1 /* Common target dependent code for GDB on AArch64 systems.
3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "reggroups.h"
32 #include "arch-utils.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36 #include "trad-frame.h"
38 #include "dwarf2-frame.h"
40 #include "prologue-value.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
46 #include "aarch64-tdep.h"
49 #include "elf/aarch64.h"
53 #include "features/aarch64.c"
55 /* Pseudo register base numbers. */
56 #define AARCH64_Q0_REGNUM 0
57 #define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32)
58 #define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
59 #define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
60 #define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
62 /* The standard register names, and all the valid aliases for them. */
65 const char *const name;
67 } aarch64_register_aliases[] =
69 /* 64-bit register names. */
70 {"fp", AARCH64_FP_REGNUM},
71 {"lr", AARCH64_LR_REGNUM},
72 {"sp", AARCH64_SP_REGNUM},
74 /* 32-bit register names. */
75 {"w0", AARCH64_X0_REGNUM + 0},
76 {"w1", AARCH64_X0_REGNUM + 1},
77 {"w2", AARCH64_X0_REGNUM + 2},
78 {"w3", AARCH64_X0_REGNUM + 3},
79 {"w4", AARCH64_X0_REGNUM + 4},
80 {"w5", AARCH64_X0_REGNUM + 5},
81 {"w6", AARCH64_X0_REGNUM + 6},
82 {"w7", AARCH64_X0_REGNUM + 7},
83 {"w8", AARCH64_X0_REGNUM + 8},
84 {"w9", AARCH64_X0_REGNUM + 9},
85 {"w10", AARCH64_X0_REGNUM + 10},
86 {"w11", AARCH64_X0_REGNUM + 11},
87 {"w12", AARCH64_X0_REGNUM + 12},
88 {"w13", AARCH64_X0_REGNUM + 13},
89 {"w14", AARCH64_X0_REGNUM + 14},
90 {"w15", AARCH64_X0_REGNUM + 15},
91 {"w16", AARCH64_X0_REGNUM + 16},
92 {"w17", AARCH64_X0_REGNUM + 17},
93 {"w18", AARCH64_X0_REGNUM + 18},
94 {"w19", AARCH64_X0_REGNUM + 19},
95 {"w20", AARCH64_X0_REGNUM + 20},
96 {"w21", AARCH64_X0_REGNUM + 21},
97 {"w22", AARCH64_X0_REGNUM + 22},
98 {"w23", AARCH64_X0_REGNUM + 23},
99 {"w24", AARCH64_X0_REGNUM + 24},
100 {"w25", AARCH64_X0_REGNUM + 25},
101 {"w26", AARCH64_X0_REGNUM + 26},
102 {"w27", AARCH64_X0_REGNUM + 27},
103 {"w28", AARCH64_X0_REGNUM + 28},
104 {"w29", AARCH64_X0_REGNUM + 29},
105 {"w30", AARCH64_X0_REGNUM + 30},
108 {"ip0", AARCH64_X0_REGNUM + 16},
109 {"ip1", AARCH64_X0_REGNUM + 17}
112 /* The required core 'R' registers. */
113 static const char *const aarch64_r_register_names[] =
115 /* These registers must appear in consecutive RAW register number
116 order and they must begin with AARCH64_X0_REGNUM! */
117 "x0", "x1", "x2", "x3",
118 "x4", "x5", "x6", "x7",
119 "x8", "x9", "x10", "x11",
120 "x12", "x13", "x14", "x15",
121 "x16", "x17", "x18", "x19",
122 "x20", "x21", "x22", "x23",
123 "x24", "x25", "x26", "x27",
124 "x28", "x29", "x30", "sp",
128 /* The FP/SIMD 'V' registers. */
129 static const char *const aarch64_v_register_names[] =
131 /* These registers must appear in consecutive RAW register number
132 order and they must begin with AARCH64_V0_REGNUM! */
133 "v0", "v1", "v2", "v3",
134 "v4", "v5", "v6", "v7",
135 "v8", "v9", "v10", "v11",
136 "v12", "v13", "v14", "v15",
137 "v16", "v17", "v18", "v19",
138 "v20", "v21", "v22", "v23",
139 "v24", "v25", "v26", "v27",
140 "v28", "v29", "v30", "v31",
145 /* AArch64 prologue cache structure. */
146 struct aarch64_prologue_cache
148 /* The stack pointer at the time this frame was created; i.e. the
149 caller's stack pointer when this function was called. It is used
150 to identify this frame. */
153 /* The frame base for this frame is just prev_sp - frame size.
154 FRAMESIZE is the distance from the frame pointer to the
155 initial stack pointer. */
158 /* The register used to hold the frame pointer for this frame. */
161 /* Saved register offsets. */
162 struct trad_frame_saved_reg *saved_regs;
165 /* Toggle this file's internal debugging dump. */
166 static int aarch64_debug;
169 show_aarch64_debug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
172 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
175 /* Extract a signed value from a bit field within an instruction
178 INSN is the instruction opcode.
180 WIDTH specifies the width of the bit field to extract (in bits).
182 OFFSET specifies the least significant bit of the field where bits
183 are numbered zero counting from least to most significant. */
186 extract_signed_bitfield (uint32_t insn, unsigned width, unsigned offset)
188 unsigned shift_l = sizeof (int32_t) * 8 - (offset + width);
189 unsigned shift_r = sizeof (int32_t) * 8 - width;
191 return ((int32_t) insn << shift_l) >> shift_r;
194 /* Determine if specified bits within an instruction opcode matches a
197 INSN is the instruction opcode.
199 MASK specifies the bits within the opcode that are to be tested
200 agsinst for a match with PATTERN. */
203 decode_masked_match (uint32_t insn, uint32_t mask, uint32_t pattern)
205 return (insn & mask) == pattern;
208 /* Decode an opcode if it represents an immediate ADD or SUB instruction.
210 ADDR specifies the address of the opcode.
211 INSN specifies the opcode to test.
212 RD receives the 'rd' field from the decoded instruction.
213 RN receives the 'rn' field from the decoded instruction.
215 Return 1 if the opcodes matches and is decoded, otherwise 0. */
217 decode_add_sub_imm (CORE_ADDR addr, uint32_t insn, unsigned *rd, unsigned *rn,
220 if ((insn & 0x9f000000) == 0x91000000)
225 *rd = (insn >> 0) & 0x1f;
226 *rn = (insn >> 5) & 0x1f;
227 *imm = (insn >> 10) & 0xfff;
228 shift = (insn >> 22) & 0x3;
229 op_is_sub = (insn >> 30) & 0x1;
247 fprintf_unfiltered (gdb_stdlog,
248 "decode: 0x%s 0x%x add x%u, x%u, #%d\n",
249 core_addr_to_string_nz (addr), insn, *rd, *rn,
256 /* Decode an opcode if it represents an ADRP instruction.
258 ADDR specifies the address of the opcode.
259 INSN specifies the opcode to test.
260 RD receives the 'rd' field from the decoded instruction.
262 Return 1 if the opcodes matches and is decoded, otherwise 0. */
265 decode_adrp (CORE_ADDR addr, uint32_t insn, unsigned *rd)
267 if (decode_masked_match (insn, 0x9f000000, 0x90000000))
269 *rd = (insn >> 0) & 0x1f;
272 fprintf_unfiltered (gdb_stdlog,
273 "decode: 0x%s 0x%x adrp x%u, #?\n",
274 core_addr_to_string_nz (addr), insn, *rd);
280 /* Decode an opcode if it represents an branch immediate or branch
281 and link immediate instruction.
283 ADDR specifies the address of the opcode.
284 INSN specifies the opcode to test.
285 LINK receives the 'link' bit from the decoded instruction.
286 OFFSET receives the immediate offset from the decoded instruction.
288 Return 1 if the opcodes matches and is decoded, otherwise 0. */
291 decode_b (CORE_ADDR addr, uint32_t insn, unsigned *link, int32_t *offset)
293 /* b 0001 01ii iiii iiii iiii iiii iiii iiii */
294 /* bl 1001 01ii iiii iiii iiii iiii iiii iiii */
295 if (decode_masked_match (insn, 0x7c000000, 0x14000000))
298 *offset = extract_signed_bitfield (insn, 26, 0) << 2;
301 fprintf_unfiltered (gdb_stdlog,
302 "decode: 0x%s 0x%x %s 0x%s\n",
303 core_addr_to_string_nz (addr), insn,
305 core_addr_to_string_nz (addr + *offset));
312 /* Decode an opcode if it represents a conditional branch instruction.
314 ADDR specifies the address of the opcode.
315 INSN specifies the opcode to test.
316 COND receives the branch condition field from the decoded
318 OFFSET receives the immediate offset from the decoded instruction.
320 Return 1 if the opcodes matches and is decoded, otherwise 0. */
323 decode_bcond (CORE_ADDR addr, uint32_t insn, unsigned *cond, int32_t *offset)
325 if (decode_masked_match (insn, 0xfe000000, 0x54000000))
327 *cond = (insn >> 0) & 0xf;
328 *offset = extract_signed_bitfield (insn, 19, 5) << 2;
331 fprintf_unfiltered (gdb_stdlog,
332 "decode: 0x%s 0x%x b<%u> 0x%s\n",
333 core_addr_to_string_nz (addr), insn, *cond,
334 core_addr_to_string_nz (addr + *offset));
340 /* Decode an opcode if it represents a branch via register instruction.
342 ADDR specifies the address of the opcode.
343 INSN specifies the opcode to test.
344 LINK receives the 'link' bit from the decoded instruction.
345 RN receives the 'rn' field from the decoded instruction.
347 Return 1 if the opcodes matches and is decoded, otherwise 0. */
350 decode_br (CORE_ADDR addr, uint32_t insn, unsigned *link, unsigned *rn)
352 /* 8 4 0 6 2 8 4 0 */
353 /* blr 110101100011111100000000000rrrrr */
354 /* br 110101100001111100000000000rrrrr */
355 if (decode_masked_match (insn, 0xffdffc1f, 0xd61f0000))
357 *link = (insn >> 21) & 1;
358 *rn = (insn >> 5) & 0x1f;
361 fprintf_unfiltered (gdb_stdlog,
362 "decode: 0x%s 0x%x %s 0x%x\n",
363 core_addr_to_string_nz (addr), insn,
364 *link ? "blr" : "br", *rn);
371 /* Decode an opcode if it represents a CBZ or CBNZ instruction.
373 ADDR specifies the address of the opcode.
374 INSN specifies the opcode to test.
375 IS64 receives the 'sf' field from the decoded instruction.
376 OP receives the 'op' field from the decoded instruction.
377 RN receives the 'rn' field from the decoded instruction.
378 OFFSET receives the 'imm19' field from the decoded instruction.
380 Return 1 if the opcodes matches and is decoded, otherwise 0. */
383 decode_cb (CORE_ADDR addr,
384 uint32_t insn, int *is64, unsigned *op, unsigned *rn,
387 if (decode_masked_match (insn, 0x7e000000, 0x34000000))
389 /* cbz T011 010o iiii iiii iiii iiii iiir rrrr */
390 /* cbnz T011 010o iiii iiii iiii iiii iiir rrrr */
392 *rn = (insn >> 0) & 0x1f;
393 *is64 = (insn >> 31) & 0x1;
394 *op = (insn >> 24) & 0x1;
395 *offset = extract_signed_bitfield (insn, 19, 5) << 2;
398 fprintf_unfiltered (gdb_stdlog,
399 "decode: 0x%s 0x%x %s 0x%s\n",
400 core_addr_to_string_nz (addr), insn,
401 *op ? "cbnz" : "cbz",
402 core_addr_to_string_nz (addr + *offset));
408 /* Decode an opcode if it represents a ERET instruction.
410 ADDR specifies the address of the opcode.
411 INSN specifies the opcode to test.
413 Return 1 if the opcodes matches and is decoded, otherwise 0. */
416 decode_eret (CORE_ADDR addr, uint32_t insn)
418 /* eret 1101 0110 1001 1111 0000 0011 1110 0000 */
419 if (insn == 0xd69f03e0)
422 fprintf_unfiltered (gdb_stdlog, "decode: 0x%s 0x%x eret\n",
423 core_addr_to_string_nz (addr), insn);
429 /* Decode an opcode if it represents a MOVZ instruction.
431 ADDR specifies the address of the opcode.
432 INSN specifies the opcode to test.
433 RD receives the 'rd' field from the decoded instruction.
435 Return 1 if the opcodes matches and is decoded, otherwise 0. */
438 decode_movz (CORE_ADDR addr, uint32_t insn, unsigned *rd)
440 if (decode_masked_match (insn, 0xff800000, 0x52800000))
442 *rd = (insn >> 0) & 0x1f;
445 fprintf_unfiltered (gdb_stdlog,
446 "decode: 0x%s 0x%x movz x%u, #?\n",
447 core_addr_to_string_nz (addr), insn, *rd);
453 /* Decode an opcode if it represents a ORR (shifted register)
456 ADDR specifies the address of the opcode.
457 INSN specifies the opcode to test.
458 RD receives the 'rd' field from the decoded instruction.
459 RN receives the 'rn' field from the decoded instruction.
460 RM receives the 'rm' field from the decoded instruction.
461 IMM receives the 'imm6' field from the decoded instruction.
463 Return 1 if the opcodes matches and is decoded, otherwise 0. */
466 decode_orr_shifted_register_x (CORE_ADDR addr,
467 uint32_t insn, unsigned *rd, unsigned *rn,
468 unsigned *rm, int32_t *imm)
470 if (decode_masked_match (insn, 0xff200000, 0xaa000000))
472 *rd = (insn >> 0) & 0x1f;
473 *rn = (insn >> 5) & 0x1f;
474 *rm = (insn >> 16) & 0x1f;
475 *imm = (insn >> 10) & 0x3f;
478 fprintf_unfiltered (gdb_stdlog,
479 "decode: 0x%s 0x%x orr x%u, x%u, x%u, #%u\n",
480 core_addr_to_string_nz (addr), insn, *rd,
487 /* Decode an opcode if it represents a RET instruction.
489 ADDR specifies the address of the opcode.
490 INSN specifies the opcode to test.
491 RN receives the 'rn' field from the decoded instruction.
493 Return 1 if the opcodes matches and is decoded, otherwise 0. */
496 decode_ret (CORE_ADDR addr, uint32_t insn, unsigned *rn)
498 if (decode_masked_match (insn, 0xfffffc1f, 0xd65f0000))
500 *rn = (insn >> 5) & 0x1f;
502 fprintf_unfiltered (gdb_stdlog,
503 "decode: 0x%s 0x%x ret x%u\n",
504 core_addr_to_string_nz (addr), insn, *rn);
510 /* Decode an opcode if it represents the following instruction:
511 STP rt, rt2, [rn, #imm]
513 ADDR specifies the address of the opcode.
514 INSN specifies the opcode to test.
515 RT1 receives the 'rt' field from the decoded instruction.
516 RT2 receives the 'rt2' field from the decoded instruction.
517 RN receives the 'rn' field from the decoded instruction.
518 IMM receives the 'imm' field from the decoded instruction.
520 Return 1 if the opcodes matches and is decoded, otherwise 0. */
523 decode_stp_offset (CORE_ADDR addr,
525 unsigned *rt1, unsigned *rt2, unsigned *rn, int32_t *imm)
527 if (decode_masked_match (insn, 0xffc00000, 0xa9000000))
529 *rt1 = (insn >> 0) & 0x1f;
530 *rn = (insn >> 5) & 0x1f;
531 *rt2 = (insn >> 10) & 0x1f;
532 *imm = extract_signed_bitfield (insn, 7, 15);
536 fprintf_unfiltered (gdb_stdlog,
537 "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]\n",
538 core_addr_to_string_nz (addr), insn,
539 *rt1, *rt2, *rn, *imm);
545 /* Decode an opcode if it represents the following instruction:
546 STP rt, rt2, [rn, #imm]!
548 ADDR specifies the address of the opcode.
549 INSN specifies the opcode to test.
550 RT1 receives the 'rt' field from the decoded instruction.
551 RT2 receives the 'rt2' field from the decoded instruction.
552 RN receives the 'rn' field from the decoded instruction.
553 IMM receives the 'imm' field from the decoded instruction.
555 Return 1 if the opcodes matches and is decoded, otherwise 0. */
558 decode_stp_offset_wb (CORE_ADDR addr,
560 unsigned *rt1, unsigned *rt2, unsigned *rn,
563 if (decode_masked_match (insn, 0xffc00000, 0xa9800000))
565 *rt1 = (insn >> 0) & 0x1f;
566 *rn = (insn >> 5) & 0x1f;
567 *rt2 = (insn >> 10) & 0x1f;
568 *imm = extract_signed_bitfield (insn, 7, 15);
572 fprintf_unfiltered (gdb_stdlog,
573 "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]!\n",
574 core_addr_to_string_nz (addr), insn,
575 *rt1, *rt2, *rn, *imm);
581 /* Decode an opcode if it represents the following instruction:
584 ADDR specifies the address of the opcode.
585 INSN specifies the opcode to test.
586 IS64 receives size field from the decoded instruction.
587 RT receives the 'rt' field from the decoded instruction.
588 RN receives the 'rn' field from the decoded instruction.
589 IMM receives the 'imm' field from the decoded instruction.
591 Return 1 if the opcodes matches and is decoded, otherwise 0. */
594 decode_stur (CORE_ADDR addr, uint32_t insn, int *is64, unsigned *rt,
595 unsigned *rn, int32_t *imm)
597 if (decode_masked_match (insn, 0xbfe00c00, 0xb8000000))
599 *is64 = (insn >> 30) & 1;
600 *rt = (insn >> 0) & 0x1f;
601 *rn = (insn >> 5) & 0x1f;
602 *imm = extract_signed_bitfield (insn, 9, 12);
605 fprintf_unfiltered (gdb_stdlog,
606 "decode: 0x%s 0x%x stur %c%u, [x%u + #%d]\n",
607 core_addr_to_string_nz (addr), insn,
608 *is64 ? 'x' : 'w', *rt, *rn, *imm);
614 /* Decode an opcode if it represents a TB or TBNZ instruction.
616 ADDR specifies the address of the opcode.
617 INSN specifies the opcode to test.
618 OP receives the 'op' field from the decoded instruction.
619 BIT receives the bit position field from the decoded instruction.
620 RT receives 'rt' field from the decoded instruction.
621 IMM receives 'imm' field from the decoded instruction.
623 Return 1 if the opcodes matches and is decoded, otherwise 0. */
626 decode_tb (CORE_ADDR addr,
627 uint32_t insn, unsigned *op, unsigned *bit, unsigned *rt,
630 if (decode_masked_match (insn, 0x7e000000, 0x36000000))
632 /* tbz b011 0110 bbbb biii iiii iiii iiir rrrr */
633 /* tbnz B011 0111 bbbb biii iiii iiii iiir rrrr */
635 *rt = (insn >> 0) & 0x1f;
636 *op = insn & (1 << 24);
637 *bit = ((insn >> (31 - 4)) & 0x20) | ((insn >> 19) & 0x1f);
638 *imm = extract_signed_bitfield (insn, 14, 5) << 2;
641 fprintf_unfiltered (gdb_stdlog,
642 "decode: 0x%s 0x%x %s x%u, #%u, 0x%s\n",
643 core_addr_to_string_nz (addr), insn,
644 *op ? "tbnz" : "tbz", *rt, *bit,
645 core_addr_to_string_nz (addr + *imm));
651 /* Analyze a prologue, looking for a recognizable stack frame
652 and frame pointer. Scan until we encounter a store that could
653 clobber the stack frame unexpectedly, or an unknown instruction. */
656 aarch64_analyze_prologue (struct gdbarch *gdbarch,
657 CORE_ADDR start, CORE_ADDR limit,
658 struct aarch64_prologue_cache *cache)
660 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
662 pv_t regs[AARCH64_X_REGISTER_COUNT];
663 struct pv_area *stack;
664 struct cleanup *back_to;
666 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
667 regs[i] = pv_register (i, 0);
668 stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
669 back_to = make_cleanup_free_pv_area (stack);
671 for (; start < limit; start += 4)
689 insn = read_memory_unsigned_integer (start, 4, byte_order_for_code);
691 if (decode_add_sub_imm (start, insn, &rd, &rn, &imm))
692 regs[rd] = pv_add_constant (regs[rn], imm);
693 else if (decode_adrp (start, insn, &rd))
694 regs[rd] = pv_unknown ();
695 else if (decode_b (start, insn, &is_link, &offset))
697 /* Stop analysis on branch. */
700 else if (decode_bcond (start, insn, &cond, &offset))
702 /* Stop analysis on branch. */
705 else if (decode_br (start, insn, &is_link, &rn))
707 /* Stop analysis on branch. */
710 else if (decode_cb (start, insn, &is64, &op, &rn, &offset))
712 /* Stop analysis on branch. */
715 else if (decode_eret (start, insn))
717 /* Stop analysis on branch. */
720 else if (decode_movz (start, insn, &rd))
721 regs[rd] = pv_unknown ();
723 if (decode_orr_shifted_register_x (start, insn, &rd, &rn, &rm, &imm))
725 if (imm == 0 && rn == 31)
732 "aarch64: prologue analysis gave up addr=0x%s "
733 "opcode=0x%x (orr x register)\n",
734 core_addr_to_string_nz (start),
739 else if (decode_ret (start, insn, &rn))
741 /* Stop analysis on branch. */
744 else if (decode_stur (start, insn, &is64, &rt, &rn, &offset))
746 pv_area_store (stack, pv_add_constant (regs[rn], offset),
747 is64 ? 8 : 4, regs[rt]);
749 else if (decode_stp_offset (start, insn, &rt1, &rt2, &rn, &imm))
751 /* If recording this store would invalidate the store area
752 (perhaps because rn is not known) then we should abandon
753 further prologue analysis. */
754 if (pv_area_store_would_trash (stack,
755 pv_add_constant (regs[rn], imm)))
758 if (pv_area_store_would_trash (stack,
759 pv_add_constant (regs[rn], imm + 8)))
762 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
764 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
767 else if (decode_stp_offset_wb (start, insn, &rt1, &rt2, &rn, &imm))
769 /* If recording this store would invalidate the store area
770 (perhaps because rn is not known) then we should abandon
771 further prologue analysis. */
772 if (pv_area_store_would_trash (stack,
773 pv_add_constant (regs[rn], imm)))
776 if (pv_area_store_would_trash (stack,
777 pv_add_constant (regs[rn], imm + 8)))
780 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
782 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
784 regs[rn] = pv_add_constant (regs[rn], imm);
786 else if (decode_tb (start, insn, &op, &bit, &rn, &offset))
788 /* Stop analysis on branch. */
794 fprintf_unfiltered (gdb_stdlog,
795 "aarch64: prologue analysis gave up addr=0x%s"
797 core_addr_to_string_nz (start), insn);
804 do_cleanups (back_to);
808 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
810 /* Frame pointer is fp. Frame size is constant. */
811 cache->framereg = AARCH64_FP_REGNUM;
812 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
814 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
816 /* Try the stack pointer. */
817 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
818 cache->framereg = AARCH64_SP_REGNUM;
822 /* We're just out of luck. We don't know where the frame is. */
823 cache->framereg = -1;
824 cache->framesize = 0;
827 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
831 if (pv_area_find_reg (stack, gdbarch, i, &offset))
832 cache->saved_regs[i].addr = offset;
835 do_cleanups (back_to);
839 /* Implement the "skip_prologue" gdbarch method. */
842 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
846 CORE_ADDR func_addr, limit_pc;
847 struct symtab_and_line sal;
849 /* See if we can determine the end of the prologue via the symbol
850 table. If so, then return either PC, or the PC after the
851 prologue, whichever is greater. */
852 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
854 CORE_ADDR post_prologue_pc
855 = skip_prologue_using_sal (gdbarch, func_addr);
857 if (post_prologue_pc != 0)
858 return max (pc, post_prologue_pc);
861 /* Can't determine prologue from the symbol table, need to examine
864 /* Find an upper limit on the function prologue using the debug
865 information. If the debug information could not be used to
866 provide that bound, then use an arbitrary large number as the
868 limit_pc = skip_prologue_using_sal (gdbarch, pc);
870 limit_pc = pc + 128; /* Magic. */
872 /* Try disassembling prologue. */
873 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
876 /* Scan the function prologue for THIS_FRAME and populate the prologue
880 aarch64_scan_prologue (struct frame_info *this_frame,
881 struct aarch64_prologue_cache *cache)
883 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
884 CORE_ADDR prologue_start;
885 CORE_ADDR prologue_end;
886 CORE_ADDR prev_pc = get_frame_pc (this_frame);
887 struct gdbarch *gdbarch = get_frame_arch (this_frame);
889 /* Assume we do not find a frame. */
890 cache->framereg = -1;
891 cache->framesize = 0;
893 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
896 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
900 /* No line info so use the current PC. */
901 prologue_end = prev_pc;
903 else if (sal.end < prologue_end)
905 /* The next line begins after the function end. */
906 prologue_end = sal.end;
909 prologue_end = min (prologue_end, prev_pc);
910 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
919 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
923 cache->framereg = AARCH64_FP_REGNUM;
924 cache->framesize = 16;
925 cache->saved_regs[29].addr = 0;
926 cache->saved_regs[30].addr = 8;
930 /* Allocate an aarch64_prologue_cache and fill it with information
931 about the prologue of *THIS_FRAME. */
933 static struct aarch64_prologue_cache *
934 aarch64_make_prologue_cache (struct frame_info *this_frame)
936 struct aarch64_prologue_cache *cache;
937 CORE_ADDR unwound_fp;
940 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
941 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
943 aarch64_scan_prologue (this_frame, cache);
945 if (cache->framereg == -1)
948 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
952 cache->prev_sp = unwound_fp + cache->framesize;
954 /* Calculate actual addresses of saved registers using offsets
955 determined by aarch64_analyze_prologue. */
956 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
957 if (trad_frame_addr_p (cache->saved_regs, reg))
958 cache->saved_regs[reg].addr += cache->prev_sp;
963 /* Our frame ID for a normal frame is the current function's starting
964 PC and the caller's SP when we were called. */
967 aarch64_prologue_this_id (struct frame_info *this_frame,
968 void **this_cache, struct frame_id *this_id)
970 struct aarch64_prologue_cache *cache;
974 if (*this_cache == NULL)
975 *this_cache = aarch64_make_prologue_cache (this_frame);
978 /* This is meant to halt the backtrace at "_start". */
979 pc = get_frame_pc (this_frame);
980 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
983 /* If we've hit a wall, stop. */
984 if (cache->prev_sp == 0)
987 func = get_frame_func (this_frame);
988 id = frame_id_build (cache->prev_sp, func);
992 /* Implement the "prev_register" frame_unwind method. */
994 static struct value *
995 aarch64_prologue_prev_register (struct frame_info *this_frame,
996 void **this_cache, int prev_regnum)
998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
999 struct aarch64_prologue_cache *cache;
1001 if (*this_cache == NULL)
1002 *this_cache = aarch64_make_prologue_cache (this_frame);
1003 cache = *this_cache;
1005 /* If we are asked to unwind the PC, then we need to return the LR
1006 instead. The prologue may save PC, but it will point into this
1007 frame's prologue, not the next frame's resume location. */
1008 if (prev_regnum == AARCH64_PC_REGNUM)
1012 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1013 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
1016 /* SP is generally not saved to the stack, but this frame is
1017 identified by the next frame's stack pointer at the time of the
1018 call. The value was already reconstructed into PREV_SP. */
1024 | | | <- Previous SP
1027 +--| saved fp |<- FP
1031 if (prev_regnum == AARCH64_SP_REGNUM)
1032 return frame_unwind_got_constant (this_frame, prev_regnum,
1035 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1039 /* AArch64 prologue unwinder. */
1040 struct frame_unwind aarch64_prologue_unwind =
1043 default_frame_unwind_stop_reason,
1044 aarch64_prologue_this_id,
1045 aarch64_prologue_prev_register,
1047 default_frame_sniffer
1050 /* Allocate an aarch64_prologue_cache and fill it with information
1051 about the prologue of *THIS_FRAME. */
1053 static struct aarch64_prologue_cache *
1054 aarch64_make_stub_cache (struct frame_info *this_frame)
1057 struct aarch64_prologue_cache *cache;
1058 CORE_ADDR unwound_fp;
1060 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1061 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1064 = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1069 /* Our frame ID for a stub frame is the current SP and LR. */
1072 aarch64_stub_this_id (struct frame_info *this_frame,
1073 void **this_cache, struct frame_id *this_id)
1075 struct aarch64_prologue_cache *cache;
1077 if (*this_cache == NULL)
1078 *this_cache = aarch64_make_stub_cache (this_frame);
1079 cache = *this_cache;
1081 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
1084 /* Implement the "sniffer" frame_unwind method. */
1087 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1088 struct frame_info *this_frame,
1089 void **this_prologue_cache)
1091 CORE_ADDR addr_in_block;
1094 addr_in_block = get_frame_address_in_block (this_frame);
1095 if (in_plt_section (addr_in_block)
1096 /* We also use the stub winder if the target memory is unreadable
1097 to avoid having the prologue unwinder trying to read it. */
1098 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1104 /* AArch64 stub unwinder. */
1105 struct frame_unwind aarch64_stub_unwind =
1108 default_frame_unwind_stop_reason,
1109 aarch64_stub_this_id,
1110 aarch64_prologue_prev_register,
1112 aarch64_stub_unwind_sniffer
1115 /* Return the frame base address of *THIS_FRAME. */
1118 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1120 struct aarch64_prologue_cache *cache;
1122 if (*this_cache == NULL)
1123 *this_cache = aarch64_make_prologue_cache (this_frame);
1124 cache = *this_cache;
1126 return cache->prev_sp - cache->framesize;
1129 /* AArch64 default frame base information. */
1130 struct frame_base aarch64_normal_base =
1132 &aarch64_prologue_unwind,
1133 aarch64_normal_frame_base,
1134 aarch64_normal_frame_base,
1135 aarch64_normal_frame_base
1138 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1139 dummy frame. The frame ID's base needs to match the TOS value
1140 saved by save_dummy_frame_tos () and returned from
1141 aarch64_push_dummy_call, and the PC needs to match the dummy
1142 frame's breakpoint. */
1144 static struct frame_id
1145 aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1147 return frame_id_build (get_frame_register_unsigned (this_frame,
1149 get_frame_pc (this_frame));
1152 /* Implement the "unwind_pc" gdbarch method. */
1155 aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1158 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
1163 /* Implement the "unwind_sp" gdbarch method. */
1166 aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1168 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1171 /* Return the value of the REGNUM register in the previous frame of
1174 static struct value *
1175 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1176 void **this_cache, int regnum)
1178 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1183 case AARCH64_PC_REGNUM:
1184 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1185 return frame_unwind_got_constant (this_frame, regnum, lr);
1188 internal_error (__FILE__, __LINE__,
1189 _("Unexpected register %d"), regnum);
1193 /* Implement the "init_reg" dwarf2_frame_ops method. */
1196 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1197 struct dwarf2_frame_state_reg *reg,
1198 struct frame_info *this_frame)
1202 case AARCH64_PC_REGNUM:
1203 reg->how = DWARF2_FRAME_REG_FN;
1204 reg->loc.fn = aarch64_dwarf2_prev_register;
1206 case AARCH64_SP_REGNUM:
1207 reg->how = DWARF2_FRAME_REG_CFA;
1212 /* When arguments must be pushed onto the stack, they go on in reverse
1213 order. The code below implements a FILO (stack) to do this. */
1217 /* Value to pass on stack. */
1220 /* Size in bytes of value to pass on stack. */
1224 DEF_VEC_O (stack_item_t);
1226 /* Return the alignment (in bytes) of the given type. */
1229 aarch64_type_align (struct type *t)
1235 t = check_typedef (t);
1236 switch (TYPE_CODE (t))
1239 /* Should never happen. */
1240 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1244 case TYPE_CODE_ENUM:
1248 case TYPE_CODE_RANGE:
1249 case TYPE_CODE_BITSTRING:
1251 case TYPE_CODE_CHAR:
1252 case TYPE_CODE_BOOL:
1253 return TYPE_LENGTH (t);
1255 case TYPE_CODE_ARRAY:
1256 case TYPE_CODE_COMPLEX:
1257 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1259 case TYPE_CODE_STRUCT:
1260 case TYPE_CODE_UNION:
1262 for (n = 0; n < TYPE_NFIELDS (t); n++)
1264 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1272 /* Return 1 if *TY is a homogeneous floating-point aggregate as
1273 defined in the AAPCS64 ABI document; otherwise return 0. */
1276 is_hfa (struct type *ty)
1278 switch (TYPE_CODE (ty))
1280 case TYPE_CODE_ARRAY:
1282 struct type *target_ty = TYPE_TARGET_TYPE (ty);
1283 if (TYPE_CODE (target_ty) == TYPE_CODE_FLT && TYPE_LENGTH (ty) <= 4)
1288 case TYPE_CODE_UNION:
1289 case TYPE_CODE_STRUCT:
1291 if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
1293 struct type *member0_type;
1295 member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
1296 if (TYPE_CODE (member0_type) == TYPE_CODE_FLT)
1300 for (i = 0; i < TYPE_NFIELDS (ty); i++)
1302 struct type *member1_type;
1304 member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
1305 if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
1306 || (TYPE_LENGTH (member0_type)
1307 != TYPE_LENGTH (member1_type)))
1323 /* AArch64 function call information structure. */
1324 struct aarch64_call_info
1326 /* the current argument number. */
1329 /* The next general purpose register number, equivalent to NGRN as
1330 described in the AArch64 Procedure Call Standard. */
1333 /* The next SIMD and floating point register number, equivalent to
1334 NSRN as described in the AArch64 Procedure Call Standard. */
1337 /* The next stacked argument address, equivalent to NSAA as
1338 described in the AArch64 Procedure Call Standard. */
1341 /* Stack item vector. */
1342 VEC(stack_item_t) *si;
1345 /* Pass a value in a sequence of consecutive X registers. The caller
1346 is responsbile for ensuring sufficient registers are available. */
1349 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1350 struct aarch64_call_info *info, struct type *type,
1351 const bfd_byte *buf)
1353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1354 int len = TYPE_LENGTH (type);
1355 enum type_code typecode = TYPE_CODE (type);
1356 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1362 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1363 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1367 /* Adjust sub-word struct/union args when big-endian. */
1368 if (byte_order == BFD_ENDIAN_BIG
1369 && partial_len < X_REGISTER_SIZE
1370 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1371 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1374 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1376 gdbarch_register_name (gdbarch, regnum),
1377 phex (regval, X_REGISTER_SIZE));
1378 regcache_cooked_write_unsigned (regcache, regnum, regval);
1385 /* Attempt to marshall a value in a V register. Return 1 if
1386 successful, or 0 if insufficient registers are available. This
1387 function, unlike the equivalent pass_in_x() function does not
1388 handle arguments spread across multiple registers. */
1391 pass_in_v (struct gdbarch *gdbarch,
1392 struct regcache *regcache,
1393 struct aarch64_call_info *info,
1394 const bfd_byte *buf)
1398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1399 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1404 regcache_cooked_write (regcache, regnum, buf);
1406 fprintf_unfiltered (gdb_stdlog, "arg %d in %s\n",
1408 gdbarch_register_name (gdbarch, regnum));
1415 /* Marshall an argument onto the stack. */
1418 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1419 const bfd_byte *buf)
1421 int len = TYPE_LENGTH (type);
1427 align = aarch64_type_align (type);
1429 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1430 Natural alignment of the argument's type. */
1431 align = align_up (align, 8);
1433 /* The AArch64 PCS requires at most doubleword alignment. */
1438 fprintf_unfiltered (gdb_stdlog, "arg %d len=%d @ sp + %d\n",
1439 info->argnum, len, info->nsaa);
1443 VEC_safe_push (stack_item_t, info->si, &item);
1446 if (info->nsaa & (align - 1))
1448 /* Push stack alignment padding. */
1449 int pad = align - (info->nsaa & (align - 1));
1454 VEC_safe_push (stack_item_t, info->si, &item);
1459 /* Marshall an argument into a sequence of one or more consecutive X
1460 registers or, if insufficient X registers are available then onto
1464 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1465 struct aarch64_call_info *info, struct type *type,
1466 const bfd_byte *buf)
1468 int len = TYPE_LENGTH (type);
1469 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1471 /* PCS C.13 - Pass in registers if we have enough spare */
1472 if (info->ngrn + nregs <= 8)
1474 pass_in_x (gdbarch, regcache, info, type, buf);
1475 info->ngrn += nregs;
1480 pass_on_stack (info, type, buf);
1484 /* Pass a value in a V register, or on the stack if insufficient are
1488 pass_in_v_or_stack (struct gdbarch *gdbarch,
1489 struct regcache *regcache,
1490 struct aarch64_call_info *info,
1492 const bfd_byte *buf)
1494 if (!pass_in_v (gdbarch, regcache, info, buf))
1495 pass_on_stack (info, type, buf);
1498 /* Implement the "push_dummy_call" gdbarch method. */
1501 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1502 struct regcache *regcache, CORE_ADDR bp_addr,
1504 struct value **args, CORE_ADDR sp, int struct_return,
1505 CORE_ADDR struct_addr)
1511 struct aarch64_call_info info;
1512 struct type *func_type;
1513 struct type *return_type;
1514 int lang_struct_return;
1516 memset (&info, 0, sizeof (info));
1518 /* We need to know what the type of the called function is in order
1519 to determine the number of named/anonymous arguments for the
1520 actual argument placement, and the return type in order to handle
1521 return value correctly.
1523 The generic code above us views the decision of return in memory
1524 or return in registers as a two stage processes. The language
1525 handler is consulted first and may decide to return in memory (eg
1526 class with copy constructor returned by value), this will cause
1527 the generic code to allocate space AND insert an initial leading
1530 If the language code does not decide to pass in memory then the
1531 target code is consulted.
1533 If the language code decides to pass in memory we want to move
1534 the pointer inserted as the initial argument from the argument
1535 list and into X8, the conventional AArch64 struct return pointer
1538 This is slightly awkward, ideally the flag "lang_struct_return"
1539 would be passed to the targets implementation of push_dummy_call.
1540 Rather that change the target interface we call the language code
1541 directly ourselves. */
1543 func_type = check_typedef (value_type (function));
1545 /* Dereference function pointer types. */
1546 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1547 func_type = TYPE_TARGET_TYPE (func_type);
1549 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1550 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
1552 /* If language_pass_by_reference () returned true we will have been
1553 given an additional initial argument, a hidden pointer to the
1554 return slot in memory. */
1555 return_type = TYPE_TARGET_TYPE (func_type);
1556 lang_struct_return = language_pass_by_reference (return_type);
1558 /* Set the return address. For the AArch64, the return breakpoint
1559 is always at BP_ADDR. */
1560 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1562 /* If we were given an initial argument for the return slot because
1563 lang_struct_return was true, lose it. */
1564 if (lang_struct_return)
1570 /* The struct_return pointer occupies X8. */
1571 if (struct_return || lang_struct_return)
1574 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1575 gdbarch_register_name
1577 AARCH64_STRUCT_RETURN_REGNUM),
1578 paddress (gdbarch, struct_addr));
1579 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1583 for (argnum = 0; argnum < nargs; argnum++)
1585 struct value *arg = args[argnum];
1586 struct type *arg_type;
1589 arg_type = check_typedef (value_type (arg));
1590 len = TYPE_LENGTH (arg_type);
1592 switch (TYPE_CODE (arg_type))
1595 case TYPE_CODE_BOOL:
1596 case TYPE_CODE_CHAR:
1597 case TYPE_CODE_RANGE:
1598 case TYPE_CODE_ENUM:
1601 /* Promote to 32 bit integer. */
1602 if (TYPE_UNSIGNED (arg_type))
1603 arg_type = builtin_type (gdbarch)->builtin_uint32;
1605 arg_type = builtin_type (gdbarch)->builtin_int32;
1606 arg = value_cast (arg_type, arg);
1608 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1609 value_contents (arg));
1612 case TYPE_CODE_COMPLEX:
1615 const bfd_byte *buf = value_contents (arg);
1616 struct type *target_type =
1617 check_typedef (TYPE_TARGET_TYPE (arg_type));
1619 pass_in_v (gdbarch, regcache, &info, buf);
1620 pass_in_v (gdbarch, regcache, &info,
1621 buf + TYPE_LENGTH (target_type));
1626 pass_on_stack (&info, arg_type, value_contents (arg));
1630 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type,
1631 value_contents (arg));
1634 case TYPE_CODE_STRUCT:
1635 case TYPE_CODE_ARRAY:
1636 case TYPE_CODE_UNION:
1637 if (is_hfa (arg_type))
1639 int elements = TYPE_NFIELDS (arg_type);
1641 /* Homogeneous Aggregates */
1642 if (info.nsrn + elements < 8)
1646 for (i = 0; i < elements; i++)
1648 /* We know that we have sufficient registers
1649 available therefore this will never fallback
1651 struct value *field =
1652 value_primitive_field (arg, 0, i, arg_type);
1653 struct type *field_type =
1654 check_typedef (value_type (field));
1656 pass_in_v_or_stack (gdbarch, regcache, &info, field_type,
1657 value_contents_writeable (field));
1663 pass_on_stack (&info, arg_type, value_contents (arg));
1668 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1669 invisible reference. */
1671 /* Allocate aligned storage. */
1672 sp = align_down (sp - len, 16);
1674 /* Write the real data into the stack. */
1675 write_memory (sp, value_contents (arg), len);
1677 /* Construct the indirection. */
1678 arg_type = lookup_pointer_type (arg_type);
1679 arg = value_from_pointer (arg_type, sp);
1680 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1681 value_contents (arg));
1684 /* PCS C.15 / C.18 multiple values pass. */
1685 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1686 value_contents (arg));
1690 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1691 value_contents (arg));
1696 /* Make sure stack retains 16 byte alignment. */
1698 sp -= 16 - (info.nsaa & 15);
1700 while (!VEC_empty (stack_item_t, info.si))
1702 stack_item_t *si = VEC_last (stack_item_t, info.si);
1705 write_memory (sp, si->data, si->len);
1706 VEC_pop (stack_item_t, info.si);
1709 VEC_free (stack_item_t, info.si);
1711 /* Finally, update the SP register. */
1712 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1717 /* Implement the "frame_align" gdbarch method. */
1720 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1722 /* Align the stack to sixteen bytes. */
1723 return sp & ~(CORE_ADDR) 15;
1726 /* Return the type for an AdvSISD Q register. */
1728 static struct type *
1729 aarch64_vnq_type (struct gdbarch *gdbarch)
1731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1733 if (tdep->vnq_type == NULL)
1738 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1741 elem = builtin_type (gdbarch)->builtin_uint128;
1742 append_composite_type_field (t, "u", elem);
1744 elem = builtin_type (gdbarch)->builtin_int128;
1745 append_composite_type_field (t, "s", elem);
1750 return tdep->vnq_type;
1753 /* Return the type for an AdvSISD D register. */
1755 static struct type *
1756 aarch64_vnd_type (struct gdbarch *gdbarch)
1758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1760 if (tdep->vnd_type == NULL)
1765 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1768 elem = builtin_type (gdbarch)->builtin_double;
1769 append_composite_type_field (t, "f", elem);
1771 elem = builtin_type (gdbarch)->builtin_uint64;
1772 append_composite_type_field (t, "u", elem);
1774 elem = builtin_type (gdbarch)->builtin_int64;
1775 append_composite_type_field (t, "s", elem);
1780 return tdep->vnd_type;
1783 /* Return the type for an AdvSISD S register. */
1785 static struct type *
1786 aarch64_vns_type (struct gdbarch *gdbarch)
1788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1790 if (tdep->vns_type == NULL)
1795 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1798 elem = builtin_type (gdbarch)->builtin_float;
1799 append_composite_type_field (t, "f", elem);
1801 elem = builtin_type (gdbarch)->builtin_uint32;
1802 append_composite_type_field (t, "u", elem);
1804 elem = builtin_type (gdbarch)->builtin_int32;
1805 append_composite_type_field (t, "s", elem);
1810 return tdep->vns_type;
1813 /* Return the type for an AdvSISD H register. */
1815 static struct type *
1816 aarch64_vnh_type (struct gdbarch *gdbarch)
1818 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1820 if (tdep->vnh_type == NULL)
1825 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1828 elem = builtin_type (gdbarch)->builtin_uint16;
1829 append_composite_type_field (t, "u", elem);
1831 elem = builtin_type (gdbarch)->builtin_int16;
1832 append_composite_type_field (t, "s", elem);
1837 return tdep->vnh_type;
1840 /* Return the type for an AdvSISD B register. */
1842 static struct type *
1843 aarch64_vnb_type (struct gdbarch *gdbarch)
1845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1847 if (tdep->vnb_type == NULL)
1852 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1855 elem = builtin_type (gdbarch)->builtin_uint8;
1856 append_composite_type_field (t, "u", elem);
1858 elem = builtin_type (gdbarch)->builtin_int8;
1859 append_composite_type_field (t, "s", elem);
1864 return tdep->vnb_type;
1867 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1870 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1872 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1873 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1875 if (reg == AARCH64_DWARF_SP)
1876 return AARCH64_SP_REGNUM;
1878 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1879 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1885 /* Implement the "print_insn" gdbarch method. */
1888 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1890 info->symbols = NULL;
1891 return print_insn_aarch64 (memaddr, info);
1894 /* AArch64 BRK software debug mode instruction.
1895 Note that AArch64 code is always little-endian.
1896 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1897 static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1899 /* Implement the "breakpoint_from_pc" gdbarch method. */
1901 static const gdb_byte *
1902 aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1905 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1907 *lenptr = sizeof (aarch64_default_breakpoint);
1908 return aarch64_default_breakpoint;
1911 /* Extract from an array REGS containing the (raw) register state a
1912 function return value of type TYPE, and copy that, in virtual
1913 format, into VALBUF. */
1916 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1919 struct gdbarch *gdbarch = get_regcache_arch (regs);
1920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1922 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1924 bfd_byte buf[V_REGISTER_SIZE];
1925 int len = TYPE_LENGTH (type);
1927 regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
1928 memcpy (valbuf, buf, len);
1930 else if (TYPE_CODE (type) == TYPE_CODE_INT
1931 || TYPE_CODE (type) == TYPE_CODE_CHAR
1932 || TYPE_CODE (type) == TYPE_CODE_BOOL
1933 || TYPE_CODE (type) == TYPE_CODE_PTR
1934 || TYPE_CODE (type) == TYPE_CODE_REF
1935 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1937 /* If the the type is a plain integer, then the access is
1938 straight-forward. Otherwise we have to play around a bit
1940 int len = TYPE_LENGTH (type);
1941 int regno = AARCH64_X0_REGNUM;
1946 /* By using store_unsigned_integer we avoid having to do
1947 anything special for small big-endian values. */
1948 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1949 store_unsigned_integer (valbuf,
1950 (len > X_REGISTER_SIZE
1951 ? X_REGISTER_SIZE : len), byte_order, tmp);
1952 len -= X_REGISTER_SIZE;
1953 valbuf += X_REGISTER_SIZE;
1956 else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1958 int regno = AARCH64_V0_REGNUM;
1959 bfd_byte buf[V_REGISTER_SIZE];
1960 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1961 int len = TYPE_LENGTH (target_type);
1963 regcache_cooked_read (regs, regno, buf);
1964 memcpy (valbuf, buf, len);
1966 regcache_cooked_read (regs, regno + 1, buf);
1967 memcpy (valbuf, buf, len);
1970 else if (is_hfa (type))
1972 int elements = TYPE_NFIELDS (type);
1973 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1974 int len = TYPE_LENGTH (member_type);
1977 for (i = 0; i < elements; i++)
1979 int regno = AARCH64_V0_REGNUM + i;
1980 bfd_byte buf[X_REGISTER_SIZE];
1983 fprintf_unfiltered (gdb_stdlog,
1984 "read HFA return value element %d from %s\n",
1986 gdbarch_register_name (gdbarch, regno));
1987 regcache_cooked_read (regs, regno, buf);
1989 memcpy (valbuf, buf, len);
1995 /* For a structure or union the behaviour is as if the value had
1996 been stored to word-aligned memory and then loaded into
1997 registers with 64-bit load instruction(s). */
1998 int len = TYPE_LENGTH (type);
1999 int regno = AARCH64_X0_REGNUM;
2000 bfd_byte buf[X_REGISTER_SIZE];
2004 regcache_cooked_read (regs, regno++, buf);
2005 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2006 len -= X_REGISTER_SIZE;
2007 valbuf += X_REGISTER_SIZE;
2013 /* Will a function return an aggregate type in memory or in a
2014 register? Return 0 if an aggregate type can be returned in a
2015 register, 1 if it must be returned in memory. */
2018 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2021 enum type_code code;
2023 CHECK_TYPEDEF (type);
2025 /* In the AArch64 ABI, "integer" like aggregate types are returned
2026 in registers. For an aggregate type to be integer like, its size
2027 must be less than or equal to 4 * X_REGISTER_SIZE. */
2031 /* PCS B.5 If the argument is a Named HFA, then the argument is
2036 if (TYPE_LENGTH (type) > 16)
2038 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2039 invisible reference. */
2047 /* Write into appropriate registers a function return value of type
2048 TYPE, given in virtual format. */
2051 aarch64_store_return_value (struct type *type, struct regcache *regs,
2052 const gdb_byte *valbuf)
2054 struct gdbarch *gdbarch = get_regcache_arch (regs);
2055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2057 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2059 bfd_byte buf[V_REGISTER_SIZE];
2060 int len = TYPE_LENGTH (type);
2062 memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2063 regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
2065 else if (TYPE_CODE (type) == TYPE_CODE_INT
2066 || TYPE_CODE (type) == TYPE_CODE_CHAR
2067 || TYPE_CODE (type) == TYPE_CODE_BOOL
2068 || TYPE_CODE (type) == TYPE_CODE_PTR
2069 || TYPE_CODE (type) == TYPE_CODE_REF
2070 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2072 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2074 /* Values of one word or less are zero/sign-extended and
2076 bfd_byte tmpbuf[X_REGISTER_SIZE];
2077 LONGEST val = unpack_long (type, valbuf);
2079 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2080 regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf);
2084 /* Integral values greater than one word are stored in
2085 consecutive registers starting with r0. This will always
2086 be a multiple of the regiser size. */
2087 int len = TYPE_LENGTH (type);
2088 int regno = AARCH64_X0_REGNUM;
2092 regcache_cooked_write (regs, regno++, valbuf);
2093 len -= X_REGISTER_SIZE;
2094 valbuf += X_REGISTER_SIZE;
2098 else if (is_hfa (type))
2100 int elements = TYPE_NFIELDS (type);
2101 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2102 int len = TYPE_LENGTH (member_type);
2105 for (i = 0; i < elements; i++)
2107 int regno = AARCH64_V0_REGNUM + i;
2108 bfd_byte tmpbuf[MAX_REGISTER_SIZE];
2111 fprintf_unfiltered (gdb_stdlog,
2112 "write HFA return value element %d to %s\n",
2114 gdbarch_register_name (gdbarch, regno));
2116 memcpy (tmpbuf, valbuf, len);
2117 regcache_cooked_write (regs, regno, tmpbuf);
2123 /* For a structure or union the behaviour is as if the value had
2124 been stored to word-aligned memory and then loaded into
2125 registers with 64-bit load instruction(s). */
2126 int len = TYPE_LENGTH (type);
2127 int regno = AARCH64_X0_REGNUM;
2128 bfd_byte tmpbuf[X_REGISTER_SIZE];
2132 memcpy (tmpbuf, valbuf,
2133 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2134 regcache_cooked_write (regs, regno++, tmpbuf);
2135 len -= X_REGISTER_SIZE;
2136 valbuf += X_REGISTER_SIZE;
2141 /* Implement the "return_value" gdbarch method. */
2143 static enum return_value_convention
2144 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2145 struct type *valtype, struct regcache *regcache,
2146 gdb_byte *readbuf, const gdb_byte *writebuf)
2148 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2150 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2151 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2152 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2154 if (aarch64_return_in_memory (gdbarch, valtype))
2157 fprintf_unfiltered (gdb_stdlog, "return value in memory\n");
2158 return RETURN_VALUE_STRUCT_CONVENTION;
2163 aarch64_store_return_value (valtype, regcache, writebuf);
2166 aarch64_extract_return_value (valtype, regcache, readbuf);
2169 fprintf_unfiltered (gdb_stdlog, "return value in registers\n");
2171 return RETURN_VALUE_REGISTER_CONVENTION;
2174 /* Implement the "get_longjmp_target" gdbarch method. */
2177 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2180 gdb_byte buf[X_REGISTER_SIZE];
2181 struct gdbarch *gdbarch = get_frame_arch (frame);
2182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2185 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2187 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2191 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2196 /* Return the pseudo register name corresponding to register regnum. */
2199 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2201 static const char *const q_name[] =
2203 "q0", "q1", "q2", "q3",
2204 "q4", "q5", "q6", "q7",
2205 "q8", "q9", "q10", "q11",
2206 "q12", "q13", "q14", "q15",
2207 "q16", "q17", "q18", "q19",
2208 "q20", "q21", "q22", "q23",
2209 "q24", "q25", "q26", "q27",
2210 "q28", "q29", "q30", "q31",
2213 static const char *const d_name[] =
2215 "d0", "d1", "d2", "d3",
2216 "d4", "d5", "d6", "d7",
2217 "d8", "d9", "d10", "d11",
2218 "d12", "d13", "d14", "d15",
2219 "d16", "d17", "d18", "d19",
2220 "d20", "d21", "d22", "d23",
2221 "d24", "d25", "d26", "d27",
2222 "d28", "d29", "d30", "d31",
2225 static const char *const s_name[] =
2227 "s0", "s1", "s2", "s3",
2228 "s4", "s5", "s6", "s7",
2229 "s8", "s9", "s10", "s11",
2230 "s12", "s13", "s14", "s15",
2231 "s16", "s17", "s18", "s19",
2232 "s20", "s21", "s22", "s23",
2233 "s24", "s25", "s26", "s27",
2234 "s28", "s29", "s30", "s31",
2237 static const char *const h_name[] =
2239 "h0", "h1", "h2", "h3",
2240 "h4", "h5", "h6", "h7",
2241 "h8", "h9", "h10", "h11",
2242 "h12", "h13", "h14", "h15",
2243 "h16", "h17", "h18", "h19",
2244 "h20", "h21", "h22", "h23",
2245 "h24", "h25", "h26", "h27",
2246 "h28", "h29", "h30", "h31",
2249 static const char *const b_name[] =
2251 "b0", "b1", "b2", "b3",
2252 "b4", "b5", "b6", "b7",
2253 "b8", "b9", "b10", "b11",
2254 "b12", "b13", "b14", "b15",
2255 "b16", "b17", "b18", "b19",
2256 "b20", "b21", "b22", "b23",
2257 "b24", "b25", "b26", "b27",
2258 "b28", "b29", "b30", "b31",
2261 regnum -= gdbarch_num_regs (gdbarch);
2263 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2264 return q_name[regnum - AARCH64_Q0_REGNUM];
2266 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2267 return d_name[regnum - AARCH64_D0_REGNUM];
2269 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2270 return s_name[regnum - AARCH64_S0_REGNUM];
2272 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2273 return h_name[regnum - AARCH64_H0_REGNUM];
2275 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2276 return b_name[regnum - AARCH64_B0_REGNUM];
2278 internal_error (__FILE__, __LINE__,
2279 _("aarch64_pseudo_register_name: bad register number %d"),
2283 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2285 static struct type *
2286 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2288 regnum -= gdbarch_num_regs (gdbarch);
2290 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2291 return aarch64_vnq_type (gdbarch);
2293 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2294 return aarch64_vnd_type (gdbarch);
2296 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2297 return aarch64_vns_type (gdbarch);
2299 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2300 return aarch64_vnh_type (gdbarch);
2302 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2303 return aarch64_vnb_type (gdbarch);
2305 internal_error (__FILE__, __LINE__,
2306 _("aarch64_pseudo_register_type: bad register number %d"),
2310 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2313 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2314 struct reggroup *group)
2316 regnum -= gdbarch_num_regs (gdbarch);
2318 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2319 return group == all_reggroup || group == vector_reggroup;
2320 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2321 return (group == all_reggroup || group == vector_reggroup
2322 || group == float_reggroup);
2323 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2324 return (group == all_reggroup || group == vector_reggroup
2325 || group == float_reggroup);
2326 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2327 return group == all_reggroup || group == vector_reggroup;
2328 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2329 return group == all_reggroup || group == vector_reggroup;
2331 return group == all_reggroup;
2334 /* Implement the "pseudo_register_read_value" gdbarch method. */
2336 static struct value *
2337 aarch64_pseudo_read_value (struct gdbarch *gdbarch,
2338 struct regcache *regcache,
2341 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2342 struct value *result_value;
2345 result_value = allocate_value (register_type (gdbarch, regnum));
2346 VALUE_LVAL (result_value) = lval_register;
2347 VALUE_REGNUM (result_value) = regnum;
2348 buf = value_contents_raw (result_value);
2350 regnum -= gdbarch_num_regs (gdbarch);
2352 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2354 enum register_status status;
2357 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2358 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2359 if (status != REG_VALID)
2360 mark_value_bytes_unavailable (result_value, 0,
2361 TYPE_LENGTH (value_type (result_value)));
2363 memcpy (buf, reg_buf, Q_REGISTER_SIZE);
2364 return result_value;
2367 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2369 enum register_status status;
2372 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2373 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2374 if (status != REG_VALID)
2375 mark_value_bytes_unavailable (result_value, 0,
2376 TYPE_LENGTH (value_type (result_value)));
2378 memcpy (buf, reg_buf, D_REGISTER_SIZE);
2379 return result_value;
2382 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2384 enum register_status status;
2387 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2388 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2389 memcpy (buf, reg_buf, S_REGISTER_SIZE);
2390 return result_value;
2393 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2395 enum register_status status;
2398 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2399 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2400 if (status != REG_VALID)
2401 mark_value_bytes_unavailable (result_value, 0,
2402 TYPE_LENGTH (value_type (result_value)));
2404 memcpy (buf, reg_buf, H_REGISTER_SIZE);
2405 return result_value;
2408 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2410 enum register_status status;
2413 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2414 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2415 if (status != REG_VALID)
2416 mark_value_bytes_unavailable (result_value, 0,
2417 TYPE_LENGTH (value_type (result_value)));
2419 memcpy (buf, reg_buf, B_REGISTER_SIZE);
2420 return result_value;
2423 gdb_assert_not_reached ("regnum out of bound");
2426 /* Implement the "pseudo_register_write" gdbarch method. */
2429 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2430 int regnum, const gdb_byte *buf)
2432 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2434 /* Ensure the register buffer is zero, we want gdb writes of the
2435 various 'scalar' pseudo registers to behavior like architectural
2436 writes, register width bytes are written the remainder are set to
2438 memset (reg_buf, 0, sizeof (reg_buf));
2440 regnum -= gdbarch_num_regs (gdbarch);
2442 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2444 /* pseudo Q registers */
2447 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2448 memcpy (reg_buf, buf, Q_REGISTER_SIZE);
2449 regcache_raw_write (regcache, v_regnum, reg_buf);
2453 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2455 /* pseudo D registers */
2458 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2459 memcpy (reg_buf, buf, D_REGISTER_SIZE);
2460 regcache_raw_write (regcache, v_regnum, reg_buf);
2464 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2468 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2469 memcpy (reg_buf, buf, S_REGISTER_SIZE);
2470 regcache_raw_write (regcache, v_regnum, reg_buf);
2474 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2476 /* pseudo H registers */
2479 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2480 memcpy (reg_buf, buf, H_REGISTER_SIZE);
2481 regcache_raw_write (regcache, v_regnum, reg_buf);
2485 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2487 /* pseudo B registers */
2490 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2491 memcpy (reg_buf, buf, B_REGISTER_SIZE);
2492 regcache_raw_write (regcache, v_regnum, reg_buf);
2496 gdb_assert_not_reached ("regnum out of bound");
2499 /* Callback function for user_reg_add. */
2501 static struct value *
2502 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2504 const int *reg_p = baton;
2506 return value_of_register (*reg_p, frame);
2510 /* Implement the "software_single_step" gdbarch method, needed to
2511 single step through atomic sequences on AArch64. */
2514 aarch64_software_single_step (struct frame_info *frame)
2516 struct gdbarch *gdbarch = get_frame_arch (frame);
2517 struct address_space *aspace = get_frame_address_space (frame);
2518 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2519 const int insn_size = 4;
2520 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2521 CORE_ADDR pc = get_frame_pc (frame);
2522 CORE_ADDR breaks[2] = { -1, -1 };
2524 CORE_ADDR closing_insn = 0;
2525 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2526 byte_order_for_code);
2529 int bc_insn_count = 0; /* Conditional branch instruction count. */
2530 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2532 /* Look for a Load Exclusive instruction which begins the sequence. */
2533 if (!decode_masked_match (insn, 0x3fc00000, 0x08400000))
2536 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2542 insn = read_memory_unsigned_integer (loc, insn_size,
2543 byte_order_for_code);
2545 /* Check if the instruction is a conditional branch. */
2546 if (decode_bcond (loc, insn, &cond, &offset))
2548 if (bc_insn_count >= 1)
2551 /* It is, so we'll try to set a breakpoint at the destination. */
2552 breaks[1] = loc + offset;
2558 /* Look for the Store Exclusive which closes the atomic sequence. */
2559 if (decode_masked_match (insn, 0x3fc00000, 0x08000000))
2566 /* We didn't find a closing Store Exclusive instruction, fall back. */
2570 /* Insert breakpoint after the end of the atomic sequence. */
2571 breaks[0] = loc + insn_size;
2573 /* Check for duplicated breakpoints, and also check that the second
2574 breakpoint is not within the atomic sequence. */
2576 && (breaks[1] == breaks[0]
2577 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2578 last_breakpoint = 0;
2580 /* Insert the breakpoint at the end of the sequence, and one at the
2581 destination of the conditional branch, if it exists. */
2582 for (index = 0; index <= last_breakpoint; index++)
2583 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2588 /* Initialize the current architecture based on INFO. If possible,
2589 re-use an architecture from ARCHES, which is a list of
2590 architectures already created during this debugging session.
2592 Called e.g. at program startup, when reading a core file, and when
2593 reading a binary file. */
2595 static struct gdbarch *
2596 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2598 struct gdbarch_tdep *tdep;
2599 struct gdbarch *gdbarch;
2600 struct gdbarch_list *best_arch;
2601 struct tdesc_arch_data *tdesc_data = NULL;
2602 const struct target_desc *tdesc = info.target_desc;
2604 int have_fpa_registers = 1;
2606 const struct tdesc_feature *feature;
2608 int num_pseudo_regs = 0;
2610 /* Ensure we always have a target descriptor. */
2611 if (!tdesc_has_registers (tdesc))
2612 tdesc = tdesc_aarch64;
2616 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2618 if (feature == NULL)
2621 tdesc_data = tdesc_data_alloc ();
2623 /* Validate the descriptor provides the mandatory core R registers
2624 and allocate their numbers. */
2625 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2627 tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
2628 aarch64_r_register_names[i]);
2630 num_regs = AARCH64_X0_REGNUM + i;
2632 /* Look for the V registers. */
2633 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2636 /* Validate the descriptor provides the mandatory V registers
2637 and allocate their numbers. */
2638 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2640 tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
2641 aarch64_v_register_names[i]);
2643 num_regs = AARCH64_V0_REGNUM + i;
2645 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
2646 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
2647 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
2648 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
2649 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
2654 tdesc_data_cleanup (tdesc_data);
2658 /* AArch64 code is always little-endian. */
2659 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
2661 /* If there is already a candidate, use it. */
2662 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2664 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2666 /* Found a match. */
2670 if (best_arch != NULL)
2672 if (tdesc_data != NULL)
2673 tdesc_data_cleanup (tdesc_data);
2674 return best_arch->gdbarch;
2677 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2678 gdbarch = gdbarch_alloc (&info, tdep);
2680 /* This should be low enough for everything. */
2681 tdep->lowest_pc = 0x20;
2682 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2683 tdep->jb_elt_size = 8;
2685 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
2686 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
2688 /* Frame handling. */
2689 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
2690 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
2691 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
2693 /* Advance PC across function entry code. */
2694 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
2696 /* The stack grows downward. */
2697 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2699 /* Breakpoint manipulation. */
2700 set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc);
2701 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2702 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2703 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
2705 /* Information about registers, etc. */
2706 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
2707 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
2708 set_gdbarch_num_regs (gdbarch, num_regs);
2710 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
2711 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
2712 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
2713 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
2714 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
2715 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2716 aarch64_pseudo_register_reggroup_p);
2719 set_gdbarch_short_bit (gdbarch, 16);
2720 set_gdbarch_int_bit (gdbarch, 32);
2721 set_gdbarch_float_bit (gdbarch, 32);
2722 set_gdbarch_double_bit (gdbarch, 64);
2723 set_gdbarch_long_double_bit (gdbarch, 128);
2724 set_gdbarch_long_bit (gdbarch, 64);
2725 set_gdbarch_long_long_bit (gdbarch, 64);
2726 set_gdbarch_ptr_bit (gdbarch, 64);
2727 set_gdbarch_char_signed (gdbarch, 0);
2728 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2729 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2730 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2732 /* Internal <-> external register number maps. */
2733 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
2735 /* Returning results. */
2736 set_gdbarch_return_value (gdbarch, aarch64_return_value);
2739 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
2741 /* Virtual tables. */
2742 set_gdbarch_vbit_in_delta (gdbarch, 1);
2744 /* Hook in the ABI-specific overrides, if they have been registered. */
2745 info.target_desc = tdesc;
2746 info.tdep_info = (void *) tdesc_data;
2747 gdbarch_init_osabi (info, gdbarch);
2749 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
2751 /* Add some default predicates. */
2752 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
2753 dwarf2_append_unwinders (gdbarch);
2754 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
2756 frame_base_set_default (gdbarch, &aarch64_normal_base);
2758 /* Now we have tuned the configuration, set a few final things,
2759 based on what the OS ABI has told us. */
2761 if (tdep->jb_pc >= 0)
2762 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
2764 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2766 /* Add standard register aliases. */
2767 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
2768 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
2769 value_of_aarch64_user_reg,
2770 &aarch64_register_aliases[i].regnum);
2776 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2778 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
2784 paddress (gdbarch, tdep->lowest_pc));
2787 /* Suppress warning from -Wmissing-prototypes. */
2788 extern initialize_file_ftype _initialize_aarch64_tdep;
2791 _initialize_aarch64_tdep (void)
2793 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
2796 initialize_tdesc_aarch64 ();
2798 /* Debug this file's internals. */
2799 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
2800 Set AArch64 debugging."), _("\
2801 Show AArch64 debugging."), _("\
2802 When on, AArch64 specific debugging is enabled."),
2805 &setdebuglist, &showdebuglist);