1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_target_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *make_array_descriptor (struct type *, struct value *);
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
119 static int is_nonfunction (struct block_symbol *, int);
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
124 static int num_defns_collected (struct obstack *);
126 static struct block_symbol *defns_collected (struct obstack *, int);
128 static struct value *resolve_subexp (expression_up *, int *, int,
130 innermost_block_tracker *);
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
137 static const char *ada_op_name (enum exp_opcode);
139 static const char *ada_decoded_op_name (enum exp_opcode);
141 static int numeric_type_p (struct type *);
143 static int integer_type_p (struct type *);
145 static int scalar_type_p (struct type *);
147 static int discrete_type_p (struct type *);
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
152 static struct value *evaluate_subexp_type (struct expression *, int *);
154 static struct type *ada_find_parallel_type_with_name (struct type *,
157 static int is_dynamic_field (struct type *, int);
159 static struct type *to_fixed_variant_branch_type (struct type *,
161 CORE_ADDR, struct value *);
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165 static struct type *to_fixed_range_type (struct type *, struct value *);
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
170 static struct value *unwrap_value (struct value *);
172 static struct type *constrained_packed_array_type (struct type *, long *);
174 static struct type *decode_constrained_packed_array_type (struct type *);
176 static long decode_packed_array_bitsize (struct type *);
178 static struct value *decode_constrained_packed_array (struct value *);
180 static int ada_is_packed_array_type (struct type *);
182 static int ada_is_unconstrained_packed_array_type (struct type *);
184 static struct value *value_subscript_packed (struct value *, int,
187 static struct value *coerce_unspec_val_to_type (struct value *,
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
192 static int equiv_types (struct type *, struct type *);
194 static int is_name_suffix (const char *);
196 static int advance_wild_match (const char **, const char *, int);
198 static bool wild_match (const char *name, const char *patn);
200 static struct value *ada_coerce_ref (struct value *);
202 static LONGEST pos_atr (struct value *);
204 static struct value *value_pos_atr (struct type *, struct value *);
206 static struct value *value_val_atr (struct type *, struct value *);
208 static struct symbol *standard_lookup (const char *, const struct block *,
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
214 static struct value *ada_value_primitive_field (struct value *, int, int,
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
224 static int ada_is_direct_array_type (struct type *);
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
229 static struct value *ada_index_struct_field (int, struct value *, int,
232 static struct value *assign_aggregate (struct value *, struct value *,
236 static void aggregate_assign_from_choices (struct value *, struct value *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
241 static void aggregate_assign_positional (struct value *, struct value *,
243 int *, LONGEST *, int *, int,
247 static void aggregate_assign_others (struct value *, struct value *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
258 static void ada_forward_operator_length (struct expression *, int, int *,
261 static struct type *ada_find_any_type (const char *name);
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
268 /* The result of a symbol lookup to be stored in our symbol cache. */
272 /* The name used to perform the lookup. */
274 /* The namespace used during the lookup. */
276 /* The symbol returned by the lookup, or NULL if no matching symbol
279 /* The block where the symbol was found, or NULL if no matching
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
295 #define HASH_SIZE 1009
297 struct ada_symbol_cache
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
311 static const char ada_completer_word_break_characters[] =
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
337 /* Maintenance-related settings for this module. */
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
342 /* Implement the "maintenance set ada" (prefix) command. */
345 maint_set_ada_cmd (const char *args, int from_tty)
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
351 /* Implement the "maintenance show ada" (prefix) command. */
354 maint_show_ada_cmd (const char *args, int from_tty)
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
361 static int ada_ignore_descriptive_types_p = 0;
363 /* Inferior-specific data. */
365 /* Per-inferior data for this module. */
367 struct ada_inferior_data
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
378 const struct exception_support_info *exception_info = nullptr;
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
384 /* Return our inferior data for the given inferior (INF).
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
395 struct ada_inferior_data *data;
397 data = ada_inferior_data.get (inf);
399 data = ada_inferior_data.emplace (inf);
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
408 ada_inferior_exit (struct inferior *inf)
410 ada_inferior_data.clear (inf);
414 /* program-space-specific data. */
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
435 This function always returns a valid object. */
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
440 struct ada_pspace_data *data;
442 data = ada_pspace_data_handle.get (pspace);
444 data = ada_pspace_data_handle.emplace (pspace);
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
479 ada_typedef_target_type (struct type *type)
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
491 ada_unqualified_name (const char *decoded_name)
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
502 result = strrchr (decoded_name, '.');
504 result++; /* Skip the dot... */
506 result = decoded_name;
511 /* Return a string starting with '<', followed by STR, and '>'. */
514 add_angle_brackets (const char *str)
516 return string_printf ("<%s>", str);
520 ada_get_gdb_completer_word_break_characters (void)
522 return ada_completer_word_break_characters;
525 /* Print an array element index using the Ada syntax. */
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
535 /* la_watch_location_expression for Ada. */
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
553 if (*size < min_size)
556 if (*size < min_size)
558 vect = xrealloc (vect, *size * element_size);
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
567 field_name_match (const char *field_name, const char *target)
569 int len = strlen (target);
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
589 ada_get_field_index (const struct type *type, const char *field_name,
593 struct type *struct_type = check_typedef ((struct type *) type);
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
606 /* The length of the prefix of NAME prior to any "___" suffix. */
609 ada_name_prefix_len (const char *name)
615 const char *p = strstr (name, "___");
618 return strlen (name);
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
628 is_suffix (const char *str, const char *suffix)
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
650 struct value *result;
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
679 return valaddr + offset;
683 cond_offset_target (CORE_ADDR address, long offset)
688 return address + offset;
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
701 lim_warning (const char *format, ...)
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
718 ada_ensure_varsize_limit (const struct type *type)
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
724 /* Maximum value of a SIZE-byte signed integer type. */
726 max_of_size (int size)
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
730 return top_bit | (top_bit - 1);
733 /* Minimum value of a SIZE-byte signed integer type. */
735 min_of_size (int size)
737 return -max_of_size (size) - 1;
740 /* Maximum value of a SIZE-byte unsigned integer type. */
742 umax_of_size (int size)
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
746 return top_bit | (top_bit - 1);
749 /* Maximum value of integral type T, as a signed quantity. */
751 max_of_type (struct type *t)
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 return max_of_size (TYPE_LENGTH (t));
759 /* Minimum value of integral type T, as a signed quantity. */
761 min_of_type (struct type *t)
763 if (TYPE_UNSIGNED (t))
766 return min_of_size (TYPE_LENGTH (t));
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
771 ada_discrete_type_high_bound (struct type *type)
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
784 return max_of_type (type);
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
792 ada_discrete_type_low_bound (struct type *type)
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
800 return TYPE_FIELD_ENUMVAL (type, 0);
805 return min_of_type (type);
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
815 get_base_type (struct type *type)
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 type = TYPE_TARGET_TYPE (type);
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
832 ada_get_decoded_value (struct value *value)
834 struct type *type = ada_check_typedef (value_type (value));
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
843 value = ada_coerce_to_simple_array (value);
846 value = ada_to_fixed_value (value);
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
857 ada_get_decoded_type (struct type *type)
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
867 /* Language Selection */
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
873 ada_update_initial_language (enum language lang)
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898 if (msym.minsym != NULL)
900 CORE_ADDR main_program_name_addr;
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
907 target_read_string (main_program_name_addr, &main_program_name,
912 return main_program_name.get ();
915 /* The main procedure doesn't seem to be in Ada. */
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
955 ada_encode_1 (const char *decoded, bool throw_errors)
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
969 for (p = decoded; *p != '\0'; p += 1)
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
978 const struct ada_opname_map *mapping;
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
984 if (mapping->encoded == NULL)
987 error (_("invalid Ada operator name: %s"), p);
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
997 encoding_buffer[k] = *p;
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1010 ada_encode (const char *decoded)
1012 return ada_encode_1 (decoded, true);
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1020 ada_fold_name (const char *name)
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1028 if (name[0] == '\'')
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1047 is_lower_alphanum (const char c)
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1071 while (i > 0 && isdigit (encoded[i]))
1073 if (i >= 0 && encoded[i] == '.')
1075 else if (i >= 0 && encoded[i] == '$')
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1084 /* Remove the suffix introduced by the compiler for protected object
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090 /* Remove trailing N. */
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1115 ada_decode (const char *encoded)
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1142 len0 = strlen (encoded);
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1180 /* Make decoded big enough for possible expansion by operator name. */
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1195 else if (encoded[i] == '$')
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1218 && !isalnum (encoded[i + op_len]))
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1223 j += strlen (ada_opname_table[k].decoded);
1227 if (ada_opname_table[k].encoded != NULL)
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1257 /* Remove _E{DIGITS}+[sb] */
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1275 while (k < len0 && isdigit (encoded[k]))
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1286 || (k < len0 && encoded[k] == '_'))
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1326 /* Replace '__' by '.'. */
1334 /* It's a character part of the decoded name, so just copy it
1336 decoded[j] = encoded[i];
1341 decoded[j] = '\000';
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1350 if (strcmp (decoded, encoded) == 0)
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1390 if (!gsymbol->ada_mangled)
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1395 gsymbol->ada_mangled = 1;
1397 if (obstack != NULL)
1398 *resultp = obstack_strdup (obstack, decoded);
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1410 *slot = xstrdup (decoded);
1419 ada_la_decode (const char *encoded, int options)
1421 return xstrdup (ada_decode (encoded));
1424 /* Implement la_sniff_from_mangled_name for Ada. */
1427 ada_sniff_from_mangled_name (const char *mangled, char **out)
1429 const char *demangled = ada_decode (mangled);
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1467 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1491 ada_fixup_array_indexes_type (struct type *index_desc_type)
1495 if (index_desc_type == NULL)
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1522 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1524 static const char *bound_name[] = {
1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1529 /* Maximum number of array dimensions we are prepared to handle. */
1531 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1534 /* The desc_* routines return primitive portions of array descriptors
1537 /* The descriptor or array type, if any, indicated by TYPE; removes
1538 level of indirection, if needed. */
1540 static struct type *
1541 desc_base_type (struct type *type)
1545 type = ada_check_typedef (type);
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1557 /* True iff TYPE indicates a "thin" array pointer type. */
1560 is_thin_pntr (struct type *type)
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1567 /* The descriptor type for thin pointer type TYPE. */
1569 static struct type *
1570 thin_descriptor_type (struct type *type)
1572 struct type *base_type = desc_base_type (type);
1574 if (base_type == NULL)
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1582 if (alt_type == NULL)
1589 /* A pointer to the array data for thin-pointer value VAL. */
1591 static struct value *
1592 thin_data_pntr (struct value *val)
1594 struct type *type = ada_check_typedef (value_type (val));
1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1597 data_type = lookup_pointer_type (data_type);
1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1600 return value_cast (data_type, value_copy (val));
1602 return value_from_longest (data_type, value_address (val));
1605 /* True iff TYPE indicates a "thick" array pointer type. */
1608 is_thick_pntr (struct type *type)
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
1618 static struct type *
1619 desc_bounds_type (struct type *type)
1623 type = desc_base_type (type);
1627 else if (is_thin_pntr (type))
1629 type = thin_descriptor_type (type);
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1634 return ada_check_typedef (r);
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1645 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1646 one, a pointer to its bounds data. Otherwise NULL. */
1648 static struct value *
1649 desc_bounds (struct value *arr)
1651 struct type *type = ada_check_typedef (value_type (arr));
1653 if (is_thin_pntr (type))
1655 struct type *bounds_type =
1656 desc_bounds_type (thin_descriptor_type (type));
1659 if (bounds_type == NULL)
1660 error (_("Bad GNAT array descriptor"));
1662 /* NOTE: The following calculation is not really kosher, but
1663 since desc_type is an XVE-encoded type (and shouldn't be),
1664 the correct calculation is a real pain. FIXME (and fix GCC). */
1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1666 addr = value_as_long (arr);
1668 addr = value_address (arr);
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
1675 else if (is_thick_pntr (type))
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1692 error (_("Bad GNAT array descriptor"));
1700 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1704 fat_pntr_bounds_bitpos (struct type *type)
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 size of the field containing the address of the bounds data. */
1713 fat_pntr_bounds_bitsize (struct type *type)
1715 type = desc_base_type (type);
1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1718 return TYPE_FIELD_BITSIZE (type, 1);
1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1723 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1728 static struct type *
1729 desc_data_target_type (struct type *type)
1731 type = desc_base_type (type);
1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
1734 if (is_thin_pntr (type))
1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1736 else if (is_thick_pntr (type))
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1748 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1751 static struct value *
1752 desc_data (struct value *arr)
1754 struct type *type = value_type (arr);
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1760 _("Bad GNAT array descriptor"));
1766 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1767 position of the field containing the address of the data. */
1770 fat_pntr_data_bitpos (struct type *type)
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 size of the field containing the address of the data. */
1779 fat_pntr_data_bitsize (struct type *type)
1781 type = desc_base_type (type);
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1789 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1793 static struct value *
1794 desc_one_bound (struct value *bounds, int i, int which)
1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1797 _("Bad GNAT array descriptor bounds"));
1800 /* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1805 desc_bound_bitpos (struct type *type, int i, int which)
1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1810 /* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1812 bound, if WHICH is 1. The first bound is I=1. */
1815 desc_bound_bitsize (struct type *type, int i, int which)
1817 type = desc_base_type (type);
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1825 /* If TYPE is the type of an array-bounds structure, the type of its
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1828 static struct type *
1829 desc_index_type (struct type *type, int i)
1831 type = desc_base_type (type);
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1839 /* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1843 desc_arity (struct type *type)
1845 type = desc_base_type (type);
1848 return TYPE_NFIELDS (type) / 2;
1852 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1857 ada_is_direct_array_type (struct type *type)
1861 type = ada_check_typedef (type);
1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1863 || ada_is_array_descriptor_type (type));
1866 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1870 ada_is_array_type (struct type *type)
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1879 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1882 ada_is_simple_array_type (struct type *type)
1886 type = ada_check_typedef (type);
1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
1893 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1896 ada_is_array_descriptor_type (struct type *type)
1898 struct type *data_type = desc_data_target_type (type);
1902 type = ada_check_typedef (type);
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
1908 /* Non-zero iff type is a partially mal-formed GNAT array
1909 descriptor. FIXME: This is to compensate for some problems with
1910 debugging output from GNAT. Re-examine periodically to see if it
1914 ada_is_bogus_array_descriptor (struct type *type)
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
1925 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1926 (fat pointer) returns the type of the array data described---specifically,
1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1928 in from the descriptor; otherwise, they are left unspecified. If
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
1933 ada_type_of_array (struct value *arr, int bounds)
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1954 struct type *elt_type;
1956 struct value *descriptor;
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
1961 if (elt_type == NULL || arity == 0)
1962 return ada_check_typedef (value_type (arr));
1964 descriptor = desc_bounds (arr);
1965 if (value_as_long (descriptor) == 0)
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
1978 elt_type = create_array_type (array_type, elt_type, range_type);
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2002 return lookup_pointer_type (elt_type);
2006 /* If ARR does not represent an array, returns ARR unchanged.
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2012 ada_coerce_to_simple_array_ptr (struct value *arr)
2014 if (ada_is_array_descriptor_type (value_type (arr)))
2016 struct type *arrType = ada_type_of_array (arr, 1);
2018 if (arrType == NULL)
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
2028 /* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
2030 be ARR itself if it already is in the proper form). */
2033 ada_coerce_to_simple_array (struct value *arr)
2035 if (ada_is_array_descriptor_type (value_type (arr)))
2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2040 error (_("Bounds unavailable for null array pointer."));
2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2042 return value_ind (arrVal);
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
2050 /* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
2052 packing). For other types, is the identity. */
2055 ada_coerce_to_simple_array_type (struct type *type)
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
2060 if (ada_is_array_descriptor_type (type))
2061 return ada_check_typedef (desc_data_target_type (type));
2066 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2069 ada_is_packed_array_type (struct type *type)
2073 type = desc_base_type (type);
2074 type = ada_check_typedef (type);
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2080 /* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2084 ada_is_constrained_packed_array_type (struct type *type)
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2090 /* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2094 ada_is_unconstrained_packed_array_type (struct type *type)
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2100 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2104 decode_packed_array_bitsize (struct type *type)
2106 const char *raw_name;
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2116 raw_name = ada_type_name (ada_check_typedef (type));
2118 raw_name = ada_type_name (desc_base_type (type));
2123 tail = strstr (raw_name, "___XP");
2124 gdb_assert (tail != NULL);
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2129 (_("could not understand bit size information on packed array"));
2136 /* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
2153 static struct type *
2154 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 struct type *new_elt_type;
2157 struct type *new_type;
2158 struct type *index_type_desc;
2159 struct type *index_type;
2160 LONGEST low_bound, high_bound;
2162 type = ada_check_typedef (type);
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2171 index_type = TYPE_INDEX_TYPE (type);
2173 new_type = alloc_type_copy (type);
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 create_array_type (new_type, new_elt_type, index_type);
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
2189 *elt_bits *= (high_bound - low_bound + 1);
2190 TYPE_LENGTH (new_type) =
2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2194 TYPE_FIXED_INSTANCE (new_type) = 1;
2198 /* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
2201 static struct type *
2202 decode_constrained_packed_array_type (struct type *type)
2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
2207 struct type *shadow_type;
2211 raw_name = ada_type_name (desc_base_type (type));
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
2218 type = desc_base_type (type);
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2225 if (shadow_type == NULL)
2227 lim_warning (_("could not find bounds information on packed array"));
2230 shadow_type = check_typedef (shadow_type);
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
2243 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
2247 type length is set appropriately. */
2249 static struct value *
2250 decode_constrained_packed_array (struct value *arr)
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2263 arr = value_ind (arr);
2265 type = decode_constrained_packed_array_type (value_type (arr));
2268 error (_("can't unpack array"));
2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2273 && ada_is_modular_type (value_type (arr)))
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2282 mod = ada_modulus (value_type (arr)) - 1;
2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2297 return coerce_unspec_val_to_type (arr, type);
2301 /* The value of the element of packed array ARR at the ARITY indices
2302 given in IND. ARR must be a simple array. */
2304 static struct value *
2305 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
2310 struct type *elt_type;
2314 elt_total_bit_offset = 0;
2315 elt_type = ada_check_typedef (value_type (arr));
2316 for (i = 0; i < arity; i += 1)
2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2331 lim_warning (_("don't know bounds of array"));
2332 lowerbound = upperbound = 0;
2335 idx = pos_atr (ind[i]);
2336 if (idx < lowerbound || idx > upperbound)
2337 lim_warning (_("packed array index %ld out of bounds"),
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2352 /* Non-zero iff TYPE includes negative integer values. */
2355 has_negatives (struct type *type)
2357 switch (TYPE_CODE (type))
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2368 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2370 the unpacked buffer.
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2383 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2398 unsigned long accum; /* Staging area for bits being transferred */
2399 int accumSize; /* Number of meaningful bits in accum */
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
2404 int delta = is_big_endian ? -1 : 1;
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2412 srcBitsLeft = bit_size;
2413 src_bytes_left = src_len;
2414 unpacked_bytes_left = unpacked_len;
2419 src_idx = src_len - 1;
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2431 unpacked_idx = unpacked_len - 1;
2435 /* Non-scalar values must be aligned at a byte boundary... */
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2448 src_idx = unpacked_idx = 0;
2449 unusedLS = bit_offset;
2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2457 while (src_bytes_left > 0)
2459 /* Mask for removing bits of the next source byte that are not
2460 part of the value. */
2461 unsigned int unusedMSMask =
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2464 /* Sign-extend bits for this byte. */
2465 unsigned int signMask = sign & ~unusedMSMask;
2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2469 accumSize += HOST_CHAR_BIT - unusedLS;
2470 if (accumSize >= HOST_CHAR_BIT)
2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2480 src_bytes_left -= 1;
2483 while (unpacked_bytes_left > 0)
2485 accum |= sign << accumSize;
2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2487 accumSize -= HOST_CHAR_BIT;
2490 accum >>= HOST_CHAR_BIT;
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
2496 /* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2506 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2511 const gdb_byte *src; /* First byte containing data to unpack */
2513 const int is_scalar = is_scalar_type (type);
2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2515 gdb::byte_vector staging;
2517 type = ada_check_typedef (type);
2520 src = valaddr + offset;
2522 src = value_contents (obj) + offset;
2524 if (is_dynamic_type (type))
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
2537 staging.data (), staging.size (),
2538 is_big_endian, has_negatives (type),
2540 type = resolve_dynamic_type (type, staging.data (), 0);
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2556 v = allocate_value (type);
2557 src = valaddr + offset;
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2564 v = value_at (type, value_address (obj) + offset);
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2571 v = allocate_value (type);
2572 src = value_contents (obj) + offset;
2577 long new_offset = offset;
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2587 set_value_offset (v, new_offset);
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2594 set_value_bitsize (v, bit_size);
2595 unpacked = value_contents_writeable (v);
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2603 if (staging.size () == TYPE_LENGTH (type))
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
2608 memcpy (unpacked, staging.data (), staging.size ());
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
2618 /* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
2621 floating-point or non-scalar types. */
2623 static struct value *
2624 ada_value_assign (struct value *toval, struct value *fromval)
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2637 if (!deprecated_value_modifiable (toval))
2638 error (_("Left operand of assignment is not a modifiable lvalue."));
2640 if (VALUE_LVAL (toval) == lval_memory
2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
2650 CORE_ADDR to_addr = value_address (toval);
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2653 fromval = value_cast (type, fromval);
2655 read_memory (to_addr, buffer, len);
2656 from_size = value_bitsize (fromval);
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
2667 write_memory_with_notification (to_addr, buffer, len);
2669 val = value_copy (toval);
2670 memcpy (value_contents_raw (val), value_contents (fromval),
2671 TYPE_LENGTH (type));
2672 deprecated_set_value_type (val, type);
2677 return value_assign (toval, fromval);
2681 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2693 value_assign_to_component (struct value *container, struct value *component,
2696 LONGEST offset_in_container =
2697 (LONGEST) (value_address (component) - value_address (container));
2698 int bit_offset_in_container =
2699 value_bitpos (component) - value_bitpos (container);
2702 val = value_cast (value_type (component), val);
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2707 bits = value_bitsize (component);
2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2713 if (is_scalar_type (check_typedef (value_type (component))))
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
2728 /* Determine if TYPE is an access to an unconstrained array. */
2731 ada_is_access_to_unconstrained_array (struct type *type)
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2737 /* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
2742 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2746 struct type *elt_type;
2748 elt = ada_coerce_to_simple_array (arr);
2750 elt_type = ada_check_typedef (value_type (elt));
2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2755 for (k = 0; k < arity; k += 1)
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2760 error (_("too many subscripts (%d expected)"), k);
2762 elt = value_subscript (elt, pos_atr (ind[k]));
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2782 elt_type = ada_check_typedef (value_type (elt));
2788 /* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
2790 Does not read the entire array into memory.
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
2800 static struct value *
2801 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2804 struct value *array_ind = ada_value_ind (arr);
2806 = check_typedef (value_enclosing_type (array_ind));
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
2812 for (k = 0; k < arity; k += 1)
2815 struct value *lwb_value;
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2818 error (_("too many subscripts (%d expected)"), k);
2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2824 type = TYPE_TARGET_TYPE (type);
2827 return value_ind (arr);
2830 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
2834 static struct value *
2835 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2838 struct type *type0 = ada_check_typedef (type);
2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2840 struct type *index_type
2841 = create_static_range_type (NULL, base_index_type, low, high);
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2853 warning (_("unable to get positions in slice, use bounds instead"));
2855 base_low_pos = base_low;
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2861 return value_at_lazy (slice_type, base);
2865 static struct value *
2866 ada_value_slice (struct value *array, int low, int high)
2868 struct type *type = ada_check_typedef (value_type (array));
2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
2876 LONGEST low_pos, high_pos;
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2881 warning (_("unable to get positions in slice, use bounds instead"));
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
2890 /* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
2893 type designation. Otherwise, returns 0. */
2896 ada_array_arity (struct type *type)
2903 type = desc_base_type (type);
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2907 return desc_arity (desc_bounds_type (type));
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2918 /* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
2921 NINDICES is -1. Otherwise, returns NULL. */
2924 ada_array_element_type (struct type *type, int nindices)
2926 type = desc_base_type (type);
2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2931 struct type *p_array_type;
2933 p_array_type = desc_data_target_type (type);
2935 k = ada_array_arity (type);
2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2940 if (nindices >= 0 && k > nindices)
2942 while (k > 0 && p_array_type != NULL)
2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2947 return p_array_type;
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2953 type = TYPE_TARGET_TYPE (type);
2962 /* The type of nth index in arrays of given type (n numbering from 1).
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
2968 static struct type *
2969 ada_index_type (struct type *type, int n, const char *name)
2971 struct type *result_type;
2973 type = desc_base_type (type);
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
2978 if (ada_is_simple_array_type (type))
2982 for (i = 1; i < n; i += 1)
2983 type = TYPE_TARGET_TYPE (type);
2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2987 perhaps stabsread.c would make more sense. */
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
3001 /* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
3008 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3010 struct type *type, *index_type_desc, *index_type;
3013 gdb_assert (which == 0 || which == 1);
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3019 return (LONGEST) - which;
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3026 if (TYPE_FIXED_INSTANCE (type))
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3039 if (index_type_desc != NULL)
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3044 struct type *elt_type = check_typedef (type);
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
3058 /* Given that arr is an array value, returns the lower bound of the
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
3061 supplied by run-time quantities other than discriminants. */
3064 ada_array_bound (struct value *arr, int n, int which)
3066 struct type *arr_type;
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3074 else if (ada_is_simple_array_type (arr_type))
3075 return ada_array_bound_from_type (arr_type, n, which);
3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3080 /* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
3087 ada_array_length (struct value *arr, int n)
3089 struct type *arr_type, *index_type;
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
3099 if (ada_is_simple_array_type (arr_type))
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3110 arr_type = check_typedef (arr_type);
3111 index_type = ada_index_type (arr_type, n, "length");
3112 if (index_type != NULL)
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3118 base_type = index_type;
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3123 return high - low + 1;
3126 /* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
3130 static struct value *
3131 empty_array (struct type *arr_type, int low, int high)
3133 struct type *arr_type0 = ada_check_typedef (arr_type);
3134 struct type *index_type
3135 = create_static_range_type
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
3144 /* Name resolution */
3146 /* The "decoded" name for the user-definable Ada operator corresponding
3150 ada_decoded_op_name (enum exp_opcode op)
3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3156 if (ada_opname_table[i].op == op)
3157 return ada_opname_table[i].decoded;
3159 error (_("Could not find operator name for opcode"));
3163 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3170 return type is preferred. May change (expand) *EXP. */
3173 resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
3176 struct type *context_type = NULL;
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3185 /* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
3194 static struct value *
3195 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
3201 struct expression *exp; /* Convenience: == *expp. */
3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3235 parse_completion, tracker);
3238 case OP_ATR_MODULUS:
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3255 case OP_DISCRETE_RANGE:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
3295 case BINOP_NOTEQUAL:
3302 case BINOP_SUBSCRIPT:
3310 case UNOP_LOGICAL_NOT:
3320 case OP_VAR_MSYM_VALUE:
3327 case OP_INTERNALVAR:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3354 error (_("Unexpected operator during name resolution"));
3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
3358 for (i = 0; i < nargs; i += 1)
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3364 /* Pass two: perform any resolution on principal operator. */
3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3373 std::vector<struct block_symbol> candidates;
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
3382 if (n_candidates > 1)
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3388 for (j = 0; j < n_candidates; j += 1)
3389 switch (SYMBOL_CLASS (candidates[j].symbol))
3394 case LOC_REGPARM_ADDR:
3402 if (j < n_candidates)
3405 while (j < n_candidates)
3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3409 candidates[j] = candidates[n_candidates - 1];
3418 if (n_candidates == 0)
3419 error (_("No definition found for %s"),
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3423 else if (deprocedure_p
3424 && !is_nonfunction (candidates.data (), n_candidates))
3426 i = ada_resolve_function
3427 (candidates.data (), n_candidates, NULL, 0,
3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3429 context_type, parse_completion);
3431 error (_("Could not find a match for %s"),
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3436 printf_filtered (_("Multiple matches for %s\n"),
3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3438 user_select_syms (candidates.data (), n_candidates, 1);
3442 exp->elts[pc + 1].block = candidates[i].block;
3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
3444 tracker->update (candidates[i]);
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3451 replace_operator_with_call (expp, pc, 0, 4,
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3463 std::vector<struct block_symbol> candidates;
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
3472 if (n_candidates == 1)
3476 i = ada_resolve_function
3477 (candidates.data (), n_candidates,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3480 context_type, parse_completion);
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3486 exp->elts[pc + 4].block = candidates[i].block;
3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
3488 tracker->update (candidates[i]);
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3503 case BINOP_NOTEQUAL:
3511 case UNOP_LOGICAL_NOT:
3513 if (possible_user_operator_p (op, argvec))
3515 std::vector<struct block_symbol> candidates;
3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3524 nargs, ada_decoded_op_name (op), NULL,
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3547 return evaluate_subexp_type (exp, pos);
3550 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3553 /* The term "match" here is rather loose. The match is heuristic and
3557 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3567 switch (TYPE_CODE (ftype))
3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3591 case TYPE_CODE_ARRAY:
3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3593 || ada_is_array_descriptor_type (atype));
3595 case TYPE_CODE_STRUCT:
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
3603 case TYPE_CODE_UNION:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3609 /* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
3612 argument function. */
3615 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3618 struct type *func_type = SYMBOL_TYPE (func);
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3629 for (i = 0; i < n_actuals; i += 1)
3631 if (actuals[i] == NULL)
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3639 if (!ada_type_match (ftype, atype, 1))
3646 /* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3652 return_match (struct type *func_type, struct type *context_type)
3654 struct type *return_type;
3656 if (func_type == NULL)
3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3662 return_type = get_base_type (func_type);
3663 if (return_type == NULL)
3666 context_type = get_base_type (context_type);
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3677 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3678 function (if any) that matches the types of the NARGS arguments in
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
3690 ada_resolve_function (struct block_symbol syms[],
3691 int nsyms, struct value **args, int nargs,
3692 const char *name, struct type *context_type,
3693 int parse_completion)
3697 int m; /* Number of hits */
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3705 for (k = 0; k < nsyms; k += 1)
3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3709 if (ada_args_match (syms[k].symbol, args, nargs)
3710 && (fallback || return_match (type, context_type)))
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
3724 else if (m > 1 && !parse_completion)
3726 printf_filtered (_("Multiple matches for %s\n"), name);
3727 user_select_syms (syms, m, 1);
3733 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3740 encoded_ordered_before (const char *N0, const char *N1)
3744 else if (N0 == NULL)
3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3768 return (strcmp (N0, N1) < 0);
3772 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3776 sort_choices (struct block_symbol syms[], int nsyms)
3780 for (i = 1; i < nsyms; i += 1)
3782 struct block_symbol sym = syms[i];
3785 for (j = i - 1; j >= 0; j -= 1)
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
3790 syms[j + 1] = syms[j];
3796 /* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
3798 static int print_signatures = 1;
3800 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3806 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3809 struct type *type = SYMBOL_TYPE (sym);
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3817 if (TYPE_NFIELDS (type) > 0)
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3829 fprintf_filtered (stream, ")");
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3839 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3844 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3845 to be re-integrated one of these days. */
3848 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3851 int *chosen = XALLOCAVEC (int , nsyms);
3853 int first_choice = (max_results == 1) ? 1 : 2;
3854 const char *select_mode = multiple_symbols_select_mode ();
3856 if (max_results < 1)
3857 error (_("Request to select 0 symbols!"));
3861 if (select_mode == multiple_symbols_cancel)
3863 canceled because the command is ambiguous\n\
3864 See set/show multiple-symbol."));
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3872 printf_filtered (_("[0] cancel\n"));
3873 if (max_results > 1)
3874 printf_filtered (_("[1] all\n"));
3876 sort_choices (syms, nsyms);
3878 for (i = 0; i < nsyms; i += 1)
3880 if (syms[i].symbol == NULL)
3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3885 struct symtab_and_line sal =
3886 find_function_start_sal (syms[i].symbol, 1);
3888 printf_filtered ("[%d] ", i + first_choice);
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
3891 if (sal.symtab == NULL)
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3906 struct symtab *symtab = NULL;
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3913 printf_filtered ("[%d] ", i + first_choice);
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
3920 else if (is_enumeral
3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3923 printf_filtered (("[%d] "), i + first_choice);
3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3925 gdb_stdout, -1, 0, &type_print_raw_options);
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3939 symtab_to_filename_for_display (symtab));
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3951 for (i = 0; i < n_chosen; i += 1)
3952 syms[i] = syms[chosen[i]];
3957 /* Read and validate a set of numeric choices from the user in the
3958 range 0 .. N_CHOICES-1. Place the results in increasing
3959 order in CHOICES[0 .. N-1], and return N.
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3964 + A choice of 0 means to cancel the selection, throwing an error.
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3968 The user is not allowed to choose more than MAX_RESULTS values.
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
3971 prompts (for use with the -f switch). */
3974 get_selections (int *choices, int n_choices, int max_results,
3975 int is_all_choice, const char *annotation_suffix)
3980 int first_choice = is_all_choice ? 2 : 1;
3982 prompt = getenv ("PS2");
3986 args = command_line_input (prompt, annotation_suffix);
3989 error_no_arg (_("one or more choice numbers"));
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
4000 args = skip_spaces (args);
4001 if (*args == '\0' && n_chosen == 0)
4002 error_no_arg (_("one or more choice numbers"));
4003 else if (*args == '\0')
4006 choice = strtol (args, &args2, 10);
4007 if (args == args2 || choice < 0
4008 || choice > n_choices + first_choice - 1)
4009 error (_("Argument must be choice number"));
4013 error (_("cancelled"));
4015 if (choice < first_choice)
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4022 choice -= first_choice;
4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4028 if (j < 0 || choice != choices[j])
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4039 if (n_chosen > max_results)
4040 error (_("Select no more than %d of the above"), max_results);
4045 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
4050 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4051 int oplen, struct symbol *sym,
4052 const struct block *block)
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4055 symbol, -oplen for operator being replaced). */
4056 struct expression *newexp = (struct expression *)
4057 xzalloc (sizeof (struct expression)
4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4059 struct expression *exp = expp->get ();
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
4063 newexp->gdbarch = exp->gdbarch;
4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4075 expp->reset (newexp);
4078 /* Type-class predicates */
4080 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4084 numeric_type_p (struct type *type)
4090 switch (TYPE_CODE (type))
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4104 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4107 integer_type_p (struct type *type)
4113 switch (TYPE_CODE (type))
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4126 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4129 scalar_type_p (struct type *type)
4135 switch (TYPE_CODE (type))
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4148 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4151 discrete_type_p (struct type *type)
4157 switch (TYPE_CODE (type))
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
4162 case TYPE_CODE_BOOL:
4170 /* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
4175 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4177 struct type *type0 =
4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4179 struct type *type1 =
4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
4204 case BINOP_NOTEQUAL:
4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4219 case UNOP_LOGICAL_NOT:
4221 return (!numeric_type_p (type0));
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4240 /* If SYM encodes a renaming,
4242 <renaming> renames <renamed entity>,
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4259 enum ada_renaming_category
4260 ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4264 enum ada_renaming_category kind;
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
4273 return ADA_NOT_RENAMING;
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4280 return ADA_NOT_RENAMING;
4284 kind = ADA_OBJECT_RENAMING;
4288 kind = ADA_EXCEPTION_RENAMING;
4292 kind = ADA_PACKAGE_RENAMING;
4296 kind = ADA_SUBPROGRAM_RENAMING;
4300 return ADA_NOT_RENAMING;
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4310 *len = strlen (info) - strlen (suffix);
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4317 /* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
4321 static struct value *
4322 ada_read_renaming_var_value (struct symbol *renaming_sym,
4323 const struct block *block)
4325 const char *sym_name;
4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
4333 /* Evaluation: Function Calls */
4335 /* Return an lvalue containing the value VAL. This is the identity on
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
4339 static struct value *
4340 ensure_lval (struct value *val)
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
4349 VALUE_LVAL (val) = lval_memory;
4350 set_value_address (val, addr);
4351 write_memory (addr, value_contents (val), len);
4357 /* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4360 values not residing in memory, updating it as needed. */
4363 ada_convert_actual (struct value *actual, struct type *formal_type0)
4365 struct type *actual_type = ada_check_typedef (value_type (actual));
4366 struct type *formal_type = ada_check_typedef (formal_type0);
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4374 if (ada_is_array_descriptor_type (formal_target)
4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4376 return make_array_descriptor (formal_type, actual);
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4380 struct value *result;
4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4383 && ada_is_array_descriptor_type (actual_target))
4384 result = desc_data (actual);
4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4387 if (VALUE_LVAL (actual) != lval_memory)
4391 actual_type = ada_check_typedef (value_type (actual));
4392 val = allocate_value (actual_type);
4393 memcpy ((char *) value_contents_raw (val),
4394 (char *) value_contents (actual),
4395 TYPE_LENGTH (actual_type));
4396 actual = ensure_lval (val);
4398 result = value_addr (actual);
4402 return value_cast_pointers (formal_type, result, 0);
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
4406 else if (ada_is_aligner_type (formal_type))
4408 /* We need to turn this parameter into an aligner type
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4413 value_assign_to_component (aligner, component, actual);
4420 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4426 value_pointer (struct value *value, struct type *type)
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
4430 gdb_byte *buf = (gdb_byte *) alloca (len);
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4440 /* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
4446 static struct value *
4447 make_array_descriptor (struct type *type, struct value *arr)
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
4468 bounds = ensure_lval (bounds);
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
4484 descriptor = ensure_lval (descriptor);
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4492 /* Symbol Cache Module */
4494 /* Performance measurements made as of 2010-01-15 indicate that
4495 this cache does bring some noticeable improvements. Depending
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4504 /* Initialize the contents of SYM_CACHE. */
4507 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4513 /* Free the memory used by SYM_CACHE. */
4516 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4518 obstack_free (&sym_cache->cache_space, NULL);
4522 /* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
4525 static struct ada_symbol_cache *
4526 ada_get_symbol_cache (struct program_space *pspace)
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4530 if (pspace_data->sym_cache == NULL)
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
4536 return pspace_data->sym_cache;
4539 /* Clear all entries from the symbol cache. */
4542 ada_clear_symbol_cache (void)
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
4551 /* Search our cache for an entry matching NAME and DOMAIN.
4552 Return it if found, or NULL otherwise. */
4554 static struct cache_entry **
4555 find_entry (const char *name, domain_enum domain)
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4570 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4571 Return 1 if found, 0 otherwise.
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
4577 lookup_cached_symbol (const char *name, domain_enum domain,
4578 struct symbol **sym, const struct block **block)
4580 struct cache_entry **e = find_entry (name, domain);
4587 *block = (*e)->block;
4591 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4592 in domain DOMAIN, save this result in our symbol cache. */
4595 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4596 const struct block *block)
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
4602 struct cache_entry *e;
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4615 GLOBAL_BLOCK) != block
4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4617 STATIC_BLOCK) != block)
4620 h = msymbol_hash (name) % HASH_SIZE;
4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4626 strcpy (copy, name);
4634 /* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
4637 LOOKUP_NAME is expected to be a symbol name after transformation
4640 static symbol_name_match_type
4641 name_match_type_from_name (const char *lookup_name)
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
4648 /* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4651 static struct symbol *
4652 standard_lookup (const char *name, const struct block *block,
4655 /* Initialize it just to avoid a GCC false warning. */
4656 struct block_symbol sym = {};
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4666 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4670 is_nonfunction (struct block_symbol syms[], int n)
4674 for (i = 0; i < n; i += 1)
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4683 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4684 struct types. Otherwise, they may not. */
4687 equiv_types (struct type *type0, struct type *type1)
4691 if (type0 == NULL || type1 == NULL
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4703 /* True iff SYM0 represents the same entity as SYM1, or one that is
4704 no more defined than that of SYM1. */
4707 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4715 switch (SYMBOL_CLASS (sym0))
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4725 int len0 = strlen (name0);
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4731 && startswith (name1 + len0, "___XV")));
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4745 add_defn_to_vec (struct obstack *obstackp,
4747 const struct block *block)
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4774 struct block_symbol info;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4782 /* Number of block_symbol structures currently collected in current vector in
4786 num_defns_collected (struct obstack *obstackp)
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4800 return (struct block_symbol *) obstack_base (obstackp);
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4812 struct bound_minimal_symbol result;
4814 memset (&result, 0, sizeof (result));
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4822 for (objfile *objfile : current_program_space->objfiles ())
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4839 /* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4845 static std::vector<struct bound_minimal_symbol>
4846 ada_lookup_simple_minsyms (const char *name)
4848 std::vector<struct bound_minimal_symbol> result;
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4856 for (objfile *objfile : current_program_space->objfiles ())
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4869 /* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4876 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4877 const lookup_name_info &lookup_name,
4882 /* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
4886 is_nondebugging_type (struct type *type)
4888 const char *name = ada_type_name (type);
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4893 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4901 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4915 /* All enumerals should also have the same name (modulo any numerical
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4936 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4941 For instance, consider the following code:
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4957 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4968 /* Quick check: All symbols should have an enum type. */
4969 for (i = 0; i < syms.size (); i++)
4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4973 /* Quick check: They should all have the same value. */
4974 for (i = 1; i < syms.size (); i++)
4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4978 /* Quick check: They should all have the same number of enumerals. */
4979 for (i = 1; i < syms.size (); i++)
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
4987 for (i = 1; i < syms.size (); i++)
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
4995 /* Remove any non-debugging symbols in SYMS that definitely
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
5003 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
5010 if (syms->size () < 2)
5011 return syms->size ();
5014 while (i < syms->size ())
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5024 for (j = 0; j < syms->size (); j++)
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5042 for (j = 0; j < syms->size (); j += 1)
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5057 syms->erase (syms->begin () + i);
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
5074 if (symbols_are_identical_enums (*syms))
5077 return syms->size ();
5080 /* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
5086 xget_renaming_scope (struct type *renaming_type)
5088 /* The renaming types adhere to the following convention:
5089 <scope>__<rename>___<XR extension>.
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
5093 const char *name = TYPE_NAME (renaming_type);
5094 const char *suffix = strstr (name, "___XR");
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5104 /* Make a copy of scope and return it. */
5105 return std::string (name, last);
5108 /* Return nonzero if NAME corresponds to a package name. */
5111 is_package_name (const char *name)
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
5127 /* Do a quick check that NAME does not contain "__", since library-level
5128 functions names cannot contain "__" in them. */
5129 if (strstr (name, "__") != NULL)
5132 std::string fun_name = string_printf ("_ada_%s", name);
5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5137 /* Return nonzero if SYM corresponds to a renaming entity that is
5138 not visible from FUNCTION_NAME. */
5141 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5148 /* If the rename has been defined in a package, then it is visible. */
5149 if (is_package_name (scope.c_str ()))
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5159 if (startswith (function_name, "_ada_"))
5162 return !startswith (function_name, scope.c_str ());
5165 /* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5177 Second, GNAT emits a type following a specified encoding for each renaming
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
5203 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
5206 struct symbol *current_function;
5207 const char *current_function_name;
5209 int is_new_style_renaming;
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
5213 First, zero out such symbols, then compress. */
5214 is_new_style_renaming = 0;
5215 for (i = 0; i < syms->size (); i += 1)
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5229 int name_len = suffix - name;
5232 is_new_style_renaming = 1;
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
5241 if (is_new_style_renaming)
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
5248 (*syms)[k] = (*syms)[j];
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
5257 if (current_block == NULL)
5258 return syms->size ();
5260 current_function = block_linkage_function (current_block);
5261 if (current_function == NULL)
5262 return syms->size ();
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
5266 return syms->size ();
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5273 while (i < syms->size ())
5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5276 == ADA_OBJECT_RENAMING
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
5284 return syms->size ();
5287 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5298 ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
5302 int block_depth = 0;
5304 while (block != NULL)
5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5314 block = BLOCK_SUPERBLOCK (block);
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5323 /* An object of this type is used as the user_data argument when
5324 calling the map_matching_symbols method. */
5328 struct objfile *objfile;
5329 struct obstack *obstackp;
5330 struct symbol *arg_sym;
5334 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5335 to a list of symbols. DATA0 is a pointer to a struct match_data *
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
5344 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5347 struct match_data *data = (struct match_data *) data0;
5351 if (!data->found_sym && data->arg_sym != NULL)
5352 add_defn_to_vec (data->obstackp,
5353 fixup_symbol_section (data->arg_sym, data->objfile),
5355 data->found_sym = 0;
5356 data->arg_sym = NULL;
5360 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 else if (SYMBOL_IS_ARGUMENT (sym))
5363 data->arg_sym = sym;
5366 data->found_sym = 1;
5367 add_defn_to_vec (data->obstackp,
5368 fixup_symbol_section (sym, data->objfile),
5375 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5376 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5377 symbols to OBSTACKP. Return whether we found such symbols. */
5380 ada_add_block_renamings (struct obstack *obstackp,
5381 const struct block *block,
5382 const lookup_name_info &lookup_name,
5385 struct using_direct *renaming;
5386 int defns_mark = num_defns_collected (obstackp);
5388 symbol_name_matcher_ftype *name_match
5389 = ada_get_symbol_name_matcher (lookup_name);
5391 for (renaming = block_using (block);
5393 renaming = renaming->next)
5397 /* Avoid infinite recursions: skip this renaming if we are actually
5398 already traversing it.
5400 Currently, symbol lookup in Ada don't use the namespace machinery from
5401 C++/Fortran support: skip namespace imports that use them. */
5402 if (renaming->searched
5403 || (renaming->import_src != NULL
5404 && renaming->import_src[0] != '\0')
5405 || (renaming->import_dest != NULL
5406 && renaming->import_dest[0] != '\0'))
5408 renaming->searched = 1;
5410 /* TODO: here, we perform another name-based symbol lookup, which can
5411 pull its own multiple overloads. In theory, we should be able to do
5412 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5413 not a simple name. But in order to do this, we would need to enhance
5414 the DWARF reader to associate a symbol to this renaming, instead of a
5415 name. So, for now, we do something simpler: re-use the C++/Fortran
5416 namespace machinery. */
5417 r_name = (renaming->alias != NULL
5419 : renaming->declaration);
5420 if (name_match (r_name, lookup_name, NULL))
5422 lookup_name_info decl_lookup_name (renaming->declaration,
5423 lookup_name.match_type ());
5424 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5427 renaming->searched = 0;
5429 return num_defns_collected (obstackp) != defns_mark;
5432 /* Implements compare_names, but only applying the comparision using
5433 the given CASING. */
5436 compare_names_with_case (const char *string1, const char *string2,
5437 enum case_sensitivity casing)
5439 while (*string1 != '\0' && *string2 != '\0')
5443 if (isspace (*string1) || isspace (*string2))
5444 return strcmp_iw_ordered (string1, string2);
5446 if (casing == case_sensitive_off)
5448 c1 = tolower (*string1);
5449 c2 = tolower (*string2);
5466 return strcmp_iw_ordered (string1, string2);
5468 if (*string2 == '\0')
5470 if (is_name_suffix (string1))
5477 if (*string2 == '(')
5478 return strcmp_iw_ordered (string1, string2);
5481 if (casing == case_sensitive_off)
5482 return tolower (*string1) - tolower (*string2);
5484 return *string1 - *string2;
5489 /* Compare STRING1 to STRING2, with results as for strcmp.
5490 Compatible with strcmp_iw_ordered in that...
5492 strcmp_iw_ordered (STRING1, STRING2) <= 0
5496 compare_names (STRING1, STRING2) <= 0
5498 (they may differ as to what symbols compare equal). */
5501 compare_names (const char *string1, const char *string2)
5505 /* Similar to what strcmp_iw_ordered does, we need to perform
5506 a case-insensitive comparison first, and only resort to
5507 a second, case-sensitive, comparison if the first one was
5508 not sufficient to differentiate the two strings. */
5510 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 result = compare_names_with_case (string1, string2, case_sensitive_on);
5517 /* Convenience function to get at the Ada encoded lookup name for
5518 LOOKUP_NAME, as a C string. */
5521 ada_lookup_name (const lookup_name_info &lookup_name)
5523 return lookup_name.ada ().lookup_name ().c_str ();
5526 /* Add to OBSTACKP all non-local symbols whose name and domain match
5527 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5528 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5529 symbols otherwise. */
5532 add_nonlocal_symbols (struct obstack *obstackp,
5533 const lookup_name_info &lookup_name,
5534 domain_enum domain, int global)
5536 struct match_data data;
5538 memset (&data, 0, sizeof data);
5539 data.obstackp = obstackp;
5541 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543 for (objfile *objfile : current_program_space->objfiles ())
5545 data.objfile = objfile;
5548 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5550 aux_add_nonlocal_symbols, &data,
5551 symbol_name_match_type::WILD,
5554 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5556 aux_add_nonlocal_symbols, &data,
5557 symbol_name_match_type::FULL,
5560 for (compunit_symtab *cu : objfile->compunits ())
5562 const struct block *global_block
5563 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5565 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5571 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5573 const char *name = ada_lookup_name (lookup_name);
5574 std::string name1 = std::string ("<_ada_") + name + '>';
5576 for (objfile *objfile : current_program_space->objfiles ())
5578 data.objfile = objfile;
5579 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5581 aux_add_nonlocal_symbols,
5583 symbol_name_match_type::FULL,
5589 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5590 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5591 returning the number of matches. Add these to OBSTACKP.
5593 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5594 symbol match within the nest of blocks whose innermost member is BLOCK,
5595 is the one match returned (no other matches in that or
5596 enclosing blocks is returned). If there are any matches in or
5597 surrounding BLOCK, then these alone are returned.
5599 Names prefixed with "standard__" are handled specially:
5600 "standard__" is first stripped off (by the lookup_name
5601 constructor), and only static and global symbols are searched.
5603 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5604 to lookup global symbols. */
5607 ada_add_all_symbols (struct obstack *obstackp,
5608 const struct block *block,
5609 const lookup_name_info &lookup_name,
5612 int *made_global_lookup_p)
5616 if (made_global_lookup_p)
5617 *made_global_lookup_p = 0;
5619 /* Special case: If the user specifies a symbol name inside package
5620 Standard, do a non-wild matching of the symbol name without
5621 the "standard__" prefix. This was primarily introduced in order
5622 to allow the user to specifically access the standard exceptions
5623 using, for instance, Standard.Constraint_Error when Constraint_Error
5624 is ambiguous (due to the user defining its own Constraint_Error
5625 entity inside its program). */
5626 if (lookup_name.ada ().standard_p ())
5629 /* Check the non-global symbols. If we have ANY match, then we're done. */
5634 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5637 /* In the !full_search case we're are being called by
5638 ada_iterate_over_symbols, and we don't want to search
5640 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5642 if (num_defns_collected (obstackp) > 0 || !full_search)
5646 /* No non-global symbols found. Check our cache to see if we have
5647 already performed this search before. If we have, then return
5650 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5651 domain, &sym, &block))
5654 add_defn_to_vec (obstackp, sym, block);
5658 if (made_global_lookup_p)
5659 *made_global_lookup_p = 1;
5661 /* Search symbols from all global blocks. */
5663 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5665 /* Now add symbols from all per-file blocks if we've gotten no hits
5666 (not strictly correct, but perhaps better than an error). */
5668 if (num_defns_collected (obstackp) == 0)
5669 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5672 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5673 is non-zero, enclosing scope and in global scopes, returning the number of
5675 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5676 found and the blocks and symbol tables (if any) in which they were
5679 When full_search is non-zero, any non-function/non-enumeral
5680 symbol match within the nest of blocks whose innermost member is BLOCK,
5681 is the one match returned (no other matches in that or
5682 enclosing blocks is returned). If there are any matches in or
5683 surrounding BLOCK, then these alone are returned.
5685 Names prefixed with "standard__" are handled specially: "standard__"
5686 is first stripped off, and only static and global symbols are searched. */
5689 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5690 const struct block *block,
5692 std::vector<struct block_symbol> *results,
5695 int syms_from_global_search;
5697 auto_obstack obstack;
5699 ada_add_all_symbols (&obstack, block, lookup_name,
5700 domain, full_search, &syms_from_global_search);
5702 ndefns = num_defns_collected (&obstack);
5704 struct block_symbol *base = defns_collected (&obstack, 1);
5705 for (int i = 0; i < ndefns; ++i)
5706 results->push_back (base[i]);
5708 ndefns = remove_extra_symbols (results);
5710 if (ndefns == 0 && full_search && syms_from_global_search)
5711 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5713 if (ndefns == 1 && full_search && syms_from_global_search)
5714 cache_symbol (ada_lookup_name (lookup_name), domain,
5715 (*results)[0].symbol, (*results)[0].block);
5717 ndefns = remove_irrelevant_renamings (results, block);
5722 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5723 in global scopes, returning the number of matches, and filling *RESULTS
5724 with (SYM,BLOCK) tuples.
5726 See ada_lookup_symbol_list_worker for further details. */
5729 ada_lookup_symbol_list (const char *name, const struct block *block,
5731 std::vector<struct block_symbol> *results)
5733 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5734 lookup_name_info lookup_name (name, name_match_type);
5736 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5739 /* Implementation of the la_iterate_over_symbols method. */
5742 ada_iterate_over_symbols
5743 (const struct block *block, const lookup_name_info &name,
5745 gdb::function_view<symbol_found_callback_ftype> callback)
5748 std::vector<struct block_symbol> results;
5750 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5752 for (i = 0; i < ndefs; ++i)
5754 if (!callback (&results[i]))
5759 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5760 to 1, but choosing the first symbol found if there are multiple
5763 The result is stored in *INFO, which must be non-NULL.
5764 If no match is found, INFO->SYM is set to NULL. */
5767 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5769 struct block_symbol *info)
5771 /* Since we already have an encoded name, wrap it in '<>' to force a
5772 verbatim match. Otherwise, if the name happens to not look like
5773 an encoded name (because it doesn't include a "__"),
5774 ada_lookup_name_info would re-encode/fold it again, and that
5775 would e.g., incorrectly lowercase object renaming names like
5776 "R28b" -> "r28b". */
5777 std::string verbatim = std::string ("<") + name + '>';
5779 gdb_assert (info != NULL);
5780 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5783 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5784 scope and in global scopes, or NULL if none. NAME is folded and
5785 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5786 choosing the first symbol if there are multiple choices. */
5789 ada_lookup_symbol (const char *name, const struct block *block0,
5792 std::vector<struct block_symbol> candidates;
5795 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5797 if (n_candidates == 0)
5800 block_symbol info = candidates[0];
5801 info.symbol = fixup_symbol_section (info.symbol, NULL);
5805 static struct block_symbol
5806 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5808 const struct block *block,
5809 const domain_enum domain)
5811 struct block_symbol sym;
5813 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5814 if (sym.symbol != NULL)
5817 /* If we haven't found a match at this point, try the primitive
5818 types. In other languages, this search is performed before
5819 searching for global symbols in order to short-circuit that
5820 global-symbol search if it happens that the name corresponds
5821 to a primitive type. But we cannot do the same in Ada, because
5822 it is perfectly legitimate for a program to declare a type which
5823 has the same name as a standard type. If looking up a type in
5824 that situation, we have traditionally ignored the primitive type
5825 in favor of user-defined types. This is why, unlike most other
5826 languages, we search the primitive types this late and only after
5827 having searched the global symbols without success. */
5829 if (domain == VAR_DOMAIN)
5831 struct gdbarch *gdbarch;
5834 gdbarch = target_gdbarch ();
5836 gdbarch = block_gdbarch (block);
5837 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5838 if (sym.symbol != NULL)
5846 /* True iff STR is a possible encoded suffix of a normal Ada name
5847 that is to be ignored for matching purposes. Suffixes of parallel
5848 names (e.g., XVE) are not included here. Currently, the possible suffixes
5849 are given by any of the regular expressions:
5851 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5852 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5853 TKB [subprogram suffix for task bodies]
5854 _E[0-9]+[bs]$ [protected object entry suffixes]
5855 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5857 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5858 match is performed. This sequence is used to differentiate homonyms,
5859 is an optional part of a valid name suffix. */
5862 is_name_suffix (const char *str)
5865 const char *matching;
5866 const int len = strlen (str);
5868 /* Skip optional leading __[0-9]+. */
5870 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5873 while (isdigit (str[0]))
5879 if (str[0] == '.' || str[0] == '$')
5882 while (isdigit (matching[0]))
5884 if (matching[0] == '\0')
5890 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5893 while (isdigit (matching[0]))
5895 if (matching[0] == '\0')
5899 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5901 if (strcmp (str, "TKB") == 0)
5905 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5906 with a N at the end. Unfortunately, the compiler uses the same
5907 convention for other internal types it creates. So treating
5908 all entity names that end with an "N" as a name suffix causes
5909 some regressions. For instance, consider the case of an enumerated
5910 type. To support the 'Image attribute, it creates an array whose
5912 Having a single character like this as a suffix carrying some
5913 information is a bit risky. Perhaps we should change the encoding
5914 to be something like "_N" instead. In the meantime, do not do
5915 the following check. */
5916 /* Protected Object Subprograms */
5917 if (len == 1 && str [0] == 'N')
5922 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5925 while (isdigit (matching[0]))
5927 if ((matching[0] == 'b' || matching[0] == 's')
5928 && matching [1] == '\0')
5932 /* ??? We should not modify STR directly, as we are doing below. This
5933 is fine in this case, but may become problematic later if we find
5934 that this alternative did not work, and want to try matching
5935 another one from the begining of STR. Since we modified it, we
5936 won't be able to find the begining of the string anymore! */
5940 while (str[0] != '_' && str[0] != '\0')
5942 if (str[0] != 'n' && str[0] != 'b')
5948 if (str[0] == '\000')
5953 if (str[1] != '_' || str[2] == '\000')
5957 if (strcmp (str + 3, "JM") == 0)
5959 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5960 the LJM suffix in favor of the JM one. But we will
5961 still accept LJM as a valid suffix for a reasonable
5962 amount of time, just to allow ourselves to debug programs
5963 compiled using an older version of GNAT. */
5964 if (strcmp (str + 3, "LJM") == 0)
5968 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5969 || str[4] == 'U' || str[4] == 'P')
5971 if (str[4] == 'R' && str[5] != 'T')
5975 if (!isdigit (str[2]))
5977 for (k = 3; str[k] != '\0'; k += 1)
5978 if (!isdigit (str[k]) && str[k] != '_')
5982 if (str[0] == '$' && isdigit (str[1]))
5984 for (k = 2; str[k] != '\0'; k += 1)
5985 if (!isdigit (str[k]) && str[k] != '_')
5992 /* Return non-zero if the string starting at NAME and ending before
5993 NAME_END contains no capital letters. */
5996 is_valid_name_for_wild_match (const char *name0)
5998 const char *decoded_name = ada_decode (name0);
6001 /* If the decoded name starts with an angle bracket, it means that
6002 NAME0 does not follow the GNAT encoding format. It should then
6003 not be allowed as a possible wild match. */
6004 if (decoded_name[0] == '<')
6007 for (i=0; decoded_name[i] != '\0'; i++)
6008 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6014 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6015 that could start a simple name. Assumes that *NAMEP points into
6016 the string beginning at NAME0. */
6019 advance_wild_match (const char **namep, const char *name0, int target0)
6021 const char *name = *namep;
6031 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6034 if (name == name0 + 5 && startswith (name0, "_ada"))
6039 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6040 || name[2] == target0))
6048 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6058 /* Return true iff NAME encodes a name of the form prefix.PATN.
6059 Ignores any informational suffixes of NAME (i.e., for which
6060 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6064 wild_match (const char *name, const char *patn)
6067 const char *name0 = name;
6071 const char *match = name;
6075 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6078 if (*p == '\0' && is_name_suffix (name))
6079 return match == name0 || is_valid_name_for_wild_match (name0);
6081 if (name[-1] == '_')
6084 if (!advance_wild_match (&name, name0, *patn))
6089 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6090 any trailing suffixes that encode debugging information or leading
6091 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6092 information that is ignored). */
6095 full_match (const char *sym_name, const char *search_name)
6097 size_t search_name_len = strlen (search_name);
6099 if (strncmp (sym_name, search_name, search_name_len) == 0
6100 && is_name_suffix (sym_name + search_name_len))
6103 if (startswith (sym_name, "_ada_")
6104 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6105 && is_name_suffix (sym_name + search_name_len + 5))
6111 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6112 *defn_symbols, updating the list of symbols in OBSTACKP (if
6113 necessary). OBJFILE is the section containing BLOCK. */
6116 ada_add_block_symbols (struct obstack *obstackp,
6117 const struct block *block,
6118 const lookup_name_info &lookup_name,
6119 domain_enum domain, struct objfile *objfile)
6121 struct block_iterator iter;
6122 /* A matching argument symbol, if any. */
6123 struct symbol *arg_sym;
6124 /* Set true when we find a matching non-argument symbol. */
6130 for (sym = block_iter_match_first (block, lookup_name, &iter);
6132 sym = block_iter_match_next (lookup_name, &iter))
6134 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6135 SYMBOL_DOMAIN (sym), domain))
6137 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6139 if (SYMBOL_IS_ARGUMENT (sym))
6144 add_defn_to_vec (obstackp,
6145 fixup_symbol_section (sym, objfile),
6152 /* Handle renamings. */
6154 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6157 if (!found_sym && arg_sym != NULL)
6159 add_defn_to_vec (obstackp,
6160 fixup_symbol_section (arg_sym, objfile),
6164 if (!lookup_name.ada ().wild_match_p ())
6168 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6169 const char *name = ada_lookup_name.c_str ();
6170 size_t name_len = ada_lookup_name.size ();
6172 ALL_BLOCK_SYMBOLS (block, iter, sym)
6174 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6175 SYMBOL_DOMAIN (sym), domain))
6179 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6182 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6184 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6189 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6191 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6193 if (SYMBOL_IS_ARGUMENT (sym))
6198 add_defn_to_vec (obstackp,
6199 fixup_symbol_section (sym, objfile),
6207 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6208 They aren't parameters, right? */
6209 if (!found_sym && arg_sym != NULL)
6211 add_defn_to_vec (obstackp,
6212 fixup_symbol_section (arg_sym, objfile),
6219 /* Symbol Completion */
6224 ada_lookup_name_info::matches
6225 (const char *sym_name,
6226 symbol_name_match_type match_type,
6227 completion_match_result *comp_match_res) const
6230 const char *text = m_encoded_name.c_str ();
6231 size_t text_len = m_encoded_name.size ();
6233 /* First, test against the fully qualified name of the symbol. */
6235 if (strncmp (sym_name, text, text_len) == 0)
6238 if (match && !m_encoded_p)
6240 /* One needed check before declaring a positive match is to verify
6241 that iff we are doing a verbatim match, the decoded version
6242 of the symbol name starts with '<'. Otherwise, this symbol name
6243 is not a suitable completion. */
6244 const char *sym_name_copy = sym_name;
6245 bool has_angle_bracket;
6247 sym_name = ada_decode (sym_name);
6248 has_angle_bracket = (sym_name[0] == '<');
6249 match = (has_angle_bracket == m_verbatim_p);
6250 sym_name = sym_name_copy;
6253 if (match && !m_verbatim_p)
6255 /* When doing non-verbatim match, another check that needs to
6256 be done is to verify that the potentially matching symbol name
6257 does not include capital letters, because the ada-mode would
6258 not be able to understand these symbol names without the
6259 angle bracket notation. */
6262 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6267 /* Second: Try wild matching... */
6269 if (!match && m_wild_match_p)
6271 /* Since we are doing wild matching, this means that TEXT
6272 may represent an unqualified symbol name. We therefore must
6273 also compare TEXT against the unqualified name of the symbol. */
6274 sym_name = ada_unqualified_name (ada_decode (sym_name));
6276 if (strncmp (sym_name, text, text_len) == 0)
6280 /* Finally: If we found a match, prepare the result to return. */
6285 if (comp_match_res != NULL)
6287 std::string &match_str = comp_match_res->match.storage ();
6290 match_str = ada_decode (sym_name);
6294 match_str = add_angle_brackets (sym_name);
6296 match_str = sym_name;
6300 comp_match_res->set_match (match_str.c_str ());
6306 /* Add the list of possible symbol names completing TEXT to TRACKER.
6307 WORD is the entire command on which completion is made. */
6310 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6311 complete_symbol_mode mode,
6312 symbol_name_match_type name_match_type,
6313 const char *text, const char *word,
6314 enum type_code code)
6317 const struct block *b, *surrounding_static_block = 0;
6318 struct block_iterator iter;
6320 gdb_assert (code == TYPE_CODE_UNDEF);
6322 lookup_name_info lookup_name (text, name_match_type, true);
6324 /* First, look at the partial symtab symbols. */
6325 expand_symtabs_matching (NULL,
6331 /* At this point scan through the misc symbol vectors and add each
6332 symbol you find to the list. Eventually we want to ignore
6333 anything that isn't a text symbol (everything else will be
6334 handled by the psymtab code above). */
6336 for (objfile *objfile : current_program_space->objfiles ())
6338 for (minimal_symbol *msymbol : objfile->msymbols ())
6342 if (completion_skip_symbol (mode, msymbol))
6345 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6347 /* Ada minimal symbols won't have their language set to Ada. If
6348 we let completion_list_add_name compare using the
6349 default/C-like matcher, then when completing e.g., symbols in a
6350 package named "pck", we'd match internal Ada symbols like
6351 "pckS", which are invalid in an Ada expression, unless you wrap
6352 them in '<' '>' to request a verbatim match.
6354 Unfortunately, some Ada encoded names successfully demangle as
6355 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6356 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6357 with the wrong language set. Paper over that issue here. */
6358 if (symbol_language == language_auto
6359 || symbol_language == language_cplus)
6360 symbol_language = language_ada;
6362 completion_list_add_name (tracker,
6364 MSYMBOL_LINKAGE_NAME (msymbol),
6365 lookup_name, text, word);
6369 /* Search upwards from currently selected frame (so that we can
6370 complete on local vars. */
6372 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6374 if (!BLOCK_SUPERBLOCK (b))
6375 surrounding_static_block = b; /* For elmin of dups */
6377 ALL_BLOCK_SYMBOLS (b, iter, sym)
6379 if (completion_skip_symbol (mode, sym))
6382 completion_list_add_name (tracker,
6383 SYMBOL_LANGUAGE (sym),
6384 SYMBOL_LINKAGE_NAME (sym),
6385 lookup_name, text, word);
6389 /* Go through the symtabs and check the externs and statics for
6390 symbols which match. */
6392 for (objfile *objfile : current_program_space->objfiles ())
6394 for (compunit_symtab *s : objfile->compunits ())
6397 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6398 ALL_BLOCK_SYMBOLS (b, iter, sym)
6400 if (completion_skip_symbol (mode, sym))
6403 completion_list_add_name (tracker,
6404 SYMBOL_LANGUAGE (sym),
6405 SYMBOL_LINKAGE_NAME (sym),
6406 lookup_name, text, word);
6411 for (objfile *objfile : current_program_space->objfiles ())
6413 for (compunit_symtab *s : objfile->compunits ())
6416 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6417 /* Don't do this block twice. */
6418 if (b == surrounding_static_block)
6420 ALL_BLOCK_SYMBOLS (b, iter, sym)
6422 if (completion_skip_symbol (mode, sym))
6425 completion_list_add_name (tracker,
6426 SYMBOL_LANGUAGE (sym),
6427 SYMBOL_LINKAGE_NAME (sym),
6428 lookup_name, text, word);
6436 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6437 for tagged types. */
6440 ada_is_dispatch_table_ptr_type (struct type *type)
6444 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6447 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6451 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6454 /* Return non-zero if TYPE is an interface tag. */
6457 ada_is_interface_tag (struct type *type)
6459 const char *name = TYPE_NAME (type);
6464 return (strcmp (name, "ada__tags__interface_tag") == 0);
6467 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6468 to be invisible to users. */
6471 ada_is_ignored_field (struct type *type, int field_num)
6473 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6476 /* Check the name of that field. */
6478 const char *name = TYPE_FIELD_NAME (type, field_num);
6480 /* Anonymous field names should not be printed.
6481 brobecker/2007-02-20: I don't think this can actually happen
6482 but we don't want to print the value of annonymous fields anyway. */
6486 /* Normally, fields whose name start with an underscore ("_")
6487 are fields that have been internally generated by the compiler,
6488 and thus should not be printed. The "_parent" field is special,
6489 however: This is a field internally generated by the compiler
6490 for tagged types, and it contains the components inherited from
6491 the parent type. This field should not be printed as is, but
6492 should not be ignored either. */
6493 if (name[0] == '_' && !startswith (name, "_parent"))
6497 /* If this is the dispatch table of a tagged type or an interface tag,
6499 if (ada_is_tagged_type (type, 1)
6500 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6501 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6504 /* Not a special field, so it should not be ignored. */
6508 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6509 pointer or reference type whose ultimate target has a tag field. */
6512 ada_is_tagged_type (struct type *type, int refok)
6514 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6517 /* True iff TYPE represents the type of X'Tag */
6520 ada_is_tag_type (struct type *type)
6522 type = ada_check_typedef (type);
6524 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6528 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6530 return (name != NULL
6531 && strcmp (name, "ada__tags__dispatch_table") == 0);
6535 /* The type of the tag on VAL. */
6538 ada_tag_type (struct value *val)
6540 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6543 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6544 retired at Ada 05). */
6547 is_ada95_tag (struct value *tag)
6549 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6552 /* The value of the tag on VAL. */
6555 ada_value_tag (struct value *val)
6557 return ada_value_struct_elt (val, "_tag", 0);
6560 /* The value of the tag on the object of type TYPE whose contents are
6561 saved at VALADDR, if it is non-null, or is at memory address
6564 static struct value *
6565 value_tag_from_contents_and_address (struct type *type,
6566 const gdb_byte *valaddr,
6569 int tag_byte_offset;
6570 struct type *tag_type;
6572 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6575 const gdb_byte *valaddr1 = ((valaddr == NULL)
6577 : valaddr + tag_byte_offset);
6578 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6580 return value_from_contents_and_address (tag_type, valaddr1, address1);
6585 static struct type *
6586 type_from_tag (struct value *tag)
6588 const char *type_name = ada_tag_name (tag);
6590 if (type_name != NULL)
6591 return ada_find_any_type (ada_encode (type_name));
6595 /* Given a value OBJ of a tagged type, return a value of this
6596 type at the base address of the object. The base address, as
6597 defined in Ada.Tags, it is the address of the primary tag of
6598 the object, and therefore where the field values of its full
6599 view can be fetched. */
6602 ada_tag_value_at_base_address (struct value *obj)
6605 LONGEST offset_to_top = 0;
6606 struct type *ptr_type, *obj_type;
6608 CORE_ADDR base_address;
6610 obj_type = value_type (obj);
6612 /* It is the responsability of the caller to deref pointers. */
6614 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6615 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6618 tag = ada_value_tag (obj);
6622 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6624 if (is_ada95_tag (tag))
6627 ptr_type = language_lookup_primitive_type
6628 (language_def (language_ada), target_gdbarch(), "storage_offset");
6629 ptr_type = lookup_pointer_type (ptr_type);
6630 val = value_cast (ptr_type, tag);
6634 /* It is perfectly possible that an exception be raised while
6635 trying to determine the base address, just like for the tag;
6636 see ada_tag_name for more details. We do not print the error
6637 message for the same reason. */
6641 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6644 catch (const gdb_exception_error &e)
6649 /* If offset is null, nothing to do. */
6651 if (offset_to_top == 0)
6654 /* -1 is a special case in Ada.Tags; however, what should be done
6655 is not quite clear from the documentation. So do nothing for
6658 if (offset_to_top == -1)
6661 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6662 from the base address. This was however incompatible with
6663 C++ dispatch table: C++ uses a *negative* value to *add*
6664 to the base address. Ada's convention has therefore been
6665 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6666 use the same convention. Here, we support both cases by
6667 checking the sign of OFFSET_TO_TOP. */
6669 if (offset_to_top > 0)
6670 offset_to_top = -offset_to_top;
6672 base_address = value_address (obj) + offset_to_top;
6673 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6675 /* Make sure that we have a proper tag at the new address.
6676 Otherwise, offset_to_top is bogus (which can happen when
6677 the object is not initialized yet). */
6682 obj_type = type_from_tag (tag);
6687 return value_from_contents_and_address (obj_type, NULL, base_address);
6690 /* Return the "ada__tags__type_specific_data" type. */
6692 static struct type *
6693 ada_get_tsd_type (struct inferior *inf)
6695 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6697 if (data->tsd_type == 0)
6698 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6699 return data->tsd_type;
6702 /* Return the TSD (type-specific data) associated to the given TAG.
6703 TAG is assumed to be the tag of a tagged-type entity.
6705 May return NULL if we are unable to get the TSD. */
6707 static struct value *
6708 ada_get_tsd_from_tag (struct value *tag)
6713 /* First option: The TSD is simply stored as a field of our TAG.
6714 Only older versions of GNAT would use this format, but we have
6715 to test it first, because there are no visible markers for
6716 the current approach except the absence of that field. */
6718 val = ada_value_struct_elt (tag, "tsd", 1);
6722 /* Try the second representation for the dispatch table (in which
6723 there is no explicit 'tsd' field in the referent of the tag pointer,
6724 and instead the tsd pointer is stored just before the dispatch
6727 type = ada_get_tsd_type (current_inferior());
6730 type = lookup_pointer_type (lookup_pointer_type (type));
6731 val = value_cast (type, tag);
6734 return value_ind (value_ptradd (val, -1));
6737 /* Given the TSD of a tag (type-specific data), return a string
6738 containing the name of the associated type.
6740 The returned value is good until the next call. May return NULL
6741 if we are unable to determine the tag name. */
6744 ada_tag_name_from_tsd (struct value *tsd)
6746 static char name[1024];
6750 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6753 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6754 for (p = name; *p != '\0'; p += 1)
6760 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6763 Return NULL if the TAG is not an Ada tag, or if we were unable to
6764 determine the name of that tag. The result is good until the next
6768 ada_tag_name (struct value *tag)
6772 if (!ada_is_tag_type (value_type (tag)))
6775 /* It is perfectly possible that an exception be raised while trying
6776 to determine the TAG's name, even under normal circumstances:
6777 The associated variable may be uninitialized or corrupted, for
6778 instance. We do not let any exception propagate past this point.
6779 instead we return NULL.
6781 We also do not print the error message either (which often is very
6782 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6783 the caller print a more meaningful message if necessary. */
6786 struct value *tsd = ada_get_tsd_from_tag (tag);
6789 name = ada_tag_name_from_tsd (tsd);
6791 catch (const gdb_exception_error &e)
6798 /* The parent type of TYPE, or NULL if none. */
6801 ada_parent_type (struct type *type)
6805 type = ada_check_typedef (type);
6807 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6810 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6811 if (ada_is_parent_field (type, i))
6813 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6815 /* If the _parent field is a pointer, then dereference it. */
6816 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6817 parent_type = TYPE_TARGET_TYPE (parent_type);
6818 /* If there is a parallel XVS type, get the actual base type. */
6819 parent_type = ada_get_base_type (parent_type);
6821 return ada_check_typedef (parent_type);
6827 /* True iff field number FIELD_NUM of structure type TYPE contains the
6828 parent-type (inherited) fields of a derived type. Assumes TYPE is
6829 a structure type with at least FIELD_NUM+1 fields. */
6832 ada_is_parent_field (struct type *type, int field_num)
6834 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6836 return (name != NULL
6837 && (startswith (name, "PARENT")
6838 || startswith (name, "_parent")));
6841 /* True iff field number FIELD_NUM of structure type TYPE is a
6842 transparent wrapper field (which should be silently traversed when doing
6843 field selection and flattened when printing). Assumes TYPE is a
6844 structure type with at least FIELD_NUM+1 fields. Such fields are always
6848 ada_is_wrapper_field (struct type *type, int field_num)
6850 const char *name = TYPE_FIELD_NAME (type, field_num);
6852 if (name != NULL && strcmp (name, "RETVAL") == 0)
6854 /* This happens in functions with "out" or "in out" parameters
6855 which are passed by copy. For such functions, GNAT describes
6856 the function's return type as being a struct where the return
6857 value is in a field called RETVAL, and where the other "out"
6858 or "in out" parameters are fields of that struct. This is not
6863 return (name != NULL
6864 && (startswith (name, "PARENT")
6865 || strcmp (name, "REP") == 0
6866 || startswith (name, "_parent")
6867 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6870 /* True iff field number FIELD_NUM of structure or union type TYPE
6871 is a variant wrapper. Assumes TYPE is a structure type with at least
6872 FIELD_NUM+1 fields. */
6875 ada_is_variant_part (struct type *type, int field_num)
6877 /* Only Ada types are eligible. */
6878 if (!ADA_TYPE_P (type))
6881 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6883 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6884 || (is_dynamic_field (type, field_num)
6885 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6886 == TYPE_CODE_UNION)));
6889 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6890 whose discriminants are contained in the record type OUTER_TYPE,
6891 returns the type of the controlling discriminant for the variant.
6892 May return NULL if the type could not be found. */
6895 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6897 const char *name = ada_variant_discrim_name (var_type);
6899 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6902 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6903 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6904 represents a 'when others' clause; otherwise 0. */
6907 ada_is_others_clause (struct type *type, int field_num)
6909 const char *name = TYPE_FIELD_NAME (type, field_num);
6911 return (name != NULL && name[0] == 'O');
6914 /* Assuming that TYPE0 is the type of the variant part of a record,
6915 returns the name of the discriminant controlling the variant.
6916 The value is valid until the next call to ada_variant_discrim_name. */
6919 ada_variant_discrim_name (struct type *type0)
6921 static char *result = NULL;
6922 static size_t result_len = 0;
6925 const char *discrim_end;
6926 const char *discrim_start;
6928 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6929 type = TYPE_TARGET_TYPE (type0);
6933 name = ada_type_name (type);
6935 if (name == NULL || name[0] == '\000')
6938 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6941 if (startswith (discrim_end, "___XVN"))
6944 if (discrim_end == name)
6947 for (discrim_start = discrim_end; discrim_start != name + 3;
6950 if (discrim_start == name + 1)
6952 if ((discrim_start > name + 3
6953 && startswith (discrim_start - 3, "___"))
6954 || discrim_start[-1] == '.')
6958 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6959 strncpy (result, discrim_start, discrim_end - discrim_start);
6960 result[discrim_end - discrim_start] = '\0';
6964 /* Scan STR for a subtype-encoded number, beginning at position K.
6965 Put the position of the character just past the number scanned in
6966 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6967 Return 1 if there was a valid number at the given position, and 0
6968 otherwise. A "subtype-encoded" number consists of the absolute value
6969 in decimal, followed by the letter 'm' to indicate a negative number.
6970 Assumes 0m does not occur. */
6973 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6977 if (!isdigit (str[k]))
6980 /* Do it the hard way so as not to make any assumption about
6981 the relationship of unsigned long (%lu scan format code) and
6984 while (isdigit (str[k]))
6986 RU = RU * 10 + (str[k] - '0');
6993 *R = (-(LONGEST) (RU - 1)) - 1;
6999 /* NOTE on the above: Technically, C does not say what the results of
7000 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7001 number representable as a LONGEST (although either would probably work
7002 in most implementations). When RU>0, the locution in the then branch
7003 above is always equivalent to the negative of RU. */
7010 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7011 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7012 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7015 ada_in_variant (LONGEST val, struct type *type, int field_num)
7017 const char *name = TYPE_FIELD_NAME (type, field_num);
7031 if (!ada_scan_number (name, p + 1, &W, &p))
7041 if (!ada_scan_number (name, p + 1, &L, &p)
7042 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7044 if (val >= L && val <= U)
7056 /* FIXME: Lots of redundancy below. Try to consolidate. */
7058 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7059 ARG_TYPE, extract and return the value of one of its (non-static)
7060 fields. FIELDNO says which field. Differs from value_primitive_field
7061 only in that it can handle packed values of arbitrary type. */
7063 static struct value *
7064 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7065 struct type *arg_type)
7069 arg_type = ada_check_typedef (arg_type);
7070 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7072 /* Handle packed fields. It might be that the field is not packed
7073 relative to its containing structure, but the structure itself is
7074 packed; in this case we must take the bit-field path. */
7075 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7077 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7078 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7080 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7081 offset + bit_pos / 8,
7082 bit_pos % 8, bit_size, type);
7085 return value_primitive_field (arg1, offset, fieldno, arg_type);
7088 /* Find field with name NAME in object of type TYPE. If found,
7089 set the following for each argument that is non-null:
7090 - *FIELD_TYPE_P to the field's type;
7091 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7092 an object of that type;
7093 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7094 - *BIT_SIZE_P to its size in bits if the field is packed, and
7096 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7097 fields up to but not including the desired field, or by the total
7098 number of fields if not found. A NULL value of NAME never
7099 matches; the function just counts visible fields in this case.
7101 Notice that we need to handle when a tagged record hierarchy
7102 has some components with the same name, like in this scenario:
7104 type Top_T is tagged record
7110 type Middle_T is new Top.Top_T with record
7111 N : Character := 'a';
7115 type Bottom_T is new Middle.Middle_T with record
7117 C : Character := '5';
7119 A : Character := 'J';
7122 Let's say we now have a variable declared and initialized as follow:
7124 TC : Top_A := new Bottom_T;
7126 And then we use this variable to call this function
7128 procedure Assign (Obj: in out Top_T; TV : Integer);
7132 Assign (Top_T (B), 12);
7134 Now, we're in the debugger, and we're inside that procedure
7135 then and we want to print the value of obj.c:
7137 Usually, the tagged record or one of the parent type owns the
7138 component to print and there's no issue but in this particular
7139 case, what does it mean to ask for Obj.C? Since the actual
7140 type for object is type Bottom_T, it could mean two things: type
7141 component C from the Middle_T view, but also component C from
7142 Bottom_T. So in that "undefined" case, when the component is
7143 not found in the non-resolved type (which includes all the
7144 components of the parent type), then resolve it and see if we
7145 get better luck once expanded.
7147 In the case of homonyms in the derived tagged type, we don't
7148 guaranty anything, and pick the one that's easiest for us
7151 Returns 1 if found, 0 otherwise. */
7154 find_struct_field (const char *name, struct type *type, int offset,
7155 struct type **field_type_p,
7156 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7160 int parent_offset = -1;
7162 type = ada_check_typedef (type);
7164 if (field_type_p != NULL)
7165 *field_type_p = NULL;
7166 if (byte_offset_p != NULL)
7168 if (bit_offset_p != NULL)
7170 if (bit_size_p != NULL)
7173 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7175 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7176 int fld_offset = offset + bit_pos / 8;
7177 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7179 if (t_field_name == NULL)
7182 else if (ada_is_parent_field (type, i))
7184 /* This is a field pointing us to the parent type of a tagged
7185 type. As hinted in this function's documentation, we give
7186 preference to fields in the current record first, so what
7187 we do here is just record the index of this field before
7188 we skip it. If it turns out we couldn't find our field
7189 in the current record, then we'll get back to it and search
7190 inside it whether the field might exist in the parent. */
7196 else if (name != NULL && field_name_match (t_field_name, name))
7198 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7200 if (field_type_p != NULL)
7201 *field_type_p = TYPE_FIELD_TYPE (type, i);
7202 if (byte_offset_p != NULL)
7203 *byte_offset_p = fld_offset;
7204 if (bit_offset_p != NULL)
7205 *bit_offset_p = bit_pos % 8;
7206 if (bit_size_p != NULL)
7207 *bit_size_p = bit_size;
7210 else if (ada_is_wrapper_field (type, i))
7212 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7213 field_type_p, byte_offset_p, bit_offset_p,
7214 bit_size_p, index_p))
7217 else if (ada_is_variant_part (type, i))
7219 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7222 struct type *field_type
7223 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7225 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7227 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7229 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7230 field_type_p, byte_offset_p,
7231 bit_offset_p, bit_size_p, index_p))
7235 else if (index_p != NULL)
7239 /* Field not found so far. If this is a tagged type which
7240 has a parent, try finding that field in the parent now. */
7242 if (parent_offset != -1)
7244 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7245 int fld_offset = offset + bit_pos / 8;
7247 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7248 fld_offset, field_type_p, byte_offset_p,
7249 bit_offset_p, bit_size_p, index_p))
7256 /* Number of user-visible fields in record type TYPE. */
7259 num_visible_fields (struct type *type)
7264 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7268 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7269 and search in it assuming it has (class) type TYPE.
7270 If found, return value, else return NULL.
7272 Searches recursively through wrapper fields (e.g., '_parent').
7274 In the case of homonyms in the tagged types, please refer to the
7275 long explanation in find_struct_field's function documentation. */
7277 static struct value *
7278 ada_search_struct_field (const char *name, struct value *arg, int offset,
7282 int parent_offset = -1;
7284 type = ada_check_typedef (type);
7285 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7287 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7289 if (t_field_name == NULL)
7292 else if (ada_is_parent_field (type, i))
7294 /* This is a field pointing us to the parent type of a tagged
7295 type. As hinted in this function's documentation, we give
7296 preference to fields in the current record first, so what
7297 we do here is just record the index of this field before
7298 we skip it. If it turns out we couldn't find our field
7299 in the current record, then we'll get back to it and search
7300 inside it whether the field might exist in the parent. */
7306 else if (field_name_match (t_field_name, name))
7307 return ada_value_primitive_field (arg, offset, i, type);
7309 else if (ada_is_wrapper_field (type, i))
7311 struct value *v = /* Do not let indent join lines here. */
7312 ada_search_struct_field (name, arg,
7313 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7314 TYPE_FIELD_TYPE (type, i));
7320 else if (ada_is_variant_part (type, i))
7322 /* PNH: Do we ever get here? See find_struct_field. */
7324 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7326 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7328 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7330 struct value *v = ada_search_struct_field /* Force line
7333 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7334 TYPE_FIELD_TYPE (field_type, j));
7342 /* Field not found so far. If this is a tagged type which
7343 has a parent, try finding that field in the parent now. */
7345 if (parent_offset != -1)
7347 struct value *v = ada_search_struct_field (
7348 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7349 TYPE_FIELD_TYPE (type, parent_offset));
7358 static struct value *ada_index_struct_field_1 (int *, struct value *,
7359 int, struct type *);
7362 /* Return field #INDEX in ARG, where the index is that returned by
7363 * find_struct_field through its INDEX_P argument. Adjust the address
7364 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7365 * If found, return value, else return NULL. */
7367 static struct value *
7368 ada_index_struct_field (int index, struct value *arg, int offset,
7371 return ada_index_struct_field_1 (&index, arg, offset, type);
7375 /* Auxiliary function for ada_index_struct_field. Like
7376 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7379 static struct value *
7380 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7384 type = ada_check_typedef (type);
7386 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7388 if (TYPE_FIELD_NAME (type, i) == NULL)
7390 else if (ada_is_wrapper_field (type, i))
7392 struct value *v = /* Do not let indent join lines here. */
7393 ada_index_struct_field_1 (index_p, arg,
7394 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7395 TYPE_FIELD_TYPE (type, i));
7401 else if (ada_is_variant_part (type, i))
7403 /* PNH: Do we ever get here? See ada_search_struct_field,
7404 find_struct_field. */
7405 error (_("Cannot assign this kind of variant record"));
7407 else if (*index_p == 0)
7408 return ada_value_primitive_field (arg, offset, i, type);
7415 /* Given ARG, a value of type (pointer or reference to a)*
7416 structure/union, extract the component named NAME from the ultimate
7417 target structure/union and return it as a value with its
7420 The routine searches for NAME among all members of the structure itself
7421 and (recursively) among all members of any wrapper members
7424 If NO_ERR, then simply return NULL in case of error, rather than
7428 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7430 struct type *t, *t1;
7435 t1 = t = ada_check_typedef (value_type (arg));
7436 if (TYPE_CODE (t) == TYPE_CODE_REF)
7438 t1 = TYPE_TARGET_TYPE (t);
7441 t1 = ada_check_typedef (t1);
7442 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7444 arg = coerce_ref (arg);
7449 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7451 t1 = TYPE_TARGET_TYPE (t);
7454 t1 = ada_check_typedef (t1);
7455 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7457 arg = value_ind (arg);
7464 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7468 v = ada_search_struct_field (name, arg, 0, t);
7471 int bit_offset, bit_size, byte_offset;
7472 struct type *field_type;
7475 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7476 address = value_address (ada_value_ind (arg));
7478 address = value_address (ada_coerce_ref (arg));
7480 /* Check to see if this is a tagged type. We also need to handle
7481 the case where the type is a reference to a tagged type, but
7482 we have to be careful to exclude pointers to tagged types.
7483 The latter should be shown as usual (as a pointer), whereas
7484 a reference should mostly be transparent to the user. */
7486 if (ada_is_tagged_type (t1, 0)
7487 || (TYPE_CODE (t1) == TYPE_CODE_REF
7488 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7490 /* We first try to find the searched field in the current type.
7491 If not found then let's look in the fixed type. */
7493 if (!find_struct_field (name, t1, 0,
7494 &field_type, &byte_offset, &bit_offset,
7503 /* Convert to fixed type in all cases, so that we have proper
7504 offsets to each field in unconstrained record types. */
7505 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7506 address, NULL, check_tag);
7508 if (find_struct_field (name, t1, 0,
7509 &field_type, &byte_offset, &bit_offset,
7514 if (TYPE_CODE (t) == TYPE_CODE_REF)
7515 arg = ada_coerce_ref (arg);
7517 arg = ada_value_ind (arg);
7518 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7519 bit_offset, bit_size,
7523 v = value_at_lazy (field_type, address + byte_offset);
7527 if (v != NULL || no_err)
7530 error (_("There is no member named %s."), name);
7536 error (_("Attempt to extract a component of "
7537 "a value that is not a record."));
7540 /* Return a string representation of type TYPE. */
7543 type_as_string (struct type *type)
7545 string_file tmp_stream;
7547 type_print (type, "", &tmp_stream, -1);
7549 return std::move (tmp_stream.string ());
7552 /* Given a type TYPE, look up the type of the component of type named NAME.
7553 If DISPP is non-null, add its byte displacement from the beginning of a
7554 structure (pointed to by a value) of type TYPE to *DISPP (does not
7555 work for packed fields).
7557 Matches any field whose name has NAME as a prefix, possibly
7560 TYPE can be either a struct or union. If REFOK, TYPE may also
7561 be a (pointer or reference)+ to a struct or union, and the
7562 ultimate target type will be searched.
7564 Looks recursively into variant clauses and parent types.
7566 In the case of homonyms in the tagged types, please refer to the
7567 long explanation in find_struct_field's function documentation.
7569 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7570 TYPE is not a type of the right kind. */
7572 static struct type *
7573 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7577 int parent_offset = -1;
7582 if (refok && type != NULL)
7585 type = ada_check_typedef (type);
7586 if (TYPE_CODE (type) != TYPE_CODE_PTR
7587 && TYPE_CODE (type) != TYPE_CODE_REF)
7589 type = TYPE_TARGET_TYPE (type);
7593 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7594 && TYPE_CODE (type) != TYPE_CODE_UNION))
7599 error (_("Type %s is not a structure or union type"),
7600 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7603 type = to_static_fixed_type (type);
7605 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7607 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7610 if (t_field_name == NULL)
7613 else if (ada_is_parent_field (type, i))
7615 /* This is a field pointing us to the parent type of a tagged
7616 type. As hinted in this function's documentation, we give
7617 preference to fields in the current record first, so what
7618 we do here is just record the index of this field before
7619 we skip it. If it turns out we couldn't find our field
7620 in the current record, then we'll get back to it and search
7621 inside it whether the field might exist in the parent. */
7627 else if (field_name_match (t_field_name, name))
7628 return TYPE_FIELD_TYPE (type, i);
7630 else if (ada_is_wrapper_field (type, i))
7632 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7638 else if (ada_is_variant_part (type, i))
7641 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7644 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7646 /* FIXME pnh 2008/01/26: We check for a field that is
7647 NOT wrapped in a struct, since the compiler sometimes
7648 generates these for unchecked variant types. Revisit
7649 if the compiler changes this practice. */
7650 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7652 if (v_field_name != NULL
7653 && field_name_match (v_field_name, name))
7654 t = TYPE_FIELD_TYPE (field_type, j);
7656 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7667 /* Field not found so far. If this is a tagged type which
7668 has a parent, try finding that field in the parent now. */
7670 if (parent_offset != -1)
7674 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7683 const char *name_str = name != NULL ? name : _("<null>");
7685 error (_("Type %s has no component named %s"),
7686 type_as_string (type).c_str (), name_str);
7692 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7694 represents an unchecked union (that is, the variant part of a
7695 record that is named in an Unchecked_Union pragma). */
7698 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7700 const char *discrim_name = ada_variant_discrim_name (var_type);
7702 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE that is stored in GDB at
7708 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7709 numbering from 0) is applicable. Returns -1 if none are. */
7712 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7713 const gdb_byte *outer_valaddr)
7717 const char *discrim_name = ada_variant_discrim_name (var_type);
7718 struct value *outer;
7719 struct value *discrim;
7720 LONGEST discrim_val;
7722 /* Using plain value_from_contents_and_address here causes problems
7723 because we will end up trying to resolve a type that is currently
7724 being constructed. */
7725 outer = value_from_contents_and_address_unresolved (outer_type,
7727 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7728 if (discrim == NULL)
7730 discrim_val = value_as_long (discrim);
7733 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7735 if (ada_is_others_clause (var_type, i))
7737 else if (ada_in_variant (discrim_val, var_type, i))
7741 return others_clause;
7746 /* Dynamic-Sized Records */
7748 /* Strategy: The type ostensibly attached to a value with dynamic size
7749 (i.e., a size that is not statically recorded in the debugging
7750 data) does not accurately reflect the size or layout of the value.
7751 Our strategy is to convert these values to values with accurate,
7752 conventional types that are constructed on the fly. */
7754 /* There is a subtle and tricky problem here. In general, we cannot
7755 determine the size of dynamic records without its data. However,
7756 the 'struct value' data structure, which GDB uses to represent
7757 quantities in the inferior process (the target), requires the size
7758 of the type at the time of its allocation in order to reserve space
7759 for GDB's internal copy of the data. That's why the
7760 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7761 rather than struct value*s.
7763 However, GDB's internal history variables ($1, $2, etc.) are
7764 struct value*s containing internal copies of the data that are not, in
7765 general, the same as the data at their corresponding addresses in
7766 the target. Fortunately, the types we give to these values are all
7767 conventional, fixed-size types (as per the strategy described
7768 above), so that we don't usually have to perform the
7769 'to_fixed_xxx_type' conversions to look at their values.
7770 Unfortunately, there is one exception: if one of the internal
7771 history variables is an array whose elements are unconstrained
7772 records, then we will need to create distinct fixed types for each
7773 element selected. */
7775 /* The upshot of all of this is that many routines take a (type, host
7776 address, target address) triple as arguments to represent a value.
7777 The host address, if non-null, is supposed to contain an internal
7778 copy of the relevant data; otherwise, the program is to consult the
7779 target at the target address. */
7781 /* Assuming that VAL0 represents a pointer value, the result of
7782 dereferencing it. Differs from value_ind in its treatment of
7783 dynamic-sized types. */
7786 ada_value_ind (struct value *val0)
7788 struct value *val = value_ind (val0);
7790 if (ada_is_tagged_type (value_type (val), 0))
7791 val = ada_tag_value_at_base_address (val);
7793 return ada_to_fixed_value (val);
7796 /* The value resulting from dereferencing any "reference to"
7797 qualifiers on VAL0. */
7799 static struct value *
7800 ada_coerce_ref (struct value *val0)
7802 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7804 struct value *val = val0;
7806 val = coerce_ref (val);
7808 if (ada_is_tagged_type (value_type (val), 0))
7809 val = ada_tag_value_at_base_address (val);
7811 return ada_to_fixed_value (val);
7817 /* Return OFF rounded upward if necessary to a multiple of
7818 ALIGNMENT (a power of 2). */
7821 align_value (unsigned int off, unsigned int alignment)
7823 return (off + alignment - 1) & ~(alignment - 1);
7826 /* Return the bit alignment required for field #F of template type TYPE. */
7829 field_alignment (struct type *type, int f)
7831 const char *name = TYPE_FIELD_NAME (type, f);
7835 /* The field name should never be null, unless the debugging information
7836 is somehow malformed. In this case, we assume the field does not
7837 require any alignment. */
7841 len = strlen (name);
7843 if (!isdigit (name[len - 1]))
7846 if (isdigit (name[len - 2]))
7847 align_offset = len - 2;
7849 align_offset = len - 1;
7851 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7852 return TARGET_CHAR_BIT;
7854 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7857 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7859 static struct symbol *
7860 ada_find_any_type_symbol (const char *name)
7864 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7865 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7868 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7872 /* Find a type named NAME. Ignores ambiguity. This routine will look
7873 solely for types defined by debug info, it will not search the GDB
7876 static struct type *
7877 ada_find_any_type (const char *name)
7879 struct symbol *sym = ada_find_any_type_symbol (name);
7882 return SYMBOL_TYPE (sym);
7887 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7888 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7889 symbol, in which case it is returned. Otherwise, this looks for
7890 symbols whose name is that of NAME_SYM suffixed with "___XR".
7891 Return symbol if found, and NULL otherwise. */
7894 ada_is_renaming_symbol (struct symbol *name_sym)
7896 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7897 return strstr (name, "___XR") != NULL;
7900 /* Because of GNAT encoding conventions, several GDB symbols may match a
7901 given type name. If the type denoted by TYPE0 is to be preferred to
7902 that of TYPE1 for purposes of type printing, return non-zero;
7903 otherwise return 0. */
7906 ada_prefer_type (struct type *type0, struct type *type1)
7910 else if (type0 == NULL)
7912 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7914 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7916 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7918 else if (ada_is_constrained_packed_array_type (type0))
7920 else if (ada_is_array_descriptor_type (type0)
7921 && !ada_is_array_descriptor_type (type1))
7925 const char *type0_name = TYPE_NAME (type0);
7926 const char *type1_name = TYPE_NAME (type1);
7928 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7929 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7935 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7939 ada_type_name (struct type *type)
7943 return TYPE_NAME (type);
7946 /* Search the list of "descriptive" types associated to TYPE for a type
7947 whose name is NAME. */
7949 static struct type *
7950 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7952 struct type *result, *tmp;
7954 if (ada_ignore_descriptive_types_p)
7957 /* If there no descriptive-type info, then there is no parallel type
7959 if (!HAVE_GNAT_AUX_INFO (type))
7962 result = TYPE_DESCRIPTIVE_TYPE (type);
7963 while (result != NULL)
7965 const char *result_name = ada_type_name (result);
7967 if (result_name == NULL)
7969 warning (_("unexpected null name on descriptive type"));
7973 /* If the names match, stop. */
7974 if (strcmp (result_name, name) == 0)
7977 /* Otherwise, look at the next item on the list, if any. */
7978 if (HAVE_GNAT_AUX_INFO (result))
7979 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7983 /* If not found either, try after having resolved the typedef. */
7988 result = check_typedef (result);
7989 if (HAVE_GNAT_AUX_INFO (result))
7990 result = TYPE_DESCRIPTIVE_TYPE (result);
7996 /* If we didn't find a match, see whether this is a packed array. With
7997 older compilers, the descriptive type information is either absent or
7998 irrelevant when it comes to packed arrays so the above lookup fails.
7999 Fall back to using a parallel lookup by name in this case. */
8000 if (result == NULL && ada_is_constrained_packed_array_type (type))
8001 return ada_find_any_type (name);
8006 /* Find a parallel type to TYPE with the specified NAME, using the
8007 descriptive type taken from the debugging information, if available,
8008 and otherwise using the (slower) name-based method. */
8010 static struct type *
8011 ada_find_parallel_type_with_name (struct type *type, const char *name)
8013 struct type *result = NULL;
8015 if (HAVE_GNAT_AUX_INFO (type))
8016 result = find_parallel_type_by_descriptive_type (type, name);
8018 result = ada_find_any_type (name);
8023 /* Same as above, but specify the name of the parallel type by appending
8024 SUFFIX to the name of TYPE. */
8027 ada_find_parallel_type (struct type *type, const char *suffix)
8030 const char *type_name = ada_type_name (type);
8033 if (type_name == NULL)
8036 len = strlen (type_name);
8038 name = (char *) alloca (len + strlen (suffix) + 1);
8040 strcpy (name, type_name);
8041 strcpy (name + len, suffix);
8043 return ada_find_parallel_type_with_name (type, name);
8046 /* If TYPE is a variable-size record type, return the corresponding template
8047 type describing its fields. Otherwise, return NULL. */
8049 static struct type *
8050 dynamic_template_type (struct type *type)
8052 type = ada_check_typedef (type);
8054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8055 || ada_type_name (type) == NULL)
8059 int len = strlen (ada_type_name (type));
8061 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8064 return ada_find_parallel_type (type, "___XVE");
8068 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8069 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8072 is_dynamic_field (struct type *templ_type, int field_num)
8074 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8077 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8078 && strstr (name, "___XVL") != NULL;
8081 /* The index of the variant field of TYPE, or -1 if TYPE does not
8082 represent a variant record type. */
8085 variant_field_index (struct type *type)
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8092 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8094 if (ada_is_variant_part (type, f))
8100 /* A record type with no fields. */
8102 static struct type *
8103 empty_record (struct type *templ)
8105 struct type *type = alloc_type_copy (templ);
8107 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8108 TYPE_NFIELDS (type) = 0;
8109 TYPE_FIELDS (type) = NULL;
8110 INIT_NONE_SPECIFIC (type);
8111 TYPE_NAME (type) = "<empty>";
8112 TYPE_LENGTH (type) = 0;
8116 /* An ordinary record type (with fixed-length fields) that describes
8117 the value of type TYPE at VALADDR or ADDRESS (see comments at
8118 the beginning of this section) VAL according to GNAT conventions.
8119 DVAL0 should describe the (portion of a) record that contains any
8120 necessary discriminants. It should be NULL if value_type (VAL) is
8121 an outer-level type (i.e., as opposed to a branch of a variant.) A
8122 variant field (unless unchecked) is replaced by a particular branch
8125 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8126 length are not statically known are discarded. As a consequence,
8127 VALADDR, ADDRESS and DVAL0 are ignored.
8129 NOTE: Limitations: For now, we assume that dynamic fields and
8130 variants occupy whole numbers of bytes. However, they need not be
8134 ada_template_to_fixed_record_type_1 (struct type *type,
8135 const gdb_byte *valaddr,
8136 CORE_ADDR address, struct value *dval0,
8137 int keep_dynamic_fields)
8139 struct value *mark = value_mark ();
8142 int nfields, bit_len;
8148 /* Compute the number of fields in this record type that are going
8149 to be processed: unless keep_dynamic_fields, this includes only
8150 fields whose position and length are static will be processed. */
8151 if (keep_dynamic_fields)
8152 nfields = TYPE_NFIELDS (type);
8156 while (nfields < TYPE_NFIELDS (type)
8157 && !ada_is_variant_part (type, nfields)
8158 && !is_dynamic_field (type, nfields))
8162 rtype = alloc_type_copy (type);
8163 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8164 INIT_NONE_SPECIFIC (rtype);
8165 TYPE_NFIELDS (rtype) = nfields;
8166 TYPE_FIELDS (rtype) = (struct field *)
8167 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8168 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8169 TYPE_NAME (rtype) = ada_type_name (type);
8170 TYPE_FIXED_INSTANCE (rtype) = 1;
8176 for (f = 0; f < nfields; f += 1)
8178 off = align_value (off, field_alignment (type, f))
8179 + TYPE_FIELD_BITPOS (type, f);
8180 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8181 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8183 if (ada_is_variant_part (type, f))
8188 else if (is_dynamic_field (type, f))
8190 const gdb_byte *field_valaddr = valaddr;
8191 CORE_ADDR field_address = address;
8192 struct type *field_type =
8193 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8197 /* rtype's length is computed based on the run-time
8198 value of discriminants. If the discriminants are not
8199 initialized, the type size may be completely bogus and
8200 GDB may fail to allocate a value for it. So check the
8201 size first before creating the value. */
8202 ada_ensure_varsize_limit (rtype);
8203 /* Using plain value_from_contents_and_address here
8204 causes problems because we will end up trying to
8205 resolve a type that is currently being
8207 dval = value_from_contents_and_address_unresolved (rtype,
8210 rtype = value_type (dval);
8215 /* If the type referenced by this field is an aligner type, we need
8216 to unwrap that aligner type, because its size might not be set.
8217 Keeping the aligner type would cause us to compute the wrong
8218 size for this field, impacting the offset of the all the fields
8219 that follow this one. */
8220 if (ada_is_aligner_type (field_type))
8222 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8224 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8225 field_address = cond_offset_target (field_address, field_offset);
8226 field_type = ada_aligned_type (field_type);
8229 field_valaddr = cond_offset_host (field_valaddr,
8230 off / TARGET_CHAR_BIT);
8231 field_address = cond_offset_target (field_address,
8232 off / TARGET_CHAR_BIT);
8234 /* Get the fixed type of the field. Note that, in this case,
8235 we do not want to get the real type out of the tag: if
8236 the current field is the parent part of a tagged record,
8237 we will get the tag of the object. Clearly wrong: the real
8238 type of the parent is not the real type of the child. We
8239 would end up in an infinite loop. */
8240 field_type = ada_get_base_type (field_type);
8241 field_type = ada_to_fixed_type (field_type, field_valaddr,
8242 field_address, dval, 0);
8243 /* If the field size is already larger than the maximum
8244 object size, then the record itself will necessarily
8245 be larger than the maximum object size. We need to make
8246 this check now, because the size might be so ridiculously
8247 large (due to an uninitialized variable in the inferior)
8248 that it would cause an overflow when adding it to the
8250 ada_ensure_varsize_limit (field_type);
8252 TYPE_FIELD_TYPE (rtype, f) = field_type;
8253 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8254 /* The multiplication can potentially overflow. But because
8255 the field length has been size-checked just above, and
8256 assuming that the maximum size is a reasonable value,
8257 an overflow should not happen in practice. So rather than
8258 adding overflow recovery code to this already complex code,
8259 we just assume that it's not going to happen. */
8261 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8265 /* Note: If this field's type is a typedef, it is important
8266 to preserve the typedef layer.
8268 Otherwise, we might be transforming a typedef to a fat
8269 pointer (encoding a pointer to an unconstrained array),
8270 into a basic fat pointer (encoding an unconstrained
8271 array). As both types are implemented using the same
8272 structure, the typedef is the only clue which allows us
8273 to distinguish between the two options. Stripping it
8274 would prevent us from printing this field appropriately. */
8275 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8276 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8277 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8279 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8282 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8284 /* We need to be careful of typedefs when computing
8285 the length of our field. If this is a typedef,
8286 get the length of the target type, not the length
8288 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8289 field_type = ada_typedef_target_type (field_type);
8292 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8295 if (off + fld_bit_len > bit_len)
8296 bit_len = off + fld_bit_len;
8298 TYPE_LENGTH (rtype) =
8299 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8302 /* We handle the variant part, if any, at the end because of certain
8303 odd cases in which it is re-ordered so as NOT to be the last field of
8304 the record. This can happen in the presence of representation
8306 if (variant_field >= 0)
8308 struct type *branch_type;
8310 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8314 /* Using plain value_from_contents_and_address here causes
8315 problems because we will end up trying to resolve a type
8316 that is currently being constructed. */
8317 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8319 rtype = value_type (dval);
8325 to_fixed_variant_branch_type
8326 (TYPE_FIELD_TYPE (type, variant_field),
8327 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8328 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8329 if (branch_type == NULL)
8331 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8332 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8333 TYPE_NFIELDS (rtype) -= 1;
8337 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8338 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8340 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8342 if (off + fld_bit_len > bit_len)
8343 bit_len = off + fld_bit_len;
8344 TYPE_LENGTH (rtype) =
8345 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8349 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8350 should contain the alignment of that record, which should be a strictly
8351 positive value. If null or negative, then something is wrong, most
8352 probably in the debug info. In that case, we don't round up the size
8353 of the resulting type. If this record is not part of another structure,
8354 the current RTYPE length might be good enough for our purposes. */
8355 if (TYPE_LENGTH (type) <= 0)
8357 if (TYPE_NAME (rtype))
8358 warning (_("Invalid type size for `%s' detected: %s."),
8359 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8361 warning (_("Invalid type size for <unnamed> detected: %s."),
8362 pulongest (TYPE_LENGTH (type)));
8366 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8367 TYPE_LENGTH (type));
8370 value_free_to_mark (mark);
8371 if (TYPE_LENGTH (rtype) > varsize_limit)
8372 error (_("record type with dynamic size is larger than varsize-limit"));
8376 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8379 static struct type *
8380 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8381 CORE_ADDR address, struct value *dval0)
8383 return ada_template_to_fixed_record_type_1 (type, valaddr,
8387 /* An ordinary record type in which ___XVL-convention fields and
8388 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8389 static approximations, containing all possible fields. Uses
8390 no runtime values. Useless for use in values, but that's OK,
8391 since the results are used only for type determinations. Works on both
8392 structs and unions. Representation note: to save space, we memorize
8393 the result of this function in the TYPE_TARGET_TYPE of the
8396 static struct type *
8397 template_to_static_fixed_type (struct type *type0)
8403 /* No need no do anything if the input type is already fixed. */
8404 if (TYPE_FIXED_INSTANCE (type0))
8407 /* Likewise if we already have computed the static approximation. */
8408 if (TYPE_TARGET_TYPE (type0) != NULL)
8409 return TYPE_TARGET_TYPE (type0);
8411 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8413 nfields = TYPE_NFIELDS (type0);
8415 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8416 recompute all over next time. */
8417 TYPE_TARGET_TYPE (type0) = type;
8419 for (f = 0; f < nfields; f += 1)
8421 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8422 struct type *new_type;
8424 if (is_dynamic_field (type0, f))
8426 field_type = ada_check_typedef (field_type);
8427 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8430 new_type = static_unwrap_type (field_type);
8432 if (new_type != field_type)
8434 /* Clone TYPE0 only the first time we get a new field type. */
8437 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8438 TYPE_CODE (type) = TYPE_CODE (type0);
8439 INIT_NONE_SPECIFIC (type);
8440 TYPE_NFIELDS (type) = nfields;
8441 TYPE_FIELDS (type) = (struct field *)
8442 TYPE_ALLOC (type, nfields * sizeof (struct field));
8443 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8444 sizeof (struct field) * nfields);
8445 TYPE_NAME (type) = ada_type_name (type0);
8446 TYPE_FIXED_INSTANCE (type) = 1;
8447 TYPE_LENGTH (type) = 0;
8449 TYPE_FIELD_TYPE (type, f) = new_type;
8450 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8457 /* Given an object of type TYPE whose contents are at VALADDR and
8458 whose address in memory is ADDRESS, returns a revision of TYPE,
8459 which should be a non-dynamic-sized record, in which the variant
8460 part, if any, is replaced with the appropriate branch. Looks
8461 for discriminant values in DVAL0, which can be NULL if the record
8462 contains the necessary discriminant values. */
8464 static struct type *
8465 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8466 CORE_ADDR address, struct value *dval0)
8468 struct value *mark = value_mark ();
8471 struct type *branch_type;
8472 int nfields = TYPE_NFIELDS (type);
8473 int variant_field = variant_field_index (type);
8475 if (variant_field == -1)
8480 dval = value_from_contents_and_address (type, valaddr, address);
8481 type = value_type (dval);
8486 rtype = alloc_type_copy (type);
8487 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8488 INIT_NONE_SPECIFIC (rtype);
8489 TYPE_NFIELDS (rtype) = nfields;
8490 TYPE_FIELDS (rtype) =
8491 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8492 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8493 sizeof (struct field) * nfields);
8494 TYPE_NAME (rtype) = ada_type_name (type);
8495 TYPE_FIXED_INSTANCE (rtype) = 1;
8496 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8498 branch_type = to_fixed_variant_branch_type
8499 (TYPE_FIELD_TYPE (type, variant_field),
8500 cond_offset_host (valaddr,
8501 TYPE_FIELD_BITPOS (type, variant_field)
8503 cond_offset_target (address,
8504 TYPE_FIELD_BITPOS (type, variant_field)
8505 / TARGET_CHAR_BIT), dval);
8506 if (branch_type == NULL)
8510 for (f = variant_field + 1; f < nfields; f += 1)
8511 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8512 TYPE_NFIELDS (rtype) -= 1;
8516 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8517 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8518 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8519 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8521 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8523 value_free_to_mark (mark);
8527 /* An ordinary record type (with fixed-length fields) that describes
8528 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8529 beginning of this section]. Any necessary discriminants' values
8530 should be in DVAL, a record value; it may be NULL if the object
8531 at ADDR itself contains any necessary discriminant values.
8532 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8533 values from the record are needed. Except in the case that DVAL,
8534 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8535 unchecked) is replaced by a particular branch of the variant.
8537 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8538 is questionable and may be removed. It can arise during the
8539 processing of an unconstrained-array-of-record type where all the
8540 variant branches have exactly the same size. This is because in
8541 such cases, the compiler does not bother to use the XVS convention
8542 when encoding the record. I am currently dubious of this
8543 shortcut and suspect the compiler should be altered. FIXME. */
8545 static struct type *
8546 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8547 CORE_ADDR address, struct value *dval)
8549 struct type *templ_type;
8551 if (TYPE_FIXED_INSTANCE (type0))
8554 templ_type = dynamic_template_type (type0);
8556 if (templ_type != NULL)
8557 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8558 else if (variant_field_index (type0) >= 0)
8560 if (dval == NULL && valaddr == NULL && address == 0)
8562 return to_record_with_fixed_variant_part (type0, valaddr, address,
8567 TYPE_FIXED_INSTANCE (type0) = 1;
8573 /* An ordinary record type (with fixed-length fields) that describes
8574 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8575 union type. Any necessary discriminants' values should be in DVAL,
8576 a record value. That is, this routine selects the appropriate
8577 branch of the union at ADDR according to the discriminant value
8578 indicated in the union's type name. Returns VAR_TYPE0 itself if
8579 it represents a variant subject to a pragma Unchecked_Union. */
8581 static struct type *
8582 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8583 CORE_ADDR address, struct value *dval)
8586 struct type *templ_type;
8587 struct type *var_type;
8589 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8590 var_type = TYPE_TARGET_TYPE (var_type0);
8592 var_type = var_type0;
8594 templ_type = ada_find_parallel_type (var_type, "___XVU");
8596 if (templ_type != NULL)
8597 var_type = templ_type;
8599 if (is_unchecked_variant (var_type, value_type (dval)))
8602 ada_which_variant_applies (var_type,
8603 value_type (dval), value_contents (dval));
8606 return empty_record (var_type);
8607 else if (is_dynamic_field (var_type, which))
8608 return to_fixed_record_type
8609 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8610 valaddr, address, dval);
8611 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8613 to_fixed_record_type
8614 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8616 return TYPE_FIELD_TYPE (var_type, which);
8619 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8620 ENCODING_TYPE, a type following the GNAT conventions for discrete
8621 type encodings, only carries redundant information. */
8624 ada_is_redundant_range_encoding (struct type *range_type,
8625 struct type *encoding_type)
8627 const char *bounds_str;
8631 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8633 if (TYPE_CODE (get_base_type (range_type))
8634 != TYPE_CODE (get_base_type (encoding_type)))
8636 /* The compiler probably used a simple base type to describe
8637 the range type instead of the range's actual base type,
8638 expecting us to get the real base type from the encoding
8639 anyway. In this situation, the encoding cannot be ignored
8644 if (is_dynamic_type (range_type))
8647 if (TYPE_NAME (encoding_type) == NULL)
8650 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8651 if (bounds_str == NULL)
8654 n = 8; /* Skip "___XDLU_". */
8655 if (!ada_scan_number (bounds_str, n, &lo, &n))
8657 if (TYPE_LOW_BOUND (range_type) != lo)
8660 n += 2; /* Skip the "__" separator between the two bounds. */
8661 if (!ada_scan_number (bounds_str, n, &hi, &n))
8663 if (TYPE_HIGH_BOUND (range_type) != hi)
8669 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8670 a type following the GNAT encoding for describing array type
8671 indices, only carries redundant information. */
8674 ada_is_redundant_index_type_desc (struct type *array_type,
8675 struct type *desc_type)
8677 struct type *this_layer = check_typedef (array_type);
8680 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8682 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8683 TYPE_FIELD_TYPE (desc_type, i)))
8685 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8691 /* Assuming that TYPE0 is an array type describing the type of a value
8692 at ADDR, and that DVAL describes a record containing any
8693 discriminants used in TYPE0, returns a type for the value that
8694 contains no dynamic components (that is, no components whose sizes
8695 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8696 true, gives an error message if the resulting type's size is over
8699 static struct type *
8700 to_fixed_array_type (struct type *type0, struct value *dval,
8703 struct type *index_type_desc;
8704 struct type *result;
8705 int constrained_packed_array_p;
8706 static const char *xa_suffix = "___XA";
8708 type0 = ada_check_typedef (type0);
8709 if (TYPE_FIXED_INSTANCE (type0))
8712 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8713 if (constrained_packed_array_p)
8714 type0 = decode_constrained_packed_array_type (type0);
8716 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8718 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8719 encoding suffixed with 'P' may still be generated. If so,
8720 it should be used to find the XA type. */
8722 if (index_type_desc == NULL)
8724 const char *type_name = ada_type_name (type0);
8726 if (type_name != NULL)
8728 const int len = strlen (type_name);
8729 char *name = (char *) alloca (len + strlen (xa_suffix));
8731 if (type_name[len - 1] == 'P')
8733 strcpy (name, type_name);
8734 strcpy (name + len - 1, xa_suffix);
8735 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8740 ada_fixup_array_indexes_type (index_type_desc);
8741 if (index_type_desc != NULL
8742 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8744 /* Ignore this ___XA parallel type, as it does not bring any
8745 useful information. This allows us to avoid creating fixed
8746 versions of the array's index types, which would be identical
8747 to the original ones. This, in turn, can also help avoid
8748 the creation of fixed versions of the array itself. */
8749 index_type_desc = NULL;
8752 if (index_type_desc == NULL)
8754 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8756 /* NOTE: elt_type---the fixed version of elt_type0---should never
8757 depend on the contents of the array in properly constructed
8759 /* Create a fixed version of the array element type.
8760 We're not providing the address of an element here,
8761 and thus the actual object value cannot be inspected to do
8762 the conversion. This should not be a problem, since arrays of
8763 unconstrained objects are not allowed. In particular, all
8764 the elements of an array of a tagged type should all be of
8765 the same type specified in the debugging info. No need to
8766 consult the object tag. */
8767 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8769 /* Make sure we always create a new array type when dealing with
8770 packed array types, since we're going to fix-up the array
8771 type length and element bitsize a little further down. */
8772 if (elt_type0 == elt_type && !constrained_packed_array_p)
8775 result = create_array_type (alloc_type_copy (type0),
8776 elt_type, TYPE_INDEX_TYPE (type0));
8781 struct type *elt_type0;
8784 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8785 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8787 /* NOTE: result---the fixed version of elt_type0---should never
8788 depend on the contents of the array in properly constructed
8790 /* Create a fixed version of the array element type.
8791 We're not providing the address of an element here,
8792 and thus the actual object value cannot be inspected to do
8793 the conversion. This should not be a problem, since arrays of
8794 unconstrained objects are not allowed. In particular, all
8795 the elements of an array of a tagged type should all be of
8796 the same type specified in the debugging info. No need to
8797 consult the object tag. */
8799 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8802 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8804 struct type *range_type =
8805 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8807 result = create_array_type (alloc_type_copy (elt_type0),
8808 result, range_type);
8809 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8811 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8812 error (_("array type with dynamic size is larger than varsize-limit"));
8815 /* We want to preserve the type name. This can be useful when
8816 trying to get the type name of a value that has already been
8817 printed (for instance, if the user did "print VAR; whatis $". */
8818 TYPE_NAME (result) = TYPE_NAME (type0);
8820 if (constrained_packed_array_p)
8822 /* So far, the resulting type has been created as if the original
8823 type was a regular (non-packed) array type. As a result, the
8824 bitsize of the array elements needs to be set again, and the array
8825 length needs to be recomputed based on that bitsize. */
8826 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8827 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8829 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8830 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8831 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8832 TYPE_LENGTH (result)++;
8835 TYPE_FIXED_INSTANCE (result) = 1;
8840 /* A standard type (containing no dynamically sized components)
8841 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8842 DVAL describes a record containing any discriminants used in TYPE0,
8843 and may be NULL if there are none, or if the object of type TYPE at
8844 ADDRESS or in VALADDR contains these discriminants.
8846 If CHECK_TAG is not null, in the case of tagged types, this function
8847 attempts to locate the object's tag and use it to compute the actual
8848 type. However, when ADDRESS is null, we cannot use it to determine the
8849 location of the tag, and therefore compute the tagged type's actual type.
8850 So we return the tagged type without consulting the tag. */
8852 static struct type *
8853 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8854 CORE_ADDR address, struct value *dval, int check_tag)
8856 type = ada_check_typedef (type);
8858 /* Only un-fixed types need to be handled here. */
8859 if (!HAVE_GNAT_AUX_INFO (type))
8862 switch (TYPE_CODE (type))
8866 case TYPE_CODE_STRUCT:
8868 struct type *static_type = to_static_fixed_type (type);
8869 struct type *fixed_record_type =
8870 to_fixed_record_type (type, valaddr, address, NULL);
8872 /* If STATIC_TYPE is a tagged type and we know the object's address,
8873 then we can determine its tag, and compute the object's actual
8874 type from there. Note that we have to use the fixed record
8875 type (the parent part of the record may have dynamic fields
8876 and the way the location of _tag is expressed may depend on
8879 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8882 value_tag_from_contents_and_address
8886 struct type *real_type = type_from_tag (tag);
8888 value_from_contents_and_address (fixed_record_type,
8891 fixed_record_type = value_type (obj);
8892 if (real_type != NULL)
8893 return to_fixed_record_type
8895 value_address (ada_tag_value_at_base_address (obj)), NULL);
8898 /* Check to see if there is a parallel ___XVZ variable.
8899 If there is, then it provides the actual size of our type. */
8900 else if (ada_type_name (fixed_record_type) != NULL)
8902 const char *name = ada_type_name (fixed_record_type);
8904 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8905 bool xvz_found = false;
8908 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8911 xvz_found = get_int_var_value (xvz_name, size);
8913 catch (const gdb_exception_error &except)
8915 /* We found the variable, but somehow failed to read
8916 its value. Rethrow the same error, but with a little
8917 bit more information, to help the user understand
8918 what went wrong (Eg: the variable might have been
8920 throw_error (except.error,
8921 _("unable to read value of %s (%s)"),
8922 xvz_name, except.what ());
8925 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8927 fixed_record_type = copy_type (fixed_record_type);
8928 TYPE_LENGTH (fixed_record_type) = size;
8930 /* The FIXED_RECORD_TYPE may have be a stub. We have
8931 observed this when the debugging info is STABS, and
8932 apparently it is something that is hard to fix.
8934 In practice, we don't need the actual type definition
8935 at all, because the presence of the XVZ variable allows us
8936 to assume that there must be a XVS type as well, which we
8937 should be able to use later, when we need the actual type
8940 In the meantime, pretend that the "fixed" type we are
8941 returning is NOT a stub, because this can cause trouble
8942 when using this type to create new types targeting it.
8943 Indeed, the associated creation routines often check
8944 whether the target type is a stub and will try to replace
8945 it, thus using a type with the wrong size. This, in turn,
8946 might cause the new type to have the wrong size too.
8947 Consider the case of an array, for instance, where the size
8948 of the array is computed from the number of elements in
8949 our array multiplied by the size of its element. */
8950 TYPE_STUB (fixed_record_type) = 0;
8953 return fixed_record_type;
8955 case TYPE_CODE_ARRAY:
8956 return to_fixed_array_type (type, dval, 1);
8957 case TYPE_CODE_UNION:
8961 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8965 /* The same as ada_to_fixed_type_1, except that it preserves the type
8966 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8968 The typedef layer needs be preserved in order to differentiate between
8969 arrays and array pointers when both types are implemented using the same
8970 fat pointer. In the array pointer case, the pointer is encoded as
8971 a typedef of the pointer type. For instance, considering:
8973 type String_Access is access String;
8974 S1 : String_Access := null;
8976 To the debugger, S1 is defined as a typedef of type String. But
8977 to the user, it is a pointer. So if the user tries to print S1,
8978 we should not dereference the array, but print the array address
8981 If we didn't preserve the typedef layer, we would lose the fact that
8982 the type is to be presented as a pointer (needs de-reference before
8983 being printed). And we would also use the source-level type name. */
8986 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8987 CORE_ADDR address, struct value *dval, int check_tag)
8990 struct type *fixed_type =
8991 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8993 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8994 then preserve the typedef layer.
8996 Implementation note: We can only check the main-type portion of
8997 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8998 from TYPE now returns a type that has the same instance flags
8999 as TYPE. For instance, if TYPE is a "typedef const", and its
9000 target type is a "struct", then the typedef elimination will return
9001 a "const" version of the target type. See check_typedef for more
9002 details about how the typedef layer elimination is done.
9004 brobecker/2010-11-19: It seems to me that the only case where it is
9005 useful to preserve the typedef layer is when dealing with fat pointers.
9006 Perhaps, we could add a check for that and preserve the typedef layer
9007 only in that situation. But this seems unecessary so far, probably
9008 because we call check_typedef/ada_check_typedef pretty much everywhere.
9010 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9011 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9012 == TYPE_MAIN_TYPE (fixed_type)))
9018 /* A standard (static-sized) type corresponding as well as possible to
9019 TYPE0, but based on no runtime data. */
9021 static struct type *
9022 to_static_fixed_type (struct type *type0)
9029 if (TYPE_FIXED_INSTANCE (type0))
9032 type0 = ada_check_typedef (type0);
9034 switch (TYPE_CODE (type0))
9038 case TYPE_CODE_STRUCT:
9039 type = dynamic_template_type (type0);
9041 return template_to_static_fixed_type (type);
9043 return template_to_static_fixed_type (type0);
9044 case TYPE_CODE_UNION:
9045 type = ada_find_parallel_type (type0, "___XVU");
9047 return template_to_static_fixed_type (type);
9049 return template_to_static_fixed_type (type0);
9053 /* A static approximation of TYPE with all type wrappers removed. */
9055 static struct type *
9056 static_unwrap_type (struct type *type)
9058 if (ada_is_aligner_type (type))
9060 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9061 if (ada_type_name (type1) == NULL)
9062 TYPE_NAME (type1) = ada_type_name (type);
9064 return static_unwrap_type (type1);
9068 struct type *raw_real_type = ada_get_base_type (type);
9070 if (raw_real_type == type)
9073 return to_static_fixed_type (raw_real_type);
9077 /* In some cases, incomplete and private types require
9078 cross-references that are not resolved as records (for example,
9080 type FooP is access Foo;
9082 type Foo is array ...;
9083 ). In these cases, since there is no mechanism for producing
9084 cross-references to such types, we instead substitute for FooP a
9085 stub enumeration type that is nowhere resolved, and whose tag is
9086 the name of the actual type. Call these types "non-record stubs". */
9088 /* A type equivalent to TYPE that is not a non-record stub, if one
9089 exists, otherwise TYPE. */
9092 ada_check_typedef (struct type *type)
9097 /* If our type is an access to an unconstrained array, which is encoded
9098 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9099 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9100 what allows us to distinguish between fat pointers that represent
9101 array types, and fat pointers that represent array access types
9102 (in both cases, the compiler implements them as fat pointers). */
9103 if (ada_is_access_to_unconstrained_array (type))
9106 type = check_typedef (type);
9107 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9108 || !TYPE_STUB (type)
9109 || TYPE_NAME (type) == NULL)
9113 const char *name = TYPE_NAME (type);
9114 struct type *type1 = ada_find_any_type (name);
9119 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9120 stubs pointing to arrays, as we don't create symbols for array
9121 types, only for the typedef-to-array types). If that's the case,
9122 strip the typedef layer. */
9123 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9124 type1 = ada_check_typedef (type1);
9130 /* A value representing the data at VALADDR/ADDRESS as described by
9131 type TYPE0, but with a standard (static-sized) type that correctly
9132 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9133 type, then return VAL0 [this feature is simply to avoid redundant
9134 creation of struct values]. */
9136 static struct value *
9137 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9140 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9142 if (type == type0 && val0 != NULL)
9145 if (VALUE_LVAL (val0) != lval_memory)
9147 /* Our value does not live in memory; it could be a convenience
9148 variable, for instance. Create a not_lval value using val0's
9150 return value_from_contents (type, value_contents (val0));
9153 return value_from_contents_and_address (type, 0, address);
9156 /* A value representing VAL, but with a standard (static-sized) type
9157 that correctly describes it. Does not necessarily create a new
9161 ada_to_fixed_value (struct value *val)
9163 val = unwrap_value (val);
9164 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9171 /* Table mapping attribute numbers to names.
9172 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9174 static const char *attribute_names[] = {
9192 ada_attribute_name (enum exp_opcode n)
9194 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9195 return attribute_names[n - OP_ATR_FIRST + 1];
9197 return attribute_names[0];
9200 /* Evaluate the 'POS attribute applied to ARG. */
9203 pos_atr (struct value *arg)
9205 struct value *val = coerce_ref (arg);
9206 struct type *type = value_type (val);
9209 if (!discrete_type_p (type))
9210 error (_("'POS only defined on discrete types"));
9212 if (!discrete_position (type, value_as_long (val), &result))
9213 error (_("enumeration value is invalid: can't find 'POS"));
9218 static struct value *
9219 value_pos_atr (struct type *type, struct value *arg)
9221 return value_from_longest (type, pos_atr (arg));
9224 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9226 static struct value *
9227 value_val_atr (struct type *type, struct value *arg)
9229 if (!discrete_type_p (type))
9230 error (_("'VAL only defined on discrete types"));
9231 if (!integer_type_p (value_type (arg)))
9232 error (_("'VAL requires integral argument"));
9234 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9236 long pos = value_as_long (arg);
9238 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9239 error (_("argument to 'VAL out of range"));
9240 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9243 return value_from_longest (type, value_as_long (arg));
9249 /* True if TYPE appears to be an Ada character type.
9250 [At the moment, this is true only for Character and Wide_Character;
9251 It is a heuristic test that could stand improvement]. */
9254 ada_is_character_type (struct type *type)
9258 /* If the type code says it's a character, then assume it really is,
9259 and don't check any further. */
9260 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9263 /* Otherwise, assume it's a character type iff it is a discrete type
9264 with a known character type name. */
9265 name = ada_type_name (type);
9266 return (name != NULL
9267 && (TYPE_CODE (type) == TYPE_CODE_INT
9268 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9269 && (strcmp (name, "character") == 0
9270 || strcmp (name, "wide_character") == 0
9271 || strcmp (name, "wide_wide_character") == 0
9272 || strcmp (name, "unsigned char") == 0));
9275 /* True if TYPE appears to be an Ada string type. */
9278 ada_is_string_type (struct type *type)
9280 type = ada_check_typedef (type);
9282 && TYPE_CODE (type) != TYPE_CODE_PTR
9283 && (ada_is_simple_array_type (type)
9284 || ada_is_array_descriptor_type (type))
9285 && ada_array_arity (type) == 1)
9287 struct type *elttype = ada_array_element_type (type, 1);
9289 return ada_is_character_type (elttype);
9295 /* The compiler sometimes provides a parallel XVS type for a given
9296 PAD type. Normally, it is safe to follow the PAD type directly,
9297 but older versions of the compiler have a bug that causes the offset
9298 of its "F" field to be wrong. Following that field in that case
9299 would lead to incorrect results, but this can be worked around
9300 by ignoring the PAD type and using the associated XVS type instead.
9302 Set to True if the debugger should trust the contents of PAD types.
9303 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9304 static int trust_pad_over_xvs = 1;
9306 /* True if TYPE is a struct type introduced by the compiler to force the
9307 alignment of a value. Such types have a single field with a
9308 distinctive name. */
9311 ada_is_aligner_type (struct type *type)
9313 type = ada_check_typedef (type);
9315 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9318 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9319 && TYPE_NFIELDS (type) == 1
9320 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9323 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9324 the parallel type. */
9327 ada_get_base_type (struct type *raw_type)
9329 struct type *real_type_namer;
9330 struct type *raw_real_type;
9332 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9335 if (ada_is_aligner_type (raw_type))
9336 /* The encoding specifies that we should always use the aligner type.
9337 So, even if this aligner type has an associated XVS type, we should
9340 According to the compiler gurus, an XVS type parallel to an aligner
9341 type may exist because of a stabs limitation. In stabs, aligner
9342 types are empty because the field has a variable-sized type, and
9343 thus cannot actually be used as an aligner type. As a result,
9344 we need the associated parallel XVS type to decode the type.
9345 Since the policy in the compiler is to not change the internal
9346 representation based on the debugging info format, we sometimes
9347 end up having a redundant XVS type parallel to the aligner type. */
9350 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9351 if (real_type_namer == NULL
9352 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9353 || TYPE_NFIELDS (real_type_namer) != 1)
9356 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9358 /* This is an older encoding form where the base type needs to be
9359 looked up by name. We prefer the newer enconding because it is
9361 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9362 if (raw_real_type == NULL)
9365 return raw_real_type;
9368 /* The field in our XVS type is a reference to the base type. */
9369 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9372 /* The type of value designated by TYPE, with all aligners removed. */
9375 ada_aligned_type (struct type *type)
9377 if (ada_is_aligner_type (type))
9378 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9380 return ada_get_base_type (type);
9384 /* The address of the aligned value in an object at address VALADDR
9385 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9388 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9390 if (ada_is_aligner_type (type))
9391 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9393 TYPE_FIELD_BITPOS (type,
9394 0) / TARGET_CHAR_BIT);
9401 /* The printed representation of an enumeration literal with encoded
9402 name NAME. The value is good to the next call of ada_enum_name. */
9404 ada_enum_name (const char *name)
9406 static char *result;
9407 static size_t result_len = 0;
9410 /* First, unqualify the enumeration name:
9411 1. Search for the last '.' character. If we find one, then skip
9412 all the preceding characters, the unqualified name starts
9413 right after that dot.
9414 2. Otherwise, we may be debugging on a target where the compiler
9415 translates dots into "__". Search forward for double underscores,
9416 but stop searching when we hit an overloading suffix, which is
9417 of the form "__" followed by digits. */
9419 tmp = strrchr (name, '.');
9424 while ((tmp = strstr (name, "__")) != NULL)
9426 if (isdigit (tmp[2]))
9437 if (name[1] == 'U' || name[1] == 'W')
9439 if (sscanf (name + 2, "%x", &v) != 1)
9442 else if (((name[1] >= '0' && name[1] <= '9')
9443 || (name[1] >= 'a' && name[1] <= 'z'))
9446 GROW_VECT (result, result_len, 4);
9447 xsnprintf (result, result_len, "'%c'", name[1]);
9453 GROW_VECT (result, result_len, 16);
9454 if (isascii (v) && isprint (v))
9455 xsnprintf (result, result_len, "'%c'", v);
9456 else if (name[1] == 'U')
9457 xsnprintf (result, result_len, "[\"%02x\"]", v);
9459 xsnprintf (result, result_len, "[\"%04x\"]", v);
9465 tmp = strstr (name, "__");
9467 tmp = strstr (name, "$");
9470 GROW_VECT (result, result_len, tmp - name + 1);
9471 strncpy (result, name, tmp - name);
9472 result[tmp - name] = '\0';
9480 /* Evaluate the subexpression of EXP starting at *POS as for
9481 evaluate_type, updating *POS to point just past the evaluated
9484 static struct value *
9485 evaluate_subexp_type (struct expression *exp, int *pos)
9487 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9490 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9493 static struct value *
9494 unwrap_value (struct value *val)
9496 struct type *type = ada_check_typedef (value_type (val));
9498 if (ada_is_aligner_type (type))
9500 struct value *v = ada_value_struct_elt (val, "F", 0);
9501 struct type *val_type = ada_check_typedef (value_type (v));
9503 if (ada_type_name (val_type) == NULL)
9504 TYPE_NAME (val_type) = ada_type_name (type);
9506 return unwrap_value (v);
9510 struct type *raw_real_type =
9511 ada_check_typedef (ada_get_base_type (type));
9513 /* If there is no parallel XVS or XVE type, then the value is
9514 already unwrapped. Return it without further modification. */
9515 if ((type == raw_real_type)
9516 && ada_find_parallel_type (type, "___XVE") == NULL)
9520 coerce_unspec_val_to_type
9521 (val, ada_to_fixed_type (raw_real_type, 0,
9522 value_address (val),
9527 static struct value *
9528 cast_from_fixed (struct type *type, struct value *arg)
9530 struct value *scale = ada_scaling_factor (value_type (arg));
9531 arg = value_cast (value_type (scale), arg);
9533 arg = value_binop (arg, scale, BINOP_MUL);
9534 return value_cast (type, arg);
9537 static struct value *
9538 cast_to_fixed (struct type *type, struct value *arg)
9540 if (type == value_type (arg))
9543 struct value *scale = ada_scaling_factor (type);
9544 if (ada_is_fixed_point_type (value_type (arg)))
9545 arg = cast_from_fixed (value_type (scale), arg);
9547 arg = value_cast (value_type (scale), arg);
9549 arg = value_binop (arg, scale, BINOP_DIV);
9550 return value_cast (type, arg);
9553 /* Given two array types T1 and T2, return nonzero iff both arrays
9554 contain the same number of elements. */
9557 ada_same_array_size_p (struct type *t1, struct type *t2)
9559 LONGEST lo1, hi1, lo2, hi2;
9561 /* Get the array bounds in order to verify that the size of
9562 the two arrays match. */
9563 if (!get_array_bounds (t1, &lo1, &hi1)
9564 || !get_array_bounds (t2, &lo2, &hi2))
9565 error (_("unable to determine array bounds"));
9567 /* To make things easier for size comparison, normalize a bit
9568 the case of empty arrays by making sure that the difference
9569 between upper bound and lower bound is always -1. */
9575 return (hi1 - lo1 == hi2 - lo2);
9578 /* Assuming that VAL is an array of integrals, and TYPE represents
9579 an array with the same number of elements, but with wider integral
9580 elements, return an array "casted" to TYPE. In practice, this
9581 means that the returned array is built by casting each element
9582 of the original array into TYPE's (wider) element type. */
9584 static struct value *
9585 ada_promote_array_of_integrals (struct type *type, struct value *val)
9587 struct type *elt_type = TYPE_TARGET_TYPE (type);
9592 /* Verify that both val and type are arrays of scalars, and
9593 that the size of val's elements is smaller than the size
9594 of type's element. */
9595 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9596 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9597 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9598 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9599 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9600 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9602 if (!get_array_bounds (type, &lo, &hi))
9603 error (_("unable to determine array bounds"));
9605 res = allocate_value (type);
9607 /* Promote each array element. */
9608 for (i = 0; i < hi - lo + 1; i++)
9610 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9612 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9613 value_contents_all (elt), TYPE_LENGTH (elt_type));
9619 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9620 return the converted value. */
9622 static struct value *
9623 coerce_for_assign (struct type *type, struct value *val)
9625 struct type *type2 = value_type (val);
9630 type2 = ada_check_typedef (type2);
9631 type = ada_check_typedef (type);
9633 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9634 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9636 val = ada_value_ind (val);
9637 type2 = value_type (val);
9640 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9641 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9643 if (!ada_same_array_size_p (type, type2))
9644 error (_("cannot assign arrays of different length"));
9646 if (is_integral_type (TYPE_TARGET_TYPE (type))
9647 && is_integral_type (TYPE_TARGET_TYPE (type2))
9648 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9649 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9651 /* Allow implicit promotion of the array elements to
9653 return ada_promote_array_of_integrals (type, val);
9656 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9657 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9658 error (_("Incompatible types in assignment"));
9659 deprecated_set_value_type (val, type);
9664 static struct value *
9665 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9668 struct type *type1, *type2;
9671 arg1 = coerce_ref (arg1);
9672 arg2 = coerce_ref (arg2);
9673 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9674 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9676 if (TYPE_CODE (type1) != TYPE_CODE_INT
9677 || TYPE_CODE (type2) != TYPE_CODE_INT)
9678 return value_binop (arg1, arg2, op);
9687 return value_binop (arg1, arg2, op);
9690 v2 = value_as_long (arg2);
9692 error (_("second operand of %s must not be zero."), op_string (op));
9694 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9695 return value_binop (arg1, arg2, op);
9697 v1 = value_as_long (arg1);
9702 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9703 v += v > 0 ? -1 : 1;
9711 /* Should not reach this point. */
9715 val = allocate_value (type1);
9716 store_unsigned_integer (value_contents_raw (val),
9717 TYPE_LENGTH (value_type (val)),
9718 gdbarch_byte_order (get_type_arch (type1)), v);
9723 ada_value_equal (struct value *arg1, struct value *arg2)
9725 if (ada_is_direct_array_type (value_type (arg1))
9726 || ada_is_direct_array_type (value_type (arg2)))
9728 struct type *arg1_type, *arg2_type;
9730 /* Automatically dereference any array reference before
9731 we attempt to perform the comparison. */
9732 arg1 = ada_coerce_ref (arg1);
9733 arg2 = ada_coerce_ref (arg2);
9735 arg1 = ada_coerce_to_simple_array (arg1);
9736 arg2 = ada_coerce_to_simple_array (arg2);
9738 arg1_type = ada_check_typedef (value_type (arg1));
9739 arg2_type = ada_check_typedef (value_type (arg2));
9741 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9742 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9743 error (_("Attempt to compare array with non-array"));
9744 /* FIXME: The following works only for types whose
9745 representations use all bits (no padding or undefined bits)
9746 and do not have user-defined equality. */
9747 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9748 && memcmp (value_contents (arg1), value_contents (arg2),
9749 TYPE_LENGTH (arg1_type)) == 0);
9751 return value_equal (arg1, arg2);
9754 /* Total number of component associations in the aggregate starting at
9755 index PC in EXP. Assumes that index PC is the start of an
9759 num_component_specs (struct expression *exp, int pc)
9763 m = exp->elts[pc + 1].longconst;
9766 for (i = 0; i < m; i += 1)
9768 switch (exp->elts[pc].opcode)
9774 n += exp->elts[pc + 1].longconst;
9777 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9782 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9783 component of LHS (a simple array or a record), updating *POS past
9784 the expression, assuming that LHS is contained in CONTAINER. Does
9785 not modify the inferior's memory, nor does it modify LHS (unless
9786 LHS == CONTAINER). */
9789 assign_component (struct value *container, struct value *lhs, LONGEST index,
9790 struct expression *exp, int *pos)
9792 struct value *mark = value_mark ();
9794 struct type *lhs_type = check_typedef (value_type (lhs));
9796 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9798 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9799 struct value *index_val = value_from_longest (index_type, index);
9801 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9805 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9806 elt = ada_to_fixed_value (elt);
9809 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9810 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9812 value_assign_to_component (container, elt,
9813 ada_evaluate_subexp (NULL, exp, pos,
9816 value_free_to_mark (mark);
9819 /* Assuming that LHS represents an lvalue having a record or array
9820 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9821 of that aggregate's value to LHS, advancing *POS past the
9822 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9823 lvalue containing LHS (possibly LHS itself). Does not modify
9824 the inferior's memory, nor does it modify the contents of
9825 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9827 static struct value *
9828 assign_aggregate (struct value *container,
9829 struct value *lhs, struct expression *exp,
9830 int *pos, enum noside noside)
9832 struct type *lhs_type;
9833 int n = exp->elts[*pos+1].longconst;
9834 LONGEST low_index, high_index;
9837 int max_indices, num_indices;
9841 if (noside != EVAL_NORMAL)
9843 for (i = 0; i < n; i += 1)
9844 ada_evaluate_subexp (NULL, exp, pos, noside);
9848 container = ada_coerce_ref (container);
9849 if (ada_is_direct_array_type (value_type (container)))
9850 container = ada_coerce_to_simple_array (container);
9851 lhs = ada_coerce_ref (lhs);
9852 if (!deprecated_value_modifiable (lhs))
9853 error (_("Left operand of assignment is not a modifiable lvalue."));
9855 lhs_type = check_typedef (value_type (lhs));
9856 if (ada_is_direct_array_type (lhs_type))
9858 lhs = ada_coerce_to_simple_array (lhs);
9859 lhs_type = check_typedef (value_type (lhs));
9860 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9861 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9863 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9866 high_index = num_visible_fields (lhs_type) - 1;
9869 error (_("Left-hand side must be array or record."));
9871 num_specs = num_component_specs (exp, *pos - 3);
9872 max_indices = 4 * num_specs + 4;
9873 indices = XALLOCAVEC (LONGEST, max_indices);
9874 indices[0] = indices[1] = low_index - 1;
9875 indices[2] = indices[3] = high_index + 1;
9878 for (i = 0; i < n; i += 1)
9880 switch (exp->elts[*pos].opcode)
9883 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9884 &num_indices, max_indices,
9885 low_index, high_index);
9888 aggregate_assign_positional (container, lhs, exp, pos, indices,
9889 &num_indices, max_indices,
9890 low_index, high_index);
9894 error (_("Misplaced 'others' clause"));
9895 aggregate_assign_others (container, lhs, exp, pos, indices,
9896 num_indices, low_index, high_index);
9899 error (_("Internal error: bad aggregate clause"));
9906 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9907 construct at *POS, updating *POS past the construct, given that
9908 the positions are relative to lower bound LOW, where HIGH is the
9909 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9910 updating *NUM_INDICES as needed. CONTAINER is as for
9911 assign_aggregate. */
9913 aggregate_assign_positional (struct value *container,
9914 struct value *lhs, struct expression *exp,
9915 int *pos, LONGEST *indices, int *num_indices,
9916 int max_indices, LONGEST low, LONGEST high)
9918 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9920 if (ind - 1 == high)
9921 warning (_("Extra components in aggregate ignored."));
9924 add_component_interval (ind, ind, indices, num_indices, max_indices);
9926 assign_component (container, lhs, ind, exp, pos);
9929 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9932 /* Assign into the components of LHS indexed by the OP_CHOICES
9933 construct at *POS, updating *POS past the construct, given that
9934 the allowable indices are LOW..HIGH. Record the indices assigned
9935 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9936 needed. CONTAINER is as for assign_aggregate. */
9938 aggregate_assign_from_choices (struct value *container,
9939 struct value *lhs, struct expression *exp,
9940 int *pos, LONGEST *indices, int *num_indices,
9941 int max_indices, LONGEST low, LONGEST high)
9944 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9945 int choice_pos, expr_pc;
9946 int is_array = ada_is_direct_array_type (value_type (lhs));
9948 choice_pos = *pos += 3;
9950 for (j = 0; j < n_choices; j += 1)
9951 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9953 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9955 for (j = 0; j < n_choices; j += 1)
9957 LONGEST lower, upper;
9958 enum exp_opcode op = exp->elts[choice_pos].opcode;
9960 if (op == OP_DISCRETE_RANGE)
9963 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9965 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9970 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9982 name = &exp->elts[choice_pos + 2].string;
9985 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9988 error (_("Invalid record component association."));
9990 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9992 if (! find_struct_field (name, value_type (lhs), 0,
9993 NULL, NULL, NULL, NULL, &ind))
9994 error (_("Unknown component name: %s."), name);
9995 lower = upper = ind;
9998 if (lower <= upper && (lower < low || upper > high))
9999 error (_("Index in component association out of bounds."));
10001 add_component_interval (lower, upper, indices, num_indices,
10003 while (lower <= upper)
10008 assign_component (container, lhs, lower, exp, &pos1);
10014 /* Assign the value of the expression in the OP_OTHERS construct in
10015 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10016 have not been previously assigned. The index intervals already assigned
10017 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10018 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10020 aggregate_assign_others (struct value *container,
10021 struct value *lhs, struct expression *exp,
10022 int *pos, LONGEST *indices, int num_indices,
10023 LONGEST low, LONGEST high)
10026 int expr_pc = *pos + 1;
10028 for (i = 0; i < num_indices - 2; i += 2)
10032 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10036 localpos = expr_pc;
10037 assign_component (container, lhs, ind, exp, &localpos);
10040 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10043 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10044 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10045 modifying *SIZE as needed. It is an error if *SIZE exceeds
10046 MAX_SIZE. The resulting intervals do not overlap. */
10048 add_component_interval (LONGEST low, LONGEST high,
10049 LONGEST* indices, int *size, int max_size)
10053 for (i = 0; i < *size; i += 2) {
10054 if (high >= indices[i] && low <= indices[i + 1])
10058 for (kh = i + 2; kh < *size; kh += 2)
10059 if (high < indices[kh])
10061 if (low < indices[i])
10063 indices[i + 1] = indices[kh - 1];
10064 if (high > indices[i + 1])
10065 indices[i + 1] = high;
10066 memcpy (indices + i + 2, indices + kh, *size - kh);
10067 *size -= kh - i - 2;
10070 else if (high < indices[i])
10074 if (*size == max_size)
10075 error (_("Internal error: miscounted aggregate components."));
10077 for (j = *size-1; j >= i+2; j -= 1)
10078 indices[j] = indices[j - 2];
10080 indices[i + 1] = high;
10083 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10086 static struct value *
10087 ada_value_cast (struct type *type, struct value *arg2)
10089 if (type == ada_check_typedef (value_type (arg2)))
10092 if (ada_is_fixed_point_type (type))
10093 return cast_to_fixed (type, arg2);
10095 if (ada_is_fixed_point_type (value_type (arg2)))
10096 return cast_from_fixed (type, arg2);
10098 return value_cast (type, arg2);
10101 /* Evaluating Ada expressions, and printing their result.
10102 ------------------------------------------------------
10107 We usually evaluate an Ada expression in order to print its value.
10108 We also evaluate an expression in order to print its type, which
10109 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10110 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10111 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10112 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10115 Evaluating expressions is a little more complicated for Ada entities
10116 than it is for entities in languages such as C. The main reason for
10117 this is that Ada provides types whose definition might be dynamic.
10118 One example of such types is variant records. Or another example
10119 would be an array whose bounds can only be known at run time.
10121 The following description is a general guide as to what should be
10122 done (and what should NOT be done) in order to evaluate an expression
10123 involving such types, and when. This does not cover how the semantic
10124 information is encoded by GNAT as this is covered separatly. For the
10125 document used as the reference for the GNAT encoding, see exp_dbug.ads
10126 in the GNAT sources.
10128 Ideally, we should embed each part of this description next to its
10129 associated code. Unfortunately, the amount of code is so vast right
10130 now that it's hard to see whether the code handling a particular
10131 situation might be duplicated or not. One day, when the code is
10132 cleaned up, this guide might become redundant with the comments
10133 inserted in the code, and we might want to remove it.
10135 2. ``Fixing'' an Entity, the Simple Case:
10136 -----------------------------------------
10138 When evaluating Ada expressions, the tricky issue is that they may
10139 reference entities whose type contents and size are not statically
10140 known. Consider for instance a variant record:
10142 type Rec (Empty : Boolean := True) is record
10145 when False => Value : Integer;
10148 Yes : Rec := (Empty => False, Value => 1);
10149 No : Rec := (empty => True);
10151 The size and contents of that record depends on the value of the
10152 descriminant (Rec.Empty). At this point, neither the debugging
10153 information nor the associated type structure in GDB are able to
10154 express such dynamic types. So what the debugger does is to create
10155 "fixed" versions of the type that applies to the specific object.
10156 We also informally refer to this opperation as "fixing" an object,
10157 which means creating its associated fixed type.
10159 Example: when printing the value of variable "Yes" above, its fixed
10160 type would look like this:
10167 On the other hand, if we printed the value of "No", its fixed type
10174 Things become a little more complicated when trying to fix an entity
10175 with a dynamic type that directly contains another dynamic type,
10176 such as an array of variant records, for instance. There are
10177 two possible cases: Arrays, and records.
10179 3. ``Fixing'' Arrays:
10180 ---------------------
10182 The type structure in GDB describes an array in terms of its bounds,
10183 and the type of its elements. By design, all elements in the array
10184 have the same type and we cannot represent an array of variant elements
10185 using the current type structure in GDB. When fixing an array,
10186 we cannot fix the array element, as we would potentially need one
10187 fixed type per element of the array. As a result, the best we can do
10188 when fixing an array is to produce an array whose bounds and size
10189 are correct (allowing us to read it from memory), but without having
10190 touched its element type. Fixing each element will be done later,
10191 when (if) necessary.
10193 Arrays are a little simpler to handle than records, because the same
10194 amount of memory is allocated for each element of the array, even if
10195 the amount of space actually used by each element differs from element
10196 to element. Consider for instance the following array of type Rec:
10198 type Rec_Array is array (1 .. 2) of Rec;
10200 The actual amount of memory occupied by each element might be different
10201 from element to element, depending on the value of their discriminant.
10202 But the amount of space reserved for each element in the array remains
10203 fixed regardless. So we simply need to compute that size using
10204 the debugging information available, from which we can then determine
10205 the array size (we multiply the number of elements of the array by
10206 the size of each element).
10208 The simplest case is when we have an array of a constrained element
10209 type. For instance, consider the following type declarations:
10211 type Bounded_String (Max_Size : Integer) is
10213 Buffer : String (1 .. Max_Size);
10215 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10217 In this case, the compiler describes the array as an array of
10218 variable-size elements (identified by its XVS suffix) for which
10219 the size can be read in the parallel XVZ variable.
10221 In the case of an array of an unconstrained element type, the compiler
10222 wraps the array element inside a private PAD type. This type should not
10223 be shown to the user, and must be "unwrap"'ed before printing. Note
10224 that we also use the adjective "aligner" in our code to designate
10225 these wrapper types.
10227 In some cases, the size allocated for each element is statically
10228 known. In that case, the PAD type already has the correct size,
10229 and the array element should remain unfixed.
10231 But there are cases when this size is not statically known.
10232 For instance, assuming that "Five" is an integer variable:
10234 type Dynamic is array (1 .. Five) of Integer;
10235 type Wrapper (Has_Length : Boolean := False) is record
10238 when True => Length : Integer;
10239 when False => null;
10242 type Wrapper_Array is array (1 .. 2) of Wrapper;
10244 Hello : Wrapper_Array := (others => (Has_Length => True,
10245 Data => (others => 17),
10249 The debugging info would describe variable Hello as being an
10250 array of a PAD type. The size of that PAD type is not statically
10251 known, but can be determined using a parallel XVZ variable.
10252 In that case, a copy of the PAD type with the correct size should
10253 be used for the fixed array.
10255 3. ``Fixing'' record type objects:
10256 ----------------------------------
10258 Things are slightly different from arrays in the case of dynamic
10259 record types. In this case, in order to compute the associated
10260 fixed type, we need to determine the size and offset of each of
10261 its components. This, in turn, requires us to compute the fixed
10262 type of each of these components.
10264 Consider for instance the example:
10266 type Bounded_String (Max_Size : Natural) is record
10267 Str : String (1 .. Max_Size);
10270 My_String : Bounded_String (Max_Size => 10);
10272 In that case, the position of field "Length" depends on the size
10273 of field Str, which itself depends on the value of the Max_Size
10274 discriminant. In order to fix the type of variable My_String,
10275 we need to fix the type of field Str. Therefore, fixing a variant
10276 record requires us to fix each of its components.
10278 However, if a component does not have a dynamic size, the component
10279 should not be fixed. In particular, fields that use a PAD type
10280 should not fixed. Here is an example where this might happen
10281 (assuming type Rec above):
10283 type Container (Big : Boolean) is record
10287 when True => Another : Integer;
10288 when False => null;
10291 My_Container : Container := (Big => False,
10292 First => (Empty => True),
10295 In that example, the compiler creates a PAD type for component First,
10296 whose size is constant, and then positions the component After just
10297 right after it. The offset of component After is therefore constant
10300 The debugger computes the position of each field based on an algorithm
10301 that uses, among other things, the actual position and size of the field
10302 preceding it. Let's now imagine that the user is trying to print
10303 the value of My_Container. If the type fixing was recursive, we would
10304 end up computing the offset of field After based on the size of the
10305 fixed version of field First. And since in our example First has
10306 only one actual field, the size of the fixed type is actually smaller
10307 than the amount of space allocated to that field, and thus we would
10308 compute the wrong offset of field After.
10310 To make things more complicated, we need to watch out for dynamic
10311 components of variant records (identified by the ___XVL suffix in
10312 the component name). Even if the target type is a PAD type, the size
10313 of that type might not be statically known. So the PAD type needs
10314 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10315 we might end up with the wrong size for our component. This can be
10316 observed with the following type declarations:
10318 type Octal is new Integer range 0 .. 7;
10319 type Octal_Array is array (Positive range <>) of Octal;
10320 pragma Pack (Octal_Array);
10322 type Octal_Buffer (Size : Positive) is record
10323 Buffer : Octal_Array (1 .. Size);
10327 In that case, Buffer is a PAD type whose size is unset and needs
10328 to be computed by fixing the unwrapped type.
10330 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10331 ----------------------------------------------------------
10333 Lastly, when should the sub-elements of an entity that remained unfixed
10334 thus far, be actually fixed?
10336 The answer is: Only when referencing that element. For instance
10337 when selecting one component of a record, this specific component
10338 should be fixed at that point in time. Or when printing the value
10339 of a record, each component should be fixed before its value gets
10340 printed. Similarly for arrays, the element of the array should be
10341 fixed when printing each element of the array, or when extracting
10342 one element out of that array. On the other hand, fixing should
10343 not be performed on the elements when taking a slice of an array!
10345 Note that one of the side effects of miscomputing the offset and
10346 size of each field is that we end up also miscomputing the size
10347 of the containing type. This can have adverse results when computing
10348 the value of an entity. GDB fetches the value of an entity based
10349 on the size of its type, and thus a wrong size causes GDB to fetch
10350 the wrong amount of memory. In the case where the computed size is
10351 too small, GDB fetches too little data to print the value of our
10352 entity. Results in this case are unpredictable, as we usually read
10353 past the buffer containing the data =:-o. */
10355 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10356 for that subexpression cast to TO_TYPE. Advance *POS over the
10360 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10361 enum noside noside, struct type *to_type)
10365 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10366 || exp->elts[pc].opcode == OP_VAR_VALUE)
10371 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10373 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10374 return value_zero (to_type, not_lval);
10376 val = evaluate_var_msym_value (noside,
10377 exp->elts[pc + 1].objfile,
10378 exp->elts[pc + 2].msymbol);
10381 val = evaluate_var_value (noside,
10382 exp->elts[pc + 1].block,
10383 exp->elts[pc + 2].symbol);
10385 if (noside == EVAL_SKIP)
10386 return eval_skip_value (exp);
10388 val = ada_value_cast (to_type, val);
10390 /* Follow the Ada language semantics that do not allow taking
10391 an address of the result of a cast (view conversion in Ada). */
10392 if (VALUE_LVAL (val) == lval_memory)
10394 if (value_lazy (val))
10395 value_fetch_lazy (val);
10396 VALUE_LVAL (val) = not_lval;
10401 value *val = evaluate_subexp (to_type, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
10403 return eval_skip_value (exp);
10404 return ada_value_cast (to_type, val);
10407 /* Implement the evaluate_exp routine in the exp_descriptor structure
10408 for the Ada language. */
10410 static struct value *
10411 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10412 int *pos, enum noside noside)
10414 enum exp_opcode op;
10418 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10421 struct value **argvec;
10425 op = exp->elts[pc].opcode;
10431 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10433 if (noside == EVAL_NORMAL)
10434 arg1 = unwrap_value (arg1);
10436 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10437 then we need to perform the conversion manually, because
10438 evaluate_subexp_standard doesn't do it. This conversion is
10439 necessary in Ada because the different kinds of float/fixed
10440 types in Ada have different representations.
10442 Similarly, we need to perform the conversion from OP_LONG
10444 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10445 arg1 = ada_value_cast (expect_type, arg1);
10451 struct value *result;
10454 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10455 /* The result type will have code OP_STRING, bashed there from
10456 OP_ARRAY. Bash it back. */
10457 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10458 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10464 type = exp->elts[pc + 1].type;
10465 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10469 type = exp->elts[pc + 1].type;
10470 return ada_evaluate_subexp (type, exp, pos, noside);
10473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10474 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10476 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10477 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10479 return ada_value_assign (arg1, arg1);
10481 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10482 except if the lhs of our assignment is a convenience variable.
10483 In the case of assigning to a convenience variable, the lhs
10484 should be exactly the result of the evaluation of the rhs. */
10485 type = value_type (arg1);
10486 if (VALUE_LVAL (arg1) == lval_internalvar)
10488 arg2 = evaluate_subexp (type, exp, pos, noside);
10489 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10491 if (VALUE_LVAL (arg1) == lval_internalvar)
10495 else if (ada_is_fixed_point_type (value_type (arg1)))
10496 arg2 = cast_to_fixed (value_type (arg1), arg2);
10497 else if (ada_is_fixed_point_type (value_type (arg2)))
10499 (_("Fixed-point values must be assigned to fixed-point variables"));
10501 arg2 = coerce_for_assign (value_type (arg1), arg2);
10502 return ada_value_assign (arg1, arg2);
10505 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10506 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10507 if (noside == EVAL_SKIP)
10509 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10510 return (value_from_longest
10511 (value_type (arg1),
10512 value_as_long (arg1) + value_as_long (arg2)));
10513 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg2),
10516 value_as_long (arg1) + value_as_long (arg2)));
10517 if ((ada_is_fixed_point_type (value_type (arg1))
10518 || ada_is_fixed_point_type (value_type (arg2)))
10519 && value_type (arg1) != value_type (arg2))
10520 error (_("Operands of fixed-point addition must have the same type"));
10521 /* Do the addition, and cast the result to the type of the first
10522 argument. We cannot cast the result to a reference type, so if
10523 ARG1 is a reference type, find its underlying type. */
10524 type = value_type (arg1);
10525 while (TYPE_CODE (type) == TYPE_CODE_REF)
10526 type = TYPE_TARGET_TYPE (type);
10527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10528 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10531 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10532 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10533 if (noside == EVAL_SKIP)
10535 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10536 return (value_from_longest
10537 (value_type (arg1),
10538 value_as_long (arg1) - value_as_long (arg2)));
10539 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10540 return (value_from_longest
10541 (value_type (arg2),
10542 value_as_long (arg1) - value_as_long (arg2)));
10543 if ((ada_is_fixed_point_type (value_type (arg1))
10544 || ada_is_fixed_point_type (value_type (arg2)))
10545 && value_type (arg1) != value_type (arg2))
10546 error (_("Operands of fixed-point subtraction "
10547 "must have the same type"));
10548 /* Do the substraction, and cast the result to the type of the first
10549 argument. We cannot cast the result to a reference type, so if
10550 ARG1 is a reference type, find its underlying type. */
10551 type = value_type (arg1);
10552 while (TYPE_CODE (type) == TYPE_CODE_REF)
10553 type = TYPE_TARGET_TYPE (type);
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10563 if (noside == EVAL_SKIP)
10565 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10567 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10568 return value_zero (value_type (arg1), not_lval);
10572 type = builtin_type (exp->gdbarch)->builtin_double;
10573 if (ada_is_fixed_point_type (value_type (arg1)))
10574 arg1 = cast_from_fixed (type, arg1);
10575 if (ada_is_fixed_point_type (value_type (arg2)))
10576 arg2 = cast_from_fixed (type, arg2);
10577 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10578 return ada_value_binop (arg1, arg2, op);
10582 case BINOP_NOTEQUAL:
10583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10584 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10585 if (noside == EVAL_SKIP)
10587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10592 tem = ada_value_equal (arg1, arg2);
10594 if (op == BINOP_NOTEQUAL)
10596 type = language_bool_type (exp->language_defn, exp->gdbarch);
10597 return value_from_longest (type, (LONGEST) tem);
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10601 if (noside == EVAL_SKIP)
10603 else if (ada_is_fixed_point_type (value_type (arg1)))
10604 return value_cast (value_type (arg1), value_neg (arg1));
10607 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10608 return value_neg (arg1);
10611 case BINOP_LOGICAL_AND:
10612 case BINOP_LOGICAL_OR:
10613 case UNOP_LOGICAL_NOT:
10618 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10619 type = language_bool_type (exp->language_defn, exp->gdbarch);
10620 return value_cast (type, val);
10623 case BINOP_BITWISE_AND:
10624 case BINOP_BITWISE_IOR:
10625 case BINOP_BITWISE_XOR:
10629 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10631 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10633 return value_cast (value_type (arg1), val);
10639 if (noside == EVAL_SKIP)
10645 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10646 /* Only encountered when an unresolved symbol occurs in a
10647 context other than a function call, in which case, it is
10649 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10650 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10652 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10654 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10655 /* Check to see if this is a tagged type. We also need to handle
10656 the case where the type is a reference to a tagged type, but
10657 we have to be careful to exclude pointers to tagged types.
10658 The latter should be shown as usual (as a pointer), whereas
10659 a reference should mostly be transparent to the user. */
10660 if (ada_is_tagged_type (type, 0)
10661 || (TYPE_CODE (type) == TYPE_CODE_REF
10662 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10664 /* Tagged types are a little special in the fact that the real
10665 type is dynamic and can only be determined by inspecting the
10666 object's tag. This means that we need to get the object's
10667 value first (EVAL_NORMAL) and then extract the actual object
10670 Note that we cannot skip the final step where we extract
10671 the object type from its tag, because the EVAL_NORMAL phase
10672 results in dynamic components being resolved into fixed ones.
10673 This can cause problems when trying to print the type
10674 description of tagged types whose parent has a dynamic size:
10675 We use the type name of the "_parent" component in order
10676 to print the name of the ancestor type in the type description.
10677 If that component had a dynamic size, the resolution into
10678 a fixed type would result in the loss of that type name,
10679 thus preventing us from printing the name of the ancestor
10680 type in the type description. */
10681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10683 if (TYPE_CODE (type) != TYPE_CODE_REF)
10685 struct type *actual_type;
10687 actual_type = type_from_tag (ada_value_tag (arg1));
10688 if (actual_type == NULL)
10689 /* If, for some reason, we were unable to determine
10690 the actual type from the tag, then use the static
10691 approximation that we just computed as a fallback.
10692 This can happen if the debugging information is
10693 incomplete, for instance. */
10694 actual_type = type;
10695 return value_zero (actual_type, not_lval);
10699 /* In the case of a ref, ada_coerce_ref takes care
10700 of determining the actual type. But the evaluation
10701 should return a ref as it should be valid to ask
10702 for its address; so rebuild a ref after coerce. */
10703 arg1 = ada_coerce_ref (arg1);
10704 return value_ref (arg1, TYPE_CODE_REF);
10708 /* Records and unions for which GNAT encodings have been
10709 generated need to be statically fixed as well.
10710 Otherwise, non-static fixing produces a type where
10711 all dynamic properties are removed, which prevents "ptype"
10712 from being able to completely describe the type.
10713 For instance, a case statement in a variant record would be
10714 replaced by the relevant components based on the actual
10715 value of the discriminants. */
10716 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10717 && dynamic_template_type (type) != NULL)
10718 || (TYPE_CODE (type) == TYPE_CODE_UNION
10719 && ada_find_parallel_type (type, "___XVU") != NULL))
10722 return value_zero (to_static_fixed_type (type), not_lval);
10726 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10727 return ada_to_fixed_value (arg1);
10732 /* Allocate arg vector, including space for the function to be
10733 called in argvec[0] and a terminating NULL. */
10734 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10735 argvec = XALLOCAVEC (struct value *, nargs + 2);
10737 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10738 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10739 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10740 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10743 for (tem = 0; tem <= nargs; tem += 1)
10744 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10747 if (noside == EVAL_SKIP)
10751 if (ada_is_constrained_packed_array_type
10752 (desc_base_type (value_type (argvec[0]))))
10753 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10755 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10756 /* This is a packed array that has already been fixed, and
10757 therefore already coerced to a simple array. Nothing further
10760 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10762 /* Make sure we dereference references so that all the code below
10763 feels like it's really handling the referenced value. Wrapping
10764 types (for alignment) may be there, so make sure we strip them as
10766 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10768 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10769 && VALUE_LVAL (argvec[0]) == lval_memory)
10770 argvec[0] = value_addr (argvec[0]);
10772 type = ada_check_typedef (value_type (argvec[0]));
10774 /* Ada allows us to implicitly dereference arrays when subscripting
10775 them. So, if this is an array typedef (encoding use for array
10776 access types encoded as fat pointers), strip it now. */
10777 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10778 type = ada_typedef_target_type (type);
10780 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10782 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10784 case TYPE_CODE_FUNC:
10785 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10787 case TYPE_CODE_ARRAY:
10789 case TYPE_CODE_STRUCT:
10790 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10791 argvec[0] = ada_value_ind (argvec[0]);
10792 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10795 error (_("cannot subscript or call something of type `%s'"),
10796 ada_type_name (value_type (argvec[0])));
10801 switch (TYPE_CODE (type))
10803 case TYPE_CODE_FUNC:
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10806 if (TYPE_TARGET_TYPE (type) == NULL)
10807 error_call_unknown_return_type (NULL);
10808 return allocate_value (TYPE_TARGET_TYPE (type));
10810 return call_function_by_hand (argvec[0], NULL,
10811 gdb::make_array_view (argvec + 1,
10813 case TYPE_CODE_INTERNAL_FUNCTION:
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 /* We don't know anything about what the internal
10816 function might return, but we have to return
10818 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10821 return call_internal_function (exp->gdbarch, exp->language_defn,
10822 argvec[0], nargs, argvec + 1);
10824 case TYPE_CODE_STRUCT:
10828 arity = ada_array_arity (type);
10829 type = ada_array_element_type (type, nargs);
10831 error (_("cannot subscript or call a record"));
10832 if (arity != nargs)
10833 error (_("wrong number of subscripts; expecting %d"), arity);
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 return value_zero (ada_aligned_type (type), lval_memory);
10837 unwrap_value (ada_value_subscript
10838 (argvec[0], nargs, argvec + 1));
10840 case TYPE_CODE_ARRAY:
10841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10843 type = ada_array_element_type (type, nargs);
10845 error (_("element type of array unknown"));
10847 return value_zero (ada_aligned_type (type), lval_memory);
10850 unwrap_value (ada_value_subscript
10851 (ada_coerce_to_simple_array (argvec[0]),
10852 nargs, argvec + 1));
10853 case TYPE_CODE_PTR: /* Pointer to array */
10854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10856 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10857 type = ada_array_element_type (type, nargs);
10859 error (_("element type of array unknown"));
10861 return value_zero (ada_aligned_type (type), lval_memory);
10864 unwrap_value (ada_value_ptr_subscript (argvec[0],
10865 nargs, argvec + 1));
10868 error (_("Attempt to index or call something other than an "
10869 "array or function"));
10874 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10875 struct value *low_bound_val =
10876 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 struct value *high_bound_val =
10878 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10880 LONGEST high_bound;
10882 low_bound_val = coerce_ref (low_bound_val);
10883 high_bound_val = coerce_ref (high_bound_val);
10884 low_bound = value_as_long (low_bound_val);
10885 high_bound = value_as_long (high_bound_val);
10887 if (noside == EVAL_SKIP)
10890 /* If this is a reference to an aligner type, then remove all
10892 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10893 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10894 TYPE_TARGET_TYPE (value_type (array)) =
10895 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10897 if (ada_is_constrained_packed_array_type (value_type (array)))
10898 error (_("cannot slice a packed array"));
10900 /* If this is a reference to an array or an array lvalue,
10901 convert to a pointer. */
10902 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10903 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10904 && VALUE_LVAL (array) == lval_memory))
10905 array = value_addr (array);
10907 if (noside == EVAL_AVOID_SIDE_EFFECTS
10908 && ada_is_array_descriptor_type (ada_check_typedef
10909 (value_type (array))))
10910 return empty_array (ada_type_of_array (array, 0), low_bound,
10913 array = ada_coerce_to_simple_array_ptr (array);
10915 /* If we have more than one level of pointer indirection,
10916 dereference the value until we get only one level. */
10917 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10918 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10920 array = value_ind (array);
10922 /* Make sure we really do have an array type before going further,
10923 to avoid a SEGV when trying to get the index type or the target
10924 type later down the road if the debug info generated by
10925 the compiler is incorrect or incomplete. */
10926 if (!ada_is_simple_array_type (value_type (array)))
10927 error (_("cannot take slice of non-array"));
10929 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10932 struct type *type0 = ada_check_typedef (value_type (array));
10934 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10935 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10938 struct type *arr_type0 =
10939 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10941 return ada_value_slice_from_ptr (array, arr_type0,
10942 longest_to_int (low_bound),
10943 longest_to_int (high_bound));
10946 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10948 else if (high_bound < low_bound)
10949 return empty_array (value_type (array), low_bound, high_bound);
10951 return ada_value_slice (array, longest_to_int (low_bound),
10952 longest_to_int (high_bound));
10955 case UNOP_IN_RANGE:
10957 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10958 type = check_typedef (exp->elts[pc + 1].type);
10960 if (noside == EVAL_SKIP)
10963 switch (TYPE_CODE (type))
10966 lim_warning (_("Membership test incompletely implemented; "
10967 "always returns true"));
10968 type = language_bool_type (exp->language_defn, exp->gdbarch);
10969 return value_from_longest (type, (LONGEST) 1);
10971 case TYPE_CODE_RANGE:
10972 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10973 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10974 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10975 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10976 type = language_bool_type (exp->language_defn, exp->gdbarch);
10978 value_from_longest (type,
10979 (value_less (arg1, arg3)
10980 || value_equal (arg1, arg3))
10981 && (value_less (arg2, arg1)
10982 || value_equal (arg2, arg1)));
10985 case BINOP_IN_BOUNDS:
10987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10988 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10990 if (noside == EVAL_SKIP)
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10995 type = language_bool_type (exp->language_defn, exp->gdbarch);
10996 return value_zero (type, not_lval);
10999 tem = longest_to_int (exp->elts[pc + 1].longconst);
11001 type = ada_index_type (value_type (arg2), tem, "range");
11003 type = value_type (arg1);
11005 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11006 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11010 type = language_bool_type (exp->language_defn, exp->gdbarch);
11012 value_from_longest (type,
11013 (value_less (arg1, arg3)
11014 || value_equal (arg1, arg3))
11015 && (value_less (arg2, arg1)
11016 || value_equal (arg2, arg1)));
11018 case TERNOP_IN_RANGE:
11019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11021 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 if (noside == EVAL_SKIP)
11026 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11027 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11028 type = language_bool_type (exp->language_defn, exp->gdbarch);
11030 value_from_longest (type,
11031 (value_less (arg1, arg3)
11032 || value_equal (arg1, arg3))
11033 && (value_less (arg2, arg1)
11034 || value_equal (arg2, arg1)));
11038 case OP_ATR_LENGTH:
11040 struct type *type_arg;
11042 if (exp->elts[*pos].opcode == OP_TYPE)
11044 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11046 type_arg = check_typedef (exp->elts[pc + 2].type);
11050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054 if (exp->elts[*pos].opcode != OP_LONG)
11055 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11056 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11059 if (noside == EVAL_SKIP)
11061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11063 if (type_arg == NULL)
11064 type_arg = value_type (arg1);
11066 if (ada_is_constrained_packed_array_type (type_arg))
11067 type_arg = decode_constrained_packed_array_type (type_arg);
11069 if (!discrete_type_p (type_arg))
11073 default: /* Should never happen. */
11074 error (_("unexpected attribute encountered"));
11077 type_arg = ada_index_type (type_arg, tem,
11078 ada_attribute_name (op));
11080 case OP_ATR_LENGTH:
11081 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11086 return value_zero (type_arg, not_lval);
11088 else if (type_arg == NULL)
11090 arg1 = ada_coerce_ref (arg1);
11092 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11093 arg1 = ada_coerce_to_simple_array (arg1);
11095 if (op == OP_ATR_LENGTH)
11096 type = builtin_type (exp->gdbarch)->builtin_int;
11099 type = ada_index_type (value_type (arg1), tem,
11100 ada_attribute_name (op));
11102 type = builtin_type (exp->gdbarch)->builtin_int;
11107 default: /* Should never happen. */
11108 error (_("unexpected attribute encountered"));
11110 return value_from_longest
11111 (type, ada_array_bound (arg1, tem, 0));
11113 return value_from_longest
11114 (type, ada_array_bound (arg1, tem, 1));
11115 case OP_ATR_LENGTH:
11116 return value_from_longest
11117 (type, ada_array_length (arg1, tem));
11120 else if (discrete_type_p (type_arg))
11122 struct type *range_type;
11123 const char *name = ada_type_name (type_arg);
11126 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11127 range_type = to_fixed_range_type (type_arg, NULL);
11128 if (range_type == NULL)
11129 range_type = type_arg;
11133 error (_("unexpected attribute encountered"));
11135 return value_from_longest
11136 (range_type, ada_discrete_type_low_bound (range_type));
11138 return value_from_longest
11139 (range_type, ada_discrete_type_high_bound (range_type));
11140 case OP_ATR_LENGTH:
11141 error (_("the 'length attribute applies only to array types"));
11144 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11145 error (_("unimplemented type attribute"));
11150 if (ada_is_constrained_packed_array_type (type_arg))
11151 type_arg = decode_constrained_packed_array_type (type_arg);
11153 if (op == OP_ATR_LENGTH)
11154 type = builtin_type (exp->gdbarch)->builtin_int;
11157 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11159 type = builtin_type (exp->gdbarch)->builtin_int;
11165 error (_("unexpected attribute encountered"));
11167 low = ada_array_bound_from_type (type_arg, tem, 0);
11168 return value_from_longest (type, low);
11170 high = ada_array_bound_from_type (type_arg, tem, 1);
11171 return value_from_longest (type, high);
11172 case OP_ATR_LENGTH:
11173 low = ada_array_bound_from_type (type_arg, tem, 0);
11174 high = ada_array_bound_from_type (type_arg, tem, 1);
11175 return value_from_longest (type, high - low + 1);
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 if (noside == EVAL_SKIP)
11185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11186 return value_zero (ada_tag_type (arg1), not_lval);
11188 return ada_value_tag (arg1);
11192 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 if (noside == EVAL_SKIP)
11197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11198 return value_zero (value_type (arg1), not_lval);
11201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11202 return value_binop (arg1, arg2,
11203 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11206 case OP_ATR_MODULUS:
11208 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11210 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11211 if (noside == EVAL_SKIP)
11214 if (!ada_is_modular_type (type_arg))
11215 error (_("'modulus must be applied to modular type"));
11217 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11218 ada_modulus (type_arg));
11223 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 if (noside == EVAL_SKIP)
11227 type = builtin_type (exp->gdbarch)->builtin_int;
11228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 return value_zero (type, not_lval);
11231 return value_pos_atr (type, arg1);
11234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11235 type = value_type (arg1);
11237 /* If the argument is a reference, then dereference its type, since
11238 the user is really asking for the size of the actual object,
11239 not the size of the pointer. */
11240 if (TYPE_CODE (type) == TYPE_CODE_REF)
11241 type = TYPE_TARGET_TYPE (type);
11243 if (noside == EVAL_SKIP)
11245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11246 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11248 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11249 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11252 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 type = exp->elts[pc + 2].type;
11255 if (noside == EVAL_SKIP)
11257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 return value_zero (type, not_lval);
11260 return value_val_atr (type, arg1);
11263 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11264 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11265 if (noside == EVAL_SKIP)
11267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11268 return value_zero (value_type (arg1), not_lval);
11271 /* For integer exponentiation operations,
11272 only promote the first argument. */
11273 if (is_integral_type (value_type (arg2)))
11274 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11276 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11278 return value_binop (arg1, arg2, op);
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 if (noside == EVAL_SKIP)
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11290 if (noside == EVAL_SKIP)
11292 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11293 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11294 return value_neg (arg1);
11299 preeval_pos = *pos;
11300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11301 if (noside == EVAL_SKIP)
11303 type = ada_check_typedef (value_type (arg1));
11304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11306 if (ada_is_array_descriptor_type (type))
11307 /* GDB allows dereferencing GNAT array descriptors. */
11309 struct type *arrType = ada_type_of_array (arg1, 0);
11311 if (arrType == NULL)
11312 error (_("Attempt to dereference null array pointer."));
11313 return value_at_lazy (arrType, 0);
11315 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11316 || TYPE_CODE (type) == TYPE_CODE_REF
11317 /* In C you can dereference an array to get the 1st elt. */
11318 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11320 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11321 only be determined by inspecting the object's tag.
11322 This means that we need to evaluate completely the
11323 expression in order to get its type. */
11325 if ((TYPE_CODE (type) == TYPE_CODE_REF
11326 || TYPE_CODE (type) == TYPE_CODE_PTR)
11327 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11329 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11331 type = value_type (ada_value_ind (arg1));
11335 type = to_static_fixed_type
11337 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11339 ada_ensure_varsize_limit (type);
11340 return value_zero (type, lval_memory);
11342 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11344 /* GDB allows dereferencing an int. */
11345 if (expect_type == NULL)
11346 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11351 to_static_fixed_type (ada_aligned_type (expect_type));
11352 return value_zero (expect_type, lval_memory);
11356 error (_("Attempt to take contents of a non-pointer value."));
11358 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11359 type = ada_check_typedef (value_type (arg1));
11361 if (TYPE_CODE (type) == TYPE_CODE_INT)
11362 /* GDB allows dereferencing an int. If we were given
11363 the expect_type, then use that as the target type.
11364 Otherwise, assume that the target type is an int. */
11366 if (expect_type != NULL)
11367 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11370 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11371 (CORE_ADDR) value_as_address (arg1));
11374 if (ada_is_array_descriptor_type (type))
11375 /* GDB allows dereferencing GNAT array descriptors. */
11376 return ada_coerce_to_simple_array (arg1);
11378 return ada_value_ind (arg1);
11380 case STRUCTOP_STRUCT:
11381 tem = longest_to_int (exp->elts[pc + 1].longconst);
11382 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11383 preeval_pos = *pos;
11384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11385 if (noside == EVAL_SKIP)
11387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11389 struct type *type1 = value_type (arg1);
11391 if (ada_is_tagged_type (type1, 1))
11393 type = ada_lookup_struct_elt_type (type1,
11394 &exp->elts[pc + 2].string,
11397 /* If the field is not found, check if it exists in the
11398 extension of this object's type. This means that we
11399 need to evaluate completely the expression. */
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11405 arg1 = ada_value_struct_elt (arg1,
11406 &exp->elts[pc + 2].string,
11408 arg1 = unwrap_value (arg1);
11409 type = value_type (ada_to_fixed_value (arg1));
11414 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11417 return value_zero (ada_aligned_type (type), lval_memory);
11421 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11422 arg1 = unwrap_value (arg1);
11423 return ada_to_fixed_value (arg1);
11427 /* The value is not supposed to be used. This is here to make it
11428 easier to accommodate expressions that contain types. */
11430 if (noside == EVAL_SKIP)
11432 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11433 return allocate_value (exp->elts[pc + 1].type);
11435 error (_("Attempt to use a type name as an expression"));
11440 case OP_DISCRETE_RANGE:
11441 case OP_POSITIONAL:
11443 if (noside == EVAL_NORMAL)
11447 error (_("Undefined name, ambiguous name, or renaming used in "
11448 "component association: %s."), &exp->elts[pc+2].string);
11450 error (_("Aggregates only allowed on the right of an assignment"));
11452 internal_error (__FILE__, __LINE__,
11453 _("aggregate apparently mangled"));
11456 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11458 for (tem = 0; tem < nargs; tem += 1)
11459 ada_evaluate_subexp (NULL, exp, pos, noside);
11464 return eval_skip_value (exp);
11470 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11471 type name that encodes the 'small and 'delta information.
11472 Otherwise, return NULL. */
11474 static const char *
11475 fixed_type_info (struct type *type)
11477 const char *name = ada_type_name (type);
11478 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11480 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11482 const char *tail = strstr (name, "___XF_");
11489 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11490 return fixed_type_info (TYPE_TARGET_TYPE (type));
11495 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11498 ada_is_fixed_point_type (struct type *type)
11500 return fixed_type_info (type) != NULL;
11503 /* Return non-zero iff TYPE represents a System.Address type. */
11506 ada_is_system_address_type (struct type *type)
11508 return (TYPE_NAME (type)
11509 && strcmp (TYPE_NAME (type), "system__address") == 0);
11512 /* Assuming that TYPE is the representation of an Ada fixed-point
11513 type, return the target floating-point type to be used to represent
11514 of this type during internal computation. */
11516 static struct type *
11517 ada_scaling_type (struct type *type)
11519 return builtin_type (get_type_arch (type))->builtin_long_double;
11522 /* Assuming that TYPE is the representation of an Ada fixed-point
11523 type, return its delta, or NULL if the type is malformed and the
11524 delta cannot be determined. */
11527 ada_delta (struct type *type)
11529 const char *encoding = fixed_type_info (type);
11530 struct type *scale_type = ada_scaling_type (type);
11532 long long num, den;
11534 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11537 return value_binop (value_from_longest (scale_type, num),
11538 value_from_longest (scale_type, den), BINOP_DIV);
11541 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11542 factor ('SMALL value) associated with the type. */
11545 ada_scaling_factor (struct type *type)
11547 const char *encoding = fixed_type_info (type);
11548 struct type *scale_type = ada_scaling_type (type);
11550 long long num0, den0, num1, den1;
11553 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11554 &num0, &den0, &num1, &den1);
11557 return value_from_longest (scale_type, 1);
11559 return value_binop (value_from_longest (scale_type, num1),
11560 value_from_longest (scale_type, den1), BINOP_DIV);
11562 return value_binop (value_from_longest (scale_type, num0),
11563 value_from_longest (scale_type, den0), BINOP_DIV);
11570 /* Scan STR beginning at position K for a discriminant name, and
11571 return the value of that discriminant field of DVAL in *PX. If
11572 PNEW_K is not null, put the position of the character beyond the
11573 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11574 not alter *PX and *PNEW_K if unsuccessful. */
11577 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11580 static char *bound_buffer = NULL;
11581 static size_t bound_buffer_len = 0;
11582 const char *pstart, *pend, *bound;
11583 struct value *bound_val;
11585 if (dval == NULL || str == NULL || str[k] == '\0')
11589 pend = strstr (pstart, "__");
11593 k += strlen (bound);
11597 int len = pend - pstart;
11599 /* Strip __ and beyond. */
11600 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11601 strncpy (bound_buffer, pstart, len);
11602 bound_buffer[len] = '\0';
11604 bound = bound_buffer;
11608 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11609 if (bound_val == NULL)
11612 *px = value_as_long (bound_val);
11613 if (pnew_k != NULL)
11618 /* Value of variable named NAME in the current environment. If
11619 no such variable found, then if ERR_MSG is null, returns 0, and
11620 otherwise causes an error with message ERR_MSG. */
11622 static struct value *
11623 get_var_value (const char *name, const char *err_msg)
11625 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11627 std::vector<struct block_symbol> syms;
11628 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11629 get_selected_block (0),
11630 VAR_DOMAIN, &syms, 1);
11634 if (err_msg == NULL)
11637 error (("%s"), err_msg);
11640 return value_of_variable (syms[0].symbol, syms[0].block);
11643 /* Value of integer variable named NAME in the current environment.
11644 If no such variable is found, returns false. Otherwise, sets VALUE
11645 to the variable's value and returns true. */
11648 get_int_var_value (const char *name, LONGEST &value)
11650 struct value *var_val = get_var_value (name, 0);
11655 value = value_as_long (var_val);
11660 /* Return a range type whose base type is that of the range type named
11661 NAME in the current environment, and whose bounds are calculated
11662 from NAME according to the GNAT range encoding conventions.
11663 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11664 corresponding range type from debug information; fall back to using it
11665 if symbol lookup fails. If a new type must be created, allocate it
11666 like ORIG_TYPE was. The bounds information, in general, is encoded
11667 in NAME, the base type given in the named range type. */
11669 static struct type *
11670 to_fixed_range_type (struct type *raw_type, struct value *dval)
11673 struct type *base_type;
11674 const char *subtype_info;
11676 gdb_assert (raw_type != NULL);
11677 gdb_assert (TYPE_NAME (raw_type) != NULL);
11679 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11680 base_type = TYPE_TARGET_TYPE (raw_type);
11682 base_type = raw_type;
11684 name = TYPE_NAME (raw_type);
11685 subtype_info = strstr (name, "___XD");
11686 if (subtype_info == NULL)
11688 LONGEST L = ada_discrete_type_low_bound (raw_type);
11689 LONGEST U = ada_discrete_type_high_bound (raw_type);
11691 if (L < INT_MIN || U > INT_MAX)
11694 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11699 static char *name_buf = NULL;
11700 static size_t name_len = 0;
11701 int prefix_len = subtype_info - name;
11704 const char *bounds_str;
11707 GROW_VECT (name_buf, name_len, prefix_len + 5);
11708 strncpy (name_buf, name, prefix_len);
11709 name_buf[prefix_len] = '\0';
11712 bounds_str = strchr (subtype_info, '_');
11715 if (*subtype_info == 'L')
11717 if (!ada_scan_number (bounds_str, n, &L, &n)
11718 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11720 if (bounds_str[n] == '_')
11722 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11728 strcpy (name_buf + prefix_len, "___L");
11729 if (!get_int_var_value (name_buf, L))
11731 lim_warning (_("Unknown lower bound, using 1."));
11736 if (*subtype_info == 'U')
11738 if (!ada_scan_number (bounds_str, n, &U, &n)
11739 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11744 strcpy (name_buf + prefix_len, "___U");
11745 if (!get_int_var_value (name_buf, U))
11747 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11752 type = create_static_range_type (alloc_type_copy (raw_type),
11754 /* create_static_range_type alters the resulting type's length
11755 to match the size of the base_type, which is not what we want.
11756 Set it back to the original range type's length. */
11757 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11758 TYPE_NAME (type) = name;
11763 /* True iff NAME is the name of a range type. */
11766 ada_is_range_type_name (const char *name)
11768 return (name != NULL && strstr (name, "___XD"));
11772 /* Modular types */
11774 /* True iff TYPE is an Ada modular type. */
11777 ada_is_modular_type (struct type *type)
11779 struct type *subranged_type = get_base_type (type);
11781 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11782 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11783 && TYPE_UNSIGNED (subranged_type));
11786 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11789 ada_modulus (struct type *type)
11791 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11795 /* Ada exception catchpoint support:
11796 ---------------------------------
11798 We support 3 kinds of exception catchpoints:
11799 . catchpoints on Ada exceptions
11800 . catchpoints on unhandled Ada exceptions
11801 . catchpoints on failed assertions
11803 Exceptions raised during failed assertions, or unhandled exceptions
11804 could perfectly be caught with the general catchpoint on Ada exceptions.
11805 However, we can easily differentiate these two special cases, and having
11806 the option to distinguish these two cases from the rest can be useful
11807 to zero-in on certain situations.
11809 Exception catchpoints are a specialized form of breakpoint,
11810 since they rely on inserting breakpoints inside known routines
11811 of the GNAT runtime. The implementation therefore uses a standard
11812 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11815 Support in the runtime for exception catchpoints have been changed
11816 a few times already, and these changes affect the implementation
11817 of these catchpoints. In order to be able to support several
11818 variants of the runtime, we use a sniffer that will determine
11819 the runtime variant used by the program being debugged. */
11821 /* Ada's standard exceptions.
11823 The Ada 83 standard also defined Numeric_Error. But there so many
11824 situations where it was unclear from the Ada 83 Reference Manual
11825 (RM) whether Constraint_Error or Numeric_Error should be raised,
11826 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11827 Interpretation saying that anytime the RM says that Numeric_Error
11828 should be raised, the implementation may raise Constraint_Error.
11829 Ada 95 went one step further and pretty much removed Numeric_Error
11830 from the list of standard exceptions (it made it a renaming of
11831 Constraint_Error, to help preserve compatibility when compiling
11832 an Ada83 compiler). As such, we do not include Numeric_Error from
11833 this list of standard exceptions. */
11835 static const char *standard_exc[] = {
11836 "constraint_error",
11842 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11844 /* A structure that describes how to support exception catchpoints
11845 for a given executable. */
11847 struct exception_support_info
11849 /* The name of the symbol to break on in order to insert
11850 a catchpoint on exceptions. */
11851 const char *catch_exception_sym;
11853 /* The name of the symbol to break on in order to insert
11854 a catchpoint on unhandled exceptions. */
11855 const char *catch_exception_unhandled_sym;
11857 /* The name of the symbol to break on in order to insert
11858 a catchpoint on failed assertions. */
11859 const char *catch_assert_sym;
11861 /* The name of the symbol to break on in order to insert
11862 a catchpoint on exception handling. */
11863 const char *catch_handlers_sym;
11865 /* Assuming that the inferior just triggered an unhandled exception
11866 catchpoint, this function is responsible for returning the address
11867 in inferior memory where the name of that exception is stored.
11868 Return zero if the address could not be computed. */
11869 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11872 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11873 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11875 /* The following exception support info structure describes how to
11876 implement exception catchpoints with the latest version of the
11877 Ada runtime (as of 2019-08-??). */
11879 static const struct exception_support_info default_exception_support_info =
11881 "__gnat_debug_raise_exception", /* catch_exception_sym */
11882 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11883 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11884 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11885 ada_unhandled_exception_name_addr
11888 /* The following exception support info structure describes how to
11889 implement exception catchpoints with an earlier version of the
11890 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11892 static const struct exception_support_info exception_support_info_v0 =
11894 "__gnat_debug_raise_exception", /* catch_exception_sym */
11895 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11896 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11897 "__gnat_begin_handler", /* catch_handlers_sym */
11898 ada_unhandled_exception_name_addr
11901 /* The following exception support info structure describes how to
11902 implement exception catchpoints with a slightly older version
11903 of the Ada runtime. */
11905 static const struct exception_support_info exception_support_info_fallback =
11907 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11908 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11909 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11910 "__gnat_begin_handler", /* catch_handlers_sym */
11911 ada_unhandled_exception_name_addr_from_raise
11914 /* Return nonzero if we can detect the exception support routines
11915 described in EINFO.
11917 This function errors out if an abnormal situation is detected
11918 (for instance, if we find the exception support routines, but
11919 that support is found to be incomplete). */
11922 ada_has_this_exception_support (const struct exception_support_info *einfo)
11924 struct symbol *sym;
11926 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11927 that should be compiled with debugging information. As a result, we
11928 expect to find that symbol in the symtabs. */
11930 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11933 /* Perhaps we did not find our symbol because the Ada runtime was
11934 compiled without debugging info, or simply stripped of it.
11935 It happens on some GNU/Linux distributions for instance, where
11936 users have to install a separate debug package in order to get
11937 the runtime's debugging info. In that situation, let the user
11938 know why we cannot insert an Ada exception catchpoint.
11940 Note: Just for the purpose of inserting our Ada exception
11941 catchpoint, we could rely purely on the associated minimal symbol.
11942 But we would be operating in degraded mode anyway, since we are
11943 still lacking the debugging info needed later on to extract
11944 the name of the exception being raised (this name is printed in
11945 the catchpoint message, and is also used when trying to catch
11946 a specific exception). We do not handle this case for now. */
11947 struct bound_minimal_symbol msym
11948 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11950 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11951 error (_("Your Ada runtime appears to be missing some debugging "
11952 "information.\nCannot insert Ada exception catchpoint "
11953 "in this configuration."));
11958 /* Make sure that the symbol we found corresponds to a function. */
11960 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11962 error (_("Symbol \"%s\" is not a function (class = %d)"),
11963 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11967 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11970 struct bound_minimal_symbol msym
11971 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11973 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11974 error (_("Your Ada runtime appears to be missing some debugging "
11975 "information.\nCannot insert Ada exception catchpoint "
11976 "in this configuration."));
11981 /* Make sure that the symbol we found corresponds to a function. */
11983 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11985 error (_("Symbol \"%s\" is not a function (class = %d)"),
11986 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11993 /* Inspect the Ada runtime and determine which exception info structure
11994 should be used to provide support for exception catchpoints.
11996 This function will always set the per-inferior exception_info,
11997 or raise an error. */
12000 ada_exception_support_info_sniffer (void)
12002 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12004 /* If the exception info is already known, then no need to recompute it. */
12005 if (data->exception_info != NULL)
12008 /* Check the latest (default) exception support info. */
12009 if (ada_has_this_exception_support (&default_exception_support_info))
12011 data->exception_info = &default_exception_support_info;
12015 /* Try the v0 exception suport info. */
12016 if (ada_has_this_exception_support (&exception_support_info_v0))
12018 data->exception_info = &exception_support_info_v0;
12022 /* Try our fallback exception suport info. */
12023 if (ada_has_this_exception_support (&exception_support_info_fallback))
12025 data->exception_info = &exception_support_info_fallback;
12029 /* Sometimes, it is normal for us to not be able to find the routine
12030 we are looking for. This happens when the program is linked with
12031 the shared version of the GNAT runtime, and the program has not been
12032 started yet. Inform the user of these two possible causes if
12035 if (ada_update_initial_language (language_unknown) != language_ada)
12036 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12038 /* If the symbol does not exist, then check that the program is
12039 already started, to make sure that shared libraries have been
12040 loaded. If it is not started, this may mean that the symbol is
12041 in a shared library. */
12043 if (inferior_ptid.pid () == 0)
12044 error (_("Unable to insert catchpoint. Try to start the program first."));
12046 /* At this point, we know that we are debugging an Ada program and
12047 that the inferior has been started, but we still are not able to
12048 find the run-time symbols. That can mean that we are in
12049 configurable run time mode, or that a-except as been optimized
12050 out by the linker... In any case, at this point it is not worth
12051 supporting this feature. */
12053 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12056 /* True iff FRAME is very likely to be that of a function that is
12057 part of the runtime system. This is all very heuristic, but is
12058 intended to be used as advice as to what frames are uninteresting
12062 is_known_support_routine (struct frame_info *frame)
12064 enum language func_lang;
12066 const char *fullname;
12068 /* If this code does not have any debugging information (no symtab),
12069 This cannot be any user code. */
12071 symtab_and_line sal = find_frame_sal (frame);
12072 if (sal.symtab == NULL)
12075 /* If there is a symtab, but the associated source file cannot be
12076 located, then assume this is not user code: Selecting a frame
12077 for which we cannot display the code would not be very helpful
12078 for the user. This should also take care of case such as VxWorks
12079 where the kernel has some debugging info provided for a few units. */
12081 fullname = symtab_to_fullname (sal.symtab);
12082 if (access (fullname, R_OK) != 0)
12085 /* Check the unit filename againt the Ada runtime file naming.
12086 We also check the name of the objfile against the name of some
12087 known system libraries that sometimes come with debugging info
12090 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12092 re_comp (known_runtime_file_name_patterns[i]);
12093 if (re_exec (lbasename (sal.symtab->filename)))
12095 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12096 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12100 /* Check whether the function is a GNAT-generated entity. */
12102 gdb::unique_xmalloc_ptr<char> func_name
12103 = find_frame_funname (frame, &func_lang, NULL);
12104 if (func_name == NULL)
12107 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12109 re_comp (known_auxiliary_function_name_patterns[i]);
12110 if (re_exec (func_name.get ()))
12117 /* Find the first frame that contains debugging information and that is not
12118 part of the Ada run-time, starting from FI and moving upward. */
12121 ada_find_printable_frame (struct frame_info *fi)
12123 for (; fi != NULL; fi = get_prev_frame (fi))
12125 if (!is_known_support_routine (fi))
12134 /* Assuming that the inferior just triggered an unhandled exception
12135 catchpoint, return the address in inferior memory where the name
12136 of the exception is stored.
12138 Return zero if the address could not be computed. */
12141 ada_unhandled_exception_name_addr (void)
12143 return parse_and_eval_address ("e.full_name");
12146 /* Same as ada_unhandled_exception_name_addr, except that this function
12147 should be used when the inferior uses an older version of the runtime,
12148 where the exception name needs to be extracted from a specific frame
12149 several frames up in the callstack. */
12152 ada_unhandled_exception_name_addr_from_raise (void)
12155 struct frame_info *fi;
12156 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12158 /* To determine the name of this exception, we need to select
12159 the frame corresponding to RAISE_SYM_NAME. This frame is
12160 at least 3 levels up, so we simply skip the first 3 frames
12161 without checking the name of their associated function. */
12162 fi = get_current_frame ();
12163 for (frame_level = 0; frame_level < 3; frame_level += 1)
12165 fi = get_prev_frame (fi);
12169 enum language func_lang;
12171 gdb::unique_xmalloc_ptr<char> func_name
12172 = find_frame_funname (fi, &func_lang, NULL);
12173 if (func_name != NULL)
12175 if (strcmp (func_name.get (),
12176 data->exception_info->catch_exception_sym) == 0)
12177 break; /* We found the frame we were looking for... */
12179 fi = get_prev_frame (fi);
12186 return parse_and_eval_address ("id.full_name");
12189 /* Assuming the inferior just triggered an Ada exception catchpoint
12190 (of any type), return the address in inferior memory where the name
12191 of the exception is stored, if applicable.
12193 Assumes the selected frame is the current frame.
12195 Return zero if the address could not be computed, or if not relevant. */
12198 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12199 struct breakpoint *b)
12201 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12205 case ada_catch_exception:
12206 return (parse_and_eval_address ("e.full_name"));
12209 case ada_catch_exception_unhandled:
12210 return data->exception_info->unhandled_exception_name_addr ();
12213 case ada_catch_handlers:
12214 return 0; /* The runtimes does not provide access to the exception
12218 case ada_catch_assert:
12219 return 0; /* Exception name is not relevant in this case. */
12223 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12227 return 0; /* Should never be reached. */
12230 /* Assuming the inferior is stopped at an exception catchpoint,
12231 return the message which was associated to the exception, if
12232 available. Return NULL if the message could not be retrieved.
12234 Note: The exception message can be associated to an exception
12235 either through the use of the Raise_Exception function, or
12236 more simply (Ada 2005 and later), via:
12238 raise Exception_Name with "exception message";
12242 static gdb::unique_xmalloc_ptr<char>
12243 ada_exception_message_1 (void)
12245 struct value *e_msg_val;
12248 /* For runtimes that support this feature, the exception message
12249 is passed as an unbounded string argument called "message". */
12250 e_msg_val = parse_and_eval ("message");
12251 if (e_msg_val == NULL)
12252 return NULL; /* Exception message not supported. */
12254 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12255 gdb_assert (e_msg_val != NULL);
12256 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12258 /* If the message string is empty, then treat it as if there was
12259 no exception message. */
12260 if (e_msg_len <= 0)
12263 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12264 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12265 e_msg.get ()[e_msg_len] = '\0';
12270 /* Same as ada_exception_message_1, except that all exceptions are
12271 contained here (returning NULL instead). */
12273 static gdb::unique_xmalloc_ptr<char>
12274 ada_exception_message (void)
12276 gdb::unique_xmalloc_ptr<char> e_msg;
12280 e_msg = ada_exception_message_1 ();
12282 catch (const gdb_exception_error &e)
12284 e_msg.reset (nullptr);
12290 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12291 any error that ada_exception_name_addr_1 might cause to be thrown.
12292 When an error is intercepted, a warning with the error message is printed,
12293 and zero is returned. */
12296 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12297 struct breakpoint *b)
12299 CORE_ADDR result = 0;
12303 result = ada_exception_name_addr_1 (ex, b);
12306 catch (const gdb_exception_error &e)
12308 warning (_("failed to get exception name: %s"), e.what ());
12315 static std::string ada_exception_catchpoint_cond_string
12316 (const char *excep_string,
12317 enum ada_exception_catchpoint_kind ex);
12319 /* Ada catchpoints.
12321 In the case of catchpoints on Ada exceptions, the catchpoint will
12322 stop the target on every exception the program throws. When a user
12323 specifies the name of a specific exception, we translate this
12324 request into a condition expression (in text form), and then parse
12325 it into an expression stored in each of the catchpoint's locations.
12326 We then use this condition to check whether the exception that was
12327 raised is the one the user is interested in. If not, then the
12328 target is resumed again. We store the name of the requested
12329 exception, in order to be able to re-set the condition expression
12330 when symbols change. */
12332 /* An instance of this type is used to represent an Ada catchpoint
12333 breakpoint location. */
12335 class ada_catchpoint_location : public bp_location
12338 ada_catchpoint_location (breakpoint *owner)
12339 : bp_location (owner, bp_loc_software_breakpoint)
12342 /* The condition that checks whether the exception that was raised
12343 is the specific exception the user specified on catchpoint
12345 expression_up excep_cond_expr;
12348 /* An instance of this type is used to represent an Ada catchpoint. */
12350 struct ada_catchpoint : public breakpoint
12352 /* The name of the specific exception the user specified. */
12353 std::string excep_string;
12356 /* Parse the exception condition string in the context of each of the
12357 catchpoint's locations, and store them for later evaluation. */
12360 create_excep_cond_exprs (struct ada_catchpoint *c,
12361 enum ada_exception_catchpoint_kind ex)
12363 /* Nothing to do if there's no specific exception to catch. */
12364 if (c->excep_string.empty ())
12367 /* Same if there are no locations... */
12368 if (c->loc == NULL)
12371 /* We have to compute the expression once for each program space,
12372 because the expression may hold the addresses of multiple symbols
12374 std::multimap<program_space *, struct bp_location *> loc_map;
12375 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12376 loc_map.emplace (bl->pspace, bl);
12378 scoped_restore_current_program_space save_pspace;
12380 std::string cond_string;
12381 program_space *last_ps = nullptr;
12382 for (auto iter : loc_map)
12384 struct ada_catchpoint_location *ada_loc
12385 = (struct ada_catchpoint_location *) iter.second;
12387 if (ada_loc->pspace != last_ps)
12389 last_ps = ada_loc->pspace;
12390 set_current_program_space (last_ps);
12392 /* Compute the condition expression in text form, from the
12393 specific expection we want to catch. */
12395 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12401 if (!ada_loc->shlib_disabled)
12405 s = cond_string.c_str ();
12408 exp = parse_exp_1 (&s, ada_loc->address,
12409 block_for_pc (ada_loc->address),
12412 catch (const gdb_exception_error &e)
12414 warning (_("failed to reevaluate internal exception condition "
12415 "for catchpoint %d: %s"),
12416 c->number, e.what ());
12420 ada_loc->excep_cond_expr = std::move (exp);
12424 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12425 structure for all exception catchpoint kinds. */
12427 static struct bp_location *
12428 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12429 struct breakpoint *self)
12431 return new ada_catchpoint_location (self);
12434 /* Implement the RE_SET method in the breakpoint_ops structure for all
12435 exception catchpoint kinds. */
12438 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12440 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12442 /* Call the base class's method. This updates the catchpoint's
12444 bkpt_breakpoint_ops.re_set (b);
12446 /* Reparse the exception conditional expressions. One for each
12448 create_excep_cond_exprs (c, ex);
12451 /* Returns true if we should stop for this breakpoint hit. If the
12452 user specified a specific exception, we only want to cause a stop
12453 if the program thrown that exception. */
12456 should_stop_exception (const struct bp_location *bl)
12458 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12459 const struct ada_catchpoint_location *ada_loc
12460 = (const struct ada_catchpoint_location *) bl;
12463 /* With no specific exception, should always stop. */
12464 if (c->excep_string.empty ())
12467 if (ada_loc->excep_cond_expr == NULL)
12469 /* We will have a NULL expression if back when we were creating
12470 the expressions, this location's had failed to parse. */
12477 struct value *mark;
12479 mark = value_mark ();
12480 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12481 value_free_to_mark (mark);
12483 catch (const gdb_exception &ex)
12485 exception_fprintf (gdb_stderr, ex,
12486 _("Error in testing exception condition:\n"));
12492 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12493 for all exception catchpoint kinds. */
12496 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12498 bs->stop = should_stop_exception (bs->bp_location_at);
12501 /* Implement the PRINT_IT method in the breakpoint_ops structure
12502 for all exception catchpoint kinds. */
12504 static enum print_stop_action
12505 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12507 struct ui_out *uiout = current_uiout;
12508 struct breakpoint *b = bs->breakpoint_at;
12510 annotate_catchpoint (b->number);
12512 if (uiout->is_mi_like_p ())
12514 uiout->field_string ("reason",
12515 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12516 uiout->field_string ("disp", bpdisp_text (b->disposition));
12519 uiout->text (b->disposition == disp_del
12520 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12521 uiout->field_signed ("bkptno", b->number);
12522 uiout->text (", ");
12524 /* ada_exception_name_addr relies on the selected frame being the
12525 current frame. Need to do this here because this function may be
12526 called more than once when printing a stop, and below, we'll
12527 select the first frame past the Ada run-time (see
12528 ada_find_printable_frame). */
12529 select_frame (get_current_frame ());
12533 case ada_catch_exception:
12534 case ada_catch_exception_unhandled:
12535 case ada_catch_handlers:
12537 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12538 char exception_name[256];
12542 read_memory (addr, (gdb_byte *) exception_name,
12543 sizeof (exception_name) - 1);
12544 exception_name [sizeof (exception_name) - 1] = '\0';
12548 /* For some reason, we were unable to read the exception
12549 name. This could happen if the Runtime was compiled
12550 without debugging info, for instance. In that case,
12551 just replace the exception name by the generic string
12552 "exception" - it will read as "an exception" in the
12553 notification we are about to print. */
12554 memcpy (exception_name, "exception", sizeof ("exception"));
12556 /* In the case of unhandled exception breakpoints, we print
12557 the exception name as "unhandled EXCEPTION_NAME", to make
12558 it clearer to the user which kind of catchpoint just got
12559 hit. We used ui_out_text to make sure that this extra
12560 info does not pollute the exception name in the MI case. */
12561 if (ex == ada_catch_exception_unhandled)
12562 uiout->text ("unhandled ");
12563 uiout->field_string ("exception-name", exception_name);
12566 case ada_catch_assert:
12567 /* In this case, the name of the exception is not really
12568 important. Just print "failed assertion" to make it clearer
12569 that his program just hit an assertion-failure catchpoint.
12570 We used ui_out_text because this info does not belong in
12572 uiout->text ("failed assertion");
12576 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12577 if (exception_message != NULL)
12579 uiout->text (" (");
12580 uiout->field_string ("exception-message", exception_message.get ());
12584 uiout->text (" at ");
12585 ada_find_printable_frame (get_current_frame ());
12587 return PRINT_SRC_AND_LOC;
12590 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12591 for all exception catchpoint kinds. */
12594 print_one_exception (enum ada_exception_catchpoint_kind ex,
12595 struct breakpoint *b, struct bp_location **last_loc)
12597 struct ui_out *uiout = current_uiout;
12598 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12599 struct value_print_options opts;
12601 get_user_print_options (&opts);
12603 if (opts.addressprint)
12604 uiout->field_skip ("addr");
12606 annotate_field (5);
12609 case ada_catch_exception:
12610 if (!c->excep_string.empty ())
12612 std::string msg = string_printf (_("`%s' Ada exception"),
12613 c->excep_string.c_str ());
12615 uiout->field_string ("what", msg);
12618 uiout->field_string ("what", "all Ada exceptions");
12622 case ada_catch_exception_unhandled:
12623 uiout->field_string ("what", "unhandled Ada exceptions");
12626 case ada_catch_handlers:
12627 if (!c->excep_string.empty ())
12629 uiout->field_fmt ("what",
12630 _("`%s' Ada exception handlers"),
12631 c->excep_string.c_str ());
12634 uiout->field_string ("what", "all Ada exceptions handlers");
12637 case ada_catch_assert:
12638 uiout->field_string ("what", "failed Ada assertions");
12642 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12647 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12648 for all exception catchpoint kinds. */
12651 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12652 struct breakpoint *b)
12654 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12655 struct ui_out *uiout = current_uiout;
12657 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12658 : _("Catchpoint "));
12659 uiout->field_signed ("bkptno", b->number);
12660 uiout->text (": ");
12664 case ada_catch_exception:
12665 if (!c->excep_string.empty ())
12667 std::string info = string_printf (_("`%s' Ada exception"),
12668 c->excep_string.c_str ());
12669 uiout->text (info.c_str ());
12672 uiout->text (_("all Ada exceptions"));
12675 case ada_catch_exception_unhandled:
12676 uiout->text (_("unhandled Ada exceptions"));
12679 case ada_catch_handlers:
12680 if (!c->excep_string.empty ())
12683 = string_printf (_("`%s' Ada exception handlers"),
12684 c->excep_string.c_str ());
12685 uiout->text (info.c_str ());
12688 uiout->text (_("all Ada exceptions handlers"));
12691 case ada_catch_assert:
12692 uiout->text (_("failed Ada assertions"));
12696 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12701 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12702 for all exception catchpoint kinds. */
12705 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12706 struct breakpoint *b, struct ui_file *fp)
12708 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12712 case ada_catch_exception:
12713 fprintf_filtered (fp, "catch exception");
12714 if (!c->excep_string.empty ())
12715 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12718 case ada_catch_exception_unhandled:
12719 fprintf_filtered (fp, "catch exception unhandled");
12722 case ada_catch_handlers:
12723 fprintf_filtered (fp, "catch handlers");
12726 case ada_catch_assert:
12727 fprintf_filtered (fp, "catch assert");
12731 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12733 print_recreate_thread (b, fp);
12736 /* Virtual table for "catch exception" breakpoints. */
12738 static struct bp_location *
12739 allocate_location_catch_exception (struct breakpoint *self)
12741 return allocate_location_exception (ada_catch_exception, self);
12745 re_set_catch_exception (struct breakpoint *b)
12747 re_set_exception (ada_catch_exception, b);
12751 check_status_catch_exception (bpstat bs)
12753 check_status_exception (ada_catch_exception, bs);
12756 static enum print_stop_action
12757 print_it_catch_exception (bpstat bs)
12759 return print_it_exception (ada_catch_exception, bs);
12763 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12765 print_one_exception (ada_catch_exception, b, last_loc);
12769 print_mention_catch_exception (struct breakpoint *b)
12771 print_mention_exception (ada_catch_exception, b);
12775 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12777 print_recreate_exception (ada_catch_exception, b, fp);
12780 static struct breakpoint_ops catch_exception_breakpoint_ops;
12782 /* Virtual table for "catch exception unhandled" breakpoints. */
12784 static struct bp_location *
12785 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12787 return allocate_location_exception (ada_catch_exception_unhandled, self);
12791 re_set_catch_exception_unhandled (struct breakpoint *b)
12793 re_set_exception (ada_catch_exception_unhandled, b);
12797 check_status_catch_exception_unhandled (bpstat bs)
12799 check_status_exception (ada_catch_exception_unhandled, bs);
12802 static enum print_stop_action
12803 print_it_catch_exception_unhandled (bpstat bs)
12805 return print_it_exception (ada_catch_exception_unhandled, bs);
12809 print_one_catch_exception_unhandled (struct breakpoint *b,
12810 struct bp_location **last_loc)
12812 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12816 print_mention_catch_exception_unhandled (struct breakpoint *b)
12818 print_mention_exception (ada_catch_exception_unhandled, b);
12822 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12823 struct ui_file *fp)
12825 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12828 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12830 /* Virtual table for "catch assert" breakpoints. */
12832 static struct bp_location *
12833 allocate_location_catch_assert (struct breakpoint *self)
12835 return allocate_location_exception (ada_catch_assert, self);
12839 re_set_catch_assert (struct breakpoint *b)
12841 re_set_exception (ada_catch_assert, b);
12845 check_status_catch_assert (bpstat bs)
12847 check_status_exception (ada_catch_assert, bs);
12850 static enum print_stop_action
12851 print_it_catch_assert (bpstat bs)
12853 return print_it_exception (ada_catch_assert, bs);
12857 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12859 print_one_exception (ada_catch_assert, b, last_loc);
12863 print_mention_catch_assert (struct breakpoint *b)
12865 print_mention_exception (ada_catch_assert, b);
12869 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12871 print_recreate_exception (ada_catch_assert, b, fp);
12874 static struct breakpoint_ops catch_assert_breakpoint_ops;
12876 /* Virtual table for "catch handlers" breakpoints. */
12878 static struct bp_location *
12879 allocate_location_catch_handlers (struct breakpoint *self)
12881 return allocate_location_exception (ada_catch_handlers, self);
12885 re_set_catch_handlers (struct breakpoint *b)
12887 re_set_exception (ada_catch_handlers, b);
12891 check_status_catch_handlers (bpstat bs)
12893 check_status_exception (ada_catch_handlers, bs);
12896 static enum print_stop_action
12897 print_it_catch_handlers (bpstat bs)
12899 return print_it_exception (ada_catch_handlers, bs);
12903 print_one_catch_handlers (struct breakpoint *b,
12904 struct bp_location **last_loc)
12906 print_one_exception (ada_catch_handlers, b, last_loc);
12910 print_mention_catch_handlers (struct breakpoint *b)
12912 print_mention_exception (ada_catch_handlers, b);
12916 print_recreate_catch_handlers (struct breakpoint *b,
12917 struct ui_file *fp)
12919 print_recreate_exception (ada_catch_handlers, b, fp);
12922 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12924 /* See ada-lang.h. */
12927 is_ada_exception_catchpoint (breakpoint *bp)
12929 return (bp->ops == &catch_exception_breakpoint_ops
12930 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12931 || bp->ops == &catch_assert_breakpoint_ops
12932 || bp->ops == &catch_handlers_breakpoint_ops);
12935 /* Split the arguments specified in a "catch exception" command.
12936 Set EX to the appropriate catchpoint type.
12937 Set EXCEP_STRING to the name of the specific exception if
12938 specified by the user.
12939 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12940 "catch handlers" command. False otherwise.
12941 If a condition is found at the end of the arguments, the condition
12942 expression is stored in COND_STRING (memory must be deallocated
12943 after use). Otherwise COND_STRING is set to NULL. */
12946 catch_ada_exception_command_split (const char *args,
12947 bool is_catch_handlers_cmd,
12948 enum ada_exception_catchpoint_kind *ex,
12949 std::string *excep_string,
12950 std::string *cond_string)
12952 std::string exception_name;
12954 exception_name = extract_arg (&args);
12955 if (exception_name == "if")
12957 /* This is not an exception name; this is the start of a condition
12958 expression for a catchpoint on all exceptions. So, "un-get"
12959 this token, and set exception_name to NULL. */
12960 exception_name.clear ();
12964 /* Check to see if we have a condition. */
12966 args = skip_spaces (args);
12967 if (startswith (args, "if")
12968 && (isspace (args[2]) || args[2] == '\0'))
12971 args = skip_spaces (args);
12973 if (args[0] == '\0')
12974 error (_("Condition missing after `if' keyword"));
12975 *cond_string = args;
12977 args += strlen (args);
12980 /* Check that we do not have any more arguments. Anything else
12983 if (args[0] != '\0')
12984 error (_("Junk at end of expression"));
12986 if (is_catch_handlers_cmd)
12988 /* Catch handling of exceptions. */
12989 *ex = ada_catch_handlers;
12990 *excep_string = exception_name;
12992 else if (exception_name.empty ())
12994 /* Catch all exceptions. */
12995 *ex = ada_catch_exception;
12996 excep_string->clear ();
12998 else if (exception_name == "unhandled")
13000 /* Catch unhandled exceptions. */
13001 *ex = ada_catch_exception_unhandled;
13002 excep_string->clear ();
13006 /* Catch a specific exception. */
13007 *ex = ada_catch_exception;
13008 *excep_string = exception_name;
13012 /* Return the name of the symbol on which we should break in order to
13013 implement a catchpoint of the EX kind. */
13015 static const char *
13016 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13018 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13020 gdb_assert (data->exception_info != NULL);
13024 case ada_catch_exception:
13025 return (data->exception_info->catch_exception_sym);
13027 case ada_catch_exception_unhandled:
13028 return (data->exception_info->catch_exception_unhandled_sym);
13030 case ada_catch_assert:
13031 return (data->exception_info->catch_assert_sym);
13033 case ada_catch_handlers:
13034 return (data->exception_info->catch_handlers_sym);
13037 internal_error (__FILE__, __LINE__,
13038 _("unexpected catchpoint kind (%d)"), ex);
13042 /* Return the breakpoint ops "virtual table" used for catchpoints
13045 static const struct breakpoint_ops *
13046 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13050 case ada_catch_exception:
13051 return (&catch_exception_breakpoint_ops);
13053 case ada_catch_exception_unhandled:
13054 return (&catch_exception_unhandled_breakpoint_ops);
13056 case ada_catch_assert:
13057 return (&catch_assert_breakpoint_ops);
13059 case ada_catch_handlers:
13060 return (&catch_handlers_breakpoint_ops);
13063 internal_error (__FILE__, __LINE__,
13064 _("unexpected catchpoint kind (%d)"), ex);
13068 /* Return the condition that will be used to match the current exception
13069 being raised with the exception that the user wants to catch. This
13070 assumes that this condition is used when the inferior just triggered
13071 an exception catchpoint.
13072 EX: the type of catchpoints used for catching Ada exceptions. */
13075 ada_exception_catchpoint_cond_string (const char *excep_string,
13076 enum ada_exception_catchpoint_kind ex)
13079 std::string result;
13082 if (ex == ada_catch_handlers)
13084 /* For exception handlers catchpoints, the condition string does
13085 not use the same parameter as for the other exceptions. */
13086 name = ("long_integer (GNAT_GCC_exception_Access"
13087 "(gcc_exception).all.occurrence.id)");
13090 name = "long_integer (e)";
13092 /* The standard exceptions are a special case. They are defined in
13093 runtime units that have been compiled without debugging info; if
13094 EXCEP_STRING is the not-fully-qualified name of a standard
13095 exception (e.g. "constraint_error") then, during the evaluation
13096 of the condition expression, the symbol lookup on this name would
13097 *not* return this standard exception. The catchpoint condition
13098 may then be set only on user-defined exceptions which have the
13099 same not-fully-qualified name (e.g. my_package.constraint_error).
13101 To avoid this unexcepted behavior, these standard exceptions are
13102 systematically prefixed by "standard". This means that "catch
13103 exception constraint_error" is rewritten into "catch exception
13104 standard.constraint_error".
13106 If an exception named contraint_error is defined in another package of
13107 the inferior program, then the only way to specify this exception as a
13108 breakpoint condition is to use its fully-qualified named:
13109 e.g. my_package.constraint_error.
13111 Furthermore, in some situations a standard exception's symbol may
13112 be present in more than one objfile, because the compiler may
13113 choose to emit copy relocations for them. So, we have to compare
13114 against all the possible addresses. */
13116 /* Storage for a rewritten symbol name. */
13117 std::string std_name;
13118 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13120 if (strcmp (standard_exc [i], excep_string) == 0)
13122 std_name = std::string ("standard.") + excep_string;
13123 excep_string = std_name.c_str ();
13128 excep_string = ada_encode (excep_string);
13129 std::vector<struct bound_minimal_symbol> symbols
13130 = ada_lookup_simple_minsyms (excep_string);
13131 for (const bound_minimal_symbol &msym : symbols)
13133 if (!result.empty ())
13135 string_appendf (result, "%s = %s", name,
13136 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13142 /* Return the symtab_and_line that should be used to insert an exception
13143 catchpoint of the TYPE kind.
13145 ADDR_STRING returns the name of the function where the real
13146 breakpoint that implements the catchpoints is set, depending on the
13147 type of catchpoint we need to create. */
13149 static struct symtab_and_line
13150 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13151 std::string *addr_string, const struct breakpoint_ops **ops)
13153 const char *sym_name;
13154 struct symbol *sym;
13156 /* First, find out which exception support info to use. */
13157 ada_exception_support_info_sniffer ();
13159 /* Then lookup the function on which we will break in order to catch
13160 the Ada exceptions requested by the user. */
13161 sym_name = ada_exception_sym_name (ex);
13162 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13165 error (_("Catchpoint symbol not found: %s"), sym_name);
13167 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13168 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13170 /* Set ADDR_STRING. */
13171 *addr_string = sym_name;
13174 *ops = ada_exception_breakpoint_ops (ex);
13176 return find_function_start_sal (sym, 1);
13179 /* Create an Ada exception catchpoint.
13181 EX_KIND is the kind of exception catchpoint to be created.
13183 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13184 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13185 of the exception to which this catchpoint applies.
13187 COND_STRING, if not empty, is the catchpoint condition.
13189 TEMPFLAG, if nonzero, means that the underlying breakpoint
13190 should be temporary.
13192 FROM_TTY is the usual argument passed to all commands implementations. */
13195 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13196 enum ada_exception_catchpoint_kind ex_kind,
13197 const std::string &excep_string,
13198 const std::string &cond_string,
13203 std::string addr_string;
13204 const struct breakpoint_ops *ops = NULL;
13205 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13207 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13208 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13209 ops, tempflag, disabled, from_tty);
13210 c->excep_string = excep_string;
13211 create_excep_cond_exprs (c.get (), ex_kind);
13212 if (!cond_string.empty ())
13213 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13214 install_breakpoint (0, std::move (c), 1);
13217 /* Implement the "catch exception" command. */
13220 catch_ada_exception_command (const char *arg_entry, int from_tty,
13221 struct cmd_list_element *command)
13223 const char *arg = arg_entry;
13224 struct gdbarch *gdbarch = get_current_arch ();
13226 enum ada_exception_catchpoint_kind ex_kind;
13227 std::string excep_string;
13228 std::string cond_string;
13230 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13234 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13236 create_ada_exception_catchpoint (gdbarch, ex_kind,
13237 excep_string, cond_string,
13238 tempflag, 1 /* enabled */,
13242 /* Implement the "catch handlers" command. */
13245 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13246 struct cmd_list_element *command)
13248 const char *arg = arg_entry;
13249 struct gdbarch *gdbarch = get_current_arch ();
13251 enum ada_exception_catchpoint_kind ex_kind;
13252 std::string excep_string;
13253 std::string cond_string;
13255 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13259 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13261 create_ada_exception_catchpoint (gdbarch, ex_kind,
13262 excep_string, cond_string,
13263 tempflag, 1 /* enabled */,
13267 /* Completion function for the Ada "catch" commands. */
13270 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13271 const char *text, const char *word)
13273 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13275 for (const ada_exc_info &info : exceptions)
13277 if (startswith (info.name, word))
13278 tracker.add_completion (make_unique_xstrdup (info.name));
13282 /* Split the arguments specified in a "catch assert" command.
13284 ARGS contains the command's arguments (or the empty string if
13285 no arguments were passed).
13287 If ARGS contains a condition, set COND_STRING to that condition
13288 (the memory needs to be deallocated after use). */
13291 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13293 args = skip_spaces (args);
13295 /* Check whether a condition was provided. */
13296 if (startswith (args, "if")
13297 && (isspace (args[2]) || args[2] == '\0'))
13300 args = skip_spaces (args);
13301 if (args[0] == '\0')
13302 error (_("condition missing after `if' keyword"));
13303 cond_string.assign (args);
13306 /* Otherwise, there should be no other argument at the end of
13308 else if (args[0] != '\0')
13309 error (_("Junk at end of arguments."));
13312 /* Implement the "catch assert" command. */
13315 catch_assert_command (const char *arg_entry, int from_tty,
13316 struct cmd_list_element *command)
13318 const char *arg = arg_entry;
13319 struct gdbarch *gdbarch = get_current_arch ();
13321 std::string cond_string;
13323 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13327 catch_ada_assert_command_split (arg, cond_string);
13328 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13330 tempflag, 1 /* enabled */,
13334 /* Return non-zero if the symbol SYM is an Ada exception object. */
13337 ada_is_exception_sym (struct symbol *sym)
13339 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13341 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13342 && SYMBOL_CLASS (sym) != LOC_BLOCK
13343 && SYMBOL_CLASS (sym) != LOC_CONST
13344 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13345 && type_name != NULL && strcmp (type_name, "exception") == 0);
13348 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13349 Ada exception object. This matches all exceptions except the ones
13350 defined by the Ada language. */
13353 ada_is_non_standard_exception_sym (struct symbol *sym)
13357 if (!ada_is_exception_sym (sym))
13360 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13361 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13362 return 0; /* A standard exception. */
13364 /* Numeric_Error is also a standard exception, so exclude it.
13365 See the STANDARD_EXC description for more details as to why
13366 this exception is not listed in that array. */
13367 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13373 /* A helper function for std::sort, comparing two struct ada_exc_info
13376 The comparison is determined first by exception name, and then
13377 by exception address. */
13380 ada_exc_info::operator< (const ada_exc_info &other) const
13384 result = strcmp (name, other.name);
13387 if (result == 0 && addr < other.addr)
13393 ada_exc_info::operator== (const ada_exc_info &other) const
13395 return addr == other.addr && strcmp (name, other.name) == 0;
13398 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13399 routine, but keeping the first SKIP elements untouched.
13401 All duplicates are also removed. */
13404 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13407 std::sort (exceptions->begin () + skip, exceptions->end ());
13408 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13409 exceptions->end ());
13412 /* Add all exceptions defined by the Ada standard whose name match
13413 a regular expression.
13415 If PREG is not NULL, then this regexp_t object is used to
13416 perform the symbol name matching. Otherwise, no name-based
13417 filtering is performed.
13419 EXCEPTIONS is a vector of exceptions to which matching exceptions
13423 ada_add_standard_exceptions (compiled_regex *preg,
13424 std::vector<ada_exc_info> *exceptions)
13428 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13431 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13433 struct bound_minimal_symbol msymbol
13434 = ada_lookup_simple_minsym (standard_exc[i]);
13436 if (msymbol.minsym != NULL)
13438 struct ada_exc_info info
13439 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13441 exceptions->push_back (info);
13447 /* Add all Ada exceptions defined locally and accessible from the given
13450 If PREG is not NULL, then this regexp_t object is used to
13451 perform the symbol name matching. Otherwise, no name-based
13452 filtering is performed.
13454 EXCEPTIONS is a vector of exceptions to which matching exceptions
13458 ada_add_exceptions_from_frame (compiled_regex *preg,
13459 struct frame_info *frame,
13460 std::vector<ada_exc_info> *exceptions)
13462 const struct block *block = get_frame_block (frame, 0);
13466 struct block_iterator iter;
13467 struct symbol *sym;
13469 ALL_BLOCK_SYMBOLS (block, iter, sym)
13471 switch (SYMBOL_CLASS (sym))
13478 if (ada_is_exception_sym (sym))
13480 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13481 SYMBOL_VALUE_ADDRESS (sym)};
13483 exceptions->push_back (info);
13487 if (BLOCK_FUNCTION (block) != NULL)
13489 block = BLOCK_SUPERBLOCK (block);
13493 /* Return true if NAME matches PREG or if PREG is NULL. */
13496 name_matches_regex (const char *name, compiled_regex *preg)
13498 return (preg == NULL
13499 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13502 /* Add all exceptions defined globally whose name name match
13503 a regular expression, excluding standard exceptions.
13505 The reason we exclude standard exceptions is that they need
13506 to be handled separately: Standard exceptions are defined inside
13507 a runtime unit which is normally not compiled with debugging info,
13508 and thus usually do not show up in our symbol search. However,
13509 if the unit was in fact built with debugging info, we need to
13510 exclude them because they would duplicate the entry we found
13511 during the special loop that specifically searches for those
13512 standard exceptions.
13514 If PREG is not NULL, then this regexp_t object is used to
13515 perform the symbol name matching. Otherwise, no name-based
13516 filtering is performed.
13518 EXCEPTIONS is a vector of exceptions to which matching exceptions
13522 ada_add_global_exceptions (compiled_regex *preg,
13523 std::vector<ada_exc_info> *exceptions)
13525 /* In Ada, the symbol "search name" is a linkage name, whereas the
13526 regular expression used to do the matching refers to the natural
13527 name. So match against the decoded name. */
13528 expand_symtabs_matching (NULL,
13529 lookup_name_info::match_any (),
13530 [&] (const char *search_name)
13532 const char *decoded = ada_decode (search_name);
13533 return name_matches_regex (decoded, preg);
13538 for (objfile *objfile : current_program_space->objfiles ())
13540 for (compunit_symtab *s : objfile->compunits ())
13542 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13545 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13547 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13548 struct block_iterator iter;
13549 struct symbol *sym;
13551 ALL_BLOCK_SYMBOLS (b, iter, sym)
13552 if (ada_is_non_standard_exception_sym (sym)
13553 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13555 struct ada_exc_info info
13556 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13558 exceptions->push_back (info);
13565 /* Implements ada_exceptions_list with the regular expression passed
13566 as a regex_t, rather than a string.
13568 If not NULL, PREG is used to filter out exceptions whose names
13569 do not match. Otherwise, all exceptions are listed. */
13571 static std::vector<ada_exc_info>
13572 ada_exceptions_list_1 (compiled_regex *preg)
13574 std::vector<ada_exc_info> result;
13577 /* First, list the known standard exceptions. These exceptions
13578 need to be handled separately, as they are usually defined in
13579 runtime units that have been compiled without debugging info. */
13581 ada_add_standard_exceptions (preg, &result);
13583 /* Next, find all exceptions whose scope is local and accessible
13584 from the currently selected frame. */
13586 if (has_stack_frames ())
13588 prev_len = result.size ();
13589 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13591 if (result.size () > prev_len)
13592 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13595 /* Add all exceptions whose scope is global. */
13597 prev_len = result.size ();
13598 ada_add_global_exceptions (preg, &result);
13599 if (result.size () > prev_len)
13600 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13605 /* Return a vector of ada_exc_info.
13607 If REGEXP is NULL, all exceptions are included in the result.
13608 Otherwise, it should contain a valid regular expression,
13609 and only the exceptions whose names match that regular expression
13610 are included in the result.
13612 The exceptions are sorted in the following order:
13613 - Standard exceptions (defined by the Ada language), in
13614 alphabetical order;
13615 - Exceptions only visible from the current frame, in
13616 alphabetical order;
13617 - Exceptions whose scope is global, in alphabetical order. */
13619 std::vector<ada_exc_info>
13620 ada_exceptions_list (const char *regexp)
13622 if (regexp == NULL)
13623 return ada_exceptions_list_1 (NULL);
13625 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13626 return ada_exceptions_list_1 (®);
13629 /* Implement the "info exceptions" command. */
13632 info_exceptions_command (const char *regexp, int from_tty)
13634 struct gdbarch *gdbarch = get_current_arch ();
13636 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13638 if (regexp != NULL)
13640 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13642 printf_filtered (_("All defined Ada exceptions:\n"));
13644 for (const ada_exc_info &info : exceptions)
13645 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13649 /* Information about operators given special treatment in functions
13651 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13653 #define ADA_OPERATORS \
13654 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13655 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13656 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13657 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13658 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13659 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13661 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13662 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13663 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13664 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13665 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13666 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13667 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13668 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13669 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13670 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13671 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13672 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13675 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13678 switch (exp->elts[pc - 1].opcode)
13681 operator_length_standard (exp, pc, oplenp, argsp);
13684 #define OP_DEFN(op, len, args, binop) \
13685 case op: *oplenp = len; *argsp = args; break;
13691 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13696 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13701 /* Implementation of the exp_descriptor method operator_check. */
13704 ada_operator_check (struct expression *exp, int pos,
13705 int (*objfile_func) (struct objfile *objfile, void *data),
13708 const union exp_element *const elts = exp->elts;
13709 struct type *type = NULL;
13711 switch (elts[pos].opcode)
13713 case UNOP_IN_RANGE:
13715 type = elts[pos + 1].type;
13719 return operator_check_standard (exp, pos, objfile_func, data);
13722 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13724 if (type && TYPE_OBJFILE (type)
13725 && (*objfile_func) (TYPE_OBJFILE (type), data))
13731 static const char *
13732 ada_op_name (enum exp_opcode opcode)
13737 return op_name_standard (opcode);
13739 #define OP_DEFN(op, len, args, binop) case op: return #op;
13744 return "OP_AGGREGATE";
13746 return "OP_CHOICES";
13752 /* As for operator_length, but assumes PC is pointing at the first
13753 element of the operator, and gives meaningful results only for the
13754 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13757 ada_forward_operator_length (struct expression *exp, int pc,
13758 int *oplenp, int *argsp)
13760 switch (exp->elts[pc].opcode)
13763 *oplenp = *argsp = 0;
13766 #define OP_DEFN(op, len, args, binop) \
13767 case op: *oplenp = len; *argsp = args; break;
13773 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13778 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13784 int len = longest_to_int (exp->elts[pc + 1].longconst);
13786 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13794 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13796 enum exp_opcode op = exp->elts[elt].opcode;
13801 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13805 /* Ada attributes ('Foo). */
13808 case OP_ATR_LENGTH:
13812 case OP_ATR_MODULUS:
13819 case UNOP_IN_RANGE:
13821 /* XXX: gdb_sprint_host_address, type_sprint */
13822 fprintf_filtered (stream, _("Type @"));
13823 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13824 fprintf_filtered (stream, " (");
13825 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13826 fprintf_filtered (stream, ")");
13828 case BINOP_IN_BOUNDS:
13829 fprintf_filtered (stream, " (%d)",
13830 longest_to_int (exp->elts[pc + 2].longconst));
13832 case TERNOP_IN_RANGE:
13837 case OP_DISCRETE_RANGE:
13838 case OP_POSITIONAL:
13845 char *name = &exp->elts[elt + 2].string;
13846 int len = longest_to_int (exp->elts[elt + 1].longconst);
13848 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13853 return dump_subexp_body_standard (exp, stream, elt);
13857 for (i = 0; i < nargs; i += 1)
13858 elt = dump_subexp (exp, stream, elt);
13863 /* The Ada extension of print_subexp (q.v.). */
13866 ada_print_subexp (struct expression *exp, int *pos,
13867 struct ui_file *stream, enum precedence prec)
13869 int oplen, nargs, i;
13871 enum exp_opcode op = exp->elts[pc].opcode;
13873 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13880 print_subexp_standard (exp, pos, stream, prec);
13884 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13887 case BINOP_IN_BOUNDS:
13888 /* XXX: sprint_subexp */
13889 print_subexp (exp, pos, stream, PREC_SUFFIX);
13890 fputs_filtered (" in ", stream);
13891 print_subexp (exp, pos, stream, PREC_SUFFIX);
13892 fputs_filtered ("'range", stream);
13893 if (exp->elts[pc + 1].longconst > 1)
13894 fprintf_filtered (stream, "(%ld)",
13895 (long) exp->elts[pc + 1].longconst);
13898 case TERNOP_IN_RANGE:
13899 if (prec >= PREC_EQUAL)
13900 fputs_filtered ("(", stream);
13901 /* XXX: sprint_subexp */
13902 print_subexp (exp, pos, stream, PREC_SUFFIX);
13903 fputs_filtered (" in ", stream);
13904 print_subexp (exp, pos, stream, PREC_EQUAL);
13905 fputs_filtered (" .. ", stream);
13906 print_subexp (exp, pos, stream, PREC_EQUAL);
13907 if (prec >= PREC_EQUAL)
13908 fputs_filtered (")", stream);
13913 case OP_ATR_LENGTH:
13917 case OP_ATR_MODULUS:
13922 if (exp->elts[*pos].opcode == OP_TYPE)
13924 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13925 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13926 &type_print_raw_options);
13930 print_subexp (exp, pos, stream, PREC_SUFFIX);
13931 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13936 for (tem = 1; tem < nargs; tem += 1)
13938 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13939 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13941 fputs_filtered (")", stream);
13946 type_print (exp->elts[pc + 1].type, "", stream, 0);
13947 fputs_filtered ("'(", stream);
13948 print_subexp (exp, pos, stream, PREC_PREFIX);
13949 fputs_filtered (")", stream);
13952 case UNOP_IN_RANGE:
13953 /* XXX: sprint_subexp */
13954 print_subexp (exp, pos, stream, PREC_SUFFIX);
13955 fputs_filtered (" in ", stream);
13956 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13957 &type_print_raw_options);
13960 case OP_DISCRETE_RANGE:
13961 print_subexp (exp, pos, stream, PREC_SUFFIX);
13962 fputs_filtered ("..", stream);
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 fputs_filtered ("others => ", stream);
13968 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 for (i = 0; i < nargs-1; i += 1)
13975 fputs_filtered ("|", stream);
13976 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 fputs_filtered (" => ", stream);
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 case OP_POSITIONAL:
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 fputs_filtered ("(", stream);
13988 for (i = 0; i < nargs; i += 1)
13991 fputs_filtered (", ", stream);
13992 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 fputs_filtered (")", stream);
13999 /* Table mapping opcodes into strings for printing operators
14000 and precedences of the operators. */
14002 static const struct op_print ada_op_print_tab[] = {
14003 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14004 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14005 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14006 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14007 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14008 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14009 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14010 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14011 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14012 {">=", BINOP_GEQ, PREC_ORDER, 0},
14013 {">", BINOP_GTR, PREC_ORDER, 0},
14014 {"<", BINOP_LESS, PREC_ORDER, 0},
14015 {">>", BINOP_RSH, PREC_SHIFT, 0},
14016 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14017 {"+", BINOP_ADD, PREC_ADD, 0},
14018 {"-", BINOP_SUB, PREC_ADD, 0},
14019 {"&", BINOP_CONCAT, PREC_ADD, 0},
14020 {"*", BINOP_MUL, PREC_MUL, 0},
14021 {"/", BINOP_DIV, PREC_MUL, 0},
14022 {"rem", BINOP_REM, PREC_MUL, 0},
14023 {"mod", BINOP_MOD, PREC_MUL, 0},
14024 {"**", BINOP_EXP, PREC_REPEAT, 0},
14025 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14026 {"-", UNOP_NEG, PREC_PREFIX, 0},
14027 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14028 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14029 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14030 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14031 {".all", UNOP_IND, PREC_SUFFIX, 1},
14032 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14033 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14034 {NULL, OP_NULL, PREC_SUFFIX, 0}
14037 enum ada_primitive_types {
14038 ada_primitive_type_int,
14039 ada_primitive_type_long,
14040 ada_primitive_type_short,
14041 ada_primitive_type_char,
14042 ada_primitive_type_float,
14043 ada_primitive_type_double,
14044 ada_primitive_type_void,
14045 ada_primitive_type_long_long,
14046 ada_primitive_type_long_double,
14047 ada_primitive_type_natural,
14048 ada_primitive_type_positive,
14049 ada_primitive_type_system_address,
14050 ada_primitive_type_storage_offset,
14051 nr_ada_primitive_types
14055 ada_language_arch_info (struct gdbarch *gdbarch,
14056 struct language_arch_info *lai)
14058 const struct builtin_type *builtin = builtin_type (gdbarch);
14060 lai->primitive_type_vector
14061 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14064 lai->primitive_type_vector [ada_primitive_type_int]
14065 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14067 lai->primitive_type_vector [ada_primitive_type_long]
14068 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14069 0, "long_integer");
14070 lai->primitive_type_vector [ada_primitive_type_short]
14071 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14072 0, "short_integer");
14073 lai->string_char_type
14074 = lai->primitive_type_vector [ada_primitive_type_char]
14075 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14076 lai->primitive_type_vector [ada_primitive_type_float]
14077 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14078 "float", gdbarch_float_format (gdbarch));
14079 lai->primitive_type_vector [ada_primitive_type_double]
14080 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14081 "long_float", gdbarch_double_format (gdbarch));
14082 lai->primitive_type_vector [ada_primitive_type_long_long]
14083 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14084 0, "long_long_integer");
14085 lai->primitive_type_vector [ada_primitive_type_long_double]
14086 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14087 "long_long_float", gdbarch_long_double_format (gdbarch));
14088 lai->primitive_type_vector [ada_primitive_type_natural]
14089 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 lai->primitive_type_vector [ada_primitive_type_positive]
14092 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14094 lai->primitive_type_vector [ada_primitive_type_void]
14095 = builtin->builtin_void;
14097 lai->primitive_type_vector [ada_primitive_type_system_address]
14098 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14100 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14101 = "system__address";
14103 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14104 type. This is a signed integral type whose size is the same as
14105 the size of addresses. */
14107 unsigned int addr_length = TYPE_LENGTH
14108 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14110 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14111 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14115 lai->bool_type_symbol = NULL;
14116 lai->bool_type_default = builtin->builtin_bool;
14119 /* Language vector */
14121 /* Not really used, but needed in the ada_language_defn. */
14124 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14126 ada_emit_char (c, type, stream, quoter, 1);
14130 parse (struct parser_state *ps)
14132 warnings_issued = 0;
14133 return ada_parse (ps);
14136 static const struct exp_descriptor ada_exp_descriptor = {
14138 ada_operator_length,
14139 ada_operator_check,
14141 ada_dump_subexp_body,
14142 ada_evaluate_subexp
14145 /* symbol_name_matcher_ftype adapter for wild_match. */
14148 do_wild_match (const char *symbol_search_name,
14149 const lookup_name_info &lookup_name,
14150 completion_match_result *comp_match_res)
14152 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14155 /* symbol_name_matcher_ftype adapter for full_match. */
14158 do_full_match (const char *symbol_search_name,
14159 const lookup_name_info &lookup_name,
14160 completion_match_result *comp_match_res)
14162 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14165 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14168 do_exact_match (const char *symbol_search_name,
14169 const lookup_name_info &lookup_name,
14170 completion_match_result *comp_match_res)
14172 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14175 /* Build the Ada lookup name for LOOKUP_NAME. */
14177 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14179 const std::string &user_name = lookup_name.name ();
14181 if (user_name[0] == '<')
14183 if (user_name.back () == '>')
14184 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14186 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14187 m_encoded_p = true;
14188 m_verbatim_p = true;
14189 m_wild_match_p = false;
14190 m_standard_p = false;
14194 m_verbatim_p = false;
14196 m_encoded_p = user_name.find ("__") != std::string::npos;
14200 const char *folded = ada_fold_name (user_name.c_str ());
14201 const char *encoded = ada_encode_1 (folded, false);
14202 if (encoded != NULL)
14203 m_encoded_name = encoded;
14205 m_encoded_name = user_name;
14208 m_encoded_name = user_name;
14210 /* Handle the 'package Standard' special case. See description
14211 of m_standard_p. */
14212 if (startswith (m_encoded_name.c_str (), "standard__"))
14214 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14215 m_standard_p = true;
14218 m_standard_p = false;
14220 /* If the name contains a ".", then the user is entering a fully
14221 qualified entity name, and the match must not be done in wild
14222 mode. Similarly, if the user wants to complete what looks
14223 like an encoded name, the match must not be done in wild
14224 mode. Also, in the standard__ special case always do
14225 non-wild matching. */
14227 = (lookup_name.match_type () != symbol_name_match_type::FULL
14230 && user_name.find ('.') == std::string::npos);
14234 /* symbol_name_matcher_ftype method for Ada. This only handles
14235 completion mode. */
14238 ada_symbol_name_matches (const char *symbol_search_name,
14239 const lookup_name_info &lookup_name,
14240 completion_match_result *comp_match_res)
14242 return lookup_name.ada ().matches (symbol_search_name,
14243 lookup_name.match_type (),
14247 /* A name matcher that matches the symbol name exactly, with
14251 literal_symbol_name_matcher (const char *symbol_search_name,
14252 const lookup_name_info &lookup_name,
14253 completion_match_result *comp_match_res)
14255 const std::string &name = lookup_name.name ();
14257 int cmp = (lookup_name.completion_mode ()
14258 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14259 : strcmp (symbol_search_name, name.c_str ()));
14262 if (comp_match_res != NULL)
14263 comp_match_res->set_match (symbol_search_name);
14270 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14273 static symbol_name_matcher_ftype *
14274 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14276 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14277 return literal_symbol_name_matcher;
14279 if (lookup_name.completion_mode ())
14280 return ada_symbol_name_matches;
14283 if (lookup_name.ada ().wild_match_p ())
14284 return do_wild_match;
14285 else if (lookup_name.ada ().verbatim_p ())
14286 return do_exact_match;
14288 return do_full_match;
14292 /* Implement the "la_read_var_value" language_defn method for Ada. */
14294 static struct value *
14295 ada_read_var_value (struct symbol *var, const struct block *var_block,
14296 struct frame_info *frame)
14298 /* The only case where default_read_var_value is not sufficient
14299 is when VAR is a renaming... */
14300 if (frame != nullptr)
14302 const struct block *frame_block = get_frame_block (frame, NULL);
14303 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14304 return ada_read_renaming_var_value (var, frame_block);
14307 /* This is a typical case where we expect the default_read_var_value
14308 function to work. */
14309 return default_read_var_value (var, var_block, frame);
14312 static const char *ada_extensions[] =
14314 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14317 extern const struct language_defn ada_language_defn = {
14318 "ada", /* Language name */
14322 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14323 that's not quite what this means. */
14325 macro_expansion_no,
14327 &ada_exp_descriptor,
14330 ada_printchar, /* Print a character constant */
14331 ada_printstr, /* Function to print string constant */
14332 emit_char, /* Function to print single char (not used) */
14333 ada_print_type, /* Print a type using appropriate syntax */
14334 ada_print_typedef, /* Print a typedef using appropriate syntax */
14335 ada_val_print, /* Print a value using appropriate syntax */
14336 ada_value_print, /* Print a top-level value */
14337 ada_read_var_value, /* la_read_var_value */
14338 NULL, /* Language specific skip_trampoline */
14339 NULL, /* name_of_this */
14340 true, /* la_store_sym_names_in_linkage_form_p */
14341 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14342 basic_lookup_transparent_type, /* lookup_transparent_type */
14343 ada_la_decode, /* Language specific symbol demangler */
14344 ada_sniff_from_mangled_name,
14345 NULL, /* Language specific
14346 class_name_from_physname */
14347 ada_op_print_tab, /* expression operators for printing */
14348 0, /* c-style arrays */
14349 1, /* String lower bound */
14350 ada_get_gdb_completer_word_break_characters,
14351 ada_collect_symbol_completion_matches,
14352 ada_language_arch_info,
14353 ada_print_array_index,
14354 default_pass_by_reference,
14356 ada_watch_location_expression,
14357 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14358 ada_iterate_over_symbols,
14359 default_search_name_hash,
14363 ada_is_string_type,
14364 "(...)" /* la_struct_too_deep_ellipsis */
14367 /* Command-list for the "set/show ada" prefix command. */
14368 static struct cmd_list_element *set_ada_list;
14369 static struct cmd_list_element *show_ada_list;
14371 /* Implement the "set ada" prefix command. */
14374 set_ada_command (const char *arg, int from_tty)
14376 printf_unfiltered (_(\
14377 "\"set ada\" must be followed by the name of a setting.\n"));
14378 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14381 /* Implement the "show ada" prefix command. */
14384 show_ada_command (const char *args, int from_tty)
14386 cmd_show_list (show_ada_list, from_tty, "");
14390 initialize_ada_catchpoint_ops (void)
14392 struct breakpoint_ops *ops;
14394 initialize_breakpoint_ops ();
14396 ops = &catch_exception_breakpoint_ops;
14397 *ops = bkpt_breakpoint_ops;
14398 ops->allocate_location = allocate_location_catch_exception;
14399 ops->re_set = re_set_catch_exception;
14400 ops->check_status = check_status_catch_exception;
14401 ops->print_it = print_it_catch_exception;
14402 ops->print_one = print_one_catch_exception;
14403 ops->print_mention = print_mention_catch_exception;
14404 ops->print_recreate = print_recreate_catch_exception;
14406 ops = &catch_exception_unhandled_breakpoint_ops;
14407 *ops = bkpt_breakpoint_ops;
14408 ops->allocate_location = allocate_location_catch_exception_unhandled;
14409 ops->re_set = re_set_catch_exception_unhandled;
14410 ops->check_status = check_status_catch_exception_unhandled;
14411 ops->print_it = print_it_catch_exception_unhandled;
14412 ops->print_one = print_one_catch_exception_unhandled;
14413 ops->print_mention = print_mention_catch_exception_unhandled;
14414 ops->print_recreate = print_recreate_catch_exception_unhandled;
14416 ops = &catch_assert_breakpoint_ops;
14417 *ops = bkpt_breakpoint_ops;
14418 ops->allocate_location = allocate_location_catch_assert;
14419 ops->re_set = re_set_catch_assert;
14420 ops->check_status = check_status_catch_assert;
14421 ops->print_it = print_it_catch_assert;
14422 ops->print_one = print_one_catch_assert;
14423 ops->print_mention = print_mention_catch_assert;
14424 ops->print_recreate = print_recreate_catch_assert;
14426 ops = &catch_handlers_breakpoint_ops;
14427 *ops = bkpt_breakpoint_ops;
14428 ops->allocate_location = allocate_location_catch_handlers;
14429 ops->re_set = re_set_catch_handlers;
14430 ops->check_status = check_status_catch_handlers;
14431 ops->print_it = print_it_catch_handlers;
14432 ops->print_one = print_one_catch_handlers;
14433 ops->print_mention = print_mention_catch_handlers;
14434 ops->print_recreate = print_recreate_catch_handlers;
14437 /* This module's 'new_objfile' observer. */
14440 ada_new_objfile_observer (struct objfile *objfile)
14442 ada_clear_symbol_cache ();
14445 /* This module's 'free_objfile' observer. */
14448 ada_free_objfile_observer (struct objfile *objfile)
14450 ada_clear_symbol_cache ();
14454 _initialize_ada_language (void)
14456 initialize_ada_catchpoint_ops ();
14458 add_prefix_cmd ("ada", no_class, set_ada_command,
14459 _("Prefix command for changing Ada-specific settings."),
14460 &set_ada_list, "set ada ", 0, &setlist);
14462 add_prefix_cmd ("ada", no_class, show_ada_command,
14463 _("Generic command for showing Ada-specific settings."),
14464 &show_ada_list, "show ada ", 0, &showlist);
14466 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14467 &trust_pad_over_xvs, _("\
14468 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14469 Show whether an optimization trusting PAD types over XVS types is activated."),
14471 This is related to the encoding used by the GNAT compiler. The debugger\n\
14472 should normally trust the contents of PAD types, but certain older versions\n\
14473 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14474 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14475 work around this bug. It is always safe to turn this option \"off\", but\n\
14476 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14477 this option to \"off\" unless necessary."),
14478 NULL, NULL, &set_ada_list, &show_ada_list);
14480 add_setshow_boolean_cmd ("print-signatures", class_vars,
14481 &print_signatures, _("\
14482 Enable or disable the output of formal and return types for functions in the \
14483 overloads selection menu."), _("\
14484 Show whether the output of formal and return types for functions in the \
14485 overloads selection menu is activated."),
14486 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14488 add_catch_command ("exception", _("\
14489 Catch Ada exceptions, when raised.\n\
14490 Usage: catch exception [ARG] [if CONDITION]\n\
14491 Without any argument, stop when any Ada exception is raised.\n\
14492 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14493 being raised does not have a handler (and will therefore lead to the task's\n\
14495 Otherwise, the catchpoint only stops when the name of the exception being\n\
14496 raised is the same as ARG.\n\
14497 CONDITION is a boolean expression that is evaluated to see whether the\n\
14498 exception should cause a stop."),
14499 catch_ada_exception_command,
14500 catch_ada_completer,
14504 add_catch_command ("handlers", _("\
14505 Catch Ada exceptions, when handled.\n\
14506 Usage: catch handlers [ARG] [if CONDITION]\n\
14507 Without any argument, stop when any Ada exception is handled.\n\
14508 With an argument, catch only exceptions with the given name.\n\
14509 CONDITION is a boolean expression that is evaluated to see whether the\n\
14510 exception should cause a stop."),
14511 catch_ada_handlers_command,
14512 catch_ada_completer,
14515 add_catch_command ("assert", _("\
14516 Catch failed Ada assertions, when raised.\n\
14517 Usage: catch assert [if CONDITION]\n\
14518 CONDITION is a boolean expression that is evaluated to see whether the\n\
14519 exception should cause a stop."),
14520 catch_assert_command,
14525 varsize_limit = 65536;
14526 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14527 &varsize_limit, _("\
14528 Set the maximum number of bytes allowed in a variable-size object."), _("\
14529 Show the maximum number of bytes allowed in a variable-size object."), _("\
14530 Attempts to access an object whose size is not a compile-time constant\n\
14531 and exceeds this limit will cause an error."),
14532 NULL, NULL, &setlist, &showlist);
14534 add_info ("exceptions", info_exceptions_command,
14536 List all Ada exception names.\n\
14537 Usage: info exceptions [REGEXP]\n\
14538 If a regular expression is passed as an argument, only those matching\n\
14539 the regular expression are listed."));
14541 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14542 _("Set Ada maintenance-related variables."),
14543 &maint_set_ada_cmdlist, "maintenance set ada ",
14544 0/*allow-unknown*/, &maintenance_set_cmdlist);
14546 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14547 _("Show Ada maintenance-related variables."),
14548 &maint_show_ada_cmdlist, "maintenance show ada ",
14549 0/*allow-unknown*/, &maintenance_show_cmdlist);
14551 add_setshow_boolean_cmd
14552 ("ignore-descriptive-types", class_maintenance,
14553 &ada_ignore_descriptive_types_p,
14554 _("Set whether descriptive types generated by GNAT should be ignored."),
14555 _("Show whether descriptive types generated by GNAT should be ignored."),
14557 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14558 DWARF attribute."),
14559 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14561 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14562 NULL, xcalloc, xfree);
14564 /* The ada-lang observers. */
14565 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14566 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14567 gdb::observers::inferior_exit.attach (ada_inferior_exit);