case,
9269 strip the typedef layer. */
9270 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9271 type1 = ada_check_typedef (type1);
9277 /* A value representing the data at VALADDR/ADDRESS as described by
9278 type TYPE0, but with a standard (static-sized) type that correctly
9279 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9280 type, then return VAL0 [this feature is simply to avoid redundant
9281 creation of struct values]. */
9283 static struct value *
9284 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9287 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9289 if (type == type0 && val0 != NULL)
9292 if (VALUE_LVAL (val0) != lval_memory)
9294 /* Our value does not live in memory; it could be a convenience
9295 variable, for instance. Create a not_lval value using val0's
9297 return value_from_contents (type, value_contents (val0));
9300 return value_from_contents_and_address (type, 0, address);
9303 /* A value representing VAL, but with a standard (static-sized) type
9304 that correctly describes it. Does not necessarily create a new
9308 ada_to_fixed_value (struct value *val)
9310 val = unwrap_value (val);
9311 val = ada_to_fixed_value_create (value_type (val),
9312 value_address (val),
9320 /* Table mapping attribute numbers to names.
9321 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9323 static const char *attribute_names[] = {
9341 ada_attribute_name (enum exp_opcode n)
9343 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9344 return attribute_names[n - OP_ATR_FIRST + 1];
9346 return attribute_names[0];
9349 /* Evaluate the 'POS attribute applied to ARG. */
9352 pos_atr (struct value *arg)
9354 struct value *val = coerce_ref (arg);
9355 struct type *type = value_type (val);
9358 if (!discrete_type_p (type))
9359 error (_("'POS only defined on discrete types"));
9361 if (!discrete_position (type, value_as_long (val), &result))
9362 error (_("enumeration value is invalid: can't find 'POS"));
9367 static struct value *
9368 value_pos_atr (struct type *type, struct value *arg)
9370 return value_from_longest (type, pos_atr (arg));
9373 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9375 static struct value *
9376 value_val_atr (struct type *type, struct value *arg)
9378 if (!discrete_type_p (type))
9379 error (_("'VAL only defined on discrete types"));
9380 if (!integer_type_p (value_type (arg)))
9381 error (_("'VAL requires integral argument"));
9383 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9385 long pos = value_as_long (arg);
9387 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9388 error (_("argument to 'VAL out of range"));
9389 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9392 return value_from_longest (type, value_as_long (arg));
9398 /* True if TYPE appears to be an Ada character type.
9399 [At the moment, this is true only for Character and Wide_Character;
9400 It is a heuristic test that could stand improvement]. */
9403 ada_is_character_type (struct type *type)
9407 /* If the type code says it's a character, then assume it really is,
9408 and don't check any further. */
9409 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9412 /* Otherwise, assume it's a character type iff it is a discrete type
9413 with a known character type name. */
9414 name = ada_type_name (type);
9415 return (name != NULL
9416 && (TYPE_CODE (type) == TYPE_CODE_INT
9417 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9418 && (strcmp (name, "character") == 0
9419 || strcmp (name, "wide_character") == 0
9420 || strcmp (name, "wide_wide_character") == 0
9421 || strcmp (name, "unsigned char") == 0));
9424 /* True if TYPE appears to be an Ada string type. */
9427 ada_is_string_type (struct type *type)
9429 type = ada_check_typedef (type);
9431 && TYPE_CODE (type) != TYPE_CODE_PTR
9432 && (ada_is_simple_array_type (type)
9433 || ada_is_array_descriptor_type (type))
9434 && ada_array_arity (type) == 1)
9436 struct type *elttype = ada_array_element_type (type, 1);
9438 return ada_is_character_type (elttype);
9444 /* The compiler sometimes provides a parallel XVS type for a given
9445 PAD type. Normally, it is safe to follow the PAD type directly,
9446 but older versions of the compiler have a bug that causes the offset
9447 of its "F" field to be wrong. Following that field in that case
9448 would lead to incorrect results, but this can be worked around
9449 by ignoring the PAD type and using the associated XVS type instead.
9451 Set to True if the debugger should trust the contents of PAD types.
9452 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9453 static int trust_pad_over_xvs = 1;
9455 /* True if TYPE is a struct type introduced by the compiler to force the
9456 alignment of a value. Such types have a single field with a
9457 distinctive name. */
9460 ada_is_aligner_type (struct type *type)
9462 type = ada_check_typedef (type);
9464 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9467 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9468 && TYPE_NFIELDS (type) == 1
9469 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9472 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9473 the parallel type. */
9476 ada_get_base_type (struct type *raw_type)
9478 struct type *real_type_namer;
9479 struct type *raw_real_type;
9481 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9484 if (ada_is_aligner_type (raw_type))
9485 /* The encoding specifies that we should always use the aligner type.
9486 So, even if this aligner type has an associated XVS type, we should
9489 According to the compiler gurus, an XVS type parallel to an aligner
9490 type may exist because of a stabs limitation. In stabs, aligner
9491 types are empty because the field has a variable-sized type, and
9492 thus cannot actually be used as an aligner type. As a result,
9493 we need the associated parallel XVS type to decode the type.
9494 Since the policy in the compiler is to not change the internal
9495 representation based on the debugging info format, we sometimes
9496 end up having a redundant XVS type parallel to the aligner type. */
9499 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9500 if (real_type_namer == NULL
9501 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9502 || TYPE_NFIELDS (real_type_namer) != 1)
9505 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9507 /* This is an older encoding form where the base type needs to be
9508 looked up by name. We prefer the newer enconding because it is
9510 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9511 if (raw_real_type == NULL)
9514 return raw_real_type;
9517 /* The field in our XVS type is a reference to the base type. */
9518 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9521 /* The type of value designated by TYPE, with all aligners removed. */
9524 ada_aligned_type (struct type *type)
9526 if (ada_is_aligner_type (type))
9527 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9529 return ada_get_base_type (type);
9533 /* The address of the aligned value in an object at address VALADDR
9534 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9537 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9539 if (ada_is_aligner_type (type))
9540 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9542 TYPE_FIELD_BITPOS (type,
9543 0) / TARGET_CHAR_BIT);
9550 /* The printed representation of an enumeration literal with encoded
9551 name NAME. The value is good to the next call of ada_enum_name. */
9553 ada_enum_name (const char *name)
9555 static char *result;
9556 static size_t result_len = 0;
9559 /* First, unqualify the enumeration name:
9560 1. Search for the last '.' character. If we find one, then skip
9561 all the preceding characters, the unqualified name starts
9562 right after that dot.
9563 2. Otherwise, we may be debugging on a target where the compiler
9564 translates dots into "__". Search forward for double underscores,
9565 but stop searching when we hit an overloading suffix, which is
9566 of the form "__" followed by digits. */
9568 tmp = strrchr (name, '.');
9573 while ((tmp = strstr (name, "__")) != NULL)
9575 if (isdigit (tmp[2]))
9586 if (name[1] == 'U' || name[1] == 'W')
9588 if (sscanf (name + 2, "%x", &v) != 1)
9594 GROW_VECT (result, result_len, 16);
9595 if (isascii (v) && isprint (v))
9596 xsnprintf (result, result_len, "'%c'", v);
9597 else if (name[1] == 'U')
9598 xsnprintf (result, result_len, "[\"%02x\"]", v);
9600 xsnprintf (result, result_len, "[\"%04x\"]", v);
9606 tmp = strstr (name, "__");
9608 tmp = strstr (name, "$");
9611 GROW_VECT (result, result_len, tmp - name + 1);
9612 strncpy (result, name, tmp - name);
9613 result[tmp - name] = '\0';
9621 /* Evaluate the subexpression of EXP starting at *POS as for
9622 evaluate_type, updating *POS to point just past the evaluated
9625 static struct value *
9626 evaluate_subexp_type (struct expression *exp, int *pos)
9628 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9631 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9634 static struct value *
9635 unwrap_value (struct value *val)
9637 struct type *type = ada_check_typedef (value_type (val));
9639 if (ada_is_aligner_type (type))
9641 struct value *v = ada_value_struct_elt (val, "F", 0);
9642 struct type *val_type = ada_check_typedef (value_type (v));
9644 if (ada_type_name (val_type) == NULL)
9645 TYPE_NAME (val_type) = ada_type_name (type);
9647 return unwrap_value (v);
9651 struct type *raw_real_type =
9652 ada_check_typedef (ada_get_base_type (type));
9654 /* If there is no parallel XVS or XVE type, then the value is
9655 already unwrapped. Return it without further modification. */
9656 if ((type == raw_real_type)
9657 && ada_find_parallel_type (type, "___XVE") == NULL)
9661 coerce_unspec_val_to_type
9662 (val, ada_to_fixed_type (raw_real_type, 0,
9663 value_address (val),
9668 static struct value *
9669 cast_from_fixed (struct type *type, struct value *arg)
9671 struct value *scale = ada_scaling_factor (value_type (arg));
9672 arg = value_cast (value_type (scale), arg);
9674 arg = value_binop (arg, scale, BINOP_MUL);
9675 return value_cast (type, arg);
9678 static struct value *
9679 cast_to_fixed (struct type *type, struct value *arg)
9681 if (type == value_type (arg))
9684 struct value *scale = ada_scaling_factor (type);
9685 if (ada_is_fixed_point_type (value_type (arg)))
9686 arg = cast_from_fixed (value_type (scale), arg);
9688 arg = value_cast (value_type (scale), arg);
9690 arg = value_binop (arg, scale, BINOP_DIV);
9691 return value_cast (type, arg);
9694 /* Given two array types T1 and T2, return nonzero iff both arrays
9695 contain the same number of elements. */
9698 ada_same_array_size_p (struct type *t1, struct type *t2)
9700 LONGEST lo1, hi1, lo2, hi2;
9702 /* Get the array bounds in order to verify that the size of
9703 the two arrays match. */
9704 if (!get_array_bounds (t1, &lo1, &hi1)
9705 || !get_array_bounds (t2, &lo2, &hi2))
9706 error (_("unable to determine array bounds"));
9708 /* To make things easier for size comparison, normalize a bit
9709 the case of empty arrays by making sure that the difference
9710 between upper bound and lower bound is always -1. */
9716 return (hi1 - lo1 == hi2 - lo2);
9719 /* Assuming that VAL is an array of integrals, and TYPE represents
9720 an array with the same number of elements, but with wider integral
9721 elements, return an array "casted" to TYPE. In practice, this
9722 means that the returned array is built by casting each element
9723 of the original array into TYPE's (wider) element type. */
9725 static struct value *
9726 ada_promote_array_of_integrals (struct type *type, struct value *val)
9728 struct type *elt_type = TYPE_TARGET_TYPE (type);
9733 /* Verify that both val and type are arrays of scalars, and
9734 that the size of val's elements is smaller than the size
9735 of type's element. */
9736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9737 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9738 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9739 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9740 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9741 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9743 if (!get_array_bounds (type, &lo, &hi))
9744 error (_("unable to determine array bounds"));
9746 res = allocate_value (type);
9748 /* Promote each array element. */
9749 for (i = 0; i < hi - lo + 1; i++)
9751 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9753 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9754 value_contents_all (elt), TYPE_LENGTH (elt_type));
9760 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9761 return the converted value. */
9763 static struct value *
9764 coerce_for_assign (struct type *type, struct value *val)
9766 struct type *type2 = value_type (val);
9771 type2 = ada_check_typedef (type2);
9772 type = ada_check_typedef (type);
9774 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9775 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9777 val = ada_value_ind (val);
9778 type2 = value_type (val);
9781 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9782 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9784 if (!ada_same_array_size_p (type, type2))
9785 error (_("cannot assign arrays of different length"));
9787 if (is_integral_type (TYPE_TARGET_TYPE (type))
9788 && is_integral_type (TYPE_TARGET_TYPE (type2))
9789 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9792 /* Allow implicit promotion of the array elements to
9794 return ada_promote_array_of_integrals (type, val);
9797 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9798 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9799 error (_("Incompatible types in assignment"));
9800 deprecated_set_value_type (val, type);
9805 static struct value *
9806 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9809 struct type *type1, *type2;
9812 arg1 = coerce_ref (arg1);
9813 arg2 = coerce_ref (arg2);
9814 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9815 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9817 if (TYPE_CODE (type1) != TYPE_CODE_INT
9818 || TYPE_CODE (type2) != TYPE_CODE_INT)
9819 return value_binop (arg1, arg2, op);
9828 return value_binop (arg1, arg2, op);
9831 v2 = value_as_long (arg2);
9833 error (_("second operand of %s must not be zero."), op_string (op));
9835 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9836 return value_binop (arg1, arg2, op);
9838 v1 = value_as_long (arg1);
9843 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9844 v += v > 0 ? -1 : 1;
9852 /* Should not reach this point. */
9856 val = allocate_value (type1);
9857 store_unsigned_integer (value_contents_raw (val),
9858 TYPE_LENGTH (value_type (val)),
9859 gdbarch_byte_order (get_type_arch (type1)), v);
9864 ada_value_equal (struct value *arg1, struct value *arg2)
9866 if (ada_is_direct_array_type (value_type (arg1))
9867 || ada_is_direct_array_type (value_type (arg2)))
9869 struct type *arg1_type, *arg2_type;
9871 /* Automatically dereference any array reference before
9872 we attempt to perform the comparison. */
9873 arg1 = ada_coerce_ref (arg1);
9874 arg2 = ada_coerce_ref (arg2);
9876 arg1 = ada_coerce_to_simple_array (arg1);
9877 arg2 = ada_coerce_to_simple_array (arg2);
9879 arg1_type = ada_check_typedef (value_type (arg1));
9880 arg2_type = ada_check_typedef (value_type (arg2));
9882 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9883 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9884 error (_("Attempt to compare array with non-array"));
9885 /* FIXME: The following works only for types whose
9886 representations use all bits (no padding or undefined bits)
9887 and do not have user-defined equality. */
9888 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9889 && memcmp (value_contents (arg1), value_contents (arg2),
9890 TYPE_LENGTH (arg1_type)) == 0);
9892 return value_equal (arg1, arg2);
9895 /* Total number of component associations in the aggregate starting at
9896 index PC in EXP. Assumes that index PC is the start of an
9900 num_component_specs (struct expression *exp, int pc)
9904 m = exp->elts[pc + 1].longconst;
9907 for (i = 0; i < m; i += 1)
9909 switch (exp->elts[pc].opcode)
9915 n += exp->elts[pc + 1].longconst;
9918 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9923 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9924 component of LHS (a simple array or a record), updating *POS past
9925 the expression, assuming that LHS is contained in CONTAINER. Does
9926 not modify the inferior's memory, nor does it modify LHS (unless
9927 LHS == CONTAINER). */
9930 assign_component (struct value *container, struct value *lhs, LONGEST index,
9931 struct expression *exp, int *pos)
9933 struct value *mark = value_mark ();
9935 struct type *lhs_type = check_typedef (value_type (lhs));
9937 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9939 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9940 struct value *index_val = value_from_longest (index_type, index);
9942 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9946 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9947 elt = ada_to_fixed_value (elt);
9950 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9951 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9953 value_assign_to_component (container, elt,
9954 ada_evaluate_subexp (NULL, exp, pos,
9957 value_free_to_mark (mark);
9960 /* Assuming that LHS represents an lvalue having a record or array
9961 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9962 of that aggregate's value to LHS, advancing *POS past the
9963 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9964 lvalue containing LHS (possibly LHS itself). Does not modify
9965 the inferior's memory, nor does it modify the contents of
9966 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9968 static struct value *
9969 assign_aggregate (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, enum noside noside)
9973 struct type *lhs_type;
9974 int n = exp->elts[*pos+1].longconst;
9975 LONGEST low_index, high_index;
9978 int max_indices, num_indices;
9982 if (noside != EVAL_NORMAL)
9984 for (i = 0; i < n; i += 1)
9985 ada_evaluate_subexp (NULL, exp, pos, noside);
9989 container = ada_coerce_ref (container);
9990 if (ada_is_direct_array_type (value_type (container)))
9991 container = ada_coerce_to_simple_array (container);
9992 lhs = ada_coerce_ref (lhs);
9993 if (!deprecated_value_modifiable (lhs))
9994 error (_("Left operand of assignment is not a modifiable lvalue."));
9996 lhs_type = check_typedef (value_type (lhs));
9997 if (ada_is_direct_array_type (lhs_type))
9999 lhs = ada_coerce_to_simple_array (lhs);
10000 lhs_type = check_typedef (value_type (lhs));
10001 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10002 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10004 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10007 high_index = num_visible_fields (lhs_type) - 1;
10010 error (_("Left-hand side must be array or record."));
10012 num_specs = num_component_specs (exp, *pos - 3);
10013 max_indices = 4 * num_specs + 4;
10014 indices = XALLOCAVEC (LONGEST, max_indices);
10015 indices[0] = indices[1] = low_index - 1;
10016 indices[2] = indices[3] = high_index + 1;
10019 for (i = 0; i < n; i += 1)
10021 switch (exp->elts[*pos].opcode)
10024 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10025 &num_indices, max_indices,
10026 low_index, high_index);
10028 case OP_POSITIONAL:
10029 aggregate_assign_positional (container, lhs, exp, pos, indices,
10030 &num_indices, max_indices,
10031 low_index, high_index);
10035 error (_("Misplaced 'others' clause"));
10036 aggregate_assign_others (container, lhs, exp, pos, indices,
10037 num_indices, low_index, high_index);
10040 error (_("Internal error: bad aggregate clause"));
10047 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10048 construct at *POS, updating *POS past the construct, given that
10049 the positions are relative to lower bound LOW, where HIGH is the
10050 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10051 updating *NUM_INDICES as needed. CONTAINER is as for
10052 assign_aggregate. */
10054 aggregate_assign_positional (struct value *container,
10055 struct value *lhs, struct expression *exp,
10056 int *pos, LONGEST *indices, int *num_indices,
10057 int max_indices, LONGEST low, LONGEST high)
10059 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10061 if (ind - 1 == high)
10062 warning (_("Extra components in aggregate ignored."));
10065 add_component_interval (ind, ind, indices, num_indices, max_indices);
10067 assign_component (container, lhs, ind, exp, pos);
10070 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10073 /* Assign into the components of LHS indexed by the OP_CHOICES
10074 construct at *POS, updating *POS past the construct, given that
10075 the allowable indices are LOW..HIGH. Record the indices assigned
10076 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10077 needed. CONTAINER is as for assign_aggregate. */
10079 aggregate_assign_from_choices (struct value *container,
10080 struct value *lhs, struct expression *exp,
10081 int *pos, LONGEST *indices, int *num_indices,
10082 int max_indices, LONGEST low, LONGEST high)
10085 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10086 int choice_pos, expr_pc;
10087 int is_array = ada_is_direct_array_type (value_type (lhs));
10089 choice_pos = *pos += 3;
10091 for (j = 0; j < n_choices; j += 1)
10092 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10094 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10096 for (j = 0; j < n_choices; j += 1)
10098 LONGEST lower, upper;
10099 enum exp_opcode op = exp->elts[choice_pos].opcode;
10101 if (op == OP_DISCRETE_RANGE)
10104 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10106 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10111 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10123 name = &exp->elts[choice_pos + 2].string;
10126 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10129 error (_("Invalid record component association."));
10131 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10133 if (! find_struct_field (name, value_type (lhs), 0,
10134 NULL, NULL, NULL, NULL, &ind))
10135 error (_("Unknown component name: %s."), name);
10136 lower = upper = ind;
10139 if (lower <= upper && (lower < low || upper > high))
10140 error (_("Index in component association out of bounds."));
10142 add_component_interval (lower, upper, indices, num_indices,
10144 while (lower <= upper)
10149 assign_component (container, lhs, lower, exp, &pos1);
10155 /* Assign the value of the expression in the OP_OTHERS construct in
10156 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10157 have not been previously assigned. The index intervals already assigned
10158 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10159 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10161 aggregate_assign_others (struct value *container,
10162 struct value *lhs, struct expression *exp,
10163 int *pos, LONGEST *indices, int num_indices,
10164 LONGEST low, LONGEST high)
10167 int expr_pc = *pos + 1;
10169 for (i = 0; i < num_indices - 2; i += 2)
10173 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10177 localpos = expr_pc;
10178 assign_component (container, lhs, ind, exp, &localpos);
10181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10184 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10185 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10186 modifying *SIZE as needed. It is an error if *SIZE exceeds
10187 MAX_SIZE. The resulting intervals do not overlap. */
10189 add_component_interval (LONGEST low, LONGEST high,
10190 LONGEST* indices, int *size, int max_size)
10194 for (i = 0; i < *size; i += 2) {
10195 if (high >= indices[i] && low <= indices[i + 1])
10199 for (kh = i + 2; kh < *size; kh += 2)
10200 if (high < indices[kh])
10202 if (low < indices[i])
10204 indices[i + 1] = indices[kh - 1];
10205 if (high > indices[i + 1])
10206 indices[i + 1] = high;
10207 memcpy (indices + i + 2, indices + kh, *size - kh);
10208 *size -= kh - i - 2;
10211 else if (high < indices[i])
10215 if (*size == max_size)
10216 error (_("Internal error: miscounted aggregate components."));
10218 for (j = *size-1; j >= i+2; j -= 1)
10219 indices[j] = indices[j - 2];
10221 indices[i + 1] = high;
10224 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10227 static struct value *
10228 ada_value_cast (struct type *type, struct value *arg2)
10230 if (type == ada_check_typedef (value_type (arg2)))
10233 if (ada_is_fixed_point_type (type))
10234 return (cast_to_fixed (type, arg2));
10236 if (ada_is_fixed_point_type (value_type (arg2)))
10237 return cast_from_fixed (type, arg2);
10239 return value_cast (type, arg2);
10242 /* Evaluating Ada expressions, and printing their result.
10243 ------------------------------------------------------
10248 We usually evaluate an Ada expression in order to print its value.
10249 We also evaluate an expression in order to print its type, which
10250 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10251 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10252 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10253 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10256 Evaluating expressions is a little more complicated for Ada entities
10257 than it is for entities in languages such as C. The main reason for
10258 this is that Ada provides types whose definition might be dynamic.
10259 One example of such types is variant records. Or another example
10260 would be an array whose bounds can only be known at run time.
10262 The following description is a general guide as to what should be
10263 done (and what should NOT be done) in order to evaluate an expression
10264 involving such types, and when. This does not cover how the semantic
10265 information is encoded by GNAT as this is covered separatly. For the
10266 document used as the reference for the GNAT encoding, see exp_dbug.ads
10267 in the GNAT sources.
10269 Ideally, we should embed each part of this description next to its
10270 associated code. Unfortunately, the amount of code is so vast right
10271 now that it's hard to see whether the code handling a particular
10272 situation might be duplicated or not. One day, when the code is
10273 cleaned up, this guide might become redundant with the comments
10274 inserted in the code, and we might want to remove it.
10276 2. ``Fixing'' an Entity, the Simple Case:
10277 -----------------------------------------
10279 When evaluating Ada expressions, the tricky issue is that they may
10280 reference entities whose type contents and size are not statically
10281 known. Consider for instance a variant record:
10283 type Rec (Empty : Boolean := True) is record
10286 when False => Value : Integer;
10289 Yes : Rec := (Empty => False, Value => 1);
10290 No : Rec := (empty => True);
10292 The size and contents of that record depends on the value of the
10293 descriminant (Rec.Empty). At this point, neither the debugging
10294 information nor the associated type structure in GDB are able to
10295 express such dynamic types. So what the debugger does is to create
10296 "fixed" versions of the type that applies to the specific object.
10297 We also informally refer to this opperation as "fixing" an object,
10298 which means creating its associated fixed type.
10300 Example: when printing the value of variable "Yes" above, its fixed
10301 type would look like this:
10308 On the other hand, if we printed the value of "No", its fixed type
10315 Things become a little more complicated when trying to fix an entity
10316 with a dynamic type that directly contains another dynamic type,
10317 such as an array of variant records, for instance. There are
10318 two possible cases: Arrays, and records.
10320 3. ``Fixing'' Arrays:
10321 ---------------------
10323 The type structure in GDB describes an array in terms of its bounds,
10324 and the type of its elements. By design, all elements in the array
10325 have the same type and we cannot represent an array of variant elements
10326 using the current type structure in GDB. When fixing an array,
10327 we cannot fix the array element, as we would potentially need one
10328 fixed type per element of the array. As a result, the best we can do
10329 when fixing an array is to produce an array whose bounds and size
10330 are correct (allowing us to read it from memory), but without having
10331 touched its element type. Fixing each element will be done later,
10332 when (if) necessary.
10334 Arrays are a little simpler to handle than records, because the same
10335 amount of memory is allocated for each element of the array, even if
10336 the amount of space actually used by each element differs from element
10337 to element. Consider for instance the following array of type Rec:
10339 type Rec_Array is array (1 .. 2) of Rec;
10341 The actual amount of memory occupied by each element might be different
10342 from element to element, depending on the value of their discriminant.
10343 But the amount of space reserved for each element in the array remains
10344 fixed regardless. So we simply need to compute that size using
10345 the debugging information available, from which we can then determine
10346 the array size (we multiply the number of elements of the array by
10347 the size of each element).
10349 The simplest case is when we have an array of a constrained element
10350 type. For instance, consider the following type declarations:
10352 type Bounded_String (Max_Size : Integer) is
10354 Buffer : String (1 .. Max_Size);
10356 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10358 In this case, the compiler describes the array as an array of
10359 variable-size elements (identified by its XVS suffix) for which
10360 the size can be read in the parallel XVZ variable.
10362 In the case of an array of an unconstrained element type, the compiler
10363 wraps the array element inside a private PAD type. This type should not
10364 be shown to the user, and must be "unwrap"'ed before printing. Note
10365 that we also use the adjective "aligner" in our code to designate
10366 these wrapper types.
10368 In some cases, the size allocated for each element is statically
10369 known. In that case, the PAD type already has the correct size,
10370 and the array element should remain unfixed.
10372 But there are cases when this size is not statically known.
10373 For instance, assuming that "Five" is an integer variable:
10375 type Dynamic is array (1 .. Five) of Integer;
10376 type Wrapper (Has_Length : Boolean := False) is record
10379 when True => Length : Integer;
10380 when False => null;
10383 type Wrapper_Array is array (1 .. 2) of Wrapper;
10385 Hello : Wrapper_Array := (others => (Has_Length => True,
10386 Data => (others => 17),
10390 The debugging info would describe variable Hello as being an
10391 array of a PAD type. The size of that PAD type is not statically
10392 known, but can be determined using a parallel XVZ variable.
10393 In that case, a copy of the PAD type with the correct size should
10394 be used for the fixed array.
10396 3. ``Fixing'' record type objects:
10397 ----------------------------------
10399 Things are slightly different from arrays in the case of dynamic
10400 record types. In this case, in order to compute the associated
10401 fixed type, we need to determine the size and offset of each of
10402 its components. This, in turn, requires us to compute the fixed
10403 type of each of these components.
10405 Consider for instance the example:
10407 type Bounded_String (Max_Size : Natural) is record
10408 Str : String (1 .. Max_Size);
10411 My_String : Bounded_String (Max_Size => 10);
10413 In that case, the position of field "Length" depends on the size
10414 of field Str, which itself depends on the value of the Max_Size
10415 discriminant. In order to fix the type of variable My_String,
10416 we need to fix the type of field Str. Therefore, fixing a variant
10417 record requires us to fix each of its components.
10419 However, if a component does not have a dynamic size, the component
10420 should not be fixed. In particular, fields that use a PAD type
10421 should not fixed. Here is an example where this might happen
10422 (assuming type Rec above):
10424 type Container (Big : Boolean) is record
10428 when True => Another : Integer;
10429 when False => null;
10432 My_Container : Container := (Big => False,
10433 First => (Empty => True),
10436 In that example, the compiler creates a PAD type for component First,
10437 whose size is constant, and then positions the component After just
10438 right after it. The offset of component After is therefore constant
10441 The debugger computes the position of each field based on an algorithm
10442 that uses, among other things, the actual position and size of the field
10443 preceding it. Let's now imagine that the user is trying to print
10444 the value of My_Container. If the type fixing was recursive, we would
10445 end up computing the offset of field After based on the size of the
10446 fixed version of field First. And since in our example First has
10447 only one actual field, the size of the fixed type is actually smaller
10448 than the amount of space allocated to that field, and thus we would
10449 compute the wrong offset of field After.
10451 To make things more complicated, we need to watch out for dynamic
10452 components of variant records (identified by the ___XVL suffix in
10453 the component name). Even if the target type is a PAD type, the size
10454 of that type might not be statically known. So the PAD type needs
10455 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10456 we might end up with the wrong size for our component. This can be
10457 observed with the following type declarations:
10459 type Octal is new Integer range 0 .. 7;
10460 type Octal_Array is array (Positive range <>) of Octal;
10461 pragma Pack (Octal_Array);
10463 type Octal_Buffer (Size : Positive) is record
10464 Buffer : Octal_Array (1 .. Size);
10468 In that case, Buffer is a PAD type whose size is unset and needs
10469 to be computed by fixing the unwrapped type.
10471 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10472 ----------------------------------------------------------
10474 Lastly, when should the sub-elements of an entity that remained unfixed
10475 thus far, be actually fixed?
10477 The answer is: Only when referencing that element. For instance
10478 when selecting one component of a record, this specific component
10479 should be fixed at that point in time. Or when printing the value
10480 of a record, each component should be fixed before its value gets
10481 printed. Similarly for arrays, the element of the array should be
10482 fixed when printing each element of the array, or when extracting
10483 one element out of that array. On the other hand, fixing should
10484 not be performed on the elements when taking a slice of an array!
10486 Note that one of the side effects of miscomputing the offset and
10487 size of each field is that we end up also miscomputing the size
10488 of the containing type. This can have adverse results when computing
10489 the value of an entity. GDB fetches the value of an entity based
10490 on the size of its type, and thus a wrong size causes GDB to fetch
10491 the wrong amount of memory. In the case where the computed size is
10492 too small, GDB fetches too little data to print the value of our
10493 entity. Results in this case are unpredictable, as we usually read
10494 past the buffer containing the data =:-o. */
10496 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10497 for that subexpression cast to TO_TYPE. Advance *POS over the
10501 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10502 enum noside noside, struct type *to_type)
10506 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10507 || exp->elts[pc].opcode == OP_VAR_VALUE)
10512 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10515 return value_zero (to_type, not_lval);
10517 val = evaluate_var_msym_value (noside,
10518 exp->elts[pc + 1].objfile,
10519 exp->elts[pc + 2].msymbol);
10522 val = evaluate_var_value (noside,
10523 exp->elts[pc + 1].block,
10524 exp->elts[pc + 2].symbol);
10526 if (noside == EVAL_SKIP)
10527 return eval_skip_value (exp);
10529 val = ada_value_cast (to_type, val);
10531 /* Follow the Ada language semantics that do not allow taking
10532 an address of the result of a cast (view conversion in Ada). */
10533 if (VALUE_LVAL (val) == lval_memory)
10535 if (value_lazy (val))
10536 value_fetch_lazy (val);
10537 VALUE_LVAL (val) = not_lval;
10542 value *val = evaluate_subexp (to_type, exp, pos, noside);
10543 if (noside == EVAL_SKIP)
10544 return eval_skip_value (exp);
10545 return ada_value_cast (to_type, val);
10548 /* Implement the evaluate_exp routine in the exp_descriptor structure
10549 for the Ada language. */
10551 static struct value *
10552 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10553 int *pos, enum noside noside)
10555 enum exp_opcode op;
10559 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10562 struct value **argvec;
10566 op = exp->elts[pc].opcode;
10572 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10574 if (noside == EVAL_NORMAL)
10575 arg1 = unwrap_value (arg1);
10577 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10578 then we need to perform the conversion manually, because
10579 evaluate_subexp_standard doesn't do it. This conversion is
10580 necessary in Ada because the different kinds of float/fixed
10581 types in Ada have different representations.
10583 Similarly, we need to perform the conversion from OP_LONG
10585 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10586 arg1 = ada_value_cast (expect_type, arg1);
10592 struct value *result;
10595 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10596 /* The result type will have code OP_STRING, bashed there from
10597 OP_ARRAY. Bash it back. */
10598 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10599 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10605 type = exp->elts[pc + 1].type;
10606 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10610 type = exp->elts[pc + 1].type;
10611 return ada_evaluate_subexp (type, exp, pos, noside);
10614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10615 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10617 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10618 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10620 return ada_value_assign (arg1, arg1);
10622 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10623 except if the lhs of our assignment is a convenience variable.
10624 In the case of assigning to a convenience variable, the lhs
10625 should be exactly the result of the evaluation of the rhs. */
10626 type = value_type (arg1);
10627 if (VALUE_LVAL (arg1) == lval_internalvar)
10629 arg2 = evaluate_subexp (type, exp, pos, noside);
10630 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10632 if (ada_is_fixed_point_type (value_type (arg1)))
10633 arg2 = cast_to_fixed (value_type (arg1), arg2);
10634 else if (ada_is_fixed_point_type (value_type (arg2)))
10636 (_("Fixed-point values must be assigned to fixed-point variables"));
10638 arg2 = coerce_for_assign (value_type (arg1), arg2);
10639 return ada_value_assign (arg1, arg2);
10642 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10643 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10646 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10647 return (value_from_longest
10648 (value_type (arg1),
10649 value_as_long (arg1) + value_as_long (arg2)));
10650 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10651 return (value_from_longest
10652 (value_type (arg2),
10653 value_as_long (arg1) + value_as_long (arg2)));
10654 if ((ada_is_fixed_point_type (value_type (arg1))
10655 || ada_is_fixed_point_type (value_type (arg2)))
10656 && value_type (arg1) != value_type (arg2))
10657 error (_("Operands of fixed-point addition must have the same type"));
10658 /* Do the addition, and cast the result to the type of the first
10659 argument. We cannot cast the result to a reference type, so if
10660 ARG1 is a reference type, find its underlying type. */
10661 type = value_type (arg1);
10662 while (TYPE_CODE (type) == TYPE_CODE_REF)
10663 type = TYPE_TARGET_TYPE (type);
10664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10665 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10668 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10669 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10670 if (noside == EVAL_SKIP)
10672 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10673 return (value_from_longest
10674 (value_type (arg1),
10675 value_as_long (arg1) - value_as_long (arg2)));
10676 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10677 return (value_from_longest
10678 (value_type (arg2),
10679 value_as_long (arg1) - value_as_long (arg2)));
10680 if ((ada_is_fixed_point_type (value_type (arg1))
10681 || ada_is_fixed_point_type (value_type (arg2)))
10682 && value_type (arg1) != value_type (arg2))
10683 error (_("Operands of fixed-point subtraction "
10684 "must have the same type"));
10685 /* Do the substraction, and cast the result to the type of the first
10686 argument. We cannot cast the result to a reference type, so if
10687 ARG1 is a reference type, find its underlying type. */
10688 type = value_type (arg1);
10689 while (TYPE_CODE (type) == TYPE_CODE_REF)
10690 type = TYPE_TARGET_TYPE (type);
10691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10700 if (noside == EVAL_SKIP)
10702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705 return value_zero (value_type (arg1), not_lval);
10709 type = builtin_type (exp->gdbarch)->builtin_double;
10710 if (ada_is_fixed_point_type (value_type (arg1)))
10711 arg1 = cast_from_fixed (type, arg1);
10712 if (ada_is_fixed_point_type (value_type (arg2)))
10713 arg2 = cast_from_fixed (type, arg2);
10714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10715 return ada_value_binop (arg1, arg2, op);
10719 case BINOP_NOTEQUAL:
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729 tem = ada_value_equal (arg1, arg2);
10731 if (op == BINOP_NOTEQUAL)
10733 type = language_bool_type (exp->language_defn, exp->gdbarch);
10734 return value_from_longest (type, (LONGEST) tem);
10737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10740 else if (ada_is_fixed_point_type (value_type (arg1)))
10741 return value_cast (value_type (arg1), value_neg (arg1));
10744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10745 return value_neg (arg1);
10748 case BINOP_LOGICAL_AND:
10749 case BINOP_LOGICAL_OR:
10750 case UNOP_LOGICAL_NOT:
10755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10756 type = language_bool_type (exp->language_defn, exp->gdbarch);
10757 return value_cast (type, val);
10760 case BINOP_BITWISE_AND:
10761 case BINOP_BITWISE_IOR:
10762 case BINOP_BITWISE_XOR:
10766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10770 return value_cast (value_type (arg1), val);
10776 if (noside == EVAL_SKIP)
10782 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10783 /* Only encountered when an unresolved symbol occurs in a
10784 context other than a function call, in which case, it is
10786 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10787 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10791 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10792 /* Check to see if this is a tagged type. We also need to handle
10793 the case where the type is a reference to a tagged type, but
10794 we have to be careful to exclude pointers to tagged types.
10795 The latter should be shown as usual (as a pointer), whereas
10796 a reference should mostly be transparent to the user. */
10797 if (ada_is_tagged_type (type, 0)
10798 || (TYPE_CODE (type) == TYPE_CODE_REF
10799 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10801 /* Tagged types are a little special in the fact that the real
10802 type is dynamic and can only be determined by inspecting the
10803 object's tag. This means that we need to get the object's
10804 value first (EVAL_NORMAL) and then extract the actual object
10807 Note that we cannot skip the final step where we extract
10808 the object type from its tag, because the EVAL_NORMAL phase
10809 results in dynamic components being resolved into fixed ones.
10810 This can cause problems when trying to print the type
10811 description of tagged types whose parent has a dynamic size:
10812 We use the type name of the "_parent" component in order
10813 to print the name of the ancestor type in the type description.
10814 If that component had a dynamic size, the resolution into
10815 a fixed type would result in the loss of that type name,
10816 thus preventing us from printing the name of the ancestor
10817 type in the type description. */
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10820 if (TYPE_CODE (type) != TYPE_CODE_REF)
10822 struct type *actual_type;
10824 actual_type = type_from_tag (ada_value_tag (arg1));
10825 if (actual_type == NULL)
10826 /* If, for some reason, we were unable to determine
10827 the actual type from the tag, then use the static
10828 approximation that we just computed as a fallback.
10829 This can happen if the debugging information is
10830 incomplete, for instance. */
10831 actual_type = type;
10832 return value_zero (actual_type, not_lval);
10836 /* In the case of a ref, ada_coerce_ref takes care
10837 of determining the actual type. But the evaluation
10838 should return a ref as it should be valid to ask
10839 for its address; so rebuild a ref after coerce. */
10840 arg1 = ada_coerce_ref (arg1);
10841 return value_ref (arg1, TYPE_CODE_REF);
10845 /* Records and unions for which GNAT encodings have been
10846 generated need to be statically fixed as well.
10847 Otherwise, non-static fixing produces a type where
10848 all dynamic properties are removed, which prevents "ptype"
10849 from being able to completely describe the type.
10850 For instance, a case statement in a variant record would be
10851 replaced by the relevant components based on the actual
10852 value of the discriminants. */
10853 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10854 && dynamic_template_type (type) != NULL)
10855 || (TYPE_CODE (type) == TYPE_CODE_UNION
10856 && ada_find_parallel_type (type, "___XVU") != NULL))
10859 return value_zero (to_static_fixed_type (type), not_lval);
10863 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10864 return ada_to_fixed_value (arg1);
10869 /* Allocate arg vector, including space for the function to be
10870 called in argvec[0] and a terminating NULL. */
10871 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10872 argvec = XALLOCAVEC (struct value *, nargs + 2);
10874 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10875 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10876 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10877 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10880 for (tem = 0; tem <= nargs; tem += 1)
10881 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10884 if (noside == EVAL_SKIP)
10888 if (ada_is_constrained_packed_array_type
10889 (desc_base_type (value_type (argvec[0]))))
10890 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10891 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10892 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10893 /* This is a packed array that has already been fixed, and
10894 therefore already coerced to a simple array. Nothing further
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10899 /* Make sure we dereference references so that all the code below
10900 feels like it's really handling the referenced value. Wrapping
10901 types (for alignment) may be there, so make sure we strip them as
10903 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10906 && VALUE_LVAL (argvec[0]) == lval_memory)
10907 argvec[0] = value_addr (argvec[0]);
10909 type = ada_check_typedef (value_type (argvec[0]));
10911 /* Ada allows us to implicitly dereference arrays when subscripting
10912 them. So, if this is an array typedef (encoding use for array
10913 access types encoded as fat pointers), strip it now. */
10914 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10915 type = ada_typedef_target_type (type);
10917 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10919 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10921 case TYPE_CODE_FUNC:
10922 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10924 case TYPE_CODE_ARRAY:
10926 case TYPE_CODE_STRUCT:
10927 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10928 argvec[0] = ada_value_ind (argvec[0]);
10929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10932 error (_("cannot subscript or call something of type `%s'"),
10933 ada_type_name (value_type (argvec[0])));
10938 switch (TYPE_CODE (type))
10940 case TYPE_CODE_FUNC:
10941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10943 if (TYPE_TARGET_TYPE (type) == NULL)
10944 error_call_unknown_return_type (NULL);
10945 return allocate_value (TYPE_TARGET_TYPE (type));
10947 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10948 case TYPE_CODE_INTERNAL_FUNCTION:
10949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10950 /* We don't know anything about what the internal
10951 function might return, but we have to return
10953 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10956 return call_internal_function (exp->gdbarch, exp->language_defn,
10957 argvec[0], nargs, argvec + 1);
10959 case TYPE_CODE_STRUCT:
10963 arity = ada_array_arity (type);
10964 type = ada_array_element_type (type, nargs);
10966 error (_("cannot subscript or call a record"));
10967 if (arity != nargs)
10968 error (_("wrong number of subscripts; expecting %d"), arity);
10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10970 return value_zero (ada_aligned_type (type), lval_memory);
10972 unwrap_value (ada_value_subscript
10973 (argvec[0], nargs, argvec + 1));
10975 case TYPE_CODE_ARRAY:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 type = ada_array_element_type (type, nargs);
10980 error (_("element type of array unknown"));
10982 return value_zero (ada_aligned_type (type), lval_memory);
10985 unwrap_value (ada_value_subscript
10986 (ada_coerce_to_simple_array (argvec[0]),
10987 nargs, argvec + 1));
10988 case TYPE_CODE_PTR: /* Pointer to array */
10989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10991 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10992 type = ada_array_element_type (type, nargs);
10994 error (_("element type of array unknown"));
10996 return value_zero (ada_aligned_type (type), lval_memory);
10999 unwrap_value (ada_value_ptr_subscript (argvec[0],
11000 nargs, argvec + 1));
11003 error (_("Attempt to index or call something other than an "
11004 "array or function"));
11009 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 struct value *low_bound_val =
11011 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 struct value *high_bound_val =
11013 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11015 LONGEST high_bound;
11017 low_bound_val = coerce_ref (low_bound_val);
11018 high_bound_val = coerce_ref (high_bound_val);
11019 low_bound = value_as_long (low_bound_val);
11020 high_bound = value_as_long (high_bound_val);
11022 if (noside == EVAL_SKIP)
11025 /* If this is a reference to an aligner type, then remove all
11027 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11028 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11029 TYPE_TARGET_TYPE (value_type (array)) =
11030 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11032 if (ada_is_constrained_packed_array_type (value_type (array)))
11033 error (_("cannot slice a packed array"));
11035 /* If this is a reference to an array or an array lvalue,
11036 convert to a pointer. */
11037 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11038 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11039 && VALUE_LVAL (array) == lval_memory))
11040 array = value_addr (array);
11042 if (noside == EVAL_AVOID_SIDE_EFFECTS
11043 && ada_is_array_descriptor_type (ada_check_typedef
11044 (value_type (array))))
11045 return empty_array (ada_type_of_array (array, 0), low_bound);
11047 array = ada_coerce_to_simple_array_ptr (array);
11049 /* If we have more than one level of pointer indirection,
11050 dereference the value until we get only one level. */
11051 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11052 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11054 array = value_ind (array);
11056 /* Make sure we really do have an array type before going further,
11057 to avoid a SEGV when trying to get the index type or the target
11058 type later down the road if the debug info generated by
11059 the compiler is incorrect or incomplete. */
11060 if (!ada_is_simple_array_type (value_type (array)))
11061 error (_("cannot take slice of non-array"));
11063 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11066 struct type *type0 = ada_check_typedef (value_type (array));
11068 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11069 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11072 struct type *arr_type0 =
11073 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11075 return ada_value_slice_from_ptr (array, arr_type0,
11076 longest_to_int (low_bound),
11077 longest_to_int (high_bound));
11080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11082 else if (high_bound < low_bound)
11083 return empty_array (value_type (array), low_bound);
11085 return ada_value_slice (array, longest_to_int (low_bound),
11086 longest_to_int (high_bound));
11089 case UNOP_IN_RANGE:
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11092 type = check_typedef (exp->elts[pc + 1].type);
11094 if (noside == EVAL_SKIP)
11097 switch (TYPE_CODE (type))
11100 lim_warning (_("Membership test incompletely implemented; "
11101 "always returns true"));
11102 type = language_bool_type (exp->language_defn, exp->gdbarch);
11103 return value_from_longest (type, (LONGEST) 1);
11105 case TYPE_CODE_RANGE:
11106 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11107 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11110 type = language_bool_type (exp->language_defn, exp->gdbarch);
11112 value_from_longest (type,
11113 (value_less (arg1, arg3)
11114 || value_equal (arg1, arg3))
11115 && (value_less (arg2, arg1)
11116 || value_equal (arg2, arg1)));
11119 case BINOP_IN_BOUNDS:
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11124 if (noside == EVAL_SKIP)
11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return value_zero (type, not_lval);
11133 tem = longest_to_int (exp->elts[pc + 1].longconst);
11135 type = ada_index_type (value_type (arg2), tem, "range");
11137 type = value_type (arg1);
11139 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11140 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11144 type = language_bool_type (exp->language_defn, exp->gdbarch);
11146 value_from_longest (type,
11147 (value_less (arg1, arg3)
11148 || value_equal (arg1, arg3))
11149 && (value_less (arg2, arg1)
11150 || value_equal (arg2, arg1)));
11152 case TERNOP_IN_RANGE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 if (noside == EVAL_SKIP)
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
11164 value_from_longest (type,
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11172 case OP_ATR_LENGTH:
11174 struct type *type_arg;
11176 if (exp->elts[*pos].opcode == OP_TYPE)
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11180 type_arg = check_typedef (exp->elts[pc + 2].type);
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11188 if (exp->elts[*pos].opcode != OP_LONG)
11189 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11190 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11193 if (noside == EVAL_SKIP)
11196 if (type_arg == NULL)
11198 arg1 = ada_coerce_ref (arg1);
11200 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11201 arg1 = ada_coerce_to_simple_array (arg1);
11203 if (op == OP_ATR_LENGTH)
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11207 type = ada_index_type (value_type (arg1), tem,
11208 ada_attribute_name (op));
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11214 return allocate_value (type);
11218 default: /* Should never happen. */
11219 error (_("unexpected attribute encountered"));
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 0));
11224 return value_from_longest
11225 (type, ada_array_bound (arg1, tem, 1));
11226 case OP_ATR_LENGTH:
11227 return value_from_longest
11228 (type, ada_array_length (arg1, tem));
11231 else if (discrete_type_p (type_arg))
11233 struct type *range_type;
11234 const char *name = ada_type_name (type_arg);
11237 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11238 range_type = to_fixed_range_type (type_arg, NULL);
11239 if (range_type == NULL)
11240 range_type = type_arg;
11244 error (_("unexpected attribute encountered"));
11246 return value_from_longest
11247 (range_type, ada_discrete_type_low_bound (range_type));
11249 return value_from_longest
11250 (range_type, ada_discrete_type_high_bound (range_type));
11251 case OP_ATR_LENGTH:
11252 error (_("the 'length attribute applies only to array types"));
11255 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11256 error (_("unimplemented type attribute"));
11261 if (ada_is_constrained_packed_array_type (type_arg))
11262 type_arg = decode_constrained_packed_array_type (type_arg);
11264 if (op == OP_ATR_LENGTH)
11265 type = builtin_type (exp->gdbarch)->builtin_int;
11268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11270 type = builtin_type (exp->gdbarch)->builtin_int;
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return allocate_value (type);
11279 error (_("unexpected attribute encountered"));
11281 low = ada_array_bound_from_type (type_arg, tem, 0);
11282 return value_from_longest (type, low);
11284 high = ada_array_bound_from_type (type_arg, tem, 1);
11285 return value_from_longest (type, high);
11286 case OP_ATR_LENGTH:
11287 low = ada_array_bound_from_type (type_arg, tem, 0);
11288 high = ada_array_bound_from_type (type_arg, tem, 1);
11289 return value_from_longest (type, high - low + 1);
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 if (noside == EVAL_SKIP)
11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11300 return value_zero (ada_tag_type (arg1), not_lval);
11302 return ada_value_tag (arg1);
11306 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309 if (noside == EVAL_SKIP)
11311 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11312 return value_zero (value_type (arg1), not_lval);
11315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11316 return value_binop (arg1, arg2,
11317 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11320 case OP_ATR_MODULUS:
11322 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11325 if (noside == EVAL_SKIP)
11328 if (!ada_is_modular_type (type_arg))
11329 error (_("'modulus must be applied to modular type"));
11331 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11332 ada_modulus (type_arg));
11337 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
11341 type = builtin_type (exp->gdbarch)->builtin_int;
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return value_zero (type, not_lval);
11345 return value_pos_atr (type, arg1);
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 type = value_type (arg1);
11351 /* If the argument is a reference, then dereference its type, since
11352 the user is really asking for the size of the actual object,
11353 not the size of the pointer. */
11354 if (TYPE_CODE (type) == TYPE_CODE_REF)
11355 type = TYPE_TARGET_TYPE (type);
11357 if (noside == EVAL_SKIP)
11359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11362 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11363 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 type = exp->elts[pc + 2].type;
11369 if (noside == EVAL_SKIP)
11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 return value_zero (type, not_lval);
11374 return value_val_atr (type, arg1);
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11379 if (noside == EVAL_SKIP)
11381 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11382 return value_zero (value_type (arg1), not_lval);
11385 /* For integer exponentiation operations,
11386 only promote the first argument. */
11387 if (is_integral_type (value_type (arg2)))
11388 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11392 return value_binop (arg1, arg2, op);
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11404 if (noside == EVAL_SKIP)
11406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11407 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11408 return value_neg (arg1);
11413 preeval_pos = *pos;
11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11415 if (noside == EVAL_SKIP)
11417 type = ada_check_typedef (value_type (arg1));
11418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11420 if (ada_is_array_descriptor_type (type))
11421 /* GDB allows dereferencing GNAT array descriptors. */
11423 struct type *arrType = ada_type_of_array (arg1, 0);
11425 if (arrType == NULL)
11426 error (_("Attempt to dereference null array pointer."));
11427 return value_at_lazy (arrType, 0);
11429 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11430 || TYPE_CODE (type) == TYPE_CODE_REF
11431 /* In C you can dereference an array to get the 1st elt. */
11432 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11434 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11435 only be determined by inspecting the object's tag.
11436 This means that we need to evaluate completely the
11437 expression in order to get its type. */
11439 if ((TYPE_CODE (type) == TYPE_CODE_REF
11440 || TYPE_CODE (type) == TYPE_CODE_PTR)
11441 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11443 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11445 type = value_type (ada_value_ind (arg1));
11449 type = to_static_fixed_type
11451 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11453 ada_ensure_varsize_limit (type);
11454 return value_zero (type, lval_memory);
11456 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11458 /* GDB allows dereferencing an int. */
11459 if (expect_type == NULL)
11460 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11465 to_static_fixed_type (ada_aligned_type (expect_type));
11466 return value_zero (expect_type, lval_memory);
11470 error (_("Attempt to take contents of a non-pointer value."));
11472 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11473 type = ada_check_typedef (value_type (arg1));
11475 if (TYPE_CODE (type) == TYPE_CODE_INT)
11476 /* GDB allows dereferencing an int. If we were given
11477 the expect_type, then use that as the target type.
11478 Otherwise, assume that the target type is an int. */
11480 if (expect_type != NULL)
11481 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11484 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11485 (CORE_ADDR) value_as_address (arg1));
11488 if (ada_is_array_descriptor_type (type))
11489 /* GDB allows dereferencing GNAT array descriptors. */
11490 return ada_coerce_to_simple_array (arg1);
11492 return ada_value_ind (arg1);
11494 case STRUCTOP_STRUCT:
11495 tem = longest_to_int (exp->elts[pc + 1].longconst);
11496 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11497 preeval_pos = *pos;
11498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11499 if (noside == EVAL_SKIP)
11501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11503 struct type *type1 = value_type (arg1);
11505 if (ada_is_tagged_type (type1, 1))
11507 type = ada_lookup_struct_elt_type (type1,
11508 &exp->elts[pc + 2].string,
11511 /* If the field is not found, check if it exists in the
11512 extension of this object's type. This means that we
11513 need to evaluate completely the expression. */
11517 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11519 arg1 = ada_value_struct_elt (arg1,
11520 &exp->elts[pc + 2].string,
11522 arg1 = unwrap_value (arg1);
11523 type = value_type (ada_to_fixed_value (arg1));
11528 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11531 return value_zero (ada_aligned_type (type), lval_memory);
11535 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11536 arg1 = unwrap_value (arg1);
11537 return ada_to_fixed_value (arg1);
11541 /* The value is not supposed to be used. This is here to make it
11542 easier to accommodate expressions that contain types. */
11544 if (noside == EVAL_SKIP)
11546 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11547 return allocate_value (exp->elts[pc + 1].type);
11549 error (_("Attempt to use a type name as an expression"));
11554 case OP_DISCRETE_RANGE:
11555 case OP_POSITIONAL:
11557 if (noside == EVAL_NORMAL)
11561 error (_("Undefined name, ambiguous name, or renaming used in "
11562 "component association: %s."), &exp->elts[pc+2].string);
11564 error (_("Aggregates only allowed on the right of an assignment"));
11566 internal_error (__FILE__, __LINE__,
11567 _("aggregate apparently mangled"));
11570 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11572 for (tem = 0; tem < nargs; tem += 1)
11573 ada_evaluate_subexp (NULL, exp, pos, noside);
11578 return eval_skip_value (exp);
11584 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11585 type name that encodes the 'small and 'delta information.
11586 Otherwise, return NULL. */
11588 static const char *
11589 fixed_type_info (struct type *type)
11591 const char *name = ada_type_name (type);
11592 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11594 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11596 const char *tail = strstr (name, "___XF_");
11603 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11604 return fixed_type_info (TYPE_TARGET_TYPE (type));
11609 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11612 ada_is_fixed_point_type (struct type *type)
11614 return fixed_type_info (type) != NULL;
11617 /* Return non-zero iff TYPE represents a System.Address type. */
11620 ada_is_system_address_type (struct type *type)
11622 return (TYPE_NAME (type)
11623 && strcmp (TYPE_NAME (type), "system__address") == 0);
11626 /* Assuming that TYPE is the representation of an Ada fixed-point
11627 type, return the target floating-point type to be used to represent
11628 of this type during internal computation. */
11630 static struct type *
11631 ada_scaling_type (struct type *type)
11633 return builtin_type (get_type_arch (type))->builtin_long_double;
11636 /* Assuming that TYPE is the representation of an Ada fixed-point
11637 type, return its delta, or NULL if the type is malformed and the
11638 delta cannot be determined. */
11641 ada_delta (struct type *type)
11643 const char *encoding = fixed_type_info (type);
11644 struct type *scale_type = ada_scaling_type (type);
11646 long long num, den;
11648 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11651 return value_binop (value_from_longest (scale_type, num),
11652 value_from_longest (scale_type, den), BINOP_DIV);
11655 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11656 factor ('SMALL value) associated with the type. */
11659 ada_scaling_factor (struct type *type)
11661 const char *encoding = fixed_type_info (type);
11662 struct type *scale_type = ada_scaling_type (type);
11664 long long num0, den0, num1, den1;
11667 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11668 &num0, &den0, &num1, &den1);
11671 return value_from_longest (scale_type, 1);
11673 return value_binop (value_from_longest (scale_type, num1),
11674 value_from_longest (scale_type, den1), BINOP_DIV);
11676 return value_binop (value_from_longest (scale_type, num0),
11677 value_from_longest (scale_type, den0), BINOP_DIV);
11684 /* Scan STR beginning at position K for a discriminant name, and
11685 return the value of that discriminant field of DVAL in *PX. If
11686 PNEW_K is not null, put the position of the character beyond the
11687 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11688 not alter *PX and *PNEW_K if unsuccessful. */
11691 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11694 static char *bound_buffer = NULL;
11695 static size_t bound_buffer_len = 0;
11696 const char *pstart, *pend, *bound;
11697 struct value *bound_val;
11699 if (dval == NULL || str == NULL || str[k] == '\0')
11703 pend = strstr (pstart, "__");
11707 k += strlen (bound);
11711 int len = pend - pstart;
11713 /* Strip __ and beyond. */
11714 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11715 strncpy (bound_buffer, pstart, len);
11716 bound_buffer[len] = '\0';
11718 bound = bound_buffer;
11722 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11723 if (bound_val == NULL)
11726 *px = value_as_long (bound_val);
11727 if (pnew_k != NULL)
11732 /* Value of variable named NAME in the current environment. If
11733 no such variable found, then if ERR_MSG is null, returns 0, and
11734 otherwise causes an error with message ERR_MSG. */
11736 static struct value *
11737 get_var_value (const char *name, const char *err_msg)
11739 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11741 std::vector<struct block_symbol> syms;
11742 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11743 get_selected_block (0),
11744 VAR_DOMAIN, &syms, 1);
11748 if (err_msg == NULL)
11751 error (("%s"), err_msg);
11754 return value_of_variable (syms[0].symbol, syms[0].block);
11757 /* Value of integer variable named NAME in the current environment.
11758 If no such variable is found, returns false. Otherwise, sets VALUE
11759 to the variable's value and returns true. */
11762 get_int_var_value (const char *name, LONGEST &value)
11764 struct value *var_val = get_var_value (name, 0);
11769 value = value_as_long (var_val);
11774 /* Return a range type whose base type is that of the range type named
11775 NAME in the current environment, and whose bounds are calculated
11776 from NAME according to the GNAT range encoding conventions.
11777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11778 corresponding range type from debug information; fall back to using it
11779 if symbol lookup fails. If a new type must be created, allocate it
11780 like ORIG_TYPE was. The bounds information, in general, is encoded
11781 in NAME, the base type given in the named range type. */
11783 static struct type *
11784 to_fixed_range_type (struct type *raw_type, struct value *dval)
11787 struct type *base_type;
11788 const char *subtype_info;
11790 gdb_assert (raw_type != NULL);
11791 gdb_assert (TYPE_NAME (raw_type) != NULL);
11793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11794 base_type = TYPE_TARGET_TYPE (raw_type);
11796 base_type = raw_type;
11798 name = TYPE_NAME (raw_type);
11799 subtype_info = strstr (name, "___XD");
11800 if (subtype_info == NULL)
11802 LONGEST L = ada_discrete_type_low_bound (raw_type);
11803 LONGEST U = ada_discrete_type_high_bound (raw_type);
11805 if (L < INT_MIN || U > INT_MAX)
11808 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11813 static char *name_buf = NULL;
11814 static size_t name_len = 0;
11815 int prefix_len = subtype_info - name;
11818 const char *bounds_str;
11821 GROW_VECT (name_buf, name_len, prefix_len + 5);
11822 strncpy (name_buf, name, prefix_len);
11823 name_buf[prefix_len] = '\0';
11826 bounds_str = strchr (subtype_info, '_');
11829 if (*subtype_info == 'L')
11831 if (!ada_scan_number (bounds_str, n, &L, &n)
11832 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11834 if (bounds_str[n] == '_')
11836 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11842 strcpy (name_buf + prefix_len, "___L");
11843 if (!get_int_var_value (name_buf, L))
11845 lim_warning (_("Unknown lower bound, using 1."));
11850 if (*subtype_info == 'U')
11852 if (!ada_scan_number (bounds_str, n, &U, &n)
11853 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11858 strcpy (name_buf + prefix_len, "___U");
11859 if (!get_int_var_value (name_buf, U))
11861 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11866 type = create_static_range_type (alloc_type_copy (raw_type),
11868 /* create_static_range_type alters the resulting type's length
11869 to match the size of the base_type, which is not what we want.
11870 Set it back to the original range type's length. */
11871 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11872 TYPE_NAME (type) = name;
11877 /* True iff NAME is the name of a range type. */
11880 ada_is_range_type_name (const char *name)
11882 return (name != NULL && strstr (name, "___XD"));
11886 /* Modular types */
11888 /* True iff TYPE is an Ada modular type. */
11891 ada_is_modular_type (struct type *type)
11893 struct type *subranged_type = get_base_type (type);
11895 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11896 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11897 && TYPE_UNSIGNED (subranged_type));
11900 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11903 ada_modulus (struct type *type)
11905 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11909 /* Ada exception catchpoint support:
11910 ---------------------------------
11912 We support 3 kinds of exception catchpoints:
11913 . catchpoints on Ada exceptions
11914 . catchpoints on unhandled Ada exceptions
11915 . catchpoints on failed assertions
11917 Exceptions raised during failed assertions, or unhandled exceptions
11918 could perfectly be caught with the general catchpoint on Ada exceptions.
11919 However, we can easily differentiate these two special cases, and having
11920 the option to distinguish these two cases from the rest can be useful
11921 to zero-in on certain situations.
11923 Exception catchpoints are a specialized form of breakpoint,
11924 since they rely on inserting breakpoints inside known routines
11925 of the GNAT runtime. The implementation therefore uses a standard
11926 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11929 Support in the runtime for exception catchpoints have been changed
11930 a few times already, and these changes affect the implementation
11931 of these catchpoints. In order to be able to support several
11932 variants of the runtime, we use a sniffer that will determine
11933 the runtime variant used by the program being debugged. */
11935 /* Ada's standard exceptions.
11937 The Ada 83 standard also defined Numeric_Error. But there so many
11938 situations where it was unclear from the Ada 83 Reference Manual
11939 (RM) whether Constraint_Error or Numeric_Error should be raised,
11940 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11941 Interpretation saying that anytime the RM says that Numeric_Error
11942 should be raised, the implementation may raise Constraint_Error.
11943 Ada 95 went one step further and pretty much removed Numeric_Error
11944 from the list of standard exceptions (it made it a renaming of
11945 Constraint_Error, to help preserve compatibility when compiling
11946 an Ada83 compiler). As such, we do not include Numeric_Error from
11947 this list of standard exceptions. */
11949 static const char *standard_exc[] = {
11950 "constraint_error",
11956 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11958 /* A structure that describes how to support exception catchpoints
11959 for a given executable. */
11961 struct exception_support_info
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exceptions. */
11965 const char *catch_exception_sym;
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on unhandled exceptions. */
11969 const char *catch_exception_unhandled_sym;
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on failed assertions. */
11973 const char *catch_assert_sym;
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on exception handling. */
11977 const char *catch_handlers_sym;
11979 /* Assuming that the inferior just triggered an unhandled exception
11980 catchpoint, this function is responsible for returning the address
11981 in inferior memory where the name of that exception is stored.
11982 Return zero if the address could not be computed. */
11983 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11986 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11987 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11989 /* The following exception support info structure describes how to
11990 implement exception catchpoints with the latest version of the
11991 Ada runtime (as of 2007-03-06). */
11993 static const struct exception_support_info default_exception_support_info =
11995 "__gnat_debug_raise_exception", /* catch_exception_sym */
11996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11997 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11998 "__gnat_begin_handler", /* catch_handlers_sym */
11999 ada_unhandled_exception_name_addr
12002 /* The following exception support info structure describes how to
12003 implement exception catchpoints with a slightly older version
12004 of the Ada runtime. */
12006 static const struct exception_support_info exception_support_info_fallback =
12008 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12009 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12010 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12011 "__gnat_begin_handler", /* catch_handlers_sym */
12012 ada_unhandled_exception_name_addr_from_raise
12015 /* Return nonzero if we can detect the exception support routines
12016 described in EINFO.
12018 This function errors out if an abnormal situation is detected
12019 (for instance, if we find the exception support routines, but
12020 that support is found to be incomplete). */
12023 ada_has_this_exception_support (const struct exception_support_info *einfo)
12025 struct symbol *sym;
12027 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12028 that should be compiled with debugging information. As a result, we
12029 expect to find that symbol in the symtabs. */
12031 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12034 /* Perhaps we did not find our symbol because the Ada runtime was
12035 compiled without debugging info, or simply stripped of it.
12036 It happens on some GNU/Linux distributions for instance, where
12037 users have to install a separate debug package in order to get
12038 the runtime's debugging info. In that situation, let the user
12039 know why we cannot insert an Ada exception catchpoint.
12041 Note: Just for the purpose of inserting our Ada exception
12042 catchpoint, we could rely purely on the associated minimal symbol.
12043 But we would be operating in degraded mode anyway, since we are
12044 still lacking the debugging info needed later on to extract
12045 the name of the exception being raised (this name is printed in
12046 the catchpoint message, and is also used when trying to catch
12047 a specific exception). We do not handle this case for now. */
12048 struct bound_minimal_symbol msym
12049 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12051 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12052 error (_("Your Ada runtime appears to be missing some debugging "
12053 "information.\nCannot insert Ada exception catchpoint "
12054 "in this configuration."));
12059 /* Make sure that the symbol we found corresponds to a function. */
12061 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12062 error (_("Symbol \"%s\" is not a function (class = %d)"),
12063 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12068 /* Inspect the Ada runtime and determine which exception info structure
12069 should be used to provide support for exception catchpoints.
12071 This function will always set the per-inferior exception_info,
12072 or raise an error. */
12075 ada_exception_support_info_sniffer (void)
12077 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12079 /* If the exception info is already known, then no need to recompute it. */
12080 if (data->exception_info != NULL)
12083 /* Check the latest (default) exception support info. */
12084 if (ada_has_this_exception_support (&default_exception_support_info))
12086 data->exception_info = &default_exception_support_info;
12090 /* Try our fallback exception suport info. */
12091 if (ada_has_this_exception_support (&exception_support_info_fallback))
12093 data->exception_info = &exception_support_info_fallback;
12097 /* Sometimes, it is normal for us to not be able to find the routine
12098 we are looking for. This happens when the program is linked with
12099 the shared version of the GNAT runtime, and the program has not been
12100 started yet. Inform the user of these two possible causes if
12103 if (ada_update_initial_language (language_unknown) != language_ada)
12104 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12106 /* If the symbol does not exist, then check that the program is
12107 already started, to make sure that shared libraries have been
12108 loaded. If it is not started, this may mean that the symbol is
12109 in a shared library. */
12111 if (inferior_ptid.pid () == 0)
12112 error (_("Unable to insert catchpoint. Try to start the program first."));
12114 /* At this point, we know that we are debugging an Ada program and
12115 that the inferior has been started, but we still are not able to
12116 find the run-time symbols. That can mean that we are in
12117 configurable run time mode, or that a-except as been optimized
12118 out by the linker... In any case, at this point it is not worth
12119 supporting this feature. */
12121 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12124 /* True iff FRAME is very likely to be that of a function that is
12125 part of the runtime system. This is all very heuristic, but is
12126 intended to be used as advice as to what frames are uninteresting
12130 is_known_support_routine (struct frame_info *frame)
12132 enum language func_lang;
12134 const char *fullname;
12136 /* If this code does not have any debugging information (no symtab),
12137 This cannot be any user code. */
12139 symtab_and_line sal = find_frame_sal (frame);
12140 if (sal.symtab == NULL)
12143 /* If there is a symtab, but the associated source file cannot be
12144 located, then assume this is not user code: Selecting a frame
12145 for which we cannot display the code would not be very helpful
12146 for the user. This should also take care of case such as VxWorks
12147 where the kernel has some debugging info provided for a few units. */
12149 fullname = symtab_to_fullname (sal.symtab);
12150 if (access (fullname, R_OK) != 0)
12153 /* Check the unit filename againt the Ada runtime file naming.
12154 We also check the name of the objfile against the name of some
12155 known system libraries that sometimes come with debugging info
12158 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12160 re_comp (known_runtime_file_name_patterns[i]);
12161 if (re_exec (lbasename (sal.symtab->filename)))
12163 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12164 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12168 /* Check whether the function is a GNAT-generated entity. */
12170 gdb::unique_xmalloc_ptr<char> func_name
12171 = find_frame_funname (frame, &func_lang, NULL);
12172 if (func_name == NULL)
12175 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12177 re_comp (known_auxiliary_function_name_patterns[i]);
12178 if (re_exec (func_name.get ()))
12185 /* Find the first frame that contains debugging information and that is not
12186 part of the Ada run-time, starting from FI and moving upward. */
12189 ada_find_printable_frame (struct frame_info *fi)
12191 for (; fi != NULL; fi = get_prev_frame (fi))
12193 if (!is_known_support_routine (fi))
12202 /* Assuming that the inferior just triggered an unhandled exception
12203 catchpoint, return the address in inferior memory where the name
12204 of the exception is stored.
12206 Return zero if the address could not be computed. */
12209 ada_unhandled_exception_name_addr (void)
12211 return parse_and_eval_address ("e.full_name");
12214 /* Same as ada_unhandled_exception_name_addr, except that this function
12215 should be used when the inferior uses an older version of the runtime,
12216 where the exception name needs to be extracted from a specific frame
12217 several frames up in the callstack. */
12220 ada_unhandled_exception_name_addr_from_raise (void)
12223 struct frame_info *fi;
12224 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12226 /* To determine the name of this exception, we need to select
12227 the frame corresponding to RAISE_SYM_NAME. This frame is
12228 at least 3 levels up, so we simply skip the first 3 frames
12229 without checking the name of their associated function. */
12230 fi = get_current_frame ();
12231 for (frame_level = 0; frame_level < 3; frame_level += 1)
12233 fi = get_prev_frame (fi);
12237 enum language func_lang;
12239 gdb::unique_xmalloc_ptr<char> func_name
12240 = find_frame_funname (fi, &func_lang, NULL);
12241 if (func_name != NULL)
12243 if (strcmp (func_name.get (),
12244 data->exception_info->catch_exception_sym) == 0)
12245 break; /* We found the frame we were looking for... */
12246 fi = get_prev_frame (fi);
12254 return parse_and_eval_address ("id.full_name");
12257 /* Assuming the inferior just triggered an Ada exception catchpoint
12258 (of any type), return the address in inferior memory where the name
12259 of the exception is stored, if applicable.
12261 Assumes the selected frame is the current frame.
12263 Return zero if the address could not be computed, or if not relevant. */
12266 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12267 struct breakpoint *b)
12269 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12273 case ada_catch_exception:
12274 return (parse_and_eval_address ("e.full_name"));
12277 case ada_catch_exception_unhandled:
12278 return data->exception_info->unhandled_exception_name_addr ();
12281 case ada_catch_handlers:
12282 return 0; /* The runtimes does not provide access to the exception
12286 case ada_catch_assert:
12287 return 0; /* Exception name is not relevant in this case. */
12291 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12295 return 0; /* Should never be reached. */
12298 /* Assuming the inferior is stopped at an exception catchpoint,
12299 return the message which was associated to the exception, if
12300 available. Return NULL if the message could not be retrieved.
12302 Note: The exception message can be associated to an exception
12303 either through the use of the Raise_Exception function, or
12304 more simply (Ada 2005 and later), via:
12306 raise Exception_Name with "exception message";
12310 static gdb::unique_xmalloc_ptr<char>
12311 ada_exception_message_1 (void)
12313 struct value *e_msg_val;
12316 /* For runtimes that support this feature, the exception message
12317 is passed as an unbounded string argument called "message". */
12318 e_msg_val = parse_and_eval ("message");
12319 if (e_msg_val == NULL)
12320 return NULL; /* Exception message not supported. */
12322 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12323 gdb_assert (e_msg_val != NULL);
12324 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12326 /* If the message string is empty, then treat it as if there was
12327 no exception message. */
12328 if (e_msg_len <= 0)
12331 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12332 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12333 e_msg.get ()[e_msg_len] = '\0';
12338 /* Same as ada_exception_message_1, except that all exceptions are
12339 contained here (returning NULL instead). */
12341 static gdb::unique_xmalloc_ptr<char>
12342 ada_exception_message (void)
12344 gdb::unique_xmalloc_ptr<char> e_msg;
12348 e_msg = ada_exception_message_1 ();
12350 CATCH (e, RETURN_MASK_ERROR)
12352 e_msg.reset (nullptr);
12359 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12360 any error that ada_exception_name_addr_1 might cause to be thrown.
12361 When an error is intercepted, a warning with the error message is printed,
12362 and zero is returned. */
12365 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12366 struct breakpoint *b)
12368 CORE_ADDR result = 0;
12372 result = ada_exception_name_addr_1 (ex, b);
12375 CATCH (e, RETURN_MASK_ERROR)
12377 warning (_("failed to get exception name: %s"), e.message);
12385 static std::string ada_exception_catchpoint_cond_string
12386 (const char *excep_string,
12387 enum ada_exception_catchpoint_kind ex);
12389 /* Ada catchpoints.
12391 In the case of catchpoints on Ada exceptions, the catchpoint will
12392 stop the target on every exception the program throws. When a user
12393 specifies the name of a specific exception, we translate this
12394 request into a condition expression (in text form), and then parse
12395 it into an expression stored in each of the catchpoint's locations.
12396 We then use this condition to check whether the exception that was
12397 raised is the one the user is interested in. If not, then the
12398 target is resumed again. We store the name of the requested
12399 exception, in order to be able to re-set the condition expression
12400 when symbols change. */
12402 /* An instance of this type is used to represent an Ada catchpoint
12403 breakpoint location. */
12405 class ada_catchpoint_location : public bp_location
12408 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12409 : bp_location (ops, owner)
12412 /* The condition that checks whether the exception that was raised
12413 is the specific exception the user specified on catchpoint
12415 expression_up excep_cond_expr;
12418 /* Implement the DTOR method in the bp_location_ops structure for all
12419 Ada exception catchpoint kinds. */
12422 ada_catchpoint_location_dtor (struct bp_location *bl)
12424 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12426 al->excep_cond_expr.reset ();
12429 /* The vtable to be used in Ada catchpoint locations. */
12431 static const struct bp_location_ops ada_catchpoint_location_ops =
12433 ada_catchpoint_location_dtor
12436 /* An instance of this type is used to represent an Ada catchpoint. */
12438 struct ada_catchpoint : public breakpoint
12440 /* The name of the specific exception the user specified. */
12441 std::string excep_string;
12444 /* Parse the exception condition string in the context of each of the
12445 catchpoint's locations, and store them for later evaluation. */
12448 create_excep_cond_exprs (struct ada_catchpoint *c,
12449 enum ada_exception_catchpoint_kind ex)
12451 struct bp_location *bl;
12453 /* Nothing to do if there's no specific exception to catch. */
12454 if (c->excep_string.empty ())
12457 /* Same if there are no locations... */
12458 if (c->loc == NULL)
12461 /* Compute the condition expression in text form, from the specific
12462 expection we want to catch. */
12463 std::string cond_string
12464 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12466 /* Iterate over all the catchpoint's locations, and parse an
12467 expression for each. */
12468 for (bl = c->loc; bl != NULL; bl = bl->next)
12470 struct ada_catchpoint_location *ada_loc
12471 = (struct ada_catchpoint_location *) bl;
12474 if (!bl->shlib_disabled)
12478 s = cond_string.c_str ();
12481 exp = parse_exp_1 (&s, bl->address,
12482 block_for_pc (bl->address),
12485 CATCH (e, RETURN_MASK_ERROR)
12487 warning (_("failed to reevaluate internal exception condition "
12488 "for catchpoint %d: %s"),
12489 c->number, e.message);
12494 ada_loc->excep_cond_expr = std::move (exp);
12498 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12499 structure for all exception catchpoint kinds. */
12501 static struct bp_location *
12502 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12503 struct breakpoint *self)
12505 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12508 /* Implement the RE_SET method in the breakpoint_ops structure for all
12509 exception catchpoint kinds. */
12512 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12514 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12516 /* Call the base class's method. This updates the catchpoint's
12518 bkpt_breakpoint_ops.re_set (b);
12520 /* Reparse the exception conditional expressions. One for each
12522 create_excep_cond_exprs (c, ex);
12525 /* Returns true if we should stop for this breakpoint hit. If the
12526 user specified a specific exception, we only want to cause a stop
12527 if the program thrown that exception. */
12530 should_stop_exception (const struct bp_location *bl)
12532 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12533 const struct ada_catchpoint_location *ada_loc
12534 = (const struct ada_catchpoint_location *) bl;
12537 /* With no specific exception, should always stop. */
12538 if (c->excep_string.empty ())
12541 if (ada_loc->excep_cond_expr == NULL)
12543 /* We will have a NULL expression if back when we were creating
12544 the expressions, this location's had failed to parse. */
12551 struct value *mark;
12553 mark = value_mark ();
12554 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12555 value_free_to_mark (mark);
12557 CATCH (ex, RETURN_MASK_ALL)
12559 exception_fprintf (gdb_stderr, ex,
12560 _("Error in testing exception condition:\n"));
12567 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12568 for all exception catchpoint kinds. */
12571 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12573 bs->stop = should_stop_exception (bs->bp_location_at);
12576 /* Implement the PRINT_IT method in the breakpoint_ops structure
12577 for all exception catchpoint kinds. */
12579 static enum print_stop_action
12580 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12582 struct ui_out *uiout = current_uiout;
12583 struct breakpoint *b = bs->breakpoint_at;
12585 annotate_catchpoint (b->number);
12587 if (uiout->is_mi_like_p ())
12589 uiout->field_string ("reason",
12590 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12591 uiout->field_string ("disp", bpdisp_text (b->disposition));
12594 uiout->text (b->disposition == disp_del
12595 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12596 uiout->field_int ("bkptno", b->number);
12597 uiout->text (", ");
12599 /* ada_exception_name_addr relies on the selected frame being the
12600 current frame. Need to do this here because this function may be
12601 called more than once when printing a stop, and below, we'll
12602 select the first frame past the Ada run-time (see
12603 ada_find_printable_frame). */
12604 select_frame (get_current_frame ());
12608 case ada_catch_exception:
12609 case ada_catch_exception_unhandled:
12610 case ada_catch_handlers:
12612 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12613 char exception_name[256];
12617 read_memory (addr, (gdb_byte *) exception_name,
12618 sizeof (exception_name) - 1);
12619 exception_name [sizeof (exception_name) - 1] = '\0';
12623 /* For some reason, we were unable to read the exception
12624 name. This could happen if the Runtime was compiled
12625 without debugging info, for instance. In that case,
12626 just replace the exception name by the generic string
12627 "exception" - it will read as "an exception" in the
12628 notification we are about to print. */
12629 memcpy (exception_name, "exception", sizeof ("exception"));
12631 /* In the case of unhandled exception breakpoints, we print
12632 the exception name as "unhandled EXCEPTION_NAME", to make
12633 it clearer to the user which kind of catchpoint just got
12634 hit. We used ui_out_text to make sure that this extra
12635 info does not pollute the exception name in the MI case. */
12636 if (ex == ada_catch_exception_unhandled)
12637 uiout->text ("unhandled ");
12638 uiout->field_string ("exception-name", exception_name);
12641 case ada_catch_assert:
12642 /* In this case, the name of the exception is not really
12643 important. Just print "failed assertion" to make it clearer
12644 that his program just hit an assertion-failure catchpoint.
12645 We used ui_out_text because this info does not belong in
12647 uiout->text ("failed assertion");
12651 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12652 if (exception_message != NULL)
12654 uiout->text (" (");
12655 uiout->field_string ("exception-message", exception_message.get ());
12659 uiout->text (" at ");
12660 ada_find_printable_frame (get_current_frame ());
12662 return PRINT_SRC_AND_LOC;
12665 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12666 for all exception catchpoint kinds. */
12669 print_one_exception (enum ada_exception_catchpoint_kind ex,
12670 struct breakpoint *b, struct bp_location **last_loc)
12672 struct ui_out *uiout = current_uiout;
12673 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12674 struct value_print_options opts;
12676 get_user_print_options (&opts);
12677 if (opts.addressprint)
12679 annotate_field (4);
12680 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12683 annotate_field (5);
12684 *last_loc = b->loc;
12687 case ada_catch_exception:
12688 if (!c->excep_string.empty ())
12690 std::string msg = string_printf (_("`%s' Ada exception"),
12691 c->excep_string.c_str ());
12693 uiout->field_string ("what", msg);
12696 uiout->field_string ("what", "all Ada exceptions");
12700 case ada_catch_exception_unhandled:
12701 uiout->field_string ("what", "unhandled Ada exceptions");
12704 case ada_catch_handlers:
12705 if (!c->excep_string.empty ())
12707 uiout->field_fmt ("what",
12708 _("`%s' Ada exception handlers"),
12709 c->excep_string.c_str ());
12712 uiout->field_string ("what", "all Ada exceptions handlers");
12715 case ada_catch_assert:
12716 uiout->field_string ("what", "failed Ada assertions");
12720 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12725 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12726 for all exception catchpoint kinds. */
12729 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12730 struct breakpoint *b)
12732 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12733 struct ui_out *uiout = current_uiout;
12735 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12736 : _("Catchpoint "));
12737 uiout->field_int ("bkptno", b->number);
12738 uiout->text (": ");
12742 case ada_catch_exception:
12743 if (!c->excep_string.empty ())
12745 std::string info = string_printf (_("`%s' Ada exception"),
12746 c->excep_string.c_str ());
12747 uiout->text (info.c_str ());
12750 uiout->text (_("all Ada exceptions"));
12753 case ada_catch_exception_unhandled:
12754 uiout->text (_("unhandled Ada exceptions"));
12757 case ada_catch_handlers:
12758 if (!c->excep_string.empty ())
12761 = string_printf (_("`%s' Ada exception handlers"),
12762 c->excep_string.c_str ());
12763 uiout->text (info.c_str ());
12766 uiout->text (_("all Ada exceptions handlers"));
12769 case ada_catch_assert:
12770 uiout->text (_("failed Ada assertions"));
12774 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12779 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12780 for all exception catchpoint kinds. */
12783 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12784 struct breakpoint *b, struct ui_file *fp)
12786 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12790 case ada_catch_exception:
12791 fprintf_filtered (fp, "catch exception");
12792 if (!c->excep_string.empty ())
12793 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12796 case ada_catch_exception_unhandled:
12797 fprintf_filtered (fp, "catch exception unhandled");
12800 case ada_catch_handlers:
12801 fprintf_filtered (fp, "catch handlers");
12804 case ada_catch_assert:
12805 fprintf_filtered (fp, "catch assert");
12809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12811 print_recreate_thread (b, fp);
12814 /* Virtual table for "catch exception" breakpoints. */
12816 static struct bp_location *
12817 allocate_location_catch_exception (struct breakpoint *self)
12819 return allocate_location_exception (ada_catch_exception, self);
12823 re_set_catch_exception (struct breakpoint *b)
12825 re_set_exception (ada_catch_exception, b);
12829 check_status_catch_exception (bpstat bs)
12831 check_status_exception (ada_catch_exception, bs);
12834 static enum print_stop_action
12835 print_it_catch_exception (bpstat bs)
12837 return print_it_exception (ada_catch_exception, bs);
12841 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12843 print_one_exception (ada_catch_exception, b, last_loc);
12847 print_mention_catch_exception (struct breakpoint *b)
12849 print_mention_exception (ada_catch_exception, b);
12853 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12855 print_recreate_exception (ada_catch_exception, b, fp);
12858 static struct breakpoint_ops catch_exception_breakpoint_ops;
12860 /* Virtual table for "catch exception unhandled" breakpoints. */
12862 static struct bp_location *
12863 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12865 return allocate_location_exception (ada_catch_exception_unhandled, self);
12869 re_set_catch_exception_unhandled (struct breakpoint *b)
12871 re_set_exception (ada_catch_exception_unhandled, b);
12875 check_status_catch_exception_unhandled (bpstat bs)
12877 check_status_exception (ada_catch_exception_unhandled, bs);
12880 static enum print_stop_action
12881 print_it_catch_exception_unhandled (bpstat bs)
12883 return print_it_exception (ada_catch_exception_unhandled, bs);
12887 print_one_catch_exception_unhandled (struct breakpoint *b,
12888 struct bp_location **last_loc)
12890 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12894 print_mention_catch_exception_unhandled (struct breakpoint *b)
12896 print_mention_exception (ada_catch_exception_unhandled, b);
12900 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12901 struct ui_file *fp)
12903 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12906 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12908 /* Virtual table for "catch assert" breakpoints. */
12910 static struct bp_location *
12911 allocate_location_catch_assert (struct breakpoint *self)
12913 return allocate_location_exception (ada_catch_assert, self);
12917 re_set_catch_assert (struct breakpoint *b)
12919 re_set_exception (ada_catch_assert, b);
12923 check_status_catch_assert (bpstat bs)
12925 check_status_exception (ada_catch_assert, bs);
12928 static enum print_stop_action
12929 print_it_catch_assert (bpstat bs)
12931 return print_it_exception (ada_catch_assert, bs);
12935 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12937 print_one_exception (ada_catch_assert, b, last_loc);
12941 print_mention_catch_assert (struct breakpoint *b)
12943 print_mention_exception (ada_catch_assert, b);
12947 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12949 print_recreate_exception (ada_catch_assert, b, fp);
12952 static struct breakpoint_ops catch_assert_breakpoint_ops;
12954 /* Virtual table for "catch handlers" breakpoints. */
12956 static struct bp_location *
12957 allocate_location_catch_handlers (struct breakpoint *self)
12959 return allocate_location_exception (ada_catch_handlers, self);
12963 re_set_catch_handlers (struct breakpoint *b)
12965 re_set_exception (ada_catch_handlers, b);
12969 check_status_catch_handlers (bpstat bs)
12971 check_status_exception (ada_catch_handlers, bs);
12974 static enum print_stop_action
12975 print_it_catch_handlers (bpstat bs)
12977 return print_it_exception (ada_catch_handlers, bs);
12981 print_one_catch_handlers (struct breakpoint *b,
12982 struct bp_location **last_loc)
12984 print_one_exception (ada_catch_handlers, b, last_loc);
12988 print_mention_catch_handlers (struct breakpoint *b)
12990 print_mention_exception (ada_catch_handlers, b);
12994 print_recreate_catch_handlers (struct breakpoint *b,
12995 struct ui_file *fp)
12997 print_recreate_exception (ada_catch_handlers, b, fp);
13000 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13002 /* Split the arguments specified in a "catch exception" command.
13003 Set EX to the appropriate catchpoint type.
13004 Set EXCEP_STRING to the name of the specific exception if
13005 specified by the user.
13006 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13007 "catch handlers" command. False otherwise.
13008 If a condition is found at the end of the arguments, the condition
13009 expression is stored in COND_STRING (memory must be deallocated
13010 after use). Otherwise COND_STRING is set to NULL. */
13013 catch_ada_exception_command_split (const char *args,
13014 bool is_catch_handlers_cmd,
13015 enum ada_exception_catchpoint_kind *ex,
13016 std::string *excep_string,
13017 std::string *cond_string)
13019 std::string exception_name;
13021 exception_name = extract_arg (&args);
13022 if (exception_name == "if")
13024 /* This is not an exception name; this is the start of a condition
13025 expression for a catchpoint on all exceptions. So, "un-get"
13026 this token, and set exception_name to NULL. */
13027 exception_name.clear ();
13031 /* Check to see if we have a condition. */
13033 args = skip_spaces (args);
13034 if (startswith (args, "if")
13035 && (isspace (args[2]) || args[2] == '\0'))
13038 args = skip_spaces (args);
13040 if (args[0] == '\0')
13041 error (_("Condition missing after `if' keyword"));
13042 *cond_string = args;
13044 args += strlen (args);
13047 /* Check that we do not have any more arguments. Anything else
13050 if (args[0] != '\0')
13051 error (_("Junk at end of expression"));
13053 if (is_catch_handlers_cmd)
13055 /* Catch handling of exceptions. */
13056 *ex = ada_catch_handlers;
13057 *excep_string = exception_name;
13059 else if (exception_name.empty ())
13061 /* Catch all exceptions. */
13062 *ex = ada_catch_exception;
13063 excep_string->clear ();
13065 else if (exception_name == "unhandled")
13067 /* Catch unhandled exceptions. */
13068 *ex = ada_catch_exception_unhandled;
13069 excep_string->clear ();
13073 /* Catch a specific exception. */
13074 *ex = ada_catch_exception;
13075 *excep_string = exception_name;
13079 /* Return the name of the symbol on which we should break in order to
13080 implement a catchpoint of the EX kind. */
13082 static const char *
13083 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13085 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13087 gdb_assert (data->exception_info != NULL);
13091 case ada_catch_exception:
13092 return (data->exception_info->catch_exception_sym);
13094 case ada_catch_exception_unhandled:
13095 return (data->exception_info->catch_exception_unhandled_sym);
13097 case ada_catch_assert:
13098 return (data->exception_info->catch_assert_sym);
13100 case ada_catch_handlers:
13101 return (data->exception_info->catch_handlers_sym);
13104 internal_error (__FILE__, __LINE__,
13105 _("unexpected catchpoint kind (%d)"), ex);
13109 /* Return the breakpoint ops "virtual table" used for catchpoints
13112 static const struct breakpoint_ops *
13113 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13117 case ada_catch_exception:
13118 return (&catch_exception_breakpoint_ops);
13120 case ada_catch_exception_unhandled:
13121 return (&catch_exception_unhandled_breakpoint_ops);
13123 case ada_catch_assert:
13124 return (&catch_assert_breakpoint_ops);
13126 case ada_catch_handlers:
13127 return (&catch_handlers_breakpoint_ops);
13130 internal_error (__FILE__, __LINE__,
13131 _("unexpected catchpoint kind (%d)"), ex);
13135 /* Return the condition that will be used to match the current exception
13136 being raised with the exception that the user wants to catch. This
13137 assumes that this condition is used when the inferior just triggered
13138 an exception catchpoint.
13139 EX: the type of catchpoints used for catching Ada exceptions. */
13142 ada_exception_catchpoint_cond_string (const char *excep_string,
13143 enum ada_exception_catchpoint_kind ex)
13146 bool is_standard_exc = false;
13147 std::string result;
13149 if (ex == ada_catch_handlers)
13151 /* For exception handlers catchpoints, the condition string does
13152 not use the same parameter as for the other exceptions. */
13153 result = ("long_integer (GNAT_GCC_exception_Access"
13154 "(gcc_exception).all.occurrence.id)");
13157 result = "long_integer (e)";
13159 /* The standard exceptions are a special case. They are defined in
13160 runtime units that have been compiled without debugging info; if
13161 EXCEP_STRING is the not-fully-qualified name of a standard
13162 exception (e.g. "constraint_error") then, during the evaluation
13163 of the condition expression, the symbol lookup on this name would
13164 *not* return this standard exception. The catchpoint condition
13165 may then be set only on user-defined exceptions which have the
13166 same not-fully-qualified name (e.g. my_package.constraint_error).
13168 To avoid this unexcepted behavior, these standard exceptions are
13169 systematically prefixed by "standard". This means that "catch
13170 exception constraint_error" is rewritten into "catch exception
13171 standard.constraint_error".
13173 If an exception named contraint_error is defined in another package of
13174 the inferior program, then the only way to specify this exception as a
13175 breakpoint condition is to use its fully-qualified named:
13176 e.g. my_package.constraint_error. */
13178 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13180 if (strcmp (standard_exc [i], excep_string) == 0)
13182 is_standard_exc = true;
13189 if (is_standard_exc)
13190 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13192 string_appendf (result, "long_integer (&%s)", excep_string);
13197 /* Return the symtab_and_line that should be used to insert an exception
13198 catchpoint of the TYPE kind.
13200 ADDR_STRING returns the name of the function where the real
13201 breakpoint that implements the catchpoints is set, depending on the
13202 type of catchpoint we need to create. */
13204 static struct symtab_and_line
13205 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13206 const char **addr_string, const struct breakpoint_ops **ops)
13208 const char *sym_name;
13209 struct symbol *sym;
13211 /* First, find out which exception support info to use. */
13212 ada_exception_support_info_sniffer ();
13214 /* Then lookup the function on which we will break in order to catch
13215 the Ada exceptions requested by the user. */
13216 sym_name = ada_exception_sym_name (ex);
13217 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13219 /* We can assume that SYM is not NULL at this stage. If the symbol
13220 did not exist, ada_exception_support_info_sniffer would have
13221 raised an exception.
13223 Also, ada_exception_support_info_sniffer should have already
13224 verified that SYM is a function symbol. */
13225 gdb_assert (sym != NULL);
13226 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13228 /* Set ADDR_STRING. */
13229 *addr_string = xstrdup (sym_name);
13232 *ops = ada_exception_breakpoint_ops (ex);
13234 return find_function_start_sal (sym, 1);
13237 /* Create an Ada exception catchpoint.
13239 EX_KIND is the kind of exception catchpoint to be created.
13241 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13242 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13243 of the exception to which this catchpoint applies.
13245 COND_STRING, if not empty, is the catchpoint condition.
13247 TEMPFLAG, if nonzero, means that the underlying breakpoint
13248 should be temporary.
13250 FROM_TTY is the usual argument passed to all commands implementations. */
13253 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13254 enum ada_exception_catchpoint_kind ex_kind,
13255 const std::string &excep_string,
13256 const std::string &cond_string,
13261 const char *addr_string = NULL;
13262 const struct breakpoint_ops *ops = NULL;
13263 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13265 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13266 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13267 ops, tempflag, disabled, from_tty);
13268 c->excep_string = excep_string;
13269 create_excep_cond_exprs (c.get (), ex_kind);
13270 if (!cond_string.empty ())
13271 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13272 install_breakpoint (0, std::move (c), 1);
13275 /* Implement the "catch exception" command. */
13278 catch_ada_exception_command (const char *arg_entry, int from_tty,
13279 struct cmd_list_element *command)
13281 const char *arg = arg_entry;
13282 struct gdbarch *gdbarch = get_current_arch ();
13284 enum ada_exception_catchpoint_kind ex_kind;
13285 std::string excep_string;
13286 std::string cond_string;
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13292 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
13296 tempflag, 1 /* enabled */,
13300 /* Implement the "catch handlers" command. */
13303 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13304 struct cmd_list_element *command)
13306 const char *arg = arg_entry;
13307 struct gdbarch *gdbarch = get_current_arch ();
13309 enum ada_exception_catchpoint_kind ex_kind;
13310 std::string excep_string;
13311 std::string cond_string;
13313 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13317 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13319 create_ada_exception_catchpoint (gdbarch, ex_kind,
13320 excep_string, cond_string,
13321 tempflag, 1 /* enabled */,
13325 /* Split the arguments specified in a "catch assert" command.
13327 ARGS contains the command's arguments (or the empty string if
13328 no arguments were passed).
13330 If ARGS contains a condition, set COND_STRING to that condition
13331 (the memory needs to be deallocated after use). */
13334 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13336 args = skip_spaces (args);
13338 /* Check whether a condition was provided. */
13339 if (startswith (args, "if")
13340 && (isspace (args[2]) || args[2] == '\0'))
13343 args = skip_spaces (args);
13344 if (args[0] == '\0')
13345 error (_("condition missing after `if' keyword"));
13346 cond_string.assign (args);
13349 /* Otherwise, there should be no other argument at the end of
13351 else if (args[0] != '\0')
13352 error (_("Junk at end of arguments."));
13355 /* Implement the "catch assert" command. */
13358 catch_assert_command (const char *arg_entry, int from_tty,
13359 struct cmd_list_element *command)
13361 const char *arg = arg_entry;
13362 struct gdbarch *gdbarch = get_current_arch ();
13364 std::string cond_string;
13366 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13370 catch_ada_assert_command_split (arg, cond_string);
13371 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13373 tempflag, 1 /* enabled */,
13377 /* Return non-zero if the symbol SYM is an Ada exception object. */
13380 ada_is_exception_sym (struct symbol *sym)
13382 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13384 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13385 && SYMBOL_CLASS (sym) != LOC_BLOCK
13386 && SYMBOL_CLASS (sym) != LOC_CONST
13387 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13388 && type_name != NULL && strcmp (type_name, "exception") == 0);
13391 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13392 Ada exception object. This matches all exceptions except the ones
13393 defined by the Ada language. */
13396 ada_is_non_standard_exception_sym (struct symbol *sym)
13400 if (!ada_is_exception_sym (sym))
13403 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13404 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13405 return 0; /* A standard exception. */
13407 /* Numeric_Error is also a standard exception, so exclude it.
13408 See the STANDARD_EXC description for more details as to why
13409 this exception is not listed in that array. */
13410 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13416 /* A helper function for std::sort, comparing two struct ada_exc_info
13419 The comparison is determined first by exception name, and then
13420 by exception address. */
13423 ada_exc_info::operator< (const ada_exc_info &other) const
13427 result = strcmp (name, other.name);
13430 if (result == 0 && addr < other.addr)
13436 ada_exc_info::operator== (const ada_exc_info &other) const
13438 return addr == other.addr && strcmp (name, other.name) == 0;
13441 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13442 routine, but keeping the first SKIP elements untouched.
13444 All duplicates are also removed. */
13447 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13450 std::sort (exceptions->begin () + skip, exceptions->end ());
13451 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13452 exceptions->end ());
13455 /* Add all exceptions defined by the Ada standard whose name match
13456 a regular expression.
13458 If PREG is not NULL, then this regexp_t object is used to
13459 perform the symbol name matching. Otherwise, no name-based
13460 filtering is performed.
13462 EXCEPTIONS is a vector of exceptions to which matching exceptions
13466 ada_add_standard_exceptions (compiled_regex *preg,
13467 std::vector<ada_exc_info> *exceptions)
13471 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13474 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13476 struct bound_minimal_symbol msymbol
13477 = ada_lookup_simple_minsym (standard_exc[i]);
13479 if (msymbol.minsym != NULL)
13481 struct ada_exc_info info
13482 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13484 exceptions->push_back (info);
13490 /* Add all Ada exceptions defined locally and accessible from the given
13493 If PREG is not NULL, then this regexp_t object is used to
13494 perform the symbol name matching. Otherwise, no name-based
13495 filtering is performed.
13497 EXCEPTIONS is a vector of exceptions to which matching exceptions
13501 ada_add_exceptions_from_frame (compiled_regex *preg,
13502 struct frame_info *frame,
13503 std::vector<ada_exc_info> *exceptions)
13505 const struct block *block = get_frame_block (frame, 0);
13509 struct block_iterator iter;
13510 struct symbol *sym;
13512 ALL_BLOCK_SYMBOLS (block, iter, sym)
13514 switch (SYMBOL_CLASS (sym))
13521 if (ada_is_exception_sym (sym))
13523 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13524 SYMBOL_VALUE_ADDRESS (sym)};
13526 exceptions->push_back (info);
13530 if (BLOCK_FUNCTION (block) != NULL)
13532 block = BLOCK_SUPERBLOCK (block);
13536 /* Return true if NAME matches PREG or if PREG is NULL. */
13539 name_matches_regex (const char *name, compiled_regex *preg)
13541 return (preg == NULL
13542 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13545 /* Add all exceptions defined globally whose name name match
13546 a regular expression, excluding standard exceptions.
13548 The reason we exclude standard exceptions is that they need
13549 to be handled separately: Standard exceptions are defined inside
13550 a runtime unit which is normally not compiled with debugging info,
13551 and thus usually do not show up in our symbol search. However,
13552 if the unit was in fact built with debugging info, we need to
13553 exclude them because they would duplicate the entry we found
13554 during the special loop that specifically searches for those
13555 standard exceptions.
13557 If PREG is not NULL, then this regexp_t object is used to
13558 perform the symbol name matching. Otherwise, no name-based
13559 filtering is performed.
13561 EXCEPTIONS is a vector of exceptions to which matching exceptions
13565 ada_add_global_exceptions (compiled_regex *preg,
13566 std::vector<ada_exc_info> *exceptions)
13568 struct objfile *objfile;
13569 struct compunit_symtab *s;
13571 /* In Ada, the symbol "search name" is a linkage name, whereas the
13572 regular expression used to do the matching refers to the natural
13573 name. So match against the decoded name. */
13574 expand_symtabs_matching (NULL,
13575 lookup_name_info::match_any (),
13576 [&] (const char *search_name)
13578 const char *decoded = ada_decode (search_name);
13579 return name_matches_regex (decoded, preg);
13584 ALL_COMPUNITS (objfile, s)
13586 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13589 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13591 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13592 struct block_iterator iter;
13593 struct symbol *sym;
13595 ALL_BLOCK_SYMBOLS (b, iter, sym)
13596 if (ada_is_non_standard_exception_sym (sym)
13597 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13599 struct ada_exc_info info
13600 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13602 exceptions->push_back (info);
13608 /* Implements ada_exceptions_list with the regular expression passed
13609 as a regex_t, rather than a string.
13611 If not NULL, PREG is used to filter out exceptions whose names
13612 do not match. Otherwise, all exceptions are listed. */
13614 static std::vector<ada_exc_info>
13615 ada_exceptions_list_1 (compiled_regex *preg)
13617 std::vector<ada_exc_info> result;
13620 /* First, list the known standard exceptions. These exceptions
13621 need to be handled separately, as they are usually defined in
13622 runtime units that have been compiled without debugging info. */
13624 ada_add_standard_exceptions (preg, &result);
13626 /* Next, find all exceptions whose scope is local and accessible
13627 from the currently selected frame. */
13629 if (has_stack_frames ())
13631 prev_len = result.size ();
13632 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13634 if (result.size () > prev_len)
13635 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13638 /* Add all exceptions whose scope is global. */
13640 prev_len = result.size ();
13641 ada_add_global_exceptions (preg, &result);
13642 if (result.size () > prev_len)
13643 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13648 /* Return a vector of ada_exc_info.
13650 If REGEXP is NULL, all exceptions are included in the result.
13651 Otherwise, it should contain a valid regular expression,
13652 and only the exceptions whose names match that regular expression
13653 are included in the result.
13655 The exceptions are sorted in the following order:
13656 - Standard exceptions (defined by the Ada language), in
13657 alphabetical order;
13658 - Exceptions only visible from the current frame, in
13659 alphabetical order;
13660 - Exceptions whose scope is global, in alphabetical order. */
13662 std::vector<ada_exc_info>
13663 ada_exceptions_list (const char *regexp)
13665 if (regexp == NULL)
13666 return ada_exceptions_list_1 (NULL);
13668 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13669 return ada_exceptions_list_1 (®);
13672 /* Implement the "info exceptions" command. */
13675 info_exceptions_command (const char *regexp, int from_tty)
13677 struct gdbarch *gdbarch = get_current_arch ();
13679 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13681 if (regexp != NULL)
13683 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13685 printf_filtered (_("All defined Ada exceptions:\n"));
13687 for (const ada_exc_info &info : exceptions)
13688 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13692 /* Information about operators given special treatment in functions
13694 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13696 #define ADA_OPERATORS \
13697 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13698 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13699 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13700 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13701 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13702 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13703 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13704 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13705 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13706 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13707 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13708 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13709 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13710 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13711 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13712 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13713 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13714 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13715 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13718 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13721 switch (exp->elts[pc - 1].opcode)
13724 operator_length_standard (exp, pc, oplenp, argsp);
13727 #define OP_DEFN(op, len, args, binop) \
13728 case op: *oplenp = len; *argsp = args; break;
13734 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13739 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13744 /* Implementation of the exp_descriptor method operator_check. */
13747 ada_operator_check (struct expression *exp, int pos,
13748 int (*objfile_func) (struct objfile *objfile, void *data),
13751 const union exp_element *const elts = exp->elts;
13752 struct type *type = NULL;
13754 switch (elts[pos].opcode)
13756 case UNOP_IN_RANGE:
13758 type = elts[pos + 1].type;
13762 return operator_check_standard (exp, pos, objfile_func, data);
13765 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13767 if (type && TYPE_OBJFILE (type)
13768 && (*objfile_func) (TYPE_OBJFILE (type), data))
13774 static const char *
13775 ada_op_name (enum exp_opcode opcode)
13780 return op_name_standard (opcode);
13782 #define OP_DEFN(op, len, args, binop) case op: return #op;
13787 return "OP_AGGREGATE";
13789 return "OP_CHOICES";
13795 /* As for operator_length, but assumes PC is pointing at the first
13796 element of the operator, and gives meaningful results only for the
13797 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13800 ada_forward_operator_length (struct expression *exp, int pc,
13801 int *oplenp, int *argsp)
13803 switch (exp->elts[pc].opcode)
13806 *oplenp = *argsp = 0;
13809 #define OP_DEFN(op, len, args, binop) \
13810 case op: *oplenp = len; *argsp = args; break;
13816 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13821 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13827 int len = longest_to_int (exp->elts[pc + 1].longconst);
13829 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13837 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13839 enum exp_opcode op = exp->elts[elt].opcode;
13844 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13848 /* Ada attributes ('Foo). */
13851 case OP_ATR_LENGTH:
13855 case OP_ATR_MODULUS:
13862 case UNOP_IN_RANGE:
13864 /* XXX: gdb_sprint_host_address, type_sprint */
13865 fprintf_filtered (stream, _("Type @"));
13866 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13867 fprintf_filtered (stream, " (");
13868 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13869 fprintf_filtered (stream, ")");
13871 case BINOP_IN_BOUNDS:
13872 fprintf_filtered (stream, " (%d)",
13873 longest_to_int (exp->elts[pc + 2].longconst));
13875 case TERNOP_IN_RANGE:
13880 case OP_DISCRETE_RANGE:
13881 case OP_POSITIONAL:
13888 char *name = &exp->elts[elt + 2].string;
13889 int len = longest_to_int (exp->elts[elt + 1].longconst);
13891 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13896 return dump_subexp_body_standard (exp, stream, elt);
13900 for (i = 0; i < nargs; i += 1)
13901 elt = dump_subexp (exp, stream, elt);
13906 /* The Ada extension of print_subexp (q.v.). */
13909 ada_print_subexp (struct expression *exp, int *pos,
13910 struct ui_file *stream, enum precedence prec)
13912 int oplen, nargs, i;
13914 enum exp_opcode op = exp->elts[pc].opcode;
13916 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13923 print_subexp_standard (exp, pos, stream, prec);
13927 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13930 case BINOP_IN_BOUNDS:
13931 /* XXX: sprint_subexp */
13932 print_subexp (exp, pos, stream, PREC_SUFFIX);
13933 fputs_filtered (" in ", stream);
13934 print_subexp (exp, pos, stream, PREC_SUFFIX);
13935 fputs_filtered ("'range", stream);
13936 if (exp->elts[pc + 1].longconst > 1)
13937 fprintf_filtered (stream, "(%ld)",
13938 (long) exp->elts[pc + 1].longconst);
13941 case TERNOP_IN_RANGE:
13942 if (prec >= PREC_EQUAL)
13943 fputs_filtered ("(", stream);
13944 /* XXX: sprint_subexp */
13945 print_subexp (exp, pos, stream, PREC_SUFFIX);
13946 fputs_filtered (" in ", stream);
13947 print_subexp (exp, pos, stream, PREC_EQUAL);
13948 fputs_filtered (" .. ", stream);
13949 print_subexp (exp, pos, stream, PREC_EQUAL);
13950 if (prec >= PREC_EQUAL)
13951 fputs_filtered (")", stream);
13956 case OP_ATR_LENGTH:
13960 case OP_ATR_MODULUS:
13965 if (exp->elts[*pos].opcode == OP_TYPE)
13967 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13968 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13969 &type_print_raw_options);
13973 print_subexp (exp, pos, stream, PREC_SUFFIX);
13974 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13979 for (tem = 1; tem < nargs; tem += 1)
13981 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13982 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13984 fputs_filtered (")", stream);
13989 type_print (exp->elts[pc + 1].type, "", stream, 0);
13990 fputs_filtered ("'(", stream);
13991 print_subexp (exp, pos, stream, PREC_PREFIX);
13992 fputs_filtered (")", stream);
13995 case UNOP_IN_RANGE:
13996 /* XXX: sprint_subexp */
13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 fputs_filtered (" in ", stream);
13999 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14000 &type_print_raw_options);
14003 case OP_DISCRETE_RANGE:
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 fputs_filtered ("..", stream);
14006 print_subexp (exp, pos, stream, PREC_SUFFIX);
14010 fputs_filtered ("others => ", stream);
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14015 for (i = 0; i < nargs-1; i += 1)
14018 fputs_filtered ("|", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14021 fputs_filtered (" => ", stream);
14022 print_subexp (exp, pos, stream, PREC_SUFFIX);
14025 case OP_POSITIONAL:
14026 print_subexp (exp, pos, stream, PREC_SUFFIX);
14030 fputs_filtered ("(", stream);
14031 for (i = 0; i < nargs; i += 1)
14034 fputs_filtered (", ", stream);
14035 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered (")", stream);
14042 /* Table mapping opcodes into strings for printing operators
14043 and precedences of the operators. */
14045 static const struct op_print ada_op_print_tab[] = {
14046 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14047 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14048 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14049 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14050 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14051 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14052 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14053 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14054 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14055 {">=", BINOP_GEQ, PREC_ORDER, 0},
14056 {">", BINOP_GTR, PREC_ORDER, 0},
14057 {"<", BINOP_LESS, PREC_ORDER, 0},
14058 {">>", BINOP_RSH, PREC_SHIFT, 0},
14059 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14060 {"+", BINOP_ADD, PREC_ADD, 0},
14061 {"-", BINOP_SUB, PREC_ADD, 0},
14062 {"&", BINOP_CONCAT, PREC_ADD, 0},
14063 {"*", BINOP_MUL, PREC_MUL, 0},
14064 {"/", BINOP_DIV, PREC_MUL, 0},
14065 {"rem", BINOP_REM, PREC_MUL, 0},
14066 {"mod", BINOP_MOD, PREC_MUL, 0},
14067 {"**", BINOP_EXP, PREC_REPEAT, 0},
14068 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14069 {"-", UNOP_NEG, PREC_PREFIX, 0},
14070 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14071 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14072 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14073 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14074 {".all", UNOP_IND, PREC_SUFFIX, 1},
14075 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14076 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14077 {NULL, OP_NULL, PREC_SUFFIX, 0}
14080 enum ada_primitive_types {
14081 ada_primitive_type_int,
14082 ada_primitive_type_long,
14083 ada_primitive_type_short,
14084 ada_primitive_type_char,
14085 ada_primitive_type_float,
14086 ada_primitive_type_double,
14087 ada_primitive_type_void,
14088 ada_primitive_type_long_long,
14089 ada_primitive_type_long_double,
14090 ada_primitive_type_natural,
14091 ada_primitive_type_positive,
14092 ada_primitive_type_system_address,
14093 ada_primitive_type_storage_offset,
14094 nr_ada_primitive_types
14098 ada_language_arch_info (struct gdbarch *gdbarch,
14099 struct language_arch_info *lai)
14101 const struct builtin_type *builtin = builtin_type (gdbarch);
14103 lai->primitive_type_vector
14104 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14107 lai->primitive_type_vector [ada_primitive_type_int]
14108 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14110 lai->primitive_type_vector [ada_primitive_type_long]
14111 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14112 0, "long_integer");
14113 lai->primitive_type_vector [ada_primitive_type_short]
14114 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14115 0, "short_integer");
14116 lai->string_char_type
14117 = lai->primitive_type_vector [ada_primitive_type_char]
14118 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14119 lai->primitive_type_vector [ada_primitive_type_float]
14120 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14121 "float", gdbarch_float_format (gdbarch));
14122 lai->primitive_type_vector [ada_primitive_type_double]
14123 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14124 "long_float", gdbarch_double_format (gdbarch));
14125 lai->primitive_type_vector [ada_primitive_type_long_long]
14126 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14127 0, "long_long_integer");
14128 lai->primitive_type_vector [ada_primitive_type_long_double]
14129 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14130 "long_long_float", gdbarch_long_double_format (gdbarch));
14131 lai->primitive_type_vector [ada_primitive_type_natural]
14132 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14134 lai->primitive_type_vector [ada_primitive_type_positive]
14135 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14137 lai->primitive_type_vector [ada_primitive_type_void]
14138 = builtin->builtin_void;
14140 lai->primitive_type_vector [ada_primitive_type_system_address]
14141 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14143 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14144 = "system__address";
14146 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14147 type. This is a signed integral type whose size is the same as
14148 the size of addresses. */
14150 unsigned int addr_length = TYPE_LENGTH
14151 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14153 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14154 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14158 lai->bool_type_symbol = NULL;
14159 lai->bool_type_default = builtin->builtin_bool;
14162 /* Language vector */
14164 /* Not really used, but needed in the ada_language_defn. */
14167 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14169 ada_emit_char (c, type, stream, quoter, 1);
14173 parse (struct parser_state *ps)
14175 warnings_issued = 0;
14176 return ada_parse (ps);
14179 static const struct exp_descriptor ada_exp_descriptor = {
14181 ada_operator_length,
14182 ada_operator_check,
14184 ada_dump_subexp_body,
14185 ada_evaluate_subexp
14188 /* symbol_name_matcher_ftype adapter for wild_match. */
14191 do_wild_match (const char *symbol_search_name,
14192 const lookup_name_info &lookup_name,
14193 completion_match_result *comp_match_res)
14195 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14198 /* symbol_name_matcher_ftype adapter for full_match. */
14201 do_full_match (const char *symbol_search_name,
14202 const lookup_name_info &lookup_name,
14203 completion_match_result *comp_match_res)
14205 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14208 /* Build the Ada lookup name for LOOKUP_NAME. */
14210 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14212 const std::string &user_name = lookup_name.name ();
14214 if (user_name[0] == '<')
14216 if (user_name.back () == '>')
14217 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14219 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14220 m_encoded_p = true;
14221 m_verbatim_p = true;
14222 m_wild_match_p = false;
14223 m_standard_p = false;
14227 m_verbatim_p = false;
14229 m_encoded_p = user_name.find ("__") != std::string::npos;
14233 const char *folded = ada_fold_name (user_name.c_str ());
14234 const char *encoded = ada_encode_1 (folded, false);
14235 if (encoded != NULL)
14236 m_encoded_name = encoded;
14238 m_encoded_name = user_name;
14241 m_encoded_name = user_name;
14243 /* Handle the 'package Standard' special case. See description
14244 of m_standard_p. */
14245 if (startswith (m_encoded_name.c_str (), "standard__"))
14247 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14248 m_standard_p = true;
14251 m_standard_p = false;
14253 /* If the name contains a ".", then the user is entering a fully
14254 qualified entity name, and the match must not be done in wild
14255 mode. Similarly, if the user wants to complete what looks
14256 like an encoded name, the match must not be done in wild
14257 mode. Also, in the standard__ special case always do
14258 non-wild matching. */
14260 = (lookup_name.match_type () != symbol_name_match_type::FULL
14263 && user_name.find ('.') == std::string::npos);
14267 /* symbol_name_matcher_ftype method for Ada. This only handles
14268 completion mode. */
14271 ada_symbol_name_matches (const char *symbol_search_name,
14272 const lookup_name_info &lookup_name,
14273 completion_match_result *comp_match_res)
14275 return lookup_name.ada ().matches (symbol_search_name,
14276 lookup_name.match_type (),
14280 /* A name matcher that matches the symbol name exactly, with
14284 literal_symbol_name_matcher (const char *symbol_search_name,
14285 const lookup_name_info &lookup_name,
14286 completion_match_result *comp_match_res)
14288 const std::string &name = lookup_name.name ();
14290 int cmp = (lookup_name.completion_mode ()
14291 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14292 : strcmp (symbol_search_name, name.c_str ()));
14295 if (comp_match_res != NULL)
14296 comp_match_res->set_match (symbol_search_name);
14303 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14306 static symbol_name_matcher_ftype *
14307 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14309 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14310 return literal_symbol_name_matcher;
14312 if (lookup_name.completion_mode ())
14313 return ada_symbol_name_matches;
14316 if (lookup_name.ada ().wild_match_p ())
14317 return do_wild_match;
14319 return do_full_match;
14323 /* Implement the "la_read_var_value" language_defn method for Ada. */
14325 static struct value *
14326 ada_read_var_value (struct symbol *var, const struct block *var_block,
14327 struct frame_info *frame)
14329 const struct block *frame_block = NULL;
14330 struct symbol *renaming_sym = NULL;
14332 /* The only case where default_read_var_value is not sufficient
14333 is when VAR is a renaming... */
14335 frame_block = get_frame_block (frame, NULL);
14337 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14338 if (renaming_sym != NULL)
14339 return ada_read_renaming_var_value (renaming_sym, frame_block);
14341 /* This is a typical case where we expect the default_read_var_value
14342 function to work. */
14343 return default_read_var_value (var, var_block, frame);
14346 static const char *ada_extensions[] =
14348 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14351 extern const struct language_defn ada_language_defn = {
14352 "ada", /* Language name */
14356 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14357 that's not quite what this means. */
14359 macro_expansion_no,
14361 &ada_exp_descriptor,
14364 ada_printchar, /* Print a character constant */
14365 ada_printstr, /* Function to print string constant */
14366 emit_char, /* Function to print single char (not used) */
14367 ada_print_type, /* Print a type using appropriate syntax */
14368 ada_print_typedef, /* Print a typedef using appropriate syntax */
14369 ada_val_print, /* Print a value using appropriate syntax */
14370 ada_value_print, /* Print a top-level value */
14371 ada_read_var_value, /* la_read_var_value */
14372 NULL, /* Language specific skip_trampoline */
14373 NULL, /* name_of_this */
14374 true, /* la_store_sym_names_in_linkage_form_p */
14375 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14376 basic_lookup_transparent_type, /* lookup_transparent_type */
14377 ada_la_decode, /* Language specific symbol demangler */
14378 ada_sniff_from_mangled_name,
14379 NULL, /* Language specific
14380 class_name_from_physname */
14381 ada_op_print_tab, /* expression operators for printing */
14382 0, /* c-style arrays */
14383 1, /* String lower bound */
14384 ada_get_gdb_completer_word_break_characters,
14385 ada_collect_symbol_completion_matches,
14386 ada_language_arch_info,
14387 ada_print_array_index,
14388 default_pass_by_reference,
14390 c_watch_location_expression,
14391 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14392 ada_iterate_over_symbols,
14393 default_search_name_hash,
14400 /* Command-list for the "set/show ada" prefix command. */
14401 static struct cmd_list_element *set_ada_list;
14402 static struct cmd_list_element *show_ada_list;
14404 /* Implement the "set ada" prefix command. */
14407 set_ada_command (const char *arg, int from_tty)
14409 printf_unfiltered (_(\
14410 "\"set ada\" must be followed by the name of a setting.\n"));
14411 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14414 /* Implement the "show ada" prefix command. */
14417 show_ada_command (const char *args, int from_tty)
14419 cmd_show_list (show_ada_list, from_tty, "");
14423 initialize_ada_catchpoint_ops (void)
14425 struct breakpoint_ops *ops;
14427 initialize_breakpoint_ops ();
14429 ops = &catch_exception_breakpoint_ops;
14430 *ops = bkpt_breakpoint_ops;
14431 ops->allocate_location = allocate_location_catch_exception;
14432 ops->re_set = re_set_catch_exception;
14433 ops->check_status = check_status_catch_exception;
14434 ops->print_it = print_it_catch_exception;
14435 ops->print_one = print_one_catch_exception;
14436 ops->print_mention = print_mention_catch_exception;
14437 ops->print_recreate = print_recreate_catch_exception;
14439 ops = &catch_exception_unhandled_breakpoint_ops;
14440 *ops = bkpt_breakpoint_ops;
14441 ops->allocate_location = allocate_location_catch_exception_unhandled;
14442 ops->re_set = re_set_catch_exception_unhandled;
14443 ops->check_status = check_status_catch_exception_unhandled;
14444 ops->print_it = print_it_catch_exception_unhandled;
14445 ops->print_one = print_one_catch_exception_unhandled;
14446 ops->print_mention = print_mention_catch_exception_unhandled;
14447 ops->print_recreate = print_recreate_catch_exception_unhandled;
14449 ops = &catch_assert_breakpoint_ops;
14450 *ops = bkpt_breakpoint_ops;
14451 ops->allocate_location = allocate_location_catch_assert;
14452 ops->re_set = re_set_catch_assert;
14453 ops->check_status = check_status_catch_assert;
14454 ops->print_it = print_it_catch_assert;
14455 ops->print_one = print_one_catch_assert;
14456 ops->print_mention = print_mention_catch_assert;
14457 ops->print_recreate = print_recreate_catch_assert;
14459 ops = &catch_handlers_breakpoint_ops;
14460 *ops = bkpt_breakpoint_ops;
14461 ops->allocate_location = allocate_location_catch_handlers;
14462 ops->re_set = re_set_catch_handlers;
14463 ops->check_status = check_status_catch_handlers;
14464 ops->print_it = print_it_catch_handlers;
14465 ops->print_one = print_one_catch_handlers;
14466 ops->print_mention = print_mention_catch_handlers;
14467 ops->print_recreate = print_recreate_catch_handlers;
14470 /* This module's 'new_objfile' observer. */
14473 ada_new_objfile_observer (struct objfile *objfile)
14475 ada_clear_symbol_cache ();
14478 /* This module's 'free_objfile' observer. */
14481 ada_free_objfile_observer (struct objfile *objfile)
14483 ada_clear_symbol_cache ();
14487 _initialize_ada_language (void)
14489 initialize_ada_catchpoint_ops ();
14491 add_prefix_cmd ("ada", no_class, set_ada_command,
14492 _("Prefix command for changing Ada-specfic settings"),
14493 &set_ada_list, "set ada ", 0, &setlist);
14495 add_prefix_cmd ("ada", no_class, show_ada_command,
14496 _("Generic command for showing Ada-specific settings."),
14497 &show_ada_list, "show ada ", 0, &showlist);
14499 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14500 &trust_pad_over_xvs, _("\
14501 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14502 Show whether an optimization trusting PAD types over XVS types is activated"),
14504 This is related to the encoding used by the GNAT compiler. The debugger\n\
14505 should normally trust the contents of PAD types, but certain older versions\n\
14506 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14507 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14508 work around this bug. It is always safe to turn this option \"off\", but\n\
14509 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14510 this option to \"off\" unless necessary."),
14511 NULL, NULL, &set_ada_list, &show_ada_list);
14513 add_setshow_boolean_cmd ("print-signatures", class_vars,
14514 &print_signatures, _("\
14515 Enable or disable the output of formal and return types for functions in the \
14516 overloads selection menu"), _("\
14517 Show whether the output of formal and return types for functions in the \
14518 overloads selection menu is activated"),
14519 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14521 add_catch_command ("exception", _("\
14522 Catch Ada exceptions, when raised.\n\
14523 With an argument, catch only exceptions with the given name."),
14524 catch_ada_exception_command,
14529 add_catch_command ("handlers", _("\
14530 Catch Ada exceptions, when handled.\n\
14531 With an argument, catch only exceptions with the given name."),
14532 catch_ada_handlers_command,
14536 add_catch_command ("assert", _("\
14537 Catch failed Ada assertions, when raised.\n\
14538 With an argument, catch only exceptions with the given name."),
14539 catch_assert_command,
14544 varsize_limit = 65536;
14545 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14546 &varsize_limit, _("\
14547 Set the maximum number of bytes allowed in a variable-size object."), _("\
14548 Show the maximum number of bytes allowed in a variable-size object."), _("\
14549 Attempts to access an object whose size is not a compile-time constant\n\
14550 and exceeds this limit will cause an error."),
14551 NULL, NULL, &setlist, &showlist);
14553 add_info ("exceptions", info_exceptions_command,
14555 List all Ada exception names.\n\
14556 If a regular expression is passed as an argument, only those matching\n\
14557 the regular expression are listed."));
14559 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14560 _("Set Ada maintenance-related variables."),
14561 &maint_set_ada_cmdlist, "maintenance set ada ",
14562 0/*allow-unknown*/, &maintenance_set_cmdlist);
14564 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14565 _("Show Ada maintenance-related variables"),
14566 &maint_show_ada_cmdlist, "maintenance show ada ",
14567 0/*allow-unknown*/, &maintenance_show_cmdlist);
14569 add_setshow_boolean_cmd
14570 ("ignore-descriptive-types", class_maintenance,
14571 &ada_ignore_descriptive_types_p,
14572 _("Set whether descriptive types generated by GNAT should be ignored."),
14573 _("Show whether descriptive types generated by GNAT should be ignored."),
14575 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14576 DWARF attribute."),
14577 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14579 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14580 NULL, xcalloc, xfree);
14582 /* The ada-lang observers. */
14583 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14584 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14585 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14587 /* Setup various context-specific data. */
14589 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14590 ada_pspace_data_handle
14591 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);