1 /* Common target dependent code for GDB on AArch64 systems.
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "reggroups.h"
31 #include "arch-utils.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "trad-frame.h"
38 #include "dwarf2-frame.h"
40 #include "prologue-value.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
47 #include "common/selftest.h"
49 #include "aarch64-tdep.h"
50 #include "aarch64-ravenscar-thread.h"
53 #include "elf/aarch64.h"
55 #include "common/vec.h"
58 #include "record-full.h"
59 #include "arch/aarch64-insn.h"
61 #include "opcode/aarch64.h"
64 #define submask(x) ((1L << ((x) + 1)) - 1)
65 #define bit(obj,st) (((obj) >> (st)) & 1)
66 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
68 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
70 #define HA_MAX_NUM_FLDS 4
72 /* All possible aarch64 target descriptors. */
73 struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
75 /* The standard register names, and all the valid aliases for them. */
78 const char *const name;
80 } aarch64_register_aliases[] =
82 /* 64-bit register names. */
83 {"fp", AARCH64_FP_REGNUM},
84 {"lr", AARCH64_LR_REGNUM},
85 {"sp", AARCH64_SP_REGNUM},
87 /* 32-bit register names. */
88 {"w0", AARCH64_X0_REGNUM + 0},
89 {"w1", AARCH64_X0_REGNUM + 1},
90 {"w2", AARCH64_X0_REGNUM + 2},
91 {"w3", AARCH64_X0_REGNUM + 3},
92 {"w4", AARCH64_X0_REGNUM + 4},
93 {"w5", AARCH64_X0_REGNUM + 5},
94 {"w6", AARCH64_X0_REGNUM + 6},
95 {"w7", AARCH64_X0_REGNUM + 7},
96 {"w8", AARCH64_X0_REGNUM + 8},
97 {"w9", AARCH64_X0_REGNUM + 9},
98 {"w10", AARCH64_X0_REGNUM + 10},
99 {"w11", AARCH64_X0_REGNUM + 11},
100 {"w12", AARCH64_X0_REGNUM + 12},
101 {"w13", AARCH64_X0_REGNUM + 13},
102 {"w14", AARCH64_X0_REGNUM + 14},
103 {"w15", AARCH64_X0_REGNUM + 15},
104 {"w16", AARCH64_X0_REGNUM + 16},
105 {"w17", AARCH64_X0_REGNUM + 17},
106 {"w18", AARCH64_X0_REGNUM + 18},
107 {"w19", AARCH64_X0_REGNUM + 19},
108 {"w20", AARCH64_X0_REGNUM + 20},
109 {"w21", AARCH64_X0_REGNUM + 21},
110 {"w22", AARCH64_X0_REGNUM + 22},
111 {"w23", AARCH64_X0_REGNUM + 23},
112 {"w24", AARCH64_X0_REGNUM + 24},
113 {"w25", AARCH64_X0_REGNUM + 25},
114 {"w26", AARCH64_X0_REGNUM + 26},
115 {"w27", AARCH64_X0_REGNUM + 27},
116 {"w28", AARCH64_X0_REGNUM + 28},
117 {"w29", AARCH64_X0_REGNUM + 29},
118 {"w30", AARCH64_X0_REGNUM + 30},
121 {"ip0", AARCH64_X0_REGNUM + 16},
122 {"ip1", AARCH64_X0_REGNUM + 17}
125 /* The required core 'R' registers. */
126 static const char *const aarch64_r_register_names[] =
128 /* These registers must appear in consecutive RAW register number
129 order and they must begin with AARCH64_X0_REGNUM! */
130 "x0", "x1", "x2", "x3",
131 "x4", "x5", "x6", "x7",
132 "x8", "x9", "x10", "x11",
133 "x12", "x13", "x14", "x15",
134 "x16", "x17", "x18", "x19",
135 "x20", "x21", "x22", "x23",
136 "x24", "x25", "x26", "x27",
137 "x28", "x29", "x30", "sp",
141 /* The FP/SIMD 'V' registers. */
142 static const char *const aarch64_v_register_names[] =
144 /* These registers must appear in consecutive RAW register number
145 order and they must begin with AARCH64_V0_REGNUM! */
146 "v0", "v1", "v2", "v3",
147 "v4", "v5", "v6", "v7",
148 "v8", "v9", "v10", "v11",
149 "v12", "v13", "v14", "v15",
150 "v16", "v17", "v18", "v19",
151 "v20", "v21", "v22", "v23",
152 "v24", "v25", "v26", "v27",
153 "v28", "v29", "v30", "v31",
158 /* The SVE 'Z' and 'P' registers. */
159 static const char *const aarch64_sve_register_names[] =
161 /* These registers must appear in consecutive RAW register number
162 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
163 "z0", "z1", "z2", "z3",
164 "z4", "z5", "z6", "z7",
165 "z8", "z9", "z10", "z11",
166 "z12", "z13", "z14", "z15",
167 "z16", "z17", "z18", "z19",
168 "z20", "z21", "z22", "z23",
169 "z24", "z25", "z26", "z27",
170 "z28", "z29", "z30", "z31",
172 "p0", "p1", "p2", "p3",
173 "p4", "p5", "p6", "p7",
174 "p8", "p9", "p10", "p11",
175 "p12", "p13", "p14", "p15",
179 static const char *const aarch64_pauth_register_names[] =
181 /* Authentication mask for data pointer. */
183 /* Authentication mask for code pointer. */
187 /* AArch64 prologue cache structure. */
188 struct aarch64_prologue_cache
190 /* The program counter at the start of the function. It is used to
191 identify this frame as a prologue frame. */
194 /* The program counter at the time this frame was created; i.e. where
195 this function was called from. It is used to identify this frame as a
199 /* The stack pointer at the time this frame was created; i.e. the
200 caller's stack pointer when this function was called. It is used
201 to identify this frame. */
204 /* Is the target available to read from? */
207 /* The frame base for this frame is just prev_sp - frame size.
208 FRAMESIZE is the distance from the frame pointer to the
209 initial stack pointer. */
212 /* The register used to hold the frame pointer for this frame. */
215 /* Saved register offsets. */
216 struct trad_frame_saved_reg *saved_regs;
220 show_aarch64_debug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
223 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
228 /* Abstract instruction reader. */
230 class abstract_instruction_reader
233 /* Read in one instruction. */
234 virtual ULONGEST read (CORE_ADDR memaddr, int len,
235 enum bfd_endian byte_order) = 0;
238 /* Instruction reader from real target. */
240 class instruction_reader : public abstract_instruction_reader
243 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
246 return read_code_unsigned_integer (memaddr, len, byte_order);
252 /* If address signing is enabled, mask off the signature bits from ADDR, using
253 the register values in THIS_FRAME. */
256 aarch64_frame_unmask_address (struct gdbarch_tdep *tdep,
257 struct frame_info *this_frame,
260 if (tdep->has_pauth ()
261 && frame_unwind_register_unsigned (this_frame,
262 tdep->pauth_ra_state_regnum))
264 int cmask_num = AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base);
265 CORE_ADDR cmask = frame_unwind_register_unsigned (this_frame, cmask_num);
266 addr = addr & ~cmask;
272 /* Analyze a prologue, looking for a recognizable stack frame
273 and frame pointer. Scan until we encounter a store that could
274 clobber the stack frame unexpectedly, or an unknown instruction. */
277 aarch64_analyze_prologue (struct gdbarch *gdbarch,
278 CORE_ADDR start, CORE_ADDR limit,
279 struct aarch64_prologue_cache *cache,
280 abstract_instruction_reader& reader)
282 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
284 /* Track X registers and D registers in prologue. */
285 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
287 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
288 regs[i] = pv_register (i, 0);
289 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
291 for (; start < limit; start += 4)
296 insn = reader.read (start, 4, byte_order_for_code);
298 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
301 if (inst.opcode->iclass == addsub_imm
302 && (inst.opcode->op == OP_ADD
303 || strcmp ("sub", inst.opcode->name) == 0))
305 unsigned rd = inst.operands[0].reg.regno;
306 unsigned rn = inst.operands[1].reg.regno;
308 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
309 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
310 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
311 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
313 if (inst.opcode->op == OP_ADD)
315 regs[rd] = pv_add_constant (regs[rn],
316 inst.operands[2].imm.value);
320 regs[rd] = pv_add_constant (regs[rn],
321 -inst.operands[2].imm.value);
324 else if (inst.opcode->iclass == pcreladdr
325 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
327 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
328 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
330 regs[inst.operands[0].reg.regno] = pv_unknown ();
332 else if (inst.opcode->iclass == branch_imm)
334 /* Stop analysis on branch. */
337 else if (inst.opcode->iclass == condbranch)
339 /* Stop analysis on branch. */
342 else if (inst.opcode->iclass == branch_reg)
344 /* Stop analysis on branch. */
347 else if (inst.opcode->iclass == compbranch)
349 /* Stop analysis on branch. */
352 else if (inst.opcode->op == OP_MOVZ)
354 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
355 regs[inst.operands[0].reg.regno] = pv_unknown ();
357 else if (inst.opcode->iclass == log_shift
358 && strcmp (inst.opcode->name, "orr") == 0)
360 unsigned rd = inst.operands[0].reg.regno;
361 unsigned rn = inst.operands[1].reg.regno;
362 unsigned rm = inst.operands[2].reg.regno;
364 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
365 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
366 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
368 if (inst.operands[2].shifter.amount == 0
369 && rn == AARCH64_SP_REGNUM)
375 debug_printf ("aarch64: prologue analysis gave up "
376 "addr=%s opcode=0x%x (orr x register)\n",
377 core_addr_to_string_nz (start), insn);
382 else if (inst.opcode->op == OP_STUR)
384 unsigned rt = inst.operands[0].reg.regno;
385 unsigned rn = inst.operands[1].addr.base_regno;
387 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
389 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
390 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
391 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
392 gdb_assert (!inst.operands[1].addr.offset.is_reg);
394 stack.store (pv_add_constant (regs[rn],
395 inst.operands[1].addr.offset.imm),
396 is64 ? 8 : 4, regs[rt]);
398 else if ((inst.opcode->iclass == ldstpair_off
399 || (inst.opcode->iclass == ldstpair_indexed
400 && inst.operands[2].addr.preind))
401 && strcmp ("stp", inst.opcode->name) == 0)
403 /* STP with addressing mode Pre-indexed and Base register. */
406 unsigned rn = inst.operands[2].addr.base_regno;
407 int32_t imm = inst.operands[2].addr.offset.imm;
409 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
410 || inst.operands[0].type == AARCH64_OPND_Ft);
411 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
412 || inst.operands[1].type == AARCH64_OPND_Ft2);
413 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
414 gdb_assert (!inst.operands[2].addr.offset.is_reg);
416 /* If recording this store would invalidate the store area
417 (perhaps because rn is not known) then we should abandon
418 further prologue analysis. */
419 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
422 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
425 rt1 = inst.operands[0].reg.regno;
426 rt2 = inst.operands[1].reg.regno;
427 if (inst.operands[0].type == AARCH64_OPND_Ft)
429 /* Only bottom 64-bit of each V register (D register) need
431 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
432 rt1 += AARCH64_X_REGISTER_COUNT;
433 rt2 += AARCH64_X_REGISTER_COUNT;
436 stack.store (pv_add_constant (regs[rn], imm), 8,
438 stack.store (pv_add_constant (regs[rn], imm + 8), 8,
441 if (inst.operands[2].addr.writeback)
442 regs[rn] = pv_add_constant (regs[rn], imm);
445 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
446 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
447 && (inst.opcode->op == OP_STR_POS
448 || inst.opcode->op == OP_STRF_POS)))
449 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
450 && strcmp ("str", inst.opcode->name) == 0)
452 /* STR (immediate) */
453 unsigned int rt = inst.operands[0].reg.regno;
454 int32_t imm = inst.operands[1].addr.offset.imm;
455 unsigned int rn = inst.operands[1].addr.base_regno;
457 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
458 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
459 || inst.operands[0].type == AARCH64_OPND_Ft);
461 if (inst.operands[0].type == AARCH64_OPND_Ft)
463 /* Only bottom 64-bit of each V register (D register) need
465 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
466 rt += AARCH64_X_REGISTER_COUNT;
469 stack.store (pv_add_constant (regs[rn], imm),
470 is64 ? 8 : 4, regs[rt]);
471 if (inst.operands[1].addr.writeback)
472 regs[rn] = pv_add_constant (regs[rn], imm);
474 else if (inst.opcode->iclass == testbranch)
476 /* Stop analysis on branch. */
483 debug_printf ("aarch64: prologue analysis gave up addr=%s"
485 core_addr_to_string_nz (start), insn);
494 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
496 /* Frame pointer is fp. Frame size is constant. */
497 cache->framereg = AARCH64_FP_REGNUM;
498 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
500 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
502 /* Try the stack pointer. */
503 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
504 cache->framereg = AARCH64_SP_REGNUM;
508 /* We're just out of luck. We don't know where the frame is. */
509 cache->framereg = -1;
510 cache->framesize = 0;
513 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
517 if (stack.find_reg (gdbarch, i, &offset))
518 cache->saved_regs[i].addr = offset;
521 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
523 int regnum = gdbarch_num_regs (gdbarch);
526 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
528 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
535 aarch64_analyze_prologue (struct gdbarch *gdbarch,
536 CORE_ADDR start, CORE_ADDR limit,
537 struct aarch64_prologue_cache *cache)
539 instruction_reader reader;
541 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
547 namespace selftests {
549 /* Instruction reader from manually cooked instruction sequences. */
551 class instruction_reader_test : public abstract_instruction_reader
554 template<size_t SIZE>
555 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
556 : m_insns (insns), m_insns_size (SIZE)
559 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
562 SELF_CHECK (len == 4);
563 SELF_CHECK (memaddr % 4 == 0);
564 SELF_CHECK (memaddr / 4 < m_insns_size);
566 return m_insns[memaddr / 4];
570 const uint32_t *m_insns;
575 aarch64_analyze_prologue_test (void)
577 struct gdbarch_info info;
579 gdbarch_info_init (&info);
580 info.bfd_arch_info = bfd_scan_arch ("aarch64");
582 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
583 SELF_CHECK (gdbarch != NULL);
585 /* Test the simple prologue in which frame pointer is used. */
587 struct aarch64_prologue_cache cache;
588 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
590 static const uint32_t insns[] = {
591 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
592 0x910003fd, /* mov x29, sp */
593 0x97ffffe6, /* bl 0x400580 */
595 instruction_reader_test reader (insns);
597 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
598 SELF_CHECK (end == 4 * 2);
600 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
601 SELF_CHECK (cache.framesize == 272);
603 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
605 if (i == AARCH64_FP_REGNUM)
606 SELF_CHECK (cache.saved_regs[i].addr == -272);
607 else if (i == AARCH64_LR_REGNUM)
608 SELF_CHECK (cache.saved_regs[i].addr == -264);
610 SELF_CHECK (cache.saved_regs[i].addr == -1);
613 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
615 int regnum = gdbarch_num_regs (gdbarch);
617 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
622 /* Test a prologue in which STR is used and frame pointer is not
625 struct aarch64_prologue_cache cache;
626 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
628 static const uint32_t insns[] = {
629 0xf81d0ff3, /* str x19, [sp, #-48]! */
630 0xb9002fe0, /* str w0, [sp, #44] */
631 0xf90013e1, /* str x1, [sp, #32]*/
632 0xfd000fe0, /* str d0, [sp, #24] */
633 0xaa0203f3, /* mov x19, x2 */
634 0xf94013e0, /* ldr x0, [sp, #32] */
636 instruction_reader_test reader (insns);
638 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
640 SELF_CHECK (end == 4 * 5);
642 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
643 SELF_CHECK (cache.framesize == 48);
645 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
648 SELF_CHECK (cache.saved_regs[i].addr == -16);
650 SELF_CHECK (cache.saved_regs[i].addr == -48);
652 SELF_CHECK (cache.saved_regs[i].addr == -1);
655 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
657 int regnum = gdbarch_num_regs (gdbarch);
660 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
663 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
668 } // namespace selftests
669 #endif /* GDB_SELF_TEST */
671 /* Implement the "skip_prologue" gdbarch method. */
674 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
676 CORE_ADDR func_addr, limit_pc;
678 /* See if we can determine the end of the prologue via the symbol
679 table. If so, then return either PC, or the PC after the
680 prologue, whichever is greater. */
681 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
683 CORE_ADDR post_prologue_pc
684 = skip_prologue_using_sal (gdbarch, func_addr);
686 if (post_prologue_pc != 0)
687 return std::max (pc, post_prologue_pc);
690 /* Can't determine prologue from the symbol table, need to examine
693 /* Find an upper limit on the function prologue using the debug
694 information. If the debug information could not be used to
695 provide that bound, then use an arbitrary large number as the
697 limit_pc = skip_prologue_using_sal (gdbarch, pc);
699 limit_pc = pc + 128; /* Magic. */
701 /* Try disassembling prologue. */
702 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
705 /* Scan the function prologue for THIS_FRAME and populate the prologue
709 aarch64_scan_prologue (struct frame_info *this_frame,
710 struct aarch64_prologue_cache *cache)
712 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
713 CORE_ADDR prologue_start;
714 CORE_ADDR prologue_end;
715 CORE_ADDR prev_pc = get_frame_pc (this_frame);
716 struct gdbarch *gdbarch = get_frame_arch (this_frame);
718 cache->prev_pc = prev_pc;
720 /* Assume we do not find a frame. */
721 cache->framereg = -1;
722 cache->framesize = 0;
724 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
727 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731 /* No line info so use the current PC. */
732 prologue_end = prev_pc;
734 else if (sal.end < prologue_end)
736 /* The next line begins after the function end. */
737 prologue_end = sal.end;
740 prologue_end = std::min (prologue_end, prev_pc);
741 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
747 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
751 cache->framereg = AARCH64_FP_REGNUM;
752 cache->framesize = 16;
753 cache->saved_regs[29].addr = 0;
754 cache->saved_regs[30].addr = 8;
758 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
759 function may throw an exception if the inferior's registers or memory is
763 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
764 struct aarch64_prologue_cache *cache)
766 CORE_ADDR unwound_fp;
769 aarch64_scan_prologue (this_frame, cache);
771 if (cache->framereg == -1)
774 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
778 cache->prev_sp = unwound_fp + cache->framesize;
780 /* Calculate actual addresses of saved registers using offsets
781 determined by aarch64_analyze_prologue. */
782 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
783 if (trad_frame_addr_p (cache->saved_regs, reg))
784 cache->saved_regs[reg].addr += cache->prev_sp;
786 cache->func = get_frame_func (this_frame);
788 cache->available_p = 1;
791 /* Allocate and fill in *THIS_CACHE with information about the prologue of
792 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
793 Return a pointer to the current aarch64_prologue_cache in
796 static struct aarch64_prologue_cache *
797 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
799 struct aarch64_prologue_cache *cache;
801 if (*this_cache != NULL)
802 return (struct aarch64_prologue_cache *) *this_cache;
804 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
805 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
810 aarch64_make_prologue_cache_1 (this_frame, cache);
812 CATCH (ex, RETURN_MASK_ERROR)
814 if (ex.error != NOT_AVAILABLE_ERROR)
815 throw_exception (ex);
822 /* Implement the "stop_reason" frame_unwind method. */
824 static enum unwind_stop_reason
825 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
828 struct aarch64_prologue_cache *cache
829 = aarch64_make_prologue_cache (this_frame, this_cache);
831 if (!cache->available_p)
832 return UNWIND_UNAVAILABLE;
834 /* Halt the backtrace at "_start". */
835 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
836 return UNWIND_OUTERMOST;
838 /* We've hit a wall, stop. */
839 if (cache->prev_sp == 0)
840 return UNWIND_OUTERMOST;
842 return UNWIND_NO_REASON;
845 /* Our frame ID for a normal frame is the current function's starting
846 PC and the caller's SP when we were called. */
849 aarch64_prologue_this_id (struct frame_info *this_frame,
850 void **this_cache, struct frame_id *this_id)
852 struct aarch64_prologue_cache *cache
853 = aarch64_make_prologue_cache (this_frame, this_cache);
855 if (!cache->available_p)
856 *this_id = frame_id_build_unavailable_stack (cache->func);
858 *this_id = frame_id_build (cache->prev_sp, cache->func);
861 /* Implement the "prev_register" frame_unwind method. */
863 static struct value *
864 aarch64_prologue_prev_register (struct frame_info *this_frame,
865 void **this_cache, int prev_regnum)
867 struct aarch64_prologue_cache *cache
868 = aarch64_make_prologue_cache (this_frame, this_cache);
870 /* If we are asked to unwind the PC, then we need to return the LR
871 instead. The prologue may save PC, but it will point into this
872 frame's prologue, not the next frame's resume location. */
873 if (prev_regnum == AARCH64_PC_REGNUM)
877 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
878 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
881 /* SP is generally not saved to the stack, but this frame is
882 identified by the next frame's stack pointer at the time of the
883 call. The value was already reconstructed into PREV_SP. */
896 if (prev_regnum == AARCH64_SP_REGNUM)
897 return frame_unwind_got_constant (this_frame, prev_regnum,
900 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
904 /* AArch64 prologue unwinder. */
905 struct frame_unwind aarch64_prologue_unwind =
908 aarch64_prologue_frame_unwind_stop_reason,
909 aarch64_prologue_this_id,
910 aarch64_prologue_prev_register,
912 default_frame_sniffer
915 /* Allocate and fill in *THIS_CACHE with information about the prologue of
916 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
917 Return a pointer to the current aarch64_prologue_cache in
920 static struct aarch64_prologue_cache *
921 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
923 struct aarch64_prologue_cache *cache;
925 if (*this_cache != NULL)
926 return (struct aarch64_prologue_cache *) *this_cache;
928 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
929 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
934 cache->prev_sp = get_frame_register_unsigned (this_frame,
936 cache->prev_pc = get_frame_pc (this_frame);
937 cache->available_p = 1;
939 CATCH (ex, RETURN_MASK_ERROR)
941 if (ex.error != NOT_AVAILABLE_ERROR)
942 throw_exception (ex);
949 /* Implement the "stop_reason" frame_unwind method. */
951 static enum unwind_stop_reason
952 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
955 struct aarch64_prologue_cache *cache
956 = aarch64_make_stub_cache (this_frame, this_cache);
958 if (!cache->available_p)
959 return UNWIND_UNAVAILABLE;
961 return UNWIND_NO_REASON;
964 /* Our frame ID for a stub frame is the current SP and LR. */
967 aarch64_stub_this_id (struct frame_info *this_frame,
968 void **this_cache, struct frame_id *this_id)
970 struct aarch64_prologue_cache *cache
971 = aarch64_make_stub_cache (this_frame, this_cache);
973 if (cache->available_p)
974 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
976 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
979 /* Implement the "sniffer" frame_unwind method. */
982 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
983 struct frame_info *this_frame,
984 void **this_prologue_cache)
986 CORE_ADDR addr_in_block;
989 addr_in_block = get_frame_address_in_block (this_frame);
990 if (in_plt_section (addr_in_block)
991 /* We also use the stub winder if the target memory is unreadable
992 to avoid having the prologue unwinder trying to read it. */
993 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
999 /* AArch64 stub unwinder. */
1000 struct frame_unwind aarch64_stub_unwind =
1003 aarch64_stub_frame_unwind_stop_reason,
1004 aarch64_stub_this_id,
1005 aarch64_prologue_prev_register,
1007 aarch64_stub_unwind_sniffer
1010 /* Return the frame base address of *THIS_FRAME. */
1013 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1015 struct aarch64_prologue_cache *cache
1016 = aarch64_make_prologue_cache (this_frame, this_cache);
1018 return cache->prev_sp - cache->framesize;
1021 /* AArch64 default frame base information. */
1022 struct frame_base aarch64_normal_base =
1024 &aarch64_prologue_unwind,
1025 aarch64_normal_frame_base,
1026 aarch64_normal_frame_base,
1027 aarch64_normal_frame_base
1030 /* Return the value of the REGNUM register in the previous frame of
1033 static struct value *
1034 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1035 void **this_cache, int regnum)
1037 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1042 case AARCH64_PC_REGNUM:
1043 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1044 lr = aarch64_frame_unmask_address (tdep, this_frame, lr);
1045 return frame_unwind_got_constant (this_frame, regnum, lr);
1048 internal_error (__FILE__, __LINE__,
1049 _("Unexpected register %d"), regnum);
1053 static const unsigned char op_lit0 = DW_OP_lit0;
1054 static const unsigned char op_lit1 = DW_OP_lit1;
1056 /* Implement the "init_reg" dwarf2_frame_ops method. */
1059 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1060 struct dwarf2_frame_state_reg *reg,
1061 struct frame_info *this_frame)
1063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1067 case AARCH64_PC_REGNUM:
1068 reg->how = DWARF2_FRAME_REG_FN;
1069 reg->loc.fn = aarch64_dwarf2_prev_register;
1072 case AARCH64_SP_REGNUM:
1073 reg->how = DWARF2_FRAME_REG_CFA;
1077 /* Init pauth registers. */
1078 if (tdep->has_pauth ())
1080 if (regnum == tdep->pauth_ra_state_regnum)
1082 /* Initialize RA_STATE to zero. */
1083 reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1084 reg->loc.exp.start = &op_lit0;
1085 reg->loc.exp.len = 1;
1088 else if (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
1089 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
1091 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1097 /* Implement the execute_dwarf_cfa_vendor_op method. */
1100 aarch64_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1101 struct dwarf2_frame_state *fs)
1103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1104 struct dwarf2_frame_state_reg *ra_state;
1106 if (tdep->has_pauth () && op == DW_CFA_AARCH64_negate_ra_state)
1108 /* Allocate RA_STATE column if it's not allocated yet. */
1109 fs->regs.alloc_regs (AARCH64_DWARF_PAUTH_RA_STATE + 1);
1111 /* Toggle the status of RA_STATE between 0 and 1. */
1112 ra_state = &(fs->regs.reg[AARCH64_DWARF_PAUTH_RA_STATE]);
1113 ra_state->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1115 if (ra_state->loc.exp.start == nullptr
1116 || ra_state->loc.exp.start == &op_lit0)
1117 ra_state->loc.exp.start = &op_lit1;
1119 ra_state->loc.exp.start = &op_lit0;
1121 ra_state->loc.exp.len = 1;
1129 /* When arguments must be pushed onto the stack, they go on in reverse
1130 order. The code below implements a FILO (stack) to do this. */
1134 /* Value to pass on stack. It can be NULL if this item is for stack
1136 const gdb_byte *data;
1138 /* Size in bytes of value to pass on stack. */
1142 DEF_VEC_O (stack_item_t);
1144 /* Return the alignment (in bytes) of the given type. */
1147 aarch64_type_align (struct type *t)
1153 t = check_typedef (t);
1154 switch (TYPE_CODE (t))
1157 /* Should never happen. */
1158 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1162 case TYPE_CODE_ENUM:
1166 case TYPE_CODE_RANGE:
1167 case TYPE_CODE_BITSTRING:
1169 case TYPE_CODE_RVALUE_REF:
1170 case TYPE_CODE_CHAR:
1171 case TYPE_CODE_BOOL:
1172 return TYPE_LENGTH (t);
1174 case TYPE_CODE_ARRAY:
1175 if (TYPE_VECTOR (t))
1177 /* Use the natural alignment for vector types (the same for
1178 scalar type), but the maximum alignment is 128-bit. */
1179 if (TYPE_LENGTH (t) > 16)
1182 return TYPE_LENGTH (t);
1185 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1186 case TYPE_CODE_COMPLEX:
1187 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1189 case TYPE_CODE_STRUCT:
1190 case TYPE_CODE_UNION:
1192 for (n = 0; n < TYPE_NFIELDS (t); n++)
1194 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1202 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1204 Return the number of register required, or -1 on failure.
1206 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1207 to the element, else fail if the type of this element does not match the
1211 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1212 struct type **fundamental_type)
1214 if (type == nullptr)
1217 switch (TYPE_CODE (type))
1220 if (TYPE_LENGTH (type) > 16)
1223 if (*fundamental_type == nullptr)
1224 *fundamental_type = type;
1225 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1226 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1231 case TYPE_CODE_COMPLEX:
1233 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1234 if (TYPE_LENGTH (target_type) > 16)
1237 if (*fundamental_type == nullptr)
1238 *fundamental_type = target_type;
1239 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1240 || TYPE_CODE (target_type) != TYPE_CODE (*fundamental_type))
1246 case TYPE_CODE_ARRAY:
1248 if (TYPE_VECTOR (type))
1250 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1253 if (*fundamental_type == nullptr)
1254 *fundamental_type = type;
1255 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1256 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1263 struct type *target_type = TYPE_TARGET_TYPE (type);
1264 int count = aapcs_is_vfp_call_or_return_candidate_1
1265 (target_type, fundamental_type);
1270 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1275 case TYPE_CODE_STRUCT:
1276 case TYPE_CODE_UNION:
1280 for (int i = 0; i < TYPE_NFIELDS (type); i++)
1282 /* Ignore any static fields. */
1283 if (field_is_static (&TYPE_FIELD (type, i)))
1286 struct type *member = check_typedef (TYPE_FIELD_TYPE (type, i));
1288 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1289 (member, fundamental_type);
1290 if (sub_count == -1)
1295 /* Ensure there is no padding between the fields (allowing for empty
1296 zero length structs) */
1297 int ftype_length = (*fundamental_type == nullptr)
1298 ? 0 : TYPE_LENGTH (*fundamental_type);
1299 if (count * ftype_length != TYPE_LENGTH (type))
1312 /* Return true if an argument, whose type is described by TYPE, can be passed or
1313 returned in simd/fp registers, providing enough parameter passing registers
1314 are available. This is as described in the AAPCS64.
1316 Upon successful return, *COUNT returns the number of needed registers,
1317 *FUNDAMENTAL_TYPE contains the type of those registers.
1319 Candidate as per the AAPCS64 5.4.2.C is either a:
1322 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1323 all the members are floats and has at most 4 members.
1324 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1325 all the members are short vectors and has at most 4 members.
1328 Note that HFAs and HVAs can include nested structures and arrays. */
1331 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1332 struct type **fundamental_type)
1334 if (type == nullptr)
1337 *fundamental_type = nullptr;
1339 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1342 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1351 /* AArch64 function call information structure. */
1352 struct aarch64_call_info
1354 /* the current argument number. */
1357 /* The next general purpose register number, equivalent to NGRN as
1358 described in the AArch64 Procedure Call Standard. */
1361 /* The next SIMD and floating point register number, equivalent to
1362 NSRN as described in the AArch64 Procedure Call Standard. */
1365 /* The next stacked argument address, equivalent to NSAA as
1366 described in the AArch64 Procedure Call Standard. */
1369 /* Stack item vector. */
1370 VEC(stack_item_t) *si;
1373 /* Pass a value in a sequence of consecutive X registers. The caller
1374 is responsbile for ensuring sufficient registers are available. */
1377 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1378 struct aarch64_call_info *info, struct type *type,
1381 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1382 int len = TYPE_LENGTH (type);
1383 enum type_code typecode = TYPE_CODE (type);
1384 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1385 const bfd_byte *buf = value_contents (arg);
1391 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1392 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1396 /* Adjust sub-word struct/union args when big-endian. */
1397 if (byte_order == BFD_ENDIAN_BIG
1398 && partial_len < X_REGISTER_SIZE
1399 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1400 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1404 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1405 gdbarch_register_name (gdbarch, regnum),
1406 phex (regval, X_REGISTER_SIZE));
1408 regcache_cooked_write_unsigned (regcache, regnum, regval);
1415 /* Attempt to marshall a value in a V register. Return 1 if
1416 successful, or 0 if insufficient registers are available. This
1417 function, unlike the equivalent pass_in_x() function does not
1418 handle arguments spread across multiple registers. */
1421 pass_in_v (struct gdbarch *gdbarch,
1422 struct regcache *regcache,
1423 struct aarch64_call_info *info,
1424 int len, const bfd_byte *buf)
1428 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1429 /* Enough space for a full vector register. */
1430 gdb_byte reg[register_size (gdbarch, regnum)];
1431 gdb_assert (len <= sizeof (reg));
1436 memset (reg, 0, sizeof (reg));
1437 /* PCS C.1, the argument is allocated to the least significant
1438 bits of V register. */
1439 memcpy (reg, buf, len);
1440 regcache->cooked_write (regnum, reg);
1444 debug_printf ("arg %d in %s\n", info->argnum,
1445 gdbarch_register_name (gdbarch, regnum));
1453 /* Marshall an argument onto the stack. */
1456 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1459 const bfd_byte *buf = value_contents (arg);
1460 int len = TYPE_LENGTH (type);
1466 align = aarch64_type_align (type);
1468 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1469 Natural alignment of the argument's type. */
1470 align = align_up (align, 8);
1472 /* The AArch64 PCS requires at most doubleword alignment. */
1478 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1484 VEC_safe_push (stack_item_t, info->si, &item);
1487 if (info->nsaa & (align - 1))
1489 /* Push stack alignment padding. */
1490 int pad = align - (info->nsaa & (align - 1));
1495 VEC_safe_push (stack_item_t, info->si, &item);
1500 /* Marshall an argument into a sequence of one or more consecutive X
1501 registers or, if insufficient X registers are available then onto
1505 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1506 struct aarch64_call_info *info, struct type *type,
1509 int len = TYPE_LENGTH (type);
1510 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1512 /* PCS C.13 - Pass in registers if we have enough spare */
1513 if (info->ngrn + nregs <= 8)
1515 pass_in_x (gdbarch, regcache, info, type, arg);
1516 info->ngrn += nregs;
1521 pass_on_stack (info, type, arg);
1525 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1526 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1527 registers. A return value of false is an error state as the value will have
1528 been partially passed to the stack. */
1530 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1531 struct aarch64_call_info *info, struct type *arg_type,
1534 switch (TYPE_CODE (arg_type))
1537 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1538 value_contents (arg));
1541 case TYPE_CODE_COMPLEX:
1543 const bfd_byte *buf = value_contents (arg);
1544 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1546 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1550 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1551 buf + TYPE_LENGTH (target_type));
1554 case TYPE_CODE_ARRAY:
1555 if (TYPE_VECTOR (arg_type))
1556 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1557 value_contents (arg));
1560 case TYPE_CODE_STRUCT:
1561 case TYPE_CODE_UNION:
1562 for (int i = 0; i < TYPE_NFIELDS (arg_type); i++)
1564 /* Don't include static fields. */
1565 if (field_is_static (&TYPE_FIELD (arg_type, i)))
1568 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1569 struct type *field_type = check_typedef (value_type (field));
1571 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1582 /* Implement the "push_dummy_call" gdbarch method. */
1585 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1586 struct regcache *regcache, CORE_ADDR bp_addr,
1588 struct value **args, CORE_ADDR sp,
1589 function_call_return_method return_method,
1590 CORE_ADDR struct_addr)
1593 struct aarch64_call_info info;
1595 memset (&info, 0, sizeof (info));
1597 /* We need to know what the type of the called function is in order
1598 to determine the number of named/anonymous arguments for the
1599 actual argument placement, and the return type in order to handle
1600 return value correctly.
1602 The generic code above us views the decision of return in memory
1603 or return in registers as a two stage processes. The language
1604 handler is consulted first and may decide to return in memory (eg
1605 class with copy constructor returned by value), this will cause
1606 the generic code to allocate space AND insert an initial leading
1609 If the language code does not decide to pass in memory then the
1610 target code is consulted.
1612 If the language code decides to pass in memory we want to move
1613 the pointer inserted as the initial argument from the argument
1614 list and into X8, the conventional AArch64 struct return pointer
1617 /* Set the return address. For the AArch64, the return breakpoint
1618 is always at BP_ADDR. */
1619 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1621 /* If we were given an initial argument for the return slot, lose it. */
1622 if (return_method == return_method_hidden_param)
1628 /* The struct_return pointer occupies X8. */
1629 if (return_method != return_method_normal)
1633 debug_printf ("struct return in %s = 0x%s\n",
1634 gdbarch_register_name (gdbarch,
1635 AARCH64_STRUCT_RETURN_REGNUM),
1636 paddress (gdbarch, struct_addr));
1638 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1642 for (argnum = 0; argnum < nargs; argnum++)
1644 struct value *arg = args[argnum];
1645 struct type *arg_type, *fundamental_type;
1648 arg_type = check_typedef (value_type (arg));
1649 len = TYPE_LENGTH (arg_type);
1651 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1652 if there are enough spare registers. */
1653 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1656 if (info.nsrn + elements <= 8)
1658 /* We know that we have sufficient registers available therefore
1659 this will never need to fallback to the stack. */
1660 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1662 gdb_assert_not_reached ("Failed to push args");
1667 pass_on_stack (&info, arg_type, arg);
1672 switch (TYPE_CODE (arg_type))
1675 case TYPE_CODE_BOOL:
1676 case TYPE_CODE_CHAR:
1677 case TYPE_CODE_RANGE:
1678 case TYPE_CODE_ENUM:
1681 /* Promote to 32 bit integer. */
1682 if (TYPE_UNSIGNED (arg_type))
1683 arg_type = builtin_type (gdbarch)->builtin_uint32;
1685 arg_type = builtin_type (gdbarch)->builtin_int32;
1686 arg = value_cast (arg_type, arg);
1688 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1691 case TYPE_CODE_STRUCT:
1692 case TYPE_CODE_ARRAY:
1693 case TYPE_CODE_UNION:
1696 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1697 invisible reference. */
1699 /* Allocate aligned storage. */
1700 sp = align_down (sp - len, 16);
1702 /* Write the real data into the stack. */
1703 write_memory (sp, value_contents (arg), len);
1705 /* Construct the indirection. */
1706 arg_type = lookup_pointer_type (arg_type);
1707 arg = value_from_pointer (arg_type, sp);
1708 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1711 /* PCS C.15 / C.18 multiple values pass. */
1712 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1716 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1721 /* Make sure stack retains 16 byte alignment. */
1723 sp -= 16 - (info.nsaa & 15);
1725 while (!VEC_empty (stack_item_t, info.si))
1727 stack_item_t *si = VEC_last (stack_item_t, info.si);
1730 if (si->data != NULL)
1731 write_memory (sp, si->data, si->len);
1732 VEC_pop (stack_item_t, info.si);
1735 VEC_free (stack_item_t, info.si);
1737 /* Finally, update the SP register. */
1738 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1743 /* Implement the "frame_align" gdbarch method. */
1746 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1748 /* Align the stack to sixteen bytes. */
1749 return sp & ~(CORE_ADDR) 15;
1752 /* Return the type for an AdvSISD Q register. */
1754 static struct type *
1755 aarch64_vnq_type (struct gdbarch *gdbarch)
1757 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1759 if (tdep->vnq_type == NULL)
1764 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1767 elem = builtin_type (gdbarch)->builtin_uint128;
1768 append_composite_type_field (t, "u", elem);
1770 elem = builtin_type (gdbarch)->builtin_int128;
1771 append_composite_type_field (t, "s", elem);
1776 return tdep->vnq_type;
1779 /* Return the type for an AdvSISD D register. */
1781 static struct type *
1782 aarch64_vnd_type (struct gdbarch *gdbarch)
1784 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1786 if (tdep->vnd_type == NULL)
1791 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1794 elem = builtin_type (gdbarch)->builtin_double;
1795 append_composite_type_field (t, "f", elem);
1797 elem = builtin_type (gdbarch)->builtin_uint64;
1798 append_composite_type_field (t, "u", elem);
1800 elem = builtin_type (gdbarch)->builtin_int64;
1801 append_composite_type_field (t, "s", elem);
1806 return tdep->vnd_type;
1809 /* Return the type for an AdvSISD S register. */
1811 static struct type *
1812 aarch64_vns_type (struct gdbarch *gdbarch)
1814 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1816 if (tdep->vns_type == NULL)
1821 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1824 elem = builtin_type (gdbarch)->builtin_float;
1825 append_composite_type_field (t, "f", elem);
1827 elem = builtin_type (gdbarch)->builtin_uint32;
1828 append_composite_type_field (t, "u", elem);
1830 elem = builtin_type (gdbarch)->builtin_int32;
1831 append_composite_type_field (t, "s", elem);
1836 return tdep->vns_type;
1839 /* Return the type for an AdvSISD H register. */
1841 static struct type *
1842 aarch64_vnh_type (struct gdbarch *gdbarch)
1844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1846 if (tdep->vnh_type == NULL)
1851 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1854 elem = builtin_type (gdbarch)->builtin_uint16;
1855 append_composite_type_field (t, "u", elem);
1857 elem = builtin_type (gdbarch)->builtin_int16;
1858 append_composite_type_field (t, "s", elem);
1863 return tdep->vnh_type;
1866 /* Return the type for an AdvSISD B register. */
1868 static struct type *
1869 aarch64_vnb_type (struct gdbarch *gdbarch)
1871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1873 if (tdep->vnb_type == NULL)
1878 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1881 elem = builtin_type (gdbarch)->builtin_uint8;
1882 append_composite_type_field (t, "u", elem);
1884 elem = builtin_type (gdbarch)->builtin_int8;
1885 append_composite_type_field (t, "s", elem);
1890 return tdep->vnb_type;
1893 /* Return the type for an AdvSISD V register. */
1895 static struct type *
1896 aarch64_vnv_type (struct gdbarch *gdbarch)
1898 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1900 if (tdep->vnv_type == NULL)
1902 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
1905 append_composite_type_field (t, "d", aarch64_vnd_type (gdbarch));
1906 append_composite_type_field (t, "s", aarch64_vns_type (gdbarch));
1907 append_composite_type_field (t, "h", aarch64_vnh_type (gdbarch));
1908 append_composite_type_field (t, "b", aarch64_vnb_type (gdbarch));
1909 append_composite_type_field (t, "q", aarch64_vnq_type (gdbarch));
1914 return tdep->vnv_type;
1917 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1920 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1924 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1925 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1927 if (reg == AARCH64_DWARF_SP)
1928 return AARCH64_SP_REGNUM;
1930 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1931 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1933 if (reg == AARCH64_DWARF_SVE_VG)
1934 return AARCH64_SVE_VG_REGNUM;
1936 if (reg == AARCH64_DWARF_SVE_FFR)
1937 return AARCH64_SVE_FFR_REGNUM;
1939 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
1940 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
1942 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
1943 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
1945 if (tdep->has_pauth ())
1947 if (reg >= AARCH64_DWARF_PAUTH_DMASK && reg <= AARCH64_DWARF_PAUTH_CMASK)
1948 return tdep->pauth_reg_base + reg - AARCH64_DWARF_PAUTH_DMASK;
1950 if (reg == AARCH64_DWARF_PAUTH_RA_STATE)
1951 return tdep->pauth_ra_state_regnum;
1957 /* Implement the "print_insn" gdbarch method. */
1960 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1962 info->symbols = NULL;
1963 return default_print_insn (memaddr, info);
1966 /* AArch64 BRK software debug mode instruction.
1967 Note that AArch64 code is always little-endian.
1968 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1969 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1971 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
1973 /* Extract from an array REGS containing the (raw) register state a
1974 function return value of type TYPE, and copy that, in virtual
1975 format, into VALBUF. */
1978 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1981 struct gdbarch *gdbarch = regs->arch ();
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1984 struct type *fundamental_type;
1986 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
1989 int len = TYPE_LENGTH (fundamental_type);
1991 for (int i = 0; i < elements; i++)
1993 int regno = AARCH64_V0_REGNUM + i;
1994 /* Enough space for a full vector register. */
1995 gdb_byte buf[register_size (gdbarch, regno)];
1996 gdb_assert (len <= sizeof (buf));
2000 debug_printf ("read HFA or HVA return value element %d from %s\n",
2002 gdbarch_register_name (gdbarch, regno));
2004 regs->cooked_read (regno, buf);
2006 memcpy (valbuf, buf, len);
2010 else if (TYPE_CODE (type) == TYPE_CODE_INT
2011 || TYPE_CODE (type) == TYPE_CODE_CHAR
2012 || TYPE_CODE (type) == TYPE_CODE_BOOL
2013 || TYPE_CODE (type) == TYPE_CODE_PTR
2014 || TYPE_IS_REFERENCE (type)
2015 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2017 /* If the type is a plain integer, then the access is
2018 straight-forward. Otherwise we have to play around a bit
2020 int len = TYPE_LENGTH (type);
2021 int regno = AARCH64_X0_REGNUM;
2026 /* By using store_unsigned_integer we avoid having to do
2027 anything special for small big-endian values. */
2028 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2029 store_unsigned_integer (valbuf,
2030 (len > X_REGISTER_SIZE
2031 ? X_REGISTER_SIZE : len), byte_order, tmp);
2032 len -= X_REGISTER_SIZE;
2033 valbuf += X_REGISTER_SIZE;
2038 /* For a structure or union the behaviour is as if the value had
2039 been stored to word-aligned memory and then loaded into
2040 registers with 64-bit load instruction(s). */
2041 int len = TYPE_LENGTH (type);
2042 int regno = AARCH64_X0_REGNUM;
2043 bfd_byte buf[X_REGISTER_SIZE];
2047 regs->cooked_read (regno++, buf);
2048 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2049 len -= X_REGISTER_SIZE;
2050 valbuf += X_REGISTER_SIZE;
2056 /* Will a function return an aggregate type in memory or in a
2057 register? Return 0 if an aggregate type can be returned in a
2058 register, 1 if it must be returned in memory. */
2061 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2063 type = check_typedef (type);
2065 struct type *fundamental_type;
2067 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2070 /* v0-v7 are used to return values and one register is allocated
2071 for one member. However, HFA or HVA has at most four members. */
2075 if (TYPE_LENGTH (type) > 16)
2077 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2078 invisible reference. */
2086 /* Write into appropriate registers a function return value of type
2087 TYPE, given in virtual format. */
2090 aarch64_store_return_value (struct type *type, struct regcache *regs,
2091 const gdb_byte *valbuf)
2093 struct gdbarch *gdbarch = regs->arch ();
2094 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2096 struct type *fundamental_type;
2098 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2101 int len = TYPE_LENGTH (fundamental_type);
2103 for (int i = 0; i < elements; i++)
2105 int regno = AARCH64_V0_REGNUM + i;
2106 /* Enough space for a full vector register. */
2107 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2108 gdb_assert (len <= sizeof (tmpbuf));
2112 debug_printf ("write HFA or HVA return value element %d to %s\n",
2114 gdbarch_register_name (gdbarch, regno));
2117 memcpy (tmpbuf, valbuf,
2118 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2119 regs->cooked_write (regno, tmpbuf);
2123 else if (TYPE_CODE (type) == TYPE_CODE_INT
2124 || TYPE_CODE (type) == TYPE_CODE_CHAR
2125 || TYPE_CODE (type) == TYPE_CODE_BOOL
2126 || TYPE_CODE (type) == TYPE_CODE_PTR
2127 || TYPE_IS_REFERENCE (type)
2128 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2130 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2132 /* Values of one word or less are zero/sign-extended and
2134 bfd_byte tmpbuf[X_REGISTER_SIZE];
2135 LONGEST val = unpack_long (type, valbuf);
2137 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2138 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2142 /* Integral values greater than one word are stored in
2143 consecutive registers starting with r0. This will always
2144 be a multiple of the regiser size. */
2145 int len = TYPE_LENGTH (type);
2146 int regno = AARCH64_X0_REGNUM;
2150 regs->cooked_write (regno++, valbuf);
2151 len -= X_REGISTER_SIZE;
2152 valbuf += X_REGISTER_SIZE;
2158 /* For a structure or union the behaviour is as if the value had
2159 been stored to word-aligned memory and then loaded into
2160 registers with 64-bit load instruction(s). */
2161 int len = TYPE_LENGTH (type);
2162 int regno = AARCH64_X0_REGNUM;
2163 bfd_byte tmpbuf[X_REGISTER_SIZE];
2167 memcpy (tmpbuf, valbuf,
2168 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2169 regs->cooked_write (regno++, tmpbuf);
2170 len -= X_REGISTER_SIZE;
2171 valbuf += X_REGISTER_SIZE;
2176 /* Implement the "return_value" gdbarch method. */
2178 static enum return_value_convention
2179 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2180 struct type *valtype, struct regcache *regcache,
2181 gdb_byte *readbuf, const gdb_byte *writebuf)
2184 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2185 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2186 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2188 if (aarch64_return_in_memory (gdbarch, valtype))
2191 debug_printf ("return value in memory\n");
2192 return RETURN_VALUE_STRUCT_CONVENTION;
2197 aarch64_store_return_value (valtype, regcache, writebuf);
2200 aarch64_extract_return_value (valtype, regcache, readbuf);
2203 debug_printf ("return value in registers\n");
2205 return RETURN_VALUE_REGISTER_CONVENTION;
2208 /* Implement the "get_longjmp_target" gdbarch method. */
2211 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2214 gdb_byte buf[X_REGISTER_SIZE];
2215 struct gdbarch *gdbarch = get_frame_arch (frame);
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2217 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2219 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2221 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2225 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2229 /* Implement the "gen_return_address" gdbarch method. */
2232 aarch64_gen_return_address (struct gdbarch *gdbarch,
2233 struct agent_expr *ax, struct axs_value *value,
2236 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2237 value->kind = axs_lvalue_register;
2238 value->u.reg = AARCH64_LR_REGNUM;
2242 /* Return the pseudo register name corresponding to register regnum. */
2245 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2249 static const char *const q_name[] =
2251 "q0", "q1", "q2", "q3",
2252 "q4", "q5", "q6", "q7",
2253 "q8", "q9", "q10", "q11",
2254 "q12", "q13", "q14", "q15",
2255 "q16", "q17", "q18", "q19",
2256 "q20", "q21", "q22", "q23",
2257 "q24", "q25", "q26", "q27",
2258 "q28", "q29", "q30", "q31",
2261 static const char *const d_name[] =
2263 "d0", "d1", "d2", "d3",
2264 "d4", "d5", "d6", "d7",
2265 "d8", "d9", "d10", "d11",
2266 "d12", "d13", "d14", "d15",
2267 "d16", "d17", "d18", "d19",
2268 "d20", "d21", "d22", "d23",
2269 "d24", "d25", "d26", "d27",
2270 "d28", "d29", "d30", "d31",
2273 static const char *const s_name[] =
2275 "s0", "s1", "s2", "s3",
2276 "s4", "s5", "s6", "s7",
2277 "s8", "s9", "s10", "s11",
2278 "s12", "s13", "s14", "s15",
2279 "s16", "s17", "s18", "s19",
2280 "s20", "s21", "s22", "s23",
2281 "s24", "s25", "s26", "s27",
2282 "s28", "s29", "s30", "s31",
2285 static const char *const h_name[] =
2287 "h0", "h1", "h2", "h3",
2288 "h4", "h5", "h6", "h7",
2289 "h8", "h9", "h10", "h11",
2290 "h12", "h13", "h14", "h15",
2291 "h16", "h17", "h18", "h19",
2292 "h20", "h21", "h22", "h23",
2293 "h24", "h25", "h26", "h27",
2294 "h28", "h29", "h30", "h31",
2297 static const char *const b_name[] =
2299 "b0", "b1", "b2", "b3",
2300 "b4", "b5", "b6", "b7",
2301 "b8", "b9", "b10", "b11",
2302 "b12", "b13", "b14", "b15",
2303 "b16", "b17", "b18", "b19",
2304 "b20", "b21", "b22", "b23",
2305 "b24", "b25", "b26", "b27",
2306 "b28", "b29", "b30", "b31",
2309 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2311 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2312 return q_name[p_regnum - AARCH64_Q0_REGNUM];
2314 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2315 return d_name[p_regnum - AARCH64_D0_REGNUM];
2317 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2318 return s_name[p_regnum - AARCH64_S0_REGNUM];
2320 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2321 return h_name[p_regnum - AARCH64_H0_REGNUM];
2323 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2324 return b_name[p_regnum - AARCH64_B0_REGNUM];
2326 if (tdep->has_sve ())
2328 static const char *const sve_v_name[] =
2330 "v0", "v1", "v2", "v3",
2331 "v4", "v5", "v6", "v7",
2332 "v8", "v9", "v10", "v11",
2333 "v12", "v13", "v14", "v15",
2334 "v16", "v17", "v18", "v19",
2335 "v20", "v21", "v22", "v23",
2336 "v24", "v25", "v26", "v27",
2337 "v28", "v29", "v30", "v31",
2340 if (p_regnum >= AARCH64_SVE_V0_REGNUM
2341 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2342 return sve_v_name[p_regnum - AARCH64_SVE_V0_REGNUM];
2345 /* RA_STATE is used for unwinding only. Do not assign it a name - this
2346 prevents it from being read by methods such as
2347 mi_cmd_trace_frame_collected. */
2348 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2351 internal_error (__FILE__, __LINE__,
2352 _("aarch64_pseudo_register_name: bad register number %d"),
2356 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2358 static struct type *
2359 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2363 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2365 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2366 return aarch64_vnq_type (gdbarch);
2368 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2369 return aarch64_vnd_type (gdbarch);
2371 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2372 return aarch64_vns_type (gdbarch);
2374 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2375 return aarch64_vnh_type (gdbarch);
2377 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2378 return aarch64_vnb_type (gdbarch);
2380 if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2381 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2382 return aarch64_vnv_type (gdbarch);
2384 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2385 return builtin_type (gdbarch)->builtin_uint64;
2387 internal_error (__FILE__, __LINE__,
2388 _("aarch64_pseudo_register_type: bad register number %d"),
2392 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2395 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2396 struct reggroup *group)
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2400 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2402 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2403 return group == all_reggroup || group == vector_reggroup;
2404 else if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2405 return (group == all_reggroup || group == vector_reggroup
2406 || group == float_reggroup);
2407 else if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2408 return (group == all_reggroup || group == vector_reggroup
2409 || group == float_reggroup);
2410 else if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2411 return group == all_reggroup || group == vector_reggroup;
2412 else if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2413 return group == all_reggroup || group == vector_reggroup;
2414 else if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2415 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2416 return group == all_reggroup || group == vector_reggroup;
2417 /* RA_STATE is used for unwinding only. Do not assign it to any groups. */
2418 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2421 return group == all_reggroup;
2424 /* Helper for aarch64_pseudo_read_value. */
2426 static struct value *
2427 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2428 readable_regcache *regcache, int regnum_offset,
2429 int regsize, struct value *result_value)
2431 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2433 /* Enough space for a full vector register. */
2434 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2435 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2437 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2438 mark_value_bytes_unavailable (result_value, 0,
2439 TYPE_LENGTH (value_type (result_value)));
2441 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2443 return result_value;
2446 /* Implement the "pseudo_register_read_value" gdbarch method. */
2448 static struct value *
2449 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2453 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2455 VALUE_LVAL (result_value) = lval_register;
2456 VALUE_REGNUM (result_value) = regnum;
2458 regnum -= gdbarch_num_regs (gdbarch);
2460 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2461 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2462 regnum - AARCH64_Q0_REGNUM,
2463 Q_REGISTER_SIZE, result_value);
2465 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2466 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2467 regnum - AARCH64_D0_REGNUM,
2468 D_REGISTER_SIZE, result_value);
2470 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2471 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2472 regnum - AARCH64_S0_REGNUM,
2473 S_REGISTER_SIZE, result_value);
2475 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2476 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2477 regnum - AARCH64_H0_REGNUM,
2478 H_REGISTER_SIZE, result_value);
2480 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2481 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2482 regnum - AARCH64_B0_REGNUM,
2483 B_REGISTER_SIZE, result_value);
2485 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2486 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2487 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2488 regnum - AARCH64_SVE_V0_REGNUM,
2489 V_REGISTER_SIZE, result_value);
2491 gdb_assert_not_reached ("regnum out of bound");
2494 /* Helper for aarch64_pseudo_write. */
2497 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2498 int regnum_offset, int regsize, const gdb_byte *buf)
2500 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2502 /* Enough space for a full vector register. */
2503 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2504 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2506 /* Ensure the register buffer is zero, we want gdb writes of the
2507 various 'scalar' pseudo registers to behavior like architectural
2508 writes, register width bytes are written the remainder are set to
2510 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2512 memcpy (reg_buf, buf, regsize);
2513 regcache->raw_write (v_regnum, reg_buf);
2516 /* Implement the "pseudo_register_write" gdbarch method. */
2519 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2520 int regnum, const gdb_byte *buf)
2522 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2523 regnum -= gdbarch_num_regs (gdbarch);
2525 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2526 return aarch64_pseudo_write_1 (gdbarch, regcache,
2527 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2530 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2531 return aarch64_pseudo_write_1 (gdbarch, regcache,
2532 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2535 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2536 return aarch64_pseudo_write_1 (gdbarch, regcache,
2537 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2540 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2541 return aarch64_pseudo_write_1 (gdbarch, regcache,
2542 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2545 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2546 return aarch64_pseudo_write_1 (gdbarch, regcache,
2547 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2550 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2551 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2552 return aarch64_pseudo_write_1 (gdbarch, regcache,
2553 regnum - AARCH64_SVE_V0_REGNUM,
2554 V_REGISTER_SIZE, buf);
2556 gdb_assert_not_reached ("regnum out of bound");
2559 /* Callback function for user_reg_add. */
2561 static struct value *
2562 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2564 const int *reg_p = (const int *) baton;
2566 return value_of_register (*reg_p, frame);
2570 /* Implement the "software_single_step" gdbarch method, needed to
2571 single step through atomic sequences on AArch64. */
2573 static std::vector<CORE_ADDR>
2574 aarch64_software_single_step (struct regcache *regcache)
2576 struct gdbarch *gdbarch = regcache->arch ();
2577 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2578 const int insn_size = 4;
2579 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2580 CORE_ADDR pc = regcache_read_pc (regcache);
2581 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2583 CORE_ADDR closing_insn = 0;
2584 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2585 byte_order_for_code);
2588 int bc_insn_count = 0; /* Conditional branch instruction count. */
2589 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2592 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2595 /* Look for a Load Exclusive instruction which begins the sequence. */
2596 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2599 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2602 insn = read_memory_unsigned_integer (loc, insn_size,
2603 byte_order_for_code);
2605 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2607 /* Check if the instruction is a conditional branch. */
2608 if (inst.opcode->iclass == condbranch)
2610 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2612 if (bc_insn_count >= 1)
2615 /* It is, so we'll try to set a breakpoint at the destination. */
2616 breaks[1] = loc + inst.operands[0].imm.value;
2622 /* Look for the Store Exclusive which closes the atomic sequence. */
2623 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2630 /* We didn't find a closing Store Exclusive instruction, fall back. */
2634 /* Insert breakpoint after the end of the atomic sequence. */
2635 breaks[0] = loc + insn_size;
2637 /* Check for duplicated breakpoints, and also check that the second
2638 breakpoint is not within the atomic sequence. */
2640 && (breaks[1] == breaks[0]
2641 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2642 last_breakpoint = 0;
2644 std::vector<CORE_ADDR> next_pcs;
2646 /* Insert the breakpoint at the end of the sequence, and one at the
2647 destination of the conditional branch, if it exists. */
2648 for (index = 0; index <= last_breakpoint; index++)
2649 next_pcs.push_back (breaks[index]);
2654 struct aarch64_displaced_step_closure : public displaced_step_closure
2656 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2657 is being displaced stepping. */
2660 /* PC adjustment offset after displaced stepping. */
2661 int32_t pc_adjust = 0;
2664 /* Data when visiting instructions for displaced stepping. */
2666 struct aarch64_displaced_step_data
2668 struct aarch64_insn_data base;
2670 /* The address where the instruction will be executed at. */
2672 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2673 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2674 /* Number of instructions in INSN_BUF. */
2675 unsigned insn_count;
2676 /* Registers when doing displaced stepping. */
2677 struct regcache *regs;
2679 aarch64_displaced_step_closure *dsc;
2682 /* Implementation of aarch64_insn_visitor method "b". */
2685 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2686 struct aarch64_insn_data *data)
2688 struct aarch64_displaced_step_data *dsd
2689 = (struct aarch64_displaced_step_data *) data;
2690 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2692 if (can_encode_int32 (new_offset, 28))
2694 /* Emit B rather than BL, because executing BL on a new address
2695 will get the wrong address into LR. In order to avoid this,
2696 we emit B, and update LR if the instruction is BL. */
2697 emit_b (dsd->insn_buf, 0, new_offset);
2703 emit_nop (dsd->insn_buf);
2705 dsd->dsc->pc_adjust = offset;
2711 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2712 data->insn_addr + 4);
2716 /* Implementation of aarch64_insn_visitor method "b_cond". */
2719 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2720 struct aarch64_insn_data *data)
2722 struct aarch64_displaced_step_data *dsd
2723 = (struct aarch64_displaced_step_data *) data;
2725 /* GDB has to fix up PC after displaced step this instruction
2726 differently according to the condition is true or false. Instead
2727 of checking COND against conditional flags, we can use
2728 the following instructions, and GDB can tell how to fix up PC
2729 according to the PC value.
2731 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2737 emit_bcond (dsd->insn_buf, cond, 8);
2739 dsd->dsc->pc_adjust = offset;
2740 dsd->insn_count = 1;
2743 /* Dynamically allocate a new register. If we know the register
2744 statically, we should make it a global as above instead of using this
2747 static struct aarch64_register
2748 aarch64_register (unsigned num, int is64)
2750 return (struct aarch64_register) { num, is64 };
2753 /* Implementation of aarch64_insn_visitor method "cb". */
2756 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2757 const unsigned rn, int is64,
2758 struct aarch64_insn_data *data)
2760 struct aarch64_displaced_step_data *dsd
2761 = (struct aarch64_displaced_step_data *) data;
2763 /* The offset is out of range for a compare and branch
2764 instruction. We can use the following instructions instead:
2766 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2771 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2772 dsd->insn_count = 1;
2774 dsd->dsc->pc_adjust = offset;
2777 /* Implementation of aarch64_insn_visitor method "tb". */
2780 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2781 const unsigned rt, unsigned bit,
2782 struct aarch64_insn_data *data)
2784 struct aarch64_displaced_step_data *dsd
2785 = (struct aarch64_displaced_step_data *) data;
2787 /* The offset is out of range for a test bit and branch
2788 instruction We can use the following instructions instead:
2790 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2796 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2797 dsd->insn_count = 1;
2799 dsd->dsc->pc_adjust = offset;
2802 /* Implementation of aarch64_insn_visitor method "adr". */
2805 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2806 const int is_adrp, struct aarch64_insn_data *data)
2808 struct aarch64_displaced_step_data *dsd
2809 = (struct aarch64_displaced_step_data *) data;
2810 /* We know exactly the address the ADR{P,} instruction will compute.
2811 We can just write it to the destination register. */
2812 CORE_ADDR address = data->insn_addr + offset;
2816 /* Clear the lower 12 bits of the offset to get the 4K page. */
2817 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2821 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2824 dsd->dsc->pc_adjust = 4;
2825 emit_nop (dsd->insn_buf);
2826 dsd->insn_count = 1;
2829 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2832 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2833 const unsigned rt, const int is64,
2834 struct aarch64_insn_data *data)
2836 struct aarch64_displaced_step_data *dsd
2837 = (struct aarch64_displaced_step_data *) data;
2838 CORE_ADDR address = data->insn_addr + offset;
2839 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2841 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2845 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2846 aarch64_register (rt, 1), zero);
2848 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2849 aarch64_register (rt, 1), zero);
2851 dsd->dsc->pc_adjust = 4;
2854 /* Implementation of aarch64_insn_visitor method "others". */
2857 aarch64_displaced_step_others (const uint32_t insn,
2858 struct aarch64_insn_data *data)
2860 struct aarch64_displaced_step_data *dsd
2861 = (struct aarch64_displaced_step_data *) data;
2863 aarch64_emit_insn (dsd->insn_buf, insn);
2864 dsd->insn_count = 1;
2866 if ((insn & 0xfffffc1f) == 0xd65f0000)
2869 dsd->dsc->pc_adjust = 0;
2872 dsd->dsc->pc_adjust = 4;
2875 static const struct aarch64_insn_visitor visitor =
2877 aarch64_displaced_step_b,
2878 aarch64_displaced_step_b_cond,
2879 aarch64_displaced_step_cb,
2880 aarch64_displaced_step_tb,
2881 aarch64_displaced_step_adr,
2882 aarch64_displaced_step_ldr_literal,
2883 aarch64_displaced_step_others,
2886 /* Implement the "displaced_step_copy_insn" gdbarch method. */
2888 struct displaced_step_closure *
2889 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
2890 CORE_ADDR from, CORE_ADDR to,
2891 struct regcache *regs)
2893 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2894 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
2895 struct aarch64_displaced_step_data dsd;
2898 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2901 /* Look for a Load Exclusive instruction which begins the sequence. */
2902 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
2904 /* We can't displaced step atomic sequences. */
2908 std::unique_ptr<aarch64_displaced_step_closure> dsc
2909 (new aarch64_displaced_step_closure);
2910 dsd.base.insn_addr = from;
2913 dsd.dsc = dsc.get ();
2915 aarch64_relocate_instruction (insn, &visitor,
2916 (struct aarch64_insn_data *) &dsd);
2917 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
2919 if (dsd.insn_count != 0)
2923 /* Instruction can be relocated to scratch pad. Copy
2924 relocated instruction(s) there. */
2925 for (i = 0; i < dsd.insn_count; i++)
2927 if (debug_displaced)
2929 debug_printf ("displaced: writing insn ");
2930 debug_printf ("%.8x", dsd.insn_buf[i]);
2931 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
2933 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
2934 (ULONGEST) dsd.insn_buf[i]);
2942 return dsc.release ();
2945 /* Implement the "displaced_step_fixup" gdbarch method. */
2948 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
2949 struct displaced_step_closure *dsc_,
2950 CORE_ADDR from, CORE_ADDR to,
2951 struct regcache *regs)
2953 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
2959 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
2962 /* Condition is true. */
2964 else if (pc - to == 4)
2966 /* Condition is false. */
2970 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
2973 if (dsc->pc_adjust != 0)
2975 if (debug_displaced)
2977 debug_printf ("displaced: fixup: set PC to %s:%d\n",
2978 paddress (gdbarch, from), dsc->pc_adjust);
2980 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
2981 from + dsc->pc_adjust);
2985 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
2988 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
2989 struct displaced_step_closure *closure)
2994 /* Get the correct target description for the given VQ value.
2995 If VQ is zero then it is assumed SVE is not supported.
2996 (It is not possible to set VQ to zero on an SVE system). */
2999 aarch64_read_description (uint64_t vq, bool pauth_p)
3001 if (vq > AARCH64_MAX_SVE_VQ)
3002 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
3003 AARCH64_MAX_SVE_VQ);
3005 struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
3009 tdesc = aarch64_create_target_description (vq, pauth_p);
3010 tdesc_aarch64_list[vq][pauth_p] = tdesc;
3016 /* Return the VQ used when creating the target description TDESC. */
3019 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
3021 const struct tdesc_feature *feature_sve;
3023 if (!tdesc_has_registers (tdesc))
3026 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3028 if (feature_sve == nullptr)
3031 uint64_t vl = tdesc_register_bitsize (feature_sve,
3032 aarch64_sve_register_names[0]) / 8;
3033 return sve_vq_from_vl (vl);
3036 /* Add all the expected register sets into GDBARCH. */
3039 aarch64_add_reggroups (struct gdbarch *gdbarch)
3041 reggroup_add (gdbarch, general_reggroup);
3042 reggroup_add (gdbarch, float_reggroup);
3043 reggroup_add (gdbarch, system_reggroup);
3044 reggroup_add (gdbarch, vector_reggroup);
3045 reggroup_add (gdbarch, all_reggroup);
3046 reggroup_add (gdbarch, save_reggroup);
3047 reggroup_add (gdbarch, restore_reggroup);
3050 /* Implement the "cannot_store_register" gdbarch method. */
3053 aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3057 if (!tdep->has_pauth ())
3060 /* Pointer authentication registers are read-only. */
3061 return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
3062 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base));
3065 /* Initialize the current architecture based on INFO. If possible,
3066 re-use an architecture from ARCHES, which is a list of
3067 architectures already created during this debugging session.
3069 Called e.g. at program startup, when reading a core file, and when
3070 reading a binary file. */
3072 static struct gdbarch *
3073 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3075 struct gdbarch_tdep *tdep;
3076 struct gdbarch *gdbarch;
3077 struct gdbarch_list *best_arch;
3078 struct tdesc_arch_data *tdesc_data = NULL;
3079 const struct target_desc *tdesc = info.target_desc;
3082 const struct tdesc_feature *feature_core;
3083 const struct tdesc_feature *feature_fpu;
3084 const struct tdesc_feature *feature_sve;
3085 const struct tdesc_feature *feature_pauth;
3087 int num_pseudo_regs = 0;
3088 int first_pauth_regnum = -1;
3089 int pauth_ra_state_offset = -1;
3091 /* Ensure we always have a target description. */
3092 if (!tdesc_has_registers (tdesc))
3093 tdesc = aarch64_read_description (0, false);
3096 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
3097 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
3098 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3099 feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth");
3101 if (feature_core == NULL)
3104 tdesc_data = tdesc_data_alloc ();
3106 /* Validate the description provides the mandatory core R registers
3107 and allocate their numbers. */
3108 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
3109 valid_p &= tdesc_numbered_register (feature_core, tdesc_data,
3110 AARCH64_X0_REGNUM + i,
3111 aarch64_r_register_names[i]);
3113 num_regs = AARCH64_X0_REGNUM + i;
3115 /* Add the V registers. */
3116 if (feature_fpu != NULL)
3118 if (feature_sve != NULL)
3119 error (_("Program contains both fpu and SVE features."));
3121 /* Validate the description provides the mandatory V registers
3122 and allocate their numbers. */
3123 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
3124 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data,
3125 AARCH64_V0_REGNUM + i,
3126 aarch64_v_register_names[i]);
3128 num_regs = AARCH64_V0_REGNUM + i;
3131 /* Add the SVE registers. */
3132 if (feature_sve != NULL)
3134 /* Validate the description provides the mandatory SVE registers
3135 and allocate their numbers. */
3136 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3137 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data,
3138 AARCH64_SVE_Z0_REGNUM + i,
3139 aarch64_sve_register_names[i]);
3141 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3142 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3145 if (feature_fpu != NULL || feature_sve != NULL)
3147 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3148 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3149 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3150 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3151 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3154 /* Add the pauth registers. */
3155 if (feature_pauth != NULL)
3157 first_pauth_regnum = num_regs;
3158 pauth_ra_state_offset = num_pseudo_regs;
3159 /* Validate the descriptor provides the mandatory PAUTH registers and
3160 allocate their numbers. */
3161 for (i = 0; i < ARRAY_SIZE (aarch64_pauth_register_names); i++)
3162 valid_p &= tdesc_numbered_register (feature_pauth, tdesc_data,
3163 first_pauth_regnum + i,
3164 aarch64_pauth_register_names[i]);
3167 num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */
3172 tdesc_data_cleanup (tdesc_data);
3176 /* AArch64 code is always little-endian. */
3177 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3179 /* If there is already a candidate, use it. */
3180 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
3182 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3184 /* Found a match. */
3188 if (best_arch != NULL)
3190 if (tdesc_data != NULL)
3191 tdesc_data_cleanup (tdesc_data);
3192 return best_arch->gdbarch;
3195 tdep = XCNEW (struct gdbarch_tdep);
3196 gdbarch = gdbarch_alloc (&info, tdep);
3198 /* This should be low enough for everything. */
3199 tdep->lowest_pc = 0x20;
3200 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3201 tdep->jb_elt_size = 8;
3202 tdep->vq = aarch64_get_tdesc_vq (tdesc);
3203 tdep->pauth_reg_base = first_pauth_regnum;
3204 tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1
3205 : pauth_ra_state_offset + num_regs;
3208 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3209 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3211 /* Advance PC across function entry code. */
3212 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3214 /* The stack grows downward. */
3215 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3217 /* Breakpoint manipulation. */
3218 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3219 aarch64_breakpoint::kind_from_pc);
3220 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3221 aarch64_breakpoint::bp_from_kind);
3222 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3223 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3225 /* Information about registers, etc. */
3226 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3227 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3228 set_gdbarch_num_regs (gdbarch, num_regs);
3230 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3231 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3232 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3233 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3234 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3235 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3236 aarch64_pseudo_register_reggroup_p);
3237 set_gdbarch_cannot_store_register (gdbarch, aarch64_cannot_store_register);
3240 set_gdbarch_short_bit (gdbarch, 16);
3241 set_gdbarch_int_bit (gdbarch, 32);
3242 set_gdbarch_float_bit (gdbarch, 32);
3243 set_gdbarch_double_bit (gdbarch, 64);
3244 set_gdbarch_long_double_bit (gdbarch, 128);
3245 set_gdbarch_long_bit (gdbarch, 64);
3246 set_gdbarch_long_long_bit (gdbarch, 64);
3247 set_gdbarch_ptr_bit (gdbarch, 64);
3248 set_gdbarch_char_signed (gdbarch, 0);
3249 set_gdbarch_wchar_signed (gdbarch, 0);
3250 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3251 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3252 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3254 /* Internal <-> external register number maps. */
3255 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3257 /* Returning results. */
3258 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3261 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3263 /* Virtual tables. */
3264 set_gdbarch_vbit_in_delta (gdbarch, 1);
3266 /* Register architecture. */
3267 aarch64_add_reggroups (gdbarch);
3269 /* Hook in the ABI-specific overrides, if they have been registered. */
3270 info.target_desc = tdesc;
3271 info.tdesc_data = tdesc_data;
3272 gdbarch_init_osabi (info, gdbarch);
3274 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3275 /* Register DWARF CFA vendor handler. */
3276 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
3277 aarch64_execute_dwarf_cfa_vendor_op);
3279 /* Add some default predicates. */
3280 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3281 dwarf2_append_unwinders (gdbarch);
3282 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3284 frame_base_set_default (gdbarch, &aarch64_normal_base);
3286 /* Now we have tuned the configuration, set a few final things,
3287 based on what the OS ABI has told us. */
3289 if (tdep->jb_pc >= 0)
3290 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3292 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3294 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3296 /* Add standard register aliases. */
3297 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3298 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3299 value_of_aarch64_user_reg,
3300 &aarch64_register_aliases[i].regnum);
3302 register_aarch64_ravenscar_ops (gdbarch);
3308 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3315 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3316 paddress (gdbarch, tdep->lowest_pc));
3322 static void aarch64_process_record_test (void);
3327 _initialize_aarch64_tdep (void)
3329 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3332 /* Debug this file's internals. */
3333 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3334 Set AArch64 debugging."), _("\
3335 Show AArch64 debugging."), _("\
3336 When on, AArch64 specific debugging is enabled."),
3339 &setdebuglist, &showdebuglist);
3342 selftests::register_test ("aarch64-analyze-prologue",
3343 selftests::aarch64_analyze_prologue_test);
3344 selftests::register_test ("aarch64-process-record",
3345 selftests::aarch64_process_record_test);
3346 selftests::record_xml_tdesc ("aarch64.xml",
3347 aarch64_create_target_description (0, false));
3351 /* AArch64 process record-replay related structures, defines etc. */
3353 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3356 unsigned int reg_len = LENGTH; \
3359 REGS = XNEWVEC (uint32_t, reg_len); \
3360 memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3365 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3368 unsigned int mem_len = LENGTH; \
3371 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3372 memcpy(&MEMS->len, &RECORD_BUF[0], \
3373 sizeof(struct aarch64_mem_r) * LENGTH); \
3378 /* AArch64 record/replay structures and enumerations. */
3380 struct aarch64_mem_r
3382 uint64_t len; /* Record length. */
3383 uint64_t addr; /* Memory address. */
3386 enum aarch64_record_result
3388 AARCH64_RECORD_SUCCESS,
3389 AARCH64_RECORD_UNSUPPORTED,
3390 AARCH64_RECORD_UNKNOWN
3393 typedef struct insn_decode_record_t
3395 struct gdbarch *gdbarch;
3396 struct regcache *regcache;
3397 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3398 uint32_t aarch64_insn; /* Insn to be recorded. */
3399 uint32_t mem_rec_count; /* Count of memory records. */
3400 uint32_t reg_rec_count; /* Count of register records. */
3401 uint32_t *aarch64_regs; /* Registers to be recorded. */
3402 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3403 } insn_decode_record;
3405 /* Record handler for data processing - register instructions. */
3408 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3410 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3411 uint32_t record_buf[4];
3413 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3414 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3415 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3417 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3421 /* Logical (shifted register). */
3422 if (insn_bits24_27 == 0x0a)
3423 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3425 else if (insn_bits24_27 == 0x0b)
3426 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3428 return AARCH64_RECORD_UNKNOWN;
3430 record_buf[0] = reg_rd;
3431 aarch64_insn_r->reg_rec_count = 1;
3433 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3437 if (insn_bits24_27 == 0x0b)
3439 /* Data-processing (3 source). */
3440 record_buf[0] = reg_rd;
3441 aarch64_insn_r->reg_rec_count = 1;
3443 else if (insn_bits24_27 == 0x0a)
3445 if (insn_bits21_23 == 0x00)
3447 /* Add/subtract (with carry). */
3448 record_buf[0] = reg_rd;
3449 aarch64_insn_r->reg_rec_count = 1;
3450 if (bit (aarch64_insn_r->aarch64_insn, 29))
3452 record_buf[1] = AARCH64_CPSR_REGNUM;
3453 aarch64_insn_r->reg_rec_count = 2;
3456 else if (insn_bits21_23 == 0x02)
3458 /* Conditional compare (register) and conditional compare
3459 (immediate) instructions. */
3460 record_buf[0] = AARCH64_CPSR_REGNUM;
3461 aarch64_insn_r->reg_rec_count = 1;
3463 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3465 /* CConditional select. */
3466 /* Data-processing (2 source). */
3467 /* Data-processing (1 source). */
3468 record_buf[0] = reg_rd;
3469 aarch64_insn_r->reg_rec_count = 1;
3472 return AARCH64_RECORD_UNKNOWN;
3476 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3478 return AARCH64_RECORD_SUCCESS;
3481 /* Record handler for data processing - immediate instructions. */
3484 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3486 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3487 uint32_t record_buf[4];
3489 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3490 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3491 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3493 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3494 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3495 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3497 record_buf[0] = reg_rd;
3498 aarch64_insn_r->reg_rec_count = 1;
3500 else if (insn_bits24_27 == 0x01)
3502 /* Add/Subtract (immediate). */
3503 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3504 record_buf[0] = reg_rd;
3505 aarch64_insn_r->reg_rec_count = 1;
3507 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3509 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3511 /* Logical (immediate). */
3512 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3513 record_buf[0] = reg_rd;
3514 aarch64_insn_r->reg_rec_count = 1;
3516 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3519 return AARCH64_RECORD_UNKNOWN;
3521 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3523 return AARCH64_RECORD_SUCCESS;
3526 /* Record handler for branch, exception generation and system instructions. */
3529 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3531 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3532 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3533 uint32_t record_buf[4];
3535 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3536 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3537 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3539 if (insn_bits28_31 == 0x0d)
3541 /* Exception generation instructions. */
3542 if (insn_bits24_27 == 0x04)
3544 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3545 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3546 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3548 ULONGEST svc_number;
3550 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3552 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3556 return AARCH64_RECORD_UNSUPPORTED;
3558 /* System instructions. */
3559 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3561 uint32_t reg_rt, reg_crn;
3563 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3564 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3566 /* Record rt in case of sysl and mrs instructions. */
3567 if (bit (aarch64_insn_r->aarch64_insn, 21))
3569 record_buf[0] = reg_rt;
3570 aarch64_insn_r->reg_rec_count = 1;
3572 /* Record cpsr for hint and msr(immediate) instructions. */
3573 else if (reg_crn == 0x02 || reg_crn == 0x04)
3575 record_buf[0] = AARCH64_CPSR_REGNUM;
3576 aarch64_insn_r->reg_rec_count = 1;
3579 /* Unconditional branch (register). */
3580 else if((insn_bits24_27 & 0x0e) == 0x06)
3582 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3583 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3584 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3587 return AARCH64_RECORD_UNKNOWN;
3589 /* Unconditional branch (immediate). */
3590 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3592 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3593 if (bit (aarch64_insn_r->aarch64_insn, 31))
3594 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3597 /* Compare & branch (immediate), Test & branch (immediate) and
3598 Conditional branch (immediate). */
3599 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3601 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3603 return AARCH64_RECORD_SUCCESS;
3606 /* Record handler for advanced SIMD load and store instructions. */
3609 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3612 uint64_t addr_offset = 0;
3613 uint32_t record_buf[24];
3614 uint64_t record_buf_mem[24];
3615 uint32_t reg_rn, reg_rt;
3616 uint32_t reg_index = 0, mem_index = 0;
3617 uint8_t opcode_bits, size_bits;
3619 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3620 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3621 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3622 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3623 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3626 debug_printf ("Process record: Advanced SIMD load/store\n");
3628 /* Load/store single structure. */
3629 if (bit (aarch64_insn_r->aarch64_insn, 24))
3631 uint8_t sindex, scale, selem, esize, replicate = 0;
3632 scale = opcode_bits >> 2;
3633 selem = ((opcode_bits & 0x02) |
3634 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3638 if (size_bits & 0x01)
3639 return AARCH64_RECORD_UNKNOWN;
3642 if ((size_bits >> 1) & 0x01)
3643 return AARCH64_RECORD_UNKNOWN;
3644 if (size_bits & 0x01)
3646 if (!((opcode_bits >> 1) & 0x01))
3649 return AARCH64_RECORD_UNKNOWN;
3653 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3660 return AARCH64_RECORD_UNKNOWN;
3666 for (sindex = 0; sindex < selem; sindex++)
3668 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3669 reg_rt = (reg_rt + 1) % 32;
3673 for (sindex = 0; sindex < selem; sindex++)
3675 if (bit (aarch64_insn_r->aarch64_insn, 22))
3676 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3679 record_buf_mem[mem_index++] = esize / 8;
3680 record_buf_mem[mem_index++] = address + addr_offset;
3682 addr_offset = addr_offset + (esize / 8);
3683 reg_rt = (reg_rt + 1) % 32;
3687 /* Load/store multiple structure. */
3690 uint8_t selem, esize, rpt, elements;
3691 uint8_t eindex, rindex;
3693 esize = 8 << size_bits;
3694 if (bit (aarch64_insn_r->aarch64_insn, 30))
3695 elements = 128 / esize;
3697 elements = 64 / esize;
3699 switch (opcode_bits)
3701 /*LD/ST4 (4 Registers). */
3706 /*LD/ST1 (4 Registers). */
3711 /*LD/ST3 (3 Registers). */
3716 /*LD/ST1 (3 Registers). */
3721 /*LD/ST1 (1 Register). */
3726 /*LD/ST2 (2 Registers). */
3731 /*LD/ST1 (2 Registers). */
3737 return AARCH64_RECORD_UNSUPPORTED;
3740 for (rindex = 0; rindex < rpt; rindex++)
3741 for (eindex = 0; eindex < elements; eindex++)
3743 uint8_t reg_tt, sindex;
3744 reg_tt = (reg_rt + rindex) % 32;
3745 for (sindex = 0; sindex < selem; sindex++)
3747 if (bit (aarch64_insn_r->aarch64_insn, 22))
3748 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3751 record_buf_mem[mem_index++] = esize / 8;
3752 record_buf_mem[mem_index++] = address + addr_offset;
3754 addr_offset = addr_offset + (esize / 8);
3755 reg_tt = (reg_tt + 1) % 32;
3760 if (bit (aarch64_insn_r->aarch64_insn, 23))
3761 record_buf[reg_index++] = reg_rn;
3763 aarch64_insn_r->reg_rec_count = reg_index;
3764 aarch64_insn_r->mem_rec_count = mem_index / 2;
3765 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3767 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3769 return AARCH64_RECORD_SUCCESS;
3772 /* Record handler for load and store instructions. */
3775 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3777 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3778 uint8_t insn_bit23, insn_bit21;
3779 uint8_t opc, size_bits, ld_flag, vector_flag;
3780 uint32_t reg_rn, reg_rt, reg_rt2;
3781 uint64_t datasize, offset;
3782 uint32_t record_buf[8];
3783 uint64_t record_buf_mem[8];
3786 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3787 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3788 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3789 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3790 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3791 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3792 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3793 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3794 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3795 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3796 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3798 /* Load/store exclusive. */
3799 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3802 debug_printf ("Process record: load/store exclusive\n");
3806 record_buf[0] = reg_rt;
3807 aarch64_insn_r->reg_rec_count = 1;
3810 record_buf[1] = reg_rt2;
3811 aarch64_insn_r->reg_rec_count = 2;
3817 datasize = (8 << size_bits) * 2;
3819 datasize = (8 << size_bits);
3820 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3822 record_buf_mem[0] = datasize / 8;
3823 record_buf_mem[1] = address;
3824 aarch64_insn_r->mem_rec_count = 1;
3827 /* Save register rs. */
3828 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3829 aarch64_insn_r->reg_rec_count = 1;
3833 /* Load register (literal) instructions decoding. */
3834 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3837 debug_printf ("Process record: load register (literal)\n");
3839 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3841 record_buf[0] = reg_rt;
3842 aarch64_insn_r->reg_rec_count = 1;
3844 /* All types of load/store pair instructions decoding. */
3845 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3848 debug_printf ("Process record: load/store pair\n");
3854 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3855 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3859 record_buf[0] = reg_rt;
3860 record_buf[1] = reg_rt2;
3862 aarch64_insn_r->reg_rec_count = 2;
3867 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3869 size_bits = size_bits >> 1;
3870 datasize = 8 << (2 + size_bits);
3871 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3872 offset = offset << (2 + size_bits);
3873 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3875 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3877 if (imm7_off & 0x40)
3878 address = address - offset;
3880 address = address + offset;
3883 record_buf_mem[0] = datasize / 8;
3884 record_buf_mem[1] = address;
3885 record_buf_mem[2] = datasize / 8;
3886 record_buf_mem[3] = address + (datasize / 8);
3887 aarch64_insn_r->mem_rec_count = 2;
3889 if (bit (aarch64_insn_r->aarch64_insn, 23))
3890 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3892 /* Load/store register (unsigned immediate) instructions. */
3893 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
3895 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3905 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
3907 /* PRFM (immediate) */
3908 return AARCH64_RECORD_SUCCESS;
3910 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
3912 /* LDRSW (immediate) */
3926 debug_printf ("Process record: load/store (unsigned immediate):"
3927 " size %x V %d opc %x\n", size_bits, vector_flag,
3933 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
3934 datasize = 8 << size_bits;
3935 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3937 offset = offset << size_bits;
3938 address = address + offset;
3940 record_buf_mem[0] = datasize >> 3;
3941 record_buf_mem[1] = address;
3942 aarch64_insn_r->mem_rec_count = 1;
3947 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3949 record_buf[0] = reg_rt;
3950 aarch64_insn_r->reg_rec_count = 1;
3953 /* Load/store register (register offset) instructions. */
3954 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3955 && insn_bits10_11 == 0x02 && insn_bit21)
3958 debug_printf ("Process record: load/store (register offset)\n");
3959 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3966 if (size_bits != 0x03)
3969 return AARCH64_RECORD_UNKNOWN;
3973 ULONGEST reg_rm_val;
3975 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
3976 bits (aarch64_insn_r->aarch64_insn, 16, 20), ®_rm_val);
3977 if (bit (aarch64_insn_r->aarch64_insn, 12))
3978 offset = reg_rm_val << size_bits;
3980 offset = reg_rm_val;
3981 datasize = 8 << size_bits;
3982 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3984 address = address + offset;
3985 record_buf_mem[0] = datasize >> 3;
3986 record_buf_mem[1] = address;
3987 aarch64_insn_r->mem_rec_count = 1;
3992 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3994 record_buf[0] = reg_rt;
3995 aarch64_insn_r->reg_rec_count = 1;
3998 /* Load/store register (immediate and unprivileged) instructions. */
3999 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4004 debug_printf ("Process record: load/store "
4005 "(immediate and unprivileged)\n");
4007 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4014 if (size_bits != 0x03)
4017 return AARCH64_RECORD_UNKNOWN;
4022 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
4023 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
4024 datasize = 8 << size_bits;
4025 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4027 if (insn_bits10_11 != 0x01)
4029 if (imm9_off & 0x0100)
4030 address = address - offset;
4032 address = address + offset;
4034 record_buf_mem[0] = datasize >> 3;
4035 record_buf_mem[1] = address;
4036 aarch64_insn_r->mem_rec_count = 1;
4041 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4043 record_buf[0] = reg_rt;
4044 aarch64_insn_r->reg_rec_count = 1;
4046 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
4047 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4049 /* Advanced SIMD load/store instructions. */
4051 return aarch64_record_asimd_load_store (aarch64_insn_r);
4053 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4055 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4057 return AARCH64_RECORD_SUCCESS;
4060 /* Record handler for data processing SIMD and floating point instructions. */
4063 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
4065 uint8_t insn_bit21, opcode, rmode, reg_rd;
4066 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
4067 uint8_t insn_bits11_14;
4068 uint32_t record_buf[2];
4070 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4071 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
4072 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4073 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
4074 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
4075 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
4076 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
4077 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4078 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4081 debug_printf ("Process record: data processing SIMD/FP: ");
4083 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
4085 /* Floating point - fixed point conversion instructions. */
4089 debug_printf ("FP - fixed point conversion");
4091 if ((opcode >> 1) == 0x0 && rmode == 0x03)
4092 record_buf[0] = reg_rd;
4094 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4096 /* Floating point - conditional compare instructions. */
4097 else if (insn_bits10_11 == 0x01)
4100 debug_printf ("FP - conditional compare");
4102 record_buf[0] = AARCH64_CPSR_REGNUM;
4104 /* Floating point - data processing (2-source) and
4105 conditional select instructions. */
4106 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
4109 debug_printf ("FP - DP (2-source)");
4111 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4113 else if (insn_bits10_11 == 0x00)
4115 /* Floating point - immediate instructions. */
4116 if ((insn_bits12_15 & 0x01) == 0x01
4117 || (insn_bits12_15 & 0x07) == 0x04)
4120 debug_printf ("FP - immediate");
4121 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4123 /* Floating point - compare instructions. */
4124 else if ((insn_bits12_15 & 0x03) == 0x02)
4127 debug_printf ("FP - immediate");
4128 record_buf[0] = AARCH64_CPSR_REGNUM;
4130 /* Floating point - integer conversions instructions. */
4131 else if (insn_bits12_15 == 0x00)
4133 /* Convert float to integer instruction. */
4134 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
4137 debug_printf ("float to int conversion");
4139 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4141 /* Convert integer to float instruction. */
4142 else if ((opcode >> 1) == 0x01 && !rmode)
4145 debug_printf ("int to float conversion");
4147 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4149 /* Move float to integer instruction. */
4150 else if ((opcode >> 1) == 0x03)
4153 debug_printf ("move float to int");
4155 if (!(opcode & 0x01))
4156 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4158 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4161 return AARCH64_RECORD_UNKNOWN;
4164 return AARCH64_RECORD_UNKNOWN;
4167 return AARCH64_RECORD_UNKNOWN;
4169 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4172 debug_printf ("SIMD copy");
4174 /* Advanced SIMD copy instructions. */
4175 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4176 && !bit (aarch64_insn_r->aarch64_insn, 15)
4177 && bit (aarch64_insn_r->aarch64_insn, 10))
4179 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4180 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4182 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4185 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4187 /* All remaining floating point or advanced SIMD instructions. */
4191 debug_printf ("all remain");
4193 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4197 debug_printf ("\n");
4199 aarch64_insn_r->reg_rec_count++;
4200 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
4201 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4203 return AARCH64_RECORD_SUCCESS;
4206 /* Decodes insns type and invokes its record handler. */
4209 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4211 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4213 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4214 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4215 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4216 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4218 /* Data processing - immediate instructions. */
4219 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4220 return aarch64_record_data_proc_imm (aarch64_insn_r);
4222 /* Branch, exception generation and system instructions. */
4223 if (ins_bit26 && !ins_bit27 && ins_bit28)
4224 return aarch64_record_branch_except_sys (aarch64_insn_r);
4226 /* Load and store instructions. */
4227 if (!ins_bit25 && ins_bit27)
4228 return aarch64_record_load_store (aarch64_insn_r);
4230 /* Data processing - register instructions. */
4231 if (ins_bit25 && !ins_bit26 && ins_bit27)
4232 return aarch64_record_data_proc_reg (aarch64_insn_r);
4234 /* Data processing - SIMD and floating point instructions. */
4235 if (ins_bit25 && ins_bit26 && ins_bit27)
4236 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4238 return AARCH64_RECORD_UNSUPPORTED;
4241 /* Cleans up local record registers and memory allocations. */
4244 deallocate_reg_mem (insn_decode_record *record)
4246 xfree (record->aarch64_regs);
4247 xfree (record->aarch64_mems);
4251 namespace selftests {
4254 aarch64_process_record_test (void)
4256 struct gdbarch_info info;
4259 gdbarch_info_init (&info);
4260 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4262 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4263 SELF_CHECK (gdbarch != NULL);
4265 insn_decode_record aarch64_record;
4267 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4268 aarch64_record.regcache = NULL;
4269 aarch64_record.this_addr = 0;
4270 aarch64_record.gdbarch = gdbarch;
4272 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4273 aarch64_record.aarch64_insn = 0xf9800020;
4274 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4275 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4276 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4277 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4279 deallocate_reg_mem (&aarch64_record);
4282 } // namespace selftests
4283 #endif /* GDB_SELF_TEST */
4285 /* Parse the current instruction and record the values of the registers and
4286 memory that will be changed in current instruction to record_arch_list
4287 return -1 if something is wrong. */
4290 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4291 CORE_ADDR insn_addr)
4293 uint32_t rec_no = 0;
4294 uint8_t insn_size = 4;
4296 gdb_byte buf[insn_size];
4297 insn_decode_record aarch64_record;
4299 memset (&buf[0], 0, insn_size);
4300 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4301 target_read_memory (insn_addr, &buf[0], insn_size);
4302 aarch64_record.aarch64_insn
4303 = (uint32_t) extract_unsigned_integer (&buf[0],
4305 gdbarch_byte_order (gdbarch));
4306 aarch64_record.regcache = regcache;
4307 aarch64_record.this_addr = insn_addr;
4308 aarch64_record.gdbarch = gdbarch;
4310 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4311 if (ret == AARCH64_RECORD_UNSUPPORTED)
4313 printf_unfiltered (_("Process record does not support instruction "
4314 "0x%0x at address %s.\n"),
4315 aarch64_record.aarch64_insn,
4316 paddress (gdbarch, insn_addr));
4322 /* Record registers. */
4323 record_full_arch_list_add_reg (aarch64_record.regcache,
4325 /* Always record register CPSR. */
4326 record_full_arch_list_add_reg (aarch64_record.regcache,
4327 AARCH64_CPSR_REGNUM);
4328 if (aarch64_record.aarch64_regs)
4329 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4330 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4331 aarch64_record.aarch64_regs[rec_no]))
4334 /* Record memories. */
4335 if (aarch64_record.aarch64_mems)
4336 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4337 if (record_full_arch_list_add_mem
4338 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4339 aarch64_record.aarch64_mems[rec_no].len))
4342 if (record_full_arch_list_add_end ())
4346 deallocate_reg_mem (&aarch64_record);