1 /* Native-dependent code for GNU/Linux AArch64.
3 Copyright (C) 2011-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
34 #include "elf/external.h"
35 #include "elf/common.h"
37 #include <sys/ptrace.h>
38 #include <sys/utsname.h>
39 #include <asm/ptrace.h>
43 /* Defines ps_err_e, struct ps_prochandle. */
44 #include "gdb_proc_service.h"
47 #define TRAP_HWBKPT 0x0004
50 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
51 case we may be tracing more than one process at a time. In that
52 case, inferior_ptid will contain the main process ID and the
53 individual thread (process) ID. get_thread_id () is used to get
54 the thread id if it's available, and the process id otherwise. */
57 get_thread_id (ptid_t ptid)
59 int tid = ptid_get_lwp (ptid);
62 tid = ptid_get_pid (ptid);
66 /* Macro definitions, data structures, and code for the hardware
67 breakpoint and hardware watchpoint support follow. We use the
68 following abbreviations throughout the code:
74 /* Maximum number of hardware breakpoint and watchpoint registers.
75 Neither of these values may exceed the width of dr_changed_t
78 #define AARCH64_HBP_MAX_NUM 16
79 #define AARCH64_HWP_MAX_NUM 16
81 /* Alignment requirement in bytes for addresses written to
82 hardware breakpoint and watchpoint value registers.
84 A ptrace call attempting to set an address that does not meet the
85 alignment criteria will fail. Limited support has been provided in
86 this port for unaligned watchpoints, such that from a GDB user
87 perspective, an unaligned watchpoint may be requested.
89 This is achieved by minimally enlarging the watched area to meet the
90 alignment requirement, and if necessary, splitting the watchpoint
91 over several hardware watchpoint registers. */
93 #define AARCH64_HBP_ALIGNMENT 4
94 #define AARCH64_HWP_ALIGNMENT 8
96 /* The maximum length of a memory region that can be watched by one
97 hardware watchpoint register. */
99 #define AARCH64_HWP_MAX_LEN_PER_REG 8
101 /* ptrace hardware breakpoint resource info is formatted as follows:
104 +---------------+--------------+---------------+---------------+
105 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
106 +---------------+--------------+---------------+---------------+ */
109 /* Macros to extract fields from the hardware debug information word. */
110 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
111 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
113 /* Macro for the expected version of the ARMv8-A debug architecture. */
114 #define AARCH64_DEBUG_ARCH_V8 0x6
116 /* Number of hardware breakpoints/watchpoints the target supports.
117 They are initialized with values obtained via the ptrace calls
118 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
120 static int aarch64_num_bp_regs;
121 static int aarch64_num_wp_regs;
123 /* Each bit of a variable of this type is used to indicate whether a
124 hardware breakpoint or watchpoint setting has been changed since
127 Bit N corresponds to the Nth hardware breakpoint or watchpoint
128 setting which is managed in aarch64_debug_reg_state, where N is
129 valid between 0 and the total number of the hardware breakpoint or
130 watchpoint debug registers minus 1.
132 When bit N is 1, the corresponding breakpoint or watchpoint setting
133 has changed, and therefore the corresponding hardware debug
134 register needs to be updated via the ptrace interface.
136 In the per-thread arch-specific data area, we define two such
137 variables for per-thread hardware breakpoint and watchpoint
138 settings respectively.
140 This type is part of the mechanism which helps reduce the number of
141 ptrace calls to the kernel, i.e. avoid asking the kernel to write
142 to the debug registers with unchanged values. */
144 typedef ULONGEST dr_changed_t;
146 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
148 #define DR_MARK_ALL_CHANGED(x, m) \
151 gdb_assert (sizeof ((x)) * 8 >= (m)); \
152 (x) = (((dr_changed_t)1 << (m)) - 1); \
155 #define DR_MARK_N_CHANGED(x, n) \
158 (x) |= ((dr_changed_t)1 << (n)); \
161 #define DR_CLEAR_CHANGED(x) \
167 #define DR_HAS_CHANGED(x) ((x) != 0)
168 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
170 /* Structure for managing the hardware breakpoint/watchpoint resources.
171 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
172 content, and DR_REF_COUNT_* counts the numbers of references to the
173 corresponding bp/wp, by which way the limited hardware resources
174 are not wasted on duplicated bp/wp settings (though so far gdb has
175 done a good job by not sending duplicated bp/wp requests). */
177 struct aarch64_debug_reg_state
179 /* hardware breakpoint */
180 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
181 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
182 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
184 /* hardware watchpoint */
185 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
186 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
187 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
190 /* Per-process data. We don't bind this to a per-inferior registry
191 because of targets like x86 GNU/Linux that need to keep track of
192 processes that aren't bound to any inferior (e.g., fork children,
195 struct aarch64_process_info
198 struct aarch64_process_info *next;
200 /* The process identifier. */
203 /* Copy of aarch64 hardware debug registers. */
204 struct aarch64_debug_reg_state state;
207 static struct aarch64_process_info *aarch64_process_list = NULL;
209 /* Find process data for process PID. */
211 static struct aarch64_process_info *
212 aarch64_find_process_pid (pid_t pid)
214 struct aarch64_process_info *proc;
216 for (proc = aarch64_process_list; proc; proc = proc->next)
217 if (proc->pid == pid)
223 /* Add process data for process PID. Returns newly allocated info
226 static struct aarch64_process_info *
227 aarch64_add_process (pid_t pid)
229 struct aarch64_process_info *proc;
231 proc = xcalloc (1, sizeof (*proc));
234 proc->next = aarch64_process_list;
235 aarch64_process_list = proc;
240 /* Get data specific info for process PID, creating it if necessary.
241 Never returns NULL. */
243 static struct aarch64_process_info *
244 aarch64_process_info_get (pid_t pid)
246 struct aarch64_process_info *proc;
248 proc = aarch64_find_process_pid (pid);
250 proc = aarch64_add_process (pid);
255 /* Called whenever GDB is no longer debugging process PID. It deletes
256 data structures that keep track of debug register state. */
259 aarch64_forget_process (pid_t pid)
261 struct aarch64_process_info *proc, **proc_link;
263 proc = aarch64_process_list;
264 proc_link = &aarch64_process_list;
268 if (proc->pid == pid)
270 *proc_link = proc->next;
276 proc_link = &proc->next;
281 /* Get debug registers state for process PID. */
283 static struct aarch64_debug_reg_state *
284 aarch64_get_debug_reg_state (pid_t pid)
286 return &aarch64_process_info_get (pid)->state;
289 /* Per-thread arch-specific data we want to keep. */
293 /* When bit N is 1, it indicates the Nth hardware breakpoint or
294 watchpoint register pair needs to be updated when the thread is
295 resumed; see aarch64_linux_prepare_to_resume. */
296 dr_changed_t dr_changed_bp;
297 dr_changed_t dr_changed_wp;
300 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
301 registers with data from *STATE. */
304 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
305 int tid, int watchpoint)
309 struct user_hwdebug_state regs;
310 const CORE_ADDR *addr;
311 const unsigned int *ctrl;
313 memset (®s, 0, sizeof (regs));
314 iov.iov_base = ®s;
315 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
316 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
317 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
320 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
321 + sizeof (regs.dbg_regs [count - 1]));
323 for (i = 0; i < count; i++)
325 regs.dbg_regs[i].addr = addr[i];
326 regs.dbg_regs[i].ctrl = ctrl[i];
329 if (ptrace (PTRACE_SETREGSET, tid,
330 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
332 error (_("Unexpected error setting hardware debug registers"));
335 struct aarch64_dr_update_callback_param
341 /* Callback for iterate_over_lwps. Records the
342 information about the change of one hardware breakpoint/watchpoint
343 setting for the thread LWP.
344 The information is passed in via PTR.
345 N.B. The actual updating of hardware debug registers is not
346 carried out until the moment the thread is resumed. */
349 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
351 struct aarch64_dr_update_callback_param *param_p
352 = (struct aarch64_dr_update_callback_param *) ptr;
353 int pid = get_thread_id (lwp->ptid);
354 int idx = param_p->idx;
355 int is_watchpoint = param_p->is_watchpoint;
356 struct arch_lwp_info *info = lwp->arch_private;
357 dr_changed_t *dr_changed_ptr;
358 dr_changed_t dr_changed;
361 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
365 fprintf_unfiltered (gdb_stdlog,
366 "debug_reg_change_callback: \n\tOn entry:\n");
367 fprintf_unfiltered (gdb_stdlog,
368 "\tpid%d, dr_changed_bp=0x%s, "
369 "dr_changed_wp=0x%s\n",
370 pid, phex (info->dr_changed_bp, 8),
371 phex (info->dr_changed_wp, 8));
374 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
375 : &info->dr_changed_bp;
376 dr_changed = *dr_changed_ptr;
379 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
380 : aarch64_num_bp_regs)));
382 /* The actual update is done later just before resuming the lwp,
383 we just mark that one register pair needs updating. */
384 DR_MARK_N_CHANGED (dr_changed, idx);
385 *dr_changed_ptr = dr_changed;
387 /* If the lwp isn't stopped, force it to momentarily pause, so
388 we can update its debug registers. */
390 linux_stop_lwp (lwp);
394 fprintf_unfiltered (gdb_stdlog,
395 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
396 "dr_changed_wp=0x%s\n",
397 pid, phex (info->dr_changed_bp, 8),
398 phex (info->dr_changed_wp, 8));
401 /* Continue the iteration. */
405 /* Notify each thread that their IDXth breakpoint/watchpoint register
406 pair needs to be updated. The message will be recorded in each
407 thread's arch-specific data area, the actual updating will be done
408 when the thread is resumed. */
411 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
412 int is_watchpoint, unsigned int idx)
414 struct aarch64_dr_update_callback_param param;
415 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
417 param.is_watchpoint = is_watchpoint;
420 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) ¶m);
423 /* Print the values of the cached breakpoint/watchpoint registers. */
426 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
427 const char *func, CORE_ADDR addr,
432 fprintf_unfiltered (gdb_stdlog, "%s", func);
434 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
435 (unsigned long) addr, len,
436 type == hw_write ? "hw-write-watchpoint"
437 : (type == hw_read ? "hw-read-watchpoint"
438 : (type == hw_access ? "hw-access-watchpoint"
439 : (type == hw_execute ? "hw-breakpoint"
441 fprintf_unfiltered (gdb_stdlog, ":\n");
443 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
444 for (i = 0; i < aarch64_num_bp_regs; i++)
445 fprintf_unfiltered (gdb_stdlog,
446 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
447 i, state->dr_addr_bp[i],
448 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
450 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
451 for (i = 0; i < aarch64_num_wp_regs; i++)
452 fprintf_unfiltered (gdb_stdlog,
453 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
454 i, state->dr_addr_wp[i],
455 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
458 /* Fill GDB's register array with the general-purpose register values
459 from the current thread. */
462 fetch_gregs_from_thread (struct regcache *regcache)
465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
469 /* Make sure REGS can hold all registers contents on both aarch64
471 gdb_static_assert (sizeof (regs) >= 18 * 4);
473 tid = get_thread_id (inferior_ptid);
475 iovec.iov_base = ®s;
476 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
477 iovec.iov_len = 18 * 4;
479 iovec.iov_len = sizeof (regs);
481 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
483 perror_with_name (_("Unable to fetch general registers."));
485 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
486 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
491 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
492 regcache_raw_supply (regcache, regno, ®s[regno - AARCH64_X0_REGNUM]);
496 /* Store to the current thread the valid general-purpose register
497 values in the GDB's register array. */
500 store_gregs_to_thread (const struct regcache *regcache)
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 /* Make sure REGS can hold all registers contents on both aarch64
509 gdb_static_assert (sizeof (regs) >= 18 * 4);
510 tid = get_thread_id (inferior_ptid);
512 iovec.iov_base = ®s;
513 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
514 iovec.iov_len = 18 * 4;
516 iovec.iov_len = sizeof (regs);
518 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
520 perror_with_name (_("Unable to fetch general registers."));
522 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
523 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
528 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
529 if (REG_VALID == regcache_register_status (regcache, regno))
530 regcache_raw_collect (regcache, regno,
531 ®s[regno - AARCH64_X0_REGNUM]);
534 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
536 perror_with_name (_("Unable to store general registers."));
539 /* Fill GDB's register array with the fp/simd register values
540 from the current thread. */
543 fetch_fpregs_from_thread (struct regcache *regcache)
548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
550 /* Make sure REGS can hold all VFP registers contents on both aarch64
552 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
554 tid = get_thread_id (inferior_ptid);
556 iovec.iov_base = ®s;
558 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
560 iovec.iov_len = VFP_REGS_SIZE;
562 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
564 perror_with_name (_("Unable to fetch VFP registers."));
566 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) ®s, 32);
572 iovec.iov_len = sizeof (regs);
574 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
576 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
578 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
579 regcache_raw_supply (regcache, regno,
580 ®s.vregs[regno - AARCH64_V0_REGNUM]);
582 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, ®s.fpsr);
583 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, ®s.fpcr);
587 /* Store to the current thread the valid fp/simd register
588 values in the GDB's register array. */
591 store_fpregs_to_thread (const struct regcache *regcache)
596 struct gdbarch *gdbarch = get_regcache_arch (regcache);
598 /* Make sure REGS can hold all VFP registers contents on both aarch64
600 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
601 tid = get_thread_id (inferior_ptid);
603 iovec.iov_base = ®s;
605 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
607 iovec.iov_len = VFP_REGS_SIZE;
609 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
611 perror_with_name (_("Unable to fetch VFP registers."));
613 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) ®s, 32);
619 iovec.iov_len = sizeof (regs);
621 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
623 perror_with_name (_("Unable to fetch FP/SIMD registers."));
625 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
626 if (REG_VALID == regcache_register_status (regcache, regno))
627 regcache_raw_collect (regcache, regno,
628 (char *) ®s.vregs[regno - AARCH64_V0_REGNUM]);
630 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
631 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
632 (char *) ®s.fpsr);
633 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
634 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
635 (char *) ®s.fpcr);
638 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
640 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
642 perror_with_name (_("Unable to store VFP registers."));
646 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
648 perror_with_name (_("Unable to store FP/SIMD registers."));
652 /* Implement the "to_fetch_register" target_ops method. */
655 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
656 struct regcache *regcache,
661 fetch_gregs_from_thread (regcache);
662 fetch_fpregs_from_thread (regcache);
664 else if (regno < AARCH64_V0_REGNUM)
665 fetch_gregs_from_thread (regcache);
667 fetch_fpregs_from_thread (regcache);
670 /* Implement the "to_store_register" target_ops method. */
673 aarch64_linux_store_inferior_registers (struct target_ops *ops,
674 struct regcache *regcache,
679 store_gregs_to_thread (regcache);
680 store_fpregs_to_thread (regcache);
682 else if (regno < AARCH64_V0_REGNUM)
683 store_gregs_to_thread (regcache);
685 store_fpregs_to_thread (regcache);
688 /* Fill register REGNO (if it is a general-purpose register) in
689 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
690 do this for all registers. */
693 fill_gregset (const struct regcache *regcache,
694 gdb_gregset_t *gregsetp, int regno)
696 regcache_collect_regset (&aarch64_linux_gregset, regcache,
697 regno, (gdb_byte *) gregsetp,
698 AARCH64_LINUX_SIZEOF_GREGSET);
701 /* Fill GDB's register array with the general-purpose register values
705 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
707 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
708 (const gdb_byte *) gregsetp,
709 AARCH64_LINUX_SIZEOF_GREGSET);
712 /* Fill register REGNO (if it is a floating-point register) in
713 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
714 do this for all registers. */
717 fill_fpregset (const struct regcache *regcache,
718 gdb_fpregset_t *fpregsetp, int regno)
720 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
721 regno, (gdb_byte *) fpregsetp,
722 AARCH64_LINUX_SIZEOF_FPREGSET);
725 /* Fill GDB's register array with the floating-point register values
729 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
731 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
732 (const gdb_byte *) fpregsetp,
733 AARCH64_LINUX_SIZEOF_FPREGSET);
736 /* Called when resuming a thread.
737 The hardware debug registers are updated when there is any change. */
740 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
742 struct arch_lwp_info *info = lwp->arch_private;
744 /* NULL means this is the main thread still going through the shell,
745 or, no watchpoint has been set yet. In that case, there's
750 if (DR_HAS_CHANGED (info->dr_changed_bp)
751 || DR_HAS_CHANGED (info->dr_changed_wp))
753 int tid = ptid_get_lwp (lwp->ptid);
754 struct aarch64_debug_reg_state *state
755 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
758 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
761 if (DR_HAS_CHANGED (info->dr_changed_wp))
763 aarch64_linux_set_debug_regs (state, tid, 1);
764 DR_CLEAR_CHANGED (info->dr_changed_wp);
768 if (DR_HAS_CHANGED (info->dr_changed_bp))
770 aarch64_linux_set_debug_regs (state, tid, 0);
771 DR_CLEAR_CHANGED (info->dr_changed_bp);
777 aarch64_linux_new_thread (struct lwp_info *lp)
779 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
781 /* Mark that all the hardware breakpoint/watchpoint register pairs
782 for this thread need to be initialized. */
783 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
784 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
786 lp->arch_private = info;
789 /* linux_nat_new_fork hook. */
792 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
795 struct aarch64_debug_reg_state *parent_state;
796 struct aarch64_debug_reg_state *child_state;
798 /* NULL means no watchpoint has ever been set in the parent. In
799 that case, there's nothing to do. */
800 if (parent->arch_private == NULL)
803 /* GDB core assumes the child inherits the watchpoints/hw
804 breakpoints of the parent, and will remove them all from the
805 forked off process. Copy the debug registers mirrors into the
806 new process so that all breakpoints and watchpoints can be
809 parent_pid = ptid_get_pid (parent->ptid);
810 parent_state = aarch64_get_debug_reg_state (parent_pid);
811 child_state = aarch64_get_debug_reg_state (child_pid);
812 *child_state = *parent_state;
816 /* Called by libthread_db. Returns a pointer to the thread local
817 storage (or its descriptor). */
820 ps_get_thread_area (const struct ps_prochandle *ph,
821 lwpid_t lwpid, int idx, void **base)
826 iovec.iov_base = ®
827 iovec.iov_len = sizeof (reg);
829 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
832 /* IDX is the bias from the thread pointer to the beginning of the
833 thread descriptor. It has to be subtracted due to implementation
834 quirks in libthread_db. */
835 *base = (void *) (reg - idx);
841 /* Get the hardware debug register capacity information from the
842 inferior represented by PTID. */
845 aarch64_linux_get_debug_reg_capacity (ptid_t ptid)
849 struct user_hwdebug_state dreg_state;
851 tid = get_thread_id (ptid);
852 iov.iov_base = &dreg_state;
853 iov.iov_len = sizeof (dreg_state);
855 /* Get hardware watchpoint register info. */
856 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
857 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
859 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
860 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
862 warning (_("Unexpected number of hardware watchpoint registers"
863 " reported by ptrace, got %d, expected %d."),
864 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
865 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
870 warning (_("Unable to determine the number of hardware watchpoints"
872 aarch64_num_wp_regs = 0;
875 /* Get hardware breakpoint register info. */
876 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
877 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
879 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
880 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
882 warning (_("Unexpected number of hardware breakpoint registers"
883 " reported by ptrace, got %d, expected %d."),
884 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
885 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
890 warning (_("Unable to determine the number of hardware breakpoints"
892 aarch64_num_bp_regs = 0;
896 static void (*super_post_startup_inferior) (struct target_ops *self,
899 /* Implement the "to_post_startup_inferior" target_ops method. */
902 aarch64_linux_child_post_startup_inferior (struct target_ops *self,
905 aarch64_forget_process (ptid_get_pid (ptid));
906 aarch64_linux_get_debug_reg_capacity (ptid);
907 super_post_startup_inferior (self, ptid);
910 extern struct target_desc *tdesc_arm_with_vfpv3;
911 extern struct target_desc *tdesc_arm_with_neon;
913 /* Implement the "to_read_description" target_ops method. */
915 static const struct target_desc *
916 aarch64_linux_read_description (struct target_ops *ops)
920 if (target_auxv_search (ops, AT_PHENT, &at_phent) == 1)
922 if (at_phent == sizeof (Elf64_External_Phdr))
923 return tdesc_aarch64;
926 CORE_ADDR arm_hwcap = 0;
928 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
929 return ops->beneath->to_read_description (ops->beneath);
931 #ifndef COMPAT_HWCAP_VFP
932 #define COMPAT_HWCAP_VFP (1 << 6)
934 #ifndef COMPAT_HWCAP_NEON
935 #define COMPAT_HWCAP_NEON (1 << 12)
937 #ifndef COMPAT_HWCAP_VFPv3
938 #define COMPAT_HWCAP_VFPv3 (1 << 13)
941 if (arm_hwcap & COMPAT_HWCAP_VFP)
944 const struct target_desc *result = NULL;
946 if (arm_hwcap & COMPAT_HWCAP_NEON)
947 result = tdesc_arm_with_neon;
948 else if (arm_hwcap & COMPAT_HWCAP_VFPv3)
949 result = tdesc_arm_with_vfpv3;
958 return tdesc_aarch64;
961 /* Given the (potentially unaligned) watchpoint address in ADDR and
962 length in LEN, return the aligned address and aligned length in
963 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
964 aligned address and length will be valid values to write to the
965 hardware watchpoint value and control registers.
967 The given watchpoint may get truncated if more than one hardware
968 register is needed to cover the watched region. *NEXT_ADDR_P
969 and *NEXT_LEN_P, if non-NULL, will return the address and length
970 of the remaining part of the watchpoint (which can be processed
971 by calling this routine again to generate another aligned address
974 See the comment above the function of the same name in
975 gdbserver/linux-aarch64-low.c for more information. */
978 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
979 int *aligned_len_p, CORE_ADDR *next_addr_p,
984 CORE_ADDR aligned_addr;
985 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
986 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
988 /* As assumed by the algorithm. */
989 gdb_assert (alignment == max_wp_len);
994 /* Address to be put into the hardware watchpoint value register
996 offset = addr & (alignment - 1);
997 aligned_addr = addr - offset;
999 gdb_assert (offset >= 0 && offset < alignment);
1000 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
1001 gdb_assert (offset + len > 0);
1003 if (offset + len >= max_wp_len)
1005 /* Need more than one watchpoint registers; truncate it at the
1006 alignment boundary. */
1007 aligned_len = max_wp_len;
1008 len -= (max_wp_len - offset);
1009 addr += (max_wp_len - offset);
1010 gdb_assert ((addr & (alignment - 1)) == 0);
1014 /* Find the smallest valid length that is large enough to
1015 accommodate this watchpoint. */
1016 static const unsigned char
1017 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
1018 { 1, 2, 4, 4, 8, 8, 8, 8 };
1020 aligned_len = aligned_len_array[offset + len - 1];
1026 *aligned_addr_p = aligned_addr;
1028 *aligned_len_p = aligned_len;
1030 *next_addr_p = addr;
1035 /* Returns the number of hardware watchpoints of type TYPE that we can
1036 set. Value is positive if we can set CNT watchpoints, zero if
1037 setting watchpoints of type TYPE is not supported, and negative if
1038 CNT is more than the maximum number of watchpoints of type TYPE
1039 that we can support. TYPE is one of bp_hardware_watchpoint,
1040 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1041 CNT is the number of such watchpoints used so far (including this
1042 one). OTHERTYPE is non-zero if other types of watchpoints are
1045 We always return 1 here because we don't have enough information
1046 about possible overlap of addresses that they want to watch. As an
1047 extreme example, consider the case where all the watchpoints watch
1048 the same address and the same region length: then we can handle a
1049 virtually unlimited number of watchpoints, due to debug register
1050 sharing implemented via reference counts. */
1053 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
1054 int type, int cnt, int othertype)
1059 /* ptrace expects control registers to be formatted as follows:
1062 +--------------------------------+----------+------+------+----+
1063 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
1064 +--------------------------------+----------+------+------+----+
1066 The TYPE field is ignored for breakpoints. */
1068 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
1069 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
1071 /* Utility function that returns the length in bytes of a watchpoint
1072 according to the content of a hardware debug control register CTRL.
1073 Note that the kernel currently only supports the following Byte
1074 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
1075 that for a hardware watchpoint, its valid length can only be 1
1076 byte, 2 bytes, 4 bytes or 8 bytes. */
1078 static inline unsigned int
1079 aarch64_watchpoint_length (unsigned int ctrl)
1081 switch (DR_CONTROL_LENGTH (ctrl))
1096 /* Given the hardware breakpoint or watchpoint type TYPE and its
1097 length LEN, return the expected encoding for a hardware
1098 breakpoint/watchpoint control register. */
1101 aarch64_point_encode_ctrl_reg (int type, int len)
1103 unsigned int ctrl, ttype;
1121 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1125 /* length bitmask */
1126 ctrl |= ((1 << len) - 1) << 5;
1127 /* enabled at el0 */
1128 ctrl |= (2 << 1) | 1;
1133 /* Addresses to be written to the hardware breakpoint and watchpoint
1134 value registers need to be aligned; the alignment is 4-byte and
1135 8-type respectively. Linux kernel rejects any non-aligned address
1136 it receives from the related ptrace call. Furthermore, the kernel
1137 currently only supports the following Byte Address Select (BAS)
1138 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1139 watchpoint to be accepted by the kernel (via ptrace call), its
1140 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1141 Despite these limitations, the unaligned watchpoint is supported in
1144 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1147 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1149 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1150 : AARCH64_HBP_ALIGNMENT;
1152 if (addr & (alignment - 1))
1155 if (len != 8 && len != 4 && len != 2 && len != 1)
1161 /* Record the insertion of one breakpoint/watchpoint, as represented
1162 by ADDR and CTRL, in the cached debug register state area *STATE. */
1165 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1166 int type, CORE_ADDR addr, int len)
1168 int i, idx, num_regs, is_watchpoint;
1169 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1170 CORE_ADDR *dr_addr_p;
1172 /* Set up state pointers. */
1173 is_watchpoint = (type != hw_execute);
1174 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1177 num_regs = aarch64_num_wp_regs;
1178 dr_addr_p = state->dr_addr_wp;
1179 dr_ctrl_p = state->dr_ctrl_wp;
1180 dr_ref_count = state->dr_ref_count_wp;
1184 num_regs = aarch64_num_bp_regs;
1185 dr_addr_p = state->dr_addr_bp;
1186 dr_ctrl_p = state->dr_ctrl_bp;
1187 dr_ref_count = state->dr_ref_count_bp;
1190 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1192 /* Find an existing or free register in our cache. */
1194 for (i = 0; i < num_regs; ++i)
1196 if ((dr_ctrl_p[i] & 1) == 0)
1198 gdb_assert (dr_ref_count[i] == 0);
1200 /* no break; continue hunting for an existing one. */
1202 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1204 gdb_assert (dr_ref_count[i] != 0);
1214 /* Update our cache. */
1215 if ((dr_ctrl_p[idx] & 1) == 0)
1218 dr_addr_p[idx] = addr;
1219 dr_ctrl_p[idx] = ctrl;
1220 dr_ref_count[idx] = 1;
1221 /* Notify the change. */
1222 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1226 /* existing entry */
1227 dr_ref_count[idx]++;
1233 /* Record the removal of one breakpoint/watchpoint, as represented by
1234 ADDR and CTRL, in the cached debug register state area *STATE. */
1237 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1238 int type, CORE_ADDR addr, int len)
1240 int i, num_regs, is_watchpoint;
1241 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1242 CORE_ADDR *dr_addr_p;
1244 /* Set up state pointers. */
1245 is_watchpoint = (type != hw_execute);
1246 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1249 num_regs = aarch64_num_wp_regs;
1250 dr_addr_p = state->dr_addr_wp;
1251 dr_ctrl_p = state->dr_ctrl_wp;
1252 dr_ref_count = state->dr_ref_count_wp;
1256 num_regs = aarch64_num_bp_regs;
1257 dr_addr_p = state->dr_addr_bp;
1258 dr_ctrl_p = state->dr_ctrl_bp;
1259 dr_ref_count = state->dr_ref_count_bp;
1262 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1264 /* Find the entry that matches the ADDR and CTRL. */
1265 for (i = 0; i < num_regs; ++i)
1266 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1268 gdb_assert (dr_ref_count[i] != 0);
1276 /* Clear our cache. */
1277 if (--dr_ref_count[i] == 0)
1279 /* Clear the enable bit. */
1282 dr_ctrl_p[i] = ctrl;
1283 /* Notify the change. */
1284 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1290 /* Implement insertion and removal of a single breakpoint. */
1293 aarch64_handle_breakpoint (int type, CORE_ADDR addr, int len, int is_insert)
1295 struct aarch64_debug_reg_state *state;
1297 /* The hardware breakpoint on AArch64 should always be 4-byte
1299 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1302 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1305 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1307 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1310 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
1311 Return 0 on success, -1 on failure. */
1314 aarch64_linux_insert_hw_breakpoint (struct target_ops *self,
1315 struct gdbarch *gdbarch,
1316 struct bp_target_info *bp_tgt)
1319 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
1321 const int type = hw_execute;
1323 if (show_debug_regs)
1326 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1327 (unsigned long) addr, len);
1329 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1331 if (show_debug_regs)
1333 struct aarch64_debug_reg_state *state
1334 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1336 aarch64_show_debug_reg_state (state,
1337 "insert_hw_breakpoint", addr, len, type);
1343 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1344 Return 0 on success, -1 on failure. */
1347 aarch64_linux_remove_hw_breakpoint (struct target_ops *self,
1348 struct gdbarch *gdbarch,
1349 struct bp_target_info *bp_tgt)
1352 CORE_ADDR addr = bp_tgt->placed_address;
1354 const int type = hw_execute;
1356 if (show_debug_regs)
1358 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1359 (unsigned long) addr, len);
1361 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1363 if (show_debug_regs)
1365 struct aarch64_debug_reg_state *state
1366 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1368 aarch64_show_debug_reg_state (state,
1369 "remove_hw_watchpoint", addr, len, type);
1375 /* This is essentially the same as aarch64_handle_breakpoint, apart
1376 from that it is an aligned watchpoint to be handled. */
1379 aarch64_handle_aligned_watchpoint (int type, CORE_ADDR addr, int len,
1382 struct aarch64_debug_reg_state *state
1383 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1386 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1388 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1391 /* Insert/remove unaligned watchpoint by calling
1392 aarch64_align_watchpoint repeatedly until the whole watched region,
1393 as represented by ADDR and LEN, has been properly aligned and ready
1394 to be written to one or more hardware watchpoint registers.
1395 IS_INSERT indicates whether this is an insertion or a deletion.
1396 Return 0 if succeed. */
1399 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1402 struct aarch64_debug_reg_state *state
1403 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1407 CORE_ADDR aligned_addr;
1408 int aligned_len, ret;
1410 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1414 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1417 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1420 if (show_debug_regs)
1421 fprintf_unfiltered (gdb_stdlog,
1422 "handle_unaligned_watchpoint: is_insert: %d\n"
1423 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1424 " next_addr: 0x%08lx, next_len: %d\n",
1425 is_insert, aligned_addr, aligned_len, addr, len);
1434 /* Implements insertion and removal of a single watchpoint. */
1437 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1439 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1440 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1442 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1445 /* Implement the "to_insert_watchpoint" target_ops method.
1447 Insert a watchpoint to watch a memory region which starts at
1448 address ADDR and whose length is LEN bytes. Watch memory accesses
1449 of the type TYPE. Return 0 on success, -1 on failure. */
1452 aarch64_linux_insert_watchpoint (struct target_ops *self,
1453 CORE_ADDR addr, int len, int type,
1454 struct expression *cond)
1458 if (show_debug_regs)
1459 fprintf_unfiltered (gdb_stdlog,
1460 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1461 (unsigned long) addr, len);
1463 gdb_assert (type != hw_execute);
1465 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1467 if (show_debug_regs)
1469 struct aarch64_debug_reg_state *state
1470 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1472 aarch64_show_debug_reg_state (state,
1473 "insert_watchpoint", addr, len, type);
1479 /* Implement the "to_remove_watchpoint" target_ops method.
1480 Remove a watchpoint that watched the memory region which starts at
1481 address ADDR, whose length is LEN bytes, and for accesses of the
1482 type TYPE. Return 0 on success, -1 on failure. */
1485 aarch64_linux_remove_watchpoint (struct target_ops *self,
1486 CORE_ADDR addr, int len, int type,
1487 struct expression *cond)
1491 if (show_debug_regs)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1494 (unsigned long) addr, len);
1496 gdb_assert (type != hw_execute);
1498 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1500 if (show_debug_regs)
1502 struct aarch64_debug_reg_state *state
1503 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1505 aarch64_show_debug_reg_state (state,
1506 "remove_watchpoint", addr, len, type);
1512 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1515 aarch64_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1516 CORE_ADDR addr, int len)
1518 CORE_ADDR aligned_addr;
1520 /* Can not set watchpoints for zero or negative lengths. */
1524 /* Must have hardware watchpoint debug register(s). */
1525 if (aarch64_num_wp_regs == 0)
1528 /* We support unaligned watchpoint address and arbitrary length,
1529 as long as the size of the whole watched area after alignment
1530 doesn't exceed size of the total area that all watchpoint debug
1531 registers can watch cooperatively.
1533 This is a very relaxed rule, but unfortunately there are
1534 limitations, e.g. false-positive hits, due to limited support of
1535 hardware debug registers in the kernel. See comment above
1536 aarch64_align_watchpoint for more information. */
1538 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1539 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1543 /* All tests passed so we are likely to be able to set the watchpoint.
1544 The reason that it is 'likely' rather than 'must' is because
1545 we don't check the current usage of the watchpoint registers, and
1546 there may not be enough registers available for this watchpoint.
1547 Ideally we should check the cached debug register state, however
1548 the checking is costly. */
1552 /* Implement the "to_stopped_data_address" target_ops method. */
1555 aarch64_linux_stopped_data_address (struct target_ops *target,
1560 struct aarch64_debug_reg_state *state;
1562 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1565 /* This must be a hardware breakpoint. */
1566 if (siginfo.si_signo != SIGTRAP
1567 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1570 /* Check if the address matches any watched address. */
1571 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1572 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1574 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1575 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1576 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1578 if (state->dr_ref_count_wp[i]
1579 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1580 && addr_trap >= addr_watch
1581 && addr_trap < addr_watch + len)
1583 *addr_p = addr_trap;
1591 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1594 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
1598 return aarch64_linux_stopped_data_address (ops, &addr);
1601 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1604 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1606 CORE_ADDR start, int length)
1608 return start <= addr && start + length - 1 >= addr;
1611 /* Define AArch64 maintenance commands. */
1614 add_show_debug_regs_command (void)
1616 /* A maintenance command to enable printing the internal DRi mirror
1618 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1619 &show_debug_regs, _("\
1620 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1621 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1622 Use \"on\" to enable, \"off\" to disable.\n\
1623 If enabled, the debug registers values are shown when GDB inserts\n\
1624 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1625 triggers a breakpoint or watchpoint."),
1628 &maintenance_set_cmdlist,
1629 &maintenance_show_cmdlist);
1632 /* -Wmissing-prototypes. */
1633 void _initialize_aarch64_linux_nat (void);
1636 _initialize_aarch64_linux_nat (void)
1638 struct target_ops *t;
1640 /* Fill in the generic GNU/Linux methods. */
1641 t = linux_target ();
1643 add_show_debug_regs_command ();
1645 /* Add our register access methods. */
1646 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1647 t->to_store_registers = aarch64_linux_store_inferior_registers;
1649 t->to_read_description = aarch64_linux_read_description;
1651 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1652 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1653 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1654 t->to_region_ok_for_hw_watchpoint =
1655 aarch64_linux_region_ok_for_hw_watchpoint;
1656 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1657 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1658 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1659 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1660 t->to_watchpoint_addr_within_range =
1661 aarch64_linux_watchpoint_addr_within_range;
1663 /* Override the GNU/Linux inferior startup hook. */
1664 super_post_startup_inferior = t->to_post_startup_inferior;
1665 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1667 /* Register the target. */
1668 linux_nat_add_target (t);
1669 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1670 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1671 linux_nat_set_forget_process (t, aarch64_forget_process);
1672 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);