1 /* Common target dependent code for GDB on AArch64 systems.
3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "reggroups.h"
31 #include "arch-utils.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "trad-frame.h"
37 #include "dwarf2-frame.h"
39 #include "prologue-value.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
48 #include "aarch64-tdep.h"
49 #include "aarch64-ravenscar-thread.h"
52 #include "elf/aarch64.h"
57 #include "record-full.h"
58 #include "arch/aarch64-insn.h"
60 #include "opcode/aarch64.h"
63 #define submask(x) ((1L << ((x) + 1)) - 1)
64 #define bit(obj,st) (((obj) >> (st)) & 1)
65 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
67 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
69 #define HA_MAX_NUM_FLDS 4
71 /* All possible aarch64 target descriptors. */
72 struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1];
74 /* The standard register names, and all the valid aliases for them. */
77 const char *const name;
79 } aarch64_register_aliases[] =
81 /* 64-bit register names. */
82 {"fp", AARCH64_FP_REGNUM},
83 {"lr", AARCH64_LR_REGNUM},
84 {"sp", AARCH64_SP_REGNUM},
86 /* 32-bit register names. */
87 {"w0", AARCH64_X0_REGNUM + 0},
88 {"w1", AARCH64_X0_REGNUM + 1},
89 {"w2", AARCH64_X0_REGNUM + 2},
90 {"w3", AARCH64_X0_REGNUM + 3},
91 {"w4", AARCH64_X0_REGNUM + 4},
92 {"w5", AARCH64_X0_REGNUM + 5},
93 {"w6", AARCH64_X0_REGNUM + 6},
94 {"w7", AARCH64_X0_REGNUM + 7},
95 {"w8", AARCH64_X0_REGNUM + 8},
96 {"w9", AARCH64_X0_REGNUM + 9},
97 {"w10", AARCH64_X0_REGNUM + 10},
98 {"w11", AARCH64_X0_REGNUM + 11},
99 {"w12", AARCH64_X0_REGNUM + 12},
100 {"w13", AARCH64_X0_REGNUM + 13},
101 {"w14", AARCH64_X0_REGNUM + 14},
102 {"w15", AARCH64_X0_REGNUM + 15},
103 {"w16", AARCH64_X0_REGNUM + 16},
104 {"w17", AARCH64_X0_REGNUM + 17},
105 {"w18", AARCH64_X0_REGNUM + 18},
106 {"w19", AARCH64_X0_REGNUM + 19},
107 {"w20", AARCH64_X0_REGNUM + 20},
108 {"w21", AARCH64_X0_REGNUM + 21},
109 {"w22", AARCH64_X0_REGNUM + 22},
110 {"w23", AARCH64_X0_REGNUM + 23},
111 {"w24", AARCH64_X0_REGNUM + 24},
112 {"w25", AARCH64_X0_REGNUM + 25},
113 {"w26", AARCH64_X0_REGNUM + 26},
114 {"w27", AARCH64_X0_REGNUM + 27},
115 {"w28", AARCH64_X0_REGNUM + 28},
116 {"w29", AARCH64_X0_REGNUM + 29},
117 {"w30", AARCH64_X0_REGNUM + 30},
120 {"ip0", AARCH64_X0_REGNUM + 16},
121 {"ip1", AARCH64_X0_REGNUM + 17}
124 /* The required core 'R' registers. */
125 static const char *const aarch64_r_register_names[] =
127 /* These registers must appear in consecutive RAW register number
128 order and they must begin with AARCH64_X0_REGNUM! */
129 "x0", "x1", "x2", "x3",
130 "x4", "x5", "x6", "x7",
131 "x8", "x9", "x10", "x11",
132 "x12", "x13", "x14", "x15",
133 "x16", "x17", "x18", "x19",
134 "x20", "x21", "x22", "x23",
135 "x24", "x25", "x26", "x27",
136 "x28", "x29", "x30", "sp",
140 /* The FP/SIMD 'V' registers. */
141 static const char *const aarch64_v_register_names[] =
143 /* These registers must appear in consecutive RAW register number
144 order and they must begin with AARCH64_V0_REGNUM! */
145 "v0", "v1", "v2", "v3",
146 "v4", "v5", "v6", "v7",
147 "v8", "v9", "v10", "v11",
148 "v12", "v13", "v14", "v15",
149 "v16", "v17", "v18", "v19",
150 "v20", "v21", "v22", "v23",
151 "v24", "v25", "v26", "v27",
152 "v28", "v29", "v30", "v31",
157 /* The SVE 'Z' and 'P' registers. */
158 static const char *const aarch64_sve_register_names[] =
160 /* These registers must appear in consecutive RAW register number
161 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
162 "z0", "z1", "z2", "z3",
163 "z4", "z5", "z6", "z7",
164 "z8", "z9", "z10", "z11",
165 "z12", "z13", "z14", "z15",
166 "z16", "z17", "z18", "z19",
167 "z20", "z21", "z22", "z23",
168 "z24", "z25", "z26", "z27",
169 "z28", "z29", "z30", "z31",
171 "p0", "p1", "p2", "p3",
172 "p4", "p5", "p6", "p7",
173 "p8", "p9", "p10", "p11",
174 "p12", "p13", "p14", "p15",
178 /* AArch64 prologue cache structure. */
179 struct aarch64_prologue_cache
181 /* The program counter at the start of the function. It is used to
182 identify this frame as a prologue frame. */
185 /* The program counter at the time this frame was created; i.e. where
186 this function was called from. It is used to identify this frame as a
190 /* The stack pointer at the time this frame was created; i.e. the
191 caller's stack pointer when this function was called. It is used
192 to identify this frame. */
195 /* Is the target available to read from? */
198 /* The frame base for this frame is just prev_sp - frame size.
199 FRAMESIZE is the distance from the frame pointer to the
200 initial stack pointer. */
203 /* The register used to hold the frame pointer for this frame. */
206 /* Saved register offsets. */
207 struct trad_frame_saved_reg *saved_regs;
211 show_aarch64_debug (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
214 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
219 /* Abstract instruction reader. */
221 class abstract_instruction_reader
224 /* Read in one instruction. */
225 virtual ULONGEST read (CORE_ADDR memaddr, int len,
226 enum bfd_endian byte_order) = 0;
229 /* Instruction reader from real target. */
231 class instruction_reader : public abstract_instruction_reader
234 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
237 return read_code_unsigned_integer (memaddr, len, byte_order);
243 /* Analyze a prologue, looking for a recognizable stack frame
244 and frame pointer. Scan until we encounter a store that could
245 clobber the stack frame unexpectedly, or an unknown instruction. */
248 aarch64_analyze_prologue (struct gdbarch *gdbarch,
249 CORE_ADDR start, CORE_ADDR limit,
250 struct aarch64_prologue_cache *cache,
251 abstract_instruction_reader& reader)
253 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
255 /* Track X registers and D registers in prologue. */
256 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
258 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
259 regs[i] = pv_register (i, 0);
260 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
262 for (; start < limit; start += 4)
267 insn = reader.read (start, 4, byte_order_for_code);
269 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
272 if (inst.opcode->iclass == addsub_imm
273 && (inst.opcode->op == OP_ADD
274 || strcmp ("sub", inst.opcode->name) == 0))
276 unsigned rd = inst.operands[0].reg.regno;
277 unsigned rn = inst.operands[1].reg.regno;
279 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
280 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
281 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
282 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
284 if (inst.opcode->op == OP_ADD)
286 regs[rd] = pv_add_constant (regs[rn],
287 inst.operands[2].imm.value);
291 regs[rd] = pv_add_constant (regs[rn],
292 -inst.operands[2].imm.value);
295 else if (inst.opcode->iclass == pcreladdr
296 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
298 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
299 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
301 regs[inst.operands[0].reg.regno] = pv_unknown ();
303 else if (inst.opcode->iclass == branch_imm)
305 /* Stop analysis on branch. */
308 else if (inst.opcode->iclass == condbranch)
310 /* Stop analysis on branch. */
313 else if (inst.opcode->iclass == branch_reg)
315 /* Stop analysis on branch. */
318 else if (inst.opcode->iclass == compbranch)
320 /* Stop analysis on branch. */
323 else if (inst.opcode->op == OP_MOVZ)
325 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
326 regs[inst.operands[0].reg.regno] = pv_unknown ();
328 else if (inst.opcode->iclass == log_shift
329 && strcmp (inst.opcode->name, "orr") == 0)
331 unsigned rd = inst.operands[0].reg.regno;
332 unsigned rn = inst.operands[1].reg.regno;
333 unsigned rm = inst.operands[2].reg.regno;
335 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
336 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
337 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
339 if (inst.operands[2].shifter.amount == 0
340 && rn == AARCH64_SP_REGNUM)
346 debug_printf ("aarch64: prologue analysis gave up "
347 "addr=%s opcode=0x%x (orr x register)\n",
348 core_addr_to_string_nz (start), insn);
353 else if (inst.opcode->op == OP_STUR)
355 unsigned rt = inst.operands[0].reg.regno;
356 unsigned rn = inst.operands[1].addr.base_regno;
358 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
360 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
361 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
362 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
363 gdb_assert (!inst.operands[1].addr.offset.is_reg);
365 stack.store (pv_add_constant (regs[rn],
366 inst.operands[1].addr.offset.imm),
367 is64 ? 8 : 4, regs[rt]);
369 else if ((inst.opcode->iclass == ldstpair_off
370 || (inst.opcode->iclass == ldstpair_indexed
371 && inst.operands[2].addr.preind))
372 && strcmp ("stp", inst.opcode->name) == 0)
374 /* STP with addressing mode Pre-indexed and Base register. */
377 unsigned rn = inst.operands[2].addr.base_regno;
378 int32_t imm = inst.operands[2].addr.offset.imm;
380 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
381 || inst.operands[0].type == AARCH64_OPND_Ft);
382 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
383 || inst.operands[1].type == AARCH64_OPND_Ft2);
384 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
385 gdb_assert (!inst.operands[2].addr.offset.is_reg);
387 /* If recording this store would invalidate the store area
388 (perhaps because rn is not known) then we should abandon
389 further prologue analysis. */
390 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
393 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
396 rt1 = inst.operands[0].reg.regno;
397 rt2 = inst.operands[1].reg.regno;
398 if (inst.operands[0].type == AARCH64_OPND_Ft)
400 /* Only bottom 64-bit of each V register (D register) need
402 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
403 rt1 += AARCH64_X_REGISTER_COUNT;
404 rt2 += AARCH64_X_REGISTER_COUNT;
407 stack.store (pv_add_constant (regs[rn], imm), 8,
409 stack.store (pv_add_constant (regs[rn], imm + 8), 8,
412 if (inst.operands[2].addr.writeback)
413 regs[rn] = pv_add_constant (regs[rn], imm);
416 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
417 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
418 && (inst.opcode->op == OP_STR_POS
419 || inst.opcode->op == OP_STRF_POS)))
420 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
421 && strcmp ("str", inst.opcode->name) == 0)
423 /* STR (immediate) */
424 unsigned int rt = inst.operands[0].reg.regno;
425 int32_t imm = inst.operands[1].addr.offset.imm;
426 unsigned int rn = inst.operands[1].addr.base_regno;
428 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
429 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
430 || inst.operands[0].type == AARCH64_OPND_Ft);
432 if (inst.operands[0].type == AARCH64_OPND_Ft)
434 /* Only bottom 64-bit of each V register (D register) need
436 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
437 rt += AARCH64_X_REGISTER_COUNT;
440 stack.store (pv_add_constant (regs[rn], imm),
441 is64 ? 8 : 4, regs[rt]);
442 if (inst.operands[1].addr.writeback)
443 regs[rn] = pv_add_constant (regs[rn], imm);
445 else if (inst.opcode->iclass == testbranch)
447 /* Stop analysis on branch. */
454 debug_printf ("aarch64: prologue analysis gave up addr=%s"
456 core_addr_to_string_nz (start), insn);
465 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
467 /* Frame pointer is fp. Frame size is constant. */
468 cache->framereg = AARCH64_FP_REGNUM;
469 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
471 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
473 /* Try the stack pointer. */
474 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
475 cache->framereg = AARCH64_SP_REGNUM;
479 /* We're just out of luck. We don't know where the frame is. */
480 cache->framereg = -1;
481 cache->framesize = 0;
484 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
488 if (stack.find_reg (gdbarch, i, &offset))
489 cache->saved_regs[i].addr = offset;
492 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
494 int regnum = gdbarch_num_regs (gdbarch);
497 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
499 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
506 aarch64_analyze_prologue (struct gdbarch *gdbarch,
507 CORE_ADDR start, CORE_ADDR limit,
508 struct aarch64_prologue_cache *cache)
510 instruction_reader reader;
512 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
518 namespace selftests {
520 /* Instruction reader from manually cooked instruction sequences. */
522 class instruction_reader_test : public abstract_instruction_reader
525 template<size_t SIZE>
526 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
527 : m_insns (insns), m_insns_size (SIZE)
530 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
533 SELF_CHECK (len == 4);
534 SELF_CHECK (memaddr % 4 == 0);
535 SELF_CHECK (memaddr / 4 < m_insns_size);
537 return m_insns[memaddr / 4];
541 const uint32_t *m_insns;
546 aarch64_analyze_prologue_test (void)
548 struct gdbarch_info info;
550 gdbarch_info_init (&info);
551 info.bfd_arch_info = bfd_scan_arch ("aarch64");
553 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
554 SELF_CHECK (gdbarch != NULL);
556 /* Test the simple prologue in which frame pointer is used. */
558 struct aarch64_prologue_cache cache;
559 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
561 static const uint32_t insns[] = {
562 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
563 0x910003fd, /* mov x29, sp */
564 0x97ffffe6, /* bl 0x400580 */
566 instruction_reader_test reader (insns);
568 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
569 SELF_CHECK (end == 4 * 2);
571 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
572 SELF_CHECK (cache.framesize == 272);
574 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
576 if (i == AARCH64_FP_REGNUM)
577 SELF_CHECK (cache.saved_regs[i].addr == -272);
578 else if (i == AARCH64_LR_REGNUM)
579 SELF_CHECK (cache.saved_regs[i].addr == -264);
581 SELF_CHECK (cache.saved_regs[i].addr == -1);
584 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
586 int regnum = gdbarch_num_regs (gdbarch);
588 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
593 /* Test a prologue in which STR is used and frame pointer is not
596 struct aarch64_prologue_cache cache;
597 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
599 static const uint32_t insns[] = {
600 0xf81d0ff3, /* str x19, [sp, #-48]! */
601 0xb9002fe0, /* str w0, [sp, #44] */
602 0xf90013e1, /* str x1, [sp, #32]*/
603 0xfd000fe0, /* str d0, [sp, #24] */
604 0xaa0203f3, /* mov x19, x2 */
605 0xf94013e0, /* ldr x0, [sp, #32] */
607 instruction_reader_test reader (insns);
609 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
611 SELF_CHECK (end == 4 * 5);
613 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
614 SELF_CHECK (cache.framesize == 48);
616 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
619 SELF_CHECK (cache.saved_regs[i].addr == -16);
621 SELF_CHECK (cache.saved_regs[i].addr == -48);
623 SELF_CHECK (cache.saved_regs[i].addr == -1);
626 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
628 int regnum = gdbarch_num_regs (gdbarch);
631 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
634 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
639 } // namespace selftests
640 #endif /* GDB_SELF_TEST */
642 /* Implement the "skip_prologue" gdbarch method. */
645 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
647 CORE_ADDR func_addr, limit_pc;
649 /* See if we can determine the end of the prologue via the symbol
650 table. If so, then return either PC, or the PC after the
651 prologue, whichever is greater. */
652 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
654 CORE_ADDR post_prologue_pc
655 = skip_prologue_using_sal (gdbarch, func_addr);
657 if (post_prologue_pc != 0)
658 return std::max (pc, post_prologue_pc);
661 /* Can't determine prologue from the symbol table, need to examine
664 /* Find an upper limit on the function prologue using the debug
665 information. If the debug information could not be used to
666 provide that bound, then use an arbitrary large number as the
668 limit_pc = skip_prologue_using_sal (gdbarch, pc);
670 limit_pc = pc + 128; /* Magic. */
672 /* Try disassembling prologue. */
673 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
676 /* Scan the function prologue for THIS_FRAME and populate the prologue
680 aarch64_scan_prologue (struct frame_info *this_frame,
681 struct aarch64_prologue_cache *cache)
683 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
684 CORE_ADDR prologue_start;
685 CORE_ADDR prologue_end;
686 CORE_ADDR prev_pc = get_frame_pc (this_frame);
687 struct gdbarch *gdbarch = get_frame_arch (this_frame);
689 cache->prev_pc = prev_pc;
691 /* Assume we do not find a frame. */
692 cache->framereg = -1;
693 cache->framesize = 0;
695 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
698 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
702 /* No line info so use the current PC. */
703 prologue_end = prev_pc;
705 else if (sal.end < prologue_end)
707 /* The next line begins after the function end. */
708 prologue_end = sal.end;
711 prologue_end = std::min (prologue_end, prev_pc);
712 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
718 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
722 cache->framereg = AARCH64_FP_REGNUM;
723 cache->framesize = 16;
724 cache->saved_regs[29].addr = 0;
725 cache->saved_regs[30].addr = 8;
729 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
730 function may throw an exception if the inferior's registers or memory is
734 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
735 struct aarch64_prologue_cache *cache)
737 CORE_ADDR unwound_fp;
740 aarch64_scan_prologue (this_frame, cache);
742 if (cache->framereg == -1)
745 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
749 cache->prev_sp = unwound_fp + cache->framesize;
751 /* Calculate actual addresses of saved registers using offsets
752 determined by aarch64_analyze_prologue. */
753 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
754 if (trad_frame_addr_p (cache->saved_regs, reg))
755 cache->saved_regs[reg].addr += cache->prev_sp;
757 cache->func = get_frame_func (this_frame);
759 cache->available_p = 1;
762 /* Allocate and fill in *THIS_CACHE with information about the prologue of
763 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
764 Return a pointer to the current aarch64_prologue_cache in
767 static struct aarch64_prologue_cache *
768 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
770 struct aarch64_prologue_cache *cache;
772 if (*this_cache != NULL)
773 return (struct aarch64_prologue_cache *) *this_cache;
775 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
776 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
781 aarch64_make_prologue_cache_1 (this_frame, cache);
783 CATCH (ex, RETURN_MASK_ERROR)
785 if (ex.error != NOT_AVAILABLE_ERROR)
786 throw_exception (ex);
793 /* Implement the "stop_reason" frame_unwind method. */
795 static enum unwind_stop_reason
796 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
799 struct aarch64_prologue_cache *cache
800 = aarch64_make_prologue_cache (this_frame, this_cache);
802 if (!cache->available_p)
803 return UNWIND_UNAVAILABLE;
805 /* Halt the backtrace at "_start". */
806 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
807 return UNWIND_OUTERMOST;
809 /* We've hit a wall, stop. */
810 if (cache->prev_sp == 0)
811 return UNWIND_OUTERMOST;
813 return UNWIND_NO_REASON;
816 /* Our frame ID for a normal frame is the current function's starting
817 PC and the caller's SP when we were called. */
820 aarch64_prologue_this_id (struct frame_info *this_frame,
821 void **this_cache, struct frame_id *this_id)
823 struct aarch64_prologue_cache *cache
824 = aarch64_make_prologue_cache (this_frame, this_cache);
826 if (!cache->available_p)
827 *this_id = frame_id_build_unavailable_stack (cache->func);
829 *this_id = frame_id_build (cache->prev_sp, cache->func);
832 /* Implement the "prev_register" frame_unwind method. */
834 static struct value *
835 aarch64_prologue_prev_register (struct frame_info *this_frame,
836 void **this_cache, int prev_regnum)
838 struct aarch64_prologue_cache *cache
839 = aarch64_make_prologue_cache (this_frame, this_cache);
841 /* If we are asked to unwind the PC, then we need to return the LR
842 instead. The prologue may save PC, but it will point into this
843 frame's prologue, not the next frame's resume location. */
844 if (prev_regnum == AARCH64_PC_REGNUM)
848 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
849 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
852 /* SP is generally not saved to the stack, but this frame is
853 identified by the next frame's stack pointer at the time of the
854 call. The value was already reconstructed into PREV_SP. */
867 if (prev_regnum == AARCH64_SP_REGNUM)
868 return frame_unwind_got_constant (this_frame, prev_regnum,
871 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
875 /* AArch64 prologue unwinder. */
876 struct frame_unwind aarch64_prologue_unwind =
879 aarch64_prologue_frame_unwind_stop_reason,
880 aarch64_prologue_this_id,
881 aarch64_prologue_prev_register,
883 default_frame_sniffer
886 /* Allocate and fill in *THIS_CACHE with information about the prologue of
887 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
888 Return a pointer to the current aarch64_prologue_cache in
891 static struct aarch64_prologue_cache *
892 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
894 struct aarch64_prologue_cache *cache;
896 if (*this_cache != NULL)
897 return (struct aarch64_prologue_cache *) *this_cache;
899 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
905 cache->prev_sp = get_frame_register_unsigned (this_frame,
907 cache->prev_pc = get_frame_pc (this_frame);
908 cache->available_p = 1;
910 CATCH (ex, RETURN_MASK_ERROR)
912 if (ex.error != NOT_AVAILABLE_ERROR)
913 throw_exception (ex);
920 /* Implement the "stop_reason" frame_unwind method. */
922 static enum unwind_stop_reason
923 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
926 struct aarch64_prologue_cache *cache
927 = aarch64_make_stub_cache (this_frame, this_cache);
929 if (!cache->available_p)
930 return UNWIND_UNAVAILABLE;
932 return UNWIND_NO_REASON;
935 /* Our frame ID for a stub frame is the current SP and LR. */
938 aarch64_stub_this_id (struct frame_info *this_frame,
939 void **this_cache, struct frame_id *this_id)
941 struct aarch64_prologue_cache *cache
942 = aarch64_make_stub_cache (this_frame, this_cache);
944 if (cache->available_p)
945 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
947 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
950 /* Implement the "sniffer" frame_unwind method. */
953 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
954 struct frame_info *this_frame,
955 void **this_prologue_cache)
957 CORE_ADDR addr_in_block;
960 addr_in_block = get_frame_address_in_block (this_frame);
961 if (in_plt_section (addr_in_block)
962 /* We also use the stub winder if the target memory is unreadable
963 to avoid having the prologue unwinder trying to read it. */
964 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
970 /* AArch64 stub unwinder. */
971 struct frame_unwind aarch64_stub_unwind =
974 aarch64_stub_frame_unwind_stop_reason,
975 aarch64_stub_this_id,
976 aarch64_prologue_prev_register,
978 aarch64_stub_unwind_sniffer
981 /* Return the frame base address of *THIS_FRAME. */
984 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
986 struct aarch64_prologue_cache *cache
987 = aarch64_make_prologue_cache (this_frame, this_cache);
989 return cache->prev_sp - cache->framesize;
992 /* AArch64 default frame base information. */
993 struct frame_base aarch64_normal_base =
995 &aarch64_prologue_unwind,
996 aarch64_normal_frame_base,
997 aarch64_normal_frame_base,
998 aarch64_normal_frame_base
1001 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1002 dummy frame. The frame ID's base needs to match the TOS value
1003 saved by save_dummy_frame_tos () and returned from
1004 aarch64_push_dummy_call, and the PC needs to match the dummy
1005 frame's breakpoint. */
1007 static struct frame_id
1008 aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1010 return frame_id_build (get_frame_register_unsigned (this_frame,
1012 get_frame_pc (this_frame));
1015 /* Implement the "unwind_pc" gdbarch method. */
1018 aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1021 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
1026 /* Implement the "unwind_sp" gdbarch method. */
1029 aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1031 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1034 /* Return the value of the REGNUM register in the previous frame of
1037 static struct value *
1038 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1039 void **this_cache, int regnum)
1045 case AARCH64_PC_REGNUM:
1046 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1047 return frame_unwind_got_constant (this_frame, regnum, lr);
1050 internal_error (__FILE__, __LINE__,
1051 _("Unexpected register %d"), regnum);
1055 /* Implement the "init_reg" dwarf2_frame_ops method. */
1058 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1059 struct dwarf2_frame_state_reg *reg,
1060 struct frame_info *this_frame)
1064 case AARCH64_PC_REGNUM:
1065 reg->how = DWARF2_FRAME_REG_FN;
1066 reg->loc.fn = aarch64_dwarf2_prev_register;
1068 case AARCH64_SP_REGNUM:
1069 reg->how = DWARF2_FRAME_REG_CFA;
1074 /* When arguments must be pushed onto the stack, they go on in reverse
1075 order. The code below implements a FILO (stack) to do this. */
1079 /* Value to pass on stack. It can be NULL if this item is for stack
1081 const gdb_byte *data;
1083 /* Size in bytes of value to pass on stack. */
1087 DEF_VEC_O (stack_item_t);
1089 /* Return the alignment (in bytes) of the given type. */
1092 aarch64_type_align (struct type *t)
1098 t = check_typedef (t);
1099 switch (TYPE_CODE (t))
1102 /* Should never happen. */
1103 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1107 case TYPE_CODE_ENUM:
1111 case TYPE_CODE_RANGE:
1112 case TYPE_CODE_BITSTRING:
1114 case TYPE_CODE_RVALUE_REF:
1115 case TYPE_CODE_CHAR:
1116 case TYPE_CODE_BOOL:
1117 return TYPE_LENGTH (t);
1119 case TYPE_CODE_ARRAY:
1120 if (TYPE_VECTOR (t))
1122 /* Use the natural alignment for vector types (the same for
1123 scalar type), but the maximum alignment is 128-bit. */
1124 if (TYPE_LENGTH (t) > 16)
1127 return TYPE_LENGTH (t);
1130 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1131 case TYPE_CODE_COMPLEX:
1132 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1134 case TYPE_CODE_STRUCT:
1135 case TYPE_CODE_UNION:
1137 for (n = 0; n < TYPE_NFIELDS (t); n++)
1139 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1147 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1149 Return the number of register required, or -1 on failure.
1151 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1152 to the element, else fail if the type of this element does not match the
1156 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1157 struct type **fundamental_type)
1159 if (type == nullptr)
1162 switch (TYPE_CODE (type))
1165 if (TYPE_LENGTH (type) > 16)
1168 if (*fundamental_type == nullptr)
1169 *fundamental_type = type;
1170 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1171 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1176 case TYPE_CODE_COMPLEX:
1178 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1179 if (TYPE_LENGTH (target_type) > 16)
1182 if (*fundamental_type == nullptr)
1183 *fundamental_type = target_type;
1184 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1185 || TYPE_CODE (target_type) != TYPE_CODE (*fundamental_type))
1191 case TYPE_CODE_ARRAY:
1193 if (TYPE_VECTOR (type))
1195 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1198 if (*fundamental_type == nullptr)
1199 *fundamental_type = type;
1200 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1201 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1208 struct type *target_type = TYPE_TARGET_TYPE (type);
1209 int count = aapcs_is_vfp_call_or_return_candidate_1
1210 (target_type, fundamental_type);
1215 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1220 case TYPE_CODE_STRUCT:
1221 case TYPE_CODE_UNION:
1225 for (int i = 0; i < TYPE_NFIELDS (type); i++)
1227 struct type *member = check_typedef (TYPE_FIELD_TYPE (type, i));
1229 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1230 (member, fundamental_type);
1231 if (sub_count == -1)
1245 /* Return true if an argument, whose type is described by TYPE, can be passed or
1246 returned in simd/fp registers, providing enough parameter passing registers
1247 are available. This is as described in the AAPCS64.
1249 Upon successful return, *COUNT returns the number of needed registers,
1250 *FUNDAMENTAL_TYPE contains the type of those registers.
1252 Candidate as per the AAPCS64 5.4.2.C is either a:
1255 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1256 all the members are floats and has at most 4 members.
1257 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1258 all the members are short vectors and has at most 4 members.
1261 Note that HFAs and HVAs can include nested structures and arrays. */
1264 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1265 struct type **fundamental_type)
1267 if (type == nullptr)
1270 *fundamental_type = nullptr;
1272 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1275 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1284 /* AArch64 function call information structure. */
1285 struct aarch64_call_info
1287 /* the current argument number. */
1290 /* The next general purpose register number, equivalent to NGRN as
1291 described in the AArch64 Procedure Call Standard. */
1294 /* The next SIMD and floating point register number, equivalent to
1295 NSRN as described in the AArch64 Procedure Call Standard. */
1298 /* The next stacked argument address, equivalent to NSAA as
1299 described in the AArch64 Procedure Call Standard. */
1302 /* Stack item vector. */
1303 VEC(stack_item_t) *si;
1306 /* Pass a value in a sequence of consecutive X registers. The caller
1307 is responsbile for ensuring sufficient registers are available. */
1310 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1311 struct aarch64_call_info *info, struct type *type,
1314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1315 int len = TYPE_LENGTH (type);
1316 enum type_code typecode = TYPE_CODE (type);
1317 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1318 const bfd_byte *buf = value_contents (arg);
1324 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1325 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1329 /* Adjust sub-word struct/union args when big-endian. */
1330 if (byte_order == BFD_ENDIAN_BIG
1331 && partial_len < X_REGISTER_SIZE
1332 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1333 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1337 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1338 gdbarch_register_name (gdbarch, regnum),
1339 phex (regval, X_REGISTER_SIZE));
1341 regcache_cooked_write_unsigned (regcache, regnum, regval);
1348 /* Attempt to marshall a value in a V register. Return 1 if
1349 successful, or 0 if insufficient registers are available. This
1350 function, unlike the equivalent pass_in_x() function does not
1351 handle arguments spread across multiple registers. */
1354 pass_in_v (struct gdbarch *gdbarch,
1355 struct regcache *regcache,
1356 struct aarch64_call_info *info,
1357 int len, const bfd_byte *buf)
1361 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1362 /* Enough space for a full vector register. */
1363 gdb_byte reg[register_size (gdbarch, regnum)];
1364 gdb_assert (len <= sizeof (reg));
1369 memset (reg, 0, sizeof (reg));
1370 /* PCS C.1, the argument is allocated to the least significant
1371 bits of V register. */
1372 memcpy (reg, buf, len);
1373 regcache->cooked_write (regnum, reg);
1377 debug_printf ("arg %d in %s\n", info->argnum,
1378 gdbarch_register_name (gdbarch, regnum));
1386 /* Marshall an argument onto the stack. */
1389 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1392 const bfd_byte *buf = value_contents (arg);
1393 int len = TYPE_LENGTH (type);
1399 align = aarch64_type_align (type);
1401 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1402 Natural alignment of the argument's type. */
1403 align = align_up (align, 8);
1405 /* The AArch64 PCS requires at most doubleword alignment. */
1411 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1417 VEC_safe_push (stack_item_t, info->si, &item);
1420 if (info->nsaa & (align - 1))
1422 /* Push stack alignment padding. */
1423 int pad = align - (info->nsaa & (align - 1));
1428 VEC_safe_push (stack_item_t, info->si, &item);
1433 /* Marshall an argument into a sequence of one or more consecutive X
1434 registers or, if insufficient X registers are available then onto
1438 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1439 struct aarch64_call_info *info, struct type *type,
1442 int len = TYPE_LENGTH (type);
1443 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1445 /* PCS C.13 - Pass in registers if we have enough spare */
1446 if (info->ngrn + nregs <= 8)
1448 pass_in_x (gdbarch, regcache, info, type, arg);
1449 info->ngrn += nregs;
1454 pass_on_stack (info, type, arg);
1458 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1459 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1460 registers. A return value of false is an error state as the value will have
1461 been partially passed to the stack. */
1463 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1464 struct aarch64_call_info *info, struct type *arg_type,
1467 switch (TYPE_CODE (arg_type))
1470 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1471 value_contents (arg));
1474 case TYPE_CODE_COMPLEX:
1476 const bfd_byte *buf = value_contents (arg);
1477 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1479 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1483 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1484 buf + TYPE_LENGTH (target_type));
1487 case TYPE_CODE_ARRAY:
1488 if (TYPE_VECTOR (arg_type))
1489 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1490 value_contents (arg));
1493 case TYPE_CODE_STRUCT:
1494 case TYPE_CODE_UNION:
1495 for (int i = 0; i < TYPE_NFIELDS (arg_type); i++)
1497 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1498 struct type *field_type = check_typedef (value_type (field));
1500 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1511 /* Implement the "push_dummy_call" gdbarch method. */
1514 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1515 struct regcache *regcache, CORE_ADDR bp_addr,
1517 struct value **args, CORE_ADDR sp,
1518 function_call_return_method return_method,
1519 CORE_ADDR struct_addr)
1522 struct aarch64_call_info info;
1524 memset (&info, 0, sizeof (info));
1526 /* We need to know what the type of the called function is in order
1527 to determine the number of named/anonymous arguments for the
1528 actual argument placement, and the return type in order to handle
1529 return value correctly.
1531 The generic code above us views the decision of return in memory
1532 or return in registers as a two stage processes. The language
1533 handler is consulted first and may decide to return in memory (eg
1534 class with copy constructor returned by value), this will cause
1535 the generic code to allocate space AND insert an initial leading
1538 If the language code does not decide to pass in memory then the
1539 target code is consulted.
1541 If the language code decides to pass in memory we want to move
1542 the pointer inserted as the initial argument from the argument
1543 list and into X8, the conventional AArch64 struct return pointer
1546 /* Set the return address. For the AArch64, the return breakpoint
1547 is always at BP_ADDR. */
1548 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1550 /* If we were given an initial argument for the return slot, lose it. */
1551 if (return_method == return_method_hidden_param)
1557 /* The struct_return pointer occupies X8. */
1558 if (return_method != return_method_normal)
1562 debug_printf ("struct return in %s = 0x%s\n",
1563 gdbarch_register_name (gdbarch,
1564 AARCH64_STRUCT_RETURN_REGNUM),
1565 paddress (gdbarch, struct_addr));
1567 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1571 for (argnum = 0; argnum < nargs; argnum++)
1573 struct value *arg = args[argnum];
1574 struct type *arg_type, *fundamental_type;
1577 arg_type = check_typedef (value_type (arg));
1578 len = TYPE_LENGTH (arg_type);
1580 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1581 if there are enough spare registers. */
1582 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1585 if (info.nsrn + elements <= 8)
1587 /* We know that we have sufficient registers available therefore
1588 this will never need to fallback to the stack. */
1589 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1591 gdb_assert_not_reached ("Failed to push args");
1596 pass_on_stack (&info, arg_type, arg);
1601 switch (TYPE_CODE (arg_type))
1604 case TYPE_CODE_BOOL:
1605 case TYPE_CODE_CHAR:
1606 case TYPE_CODE_RANGE:
1607 case TYPE_CODE_ENUM:
1610 /* Promote to 32 bit integer. */
1611 if (TYPE_UNSIGNED (arg_type))
1612 arg_type = builtin_type (gdbarch)->builtin_uint32;
1614 arg_type = builtin_type (gdbarch)->builtin_int32;
1615 arg = value_cast (arg_type, arg);
1617 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1620 case TYPE_CODE_STRUCT:
1621 case TYPE_CODE_ARRAY:
1622 case TYPE_CODE_UNION:
1625 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1626 invisible reference. */
1628 /* Allocate aligned storage. */
1629 sp = align_down (sp - len, 16);
1631 /* Write the real data into the stack. */
1632 write_memory (sp, value_contents (arg), len);
1634 /* Construct the indirection. */
1635 arg_type = lookup_pointer_type (arg_type);
1636 arg = value_from_pointer (arg_type, sp);
1637 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1640 /* PCS C.15 / C.18 multiple values pass. */
1641 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1645 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1650 /* Make sure stack retains 16 byte alignment. */
1652 sp -= 16 - (info.nsaa & 15);
1654 while (!VEC_empty (stack_item_t, info.si))
1656 stack_item_t *si = VEC_last (stack_item_t, info.si);
1659 if (si->data != NULL)
1660 write_memory (sp, si->data, si->len);
1661 VEC_pop (stack_item_t, info.si);
1664 VEC_free (stack_item_t, info.si);
1666 /* Finally, update the SP register. */
1667 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1672 /* Implement the "frame_align" gdbarch method. */
1675 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1677 /* Align the stack to sixteen bytes. */
1678 return sp & ~(CORE_ADDR) 15;
1681 /* Return the type for an AdvSISD Q register. */
1683 static struct type *
1684 aarch64_vnq_type (struct gdbarch *gdbarch)
1686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1688 if (tdep->vnq_type == NULL)
1693 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1696 elem = builtin_type (gdbarch)->builtin_uint128;
1697 append_composite_type_field (t, "u", elem);
1699 elem = builtin_type (gdbarch)->builtin_int128;
1700 append_composite_type_field (t, "s", elem);
1705 return tdep->vnq_type;
1708 /* Return the type for an AdvSISD D register. */
1710 static struct type *
1711 aarch64_vnd_type (struct gdbarch *gdbarch)
1713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1715 if (tdep->vnd_type == NULL)
1720 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1723 elem = builtin_type (gdbarch)->builtin_double;
1724 append_composite_type_field (t, "f", elem);
1726 elem = builtin_type (gdbarch)->builtin_uint64;
1727 append_composite_type_field (t, "u", elem);
1729 elem = builtin_type (gdbarch)->builtin_int64;
1730 append_composite_type_field (t, "s", elem);
1735 return tdep->vnd_type;
1738 /* Return the type for an AdvSISD S register. */
1740 static struct type *
1741 aarch64_vns_type (struct gdbarch *gdbarch)
1743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1745 if (tdep->vns_type == NULL)
1750 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1753 elem = builtin_type (gdbarch)->builtin_float;
1754 append_composite_type_field (t, "f", elem);
1756 elem = builtin_type (gdbarch)->builtin_uint32;
1757 append_composite_type_field (t, "u", elem);
1759 elem = builtin_type (gdbarch)->builtin_int32;
1760 append_composite_type_field (t, "s", elem);
1765 return tdep->vns_type;
1768 /* Return the type for an AdvSISD H register. */
1770 static struct type *
1771 aarch64_vnh_type (struct gdbarch *gdbarch)
1773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1775 if (tdep->vnh_type == NULL)
1780 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1783 elem = builtin_type (gdbarch)->builtin_uint16;
1784 append_composite_type_field (t, "u", elem);
1786 elem = builtin_type (gdbarch)->builtin_int16;
1787 append_composite_type_field (t, "s", elem);
1792 return tdep->vnh_type;
1795 /* Return the type for an AdvSISD B register. */
1797 static struct type *
1798 aarch64_vnb_type (struct gdbarch *gdbarch)
1800 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1802 if (tdep->vnb_type == NULL)
1807 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1810 elem = builtin_type (gdbarch)->builtin_uint8;
1811 append_composite_type_field (t, "u", elem);
1813 elem = builtin_type (gdbarch)->builtin_int8;
1814 append_composite_type_field (t, "s", elem);
1819 return tdep->vnb_type;
1822 /* Return the type for an AdvSISD V register. */
1824 static struct type *
1825 aarch64_vnv_type (struct gdbarch *gdbarch)
1827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1829 if (tdep->vnv_type == NULL)
1831 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
1834 append_composite_type_field (t, "d", aarch64_vnd_type (gdbarch));
1835 append_composite_type_field (t, "s", aarch64_vns_type (gdbarch));
1836 append_composite_type_field (t, "h", aarch64_vnh_type (gdbarch));
1837 append_composite_type_field (t, "b", aarch64_vnb_type (gdbarch));
1838 append_composite_type_field (t, "q", aarch64_vnq_type (gdbarch));
1843 return tdep->vnv_type;
1846 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1849 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1851 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1852 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1854 if (reg == AARCH64_DWARF_SP)
1855 return AARCH64_SP_REGNUM;
1857 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1858 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1860 if (reg == AARCH64_DWARF_SVE_VG)
1861 return AARCH64_SVE_VG_REGNUM;
1863 if (reg == AARCH64_DWARF_SVE_FFR)
1864 return AARCH64_SVE_FFR_REGNUM;
1866 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
1867 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
1869 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
1870 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
1875 /* Implement the "print_insn" gdbarch method. */
1878 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1880 info->symbols = NULL;
1881 return default_print_insn (memaddr, info);
1884 /* AArch64 BRK software debug mode instruction.
1885 Note that AArch64 code is always little-endian.
1886 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1887 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1889 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
1891 /* Extract from an array REGS containing the (raw) register state a
1892 function return value of type TYPE, and copy that, in virtual
1893 format, into VALBUF. */
1896 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1899 struct gdbarch *gdbarch = regs->arch ();
1900 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1902 struct type *fundamental_type;
1904 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
1907 int len = TYPE_LENGTH (fundamental_type);
1909 for (int i = 0; i < elements; i++)
1911 int regno = AARCH64_V0_REGNUM + i;
1912 /* Enough space for a full vector register. */
1913 gdb_byte buf[register_size (gdbarch, regno)];
1914 gdb_assert (len <= sizeof (buf));
1918 debug_printf ("read HFA or HVA return value element %d from %s\n",
1920 gdbarch_register_name (gdbarch, regno));
1922 regs->cooked_read (regno, buf);
1924 memcpy (valbuf, buf, len);
1928 else if (TYPE_CODE (type) == TYPE_CODE_INT
1929 || TYPE_CODE (type) == TYPE_CODE_CHAR
1930 || TYPE_CODE (type) == TYPE_CODE_BOOL
1931 || TYPE_CODE (type) == TYPE_CODE_PTR
1932 || TYPE_IS_REFERENCE (type)
1933 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1935 /* If the the type is a plain integer, then the access is
1936 straight-forward. Otherwise we have to play around a bit
1938 int len = TYPE_LENGTH (type);
1939 int regno = AARCH64_X0_REGNUM;
1944 /* By using store_unsigned_integer we avoid having to do
1945 anything special for small big-endian values. */
1946 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1947 store_unsigned_integer (valbuf,
1948 (len > X_REGISTER_SIZE
1949 ? X_REGISTER_SIZE : len), byte_order, tmp);
1950 len -= X_REGISTER_SIZE;
1951 valbuf += X_REGISTER_SIZE;
1956 /* For a structure or union the behaviour is as if the value had
1957 been stored to word-aligned memory and then loaded into
1958 registers with 64-bit load instruction(s). */
1959 int len = TYPE_LENGTH (type);
1960 int regno = AARCH64_X0_REGNUM;
1961 bfd_byte buf[X_REGISTER_SIZE];
1965 regs->cooked_read (regno++, buf);
1966 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1967 len -= X_REGISTER_SIZE;
1968 valbuf += X_REGISTER_SIZE;
1974 /* Will a function return an aggregate type in memory or in a
1975 register? Return 0 if an aggregate type can be returned in a
1976 register, 1 if it must be returned in memory. */
1979 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
1981 type = check_typedef (type);
1983 struct type *fundamental_type;
1985 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
1988 /* v0-v7 are used to return values and one register is allocated
1989 for one member. However, HFA or HVA has at most four members. */
1993 if (TYPE_LENGTH (type) > 16)
1995 /* PCS B.6 Aggregates larger than 16 bytes are passed by
1996 invisible reference. */
2004 /* Write into appropriate registers a function return value of type
2005 TYPE, given in virtual format. */
2008 aarch64_store_return_value (struct type *type, struct regcache *regs,
2009 const gdb_byte *valbuf)
2011 struct gdbarch *gdbarch = regs->arch ();
2012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2014 struct type *fundamental_type;
2016 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2019 int len = TYPE_LENGTH (fundamental_type);
2021 for (int i = 0; i < elements; i++)
2023 int regno = AARCH64_V0_REGNUM + i;
2024 /* Enough space for a full vector register. */
2025 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2026 gdb_assert (len <= sizeof (tmpbuf));
2030 debug_printf ("write HFA or HVA return value element %d to %s\n",
2032 gdbarch_register_name (gdbarch, regno));
2035 memcpy (tmpbuf, valbuf,
2036 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2037 regs->cooked_write (regno, tmpbuf);
2041 else if (TYPE_CODE (type) == TYPE_CODE_INT
2042 || TYPE_CODE (type) == TYPE_CODE_CHAR
2043 || TYPE_CODE (type) == TYPE_CODE_BOOL
2044 || TYPE_CODE (type) == TYPE_CODE_PTR
2045 || TYPE_IS_REFERENCE (type)
2046 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2048 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2050 /* Values of one word or less are zero/sign-extended and
2052 bfd_byte tmpbuf[X_REGISTER_SIZE];
2053 LONGEST val = unpack_long (type, valbuf);
2055 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2056 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2060 /* Integral values greater than one word are stored in
2061 consecutive registers starting with r0. This will always
2062 be a multiple of the regiser size. */
2063 int len = TYPE_LENGTH (type);
2064 int regno = AARCH64_X0_REGNUM;
2068 regs->cooked_write (regno++, valbuf);
2069 len -= X_REGISTER_SIZE;
2070 valbuf += X_REGISTER_SIZE;
2076 /* For a structure or union the behaviour is as if the value had
2077 been stored to word-aligned memory and then loaded into
2078 registers with 64-bit load instruction(s). */
2079 int len = TYPE_LENGTH (type);
2080 int regno = AARCH64_X0_REGNUM;
2081 bfd_byte tmpbuf[X_REGISTER_SIZE];
2085 memcpy (tmpbuf, valbuf,
2086 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2087 regs->cooked_write (regno++, tmpbuf);
2088 len -= X_REGISTER_SIZE;
2089 valbuf += X_REGISTER_SIZE;
2094 /* Implement the "return_value" gdbarch method. */
2096 static enum return_value_convention
2097 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2098 struct type *valtype, struct regcache *regcache,
2099 gdb_byte *readbuf, const gdb_byte *writebuf)
2102 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2103 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2104 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2106 if (aarch64_return_in_memory (gdbarch, valtype))
2109 debug_printf ("return value in memory\n");
2110 return RETURN_VALUE_STRUCT_CONVENTION;
2115 aarch64_store_return_value (valtype, regcache, writebuf);
2118 aarch64_extract_return_value (valtype, regcache, readbuf);
2121 debug_printf ("return value in registers\n");
2123 return RETURN_VALUE_REGISTER_CONVENTION;
2126 /* Implement the "get_longjmp_target" gdbarch method. */
2129 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2132 gdb_byte buf[X_REGISTER_SIZE];
2133 struct gdbarch *gdbarch = get_frame_arch (frame);
2134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2135 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2137 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2139 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2143 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2147 /* Implement the "gen_return_address" gdbarch method. */
2150 aarch64_gen_return_address (struct gdbarch *gdbarch,
2151 struct agent_expr *ax, struct axs_value *value,
2154 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2155 value->kind = axs_lvalue_register;
2156 value->u.reg = AARCH64_LR_REGNUM;
2160 /* Return the pseudo register name corresponding to register regnum. */
2163 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 static const char *const q_name[] =
2169 "q0", "q1", "q2", "q3",
2170 "q4", "q5", "q6", "q7",
2171 "q8", "q9", "q10", "q11",
2172 "q12", "q13", "q14", "q15",
2173 "q16", "q17", "q18", "q19",
2174 "q20", "q21", "q22", "q23",
2175 "q24", "q25", "q26", "q27",
2176 "q28", "q29", "q30", "q31",
2179 static const char *const d_name[] =
2181 "d0", "d1", "d2", "d3",
2182 "d4", "d5", "d6", "d7",
2183 "d8", "d9", "d10", "d11",
2184 "d12", "d13", "d14", "d15",
2185 "d16", "d17", "d18", "d19",
2186 "d20", "d21", "d22", "d23",
2187 "d24", "d25", "d26", "d27",
2188 "d28", "d29", "d30", "d31",
2191 static const char *const s_name[] =
2193 "s0", "s1", "s2", "s3",
2194 "s4", "s5", "s6", "s7",
2195 "s8", "s9", "s10", "s11",
2196 "s12", "s13", "s14", "s15",
2197 "s16", "s17", "s18", "s19",
2198 "s20", "s21", "s22", "s23",
2199 "s24", "s25", "s26", "s27",
2200 "s28", "s29", "s30", "s31",
2203 static const char *const h_name[] =
2205 "h0", "h1", "h2", "h3",
2206 "h4", "h5", "h6", "h7",
2207 "h8", "h9", "h10", "h11",
2208 "h12", "h13", "h14", "h15",
2209 "h16", "h17", "h18", "h19",
2210 "h20", "h21", "h22", "h23",
2211 "h24", "h25", "h26", "h27",
2212 "h28", "h29", "h30", "h31",
2215 static const char *const b_name[] =
2217 "b0", "b1", "b2", "b3",
2218 "b4", "b5", "b6", "b7",
2219 "b8", "b9", "b10", "b11",
2220 "b12", "b13", "b14", "b15",
2221 "b16", "b17", "b18", "b19",
2222 "b20", "b21", "b22", "b23",
2223 "b24", "b25", "b26", "b27",
2224 "b28", "b29", "b30", "b31",
2227 regnum -= gdbarch_num_regs (gdbarch);
2229 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2230 return q_name[regnum - AARCH64_Q0_REGNUM];
2232 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2233 return d_name[regnum - AARCH64_D0_REGNUM];
2235 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2236 return s_name[regnum - AARCH64_S0_REGNUM];
2238 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2239 return h_name[regnum - AARCH64_H0_REGNUM];
2241 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2242 return b_name[regnum - AARCH64_B0_REGNUM];
2244 if (tdep->has_sve ())
2246 static const char *const sve_v_name[] =
2248 "v0", "v1", "v2", "v3",
2249 "v4", "v5", "v6", "v7",
2250 "v8", "v9", "v10", "v11",
2251 "v12", "v13", "v14", "v15",
2252 "v16", "v17", "v18", "v19",
2253 "v20", "v21", "v22", "v23",
2254 "v24", "v25", "v26", "v27",
2255 "v28", "v29", "v30", "v31",
2258 if (regnum >= AARCH64_SVE_V0_REGNUM
2259 && regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2260 return sve_v_name[regnum - AARCH64_SVE_V0_REGNUM];
2263 internal_error (__FILE__, __LINE__,
2264 _("aarch64_pseudo_register_name: bad register number %d"),
2268 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2270 static struct type *
2271 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2275 regnum -= gdbarch_num_regs (gdbarch);
2277 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2278 return aarch64_vnq_type (gdbarch);
2280 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2281 return aarch64_vnd_type (gdbarch);
2283 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2284 return aarch64_vns_type (gdbarch);
2286 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2287 return aarch64_vnh_type (gdbarch);
2289 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2290 return aarch64_vnb_type (gdbarch);
2292 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2293 && regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2294 return aarch64_vnv_type (gdbarch);
2296 internal_error (__FILE__, __LINE__,
2297 _("aarch64_pseudo_register_type: bad register number %d"),
2301 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2304 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2305 struct reggroup *group)
2307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2309 regnum -= gdbarch_num_regs (gdbarch);
2311 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2312 return group == all_reggroup || group == vector_reggroup;
2313 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2314 return (group == all_reggroup || group == vector_reggroup
2315 || group == float_reggroup);
2316 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2317 return (group == all_reggroup || group == vector_reggroup
2318 || group == float_reggroup);
2319 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2320 return group == all_reggroup || group == vector_reggroup;
2321 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2322 return group == all_reggroup || group == vector_reggroup;
2323 else if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2324 && regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2325 return group == all_reggroup || group == vector_reggroup;
2327 return group == all_reggroup;
2330 /* Helper for aarch64_pseudo_read_value. */
2332 static struct value *
2333 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2334 readable_regcache *regcache, int regnum_offset,
2335 int regsize, struct value *result_value)
2337 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2339 /* Enough space for a full vector register. */
2340 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2341 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2343 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2344 mark_value_bytes_unavailable (result_value, 0,
2345 TYPE_LENGTH (value_type (result_value)));
2347 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2349 return result_value;
2352 /* Implement the "pseudo_register_read_value" gdbarch method. */
2354 static struct value *
2355 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2359 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2361 VALUE_LVAL (result_value) = lval_register;
2362 VALUE_REGNUM (result_value) = regnum;
2364 regnum -= gdbarch_num_regs (gdbarch);
2366 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2367 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2368 regnum - AARCH64_Q0_REGNUM,
2369 Q_REGISTER_SIZE, result_value);
2371 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2372 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2373 regnum - AARCH64_D0_REGNUM,
2374 D_REGISTER_SIZE, result_value);
2376 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2377 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2378 regnum - AARCH64_S0_REGNUM,
2379 S_REGISTER_SIZE, result_value);
2381 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2382 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2383 regnum - AARCH64_H0_REGNUM,
2384 H_REGISTER_SIZE, result_value);
2386 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2387 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2388 regnum - AARCH64_B0_REGNUM,
2389 B_REGISTER_SIZE, result_value);
2391 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2392 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2393 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2394 regnum - AARCH64_SVE_V0_REGNUM,
2395 V_REGISTER_SIZE, result_value);
2397 gdb_assert_not_reached ("regnum out of bound");
2400 /* Helper for aarch64_pseudo_write. */
2403 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2404 int regnum_offset, int regsize, const gdb_byte *buf)
2406 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2408 /* Enough space for a full vector register. */
2409 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2410 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2412 /* Ensure the register buffer is zero, we want gdb writes of the
2413 various 'scalar' pseudo registers to behavior like architectural
2414 writes, register width bytes are written the remainder are set to
2416 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2418 memcpy (reg_buf, buf, regsize);
2419 regcache->raw_write (v_regnum, reg_buf);
2422 /* Implement the "pseudo_register_write" gdbarch method. */
2425 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2426 int regnum, const gdb_byte *buf)
2428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2429 regnum -= gdbarch_num_regs (gdbarch);
2431 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2432 return aarch64_pseudo_write_1 (gdbarch, regcache,
2433 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2436 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2437 return aarch64_pseudo_write_1 (gdbarch, regcache,
2438 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2441 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2442 return aarch64_pseudo_write_1 (gdbarch, regcache,
2443 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2446 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2447 return aarch64_pseudo_write_1 (gdbarch, regcache,
2448 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2451 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2452 return aarch64_pseudo_write_1 (gdbarch, regcache,
2453 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2456 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2457 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2458 return aarch64_pseudo_write_1 (gdbarch, regcache,
2459 regnum - AARCH64_SVE_V0_REGNUM,
2460 V_REGISTER_SIZE, buf);
2462 gdb_assert_not_reached ("regnum out of bound");
2465 /* Callback function for user_reg_add. */
2467 static struct value *
2468 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2470 const int *reg_p = (const int *) baton;
2472 return value_of_register (*reg_p, frame);
2476 /* Implement the "software_single_step" gdbarch method, needed to
2477 single step through atomic sequences on AArch64. */
2479 static std::vector<CORE_ADDR>
2480 aarch64_software_single_step (struct regcache *regcache)
2482 struct gdbarch *gdbarch = regcache->arch ();
2483 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2484 const int insn_size = 4;
2485 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2486 CORE_ADDR pc = regcache_read_pc (regcache);
2487 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2489 CORE_ADDR closing_insn = 0;
2490 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2491 byte_order_for_code);
2494 int bc_insn_count = 0; /* Conditional branch instruction count. */
2495 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2498 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2501 /* Look for a Load Exclusive instruction which begins the sequence. */
2502 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2505 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2508 insn = read_memory_unsigned_integer (loc, insn_size,
2509 byte_order_for_code);
2511 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2513 /* Check if the instruction is a conditional branch. */
2514 if (inst.opcode->iclass == condbranch)
2516 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2518 if (bc_insn_count >= 1)
2521 /* It is, so we'll try to set a breakpoint at the destination. */
2522 breaks[1] = loc + inst.operands[0].imm.value;
2528 /* Look for the Store Exclusive which closes the atomic sequence. */
2529 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2536 /* We didn't find a closing Store Exclusive instruction, fall back. */
2540 /* Insert breakpoint after the end of the atomic sequence. */
2541 breaks[0] = loc + insn_size;
2543 /* Check for duplicated breakpoints, and also check that the second
2544 breakpoint is not within the atomic sequence. */
2546 && (breaks[1] == breaks[0]
2547 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2548 last_breakpoint = 0;
2550 std::vector<CORE_ADDR> next_pcs;
2552 /* Insert the breakpoint at the end of the sequence, and one at the
2553 destination of the conditional branch, if it exists. */
2554 for (index = 0; index <= last_breakpoint; index++)
2555 next_pcs.push_back (breaks[index]);
2560 struct aarch64_displaced_step_closure : public displaced_step_closure
2562 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2563 is being displaced stepping. */
2566 /* PC adjustment offset after displaced stepping. */
2567 int32_t pc_adjust = 0;
2570 /* Data when visiting instructions for displaced stepping. */
2572 struct aarch64_displaced_step_data
2574 struct aarch64_insn_data base;
2576 /* The address where the instruction will be executed at. */
2578 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2579 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2580 /* Number of instructions in INSN_BUF. */
2581 unsigned insn_count;
2582 /* Registers when doing displaced stepping. */
2583 struct regcache *regs;
2585 aarch64_displaced_step_closure *dsc;
2588 /* Implementation of aarch64_insn_visitor method "b". */
2591 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2592 struct aarch64_insn_data *data)
2594 struct aarch64_displaced_step_data *dsd
2595 = (struct aarch64_displaced_step_data *) data;
2596 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2598 if (can_encode_int32 (new_offset, 28))
2600 /* Emit B rather than BL, because executing BL on a new address
2601 will get the wrong address into LR. In order to avoid this,
2602 we emit B, and update LR if the instruction is BL. */
2603 emit_b (dsd->insn_buf, 0, new_offset);
2609 emit_nop (dsd->insn_buf);
2611 dsd->dsc->pc_adjust = offset;
2617 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2618 data->insn_addr + 4);
2622 /* Implementation of aarch64_insn_visitor method "b_cond". */
2625 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2626 struct aarch64_insn_data *data)
2628 struct aarch64_displaced_step_data *dsd
2629 = (struct aarch64_displaced_step_data *) data;
2631 /* GDB has to fix up PC after displaced step this instruction
2632 differently according to the condition is true or false. Instead
2633 of checking COND against conditional flags, we can use
2634 the following instructions, and GDB can tell how to fix up PC
2635 according to the PC value.
2637 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2643 emit_bcond (dsd->insn_buf, cond, 8);
2645 dsd->dsc->pc_adjust = offset;
2646 dsd->insn_count = 1;
2649 /* Dynamically allocate a new register. If we know the register
2650 statically, we should make it a global as above instead of using this
2653 static struct aarch64_register
2654 aarch64_register (unsigned num, int is64)
2656 return (struct aarch64_register) { num, is64 };
2659 /* Implementation of aarch64_insn_visitor method "cb". */
2662 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2663 const unsigned rn, int is64,
2664 struct aarch64_insn_data *data)
2666 struct aarch64_displaced_step_data *dsd
2667 = (struct aarch64_displaced_step_data *) data;
2669 /* The offset is out of range for a compare and branch
2670 instruction. We can use the following instructions instead:
2672 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2677 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2678 dsd->insn_count = 1;
2680 dsd->dsc->pc_adjust = offset;
2683 /* Implementation of aarch64_insn_visitor method "tb". */
2686 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2687 const unsigned rt, unsigned bit,
2688 struct aarch64_insn_data *data)
2690 struct aarch64_displaced_step_data *dsd
2691 = (struct aarch64_displaced_step_data *) data;
2693 /* The offset is out of range for a test bit and branch
2694 instruction We can use the following instructions instead:
2696 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2702 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2703 dsd->insn_count = 1;
2705 dsd->dsc->pc_adjust = offset;
2708 /* Implementation of aarch64_insn_visitor method "adr". */
2711 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2712 const int is_adrp, struct aarch64_insn_data *data)
2714 struct aarch64_displaced_step_data *dsd
2715 = (struct aarch64_displaced_step_data *) data;
2716 /* We know exactly the address the ADR{P,} instruction will compute.
2717 We can just write it to the destination register. */
2718 CORE_ADDR address = data->insn_addr + offset;
2722 /* Clear the lower 12 bits of the offset to get the 4K page. */
2723 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2727 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2730 dsd->dsc->pc_adjust = 4;
2731 emit_nop (dsd->insn_buf);
2732 dsd->insn_count = 1;
2735 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2738 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2739 const unsigned rt, const int is64,
2740 struct aarch64_insn_data *data)
2742 struct aarch64_displaced_step_data *dsd
2743 = (struct aarch64_displaced_step_data *) data;
2744 CORE_ADDR address = data->insn_addr + offset;
2745 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2747 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2751 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2752 aarch64_register (rt, 1), zero);
2754 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2755 aarch64_register (rt, 1), zero);
2757 dsd->dsc->pc_adjust = 4;
2760 /* Implementation of aarch64_insn_visitor method "others". */
2763 aarch64_displaced_step_others (const uint32_t insn,
2764 struct aarch64_insn_data *data)
2766 struct aarch64_displaced_step_data *dsd
2767 = (struct aarch64_displaced_step_data *) data;
2769 aarch64_emit_insn (dsd->insn_buf, insn);
2770 dsd->insn_count = 1;
2772 if ((insn & 0xfffffc1f) == 0xd65f0000)
2775 dsd->dsc->pc_adjust = 0;
2778 dsd->dsc->pc_adjust = 4;
2781 static const struct aarch64_insn_visitor visitor =
2783 aarch64_displaced_step_b,
2784 aarch64_displaced_step_b_cond,
2785 aarch64_displaced_step_cb,
2786 aarch64_displaced_step_tb,
2787 aarch64_displaced_step_adr,
2788 aarch64_displaced_step_ldr_literal,
2789 aarch64_displaced_step_others,
2792 /* Implement the "displaced_step_copy_insn" gdbarch method. */
2794 struct displaced_step_closure *
2795 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
2796 CORE_ADDR from, CORE_ADDR to,
2797 struct regcache *regs)
2799 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2800 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
2801 struct aarch64_displaced_step_data dsd;
2804 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2807 /* Look for a Load Exclusive instruction which begins the sequence. */
2808 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
2810 /* We can't displaced step atomic sequences. */
2814 std::unique_ptr<aarch64_displaced_step_closure> dsc
2815 (new aarch64_displaced_step_closure);
2816 dsd.base.insn_addr = from;
2819 dsd.dsc = dsc.get ();
2821 aarch64_relocate_instruction (insn, &visitor,
2822 (struct aarch64_insn_data *) &dsd);
2823 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
2825 if (dsd.insn_count != 0)
2829 /* Instruction can be relocated to scratch pad. Copy
2830 relocated instruction(s) there. */
2831 for (i = 0; i < dsd.insn_count; i++)
2833 if (debug_displaced)
2835 debug_printf ("displaced: writing insn ");
2836 debug_printf ("%.8x", dsd.insn_buf[i]);
2837 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
2839 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
2840 (ULONGEST) dsd.insn_buf[i]);
2848 return dsc.release ();
2851 /* Implement the "displaced_step_fixup" gdbarch method. */
2854 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
2855 struct displaced_step_closure *dsc_,
2856 CORE_ADDR from, CORE_ADDR to,
2857 struct regcache *regs)
2859 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
2865 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
2868 /* Condition is true. */
2870 else if (pc - to == 4)
2872 /* Condition is false. */
2876 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
2879 if (dsc->pc_adjust != 0)
2881 if (debug_displaced)
2883 debug_printf ("displaced: fixup: set PC to %s:%d\n",
2884 paddress (gdbarch, from), dsc->pc_adjust);
2886 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
2887 from + dsc->pc_adjust);
2891 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
2894 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
2895 struct displaced_step_closure *closure)
2900 /* Get the correct target description for the given VQ value.
2901 If VQ is zero then it is assumed SVE is not supported.
2902 (It is not possible to set VQ to zero on an SVE system). */
2905 aarch64_read_description (uint64_t vq)
2907 if (vq > AARCH64_MAX_SVE_VQ)
2908 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
2909 AARCH64_MAX_SVE_VQ);
2911 struct target_desc *tdesc = tdesc_aarch64_list[vq];
2915 tdesc = aarch64_create_target_description (vq);
2916 tdesc_aarch64_list[vq] = tdesc;
2922 /* Return the VQ used when creating the target description TDESC. */
2925 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
2927 const struct tdesc_feature *feature_sve;
2929 if (!tdesc_has_registers (tdesc))
2932 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
2934 if (feature_sve == nullptr)
2937 uint64_t vl = tdesc_register_bitsize (feature_sve,
2938 aarch64_sve_register_names[0]) / 8;
2939 return sve_vq_from_vl (vl);
2943 /* Initialize the current architecture based on INFO. If possible,
2944 re-use an architecture from ARCHES, which is a list of
2945 architectures already created during this debugging session.
2947 Called e.g. at program startup, when reading a core file, and when
2948 reading a binary file. */
2950 static struct gdbarch *
2951 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2953 struct gdbarch_tdep *tdep;
2954 struct gdbarch *gdbarch;
2955 struct gdbarch_list *best_arch;
2956 struct tdesc_arch_data *tdesc_data = NULL;
2957 const struct target_desc *tdesc = info.target_desc;
2960 const struct tdesc_feature *feature_core;
2961 const struct tdesc_feature *feature_fpu;
2962 const struct tdesc_feature *feature_sve;
2964 int num_pseudo_regs = 0;
2966 /* Ensure we always have a target description. */
2967 if (!tdesc_has_registers (tdesc))
2968 tdesc = aarch64_read_description (0);
2971 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2972 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2973 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
2975 if (feature_core == NULL)
2978 tdesc_data = tdesc_data_alloc ();
2980 /* Validate the description provides the mandatory core R registers
2981 and allocate their numbers. */
2982 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2983 valid_p &= tdesc_numbered_register (feature_core, tdesc_data,
2984 AARCH64_X0_REGNUM + i,
2985 aarch64_r_register_names[i]);
2987 num_regs = AARCH64_X0_REGNUM + i;
2989 /* Add the V registers. */
2990 if (feature_fpu != NULL)
2992 if (feature_sve != NULL)
2993 error (_("Program contains both fpu and SVE features."));
2995 /* Validate the description provides the mandatory V registers
2996 and allocate their numbers. */
2997 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2998 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data,
2999 AARCH64_V0_REGNUM + i,
3000 aarch64_v_register_names[i]);
3002 num_regs = AARCH64_V0_REGNUM + i;
3005 /* Add the SVE registers. */
3006 if (feature_sve != NULL)
3008 /* Validate the description provides the mandatory SVE registers
3009 and allocate their numbers. */
3010 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3011 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data,
3012 AARCH64_SVE_Z0_REGNUM + i,
3013 aarch64_sve_register_names[i]);
3015 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3016 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3019 if (feature_fpu != NULL || feature_sve != NULL)
3021 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3022 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3023 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3024 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3025 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3030 tdesc_data_cleanup (tdesc_data);
3034 /* AArch64 code is always little-endian. */
3035 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3037 /* If there is already a candidate, use it. */
3038 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
3040 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3042 /* Found a match. */
3046 if (best_arch != NULL)
3048 if (tdesc_data != NULL)
3049 tdesc_data_cleanup (tdesc_data);
3050 return best_arch->gdbarch;
3053 tdep = XCNEW (struct gdbarch_tdep);
3054 gdbarch = gdbarch_alloc (&info, tdep);
3056 /* This should be low enough for everything. */
3057 tdep->lowest_pc = 0x20;
3058 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3059 tdep->jb_elt_size = 8;
3060 tdep->vq = aarch64_get_tdesc_vq (tdesc);
3062 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3063 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3065 /* Frame handling. */
3066 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
3067 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
3068 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
3070 /* Advance PC across function entry code. */
3071 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3073 /* The stack grows downward. */
3074 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3076 /* Breakpoint manipulation. */
3077 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3078 aarch64_breakpoint::kind_from_pc);
3079 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3080 aarch64_breakpoint::bp_from_kind);
3081 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3082 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3084 /* Information about registers, etc. */
3085 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3086 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3087 set_gdbarch_num_regs (gdbarch, num_regs);
3089 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3090 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3091 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3092 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3093 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3094 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3095 aarch64_pseudo_register_reggroup_p);
3098 set_gdbarch_short_bit (gdbarch, 16);
3099 set_gdbarch_int_bit (gdbarch, 32);
3100 set_gdbarch_float_bit (gdbarch, 32);
3101 set_gdbarch_double_bit (gdbarch, 64);
3102 set_gdbarch_long_double_bit (gdbarch, 128);
3103 set_gdbarch_long_bit (gdbarch, 64);
3104 set_gdbarch_long_long_bit (gdbarch, 64);
3105 set_gdbarch_ptr_bit (gdbarch, 64);
3106 set_gdbarch_char_signed (gdbarch, 0);
3107 set_gdbarch_wchar_signed (gdbarch, 0);
3108 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3109 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3110 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3112 /* Internal <-> external register number maps. */
3113 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3115 /* Returning results. */
3116 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3119 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3121 /* Virtual tables. */
3122 set_gdbarch_vbit_in_delta (gdbarch, 1);
3124 /* Hook in the ABI-specific overrides, if they have been registered. */
3125 info.target_desc = tdesc;
3126 info.tdesc_data = tdesc_data;
3127 gdbarch_init_osabi (info, gdbarch);
3129 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3131 /* Add some default predicates. */
3132 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3133 dwarf2_append_unwinders (gdbarch);
3134 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3136 frame_base_set_default (gdbarch, &aarch64_normal_base);
3138 /* Now we have tuned the configuration, set a few final things,
3139 based on what the OS ABI has told us. */
3141 if (tdep->jb_pc >= 0)
3142 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3144 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3146 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3148 /* Add standard register aliases. */
3149 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3150 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3151 value_of_aarch64_user_reg,
3152 &aarch64_register_aliases[i].regnum);
3154 register_aarch64_ravenscar_ops (gdbarch);
3160 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3167 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3168 paddress (gdbarch, tdep->lowest_pc));
3174 static void aarch64_process_record_test (void);
3179 _initialize_aarch64_tdep (void)
3181 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3184 /* Debug this file's internals. */
3185 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3186 Set AArch64 debugging."), _("\
3187 Show AArch64 debugging."), _("\
3188 When on, AArch64 specific debugging is enabled."),
3191 &setdebuglist, &showdebuglist);
3194 selftests::register_test ("aarch64-analyze-prologue",
3195 selftests::aarch64_analyze_prologue_test);
3196 selftests::register_test ("aarch64-process-record",
3197 selftests::aarch64_process_record_test);
3198 selftests::record_xml_tdesc ("aarch64.xml",
3199 aarch64_create_target_description (0));
3203 /* AArch64 process record-replay related structures, defines etc. */
3205 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3208 unsigned int reg_len = LENGTH; \
3211 REGS = XNEWVEC (uint32_t, reg_len); \
3212 memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3217 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3220 unsigned int mem_len = LENGTH; \
3223 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3224 memcpy(&MEMS->len, &RECORD_BUF[0], \
3225 sizeof(struct aarch64_mem_r) * LENGTH); \
3230 /* AArch64 record/replay structures and enumerations. */
3232 struct aarch64_mem_r
3234 uint64_t len; /* Record length. */
3235 uint64_t addr; /* Memory address. */
3238 enum aarch64_record_result
3240 AARCH64_RECORD_SUCCESS,
3241 AARCH64_RECORD_UNSUPPORTED,
3242 AARCH64_RECORD_UNKNOWN
3245 typedef struct insn_decode_record_t
3247 struct gdbarch *gdbarch;
3248 struct regcache *regcache;
3249 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3250 uint32_t aarch64_insn; /* Insn to be recorded. */
3251 uint32_t mem_rec_count; /* Count of memory records. */
3252 uint32_t reg_rec_count; /* Count of register records. */
3253 uint32_t *aarch64_regs; /* Registers to be recorded. */
3254 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3255 } insn_decode_record;
3257 /* Record handler for data processing - register instructions. */
3260 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3262 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3263 uint32_t record_buf[4];
3265 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3266 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3267 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3269 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3273 /* Logical (shifted register). */
3274 if (insn_bits24_27 == 0x0a)
3275 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3277 else if (insn_bits24_27 == 0x0b)
3278 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3280 return AARCH64_RECORD_UNKNOWN;
3282 record_buf[0] = reg_rd;
3283 aarch64_insn_r->reg_rec_count = 1;
3285 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3289 if (insn_bits24_27 == 0x0b)
3291 /* Data-processing (3 source). */
3292 record_buf[0] = reg_rd;
3293 aarch64_insn_r->reg_rec_count = 1;
3295 else if (insn_bits24_27 == 0x0a)
3297 if (insn_bits21_23 == 0x00)
3299 /* Add/subtract (with carry). */
3300 record_buf[0] = reg_rd;
3301 aarch64_insn_r->reg_rec_count = 1;
3302 if (bit (aarch64_insn_r->aarch64_insn, 29))
3304 record_buf[1] = AARCH64_CPSR_REGNUM;
3305 aarch64_insn_r->reg_rec_count = 2;
3308 else if (insn_bits21_23 == 0x02)
3310 /* Conditional compare (register) and conditional compare
3311 (immediate) instructions. */
3312 record_buf[0] = AARCH64_CPSR_REGNUM;
3313 aarch64_insn_r->reg_rec_count = 1;
3315 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3317 /* CConditional select. */
3318 /* Data-processing (2 source). */
3319 /* Data-processing (1 source). */
3320 record_buf[0] = reg_rd;
3321 aarch64_insn_r->reg_rec_count = 1;
3324 return AARCH64_RECORD_UNKNOWN;
3328 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3330 return AARCH64_RECORD_SUCCESS;
3333 /* Record handler for data processing - immediate instructions. */
3336 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3338 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3339 uint32_t record_buf[4];
3341 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3342 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3343 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3345 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3346 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3347 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3349 record_buf[0] = reg_rd;
3350 aarch64_insn_r->reg_rec_count = 1;
3352 else if (insn_bits24_27 == 0x01)
3354 /* Add/Subtract (immediate). */
3355 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3356 record_buf[0] = reg_rd;
3357 aarch64_insn_r->reg_rec_count = 1;
3359 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3361 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3363 /* Logical (immediate). */
3364 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3365 record_buf[0] = reg_rd;
3366 aarch64_insn_r->reg_rec_count = 1;
3368 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3371 return AARCH64_RECORD_UNKNOWN;
3373 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3375 return AARCH64_RECORD_SUCCESS;
3378 /* Record handler for branch, exception generation and system instructions. */
3381 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3383 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3384 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3385 uint32_t record_buf[4];
3387 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3388 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3389 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3391 if (insn_bits28_31 == 0x0d)
3393 /* Exception generation instructions. */
3394 if (insn_bits24_27 == 0x04)
3396 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3397 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3398 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3400 ULONGEST svc_number;
3402 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3404 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3408 return AARCH64_RECORD_UNSUPPORTED;
3410 /* System instructions. */
3411 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3413 uint32_t reg_rt, reg_crn;
3415 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3416 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3418 /* Record rt in case of sysl and mrs instructions. */
3419 if (bit (aarch64_insn_r->aarch64_insn, 21))
3421 record_buf[0] = reg_rt;
3422 aarch64_insn_r->reg_rec_count = 1;
3424 /* Record cpsr for hint and msr(immediate) instructions. */
3425 else if (reg_crn == 0x02 || reg_crn == 0x04)
3427 record_buf[0] = AARCH64_CPSR_REGNUM;
3428 aarch64_insn_r->reg_rec_count = 1;
3431 /* Unconditional branch (register). */
3432 else if((insn_bits24_27 & 0x0e) == 0x06)
3434 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3435 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3436 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3439 return AARCH64_RECORD_UNKNOWN;
3441 /* Unconditional branch (immediate). */
3442 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3444 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3445 if (bit (aarch64_insn_r->aarch64_insn, 31))
3446 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3449 /* Compare & branch (immediate), Test & branch (immediate) and
3450 Conditional branch (immediate). */
3451 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3453 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3455 return AARCH64_RECORD_SUCCESS;
3458 /* Record handler for advanced SIMD load and store instructions. */
3461 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3464 uint64_t addr_offset = 0;
3465 uint32_t record_buf[24];
3466 uint64_t record_buf_mem[24];
3467 uint32_t reg_rn, reg_rt;
3468 uint32_t reg_index = 0, mem_index = 0;
3469 uint8_t opcode_bits, size_bits;
3471 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3472 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3473 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3474 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3475 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3478 debug_printf ("Process record: Advanced SIMD load/store\n");
3480 /* Load/store single structure. */
3481 if (bit (aarch64_insn_r->aarch64_insn, 24))
3483 uint8_t sindex, scale, selem, esize, replicate = 0;
3484 scale = opcode_bits >> 2;
3485 selem = ((opcode_bits & 0x02) |
3486 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3490 if (size_bits & 0x01)
3491 return AARCH64_RECORD_UNKNOWN;
3494 if ((size_bits >> 1) & 0x01)
3495 return AARCH64_RECORD_UNKNOWN;
3496 if (size_bits & 0x01)
3498 if (!((opcode_bits >> 1) & 0x01))
3501 return AARCH64_RECORD_UNKNOWN;
3505 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3512 return AARCH64_RECORD_UNKNOWN;
3518 for (sindex = 0; sindex < selem; sindex++)
3520 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3521 reg_rt = (reg_rt + 1) % 32;
3525 for (sindex = 0; sindex < selem; sindex++)
3527 if (bit (aarch64_insn_r->aarch64_insn, 22))
3528 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3531 record_buf_mem[mem_index++] = esize / 8;
3532 record_buf_mem[mem_index++] = address + addr_offset;
3534 addr_offset = addr_offset + (esize / 8);
3535 reg_rt = (reg_rt + 1) % 32;
3539 /* Load/store multiple structure. */
3542 uint8_t selem, esize, rpt, elements;
3543 uint8_t eindex, rindex;
3545 esize = 8 << size_bits;
3546 if (bit (aarch64_insn_r->aarch64_insn, 30))
3547 elements = 128 / esize;
3549 elements = 64 / esize;
3551 switch (opcode_bits)
3553 /*LD/ST4 (4 Registers). */
3558 /*LD/ST1 (4 Registers). */
3563 /*LD/ST3 (3 Registers). */
3568 /*LD/ST1 (3 Registers). */
3573 /*LD/ST1 (1 Register). */
3578 /*LD/ST2 (2 Registers). */
3583 /*LD/ST1 (2 Registers). */
3589 return AARCH64_RECORD_UNSUPPORTED;
3592 for (rindex = 0; rindex < rpt; rindex++)
3593 for (eindex = 0; eindex < elements; eindex++)
3595 uint8_t reg_tt, sindex;
3596 reg_tt = (reg_rt + rindex) % 32;
3597 for (sindex = 0; sindex < selem; sindex++)
3599 if (bit (aarch64_insn_r->aarch64_insn, 22))
3600 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3603 record_buf_mem[mem_index++] = esize / 8;
3604 record_buf_mem[mem_index++] = address + addr_offset;
3606 addr_offset = addr_offset + (esize / 8);
3607 reg_tt = (reg_tt + 1) % 32;
3612 if (bit (aarch64_insn_r->aarch64_insn, 23))
3613 record_buf[reg_index++] = reg_rn;
3615 aarch64_insn_r->reg_rec_count = reg_index;
3616 aarch64_insn_r->mem_rec_count = mem_index / 2;
3617 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3619 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3621 return AARCH64_RECORD_SUCCESS;
3624 /* Record handler for load and store instructions. */
3627 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3629 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3630 uint8_t insn_bit23, insn_bit21;
3631 uint8_t opc, size_bits, ld_flag, vector_flag;
3632 uint32_t reg_rn, reg_rt, reg_rt2;
3633 uint64_t datasize, offset;
3634 uint32_t record_buf[8];
3635 uint64_t record_buf_mem[8];
3638 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3639 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3640 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3641 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3642 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3643 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3644 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3645 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3646 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3647 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3648 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3650 /* Load/store exclusive. */
3651 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3654 debug_printf ("Process record: load/store exclusive\n");
3658 record_buf[0] = reg_rt;
3659 aarch64_insn_r->reg_rec_count = 1;
3662 record_buf[1] = reg_rt2;
3663 aarch64_insn_r->reg_rec_count = 2;
3669 datasize = (8 << size_bits) * 2;
3671 datasize = (8 << size_bits);
3672 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3674 record_buf_mem[0] = datasize / 8;
3675 record_buf_mem[1] = address;
3676 aarch64_insn_r->mem_rec_count = 1;
3679 /* Save register rs. */
3680 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3681 aarch64_insn_r->reg_rec_count = 1;
3685 /* Load register (literal) instructions decoding. */
3686 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3689 debug_printf ("Process record: load register (literal)\n");
3691 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3693 record_buf[0] = reg_rt;
3694 aarch64_insn_r->reg_rec_count = 1;
3696 /* All types of load/store pair instructions decoding. */
3697 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3700 debug_printf ("Process record: load/store pair\n");
3706 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3707 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3711 record_buf[0] = reg_rt;
3712 record_buf[1] = reg_rt2;
3714 aarch64_insn_r->reg_rec_count = 2;
3719 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3721 size_bits = size_bits >> 1;
3722 datasize = 8 << (2 + size_bits);
3723 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3724 offset = offset << (2 + size_bits);
3725 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3727 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3729 if (imm7_off & 0x40)
3730 address = address - offset;
3732 address = address + offset;
3735 record_buf_mem[0] = datasize / 8;
3736 record_buf_mem[1] = address;
3737 record_buf_mem[2] = datasize / 8;
3738 record_buf_mem[3] = address + (datasize / 8);
3739 aarch64_insn_r->mem_rec_count = 2;
3741 if (bit (aarch64_insn_r->aarch64_insn, 23))
3742 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3744 /* Load/store register (unsigned immediate) instructions. */
3745 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
3747 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3757 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
3759 /* PRFM (immediate) */
3760 return AARCH64_RECORD_SUCCESS;
3762 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
3764 /* LDRSW (immediate) */
3778 debug_printf ("Process record: load/store (unsigned immediate):"
3779 " size %x V %d opc %x\n", size_bits, vector_flag,
3785 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
3786 datasize = 8 << size_bits;
3787 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3789 offset = offset << size_bits;
3790 address = address + offset;
3792 record_buf_mem[0] = datasize >> 3;
3793 record_buf_mem[1] = address;
3794 aarch64_insn_r->mem_rec_count = 1;
3799 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3801 record_buf[0] = reg_rt;
3802 aarch64_insn_r->reg_rec_count = 1;
3805 /* Load/store register (register offset) instructions. */
3806 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3807 && insn_bits10_11 == 0x02 && insn_bit21)
3810 debug_printf ("Process record: load/store (register offset)\n");
3811 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3818 if (size_bits != 0x03)
3821 return AARCH64_RECORD_UNKNOWN;
3825 ULONGEST reg_rm_val;
3827 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
3828 bits (aarch64_insn_r->aarch64_insn, 16, 20), ®_rm_val);
3829 if (bit (aarch64_insn_r->aarch64_insn, 12))
3830 offset = reg_rm_val << size_bits;
3832 offset = reg_rm_val;
3833 datasize = 8 << size_bits;
3834 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3836 address = address + offset;
3837 record_buf_mem[0] = datasize >> 3;
3838 record_buf_mem[1] = address;
3839 aarch64_insn_r->mem_rec_count = 1;
3844 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3846 record_buf[0] = reg_rt;
3847 aarch64_insn_r->reg_rec_count = 1;
3850 /* Load/store register (immediate and unprivileged) instructions. */
3851 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3856 debug_printf ("Process record: load/store "
3857 "(immediate and unprivileged)\n");
3859 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3866 if (size_bits != 0x03)
3869 return AARCH64_RECORD_UNKNOWN;
3874 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
3875 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
3876 datasize = 8 << size_bits;
3877 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3879 if (insn_bits10_11 != 0x01)
3881 if (imm9_off & 0x0100)
3882 address = address - offset;
3884 address = address + offset;
3886 record_buf_mem[0] = datasize >> 3;
3887 record_buf_mem[1] = address;
3888 aarch64_insn_r->mem_rec_count = 1;
3893 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3895 record_buf[0] = reg_rt;
3896 aarch64_insn_r->reg_rec_count = 1;
3898 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
3899 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3901 /* Advanced SIMD load/store instructions. */
3903 return aarch64_record_asimd_load_store (aarch64_insn_r);
3905 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3907 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3909 return AARCH64_RECORD_SUCCESS;
3912 /* Record handler for data processing SIMD and floating point instructions. */
3915 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
3917 uint8_t insn_bit21, opcode, rmode, reg_rd;
3918 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
3919 uint8_t insn_bits11_14;
3920 uint32_t record_buf[2];
3922 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3923 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3924 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3925 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3926 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
3927 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
3928 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
3929 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3930 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3933 debug_printf ("Process record: data processing SIMD/FP: ");
3935 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
3937 /* Floating point - fixed point conversion instructions. */
3941 debug_printf ("FP - fixed point conversion");
3943 if ((opcode >> 1) == 0x0 && rmode == 0x03)
3944 record_buf[0] = reg_rd;
3946 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3948 /* Floating point - conditional compare instructions. */
3949 else if (insn_bits10_11 == 0x01)
3952 debug_printf ("FP - conditional compare");
3954 record_buf[0] = AARCH64_CPSR_REGNUM;
3956 /* Floating point - data processing (2-source) and
3957 conditional select instructions. */
3958 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
3961 debug_printf ("FP - DP (2-source)");
3963 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3965 else if (insn_bits10_11 == 0x00)
3967 /* Floating point - immediate instructions. */
3968 if ((insn_bits12_15 & 0x01) == 0x01
3969 || (insn_bits12_15 & 0x07) == 0x04)
3972 debug_printf ("FP - immediate");
3973 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3975 /* Floating point - compare instructions. */
3976 else if ((insn_bits12_15 & 0x03) == 0x02)
3979 debug_printf ("FP - immediate");
3980 record_buf[0] = AARCH64_CPSR_REGNUM;
3982 /* Floating point - integer conversions instructions. */
3983 else if (insn_bits12_15 == 0x00)
3985 /* Convert float to integer instruction. */
3986 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
3989 debug_printf ("float to int conversion");
3991 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3993 /* Convert integer to float instruction. */
3994 else if ((opcode >> 1) == 0x01 && !rmode)
3997 debug_printf ("int to float conversion");
3999 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4001 /* Move float to integer instruction. */
4002 else if ((opcode >> 1) == 0x03)
4005 debug_printf ("move float to int");
4007 if (!(opcode & 0x01))
4008 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4010 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4013 return AARCH64_RECORD_UNKNOWN;
4016 return AARCH64_RECORD_UNKNOWN;
4019 return AARCH64_RECORD_UNKNOWN;
4021 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4024 debug_printf ("SIMD copy");
4026 /* Advanced SIMD copy instructions. */
4027 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4028 && !bit (aarch64_insn_r->aarch64_insn, 15)
4029 && bit (aarch64_insn_r->aarch64_insn, 10))
4031 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4032 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4034 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4037 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4039 /* All remaining floating point or advanced SIMD instructions. */
4043 debug_printf ("all remain");
4045 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4049 debug_printf ("\n");
4051 aarch64_insn_r->reg_rec_count++;
4052 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
4053 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4055 return AARCH64_RECORD_SUCCESS;
4058 /* Decodes insns type and invokes its record handler. */
4061 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4063 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4065 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4066 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4067 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4068 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4070 /* Data processing - immediate instructions. */
4071 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4072 return aarch64_record_data_proc_imm (aarch64_insn_r);
4074 /* Branch, exception generation and system instructions. */
4075 if (ins_bit26 && !ins_bit27 && ins_bit28)
4076 return aarch64_record_branch_except_sys (aarch64_insn_r);
4078 /* Load and store instructions. */
4079 if (!ins_bit25 && ins_bit27)
4080 return aarch64_record_load_store (aarch64_insn_r);
4082 /* Data processing - register instructions. */
4083 if (ins_bit25 && !ins_bit26 && ins_bit27)
4084 return aarch64_record_data_proc_reg (aarch64_insn_r);
4086 /* Data processing - SIMD and floating point instructions. */
4087 if (ins_bit25 && ins_bit26 && ins_bit27)
4088 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4090 return AARCH64_RECORD_UNSUPPORTED;
4093 /* Cleans up local record registers and memory allocations. */
4096 deallocate_reg_mem (insn_decode_record *record)
4098 xfree (record->aarch64_regs);
4099 xfree (record->aarch64_mems);
4103 namespace selftests {
4106 aarch64_process_record_test (void)
4108 struct gdbarch_info info;
4111 gdbarch_info_init (&info);
4112 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4114 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4115 SELF_CHECK (gdbarch != NULL);
4117 insn_decode_record aarch64_record;
4119 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4120 aarch64_record.regcache = NULL;
4121 aarch64_record.this_addr = 0;
4122 aarch64_record.gdbarch = gdbarch;
4124 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4125 aarch64_record.aarch64_insn = 0xf9800020;
4126 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4127 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4128 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4129 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4131 deallocate_reg_mem (&aarch64_record);
4134 } // namespace selftests
4135 #endif /* GDB_SELF_TEST */
4137 /* Parse the current instruction and record the values of the registers and
4138 memory that will be changed in current instruction to record_arch_list
4139 return -1 if something is wrong. */
4142 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4143 CORE_ADDR insn_addr)
4145 uint32_t rec_no = 0;
4146 uint8_t insn_size = 4;
4148 gdb_byte buf[insn_size];
4149 insn_decode_record aarch64_record;
4151 memset (&buf[0], 0, insn_size);
4152 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4153 target_read_memory (insn_addr, &buf[0], insn_size);
4154 aarch64_record.aarch64_insn
4155 = (uint32_t) extract_unsigned_integer (&buf[0],
4157 gdbarch_byte_order (gdbarch));
4158 aarch64_record.regcache = regcache;
4159 aarch64_record.this_addr = insn_addr;
4160 aarch64_record.gdbarch = gdbarch;
4162 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4163 if (ret == AARCH64_RECORD_UNSUPPORTED)
4165 printf_unfiltered (_("Process record does not support instruction "
4166 "0x%0x at address %s.\n"),
4167 aarch64_record.aarch64_insn,
4168 paddress (gdbarch, insn_addr));
4174 /* Record registers. */
4175 record_full_arch_list_add_reg (aarch64_record.regcache,
4177 /* Always record register CPSR. */
4178 record_full_arch_list_add_reg (aarch64_record.regcache,
4179 AARCH64_CPSR_REGNUM);
4180 if (aarch64_record.aarch64_regs)
4181 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4182 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4183 aarch64_record.aarch64_regs[rec_no]))
4186 /* Record memories. */
4187 if (aarch64_record.aarch64_mems)
4188 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4189 if (record_full_arch_list_add_mem
4190 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4191 aarch64_record.aarch64_mems[rec_no].len))
4194 if (record_full_arch_list_add_end ())
4198 deallocate_reg_mem (&aarch64_record);