1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by Jim Kingdon.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
31 /* If all these bits in an instruction word are zero, it is a "tag word"
32 which precedes a function entry point and gives stack traceback info.
33 This used to be defined as 0xff000000, but that treated 0x00000deb as
34 a tag word, while it is really used as a breakpoint. */
35 #define TAGWORD_ZERO_MASK 0xff00f800
37 extern CORE_ADDR text_start; /* FIXME, kludge... */
39 /* The user-settable top of the register stack in virtual memory. We
40 won't attempt to access any stored registers above this address, if set
43 static CORE_ADDR rstack_high_address = UINT_MAX;
46 /* Should call_function allocate stack space for a struct return? */
47 /* On the a29k objects over 16 words require the caller to allocate space. */
49 a29k_use_struct_convention (int gcc_p, struct type *type)
51 return (TYPE_LENGTH (type) > 16 * 4);
55 /* Structure to hold cached info about function prologues. */
59 CORE_ADDR pc; /* First addr after fn prologue */
60 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
61 unsigned mfp_used:1; /* memory frame pointer used */
62 unsigned rsize_valid:1; /* Validity bits for the above */
63 unsigned msize_valid:1;
67 /* Examine the prologue of a function which starts at PC. Return
68 the first addess past the prologue. If MSIZE is non-NULL, then
69 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
70 then set *RSIZE to the register stack frame size (not including
71 incoming arguments and the return address & frame pointer stored
72 with them). If no prologue is found, *RSIZE is set to zero.
73 If no prologue is found, or a prologue which doesn't involve
74 allocating a memory stack frame, then set *MSIZE to zero.
76 Note that both msize and rsize are in bytes. This is not consistent
77 with the _User's Manual_ with respect to rsize, but it is much more
80 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
81 frame pointer is being used. */
84 examine_prologue (CORE_ADDR pc, unsigned *rsize, unsigned *msize, int *mfp_used)
88 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
89 struct prologue_info *mi = 0;
92 mi = (struct prologue_info *) msymbol->info;
100 valid &= mi->rsize_valid;
105 valid &= mi->msize_valid;
107 if (mfp_used != NULL)
109 *mfp_used = mi->mfp_used;
110 valid &= mi->mfp_valid;
120 if (mfp_used != NULL)
123 /* Prologue must start with subtracting a constant from gr1.
124 Normally this is sub gr1,gr1,<rsize * 4>. */
125 insn = read_memory_integer (p, 4);
126 if ((insn & 0xffffff00) != 0x25010100)
128 /* If the frame is large, instead of a single instruction it
129 might be a pair of instructions:
130 const <reg>, <rsize * 4>
134 /* Possible value for rsize. */
137 if ((insn & 0xff000000) != 0x03000000)
142 reg = (insn >> 8) & 0xff;
143 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
145 insn = read_memory_integer (p, 4);
146 if ((insn & 0xffffff00) != 0x24010100
147 || (insn & 0xff) != reg)
158 *rsize = (insn & 0xff);
162 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
163 * We don't check the vector number to allow for kernel debugging. The
164 * kernel will use a different trap number.
165 * If this insn is missing, we just keep going; Metaware R2.3u compiler
166 * generates prologue that intermixes initializations and puts the asgeu
169 insn = read_memory_integer (p, 4);
170 if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
175 /* Next instruction usually sets the frame pointer (lr1) by adding
176 <size * 4> from gr1. However, this can (and high C does) be
177 deferred until anytime before the first function call. So it is
178 OK if we don't see anything which sets lr1.
179 To allow for alternate register sets (gcc -mkernel-registers) the msp
180 register number is a compile time constant. */
182 /* Normally this is just add lr1,gr1,<size * 4>. */
183 insn = read_memory_integer (p, 4);
184 if ((insn & 0xffffff00) == 0x15810100)
188 /* However, for large frames it can be
189 const <reg>, <size *4>
195 if ((insn & 0xff000000) == 0x03000000)
197 reg = (insn >> 8) & 0xff;
199 insn = read_memory_integer (q, 4);
200 if ((insn & 0xffffff00) == 0x14810100
201 && (insn & 0xff) == reg)
206 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
207 frame pointer is in use. We just check for add lr<anything>,msp,0;
208 we don't check this rsize against the first instruction, and
209 we don't check that the trace-back tag indicates a memory frame pointer
211 To allow for alternate register sets (gcc -mkernel-registers) the msp
212 register number is a compile time constant.
214 The recommended instruction is actually "sll lr<whatever>,msp,0".
215 We check for that, too. Originally Jim Kingdon's code seemed
216 to be looking for a "sub" instruction here, but the mask was set
217 up to lose all the time. */
218 insn = read_memory_integer (p, 4);
219 if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8))) /* add */
220 || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8)))) /* sll */
223 if (mfp_used != NULL)
227 /* Next comes a subtraction from msp to allocate a memory frame,
228 but only if a memory frame is
229 being used. We don't check msize against the trace-back tag.
231 To allow for alternate register sets (gcc -mkernel-registers) the msp
232 register number is a compile time constant.
234 Normally this is just
237 insn = read_memory_integer (p, 4);
238 if ((insn & 0xffffff00) ==
239 (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
243 *msize = insn & 0xff;
247 /* For large frames, instead of a single instruction it might
251 consth <reg>, <msize> ; optional
258 if ((insn & 0xff000000) == 0x03000000)
260 reg = (insn >> 8) & 0xff;
261 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
263 insn = read_memory_integer (q, 4);
264 /* Check for consth. */
265 if ((insn & 0xff000000) == 0x02000000
266 && (insn & 0x0000ff00) == reg)
268 msize0 |= (insn << 8) & 0xff000000;
269 msize0 |= (insn << 16) & 0x00ff0000;
271 insn = read_memory_integer (q, 4);
273 /* Check for sub msp,msp,<reg>. */
274 if ((insn & 0xffffff00) ==
275 (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
276 && (insn & 0xff) == reg)
285 /* Next instruction might be asgeu V_SPILL,gr1,rab.
286 * We don't check the vector number to allow for kernel debugging. The
287 * kernel will use a different trap number.
288 * Metaware R2.3u compiler
289 * generates prologue that intermixes initializations and puts the asgeu
290 * way down after everything else.
292 insn = read_memory_integer (p, 4);
293 if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
303 /* Add a new cache entry. */
304 mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
305 msymbol->info = (char *) mi;
310 /* else, cache entry exists, but info is incomplete. */
322 if (mfp_used != NULL)
324 mi->mfp_used = *mfp_used;
331 /* Advance PC across any function entry prologue instructions
332 to reach some "real" code. */
335 a29k_skip_prologue (CORE_ADDR pc)
337 return examine_prologue (pc, NULL, NULL, NULL);
341 * Examine the one or two word tag at the beginning of a function.
342 * The tag word is expect to be at 'p', if it is not there, we fail
343 * by returning 0. The documentation for the tag word was taken from
344 * page 7-15 of the 29050 User's Manual. We are assuming that the
345 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
346 * convention today (1/15/92).
347 * msize is return in bytes.
350 static int /* 0/1 - failure/success of finding the tag word */
351 examine_tag (CORE_ADDR p, int *is_trans, int *argcount, unsigned *msize,
354 unsigned int tag1, tag2;
356 tag1 = read_memory_integer (p, 4);
357 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
359 if (tag1 & (1 << 23)) /* A two word tag */
361 tag2 = read_memory_integer (p - 4, 4);
369 *msize = tag1 & 0x7ff;
372 *is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
373 /* Note that this includes the frame pointer and the return address
374 register, so the actual number of registers of arguments is two less.
375 argcount can be zero, however, sometimes, for strange assembler
378 *argcount = (tag1 >> 16) & 0x1f;
380 *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
384 /* Initialize the frame. In addition to setting "extra" frame info,
385 we also set ->frame because we use it in a nonstandard way, and ->pc
386 because we need to know it to get the other stuff. See the diagram
387 of stacks and the frame cache in tm-a29k.h for more detail. */
390 init_frame_info (int innermost_frame, struct frame_info *frame)
402 frame->frame = read_register (GR1_REGNUM);
404 frame->frame = frame->next->frame + frame->next->rsize;
406 #if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
409 if (PC_IN_CALL_DUMMY (p, 0, 0))
412 frame->rsize = DUMMY_FRAME_RSIZE;
413 /* This doesn't matter since we never try to get locals or args
414 from a dummy frame. */
416 /* Dummy frames always use a memory frame pointer. */
418 read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
419 frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
423 func = find_pc_function (p);
425 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
428 /* Search backward to find the trace-back tag. However,
429 do not trace back beyond the start of the text segment
430 (just as a sanity check to avoid going into never-never land). */
432 while (p >= text_start
433 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
440 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
441 /* Enable this once target_search is enabled and tested. */
442 target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
443 insn = extract_unsigned_integer (insn_raw, 4);
448 /* Couldn't find the trace-back tag.
449 Something strange is going on. */
450 frame->saved_msp = 0;
453 frame->flags = TRANSPARENT_FRAME;
457 /* Advance to the first word of the function, i.e. the word
458 after the trace-back tag. */
462 /* We've found the start of the function.
463 Try looking for a tag word that indicates whether there is a
464 memory frame pointer and what the memory stack allocation is.
465 If one doesn't exist, try using a more exhaustive search of
468 if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used)) /* Found good tag */
469 examine_prologue (p, &rsize, 0, 0);
470 else /* No tag try prologue */
471 examine_prologue (p, &rsize, &msize, &mfp_used);
473 frame->rsize = rsize;
474 frame->msize = msize;
477 frame->flags |= MFP_USED;
479 frame->flags |= TRANSPARENT_FRAME;
482 frame->saved_msp = read_register (MSP_REGNUM) + msize;
488 read_register_stack_integer (frame->frame + rsize - 4, 4);
490 frame->saved_msp = frame->next->saved_msp + msize;
495 init_extra_frame_info (struct frame_info *frame)
497 if (frame->next == 0)
498 /* Assume innermost frame. May produce strange results for "info frame"
499 but there isn't any way to tell the difference. */
500 init_frame_info (1, frame);
503 /* We're in get_prev_frame.
504 Take care of everything in init_frame_pc. */
510 init_frame_pc (int fromleaf, struct frame_info *frame)
512 frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
513 frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
514 init_frame_info (fromleaf, frame);
517 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
518 offsets being relative to the memory stack pointer (high C) or
522 frame_locals_address (struct frame_info *fi)
524 if (fi->flags & MFP_USED)
525 return fi->saved_msp;
527 return fi->saved_msp - fi->msize;
530 /* Routines for reading the register stack. The caller gets to treat
531 the register stack as a uniform stack in memory, from address $gr1
532 straight through $rfb and beyond. */
534 /* Analogous to read_memory except the length is understood to be 4.
535 Also, myaddr can be NULL (meaning don't bother to read), and
536 if actual_mem_addr is non-NULL, store there the address that it
537 was fetched from (or if from a register the offset within
538 registers). Set *LVAL to lval_memory or lval_register, depending
539 on where it came from. The contents written into MYADDR are in
542 read_register_stack (CORE_ADDR memaddr, char *myaddr,
543 CORE_ADDR *actual_mem_addr, enum lval_type *lval)
545 long rfb = read_register (RFB_REGNUM);
546 long rsp = read_register (RSP_REGNUM);
548 /* If we don't do this 'info register' stops in the middle. */
549 if (memaddr >= rstack_high_address)
554 /* It's in a local register, but off the end of the stack. */
555 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
558 /* Provide bogusness */
559 memcpy (myaddr, val, 4);
561 supply_register (regnum, val); /* More bogusness */
563 *lval = lval_register;
564 if (actual_mem_addr != NULL)
565 *actual_mem_addr = REGISTER_BYTE (regnum);
567 /* If it's in the part of the register stack that's in real registers,
568 get the value from the registers. If it's anywhere else in memory
569 (e.g. in another thread's saved stack), skip this part and get
570 it from real live memory. */
571 else if (memaddr < rfb && memaddr >= rsp)
573 /* It's in a register. */
574 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
575 if (regnum > LR0_REGNUM + 127)
576 error ("Attempt to read register stack out of range.");
578 read_register_gen (regnum, myaddr);
580 *lval = lval_register;
581 if (actual_mem_addr != NULL)
582 *actual_mem_addr = REGISTER_BYTE (regnum);
586 /* It's in the memory portion of the register stack. */
588 read_memory (memaddr, myaddr, 4);
591 if (actual_mem_addr != NULL)
592 *actual_mem_addr = memaddr;
596 /* Analogous to read_memory_integer
597 except the length is understood to be 4. */
599 read_register_stack_integer (CORE_ADDR memaddr, int len)
602 read_register_stack (memaddr, buf, NULL, NULL);
603 return extract_signed_integer (buf, 4);
606 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
607 at MEMADDR and put the actual address written into in
610 write_register_stack (CORE_ADDR memaddr, char *myaddr,
611 CORE_ADDR *actual_mem_addr)
613 long rfb = read_register (RFB_REGNUM);
614 long rsp = read_register (RSP_REGNUM);
615 /* If we don't do this 'info register' stops in the middle. */
616 if (memaddr >= rstack_high_address)
618 /* It's in a register, but off the end of the stack. */
619 if (actual_mem_addr != NULL)
620 *actual_mem_addr = 0;
622 else if (memaddr < rfb)
624 /* It's in a register. */
625 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
626 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
627 error ("Attempt to read register stack out of range.");
629 write_register (regnum, *(long *) myaddr);
630 if (actual_mem_addr != NULL)
631 *actual_mem_addr = 0;
635 /* It's in the memory portion of the register stack. */
637 write_memory (memaddr, myaddr, 4);
638 if (actual_mem_addr != NULL)
639 *actual_mem_addr = memaddr;
643 /* Find register number REGNUM relative to FRAME and put its
644 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
645 was optimized out (and thus can't be fetched). If the variable
646 was fetched from memory, set *ADDRP to where it was fetched from,
647 otherwise it was fetched from a register.
649 The argument RAW_BUFFER must point to aligned memory. */
652 a29k_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
653 struct frame_info *frame, int regnum,
654 enum lval_type *lvalp)
656 struct frame_info *fi;
660 if (!target_has_registers)
661 error ("No registers.");
663 /* Probably now redundant with the target_has_registers check. */
667 /* Once something has a register number, it doesn't get optimized out. */
668 if (optimized != NULL)
670 if (regnum == RSP_REGNUM)
672 if (raw_buffer != NULL)
674 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
680 else if (regnum == PC_REGNUM && frame->next != NULL)
682 if (raw_buffer != NULL)
684 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
687 /* Not sure we have to do this. */
693 else if (regnum == MSP_REGNUM)
695 if (raw_buffer != NULL)
697 if (frame->next != NULL)
699 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
700 frame->next->saved_msp);
703 read_register_gen (MSP_REGNUM, raw_buffer);
705 /* The value may have been computed, not fetched. */
710 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
712 /* These registers are not saved over procedure calls,
713 so just print out the current values. */
714 if (raw_buffer != NULL)
715 read_register_gen (regnum, raw_buffer);
717 *lvalp = lval_register;
719 *addrp = REGISTER_BYTE (regnum);
723 addr = frame->frame + (regnum - LR0_REGNUM) * 4;
724 if (raw_buffer != NULL)
725 read_register_stack (addr, raw_buffer, &addr, &lval);
733 /* Discard from the stack the innermost frame,
734 restoring all saved registers. */
739 struct frame_info *frame = get_current_frame ();
740 CORE_ADDR rfb = read_register (RFB_REGNUM);
741 CORE_ADDR gr1 = frame->frame + frame->rsize;
743 CORE_ADDR original_lr0;
744 int must_fix_lr0 = 0;
747 /* If popping a dummy frame, need to restore registers. */
748 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
749 read_register (SP_REGNUM),
752 int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
753 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
754 write_register (SR_REGNUM (i + 128), read_register (lrnum++));
755 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
756 write_register (SR_REGNUM (i + 160), read_register (lrnum++));
757 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
758 write_register (RETURN_REGNUM + i, read_register (lrnum++));
759 /* Restore the PCs and prepare to restore LR0. */
760 write_register (PC_REGNUM, read_register (lrnum++));
761 write_register (NPC_REGNUM, read_register (lrnum++));
762 write_register (PC2_REGNUM, read_register (lrnum++));
763 original_lr0 = read_register (lrnum++);
767 /* Restore the memory stack pointer. */
768 write_register (MSP_REGNUM, frame->saved_msp);
769 /* Restore the register stack pointer. */
770 write_register (GR1_REGNUM, gr1);
772 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
774 write_register (LR0_REGNUM, original_lr0);
776 /* Check whether we need to fill registers. */
777 lr1 = read_register (LR0_REGNUM + 1);
781 int num_bytes = lr1 - rfb;
785 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
786 write_register (RFB_REGNUM, lr1);
787 for (i = 0; i < num_bytes; i += 4)
789 /* Note: word is in host byte order. */
790 word = read_memory_integer (rfb + i, 4);
791 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
794 flush_cached_frames ();
797 /* Push an empty stack frame, to record the current PC, etc. */
800 push_dummy_frame (void)
804 CORE_ADDR msp = read_register (MSP_REGNUM);
806 CORE_ADDR original_lr0;
808 /* Read original lr0 before changing gr1. This order isn't really needed
809 since GDB happens to have a snapshot of all the regs and doesn't toss
810 it when gr1 is changed. But it's The Right Thing To Do. */
811 original_lr0 = read_register (LR0_REGNUM);
813 /* Allocate the new frame. */
814 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
815 write_register (GR1_REGNUM, gr1);
817 #ifdef VXWORKS_TARGET
818 /* We force re-reading all registers to get the new local registers set
819 after gr1 has been modified. This fix is due to the lack of single
820 register read/write operation in the RPC interface between VxGDB and
821 VxWorks. This really must be changed ! */
823 vx_read_register (-1);
825 #endif /* VXWORK_TARGET */
827 rab = read_register (RAB_REGNUM);
830 /* We need to spill registers. */
831 int num_bytes = rab - gr1;
832 CORE_ADDR rfb = read_register (RFB_REGNUM);
836 write_register (RFB_REGNUM, rfb - num_bytes);
837 write_register (RAB_REGNUM, gr1);
838 for (i = 0; i < num_bytes; i += 4)
840 /* Note: word is in target byte order. */
841 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
842 write_memory (rfb - num_bytes + i, (char *) &word, 4);
846 /* There are no arguments in to the dummy frame, so we don't need
847 more than rsize plus the return address and lr1. */
848 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
850 /* Set the memory frame pointer. */
851 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
853 /* Allocate arg_slop. */
854 write_register (MSP_REGNUM, msp - 16 * 4);
856 /* Save registers. */
857 lrnum = LR0_REGNUM + DUMMY_ARG / 4;
858 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
859 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
860 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
861 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
862 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
863 write_register (lrnum++, read_register (RETURN_REGNUM + i));
864 /* Save the PCs and LR0. */
865 write_register (lrnum++, read_register (PC_REGNUM));
866 write_register (lrnum++, read_register (NPC_REGNUM));
867 write_register (lrnum++, read_register (PC2_REGNUM));
869 /* Why are we saving LR0? What would clobber it? (the dummy frame should
870 be below it on the register stack, no?). */
871 write_register (lrnum++, original_lr0);
877 This routine takes three arguments and makes the cached frames look
878 as if these arguments defined a frame on the cache. This allows the
879 rest of `info frame' to extract the important arguments without much
880 difficulty. Since an individual frame on the 29K is determined by
881 three values (FP, PC, and MSP), we really need all three to do a
885 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
887 struct frame_info *frame;
890 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
892 frame = create_new_frame (argv[0], argv[1]);
895 internal_error ("create_new_frame returned invalid frame id");
897 /* Creating a new frame munges the `frame' value from the current
898 GR1, so we restore it again here. FIXME, untangle all this
899 29K frame stuff... */
900 frame->frame = argv[0];
902 /* Our MSP is in argv[2]. It'd be intelligent if we could just
903 save this value in the FRAME. But the way it's set up (FIXME),
904 we must save our caller's MSP. We compute that by adding our
905 memory stack frame size to our MSP. */
906 frame->saved_msp = argv[2] + frame->msize;
912 gdb_print_insn_a29k (bfd_vma memaddr, disassemble_info *info)
914 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
915 return print_insn_big_a29k (memaddr, info);
917 return print_insn_little_a29k (memaddr, info);
920 enum a29k_processor_types processor_type = a29k_unknown;
923 a29k_get_processor_type (void)
925 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
927 /* Most of these don't have freeze mode. */
928 processor_type = a29k_no_freeze_mode;
930 switch ((cfg_reg >> 28) & 0xf)
933 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
936 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
939 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
940 processor_type = a29k_freeze_mode;
943 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
946 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
949 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
952 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
955 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
958 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
959 /* Don't bother to print the revision. */
962 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
965 #ifdef GET_LONGJMP_TARGET
966 /* Figure out where the longjmp will land. We expect that we have just entered
967 longjmp and haven't yet setup the stack frame, so the args are still in the
968 output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
969 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
970 This routine returns true on success */
973 get_longjmp_target (CORE_ADDR *pc)
976 char buf[sizeof (CORE_ADDR)];
978 jb_addr = read_register (LR2_REGNUM);
980 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
984 *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
987 #endif /* GET_LONGJMP_TARGET */
990 _initialize_a29k_tdep (void)
992 extern CORE_ADDR text_end;
994 tm_print_insn = gdb_print_insn_a29k;
996 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
998 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
999 (char *) &rstack_high_address,
1000 "Set top address in memory of the register stack.\n\
1001 Attempts to access registers saved above this address will be ignored\n\
1002 or will produce the value -1.", &setlist),
1005 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1007 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
1009 "Set address in memory where small amounts of RAM can be used\n\
1010 when making function calls into the inferior.", &setlist),