1 /* Common target dependent code for GDB on AArch64 systems.
3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "reggroups.h"
32 #include "arch-utils.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36 #include "trad-frame.h"
38 #include "dwarf2-frame.h"
40 #include "prologue-value.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
48 #include "aarch64-tdep.h"
51 #include "elf/aarch64.h"
56 #include "record-full.h"
58 #include "features/aarch64.c"
60 #include "arch/aarch64-insn.h"
62 #include "opcode/aarch64.h"
64 #define submask(x) ((1L << ((x) + 1)) - 1)
65 #define bit(obj,st) (((obj) >> (st)) & 1)
66 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
68 /* Pseudo register base numbers. */
69 #define AARCH64_Q0_REGNUM 0
70 #define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32)
71 #define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
72 #define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
73 #define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
75 /* The standard register names, and all the valid aliases for them. */
78 const char *const name;
80 } aarch64_register_aliases[] =
82 /* 64-bit register names. */
83 {"fp", AARCH64_FP_REGNUM},
84 {"lr", AARCH64_LR_REGNUM},
85 {"sp", AARCH64_SP_REGNUM},
87 /* 32-bit register names. */
88 {"w0", AARCH64_X0_REGNUM + 0},
89 {"w1", AARCH64_X0_REGNUM + 1},
90 {"w2", AARCH64_X0_REGNUM + 2},
91 {"w3", AARCH64_X0_REGNUM + 3},
92 {"w4", AARCH64_X0_REGNUM + 4},
93 {"w5", AARCH64_X0_REGNUM + 5},
94 {"w6", AARCH64_X0_REGNUM + 6},
95 {"w7", AARCH64_X0_REGNUM + 7},
96 {"w8", AARCH64_X0_REGNUM + 8},
97 {"w9", AARCH64_X0_REGNUM + 9},
98 {"w10", AARCH64_X0_REGNUM + 10},
99 {"w11", AARCH64_X0_REGNUM + 11},
100 {"w12", AARCH64_X0_REGNUM + 12},
101 {"w13", AARCH64_X0_REGNUM + 13},
102 {"w14", AARCH64_X0_REGNUM + 14},
103 {"w15", AARCH64_X0_REGNUM + 15},
104 {"w16", AARCH64_X0_REGNUM + 16},
105 {"w17", AARCH64_X0_REGNUM + 17},
106 {"w18", AARCH64_X0_REGNUM + 18},
107 {"w19", AARCH64_X0_REGNUM + 19},
108 {"w20", AARCH64_X0_REGNUM + 20},
109 {"w21", AARCH64_X0_REGNUM + 21},
110 {"w22", AARCH64_X0_REGNUM + 22},
111 {"w23", AARCH64_X0_REGNUM + 23},
112 {"w24", AARCH64_X0_REGNUM + 24},
113 {"w25", AARCH64_X0_REGNUM + 25},
114 {"w26", AARCH64_X0_REGNUM + 26},
115 {"w27", AARCH64_X0_REGNUM + 27},
116 {"w28", AARCH64_X0_REGNUM + 28},
117 {"w29", AARCH64_X0_REGNUM + 29},
118 {"w30", AARCH64_X0_REGNUM + 30},
121 {"ip0", AARCH64_X0_REGNUM + 16},
122 {"ip1", AARCH64_X0_REGNUM + 17}
125 /* The required core 'R' registers. */
126 static const char *const aarch64_r_register_names[] =
128 /* These registers must appear in consecutive RAW register number
129 order and they must begin with AARCH64_X0_REGNUM! */
130 "x0", "x1", "x2", "x3",
131 "x4", "x5", "x6", "x7",
132 "x8", "x9", "x10", "x11",
133 "x12", "x13", "x14", "x15",
134 "x16", "x17", "x18", "x19",
135 "x20", "x21", "x22", "x23",
136 "x24", "x25", "x26", "x27",
137 "x28", "x29", "x30", "sp",
141 /* The FP/SIMD 'V' registers. */
142 static const char *const aarch64_v_register_names[] =
144 /* These registers must appear in consecutive RAW register number
145 order and they must begin with AARCH64_V0_REGNUM! */
146 "v0", "v1", "v2", "v3",
147 "v4", "v5", "v6", "v7",
148 "v8", "v9", "v10", "v11",
149 "v12", "v13", "v14", "v15",
150 "v16", "v17", "v18", "v19",
151 "v20", "v21", "v22", "v23",
152 "v24", "v25", "v26", "v27",
153 "v28", "v29", "v30", "v31",
158 /* AArch64 prologue cache structure. */
159 struct aarch64_prologue_cache
161 /* The program counter at the start of the function. It is used to
162 identify this frame as a prologue frame. */
165 /* The program counter at the time this frame was created; i.e. where
166 this function was called from. It is used to identify this frame as a
170 /* The stack pointer at the time this frame was created; i.e. the
171 caller's stack pointer when this function was called. It is used
172 to identify this frame. */
175 /* Is the target available to read from? */
178 /* The frame base for this frame is just prev_sp - frame size.
179 FRAMESIZE is the distance from the frame pointer to the
180 initial stack pointer. */
183 /* The register used to hold the frame pointer for this frame. */
186 /* Saved register offsets. */
187 struct trad_frame_saved_reg *saved_regs;
191 show_aarch64_debug (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
194 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
197 /* Analyze a prologue, looking for a recognizable stack frame
198 and frame pointer. Scan until we encounter a store that could
199 clobber the stack frame unexpectedly, or an unknown instruction. */
202 aarch64_analyze_prologue (struct gdbarch *gdbarch,
203 CORE_ADDR start, CORE_ADDR limit,
204 struct aarch64_prologue_cache *cache)
206 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
208 pv_t regs[AARCH64_X_REGISTER_COUNT];
209 struct pv_area *stack;
210 struct cleanup *back_to;
212 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
213 regs[i] = pv_register (i, 0);
214 stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
215 back_to = make_cleanup_free_pv_area (stack);
217 for (; start < limit; start += 4)
222 insn = read_memory_unsigned_integer (start, 4, byte_order_for_code);
224 if (aarch64_decode_insn (insn, &inst, 1) != 0)
227 if (inst.opcode->iclass == addsub_imm
228 && (inst.opcode->op == OP_ADD
229 || strcmp ("sub", inst.opcode->name) == 0))
231 unsigned rd = inst.operands[0].reg.regno;
232 unsigned rn = inst.operands[1].reg.regno;
234 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
235 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
236 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
237 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
239 if (inst.opcode->op == OP_ADD)
241 regs[rd] = pv_add_constant (regs[rn],
242 inst.operands[2].imm.value);
246 regs[rd] = pv_add_constant (regs[rn],
247 -inst.operands[2].imm.value);
250 else if (inst.opcode->iclass == pcreladdr
251 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
253 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
254 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
256 regs[inst.operands[0].reg.regno] = pv_unknown ();
258 else if (inst.opcode->iclass == branch_imm)
260 /* Stop analysis on branch. */
263 else if (inst.opcode->iclass == condbranch)
265 /* Stop analysis on branch. */
268 else if (inst.opcode->iclass == branch_reg)
270 /* Stop analysis on branch. */
273 else if (inst.opcode->iclass == compbranch)
275 /* Stop analysis on branch. */
278 else if (inst.opcode->op == OP_MOVZ)
280 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
281 regs[inst.operands[0].reg.regno] = pv_unknown ();
283 else if (inst.opcode->iclass == log_shift
284 && strcmp (inst.opcode->name, "orr") == 0)
286 unsigned rd = inst.operands[0].reg.regno;
287 unsigned rn = inst.operands[1].reg.regno;
288 unsigned rm = inst.operands[2].reg.regno;
290 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
291 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
292 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
294 if (inst.operands[2].shifter.amount == 0
295 && rn == AARCH64_SP_REGNUM)
301 debug_printf ("aarch64: prologue analysis gave up "
302 "addr=0x%s opcode=0x%x (orr x register)\n",
303 core_addr_to_string_nz (start), insn);
308 else if (inst.opcode->op == OP_STUR)
310 unsigned rt = inst.operands[0].reg.regno;
311 unsigned rn = inst.operands[1].addr.base_regno;
313 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
315 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
316 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
317 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
318 gdb_assert (!inst.operands[1].addr.offset.is_reg);
320 pv_area_store (stack, pv_add_constant (regs[rn],
321 inst.operands[1].addr.offset.imm),
322 is64 ? 8 : 4, regs[rt]);
324 else if ((inst.opcode->iclass == ldstpair_off
325 || inst.opcode->iclass == ldstpair_indexed)
326 && inst.operands[2].addr.preind
327 && strcmp ("stp", inst.opcode->name) == 0)
329 unsigned rt1 = inst.operands[0].reg.regno;
330 unsigned rt2 = inst.operands[1].reg.regno;
331 unsigned rn = inst.operands[2].addr.base_regno;
332 int32_t imm = inst.operands[2].addr.offset.imm;
334 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
335 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2);
336 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
337 gdb_assert (!inst.operands[2].addr.offset.is_reg);
339 /* If recording this store would invalidate the store area
340 (perhaps because rn is not known) then we should abandon
341 further prologue analysis. */
342 if (pv_area_store_would_trash (stack,
343 pv_add_constant (regs[rn], imm)))
346 if (pv_area_store_would_trash (stack,
347 pv_add_constant (regs[rn], imm + 8)))
350 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
352 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
355 if (inst.operands[2].addr.writeback)
356 regs[rn] = pv_add_constant (regs[rn], imm);
359 else if (inst.opcode->iclass == testbranch)
361 /* Stop analysis on branch. */
368 debug_printf ("aarch64: prologue analysis gave up addr=0x%s"
370 core_addr_to_string_nz (start), insn);
378 do_cleanups (back_to);
382 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
384 /* Frame pointer is fp. Frame size is constant. */
385 cache->framereg = AARCH64_FP_REGNUM;
386 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
388 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
390 /* Try the stack pointer. */
391 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
392 cache->framereg = AARCH64_SP_REGNUM;
396 /* We're just out of luck. We don't know where the frame is. */
397 cache->framereg = -1;
398 cache->framesize = 0;
401 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
405 if (pv_area_find_reg (stack, gdbarch, i, &offset))
406 cache->saved_regs[i].addr = offset;
409 do_cleanups (back_to);
413 /* Implement the "skip_prologue" gdbarch method. */
416 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
420 CORE_ADDR func_addr, limit_pc;
421 struct symtab_and_line sal;
423 /* See if we can determine the end of the prologue via the symbol
424 table. If so, then return either PC, or the PC after the
425 prologue, whichever is greater. */
426 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
428 CORE_ADDR post_prologue_pc
429 = skip_prologue_using_sal (gdbarch, func_addr);
431 if (post_prologue_pc != 0)
432 return max (pc, post_prologue_pc);
435 /* Can't determine prologue from the symbol table, need to examine
438 /* Find an upper limit on the function prologue using the debug
439 information. If the debug information could not be used to
440 provide that bound, then use an arbitrary large number as the
442 limit_pc = skip_prologue_using_sal (gdbarch, pc);
444 limit_pc = pc + 128; /* Magic. */
446 /* Try disassembling prologue. */
447 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
450 /* Scan the function prologue for THIS_FRAME and populate the prologue
454 aarch64_scan_prologue (struct frame_info *this_frame,
455 struct aarch64_prologue_cache *cache)
457 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
458 CORE_ADDR prologue_start;
459 CORE_ADDR prologue_end;
460 CORE_ADDR prev_pc = get_frame_pc (this_frame);
461 struct gdbarch *gdbarch = get_frame_arch (this_frame);
463 cache->prev_pc = prev_pc;
465 /* Assume we do not find a frame. */
466 cache->framereg = -1;
467 cache->framesize = 0;
469 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
472 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
476 /* No line info so use the current PC. */
477 prologue_end = prev_pc;
479 else if (sal.end < prologue_end)
481 /* The next line begins after the function end. */
482 prologue_end = sal.end;
485 prologue_end = min (prologue_end, prev_pc);
486 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
493 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
499 cache->framereg = AARCH64_FP_REGNUM;
500 cache->framesize = 16;
501 cache->saved_regs[29].addr = 0;
502 cache->saved_regs[30].addr = 8;
506 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
507 function may throw an exception if the inferior's registers or memory is
511 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
512 struct aarch64_prologue_cache *cache)
514 CORE_ADDR unwound_fp;
517 aarch64_scan_prologue (this_frame, cache);
519 if (cache->framereg == -1)
522 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
526 cache->prev_sp = unwound_fp + cache->framesize;
528 /* Calculate actual addresses of saved registers using offsets
529 determined by aarch64_analyze_prologue. */
530 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
531 if (trad_frame_addr_p (cache->saved_regs, reg))
532 cache->saved_regs[reg].addr += cache->prev_sp;
534 cache->func = get_frame_func (this_frame);
536 cache->available_p = 1;
539 /* Allocate and fill in *THIS_CACHE with information about the prologue of
540 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
541 Return a pointer to the current aarch64_prologue_cache in
544 static struct aarch64_prologue_cache *
545 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
547 struct aarch64_prologue_cache *cache;
549 if (*this_cache != NULL)
550 return (struct aarch64_prologue_cache *) *this_cache;
552 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
553 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
558 aarch64_make_prologue_cache_1 (this_frame, cache);
560 CATCH (ex, RETURN_MASK_ERROR)
562 if (ex.error != NOT_AVAILABLE_ERROR)
563 throw_exception (ex);
570 /* Implement the "stop_reason" frame_unwind method. */
572 static enum unwind_stop_reason
573 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
576 struct aarch64_prologue_cache *cache
577 = aarch64_make_prologue_cache (this_frame, this_cache);
579 if (!cache->available_p)
580 return UNWIND_UNAVAILABLE;
582 /* Halt the backtrace at "_start". */
583 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
584 return UNWIND_OUTERMOST;
586 /* We've hit a wall, stop. */
587 if (cache->prev_sp == 0)
588 return UNWIND_OUTERMOST;
590 return UNWIND_NO_REASON;
593 /* Our frame ID for a normal frame is the current function's starting
594 PC and the caller's SP when we were called. */
597 aarch64_prologue_this_id (struct frame_info *this_frame,
598 void **this_cache, struct frame_id *this_id)
600 struct aarch64_prologue_cache *cache
601 = aarch64_make_prologue_cache (this_frame, this_cache);
603 if (!cache->available_p)
604 *this_id = frame_id_build_unavailable_stack (cache->func);
606 *this_id = frame_id_build (cache->prev_sp, cache->func);
609 /* Implement the "prev_register" frame_unwind method. */
611 static struct value *
612 aarch64_prologue_prev_register (struct frame_info *this_frame,
613 void **this_cache, int prev_regnum)
615 struct gdbarch *gdbarch = get_frame_arch (this_frame);
616 struct aarch64_prologue_cache *cache
617 = aarch64_make_prologue_cache (this_frame, this_cache);
619 /* If we are asked to unwind the PC, then we need to return the LR
620 instead. The prologue may save PC, but it will point into this
621 frame's prologue, not the next frame's resume location. */
622 if (prev_regnum == AARCH64_PC_REGNUM)
626 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
627 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
630 /* SP is generally not saved to the stack, but this frame is
631 identified by the next frame's stack pointer at the time of the
632 call. The value was already reconstructed into PREV_SP. */
645 if (prev_regnum == AARCH64_SP_REGNUM)
646 return frame_unwind_got_constant (this_frame, prev_regnum,
649 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
653 /* AArch64 prologue unwinder. */
654 struct frame_unwind aarch64_prologue_unwind =
657 aarch64_prologue_frame_unwind_stop_reason,
658 aarch64_prologue_this_id,
659 aarch64_prologue_prev_register,
661 default_frame_sniffer
664 /* Allocate and fill in *THIS_CACHE with information about the prologue of
665 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
666 Return a pointer to the current aarch64_prologue_cache in
669 static struct aarch64_prologue_cache *
670 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
672 struct aarch64_prologue_cache *cache;
674 if (*this_cache != NULL)
675 return (struct aarch64_prologue_cache *) *this_cache;
677 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
678 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
683 cache->prev_sp = get_frame_register_unsigned (this_frame,
685 cache->prev_pc = get_frame_pc (this_frame);
686 cache->available_p = 1;
688 CATCH (ex, RETURN_MASK_ERROR)
690 if (ex.error != NOT_AVAILABLE_ERROR)
691 throw_exception (ex);
698 /* Implement the "stop_reason" frame_unwind method. */
700 static enum unwind_stop_reason
701 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
704 struct aarch64_prologue_cache *cache
705 = aarch64_make_stub_cache (this_frame, this_cache);
707 if (!cache->available_p)
708 return UNWIND_UNAVAILABLE;
710 return UNWIND_NO_REASON;
713 /* Our frame ID for a stub frame is the current SP and LR. */
716 aarch64_stub_this_id (struct frame_info *this_frame,
717 void **this_cache, struct frame_id *this_id)
719 struct aarch64_prologue_cache *cache
720 = aarch64_make_stub_cache (this_frame, this_cache);
722 if (cache->available_p)
723 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
725 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
728 /* Implement the "sniffer" frame_unwind method. */
731 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
732 struct frame_info *this_frame,
733 void **this_prologue_cache)
735 CORE_ADDR addr_in_block;
738 addr_in_block = get_frame_address_in_block (this_frame);
739 if (in_plt_section (addr_in_block)
740 /* We also use the stub winder if the target memory is unreadable
741 to avoid having the prologue unwinder trying to read it. */
742 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
748 /* AArch64 stub unwinder. */
749 struct frame_unwind aarch64_stub_unwind =
752 aarch64_stub_frame_unwind_stop_reason,
753 aarch64_stub_this_id,
754 aarch64_prologue_prev_register,
756 aarch64_stub_unwind_sniffer
759 /* Return the frame base address of *THIS_FRAME. */
762 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
764 struct aarch64_prologue_cache *cache
765 = aarch64_make_prologue_cache (this_frame, this_cache);
767 return cache->prev_sp - cache->framesize;
770 /* AArch64 default frame base information. */
771 struct frame_base aarch64_normal_base =
773 &aarch64_prologue_unwind,
774 aarch64_normal_frame_base,
775 aarch64_normal_frame_base,
776 aarch64_normal_frame_base
779 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
780 dummy frame. The frame ID's base needs to match the TOS value
781 saved by save_dummy_frame_tos () and returned from
782 aarch64_push_dummy_call, and the PC needs to match the dummy
783 frame's breakpoint. */
785 static struct frame_id
786 aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
788 return frame_id_build (get_frame_register_unsigned (this_frame,
790 get_frame_pc (this_frame));
793 /* Implement the "unwind_pc" gdbarch method. */
796 aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
799 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
804 /* Implement the "unwind_sp" gdbarch method. */
807 aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
809 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
812 /* Return the value of the REGNUM register in the previous frame of
815 static struct value *
816 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
817 void **this_cache, int regnum)
819 struct gdbarch *gdbarch = get_frame_arch (this_frame);
824 case AARCH64_PC_REGNUM:
825 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
826 return frame_unwind_got_constant (this_frame, regnum, lr);
829 internal_error (__FILE__, __LINE__,
830 _("Unexpected register %d"), regnum);
834 /* Implement the "init_reg" dwarf2_frame_ops method. */
837 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
838 struct dwarf2_frame_state_reg *reg,
839 struct frame_info *this_frame)
843 case AARCH64_PC_REGNUM:
844 reg->how = DWARF2_FRAME_REG_FN;
845 reg->loc.fn = aarch64_dwarf2_prev_register;
847 case AARCH64_SP_REGNUM:
848 reg->how = DWARF2_FRAME_REG_CFA;
853 /* When arguments must be pushed onto the stack, they go on in reverse
854 order. The code below implements a FILO (stack) to do this. */
858 /* Value to pass on stack. */
859 const gdb_byte *data;
861 /* Size in bytes of value to pass on stack. */
865 DEF_VEC_O (stack_item_t);
867 /* Return the alignment (in bytes) of the given type. */
870 aarch64_type_align (struct type *t)
876 t = check_typedef (t);
877 switch (TYPE_CODE (t))
880 /* Should never happen. */
881 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
889 case TYPE_CODE_RANGE:
890 case TYPE_CODE_BITSTRING:
894 return TYPE_LENGTH (t);
896 case TYPE_CODE_ARRAY:
897 case TYPE_CODE_COMPLEX:
898 return aarch64_type_align (TYPE_TARGET_TYPE (t));
900 case TYPE_CODE_STRUCT:
901 case TYPE_CODE_UNION:
903 for (n = 0; n < TYPE_NFIELDS (t); n++)
905 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
913 /* Return 1 if *TY is a homogeneous floating-point aggregate as
914 defined in the AAPCS64 ABI document; otherwise return 0. */
917 is_hfa (struct type *ty)
919 switch (TYPE_CODE (ty))
921 case TYPE_CODE_ARRAY:
923 struct type *target_ty = TYPE_TARGET_TYPE (ty);
924 if (TYPE_CODE (target_ty) == TYPE_CODE_FLT && TYPE_LENGTH (ty) <= 4)
929 case TYPE_CODE_UNION:
930 case TYPE_CODE_STRUCT:
932 if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
934 struct type *member0_type;
936 member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
937 if (TYPE_CODE (member0_type) == TYPE_CODE_FLT)
941 for (i = 0; i < TYPE_NFIELDS (ty); i++)
943 struct type *member1_type;
945 member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
946 if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
947 || (TYPE_LENGTH (member0_type)
948 != TYPE_LENGTH (member1_type)))
964 /* AArch64 function call information structure. */
965 struct aarch64_call_info
967 /* the current argument number. */
970 /* The next general purpose register number, equivalent to NGRN as
971 described in the AArch64 Procedure Call Standard. */
974 /* The next SIMD and floating point register number, equivalent to
975 NSRN as described in the AArch64 Procedure Call Standard. */
978 /* The next stacked argument address, equivalent to NSAA as
979 described in the AArch64 Procedure Call Standard. */
982 /* Stack item vector. */
983 VEC(stack_item_t) *si;
986 /* Pass a value in a sequence of consecutive X registers. The caller
987 is responsbile for ensuring sufficient registers are available. */
990 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
991 struct aarch64_call_info *info, struct type *type,
994 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
995 int len = TYPE_LENGTH (type);
996 enum type_code typecode = TYPE_CODE (type);
997 int regnum = AARCH64_X0_REGNUM + info->ngrn;
998 const bfd_byte *buf = value_contents (arg);
1004 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1005 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1009 /* Adjust sub-word struct/union args when big-endian. */
1010 if (byte_order == BFD_ENDIAN_BIG
1011 && partial_len < X_REGISTER_SIZE
1012 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1013 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1017 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1018 gdbarch_register_name (gdbarch, regnum),
1019 phex (regval, X_REGISTER_SIZE));
1021 regcache_cooked_write_unsigned (regcache, regnum, regval);
1028 /* Attempt to marshall a value in a V register. Return 1 if
1029 successful, or 0 if insufficient registers are available. This
1030 function, unlike the equivalent pass_in_x() function does not
1031 handle arguments spread across multiple registers. */
1034 pass_in_v (struct gdbarch *gdbarch,
1035 struct regcache *regcache,
1036 struct aarch64_call_info *info,
1037 const bfd_byte *buf)
1041 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1042 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1047 regcache_cooked_write (regcache, regnum, buf);
1050 debug_printf ("arg %d in %s\n", info->argnum,
1051 gdbarch_register_name (gdbarch, regnum));
1059 /* Marshall an argument onto the stack. */
1062 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1065 const bfd_byte *buf = value_contents (arg);
1066 int len = TYPE_LENGTH (type);
1072 align = aarch64_type_align (type);
1074 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1075 Natural alignment of the argument's type. */
1076 align = align_up (align, 8);
1078 /* The AArch64 PCS requires at most doubleword alignment. */
1084 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1090 VEC_safe_push (stack_item_t, info->si, &item);
1093 if (info->nsaa & (align - 1))
1095 /* Push stack alignment padding. */
1096 int pad = align - (info->nsaa & (align - 1));
1101 VEC_safe_push (stack_item_t, info->si, &item);
1106 /* Marshall an argument into a sequence of one or more consecutive X
1107 registers or, if insufficient X registers are available then onto
1111 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1112 struct aarch64_call_info *info, struct type *type,
1115 int len = TYPE_LENGTH (type);
1116 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1118 /* PCS C.13 - Pass in registers if we have enough spare */
1119 if (info->ngrn + nregs <= 8)
1121 pass_in_x (gdbarch, regcache, info, type, arg);
1122 info->ngrn += nregs;
1127 pass_on_stack (info, type, arg);
1131 /* Pass a value in a V register, or on the stack if insufficient are
1135 pass_in_v_or_stack (struct gdbarch *gdbarch,
1136 struct regcache *regcache,
1137 struct aarch64_call_info *info,
1141 if (!pass_in_v (gdbarch, regcache, info, value_contents (arg)))
1142 pass_on_stack (info, type, arg);
1145 /* Implement the "push_dummy_call" gdbarch method. */
1148 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1149 struct regcache *regcache, CORE_ADDR bp_addr,
1151 struct value **args, CORE_ADDR sp, int struct_return,
1152 CORE_ADDR struct_addr)
1158 struct aarch64_call_info info;
1159 struct type *func_type;
1160 struct type *return_type;
1161 int lang_struct_return;
1163 memset (&info, 0, sizeof (info));
1165 /* We need to know what the type of the called function is in order
1166 to determine the number of named/anonymous arguments for the
1167 actual argument placement, and the return type in order to handle
1168 return value correctly.
1170 The generic code above us views the decision of return in memory
1171 or return in registers as a two stage processes. The language
1172 handler is consulted first and may decide to return in memory (eg
1173 class with copy constructor returned by value), this will cause
1174 the generic code to allocate space AND insert an initial leading
1177 If the language code does not decide to pass in memory then the
1178 target code is consulted.
1180 If the language code decides to pass in memory we want to move
1181 the pointer inserted as the initial argument from the argument
1182 list and into X8, the conventional AArch64 struct return pointer
1185 This is slightly awkward, ideally the flag "lang_struct_return"
1186 would be passed to the targets implementation of push_dummy_call.
1187 Rather that change the target interface we call the language code
1188 directly ourselves. */
1190 func_type = check_typedef (value_type (function));
1192 /* Dereference function pointer types. */
1193 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1194 func_type = TYPE_TARGET_TYPE (func_type);
1196 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1197 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
1199 /* If language_pass_by_reference () returned true we will have been
1200 given an additional initial argument, a hidden pointer to the
1201 return slot in memory. */
1202 return_type = TYPE_TARGET_TYPE (func_type);
1203 lang_struct_return = language_pass_by_reference (return_type);
1205 /* Set the return address. For the AArch64, the return breakpoint
1206 is always at BP_ADDR. */
1207 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1209 /* If we were given an initial argument for the return slot because
1210 lang_struct_return was true, lose it. */
1211 if (lang_struct_return)
1217 /* The struct_return pointer occupies X8. */
1218 if (struct_return || lang_struct_return)
1222 debug_printf ("struct return in %s = 0x%s\n",
1223 gdbarch_register_name (gdbarch,
1224 AARCH64_STRUCT_RETURN_REGNUM),
1225 paddress (gdbarch, struct_addr));
1227 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1231 for (argnum = 0; argnum < nargs; argnum++)
1233 struct value *arg = args[argnum];
1234 struct type *arg_type;
1237 arg_type = check_typedef (value_type (arg));
1238 len = TYPE_LENGTH (arg_type);
1240 switch (TYPE_CODE (arg_type))
1243 case TYPE_CODE_BOOL:
1244 case TYPE_CODE_CHAR:
1245 case TYPE_CODE_RANGE:
1246 case TYPE_CODE_ENUM:
1249 /* Promote to 32 bit integer. */
1250 if (TYPE_UNSIGNED (arg_type))
1251 arg_type = builtin_type (gdbarch)->builtin_uint32;
1253 arg_type = builtin_type (gdbarch)->builtin_int32;
1254 arg = value_cast (arg_type, arg);
1256 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1259 case TYPE_CODE_COMPLEX:
1262 const bfd_byte *buf = value_contents (arg);
1263 struct type *target_type =
1264 check_typedef (TYPE_TARGET_TYPE (arg_type));
1266 pass_in_v (gdbarch, regcache, &info, buf);
1267 pass_in_v (gdbarch, regcache, &info,
1268 buf + TYPE_LENGTH (target_type));
1273 pass_on_stack (&info, arg_type, arg);
1277 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type, arg);
1280 case TYPE_CODE_STRUCT:
1281 case TYPE_CODE_ARRAY:
1282 case TYPE_CODE_UNION:
1283 if (is_hfa (arg_type))
1285 int elements = TYPE_NFIELDS (arg_type);
1287 /* Homogeneous Aggregates */
1288 if (info.nsrn + elements < 8)
1292 for (i = 0; i < elements; i++)
1294 /* We know that we have sufficient registers
1295 available therefore this will never fallback
1297 struct value *field =
1298 value_primitive_field (arg, 0, i, arg_type);
1299 struct type *field_type =
1300 check_typedef (value_type (field));
1302 pass_in_v_or_stack (gdbarch, regcache, &info,
1309 pass_on_stack (&info, arg_type, arg);
1314 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1315 invisible reference. */
1317 /* Allocate aligned storage. */
1318 sp = align_down (sp - len, 16);
1320 /* Write the real data into the stack. */
1321 write_memory (sp, value_contents (arg), len);
1323 /* Construct the indirection. */
1324 arg_type = lookup_pointer_type (arg_type);
1325 arg = value_from_pointer (arg_type, sp);
1326 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1329 /* PCS C.15 / C.18 multiple values pass. */
1330 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1334 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1339 /* Make sure stack retains 16 byte alignment. */
1341 sp -= 16 - (info.nsaa & 15);
1343 while (!VEC_empty (stack_item_t, info.si))
1345 stack_item_t *si = VEC_last (stack_item_t, info.si);
1348 write_memory (sp, si->data, si->len);
1349 VEC_pop (stack_item_t, info.si);
1352 VEC_free (stack_item_t, info.si);
1354 /* Finally, update the SP register. */
1355 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1360 /* Implement the "frame_align" gdbarch method. */
1363 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1365 /* Align the stack to sixteen bytes. */
1366 return sp & ~(CORE_ADDR) 15;
1369 /* Return the type for an AdvSISD Q register. */
1371 static struct type *
1372 aarch64_vnq_type (struct gdbarch *gdbarch)
1374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1376 if (tdep->vnq_type == NULL)
1381 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1384 elem = builtin_type (gdbarch)->builtin_uint128;
1385 append_composite_type_field (t, "u", elem);
1387 elem = builtin_type (gdbarch)->builtin_int128;
1388 append_composite_type_field (t, "s", elem);
1393 return tdep->vnq_type;
1396 /* Return the type for an AdvSISD D register. */
1398 static struct type *
1399 aarch64_vnd_type (struct gdbarch *gdbarch)
1401 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1403 if (tdep->vnd_type == NULL)
1408 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1411 elem = builtin_type (gdbarch)->builtin_double;
1412 append_composite_type_field (t, "f", elem);
1414 elem = builtin_type (gdbarch)->builtin_uint64;
1415 append_composite_type_field (t, "u", elem);
1417 elem = builtin_type (gdbarch)->builtin_int64;
1418 append_composite_type_field (t, "s", elem);
1423 return tdep->vnd_type;
1426 /* Return the type for an AdvSISD S register. */
1428 static struct type *
1429 aarch64_vns_type (struct gdbarch *gdbarch)
1431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1433 if (tdep->vns_type == NULL)
1438 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1441 elem = builtin_type (gdbarch)->builtin_float;
1442 append_composite_type_field (t, "f", elem);
1444 elem = builtin_type (gdbarch)->builtin_uint32;
1445 append_composite_type_field (t, "u", elem);
1447 elem = builtin_type (gdbarch)->builtin_int32;
1448 append_composite_type_field (t, "s", elem);
1453 return tdep->vns_type;
1456 /* Return the type for an AdvSISD H register. */
1458 static struct type *
1459 aarch64_vnh_type (struct gdbarch *gdbarch)
1461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1463 if (tdep->vnh_type == NULL)
1468 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1471 elem = builtin_type (gdbarch)->builtin_uint16;
1472 append_composite_type_field (t, "u", elem);
1474 elem = builtin_type (gdbarch)->builtin_int16;
1475 append_composite_type_field (t, "s", elem);
1480 return tdep->vnh_type;
1483 /* Return the type for an AdvSISD B register. */
1485 static struct type *
1486 aarch64_vnb_type (struct gdbarch *gdbarch)
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1490 if (tdep->vnb_type == NULL)
1495 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1498 elem = builtin_type (gdbarch)->builtin_uint8;
1499 append_composite_type_field (t, "u", elem);
1501 elem = builtin_type (gdbarch)->builtin_int8;
1502 append_composite_type_field (t, "s", elem);
1507 return tdep->vnb_type;
1510 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1513 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1515 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1516 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1518 if (reg == AARCH64_DWARF_SP)
1519 return AARCH64_SP_REGNUM;
1521 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1522 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1528 /* Implement the "print_insn" gdbarch method. */
1531 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1533 info->symbols = NULL;
1534 return print_insn_aarch64 (memaddr, info);
1537 /* AArch64 BRK software debug mode instruction.
1538 Note that AArch64 code is always little-endian.
1539 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1540 static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1542 /* Implement the "breakpoint_from_pc" gdbarch method. */
1544 static const gdb_byte *
1545 aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1548 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1550 *lenptr = sizeof (aarch64_default_breakpoint);
1551 return aarch64_default_breakpoint;
1554 /* Extract from an array REGS containing the (raw) register state a
1555 function return value of type TYPE, and copy that, in virtual
1556 format, into VALBUF. */
1559 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1562 struct gdbarch *gdbarch = get_regcache_arch (regs);
1563 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1565 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1567 bfd_byte buf[V_REGISTER_SIZE];
1568 int len = TYPE_LENGTH (type);
1570 regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
1571 memcpy (valbuf, buf, len);
1573 else if (TYPE_CODE (type) == TYPE_CODE_INT
1574 || TYPE_CODE (type) == TYPE_CODE_CHAR
1575 || TYPE_CODE (type) == TYPE_CODE_BOOL
1576 || TYPE_CODE (type) == TYPE_CODE_PTR
1577 || TYPE_CODE (type) == TYPE_CODE_REF
1578 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1580 /* If the the type is a plain integer, then the access is
1581 straight-forward. Otherwise we have to play around a bit
1583 int len = TYPE_LENGTH (type);
1584 int regno = AARCH64_X0_REGNUM;
1589 /* By using store_unsigned_integer we avoid having to do
1590 anything special for small big-endian values. */
1591 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1592 store_unsigned_integer (valbuf,
1593 (len > X_REGISTER_SIZE
1594 ? X_REGISTER_SIZE : len), byte_order, tmp);
1595 len -= X_REGISTER_SIZE;
1596 valbuf += X_REGISTER_SIZE;
1599 else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1601 int regno = AARCH64_V0_REGNUM;
1602 bfd_byte buf[V_REGISTER_SIZE];
1603 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1604 int len = TYPE_LENGTH (target_type);
1606 regcache_cooked_read (regs, regno, buf);
1607 memcpy (valbuf, buf, len);
1609 regcache_cooked_read (regs, regno + 1, buf);
1610 memcpy (valbuf, buf, len);
1613 else if (is_hfa (type))
1615 int elements = TYPE_NFIELDS (type);
1616 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1617 int len = TYPE_LENGTH (member_type);
1620 for (i = 0; i < elements; i++)
1622 int regno = AARCH64_V0_REGNUM + i;
1623 bfd_byte buf[V_REGISTER_SIZE];
1627 debug_printf ("read HFA return value element %d from %s\n",
1629 gdbarch_register_name (gdbarch, regno));
1631 regcache_cooked_read (regs, regno, buf);
1633 memcpy (valbuf, buf, len);
1639 /* For a structure or union the behaviour is as if the value had
1640 been stored to word-aligned memory and then loaded into
1641 registers with 64-bit load instruction(s). */
1642 int len = TYPE_LENGTH (type);
1643 int regno = AARCH64_X0_REGNUM;
1644 bfd_byte buf[X_REGISTER_SIZE];
1648 regcache_cooked_read (regs, regno++, buf);
1649 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1650 len -= X_REGISTER_SIZE;
1651 valbuf += X_REGISTER_SIZE;
1657 /* Will a function return an aggregate type in memory or in a
1658 register? Return 0 if an aggregate type can be returned in a
1659 register, 1 if it must be returned in memory. */
1662 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
1665 enum type_code code;
1667 type = check_typedef (type);
1669 /* In the AArch64 ABI, "integer" like aggregate types are returned
1670 in registers. For an aggregate type to be integer like, its size
1671 must be less than or equal to 4 * X_REGISTER_SIZE. */
1675 /* PCS B.5 If the argument is a Named HFA, then the argument is
1680 if (TYPE_LENGTH (type) > 16)
1682 /* PCS B.6 Aggregates larger than 16 bytes are passed by
1683 invisible reference. */
1691 /* Write into appropriate registers a function return value of type
1692 TYPE, given in virtual format. */
1695 aarch64_store_return_value (struct type *type, struct regcache *regs,
1696 const gdb_byte *valbuf)
1698 struct gdbarch *gdbarch = get_regcache_arch (regs);
1699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1701 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1703 bfd_byte buf[V_REGISTER_SIZE];
1704 int len = TYPE_LENGTH (type);
1706 memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
1707 regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
1709 else if (TYPE_CODE (type) == TYPE_CODE_INT
1710 || TYPE_CODE (type) == TYPE_CODE_CHAR
1711 || TYPE_CODE (type) == TYPE_CODE_BOOL
1712 || TYPE_CODE (type) == TYPE_CODE_PTR
1713 || TYPE_CODE (type) == TYPE_CODE_REF
1714 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1716 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
1718 /* Values of one word or less are zero/sign-extended and
1720 bfd_byte tmpbuf[X_REGISTER_SIZE];
1721 LONGEST val = unpack_long (type, valbuf);
1723 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
1724 regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf);
1728 /* Integral values greater than one word are stored in
1729 consecutive registers starting with r0. This will always
1730 be a multiple of the regiser size. */
1731 int len = TYPE_LENGTH (type);
1732 int regno = AARCH64_X0_REGNUM;
1736 regcache_cooked_write (regs, regno++, valbuf);
1737 len -= X_REGISTER_SIZE;
1738 valbuf += X_REGISTER_SIZE;
1742 else if (is_hfa (type))
1744 int elements = TYPE_NFIELDS (type);
1745 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1746 int len = TYPE_LENGTH (member_type);
1749 for (i = 0; i < elements; i++)
1751 int regno = AARCH64_V0_REGNUM + i;
1752 bfd_byte tmpbuf[MAX_REGISTER_SIZE];
1756 debug_printf ("write HFA return value element %d to %s\n",
1758 gdbarch_register_name (gdbarch, regno));
1761 memcpy (tmpbuf, valbuf, len);
1762 regcache_cooked_write (regs, regno, tmpbuf);
1768 /* For a structure or union the behaviour is as if the value had
1769 been stored to word-aligned memory and then loaded into
1770 registers with 64-bit load instruction(s). */
1771 int len = TYPE_LENGTH (type);
1772 int regno = AARCH64_X0_REGNUM;
1773 bfd_byte tmpbuf[X_REGISTER_SIZE];
1777 memcpy (tmpbuf, valbuf,
1778 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1779 regcache_cooked_write (regs, regno++, tmpbuf);
1780 len -= X_REGISTER_SIZE;
1781 valbuf += X_REGISTER_SIZE;
1786 /* Implement the "return_value" gdbarch method. */
1788 static enum return_value_convention
1789 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
1790 struct type *valtype, struct regcache *regcache,
1791 gdb_byte *readbuf, const gdb_byte *writebuf)
1793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1795 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1796 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1797 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1799 if (aarch64_return_in_memory (gdbarch, valtype))
1802 debug_printf ("return value in memory\n");
1803 return RETURN_VALUE_STRUCT_CONVENTION;
1808 aarch64_store_return_value (valtype, regcache, writebuf);
1811 aarch64_extract_return_value (valtype, regcache, readbuf);
1814 debug_printf ("return value in registers\n");
1816 return RETURN_VALUE_REGISTER_CONVENTION;
1819 /* Implement the "get_longjmp_target" gdbarch method. */
1822 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1825 gdb_byte buf[X_REGISTER_SIZE];
1826 struct gdbarch *gdbarch = get_frame_arch (frame);
1827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
1832 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1836 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
1840 /* Implement the "gen_return_address" gdbarch method. */
1843 aarch64_gen_return_address (struct gdbarch *gdbarch,
1844 struct agent_expr *ax, struct axs_value *value,
1847 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
1848 value->kind = axs_lvalue_register;
1849 value->u.reg = AARCH64_LR_REGNUM;
1853 /* Return the pseudo register name corresponding to register regnum. */
1856 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
1858 static const char *const q_name[] =
1860 "q0", "q1", "q2", "q3",
1861 "q4", "q5", "q6", "q7",
1862 "q8", "q9", "q10", "q11",
1863 "q12", "q13", "q14", "q15",
1864 "q16", "q17", "q18", "q19",
1865 "q20", "q21", "q22", "q23",
1866 "q24", "q25", "q26", "q27",
1867 "q28", "q29", "q30", "q31",
1870 static const char *const d_name[] =
1872 "d0", "d1", "d2", "d3",
1873 "d4", "d5", "d6", "d7",
1874 "d8", "d9", "d10", "d11",
1875 "d12", "d13", "d14", "d15",
1876 "d16", "d17", "d18", "d19",
1877 "d20", "d21", "d22", "d23",
1878 "d24", "d25", "d26", "d27",
1879 "d28", "d29", "d30", "d31",
1882 static const char *const s_name[] =
1884 "s0", "s1", "s2", "s3",
1885 "s4", "s5", "s6", "s7",
1886 "s8", "s9", "s10", "s11",
1887 "s12", "s13", "s14", "s15",
1888 "s16", "s17", "s18", "s19",
1889 "s20", "s21", "s22", "s23",
1890 "s24", "s25", "s26", "s27",
1891 "s28", "s29", "s30", "s31",
1894 static const char *const h_name[] =
1896 "h0", "h1", "h2", "h3",
1897 "h4", "h5", "h6", "h7",
1898 "h8", "h9", "h10", "h11",
1899 "h12", "h13", "h14", "h15",
1900 "h16", "h17", "h18", "h19",
1901 "h20", "h21", "h22", "h23",
1902 "h24", "h25", "h26", "h27",
1903 "h28", "h29", "h30", "h31",
1906 static const char *const b_name[] =
1908 "b0", "b1", "b2", "b3",
1909 "b4", "b5", "b6", "b7",
1910 "b8", "b9", "b10", "b11",
1911 "b12", "b13", "b14", "b15",
1912 "b16", "b17", "b18", "b19",
1913 "b20", "b21", "b22", "b23",
1914 "b24", "b25", "b26", "b27",
1915 "b28", "b29", "b30", "b31",
1918 regnum -= gdbarch_num_regs (gdbarch);
1920 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
1921 return q_name[regnum - AARCH64_Q0_REGNUM];
1923 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
1924 return d_name[regnum - AARCH64_D0_REGNUM];
1926 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
1927 return s_name[regnum - AARCH64_S0_REGNUM];
1929 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
1930 return h_name[regnum - AARCH64_H0_REGNUM];
1932 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
1933 return b_name[regnum - AARCH64_B0_REGNUM];
1935 internal_error (__FILE__, __LINE__,
1936 _("aarch64_pseudo_register_name: bad register number %d"),
1940 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
1942 static struct type *
1943 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1945 regnum -= gdbarch_num_regs (gdbarch);
1947 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
1948 return aarch64_vnq_type (gdbarch);
1950 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
1951 return aarch64_vnd_type (gdbarch);
1953 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
1954 return aarch64_vns_type (gdbarch);
1956 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
1957 return aarch64_vnh_type (gdbarch);
1959 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
1960 return aarch64_vnb_type (gdbarch);
1962 internal_error (__FILE__, __LINE__,
1963 _("aarch64_pseudo_register_type: bad register number %d"),
1967 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
1970 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1971 struct reggroup *group)
1973 regnum -= gdbarch_num_regs (gdbarch);
1975 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
1976 return group == all_reggroup || group == vector_reggroup;
1977 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
1978 return (group == all_reggroup || group == vector_reggroup
1979 || group == float_reggroup);
1980 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
1981 return (group == all_reggroup || group == vector_reggroup
1982 || group == float_reggroup);
1983 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
1984 return group == all_reggroup || group == vector_reggroup;
1985 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
1986 return group == all_reggroup || group == vector_reggroup;
1988 return group == all_reggroup;
1991 /* Implement the "pseudo_register_read_value" gdbarch method. */
1993 static struct value *
1994 aarch64_pseudo_read_value (struct gdbarch *gdbarch,
1995 struct regcache *regcache,
1998 gdb_byte reg_buf[MAX_REGISTER_SIZE];
1999 struct value *result_value;
2002 result_value = allocate_value (register_type (gdbarch, regnum));
2003 VALUE_LVAL (result_value) = lval_register;
2004 VALUE_REGNUM (result_value) = regnum;
2005 buf = value_contents_raw (result_value);
2007 regnum -= gdbarch_num_regs (gdbarch);
2009 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2011 enum register_status status;
2014 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2015 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2016 if (status != REG_VALID)
2017 mark_value_bytes_unavailable (result_value, 0,
2018 TYPE_LENGTH (value_type (result_value)));
2020 memcpy (buf, reg_buf, Q_REGISTER_SIZE);
2021 return result_value;
2024 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2026 enum register_status status;
2029 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2030 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2031 if (status != REG_VALID)
2032 mark_value_bytes_unavailable (result_value, 0,
2033 TYPE_LENGTH (value_type (result_value)));
2035 memcpy (buf, reg_buf, D_REGISTER_SIZE);
2036 return result_value;
2039 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2041 enum register_status status;
2044 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2045 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2046 if (status != REG_VALID)
2047 mark_value_bytes_unavailable (result_value, 0,
2048 TYPE_LENGTH (value_type (result_value)));
2050 memcpy (buf, reg_buf, S_REGISTER_SIZE);
2051 return result_value;
2054 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2056 enum register_status status;
2059 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2060 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2061 if (status != REG_VALID)
2062 mark_value_bytes_unavailable (result_value, 0,
2063 TYPE_LENGTH (value_type (result_value)));
2065 memcpy (buf, reg_buf, H_REGISTER_SIZE);
2066 return result_value;
2069 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2071 enum register_status status;
2074 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2075 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2076 if (status != REG_VALID)
2077 mark_value_bytes_unavailable (result_value, 0,
2078 TYPE_LENGTH (value_type (result_value)));
2080 memcpy (buf, reg_buf, B_REGISTER_SIZE);
2081 return result_value;
2084 gdb_assert_not_reached ("regnum out of bound");
2087 /* Implement the "pseudo_register_write" gdbarch method. */
2090 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2091 int regnum, const gdb_byte *buf)
2093 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2095 /* Ensure the register buffer is zero, we want gdb writes of the
2096 various 'scalar' pseudo registers to behavior like architectural
2097 writes, register width bytes are written the remainder are set to
2099 memset (reg_buf, 0, sizeof (reg_buf));
2101 regnum -= gdbarch_num_regs (gdbarch);
2103 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2105 /* pseudo Q registers */
2108 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2109 memcpy (reg_buf, buf, Q_REGISTER_SIZE);
2110 regcache_raw_write (regcache, v_regnum, reg_buf);
2114 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2116 /* pseudo D registers */
2119 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2120 memcpy (reg_buf, buf, D_REGISTER_SIZE);
2121 regcache_raw_write (regcache, v_regnum, reg_buf);
2125 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2129 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2130 memcpy (reg_buf, buf, S_REGISTER_SIZE);
2131 regcache_raw_write (regcache, v_regnum, reg_buf);
2135 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2137 /* pseudo H registers */
2140 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2141 memcpy (reg_buf, buf, H_REGISTER_SIZE);
2142 regcache_raw_write (regcache, v_regnum, reg_buf);
2146 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2148 /* pseudo B registers */
2151 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2152 memcpy (reg_buf, buf, B_REGISTER_SIZE);
2153 regcache_raw_write (regcache, v_regnum, reg_buf);
2157 gdb_assert_not_reached ("regnum out of bound");
2160 /* Callback function for user_reg_add. */
2162 static struct value *
2163 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2165 const int *reg_p = (const int *) baton;
2167 return value_of_register (*reg_p, frame);
2171 /* Implement the "software_single_step" gdbarch method, needed to
2172 single step through atomic sequences on AArch64. */
2175 aarch64_software_single_step (struct frame_info *frame)
2177 struct gdbarch *gdbarch = get_frame_arch (frame);
2178 struct address_space *aspace = get_frame_address_space (frame);
2179 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2180 const int insn_size = 4;
2181 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2182 CORE_ADDR pc = get_frame_pc (frame);
2183 CORE_ADDR breaks[2] = { -1, -1 };
2185 CORE_ADDR closing_insn = 0;
2186 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2187 byte_order_for_code);
2190 int bc_insn_count = 0; /* Conditional branch instruction count. */
2191 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2194 if (aarch64_decode_insn (insn, &inst, 1) != 0)
2197 /* Look for a Load Exclusive instruction which begins the sequence. */
2198 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2201 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2204 insn = read_memory_unsigned_integer (loc, insn_size,
2205 byte_order_for_code);
2207 if (aarch64_decode_insn (insn, &inst, 1) != 0)
2209 /* Check if the instruction is a conditional branch. */
2210 if (inst.opcode->iclass == condbranch)
2212 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2214 if (bc_insn_count >= 1)
2217 /* It is, so we'll try to set a breakpoint at the destination. */
2218 breaks[1] = loc + inst.operands[0].imm.value;
2224 /* Look for the Store Exclusive which closes the atomic sequence. */
2225 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2232 /* We didn't find a closing Store Exclusive instruction, fall back. */
2236 /* Insert breakpoint after the end of the atomic sequence. */
2237 breaks[0] = loc + insn_size;
2239 /* Check for duplicated breakpoints, and also check that the second
2240 breakpoint is not within the atomic sequence. */
2242 && (breaks[1] == breaks[0]
2243 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2244 last_breakpoint = 0;
2246 /* Insert the breakpoint at the end of the sequence, and one at the
2247 destination of the conditional branch, if it exists. */
2248 for (index = 0; index <= last_breakpoint; index++)
2249 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2254 struct displaced_step_closure
2256 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2257 is being displaced stepping. */
2260 /* PC adjustment offset after displaced stepping. */
2264 /* Data when visiting instructions for displaced stepping. */
2266 struct aarch64_displaced_step_data
2268 struct aarch64_insn_data base;
2270 /* The address where the instruction will be executed at. */
2272 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2273 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2274 /* Number of instructions in INSN_BUF. */
2275 unsigned insn_count;
2276 /* Registers when doing displaced stepping. */
2277 struct regcache *regs;
2279 struct displaced_step_closure *dsc;
2282 /* Implementation of aarch64_insn_visitor method "b". */
2285 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2286 struct aarch64_insn_data *data)
2288 struct aarch64_displaced_step_data *dsd
2289 = (struct aarch64_displaced_step_data *) data;
2290 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2292 if (can_encode_int32 (new_offset, 28))
2294 /* Emit B rather than BL, because executing BL on a new address
2295 will get the wrong address into LR. In order to avoid this,
2296 we emit B, and update LR if the instruction is BL. */
2297 emit_b (dsd->insn_buf, 0, new_offset);
2303 emit_nop (dsd->insn_buf);
2305 dsd->dsc->pc_adjust = offset;
2311 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2312 data->insn_addr + 4);
2316 /* Implementation of aarch64_insn_visitor method "b_cond". */
2319 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2320 struct aarch64_insn_data *data)
2322 struct aarch64_displaced_step_data *dsd
2323 = (struct aarch64_displaced_step_data *) data;
2324 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2326 /* GDB has to fix up PC after displaced step this instruction
2327 differently according to the condition is true or false. Instead
2328 of checking COND against conditional flags, we can use
2329 the following instructions, and GDB can tell how to fix up PC
2330 according to the PC value.
2332 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2338 emit_bcond (dsd->insn_buf, cond, 8);
2340 dsd->dsc->pc_adjust = offset;
2341 dsd->insn_count = 1;
2344 /* Dynamically allocate a new register. If we know the register
2345 statically, we should make it a global as above instead of using this
2348 static struct aarch64_register
2349 aarch64_register (unsigned num, int is64)
2351 return (struct aarch64_register) { num, is64 };
2354 /* Implementation of aarch64_insn_visitor method "cb". */
2357 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2358 const unsigned rn, int is64,
2359 struct aarch64_insn_data *data)
2361 struct aarch64_displaced_step_data *dsd
2362 = (struct aarch64_displaced_step_data *) data;
2363 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2365 /* The offset is out of range for a compare and branch
2366 instruction. We can use the following instructions instead:
2368 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2373 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2374 dsd->insn_count = 1;
2376 dsd->dsc->pc_adjust = offset;
2379 /* Implementation of aarch64_insn_visitor method "tb". */
2382 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2383 const unsigned rt, unsigned bit,
2384 struct aarch64_insn_data *data)
2386 struct aarch64_displaced_step_data *dsd
2387 = (struct aarch64_displaced_step_data *) data;
2388 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2390 /* The offset is out of range for a test bit and branch
2391 instruction We can use the following instructions instead:
2393 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2399 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2400 dsd->insn_count = 1;
2402 dsd->dsc->pc_adjust = offset;
2405 /* Implementation of aarch64_insn_visitor method "adr". */
2408 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2409 const int is_adrp, struct aarch64_insn_data *data)
2411 struct aarch64_displaced_step_data *dsd
2412 = (struct aarch64_displaced_step_data *) data;
2413 /* We know exactly the address the ADR{P,} instruction will compute.
2414 We can just write it to the destination register. */
2415 CORE_ADDR address = data->insn_addr + offset;
2419 /* Clear the lower 12 bits of the offset to get the 4K page. */
2420 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2424 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2427 dsd->dsc->pc_adjust = 4;
2428 emit_nop (dsd->insn_buf);
2429 dsd->insn_count = 1;
2432 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2435 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2436 const unsigned rt, const int is64,
2437 struct aarch64_insn_data *data)
2439 struct aarch64_displaced_step_data *dsd
2440 = (struct aarch64_displaced_step_data *) data;
2441 CORE_ADDR address = data->insn_addr + offset;
2442 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2444 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2448 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2449 aarch64_register (rt, 1), zero);
2451 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2452 aarch64_register (rt, 1), zero);
2454 dsd->dsc->pc_adjust = 4;
2457 /* Implementation of aarch64_insn_visitor method "others". */
2460 aarch64_displaced_step_others (const uint32_t insn,
2461 struct aarch64_insn_data *data)
2463 struct aarch64_displaced_step_data *dsd
2464 = (struct aarch64_displaced_step_data *) data;
2466 aarch64_emit_insn (dsd->insn_buf, insn);
2467 dsd->insn_count = 1;
2469 if ((insn & 0xfffffc1f) == 0xd65f0000)
2472 dsd->dsc->pc_adjust = 0;
2475 dsd->dsc->pc_adjust = 4;
2478 static const struct aarch64_insn_visitor visitor =
2480 aarch64_displaced_step_b,
2481 aarch64_displaced_step_b_cond,
2482 aarch64_displaced_step_cb,
2483 aarch64_displaced_step_tb,
2484 aarch64_displaced_step_adr,
2485 aarch64_displaced_step_ldr_literal,
2486 aarch64_displaced_step_others,
2489 /* Implement the "displaced_step_copy_insn" gdbarch method. */
2491 struct displaced_step_closure *
2492 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
2493 CORE_ADDR from, CORE_ADDR to,
2494 struct regcache *regs)
2496 struct displaced_step_closure *dsc = NULL;
2497 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2498 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
2499 struct aarch64_displaced_step_data dsd;
2502 if (aarch64_decode_insn (insn, &inst, 1) != 0)
2505 /* Look for a Load Exclusive instruction which begins the sequence. */
2506 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
2508 /* We can't displaced step atomic sequences. */
2512 dsc = XCNEW (struct displaced_step_closure);
2513 dsd.base.insn_addr = from;
2518 aarch64_relocate_instruction (insn, &visitor,
2519 (struct aarch64_insn_data *) &dsd);
2520 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
2522 if (dsd.insn_count != 0)
2526 /* Instruction can be relocated to scratch pad. Copy
2527 relocated instruction(s) there. */
2528 for (i = 0; i < dsd.insn_count; i++)
2530 if (debug_displaced)
2532 debug_printf ("displaced: writing insn ");
2533 debug_printf ("%.8x", dsd.insn_buf[i]);
2534 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
2536 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
2537 (ULONGEST) dsd.insn_buf[i]);
2549 /* Implement the "displaced_step_fixup" gdbarch method. */
2552 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
2553 struct displaced_step_closure *dsc,
2554 CORE_ADDR from, CORE_ADDR to,
2555 struct regcache *regs)
2561 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
2564 /* Condition is true. */
2566 else if (pc - to == 4)
2568 /* Condition is false. */
2572 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
2575 if (dsc->pc_adjust != 0)
2577 if (debug_displaced)
2579 debug_printf ("displaced: fixup: set PC to %s:%d\n",
2580 paddress (gdbarch, from), dsc->pc_adjust);
2582 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
2583 from + dsc->pc_adjust);
2587 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
2590 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
2591 struct displaced_step_closure *closure)
2596 /* Initialize the current architecture based on INFO. If possible,
2597 re-use an architecture from ARCHES, which is a list of
2598 architectures already created during this debugging session.
2600 Called e.g. at program startup, when reading a core file, and when
2601 reading a binary file. */
2603 static struct gdbarch *
2604 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2606 struct gdbarch_tdep *tdep;
2607 struct gdbarch *gdbarch;
2608 struct gdbarch_list *best_arch;
2609 struct tdesc_arch_data *tdesc_data = NULL;
2610 const struct target_desc *tdesc = info.target_desc;
2612 int have_fpa_registers = 1;
2614 const struct tdesc_feature *feature;
2616 int num_pseudo_regs = 0;
2618 /* Ensure we always have a target descriptor. */
2619 if (!tdesc_has_registers (tdesc))
2620 tdesc = tdesc_aarch64;
2624 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2626 if (feature == NULL)
2629 tdesc_data = tdesc_data_alloc ();
2631 /* Validate the descriptor provides the mandatory core R registers
2632 and allocate their numbers. */
2633 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2635 tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
2636 aarch64_r_register_names[i]);
2638 num_regs = AARCH64_X0_REGNUM + i;
2640 /* Look for the V registers. */
2641 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2644 /* Validate the descriptor provides the mandatory V registers
2645 and allocate their numbers. */
2646 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2648 tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
2649 aarch64_v_register_names[i]);
2651 num_regs = AARCH64_V0_REGNUM + i;
2653 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
2654 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
2655 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
2656 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
2657 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
2662 tdesc_data_cleanup (tdesc_data);
2666 /* AArch64 code is always little-endian. */
2667 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
2669 /* If there is already a candidate, use it. */
2670 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2672 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2674 /* Found a match. */
2678 if (best_arch != NULL)
2680 if (tdesc_data != NULL)
2681 tdesc_data_cleanup (tdesc_data);
2682 return best_arch->gdbarch;
2685 tdep = XCNEW (struct gdbarch_tdep);
2686 gdbarch = gdbarch_alloc (&info, tdep);
2688 /* This should be low enough for everything. */
2689 tdep->lowest_pc = 0x20;
2690 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2691 tdep->jb_elt_size = 8;
2693 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
2694 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
2696 /* Frame handling. */
2697 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
2698 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
2699 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
2701 /* Advance PC across function entry code. */
2702 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
2704 /* The stack grows downward. */
2705 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2707 /* Breakpoint manipulation. */
2708 set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc);
2709 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2710 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
2712 /* Information about registers, etc. */
2713 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
2714 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
2715 set_gdbarch_num_regs (gdbarch, num_regs);
2717 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
2718 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
2719 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
2720 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
2721 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
2722 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2723 aarch64_pseudo_register_reggroup_p);
2726 set_gdbarch_short_bit (gdbarch, 16);
2727 set_gdbarch_int_bit (gdbarch, 32);
2728 set_gdbarch_float_bit (gdbarch, 32);
2729 set_gdbarch_double_bit (gdbarch, 64);
2730 set_gdbarch_long_double_bit (gdbarch, 128);
2731 set_gdbarch_long_bit (gdbarch, 64);
2732 set_gdbarch_long_long_bit (gdbarch, 64);
2733 set_gdbarch_ptr_bit (gdbarch, 64);
2734 set_gdbarch_char_signed (gdbarch, 0);
2735 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2736 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2737 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2739 /* Internal <-> external register number maps. */
2740 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
2742 /* Returning results. */
2743 set_gdbarch_return_value (gdbarch, aarch64_return_value);
2746 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
2748 /* Virtual tables. */
2749 set_gdbarch_vbit_in_delta (gdbarch, 1);
2751 /* Hook in the ABI-specific overrides, if they have been registered. */
2752 info.target_desc = tdesc;
2753 info.tdep_info = (void *) tdesc_data;
2754 gdbarch_init_osabi (info, gdbarch);
2756 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
2758 /* Add some default predicates. */
2759 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
2760 dwarf2_append_unwinders (gdbarch);
2761 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
2763 frame_base_set_default (gdbarch, &aarch64_normal_base);
2765 /* Now we have tuned the configuration, set a few final things,
2766 based on what the OS ABI has told us. */
2768 if (tdep->jb_pc >= 0)
2769 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
2771 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
2773 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2775 /* Add standard register aliases. */
2776 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
2777 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
2778 value_of_aarch64_user_reg,
2779 &aarch64_register_aliases[i].regnum);
2785 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2792 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
2793 paddress (gdbarch, tdep->lowest_pc));
2796 /* Suppress warning from -Wmissing-prototypes. */
2797 extern initialize_file_ftype _initialize_aarch64_tdep;
2800 _initialize_aarch64_tdep (void)
2802 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
2805 initialize_tdesc_aarch64 ();
2807 /* Debug this file's internals. */
2808 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
2809 Set AArch64 debugging."), _("\
2810 Show AArch64 debugging."), _("\
2811 When on, AArch64 specific debugging is enabled."),
2814 &setdebuglist, &showdebuglist);
2817 /* AArch64 process record-replay related structures, defines etc. */
2819 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
2822 unsigned int reg_len = LENGTH; \
2825 REGS = XNEWVEC (uint32_t, reg_len); \
2826 memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
2831 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
2834 unsigned int mem_len = LENGTH; \
2837 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
2838 memcpy(&MEMS->len, &RECORD_BUF[0], \
2839 sizeof(struct aarch64_mem_r) * LENGTH); \
2844 /* AArch64 record/replay structures and enumerations. */
2846 struct aarch64_mem_r
2848 uint64_t len; /* Record length. */
2849 uint64_t addr; /* Memory address. */
2852 enum aarch64_record_result
2854 AARCH64_RECORD_SUCCESS,
2855 AARCH64_RECORD_FAILURE,
2856 AARCH64_RECORD_UNSUPPORTED,
2857 AARCH64_RECORD_UNKNOWN
2860 typedef struct insn_decode_record_t
2862 struct gdbarch *gdbarch;
2863 struct regcache *regcache;
2864 CORE_ADDR this_addr; /* Address of insn to be recorded. */
2865 uint32_t aarch64_insn; /* Insn to be recorded. */
2866 uint32_t mem_rec_count; /* Count of memory records. */
2867 uint32_t reg_rec_count; /* Count of register records. */
2868 uint32_t *aarch64_regs; /* Registers to be recorded. */
2869 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
2870 } insn_decode_record;
2872 /* Record handler for data processing - register instructions. */
2875 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
2877 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
2878 uint32_t record_buf[4];
2880 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
2881 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
2882 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
2884 if (!bit (aarch64_insn_r->aarch64_insn, 28))
2888 /* Logical (shifted register). */
2889 if (insn_bits24_27 == 0x0a)
2890 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
2892 else if (insn_bits24_27 == 0x0b)
2893 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
2895 return AARCH64_RECORD_UNKNOWN;
2897 record_buf[0] = reg_rd;
2898 aarch64_insn_r->reg_rec_count = 1;
2900 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
2904 if (insn_bits24_27 == 0x0b)
2906 /* Data-processing (3 source). */
2907 record_buf[0] = reg_rd;
2908 aarch64_insn_r->reg_rec_count = 1;
2910 else if (insn_bits24_27 == 0x0a)
2912 if (insn_bits21_23 == 0x00)
2914 /* Add/subtract (with carry). */
2915 record_buf[0] = reg_rd;
2916 aarch64_insn_r->reg_rec_count = 1;
2917 if (bit (aarch64_insn_r->aarch64_insn, 29))
2919 record_buf[1] = AARCH64_CPSR_REGNUM;
2920 aarch64_insn_r->reg_rec_count = 2;
2923 else if (insn_bits21_23 == 0x02)
2925 /* Conditional compare (register) and conditional compare
2926 (immediate) instructions. */
2927 record_buf[0] = AARCH64_CPSR_REGNUM;
2928 aarch64_insn_r->reg_rec_count = 1;
2930 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
2932 /* CConditional select. */
2933 /* Data-processing (2 source). */
2934 /* Data-processing (1 source). */
2935 record_buf[0] = reg_rd;
2936 aarch64_insn_r->reg_rec_count = 1;
2939 return AARCH64_RECORD_UNKNOWN;
2943 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
2945 return AARCH64_RECORD_SUCCESS;
2948 /* Record handler for data processing - immediate instructions. */
2951 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
2953 uint8_t reg_rd, insn_bit28, insn_bit23, insn_bits24_27, setflags;
2954 uint32_t record_buf[4];
2956 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
2957 insn_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
2958 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
2959 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
2961 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
2962 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
2963 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
2965 record_buf[0] = reg_rd;
2966 aarch64_insn_r->reg_rec_count = 1;
2968 else if (insn_bits24_27 == 0x01)
2970 /* Add/Subtract (immediate). */
2971 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
2972 record_buf[0] = reg_rd;
2973 aarch64_insn_r->reg_rec_count = 1;
2975 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
2977 else if (insn_bits24_27 == 0x02 && !insn_bit23)
2979 /* Logical (immediate). */
2980 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
2981 record_buf[0] = reg_rd;
2982 aarch64_insn_r->reg_rec_count = 1;
2984 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
2987 return AARCH64_RECORD_UNKNOWN;
2989 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
2991 return AARCH64_RECORD_SUCCESS;
2994 /* Record handler for branch, exception generation and system instructions. */
2997 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
2999 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3000 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3001 uint32_t record_buf[4];
3003 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3004 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3005 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3007 if (insn_bits28_31 == 0x0d)
3009 /* Exception generation instructions. */
3010 if (insn_bits24_27 == 0x04)
3012 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3013 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3014 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3016 ULONGEST svc_number;
3018 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3020 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3024 return AARCH64_RECORD_UNSUPPORTED;
3026 /* System instructions. */
3027 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3029 uint32_t reg_rt, reg_crn;
3031 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3032 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3034 /* Record rt in case of sysl and mrs instructions. */
3035 if (bit (aarch64_insn_r->aarch64_insn, 21))
3037 record_buf[0] = reg_rt;
3038 aarch64_insn_r->reg_rec_count = 1;
3040 /* Record cpsr for hint and msr(immediate) instructions. */
3041 else if (reg_crn == 0x02 || reg_crn == 0x04)
3043 record_buf[0] = AARCH64_CPSR_REGNUM;
3044 aarch64_insn_r->reg_rec_count = 1;
3047 /* Unconditional branch (register). */
3048 else if((insn_bits24_27 & 0x0e) == 0x06)
3050 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3051 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3052 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3055 return AARCH64_RECORD_UNKNOWN;
3057 /* Unconditional branch (immediate). */
3058 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3060 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3061 if (bit (aarch64_insn_r->aarch64_insn, 31))
3062 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3065 /* Compare & branch (immediate), Test & branch (immediate) and
3066 Conditional branch (immediate). */
3067 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3069 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3071 return AARCH64_RECORD_SUCCESS;
3074 /* Record handler for advanced SIMD load and store instructions. */
3077 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3080 uint64_t addr_offset = 0;
3081 uint32_t record_buf[24];
3082 uint64_t record_buf_mem[24];
3083 uint32_t reg_rn, reg_rt;
3084 uint32_t reg_index = 0, mem_index = 0;
3085 uint8_t opcode_bits, size_bits;
3087 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3088 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3089 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3090 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3091 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3094 debug_printf ("Process record: Advanced SIMD load/store\n");
3096 /* Load/store single structure. */
3097 if (bit (aarch64_insn_r->aarch64_insn, 24))
3099 uint8_t sindex, scale, selem, esize, replicate = 0;
3100 scale = opcode_bits >> 2;
3101 selem = ((opcode_bits & 0x02) |
3102 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3106 if (size_bits & 0x01)
3107 return AARCH64_RECORD_UNKNOWN;
3110 if ((size_bits >> 1) & 0x01)
3111 return AARCH64_RECORD_UNKNOWN;
3112 if (size_bits & 0x01)
3114 if (!((opcode_bits >> 1) & 0x01))
3117 return AARCH64_RECORD_UNKNOWN;
3121 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3128 return AARCH64_RECORD_UNKNOWN;
3134 for (sindex = 0; sindex < selem; sindex++)
3136 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3137 reg_rt = (reg_rt + 1) % 32;
3141 for (sindex = 0; sindex < selem; sindex++)
3142 if (bit (aarch64_insn_r->aarch64_insn, 22))
3143 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3146 record_buf_mem[mem_index++] = esize / 8;
3147 record_buf_mem[mem_index++] = address + addr_offset;
3149 addr_offset = addr_offset + (esize / 8);
3150 reg_rt = (reg_rt + 1) % 32;
3153 /* Load/store multiple structure. */
3156 uint8_t selem, esize, rpt, elements;
3157 uint8_t eindex, rindex;
3159 esize = 8 << size_bits;
3160 if (bit (aarch64_insn_r->aarch64_insn, 30))
3161 elements = 128 / esize;
3163 elements = 64 / esize;
3165 switch (opcode_bits)
3167 /*LD/ST4 (4 Registers). */
3172 /*LD/ST1 (4 Registers). */
3177 /*LD/ST3 (3 Registers). */
3182 /*LD/ST1 (3 Registers). */
3187 /*LD/ST1 (1 Register). */
3192 /*LD/ST2 (2 Registers). */
3197 /*LD/ST1 (2 Registers). */
3203 return AARCH64_RECORD_UNSUPPORTED;
3206 for (rindex = 0; rindex < rpt; rindex++)
3207 for (eindex = 0; eindex < elements; eindex++)
3209 uint8_t reg_tt, sindex;
3210 reg_tt = (reg_rt + rindex) % 32;
3211 for (sindex = 0; sindex < selem; sindex++)
3213 if (bit (aarch64_insn_r->aarch64_insn, 22))
3214 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3217 record_buf_mem[mem_index++] = esize / 8;
3218 record_buf_mem[mem_index++] = address + addr_offset;
3220 addr_offset = addr_offset + (esize / 8);
3221 reg_tt = (reg_tt + 1) % 32;
3226 if (bit (aarch64_insn_r->aarch64_insn, 23))
3227 record_buf[reg_index++] = reg_rn;
3229 aarch64_insn_r->reg_rec_count = reg_index;
3230 aarch64_insn_r->mem_rec_count = mem_index / 2;
3231 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3233 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3235 return AARCH64_RECORD_SUCCESS;
3238 /* Record handler for load and store instructions. */
3241 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3243 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3244 uint8_t insn_bit23, insn_bit21;
3245 uint8_t opc, size_bits, ld_flag, vector_flag;
3246 uint32_t reg_rn, reg_rt, reg_rt2;
3247 uint64_t datasize, offset;
3248 uint32_t record_buf[8];
3249 uint64_t record_buf_mem[8];
3252 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3253 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3254 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3255 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3256 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3257 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3258 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3259 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3260 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3261 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3262 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3264 /* Load/store exclusive. */
3265 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3268 debug_printf ("Process record: load/store exclusive\n");
3272 record_buf[0] = reg_rt;
3273 aarch64_insn_r->reg_rec_count = 1;
3276 record_buf[1] = reg_rt2;
3277 aarch64_insn_r->reg_rec_count = 2;
3283 datasize = (8 << size_bits) * 2;
3285 datasize = (8 << size_bits);
3286 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3288 record_buf_mem[0] = datasize / 8;
3289 record_buf_mem[1] = address;
3290 aarch64_insn_r->mem_rec_count = 1;
3293 /* Save register rs. */
3294 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3295 aarch64_insn_r->reg_rec_count = 1;
3299 /* Load register (literal) instructions decoding. */
3300 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3303 debug_printf ("Process record: load register (literal)\n");
3305 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3307 record_buf[0] = reg_rt;
3308 aarch64_insn_r->reg_rec_count = 1;
3310 /* All types of load/store pair instructions decoding. */
3311 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3314 debug_printf ("Process record: load/store pair\n");
3320 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3321 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3325 record_buf[0] = reg_rt;
3326 record_buf[1] = reg_rt2;
3328 aarch64_insn_r->reg_rec_count = 2;
3333 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3335 size_bits = size_bits >> 1;
3336 datasize = 8 << (2 + size_bits);
3337 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3338 offset = offset << (2 + size_bits);
3339 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3341 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3343 if (imm7_off & 0x40)
3344 address = address - offset;
3346 address = address + offset;
3349 record_buf_mem[0] = datasize / 8;
3350 record_buf_mem[1] = address;
3351 record_buf_mem[2] = datasize / 8;
3352 record_buf_mem[3] = address + (datasize / 8);
3353 aarch64_insn_r->mem_rec_count = 2;
3355 if (bit (aarch64_insn_r->aarch64_insn, 23))
3356 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3358 /* Load/store register (unsigned immediate) instructions. */
3359 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
3361 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3368 if (size_bits != 0x03)
3371 return AARCH64_RECORD_UNKNOWN;
3375 debug_printf ("Process record: load/store (unsigned immediate):"
3376 " size %x V %d opc %x\n", size_bits, vector_flag,
3382 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
3383 datasize = 8 << size_bits;
3384 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3386 offset = offset << size_bits;
3387 address = address + offset;
3389 record_buf_mem[0] = datasize >> 3;
3390 record_buf_mem[1] = address;
3391 aarch64_insn_r->mem_rec_count = 1;
3396 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3398 record_buf[0] = reg_rt;
3399 aarch64_insn_r->reg_rec_count = 1;
3402 /* Load/store register (register offset) instructions. */
3403 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3404 && insn_bits10_11 == 0x02 && insn_bit21)
3407 debug_printf ("Process record: load/store (register offset)\n");
3408 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3415 if (size_bits != 0x03)
3418 return AARCH64_RECORD_UNKNOWN;
3422 uint64_t reg_rm_val;
3423 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
3424 bits (aarch64_insn_r->aarch64_insn, 16, 20), ®_rm_val);
3425 if (bit (aarch64_insn_r->aarch64_insn, 12))
3426 offset = reg_rm_val << size_bits;
3428 offset = reg_rm_val;
3429 datasize = 8 << size_bits;
3430 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3432 address = address + offset;
3433 record_buf_mem[0] = datasize >> 3;
3434 record_buf_mem[1] = address;
3435 aarch64_insn_r->mem_rec_count = 1;
3440 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3442 record_buf[0] = reg_rt;
3443 aarch64_insn_r->reg_rec_count = 1;
3446 /* Load/store register (immediate and unprivileged) instructions. */
3447 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3452 debug_printf ("Process record: load/store "
3453 "(immediate and unprivileged)\n");
3455 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3462 if (size_bits != 0x03)
3465 return AARCH64_RECORD_UNKNOWN;
3470 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
3471 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
3472 datasize = 8 << size_bits;
3473 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3475 if (insn_bits10_11 != 0x01)
3477 if (imm9_off & 0x0100)
3478 address = address - offset;
3480 address = address + offset;
3482 record_buf_mem[0] = datasize >> 3;
3483 record_buf_mem[1] = address;
3484 aarch64_insn_r->mem_rec_count = 1;
3489 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3491 record_buf[0] = reg_rt;
3492 aarch64_insn_r->reg_rec_count = 1;
3494 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
3495 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3497 /* Advanced SIMD load/store instructions. */
3499 return aarch64_record_asimd_load_store (aarch64_insn_r);
3501 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3503 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3505 return AARCH64_RECORD_SUCCESS;
3508 /* Record handler for data processing SIMD and floating point instructions. */
3511 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
3513 uint8_t insn_bit21, opcode, rmode, reg_rd;
3514 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
3515 uint8_t insn_bits11_14;
3516 uint32_t record_buf[2];
3518 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3519 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3520 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3521 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3522 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
3523 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
3524 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
3525 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3526 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3529 debug_printf ("Process record: data processing SIMD/FP: ");
3531 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
3533 /* Floating point - fixed point conversion instructions. */
3537 debug_printf ("FP - fixed point conversion");
3539 if ((opcode >> 1) == 0x0 && rmode == 0x03)
3540 record_buf[0] = reg_rd;
3542 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3544 /* Floating point - conditional compare instructions. */
3545 else if (insn_bits10_11 == 0x01)
3548 debug_printf ("FP - conditional compare");
3550 record_buf[0] = AARCH64_CPSR_REGNUM;
3552 /* Floating point - data processing (2-source) and
3553 conditional select instructions. */
3554 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
3557 debug_printf ("FP - DP (2-source)");
3559 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3561 else if (insn_bits10_11 == 0x00)
3563 /* Floating point - immediate instructions. */
3564 if ((insn_bits12_15 & 0x01) == 0x01
3565 || (insn_bits12_15 & 0x07) == 0x04)
3568 debug_printf ("FP - immediate");
3569 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3571 /* Floating point - compare instructions. */
3572 else if ((insn_bits12_15 & 0x03) == 0x02)
3575 debug_printf ("FP - immediate");
3576 record_buf[0] = AARCH64_CPSR_REGNUM;
3578 /* Floating point - integer conversions instructions. */
3579 else if (insn_bits12_15 == 0x00)
3581 /* Convert float to integer instruction. */
3582 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
3585 debug_printf ("float to int conversion");
3587 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3589 /* Convert integer to float instruction. */
3590 else if ((opcode >> 1) == 0x01 && !rmode)
3593 debug_printf ("int to float conversion");
3595 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3597 /* Move float to integer instruction. */
3598 else if ((opcode >> 1) == 0x03)
3601 debug_printf ("move float to int");
3603 if (!(opcode & 0x01))
3604 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3606 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3609 return AARCH64_RECORD_UNKNOWN;
3612 return AARCH64_RECORD_UNKNOWN;
3615 return AARCH64_RECORD_UNKNOWN;
3617 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
3620 debug_printf ("SIMD copy");
3622 /* Advanced SIMD copy instructions. */
3623 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
3624 && !bit (aarch64_insn_r->aarch64_insn, 15)
3625 && bit (aarch64_insn_r->aarch64_insn, 10))
3627 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
3628 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3630 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3633 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3635 /* All remaining floating point or advanced SIMD instructions. */
3639 debug_printf ("all remain");
3641 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3645 debug_printf ("\n");
3647 aarch64_insn_r->reg_rec_count++;
3648 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
3649 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3651 return AARCH64_RECORD_SUCCESS;
3654 /* Decodes insns type and invokes its record handler. */
3657 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
3659 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
3661 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
3662 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
3663 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
3664 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
3666 /* Data processing - immediate instructions. */
3667 if (!ins_bit26 && !ins_bit27 && ins_bit28)
3668 return aarch64_record_data_proc_imm (aarch64_insn_r);
3670 /* Branch, exception generation and system instructions. */
3671 if (ins_bit26 && !ins_bit27 && ins_bit28)
3672 return aarch64_record_branch_except_sys (aarch64_insn_r);
3674 /* Load and store instructions. */
3675 if (!ins_bit25 && ins_bit27)
3676 return aarch64_record_load_store (aarch64_insn_r);
3678 /* Data processing - register instructions. */
3679 if (ins_bit25 && !ins_bit26 && ins_bit27)
3680 return aarch64_record_data_proc_reg (aarch64_insn_r);
3682 /* Data processing - SIMD and floating point instructions. */
3683 if (ins_bit25 && ins_bit26 && ins_bit27)
3684 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
3686 return AARCH64_RECORD_UNSUPPORTED;
3689 /* Cleans up local record registers and memory allocations. */
3692 deallocate_reg_mem (insn_decode_record *record)
3694 xfree (record->aarch64_regs);
3695 xfree (record->aarch64_mems);
3698 /* Parse the current instruction and record the values of the registers and
3699 memory that will be changed in current instruction to record_arch_list
3700 return -1 if something is wrong. */
3703 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3704 CORE_ADDR insn_addr)
3706 uint32_t rec_no = 0;
3707 uint8_t insn_size = 4;
3709 ULONGEST t_bit = 0, insn_id = 0;
3710 gdb_byte buf[insn_size];
3711 insn_decode_record aarch64_record;
3713 memset (&buf[0], 0, insn_size);
3714 memset (&aarch64_record, 0, sizeof (insn_decode_record));
3715 target_read_memory (insn_addr, &buf[0], insn_size);
3716 aarch64_record.aarch64_insn
3717 = (uint32_t) extract_unsigned_integer (&buf[0],
3719 gdbarch_byte_order (gdbarch));
3720 aarch64_record.regcache = regcache;
3721 aarch64_record.this_addr = insn_addr;
3722 aarch64_record.gdbarch = gdbarch;
3724 ret = aarch64_record_decode_insn_handler (&aarch64_record);
3725 if (ret == AARCH64_RECORD_UNSUPPORTED)
3727 printf_unfiltered (_("Process record does not support instruction "
3728 "0x%0x at address %s.\n"),
3729 aarch64_record.aarch64_insn,
3730 paddress (gdbarch, insn_addr));
3736 /* Record registers. */
3737 record_full_arch_list_add_reg (aarch64_record.regcache,
3739 /* Always record register CPSR. */
3740 record_full_arch_list_add_reg (aarch64_record.regcache,
3741 AARCH64_CPSR_REGNUM);
3742 if (aarch64_record.aarch64_regs)
3743 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
3744 if (record_full_arch_list_add_reg (aarch64_record.regcache,
3745 aarch64_record.aarch64_regs[rec_no]))
3748 /* Record memories. */
3749 if (aarch64_record.aarch64_mems)
3750 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
3751 if (record_full_arch_list_add_mem
3752 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
3753 aarch64_record.aarch64_mems[rec_no].len))
3756 if (record_full_arch_list_add_end ())
3760 deallocate_reg_mem (&aarch64_record);