1 /* Common target dependent code for GDB on AArch64 systems.
3 Copyright (C) 2009-2013 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "gdb_string.h"
30 #include "reggroups.h"
33 #include "arch-utils.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "trad-frame.h"
39 #include "dwarf2-frame.h"
41 #include "prologue-value.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
47 #include "aarch64-tdep.h"
50 #include "elf/aarch64.h"
52 #include "gdb_assert.h"
55 #include "features/aarch64.c"
57 /* Pseudo register base numbers. */
58 #define AARCH64_Q0_REGNUM 0
59 #define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32)
60 #define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
61 #define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
62 #define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
64 /* The standard register names, and all the valid aliases for them. */
67 const char *const name;
69 } aarch64_register_aliases[] =
71 /* 64-bit register names. */
72 {"fp", AARCH64_FP_REGNUM},
73 {"lr", AARCH64_LR_REGNUM},
74 {"sp", AARCH64_SP_REGNUM},
76 /* 32-bit register names. */
77 {"w0", AARCH64_X0_REGNUM + 0},
78 {"w1", AARCH64_X0_REGNUM + 1},
79 {"w2", AARCH64_X0_REGNUM + 2},
80 {"w3", AARCH64_X0_REGNUM + 3},
81 {"w4", AARCH64_X0_REGNUM + 4},
82 {"w5", AARCH64_X0_REGNUM + 5},
83 {"w6", AARCH64_X0_REGNUM + 6},
84 {"w7", AARCH64_X0_REGNUM + 7},
85 {"w8", AARCH64_X0_REGNUM + 8},
86 {"w9", AARCH64_X0_REGNUM + 9},
87 {"w10", AARCH64_X0_REGNUM + 10},
88 {"w11", AARCH64_X0_REGNUM + 11},
89 {"w12", AARCH64_X0_REGNUM + 12},
90 {"w13", AARCH64_X0_REGNUM + 13},
91 {"w14", AARCH64_X0_REGNUM + 14},
92 {"w15", AARCH64_X0_REGNUM + 15},
93 {"w16", AARCH64_X0_REGNUM + 16},
94 {"w17", AARCH64_X0_REGNUM + 17},
95 {"w18", AARCH64_X0_REGNUM + 18},
96 {"w19", AARCH64_X0_REGNUM + 19},
97 {"w20", AARCH64_X0_REGNUM + 20},
98 {"w21", AARCH64_X0_REGNUM + 21},
99 {"w22", AARCH64_X0_REGNUM + 22},
100 {"w23", AARCH64_X0_REGNUM + 23},
101 {"w24", AARCH64_X0_REGNUM + 24},
102 {"w25", AARCH64_X0_REGNUM + 25},
103 {"w26", AARCH64_X0_REGNUM + 26},
104 {"w27", AARCH64_X0_REGNUM + 27},
105 {"w28", AARCH64_X0_REGNUM + 28},
106 {"w29", AARCH64_X0_REGNUM + 29},
107 {"w30", AARCH64_X0_REGNUM + 30},
110 {"ip0", AARCH64_X0_REGNUM + 16},
111 {"ip1", AARCH64_X0_REGNUM + 17}
114 /* The required core 'R' registers. */
115 static const char *const aarch64_r_register_names[] =
117 /* These registers must appear in consecutive RAW register number
118 order and they must begin with AARCH64_X0_REGNUM! */
119 "x0", "x1", "x2", "x3",
120 "x4", "x5", "x6", "x7",
121 "x8", "x9", "x10", "x11",
122 "x12", "x13", "x14", "x15",
123 "x16", "x17", "x18", "x19",
124 "x20", "x21", "x22", "x23",
125 "x24", "x25", "x26", "x27",
126 "x28", "x29", "x30", "sp",
130 /* The FP/SIMD 'V' registers. */
131 static const char *const aarch64_v_register_names[] =
133 /* These registers must appear in consecutive RAW register number
134 order and they must begin with AARCH64_V0_REGNUM! */
135 "v0", "v1", "v2", "v3",
136 "v4", "v5", "v6", "v7",
137 "v8", "v9", "v10", "v11",
138 "v12", "v13", "v14", "v15",
139 "v16", "v17", "v18", "v19",
140 "v20", "v21", "v22", "v23",
141 "v24", "v25", "v26", "v27",
142 "v28", "v29", "v30", "v31",
147 /* AArch64 prologue cache structure. */
148 struct aarch64_prologue_cache
150 /* The stack pointer at the time this frame was created; i.e. the
151 caller's stack pointer when this function was called. It is used
152 to identify this frame. */
155 /* The frame base for this frame is just prev_sp - frame size.
156 FRAMESIZE is the distance from the frame pointer to the
157 initial stack pointer. */
160 /* The register used to hold the frame pointer for this frame. */
163 /* Saved register offsets. */
164 struct trad_frame_saved_reg *saved_regs;
167 /* Toggle this file's internal debugging dump. */
168 static int aarch64_debug;
171 show_aarch64_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
174 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
177 /* Extract a signed value from a bit field within an instruction
180 INSN is the instruction opcode.
182 WIDTH specifies the width of the bit field to extract (in bits).
184 OFFSET specifies the least significant bit of the field where bits
185 are numbered zero counting from least to most significant. */
188 extract_signed_bitfield (uint32_t insn, unsigned width, unsigned offset)
190 unsigned shift_l = sizeof (int32_t) * 8 - (offset + width);
191 unsigned shift_r = sizeof (int32_t) * 8 - width;
193 return ((int32_t) insn << shift_l) >> shift_r;
196 /* Determine if specified bits within an instruction opcode matches a
199 INSN is the instruction opcode.
201 MASK specifies the bits within the opcode that are to be tested
202 agsinst for a match with PATTERN. */
205 decode_masked_match (uint32_t insn, uint32_t mask, uint32_t pattern)
207 return (insn & mask) == pattern;
210 /* Decode an opcode if it represents an immediate ADD or SUB instruction.
212 ADDR specifies the address of the opcode.
213 INSN specifies the opcode to test.
214 RD receives the 'rd' field from the decoded instruction.
215 RN receives the 'rn' field from the decoded instruction.
217 Return 1 if the opcodes matches and is decoded, otherwise 0. */
219 decode_add_sub_imm (CORE_ADDR addr, uint32_t insn, unsigned *rd, unsigned *rn,
222 if ((insn & 0x9f000000) == 0x91000000)
227 *rd = (insn >> 0) & 0x1f;
228 *rn = (insn >> 5) & 0x1f;
229 *imm = (insn >> 10) & 0xfff;
230 shift = (insn >> 22) & 0x3;
231 op_is_sub = (insn >> 30) & 0x1;
249 fprintf_unfiltered (gdb_stdlog,
250 "decode: 0x%s 0x%x add x%u, x%u, #%d\n",
251 core_addr_to_string_nz (addr), insn, *rd, *rn,
258 /* Decode an opcode if it represents an ADRP instruction.
260 ADDR specifies the address of the opcode.
261 INSN specifies the opcode to test.
262 RD receives the 'rd' field from the decoded instruction.
264 Return 1 if the opcodes matches and is decoded, otherwise 0. */
267 decode_adrp (CORE_ADDR addr, uint32_t insn, unsigned *rd)
269 if (decode_masked_match (insn, 0x9f000000, 0x90000000))
271 *rd = (insn >> 0) & 0x1f;
274 fprintf_unfiltered (gdb_stdlog,
275 "decode: 0x%s 0x%x adrp x%u, #?\n",
276 core_addr_to_string_nz (addr), insn, *rd);
282 /* Decode an opcode if it represents an branch immediate or branch
283 and link immediate instruction.
285 ADDR specifies the address of the opcode.
286 INSN specifies the opcode to test.
287 LINK receives the 'link' bit from the decoded instruction.
288 OFFSET receives the immediate offset from the decoded instruction.
290 Return 1 if the opcodes matches and is decoded, otherwise 0. */
293 decode_b (CORE_ADDR addr, uint32_t insn, unsigned *link, int32_t *offset)
295 /* b 0001 01ii iiii iiii iiii iiii iiii iiii */
296 /* bl 1001 01ii iiii iiii iiii iiii iiii iiii */
297 if (decode_masked_match (insn, 0x7c000000, 0x14000000))
300 *offset = extract_signed_bitfield (insn, 26, 0) << 2;
303 fprintf_unfiltered (gdb_stdlog,
304 "decode: 0x%s 0x%x %s 0x%s\n",
305 core_addr_to_string_nz (addr), insn,
307 core_addr_to_string_nz (addr + *offset));
314 /* Decode an opcode if it represents a conditional branch instruction.
316 ADDR specifies the address of the opcode.
317 INSN specifies the opcode to test.
318 COND receives the branch condition field from the decoded
320 OFFSET receives the immediate offset from the decoded instruction.
322 Return 1 if the opcodes matches and is decoded, otherwise 0. */
325 decode_bcond (CORE_ADDR addr, uint32_t insn, unsigned *cond, int32_t *offset)
327 if (decode_masked_match (insn, 0xfe000000, 0x54000000))
329 *cond = (insn >> 0) & 0xf;
330 *offset = extract_signed_bitfield (insn, 19, 5) << 2;
333 fprintf_unfiltered (gdb_stdlog,
334 "decode: 0x%s 0x%x b<%u> 0x%s\n",
335 core_addr_to_string_nz (addr), insn, *cond,
336 core_addr_to_string_nz (addr + *offset));
342 /* Decode an opcode if it represents a branch via register instruction.
344 ADDR specifies the address of the opcode.
345 INSN specifies the opcode to test.
346 LINK receives the 'link' bit from the decoded instruction.
347 RN receives the 'rn' field from the decoded instruction.
349 Return 1 if the opcodes matches and is decoded, otherwise 0. */
352 decode_br (CORE_ADDR addr, uint32_t insn, unsigned *link, unsigned *rn)
354 /* 8 4 0 6 2 8 4 0 */
355 /* blr 110101100011111100000000000rrrrr */
356 /* br 110101100001111100000000000rrrrr */
357 if (decode_masked_match (insn, 0xffdffc1f, 0xd61f0000))
359 *link = (insn >> 21) & 1;
360 *rn = (insn >> 5) & 0x1f;
363 fprintf_unfiltered (gdb_stdlog,
364 "decode: 0x%s 0x%x %s 0x%x\n",
365 core_addr_to_string_nz (addr), insn,
366 *link ? "blr" : "br", *rn);
373 /* Decode an opcode if it represents a CBZ or CBNZ instruction.
375 ADDR specifies the address of the opcode.
376 INSN specifies the opcode to test.
377 IS64 receives the 'sf' field from the decoded instruction.
378 OP receives the 'op' field from the decoded instruction.
379 RN receives the 'rn' field from the decoded instruction.
380 OFFSET receives the 'imm19' field from the decoded instruction.
382 Return 1 if the opcodes matches and is decoded, otherwise 0. */
385 decode_cb (CORE_ADDR addr,
386 uint32_t insn, int *is64, unsigned *op, unsigned *rn,
389 if (decode_masked_match (insn, 0x7e000000, 0x34000000))
391 /* cbz T011 010o iiii iiii iiii iiii iiir rrrr */
392 /* cbnz T011 010o iiii iiii iiii iiii iiir rrrr */
394 *rn = (insn >> 0) & 0x1f;
395 *is64 = (insn >> 31) & 0x1;
396 *op = (insn >> 24) & 0x1;
397 *offset = extract_signed_bitfield (insn, 19, 5) << 2;
400 fprintf_unfiltered (gdb_stdlog,
401 "decode: 0x%s 0x%x %s 0x%s\n",
402 core_addr_to_string_nz (addr), insn,
403 *op ? "cbnz" : "cbz",
404 core_addr_to_string_nz (addr + *offset));
410 /* Decode an opcode if it represents a ERET instruction.
412 ADDR specifies the address of the opcode.
413 INSN specifies the opcode to test.
415 Return 1 if the opcodes matches and is decoded, otherwise 0. */
418 decode_eret (CORE_ADDR addr, uint32_t insn)
420 /* eret 1101 0110 1001 1111 0000 0011 1110 0000 */
421 if (insn == 0xd69f03e0)
424 fprintf_unfiltered (gdb_stdlog, "decode: 0x%s 0x%x eret\n",
425 core_addr_to_string_nz (addr), insn);
431 /* Decode an opcode if it represents a MOVZ instruction.
433 ADDR specifies the address of the opcode.
434 INSN specifies the opcode to test.
435 RD receives the 'rd' field from the decoded instruction.
437 Return 1 if the opcodes matches and is decoded, otherwise 0. */
440 decode_movz (CORE_ADDR addr, uint32_t insn, unsigned *rd)
442 if (decode_masked_match (insn, 0xff800000, 0x52800000))
444 *rd = (insn >> 0) & 0x1f;
447 fprintf_unfiltered (gdb_stdlog,
448 "decode: 0x%s 0x%x movz x%u, #?\n",
449 core_addr_to_string_nz (addr), insn, *rd);
455 /* Decode an opcode if it represents a ORR (shifted register)
458 ADDR specifies the address of the opcode.
459 INSN specifies the opcode to test.
460 RD receives the 'rd' field from the decoded instruction.
461 RN receives the 'rn' field from the decoded instruction.
462 RM receives the 'rm' field from the decoded instruction.
463 IMM receives the 'imm6' field from the decoded instruction.
465 Return 1 if the opcodes matches and is decoded, otherwise 0. */
468 decode_orr_shifted_register_x (CORE_ADDR addr,
469 uint32_t insn, unsigned *rd, unsigned *rn,
470 unsigned *rm, int32_t *imm)
472 if (decode_masked_match (insn, 0xff200000, 0xaa000000))
474 *rd = (insn >> 0) & 0x1f;
475 *rn = (insn >> 5) & 0x1f;
476 *rm = (insn >> 16) & 0x1f;
477 *imm = (insn >> 10) & 0x3f;
480 fprintf_unfiltered (gdb_stdlog,
481 "decode: 0x%s 0x%x orr x%u, x%u, x%u, #%u\n",
482 core_addr_to_string_nz (addr), insn, *rd,
489 /* Decode an opcode if it represents a RET instruction.
491 ADDR specifies the address of the opcode.
492 INSN specifies the opcode to test.
493 RN receives the 'rn' field from the decoded instruction.
495 Return 1 if the opcodes matches and is decoded, otherwise 0. */
498 decode_ret (CORE_ADDR addr, uint32_t insn, unsigned *rn)
500 if (decode_masked_match (insn, 0xfffffc1f, 0xd65f0000))
502 *rn = (insn >> 5) & 0x1f;
504 fprintf_unfiltered (gdb_stdlog,
505 "decode: 0x%s 0x%x ret x%u\n",
506 core_addr_to_string_nz (addr), insn, *rn);
512 /* Decode an opcode if it represents the following instruction:
513 STP rt, rt2, [rn, #imm]
515 ADDR specifies the address of the opcode.
516 INSN specifies the opcode to test.
517 RT1 receives the 'rt' field from the decoded instruction.
518 RT2 receives the 'rt2' field from the decoded instruction.
519 RN receives the 'rn' field from the decoded instruction.
520 IMM receives the 'imm' field from the decoded instruction.
522 Return 1 if the opcodes matches and is decoded, otherwise 0. */
525 decode_stp_offset (CORE_ADDR addr,
527 unsigned *rt1, unsigned *rt2, unsigned *rn, int32_t *imm)
529 if (decode_masked_match (insn, 0xffc00000, 0xa9000000))
531 *rt1 = (insn >> 0) & 0x1f;
532 *rn = (insn >> 5) & 0x1f;
533 *rt2 = (insn >> 10) & 0x1f;
534 *imm = extract_signed_bitfield (insn, 7, 15);
538 fprintf_unfiltered (gdb_stdlog,
539 "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]\n",
540 core_addr_to_string_nz (addr), insn,
541 *rt1, *rt2, *rn, *imm);
547 /* Decode an opcode if it represents the following instruction:
548 STP rt, rt2, [rn, #imm]!
550 ADDR specifies the address of the opcode.
551 INSN specifies the opcode to test.
552 RT1 receives the 'rt' field from the decoded instruction.
553 RT2 receives the 'rt2' field from the decoded instruction.
554 RN receives the 'rn' field from the decoded instruction.
555 IMM receives the 'imm' field from the decoded instruction.
557 Return 1 if the opcodes matches and is decoded, otherwise 0. */
560 decode_stp_offset_wb (CORE_ADDR addr,
562 unsigned *rt1, unsigned *rt2, unsigned *rn,
565 if (decode_masked_match (insn, 0xffc00000, 0xa9800000))
567 *rt1 = (insn >> 0) & 0x1f;
568 *rn = (insn >> 5) & 0x1f;
569 *rt2 = (insn >> 10) & 0x1f;
570 *imm = extract_signed_bitfield (insn, 7, 15);
574 fprintf_unfiltered (gdb_stdlog,
575 "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]!\n",
576 core_addr_to_string_nz (addr), insn,
577 *rt1, *rt2, *rn, *imm);
583 /* Decode an opcode if it represents the following instruction:
586 ADDR specifies the address of the opcode.
587 INSN specifies the opcode to test.
588 IS64 receives size field from the decoded instruction.
589 RT receives the 'rt' field from the decoded instruction.
590 RN receives the 'rn' field from the decoded instruction.
591 IMM receives the 'imm' field from the decoded instruction.
593 Return 1 if the opcodes matches and is decoded, otherwise 0. */
596 decode_stur (CORE_ADDR addr, uint32_t insn, int *is64, unsigned *rt,
597 unsigned *rn, int32_t *imm)
599 if (decode_masked_match (insn, 0xbfe00c00, 0xb8000000))
601 *is64 = (insn >> 30) & 1;
602 *rt = (insn >> 0) & 0x1f;
603 *rn = (insn >> 5) & 0x1f;
604 *imm = extract_signed_bitfield (insn, 9, 12);
607 fprintf_unfiltered (gdb_stdlog,
608 "decode: 0x%s 0x%x stur %c%u, [x%u + #%d]\n",
609 core_addr_to_string_nz (addr), insn,
610 *is64 ? 'x' : 'w', *rt, *rn, *imm);
616 /* Decode an opcode if it represents a TB or TBNZ instruction.
618 ADDR specifies the address of the opcode.
619 INSN specifies the opcode to test.
620 OP receives the 'op' field from the decoded instruction.
621 BIT receives the bit position field from the decoded instruction.
622 RT receives 'rt' field from the decoded instruction.
623 IMM receives 'imm' field from the decoded instruction.
625 Return 1 if the opcodes matches and is decoded, otherwise 0. */
628 decode_tb (CORE_ADDR addr,
629 uint32_t insn, unsigned *op, unsigned *bit, unsigned *rt,
632 if (decode_masked_match (insn, 0x7e000000, 0x36000000))
634 /* tbz b011 0110 bbbb biii iiii iiii iiir rrrr */
635 /* tbnz B011 0111 bbbb biii iiii iiii iiir rrrr */
637 *rt = (insn >> 0) & 0x1f;
638 *op = insn & (1 << 24);
639 *bit = ((insn >> (31 - 4)) & 0x20) | ((insn >> 19) & 0x1f);
640 *imm = extract_signed_bitfield (insn, 14, 5) << 2;
643 fprintf_unfiltered (gdb_stdlog,
644 "decode: 0x%s 0x%x %s x%u, #%u, 0x%s\n",
645 core_addr_to_string_nz (addr), insn,
646 *op ? "tbnz" : "tbz", *rt, *bit,
647 core_addr_to_string_nz (addr + *imm));
653 /* Analyze a prologue, looking for a recognizable stack frame
654 and frame pointer. Scan until we encounter a store that could
655 clobber the stack frame unexpectedly, or an unknown instruction. */
658 aarch64_analyze_prologue (struct gdbarch *gdbarch,
659 CORE_ADDR start, CORE_ADDR limit,
660 struct aarch64_prologue_cache *cache)
662 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
664 pv_t regs[AARCH64_X_REGISTER_COUNT];
665 struct pv_area *stack;
666 struct cleanup *back_to;
668 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
669 regs[i] = pv_register (i, 0);
670 stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
671 back_to = make_cleanup_free_pv_area (stack);
673 for (; start < limit; start += 4)
691 insn = read_memory_unsigned_integer (start, 4, byte_order_for_code);
693 if (decode_add_sub_imm (start, insn, &rd, &rn, &imm))
694 regs[rd] = pv_add_constant (regs[rn], imm);
695 else if (decode_adrp (start, insn, &rd))
696 regs[rd] = pv_unknown ();
697 else if (decode_b (start, insn, &is_link, &offset))
699 /* Stop analysis on branch. */
702 else if (decode_bcond (start, insn, &cond, &offset))
704 /* Stop analysis on branch. */
707 else if (decode_br (start, insn, &is_link, &rn))
709 /* Stop analysis on branch. */
712 else if (decode_cb (start, insn, &is64, &op, &rn, &offset))
714 /* Stop analysis on branch. */
717 else if (decode_eret (start, insn))
719 /* Stop analysis on branch. */
722 else if (decode_movz (start, insn, &rd))
723 regs[rd] = pv_unknown ();
725 if (decode_orr_shifted_register_x (start, insn, &rd, &rn, &rm, &imm))
727 if (imm == 0 && rn == 31)
734 "aarch64: prologue analysis gave up addr=0x%s "
735 "opcode=0x%x (orr x register)\n",
736 core_addr_to_string_nz (start),
741 else if (decode_ret (start, insn, &rn))
743 /* Stop analysis on branch. */
746 else if (decode_stur (start, insn, &is64, &rt, &rn, &offset))
748 pv_area_store (stack, pv_add_constant (regs[rn], offset),
749 is64 ? 8 : 4, regs[rt]);
751 else if (decode_stp_offset (start, insn, &rt1, &rt2, &rn, &imm))
753 /* If recording this store would invalidate the store area
754 (perhaps because rn is not known) then we should abandon
755 further prologue analysis. */
756 if (pv_area_store_would_trash (stack,
757 pv_add_constant (regs[rn], imm)))
760 if (pv_area_store_would_trash (stack,
761 pv_add_constant (regs[rn], imm + 8)))
764 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
766 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
769 else if (decode_stp_offset_wb (start, insn, &rt1, &rt2, &rn, &imm))
771 /* If recording this store would invalidate the store area
772 (perhaps because rn is not known) then we should abandon
773 further prologue analysis. */
774 if (pv_area_store_would_trash (stack,
775 pv_add_constant (regs[rn], imm)))
778 if (pv_area_store_would_trash (stack,
779 pv_add_constant (regs[rn], imm + 8)))
782 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
784 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
786 regs[rn] = pv_add_constant (regs[rn], imm);
788 else if (decode_tb (start, insn, &op, &bit, &rn, &offset))
790 /* Stop analysis on branch. */
796 fprintf_unfiltered (gdb_stdlog,
797 "aarch64: prologue analysis gave up addr=0x%s"
799 core_addr_to_string_nz (start), insn);
806 do_cleanups (back_to);
810 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
812 /* Frame pointer is fp. Frame size is constant. */
813 cache->framereg = AARCH64_FP_REGNUM;
814 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
816 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
818 /* Try the stack pointer. */
819 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
820 cache->framereg = AARCH64_SP_REGNUM;
824 /* We're just out of luck. We don't know where the frame is. */
825 cache->framereg = -1;
826 cache->framesize = 0;
829 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
833 if (pv_area_find_reg (stack, gdbarch, i, &offset))
834 cache->saved_regs[i].addr = offset;
837 do_cleanups (back_to);
841 /* Implement the "skip_prologue" gdbarch method. */
844 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
848 CORE_ADDR func_addr, limit_pc;
849 struct symtab_and_line sal;
851 /* See if we can determine the end of the prologue via the symbol
852 table. If so, then return either PC, or the PC after the
853 prologue, whichever is greater. */
854 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
856 CORE_ADDR post_prologue_pc
857 = skip_prologue_using_sal (gdbarch, func_addr);
859 if (post_prologue_pc != 0)
860 return max (pc, post_prologue_pc);
863 /* Can't determine prologue from the symbol table, need to examine
866 /* Find an upper limit on the function prologue using the debug
867 information. If the debug information could not be used to
868 provide that bound, then use an arbitrary large number as the
870 limit_pc = skip_prologue_using_sal (gdbarch, pc);
872 limit_pc = pc + 128; /* Magic. */
874 /* Try disassembling prologue. */
875 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
878 /* Scan the function prologue for THIS_FRAME and populate the prologue
882 aarch64_scan_prologue (struct frame_info *this_frame,
883 struct aarch64_prologue_cache *cache)
885 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
886 CORE_ADDR prologue_start;
887 CORE_ADDR prologue_end;
888 CORE_ADDR prev_pc = get_frame_pc (this_frame);
889 struct gdbarch *gdbarch = get_frame_arch (this_frame);
891 /* Assume we do not find a frame. */
892 cache->framereg = -1;
893 cache->framesize = 0;
895 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
898 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
902 /* No line info so use the current PC. */
903 prologue_end = prev_pc;
905 else if (sal.end < prologue_end)
907 /* The next line begins after the function end. */
908 prologue_end = sal.end;
911 prologue_end = min (prologue_end, prev_pc);
912 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
919 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
921 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
925 cache->framereg = AARCH64_FP_REGNUM;
926 cache->framesize = 16;
927 cache->saved_regs[29].addr = 0;
928 cache->saved_regs[30].addr = 8;
932 /* Allocate an aarch64_prologue_cache and fill it with information
933 about the prologue of *THIS_FRAME. */
935 static struct aarch64_prologue_cache *
936 aarch64_make_prologue_cache (struct frame_info *this_frame)
938 struct aarch64_prologue_cache *cache;
939 CORE_ADDR unwound_fp;
942 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
943 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
945 aarch64_scan_prologue (this_frame, cache);
947 if (cache->framereg == -1)
950 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
954 cache->prev_sp = unwound_fp + cache->framesize;
956 /* Calculate actual addresses of saved registers using offsets
957 determined by aarch64_analyze_prologue. */
958 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
959 if (trad_frame_addr_p (cache->saved_regs, reg))
960 cache->saved_regs[reg].addr += cache->prev_sp;
965 /* Our frame ID for a normal frame is the current function's starting
966 PC and the caller's SP when we were called. */
969 aarch64_prologue_this_id (struct frame_info *this_frame,
970 void **this_cache, struct frame_id *this_id)
972 struct aarch64_prologue_cache *cache;
976 if (*this_cache == NULL)
977 *this_cache = aarch64_make_prologue_cache (this_frame);
980 /* This is meant to halt the backtrace at "_start". */
981 pc = get_frame_pc (this_frame);
982 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
985 /* If we've hit a wall, stop. */
986 if (cache->prev_sp == 0)
989 func = get_frame_func (this_frame);
990 id = frame_id_build (cache->prev_sp, func);
994 /* Implement the "prev_register" frame_unwind method. */
996 static struct value *
997 aarch64_prologue_prev_register (struct frame_info *this_frame,
998 void **this_cache, int prev_regnum)
1000 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1001 struct aarch64_prologue_cache *cache;
1003 if (*this_cache == NULL)
1004 *this_cache = aarch64_make_prologue_cache (this_frame);
1005 cache = *this_cache;
1007 /* If we are asked to unwind the PC, then we need to return the LR
1008 instead. The prologue may save PC, but it will point into this
1009 frame's prologue, not the next frame's resume location. */
1010 if (prev_regnum == AARCH64_PC_REGNUM)
1014 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1015 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
1018 /* SP is generally not saved to the stack, but this frame is
1019 identified by the next frame's stack pointer at the time of the
1020 call. The value was already reconstructed into PREV_SP. */
1026 | | | <- Previous SP
1029 +--| saved fp |<- FP
1033 if (prev_regnum == AARCH64_SP_REGNUM)
1034 return frame_unwind_got_constant (this_frame, prev_regnum,
1037 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1041 /* AArch64 prologue unwinder. */
1042 struct frame_unwind aarch64_prologue_unwind =
1045 default_frame_unwind_stop_reason,
1046 aarch64_prologue_this_id,
1047 aarch64_prologue_prev_register,
1049 default_frame_sniffer
1052 /* Allocate an aarch64_prologue_cache and fill it with information
1053 about the prologue of *THIS_FRAME. */
1055 static struct aarch64_prologue_cache *
1056 aarch64_make_stub_cache (struct frame_info *this_frame)
1059 struct aarch64_prologue_cache *cache;
1060 CORE_ADDR unwound_fp;
1062 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1063 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1066 = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1071 /* Our frame ID for a stub frame is the current SP and LR. */
1074 aarch64_stub_this_id (struct frame_info *this_frame,
1075 void **this_cache, struct frame_id *this_id)
1077 struct aarch64_prologue_cache *cache;
1079 if (*this_cache == NULL)
1080 *this_cache = aarch64_make_stub_cache (this_frame);
1081 cache = *this_cache;
1083 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
1086 /* Implement the "sniffer" frame_unwind method. */
1089 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1090 struct frame_info *this_frame,
1091 void **this_prologue_cache)
1093 CORE_ADDR addr_in_block;
1096 addr_in_block = get_frame_address_in_block (this_frame);
1097 if (in_plt_section (addr_in_block)
1098 /* We also use the stub winder if the target memory is unreadable
1099 to avoid having the prologue unwinder trying to read it. */
1100 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1106 /* AArch64 stub unwinder. */
1107 struct frame_unwind aarch64_stub_unwind =
1110 default_frame_unwind_stop_reason,
1111 aarch64_stub_this_id,
1112 aarch64_prologue_prev_register,
1114 aarch64_stub_unwind_sniffer
1117 /* Return the frame base address of *THIS_FRAME. */
1120 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1122 struct aarch64_prologue_cache *cache;
1124 if (*this_cache == NULL)
1125 *this_cache = aarch64_make_prologue_cache (this_frame);
1126 cache = *this_cache;
1128 return cache->prev_sp - cache->framesize;
1131 /* AArch64 default frame base information. */
1132 struct frame_base aarch64_normal_base =
1134 &aarch64_prologue_unwind,
1135 aarch64_normal_frame_base,
1136 aarch64_normal_frame_base,
1137 aarch64_normal_frame_base
1140 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1141 dummy frame. The frame ID's base needs to match the TOS value
1142 saved by save_dummy_frame_tos () and returned from
1143 aarch64_push_dummy_call, and the PC needs to match the dummy
1144 frame's breakpoint. */
1146 static struct frame_id
1147 aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1149 return frame_id_build (get_frame_register_unsigned (this_frame,
1151 get_frame_pc (this_frame));
1154 /* Implement the "unwind_pc" gdbarch method. */
1157 aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1160 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
1165 /* Implement the "unwind_sp" gdbarch method. */
1168 aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1170 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1173 /* Return the value of the REGNUM register in the previous frame of
1176 static struct value *
1177 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1178 void **this_cache, int regnum)
1180 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1185 case AARCH64_PC_REGNUM:
1186 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1187 return frame_unwind_got_constant (this_frame, regnum, lr);
1190 internal_error (__FILE__, __LINE__,
1191 _("Unexpected register %d"), regnum);
1195 /* Implement the "init_reg" dwarf2_frame_ops method. */
1198 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1199 struct dwarf2_frame_state_reg *reg,
1200 struct frame_info *this_frame)
1204 case AARCH64_PC_REGNUM:
1205 reg->how = DWARF2_FRAME_REG_FN;
1206 reg->loc.fn = aarch64_dwarf2_prev_register;
1208 case AARCH64_SP_REGNUM:
1209 reg->how = DWARF2_FRAME_REG_CFA;
1214 /* When arguments must be pushed onto the stack, they go on in reverse
1215 order. The code below implements a FILO (stack) to do this. */
1219 /* Value to pass on stack. */
1222 /* Size in bytes of value to pass on stack. */
1226 DEF_VEC_O (stack_item_t);
1228 /* Return the alignment (in bytes) of the given type. */
1231 aarch64_type_align (struct type *t)
1237 t = check_typedef (t);
1238 switch (TYPE_CODE (t))
1241 /* Should never happen. */
1242 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1246 case TYPE_CODE_ENUM:
1250 case TYPE_CODE_RANGE:
1251 case TYPE_CODE_BITSTRING:
1253 case TYPE_CODE_CHAR:
1254 case TYPE_CODE_BOOL:
1255 return TYPE_LENGTH (t);
1257 case TYPE_CODE_ARRAY:
1258 case TYPE_CODE_COMPLEX:
1259 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1261 case TYPE_CODE_STRUCT:
1262 case TYPE_CODE_UNION:
1264 for (n = 0; n < TYPE_NFIELDS (t); n++)
1266 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1274 /* Return 1 if *TY is a homogeneous floating-point aggregate as
1275 defined in the AAPCS64 ABI document; otherwise return 0. */
1278 is_hfa (struct type *ty)
1280 switch (TYPE_CODE (ty))
1282 case TYPE_CODE_ARRAY:
1284 struct type *target_ty = TYPE_TARGET_TYPE (ty);
1285 if (TYPE_CODE (target_ty) == TYPE_CODE_FLT && TYPE_LENGTH (ty) <= 4)
1290 case TYPE_CODE_UNION:
1291 case TYPE_CODE_STRUCT:
1293 if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
1295 struct type *member0_type;
1297 member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
1298 if (TYPE_CODE (member0_type) == TYPE_CODE_FLT)
1302 for (i = 0; i < TYPE_NFIELDS (ty); i++)
1304 struct type *member1_type;
1306 member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
1307 if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
1308 || (TYPE_LENGTH (member0_type)
1309 != TYPE_LENGTH (member1_type)))
1325 /* AArch64 function call information structure. */
1326 struct aarch64_call_info
1328 /* the current argument number. */
1331 /* The next general purpose register number, equivalent to NGRN as
1332 described in the AArch64 Procedure Call Standard. */
1335 /* The next SIMD and floating point register number, equivalent to
1336 NSRN as described in the AArch64 Procedure Call Standard. */
1339 /* The next stacked argument address, equivalent to NSAA as
1340 described in the AArch64 Procedure Call Standard. */
1343 /* Stack item vector. */
1344 VEC(stack_item_t) *si;
1347 /* Pass a value in a sequence of consecutive X registers. The caller
1348 is responsbile for ensuring sufficient registers are available. */
1351 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1352 struct aarch64_call_info *info, struct type *type,
1353 const bfd_byte *buf)
1355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1356 int len = TYPE_LENGTH (type);
1357 enum type_code typecode = TYPE_CODE (type);
1358 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1364 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1365 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1369 /* Adjust sub-word struct/union args when big-endian. */
1370 if (byte_order == BFD_ENDIAN_BIG
1371 && partial_len < X_REGISTER_SIZE
1372 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1373 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1376 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1378 gdbarch_register_name (gdbarch, regnum),
1379 phex (regval, X_REGISTER_SIZE));
1380 regcache_cooked_write_unsigned (regcache, regnum, regval);
1387 /* Attempt to marshall a value in a V register. Return 1 if
1388 successful, or 0 if insufficient registers are available. This
1389 function, unlike the equivalent pass_in_x() function does not
1390 handle arguments spread across multiple registers. */
1393 pass_in_v (struct gdbarch *gdbarch,
1394 struct regcache *regcache,
1395 struct aarch64_call_info *info,
1396 const bfd_byte *buf)
1400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1401 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1406 regcache_cooked_write (regcache, regnum, buf);
1408 fprintf_unfiltered (gdb_stdlog, "arg %d in %s\n",
1410 gdbarch_register_name (gdbarch, regnum));
1417 /* Marshall an argument onto the stack. */
1420 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1421 const bfd_byte *buf)
1423 int len = TYPE_LENGTH (type);
1429 align = aarch64_type_align (type);
1431 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1432 Natural alignment of the argument's type. */
1433 align = align_up (align, 8);
1435 /* The AArch64 PCS requires at most doubleword alignment. */
1440 fprintf_unfiltered (gdb_stdlog, "arg %d len=%d @ sp + %d\n",
1441 info->argnum, len, info->nsaa);
1445 VEC_safe_push (stack_item_t, info->si, &item);
1448 if (info->nsaa & (align - 1))
1450 /* Push stack alignment padding. */
1451 int pad = align - (info->nsaa & (align - 1));
1456 VEC_safe_push (stack_item_t, info->si, &item);
1461 /* Marshall an argument into a sequence of one or more consecutive X
1462 registers or, if insufficient X registers are available then onto
1466 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1467 struct aarch64_call_info *info, struct type *type,
1468 const bfd_byte *buf)
1470 int len = TYPE_LENGTH (type);
1471 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1473 /* PCS C.13 - Pass in registers if we have enough spare */
1474 if (info->ngrn + nregs <= 8)
1476 pass_in_x (gdbarch, regcache, info, type, buf);
1477 info->ngrn += nregs;
1482 pass_on_stack (info, type, buf);
1486 /* Pass a value in a V register, or on the stack if insufficient are
1490 pass_in_v_or_stack (struct gdbarch *gdbarch,
1491 struct regcache *regcache,
1492 struct aarch64_call_info *info,
1494 const bfd_byte *buf)
1496 if (!pass_in_v (gdbarch, regcache, info, buf))
1497 pass_on_stack (info, type, buf);
1500 /* Implement the "push_dummy_call" gdbarch method. */
1503 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1504 struct regcache *regcache, CORE_ADDR bp_addr,
1506 struct value **args, CORE_ADDR sp, int struct_return,
1507 CORE_ADDR struct_addr)
1513 struct aarch64_call_info info;
1514 struct type *func_type;
1515 struct type *return_type;
1516 int lang_struct_return;
1518 memset (&info, 0, sizeof (info));
1520 /* We need to know what the type of the called function is in order
1521 to determine the number of named/anonymous arguments for the
1522 actual argument placement, and the return type in order to handle
1523 return value correctly.
1525 The generic code above us views the decision of return in memory
1526 or return in registers as a two stage processes. The language
1527 handler is consulted first and may decide to return in memory (eg
1528 class with copy constructor returned by value), this will cause
1529 the generic code to allocate space AND insert an initial leading
1532 If the language code does not decide to pass in memory then the
1533 target code is consulted.
1535 If the language code decides to pass in memory we want to move
1536 the pointer inserted as the initial argument from the argument
1537 list and into X8, the conventional AArch64 struct return pointer
1540 This is slightly awkward, ideally the flag "lang_struct_return"
1541 would be passed to the targets implementation of push_dummy_call.
1542 Rather that change the target interface we call the language code
1543 directly ourselves. */
1545 func_type = check_typedef (value_type (function));
1547 /* Dereference function pointer types. */
1548 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1549 func_type = TYPE_TARGET_TYPE (func_type);
1551 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1552 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
1554 /* If language_pass_by_reference () returned true we will have been
1555 given an additional initial argument, a hidden pointer to the
1556 return slot in memory. */
1557 return_type = TYPE_TARGET_TYPE (func_type);
1558 lang_struct_return = language_pass_by_reference (return_type);
1560 /* Set the return address. For the AArch64, the return breakpoint
1561 is always at BP_ADDR. */
1562 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1564 /* If we were given an initial argument for the return slot because
1565 lang_struct_return was true, lose it. */
1566 if (lang_struct_return)
1572 /* The struct_return pointer occupies X8. */
1573 if (struct_return || lang_struct_return)
1576 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1577 gdbarch_register_name
1579 AARCH64_STRUCT_RETURN_REGNUM),
1580 paddress (gdbarch, struct_addr));
1581 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1585 for (argnum = 0; argnum < nargs; argnum++)
1587 struct value *arg = args[argnum];
1588 struct type *arg_type;
1591 arg_type = check_typedef (value_type (arg));
1592 len = TYPE_LENGTH (arg_type);
1594 switch (TYPE_CODE (arg_type))
1597 case TYPE_CODE_BOOL:
1598 case TYPE_CODE_CHAR:
1599 case TYPE_CODE_RANGE:
1600 case TYPE_CODE_ENUM:
1603 /* Promote to 32 bit integer. */
1604 if (TYPE_UNSIGNED (arg_type))
1605 arg_type = builtin_type (gdbarch)->builtin_uint32;
1607 arg_type = builtin_type (gdbarch)->builtin_int32;
1608 arg = value_cast (arg_type, arg);
1610 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1611 value_contents (arg));
1614 case TYPE_CODE_COMPLEX:
1617 const bfd_byte *buf = value_contents (arg);
1618 struct type *target_type =
1619 check_typedef (TYPE_TARGET_TYPE (arg_type));
1621 pass_in_v (gdbarch, regcache, &info, buf);
1622 pass_in_v (gdbarch, regcache, &info,
1623 buf + TYPE_LENGTH (target_type));
1628 pass_on_stack (&info, arg_type, value_contents (arg));
1632 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type,
1633 value_contents (arg));
1636 case TYPE_CODE_STRUCT:
1637 case TYPE_CODE_ARRAY:
1638 case TYPE_CODE_UNION:
1639 if (is_hfa (arg_type))
1641 int elements = TYPE_NFIELDS (arg_type);
1643 /* Homogeneous Aggregates */
1644 if (info.nsrn + elements < 8)
1648 for (i = 0; i < elements; i++)
1650 /* We know that we have sufficient registers
1651 available therefore this will never fallback
1653 struct value *field =
1654 value_primitive_field (arg, 0, i, arg_type);
1655 struct type *field_type =
1656 check_typedef (value_type (field));
1658 pass_in_v_or_stack (gdbarch, regcache, &info, field_type,
1659 value_contents_writeable (field));
1665 pass_on_stack (&info, arg_type, value_contents (arg));
1670 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1671 invisible reference. */
1673 /* Allocate aligned storage. */
1674 sp = align_down (sp - len, 16);
1676 /* Write the real data into the stack. */
1677 write_memory (sp, value_contents (arg), len);
1679 /* Construct the indirection. */
1680 arg_type = lookup_pointer_type (arg_type);
1681 arg = value_from_pointer (arg_type, sp);
1682 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1683 value_contents (arg));
1686 /* PCS C.15 / C.18 multiple values pass. */
1687 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1688 value_contents (arg));
1692 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1693 value_contents (arg));
1698 /* Make sure stack retains 16 byte alignment. */
1700 sp -= 16 - (info.nsaa & 15);
1702 while (!VEC_empty (stack_item_t, info.si))
1704 stack_item_t *si = VEC_last (stack_item_t, info.si);
1707 write_memory (sp, si->data, si->len);
1708 VEC_pop (stack_item_t, info.si);
1711 VEC_free (stack_item_t, info.si);
1713 /* Finally, update the SP register. */
1714 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1719 /* Implement the "frame_align" gdbarch method. */
1722 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1724 /* Align the stack to sixteen bytes. */
1725 return sp & ~(CORE_ADDR) 15;
1728 /* Return the type for an AdvSISD Q register. */
1730 static struct type *
1731 aarch64_vnq_type (struct gdbarch *gdbarch)
1733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1735 if (tdep->vnq_type == NULL)
1740 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1743 elem = builtin_type (gdbarch)->builtin_uint128;
1744 append_composite_type_field (t, "u", elem);
1746 elem = builtin_type (gdbarch)->builtin_int128;
1747 append_composite_type_field (t, "s", elem);
1752 return tdep->vnq_type;
1755 /* Return the type for an AdvSISD D register. */
1757 static struct type *
1758 aarch64_vnd_type (struct gdbarch *gdbarch)
1760 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1762 if (tdep->vnd_type == NULL)
1767 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1770 elem = builtin_type (gdbarch)->builtin_double;
1771 append_composite_type_field (t, "f", elem);
1773 elem = builtin_type (gdbarch)->builtin_uint64;
1774 append_composite_type_field (t, "u", elem);
1776 elem = builtin_type (gdbarch)->builtin_int64;
1777 append_composite_type_field (t, "s", elem);
1782 return tdep->vnd_type;
1785 /* Return the type for an AdvSISD S register. */
1787 static struct type *
1788 aarch64_vns_type (struct gdbarch *gdbarch)
1790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792 if (tdep->vns_type == NULL)
1797 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1800 elem = builtin_type (gdbarch)->builtin_float;
1801 append_composite_type_field (t, "f", elem);
1803 elem = builtin_type (gdbarch)->builtin_uint32;
1804 append_composite_type_field (t, "u", elem);
1806 elem = builtin_type (gdbarch)->builtin_int32;
1807 append_composite_type_field (t, "s", elem);
1812 return tdep->vns_type;
1815 /* Return the type for an AdvSISD H register. */
1817 static struct type *
1818 aarch64_vnh_type (struct gdbarch *gdbarch)
1820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1822 if (tdep->vnh_type == NULL)
1827 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1830 elem = builtin_type (gdbarch)->builtin_uint16;
1831 append_composite_type_field (t, "u", elem);
1833 elem = builtin_type (gdbarch)->builtin_int16;
1834 append_composite_type_field (t, "s", elem);
1839 return tdep->vnh_type;
1842 /* Return the type for an AdvSISD B register. */
1844 static struct type *
1845 aarch64_vnb_type (struct gdbarch *gdbarch)
1847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1849 if (tdep->vnb_type == NULL)
1854 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1857 elem = builtin_type (gdbarch)->builtin_uint8;
1858 append_composite_type_field (t, "u", elem);
1860 elem = builtin_type (gdbarch)->builtin_int8;
1861 append_composite_type_field (t, "s", elem);
1866 return tdep->vnb_type;
1869 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1872 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1874 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1875 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1877 if (reg == AARCH64_DWARF_SP)
1878 return AARCH64_SP_REGNUM;
1880 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1881 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1887 /* Implement the "print_insn" gdbarch method. */
1890 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1892 info->symbols = NULL;
1893 return print_insn_aarch64 (memaddr, info);
1896 /* AArch64 BRK software debug mode instruction.
1897 Note that AArch64 code is always little-endian.
1898 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1899 static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1901 /* Implement the "breakpoint_from_pc" gdbarch method. */
1903 static const gdb_byte *
1904 aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909 *lenptr = sizeof (aarch64_default_breakpoint);
1910 return aarch64_default_breakpoint;
1913 /* Extract from an array REGS containing the (raw) register state a
1914 function return value of type TYPE, and copy that, in virtual
1915 format, into VALBUF. */
1918 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1921 struct gdbarch *gdbarch = get_regcache_arch (regs);
1922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1924 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1926 bfd_byte buf[V_REGISTER_SIZE];
1927 int len = TYPE_LENGTH (type);
1929 regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
1930 memcpy (valbuf, buf, len);
1932 else if (TYPE_CODE (type) == TYPE_CODE_INT
1933 || TYPE_CODE (type) == TYPE_CODE_CHAR
1934 || TYPE_CODE (type) == TYPE_CODE_BOOL
1935 || TYPE_CODE (type) == TYPE_CODE_PTR
1936 || TYPE_CODE (type) == TYPE_CODE_REF
1937 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1939 /* If the the type is a plain integer, then the access is
1940 straight-forward. Otherwise we have to play around a bit
1942 int len = TYPE_LENGTH (type);
1943 int regno = AARCH64_X0_REGNUM;
1948 /* By using store_unsigned_integer we avoid having to do
1949 anything special for small big-endian values. */
1950 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1951 store_unsigned_integer (valbuf,
1952 (len > X_REGISTER_SIZE
1953 ? X_REGISTER_SIZE : len), byte_order, tmp);
1954 len -= X_REGISTER_SIZE;
1955 valbuf += X_REGISTER_SIZE;
1958 else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1960 int regno = AARCH64_V0_REGNUM;
1961 bfd_byte buf[V_REGISTER_SIZE];
1962 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1963 int len = TYPE_LENGTH (target_type);
1965 regcache_cooked_read (regs, regno, buf);
1966 memcpy (valbuf, buf, len);
1968 regcache_cooked_read (regs, regno + 1, buf);
1969 memcpy (valbuf, buf, len);
1972 else if (is_hfa (type))
1974 int elements = TYPE_NFIELDS (type);
1975 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1976 int len = TYPE_LENGTH (member_type);
1979 for (i = 0; i < elements; i++)
1981 int regno = AARCH64_V0_REGNUM + i;
1982 bfd_byte buf[X_REGISTER_SIZE];
1985 fprintf_unfiltered (gdb_stdlog,
1986 "read HFA return value element %d from %s\n",
1988 gdbarch_register_name (gdbarch, regno));
1989 regcache_cooked_read (regs, regno, buf);
1991 memcpy (valbuf, buf, len);
1997 /* For a structure or union the behaviour is as if the value had
1998 been stored to word-aligned memory and then loaded into
1999 registers with 64-bit load instruction(s). */
2000 int len = TYPE_LENGTH (type);
2001 int regno = AARCH64_X0_REGNUM;
2002 bfd_byte buf[X_REGISTER_SIZE];
2006 regcache_cooked_read (regs, regno++, buf);
2007 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2008 len -= X_REGISTER_SIZE;
2009 valbuf += X_REGISTER_SIZE;
2015 /* Will a function return an aggregate type in memory or in a
2016 register? Return 0 if an aggregate type can be returned in a
2017 register, 1 if it must be returned in memory. */
2020 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2023 enum type_code code;
2025 CHECK_TYPEDEF (type);
2027 /* In the AArch64 ABI, "integer" like aggregate types are returned
2028 in registers. For an aggregate type to be integer like, its size
2029 must be less than or equal to 4 * X_REGISTER_SIZE. */
2033 /* PCS B.5 If the argument is a Named HFA, then the argument is
2038 if (TYPE_LENGTH (type) > 16)
2040 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2041 invisible reference. */
2049 /* Write into appropriate registers a function return value of type
2050 TYPE, given in virtual format. */
2053 aarch64_store_return_value (struct type *type, struct regcache *regs,
2054 const gdb_byte *valbuf)
2056 struct gdbarch *gdbarch = get_regcache_arch (regs);
2057 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2059 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2061 bfd_byte buf[V_REGISTER_SIZE];
2062 int len = TYPE_LENGTH (type);
2064 memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2065 regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
2067 else if (TYPE_CODE (type) == TYPE_CODE_INT
2068 || TYPE_CODE (type) == TYPE_CODE_CHAR
2069 || TYPE_CODE (type) == TYPE_CODE_BOOL
2070 || TYPE_CODE (type) == TYPE_CODE_PTR
2071 || TYPE_CODE (type) == TYPE_CODE_REF
2072 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2074 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2076 /* Values of one word or less are zero/sign-extended and
2078 bfd_byte tmpbuf[X_REGISTER_SIZE];
2079 LONGEST val = unpack_long (type, valbuf);
2081 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2082 regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf);
2086 /* Integral values greater than one word are stored in
2087 consecutive registers starting with r0. This will always
2088 be a multiple of the regiser size. */
2089 int len = TYPE_LENGTH (type);
2090 int regno = AARCH64_X0_REGNUM;
2094 regcache_cooked_write (regs, regno++, valbuf);
2095 len -= X_REGISTER_SIZE;
2096 valbuf += X_REGISTER_SIZE;
2100 else if (is_hfa (type))
2102 int elements = TYPE_NFIELDS (type);
2103 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2104 int len = TYPE_LENGTH (member_type);
2107 for (i = 0; i < elements; i++)
2109 int regno = AARCH64_V0_REGNUM + i;
2110 bfd_byte tmpbuf[MAX_REGISTER_SIZE];
2113 fprintf_unfiltered (gdb_stdlog,
2114 "write HFA return value element %d to %s\n",
2116 gdbarch_register_name (gdbarch, regno));
2118 memcpy (tmpbuf, valbuf, len);
2119 regcache_cooked_write (regs, regno, tmpbuf);
2125 /* For a structure or union the behaviour is as if the value had
2126 been stored to word-aligned memory and then loaded into
2127 registers with 64-bit load instruction(s). */
2128 int len = TYPE_LENGTH (type);
2129 int regno = AARCH64_X0_REGNUM;
2130 bfd_byte tmpbuf[X_REGISTER_SIZE];
2134 memcpy (tmpbuf, valbuf,
2135 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2136 regcache_cooked_write (regs, regno++, tmpbuf);
2137 len -= X_REGISTER_SIZE;
2138 valbuf += X_REGISTER_SIZE;
2143 /* Implement the "return_value" gdbarch method. */
2145 static enum return_value_convention
2146 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2147 struct type *valtype, struct regcache *regcache,
2148 gdb_byte *readbuf, const gdb_byte *writebuf)
2150 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2152 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2153 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2154 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2156 if (aarch64_return_in_memory (gdbarch, valtype))
2159 fprintf_unfiltered (gdb_stdlog, "return value in memory\n");
2160 return RETURN_VALUE_STRUCT_CONVENTION;
2165 aarch64_store_return_value (valtype, regcache, writebuf);
2168 aarch64_extract_return_value (valtype, regcache, readbuf);
2171 fprintf_unfiltered (gdb_stdlog, "return value in registers\n");
2173 return RETURN_VALUE_REGISTER_CONVENTION;
2176 /* Implement the "get_longjmp_target" gdbarch method. */
2179 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2182 gdb_byte buf[X_REGISTER_SIZE];
2183 struct gdbarch *gdbarch = get_frame_arch (frame);
2184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2187 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2189 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2193 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2198 /* Return the pseudo register name corresponding to register regnum. */
2201 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2203 static const char *const q_name[] =
2205 "q0", "q1", "q2", "q3",
2206 "q4", "q5", "q6", "q7",
2207 "q8", "q9", "q10", "q11",
2208 "q12", "q13", "q14", "q15",
2209 "q16", "q17", "q18", "q19",
2210 "q20", "q21", "q22", "q23",
2211 "q24", "q25", "q26", "q27",
2212 "q28", "q29", "q30", "q31",
2215 static const char *const d_name[] =
2217 "d0", "d1", "d2", "d3",
2218 "d4", "d5", "d6", "d7",
2219 "d8", "d9", "d10", "d11",
2220 "d12", "d13", "d14", "d15",
2221 "d16", "d17", "d18", "d19",
2222 "d20", "d21", "d22", "d23",
2223 "d24", "d25", "d26", "d27",
2224 "d28", "d29", "d30", "d31",
2227 static const char *const s_name[] =
2229 "s0", "s1", "s2", "s3",
2230 "s4", "s5", "s6", "s7",
2231 "s8", "s9", "s10", "s11",
2232 "s12", "s13", "s14", "s15",
2233 "s16", "s17", "s18", "s19",
2234 "s20", "s21", "s22", "s23",
2235 "s24", "s25", "s26", "s27",
2236 "s28", "s29", "s30", "s31",
2239 static const char *const h_name[] =
2241 "h0", "h1", "h2", "h3",
2242 "h4", "h5", "h6", "h7",
2243 "h8", "h9", "h10", "h11",
2244 "h12", "h13", "h14", "h15",
2245 "h16", "h17", "h18", "h19",
2246 "h20", "h21", "h22", "h23",
2247 "h24", "h25", "h26", "h27",
2248 "h28", "h29", "h30", "h31",
2251 static const char *const b_name[] =
2253 "b0", "b1", "b2", "b3",
2254 "b4", "b5", "b6", "b7",
2255 "b8", "b9", "b10", "b11",
2256 "b12", "b13", "b14", "b15",
2257 "b16", "b17", "b18", "b19",
2258 "b20", "b21", "b22", "b23",
2259 "b24", "b25", "b26", "b27",
2260 "b28", "b29", "b30", "b31",
2263 regnum -= gdbarch_num_regs (gdbarch);
2265 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2266 return q_name[regnum - AARCH64_Q0_REGNUM];
2268 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2269 return d_name[regnum - AARCH64_D0_REGNUM];
2271 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2272 return s_name[regnum - AARCH64_S0_REGNUM];
2274 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2275 return h_name[regnum - AARCH64_H0_REGNUM];
2277 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2278 return b_name[regnum - AARCH64_B0_REGNUM];
2280 internal_error (__FILE__, __LINE__,
2281 _("aarch64_pseudo_register_name: bad register number %d"),
2285 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2287 static struct type *
2288 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2290 regnum -= gdbarch_num_regs (gdbarch);
2292 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2293 return aarch64_vnq_type (gdbarch);
2295 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2296 return aarch64_vnd_type (gdbarch);
2298 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2299 return aarch64_vns_type (gdbarch);
2301 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2302 return aarch64_vnh_type (gdbarch);
2304 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2305 return aarch64_vnb_type (gdbarch);
2307 internal_error (__FILE__, __LINE__,
2308 _("aarch64_pseudo_register_type: bad register number %d"),
2312 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2315 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2316 struct reggroup *group)
2318 regnum -= gdbarch_num_regs (gdbarch);
2320 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2321 return group == all_reggroup || group == vector_reggroup;
2322 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2323 return (group == all_reggroup || group == vector_reggroup
2324 || group == float_reggroup);
2325 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2326 return (group == all_reggroup || group == vector_reggroup
2327 || group == float_reggroup);
2328 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2329 return group == all_reggroup || group == vector_reggroup;
2330 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2331 return group == all_reggroup || group == vector_reggroup;
2333 return group == all_reggroup;
2336 /* Implement the "pseudo_register_read_value" gdbarch method. */
2338 static struct value *
2339 aarch64_pseudo_read_value (struct gdbarch *gdbarch,
2340 struct regcache *regcache,
2343 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2344 struct value *result_value;
2347 result_value = allocate_value (register_type (gdbarch, regnum));
2348 VALUE_LVAL (result_value) = lval_register;
2349 VALUE_REGNUM (result_value) = regnum;
2350 buf = value_contents_raw (result_value);
2352 regnum -= gdbarch_num_regs (gdbarch);
2354 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2356 enum register_status status;
2359 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2360 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2361 if (status != REG_VALID)
2362 mark_value_bytes_unavailable (result_value, 0,
2363 TYPE_LENGTH (value_type (result_value)));
2365 memcpy (buf, reg_buf, Q_REGISTER_SIZE);
2366 return result_value;
2369 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2371 enum register_status status;
2374 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2375 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2376 if (status != REG_VALID)
2377 mark_value_bytes_unavailable (result_value, 0,
2378 TYPE_LENGTH (value_type (result_value)));
2380 memcpy (buf, reg_buf, D_REGISTER_SIZE);
2381 return result_value;
2384 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2386 enum register_status status;
2389 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2390 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2391 memcpy (buf, reg_buf, S_REGISTER_SIZE);
2392 return result_value;
2395 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2397 enum register_status status;
2400 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2401 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2402 if (status != REG_VALID)
2403 mark_value_bytes_unavailable (result_value, 0,
2404 TYPE_LENGTH (value_type (result_value)));
2406 memcpy (buf, reg_buf, H_REGISTER_SIZE);
2407 return result_value;
2410 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2412 enum register_status status;
2415 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2416 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2417 if (status != REG_VALID)
2418 mark_value_bytes_unavailable (result_value, 0,
2419 TYPE_LENGTH (value_type (result_value)));
2421 memcpy (buf, reg_buf, B_REGISTER_SIZE);
2422 return result_value;
2425 gdb_assert_not_reached ("regnum out of bound");
2428 /* Implement the "pseudo_register_write" gdbarch method. */
2431 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2432 int regnum, const gdb_byte *buf)
2434 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2436 /* Ensure the register buffer is zero, we want gdb writes of the
2437 various 'scalar' pseudo registers to behavior like architectural
2438 writes, register width bytes are written the remainder are set to
2440 memset (reg_buf, 0, sizeof (reg_buf));
2442 regnum -= gdbarch_num_regs (gdbarch);
2444 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2446 /* pseudo Q registers */
2449 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2450 memcpy (reg_buf, buf, Q_REGISTER_SIZE);
2451 regcache_raw_write (regcache, v_regnum, reg_buf);
2455 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2457 /* pseudo D registers */
2460 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2461 memcpy (reg_buf, buf, D_REGISTER_SIZE);
2462 regcache_raw_write (regcache, v_regnum, reg_buf);
2466 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2470 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2471 memcpy (reg_buf, buf, S_REGISTER_SIZE);
2472 regcache_raw_write (regcache, v_regnum, reg_buf);
2476 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2478 /* pseudo H registers */
2481 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2482 memcpy (reg_buf, buf, H_REGISTER_SIZE);
2483 regcache_raw_write (regcache, v_regnum, reg_buf);
2487 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2489 /* pseudo B registers */
2492 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2493 memcpy (reg_buf, buf, B_REGISTER_SIZE);
2494 regcache_raw_write (regcache, v_regnum, reg_buf);
2498 gdb_assert_not_reached ("regnum out of bound");
2501 /* Callback function for user_reg_add. */
2503 static struct value *
2504 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2506 const int *reg_p = baton;
2508 return value_of_register (*reg_p, frame);
2512 /* Initialize the current architecture based on INFO. If possible,
2513 re-use an architecture from ARCHES, which is a list of
2514 architectures already created during this debugging session.
2516 Called e.g. at program startup, when reading a core file, and when
2517 reading a binary file. */
2519 static struct gdbarch *
2520 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2522 struct gdbarch_tdep *tdep;
2523 struct gdbarch *gdbarch;
2524 struct gdbarch_list *best_arch;
2525 struct tdesc_arch_data *tdesc_data = NULL;
2526 const struct target_desc *tdesc = info.target_desc;
2528 int have_fpa_registers = 1;
2530 const struct tdesc_feature *feature;
2532 int num_pseudo_regs = 0;
2534 /* Ensure we always have a target descriptor. */
2535 if (!tdesc_has_registers (tdesc))
2536 tdesc = tdesc_aarch64;
2540 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2542 if (feature == NULL)
2545 tdesc_data = tdesc_data_alloc ();
2547 /* Validate the descriptor provides the mandatory core R registers
2548 and allocate their numbers. */
2549 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2551 tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
2552 aarch64_r_register_names[i]);
2554 num_regs = AARCH64_X0_REGNUM + i;
2556 /* Look for the V registers. */
2557 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2560 /* Validate the descriptor provides the mandatory V registers
2561 and allocate their numbers. */
2562 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2564 tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
2565 aarch64_v_register_names[i]);
2567 num_regs = AARCH64_V0_REGNUM + i;
2569 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
2570 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
2571 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
2572 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
2573 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
2578 tdesc_data_cleanup (tdesc_data);
2582 /* AArch64 code is always little-endian. */
2583 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
2585 /* If there is already a candidate, use it. */
2586 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2588 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2590 /* Found a match. */
2594 if (best_arch != NULL)
2596 if (tdesc_data != NULL)
2597 tdesc_data_cleanup (tdesc_data);
2598 return best_arch->gdbarch;
2601 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2602 gdbarch = gdbarch_alloc (&info, tdep);
2604 /* This should be low enough for everything. */
2605 tdep->lowest_pc = 0x20;
2606 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2607 tdep->jb_elt_size = 8;
2609 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
2610 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
2612 /* Frame handling. */
2613 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
2614 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
2615 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
2617 /* Advance PC across function entry code. */
2618 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
2620 /* The stack grows downward. */
2621 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2623 /* Breakpoint manipulation. */
2624 set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc);
2625 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2626 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2628 /* Information about registers, etc. */
2629 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
2630 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
2631 set_gdbarch_num_regs (gdbarch, num_regs);
2633 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
2634 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
2635 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
2636 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
2637 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
2638 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2639 aarch64_pseudo_register_reggroup_p);
2642 set_gdbarch_short_bit (gdbarch, 16);
2643 set_gdbarch_int_bit (gdbarch, 32);
2644 set_gdbarch_float_bit (gdbarch, 32);
2645 set_gdbarch_double_bit (gdbarch, 64);
2646 set_gdbarch_long_double_bit (gdbarch, 128);
2647 set_gdbarch_long_bit (gdbarch, 64);
2648 set_gdbarch_long_long_bit (gdbarch, 64);
2649 set_gdbarch_ptr_bit (gdbarch, 64);
2650 set_gdbarch_char_signed (gdbarch, 0);
2651 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2652 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2653 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2655 /* Internal <-> external register number maps. */
2656 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
2658 /* Returning results. */
2659 set_gdbarch_return_value (gdbarch, aarch64_return_value);
2662 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
2664 /* Virtual tables. */
2665 set_gdbarch_vbit_in_delta (gdbarch, 1);
2667 /* Hook in the ABI-specific overrides, if they have been registered. */
2668 info.target_desc = tdesc;
2669 info.tdep_info = (void *) tdesc_data;
2670 gdbarch_init_osabi (info, gdbarch);
2672 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
2674 /* Add some default predicates. */
2675 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
2676 dwarf2_append_unwinders (gdbarch);
2677 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
2679 frame_base_set_default (gdbarch, &aarch64_normal_base);
2681 /* Now we have tuned the configuration, set a few final things,
2682 based on what the OS ABI has told us. */
2684 if (tdep->jb_pc >= 0)
2685 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
2687 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2689 /* Add standard register aliases. */
2690 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
2691 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
2692 value_of_aarch64_user_reg,
2693 &aarch64_register_aliases[i].regnum);
2699 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2701 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2706 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
2707 paddress (gdbarch, tdep->lowest_pc));
2710 /* Suppress warning from -Wmissing-prototypes. */
2711 extern initialize_file_ftype _initialize_aarch64_tdep;
2714 _initialize_aarch64_tdep (void)
2716 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
2719 initialize_tdesc_aarch64 ();
2721 /* Debug this file's internals. */
2722 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
2723 Set AArch64 debugging."), _("\
2724 Show AArch64 debugging."), _("\
2725 When on, AArch64 specific debugging is enabled."),
2728 &setdebuglist, &showdebuglist);