1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
4 Copyright (C) 2008-2022 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
76 #include "coretypes.h"
83 #include "alloc-pool.h"
84 #include "tree-pass.h"
87 #include "gimple-pretty-print.h"
89 #include "fold-const.h"
91 #include "stor-layout.h"
93 #include "gimple-iterator.h"
94 #include "gimplify-me.h"
95 #include "gimple-walk.h"
100 #include "builtins.h"
101 #include "tree-sra.h"
104 /* Enumeration of all aggregate reductions we can do. */
105 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
106 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
107 SRA_MODE_INTRA }; /* late intraprocedural SRA */
109 /* Global variable describing which aggregate reduction we are performing at
111 static enum sra_mode sra_mode;
115 /* ACCESS represents each access to an aggregate variable (as a whole or a
116 part). It can also represent a group of accesses that refer to exactly the
117 same fragment of an aggregate (i.e. those that have exactly the same offset
118 and size). Such representatives for a single aggregate, once determined,
119 are linked in a linked list and have the group fields set.
121 Moreover, when doing intraprocedural SRA, a tree is built from those
122 representatives (by the means of first_child and next_sibling pointers), in
123 which all items in a subtree are "within" the root, i.e. their offset is
124 greater or equal to offset of the root and offset+size is smaller or equal
125 to offset+size of the root. Children of an access are sorted by offset.
127 Note that accesses to parts of vector and complex number types always
128 represented by an access to the whole complex number or a vector. It is a
129 duty of the modifying functions to replace them appropriately. */
133 /* Values returned by `get_ref_base_and_extent' for each component reference
134 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
135 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
136 HOST_WIDE_INT offset;
140 /* Expression. It is context dependent so do not use it to create new
141 expressions to access the original aggregate. See PR 42154 for a
147 /* The statement this access belongs to. */
150 /* Next group representative for this aggregate. */
151 struct access *next_grp;
153 /* Pointer to the group representative. Pointer to itself if the struct is
154 the representative. */
155 struct access *group_representative;
157 /* After access tree has been constructed, this points to the parent of the
158 current access, if there is one. NULL for roots. */
159 struct access *parent;
161 /* If this access has any children (in terms of the definition above), this
162 points to the first one. */
163 struct access *first_child;
165 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
167 struct access *next_sibling;
169 /* Pointers to the first and last element in the linked list of assign
170 links for propagation from LHS to RHS. */
171 struct assign_link *first_rhs_link, *last_rhs_link;
173 /* Pointers to the first and last element in the linked list of assign
174 links for propagation from LHS to RHS. */
175 struct assign_link *first_lhs_link, *last_lhs_link;
177 /* Pointer to the next access in the work queues. */
178 struct access *next_rhs_queued, *next_lhs_queued;
180 /* Replacement variable for this access "region." Never to be accessed
181 directly, always only by the means of get_access_replacement() and only
182 when grp_to_be_replaced flag is set. */
183 tree replacement_decl;
185 /* Is this access made in reverse storage order? */
186 unsigned reverse : 1;
188 /* Is this particular access write access? */
191 /* Is this access currently in the rhs work queue? */
192 unsigned grp_rhs_queued : 1;
194 /* Is this access currently in the lhs work queue? */
195 unsigned grp_lhs_queued : 1;
197 /* Does this group contain a write access? This flag is propagated down the
199 unsigned grp_write : 1;
201 /* Does this group contain a read access? This flag is propagated down the
203 unsigned grp_read : 1;
205 /* Does this group contain a read access that comes from an assignment
206 statement? This flag is propagated down the access tree. */
207 unsigned grp_assignment_read : 1;
209 /* Does this group contain a write access that comes from an assignment
210 statement? This flag is propagated down the access tree. */
211 unsigned grp_assignment_write : 1;
213 /* Does this group contain a read access through a scalar type? This flag is
214 not propagated in the access tree in any direction. */
215 unsigned grp_scalar_read : 1;
217 /* Does this group contain a write access through a scalar type? This flag
218 is not propagated in the access tree in any direction. */
219 unsigned grp_scalar_write : 1;
221 /* In a root of an access tree, true means that the entire tree should be
222 totally scalarized - that all scalar leafs should be scalarized and
223 non-root grp_total_scalarization accesses should be honored. Otherwise,
224 non-root accesses with grp_total_scalarization should never get scalar
226 unsigned grp_total_scalarization : 1;
228 /* Other passes of the analysis use this bit to make function
229 analyze_access_subtree create scalar replacements for this group if
231 unsigned grp_hint : 1;
233 /* Is the subtree rooted in this access fully covered by scalar
235 unsigned grp_covered : 1;
237 /* If set to true, this access and all below it in an access tree must not be
239 unsigned grp_unscalarizable_region : 1;
241 /* Whether data have been written to parts of the aggregate covered by this
242 access which is not to be scalarized. This flag is propagated up in the
244 unsigned grp_unscalarized_data : 1;
246 /* Set if all accesses in the group consist of the same chain of
247 COMPONENT_REFs and ARRAY_REFs. */
248 unsigned grp_same_access_path : 1;
250 /* Does this access and/or group contain a write access through a
252 unsigned grp_partial_lhs : 1;
254 /* Set when a scalar replacement should be created for this variable. */
255 unsigned grp_to_be_replaced : 1;
257 /* Set when we want a replacement for the sole purpose of having it in
258 generated debug statements. */
259 unsigned grp_to_be_debug_replaced : 1;
261 /* Should TREE_NO_WARNING of a replacement be set? */
262 unsigned grp_no_warning : 1;
264 /* Result of propagation accross link from LHS to RHS. */
265 unsigned grp_result_of_prop_from_lhs : 1;
268 typedef struct access *access_p;
271 /* Alloc pool for allocating access structures. */
272 static object_allocator<struct access> access_pool ("SRA accesses");
274 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
275 are used to propagate subaccesses from rhs to lhs and vice versa as long as
276 they don't conflict with what is already there. In the RHS->LHS direction,
277 we also propagate grp_write flag to lazily mark that the access contains any
281 struct access *lacc, *racc;
282 struct assign_link *next_rhs, *next_lhs;
285 /* Alloc pool for allocating assign link structures. */
286 static object_allocator<assign_link> assign_link_pool ("SRA links");
288 /* Base (tree) -> Vector (vec<access_p> *) map. */
289 static hash_map<tree, auto_vec<access_p> > *base_access_vec;
291 /* Hash to limit creation of artificial accesses */
292 static hash_map<tree, unsigned> *propagation_budget;
294 /* Candidate hash table helpers. */
296 struct uid_decl_hasher : nofree_ptr_hash <tree_node>
298 static inline hashval_t hash (const tree_node *);
299 static inline bool equal (const tree_node *, const tree_node *);
302 /* Hash a tree in a uid_decl_map. */
305 uid_decl_hasher::hash (const tree_node *item)
307 return item->decl_minimal.uid;
310 /* Return true if the DECL_UID in both trees are equal. */
313 uid_decl_hasher::equal (const tree_node *a, const tree_node *b)
315 return (a->decl_minimal.uid == b->decl_minimal.uid);
318 /* Set of candidates. */
319 static bitmap candidate_bitmap;
320 static hash_table<uid_decl_hasher> *candidates;
322 /* For a candidate UID return the candidates decl. */
325 candidate (unsigned uid)
328 t.decl_minimal.uid = uid;
329 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
332 /* Bitmap of candidates which we should try to entirely scalarize away and
333 those which cannot be (because they are and need be used as a whole). */
334 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
336 /* Bitmap of candidates in the constant pool, which cannot be scalarized
337 because this would produce non-constant expressions (e.g. Ada). */
338 static bitmap disqualified_constants;
340 /* Obstack for creation of fancy names. */
341 static struct obstack name_obstack;
343 /* Head of a linked list of accesses that need to have its subaccesses
344 propagated to their assignment counterparts. */
345 static struct access *rhs_work_queue_head, *lhs_work_queue_head;
347 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
348 representative fields are dumped, otherwise those which only describe the
349 individual access are. */
353 /* Number of processed aggregates is readily available in
354 analyze_all_variable_accesses and so is not stored here. */
356 /* Number of created scalar replacements. */
359 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
363 /* Number of statements created by generate_subtree_copies. */
366 /* Number of statements created by load_assign_lhs_subreplacements. */
369 /* Number of times sra_modify_assign has deleted a statement. */
372 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
373 RHS reparately due to type conversions or nonexistent matching
375 int separate_lhs_rhs_handling;
377 /* Number of parameters that were removed because they were unused. */
378 int deleted_unused_parameters;
380 /* Number of scalars passed as parameters by reference that have been
381 converted to be passed by value. */
382 int scalar_by_ref_to_by_val;
384 /* Number of aggregate parameters that were replaced by one or more of their
386 int aggregate_params_reduced;
388 /* Numbber of components created when splitting aggregate parameters. */
389 int param_reductions_created;
391 /* Number of deferred_init calls that are modified. */
394 /* Number of deferred_init calls that are created by
395 generate_subtree_deferred_init. */
396 int subtree_deferred_init;
400 dump_access (FILE *f, struct access *access, bool grp)
402 fprintf (f, "access { ");
403 fprintf (f, "base = (%d)'", DECL_UID (access->base));
404 print_generic_expr (f, access->base);
405 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
406 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
407 fprintf (f, ", expr = ");
408 print_generic_expr (f, access->expr);
409 fprintf (f, ", type = ");
410 print_generic_expr (f, access->type);
411 fprintf (f, ", reverse = %d", access->reverse);
413 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
414 "grp_assignment_write = %d, grp_scalar_read = %d, "
415 "grp_scalar_write = %d, grp_total_scalarization = %d, "
416 "grp_hint = %d, grp_covered = %d, "
417 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
418 "grp_same_access_path = %d, grp_partial_lhs = %d, "
419 "grp_to_be_replaced = %d, grp_to_be_debug_replaced = %d}\n",
420 access->grp_read, access->grp_write, access->grp_assignment_read,
421 access->grp_assignment_write, access->grp_scalar_read,
422 access->grp_scalar_write, access->grp_total_scalarization,
423 access->grp_hint, access->grp_covered,
424 access->grp_unscalarizable_region, access->grp_unscalarized_data,
425 access->grp_same_access_path, access->grp_partial_lhs,
426 access->grp_to_be_replaced, access->grp_to_be_debug_replaced);
428 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
429 "grp_partial_lhs = %d}\n",
430 access->write, access->grp_total_scalarization,
431 access->grp_partial_lhs);
434 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
437 dump_access_tree_1 (FILE *f, struct access *access, int level)
443 for (i = 0; i < level; i++)
446 dump_access (f, access, true);
448 if (access->first_child)
449 dump_access_tree_1 (f, access->first_child, level + 1);
451 access = access->next_sibling;
456 /* Dump all access trees for a variable, given the pointer to the first root in
460 dump_access_tree (FILE *f, struct access *access)
462 for (; access; access = access->next_grp)
463 dump_access_tree_1 (f, access, 0);
466 /* Return true iff ACC is non-NULL and has subaccesses. */
469 access_has_children_p (struct access *acc)
471 return acc && acc->first_child;
474 /* Return true iff ACC is (partly) covered by at least one replacement. */
477 access_has_replacements_p (struct access *acc)
479 struct access *child;
480 if (acc->grp_to_be_replaced)
482 for (child = acc->first_child; child; child = child->next_sibling)
483 if (access_has_replacements_p (child))
488 /* Return a vector of pointers to accesses for the variable given in BASE or
489 NULL if there is none. */
491 static vec<access_p> *
492 get_base_access_vector (tree base)
494 return base_access_vec->get (base);
497 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
498 in ACCESS. Return NULL if it cannot be found. */
500 static struct access *
501 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
504 while (access && (access->offset != offset || access->size != size))
506 struct access *child = access->first_child;
508 while (child && (child->offset + child->size <= offset))
509 child = child->next_sibling;
513 /* Total scalarization does not replace single field structures with their
514 single field but rather creates an access for them underneath. Look for
517 while (access->first_child
518 && access->first_child->offset == offset
519 && access->first_child->size == size)
520 access = access->first_child;
525 /* Return the first group representative for DECL or NULL if none exists. */
527 static struct access *
528 get_first_repr_for_decl (tree base)
530 vec<access_p> *access_vec;
532 access_vec = get_base_access_vector (base);
536 return (*access_vec)[0];
539 /* Find an access representative for the variable BASE and given OFFSET and
540 SIZE. Requires that access trees have already been built. Return NULL if
541 it cannot be found. */
543 static struct access *
544 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
547 struct access *access;
549 access = get_first_repr_for_decl (base);
550 while (access && (access->offset + access->size <= offset))
551 access = access->next_grp;
555 return find_access_in_subtree (access, offset, size);
558 /* Add LINK to the linked list of assign links of RACC. */
561 add_link_to_rhs (struct access *racc, struct assign_link *link)
563 gcc_assert (link->racc == racc);
565 if (!racc->first_rhs_link)
567 gcc_assert (!racc->last_rhs_link);
568 racc->first_rhs_link = link;
571 racc->last_rhs_link->next_rhs = link;
573 racc->last_rhs_link = link;
574 link->next_rhs = NULL;
577 /* Add LINK to the linked list of lhs assign links of LACC. */
580 add_link_to_lhs (struct access *lacc, struct assign_link *link)
582 gcc_assert (link->lacc == lacc);
584 if (!lacc->first_lhs_link)
586 gcc_assert (!lacc->last_lhs_link);
587 lacc->first_lhs_link = link;
590 lacc->last_lhs_link->next_lhs = link;
592 lacc->last_lhs_link = link;
593 link->next_lhs = NULL;
596 /* Move all link structures in their linked list in OLD_ACC to the linked list
599 relink_to_new_repr (struct access *new_acc, struct access *old_acc)
601 if (old_acc->first_rhs_link)
604 if (new_acc->first_rhs_link)
606 gcc_assert (!new_acc->last_rhs_link->next_rhs);
607 gcc_assert (!old_acc->last_rhs_link
608 || !old_acc->last_rhs_link->next_rhs);
610 new_acc->last_rhs_link->next_rhs = old_acc->first_rhs_link;
611 new_acc->last_rhs_link = old_acc->last_rhs_link;
615 gcc_assert (!new_acc->last_rhs_link);
617 new_acc->first_rhs_link = old_acc->first_rhs_link;
618 new_acc->last_rhs_link = old_acc->last_rhs_link;
620 old_acc->first_rhs_link = old_acc->last_rhs_link = NULL;
623 gcc_assert (!old_acc->last_rhs_link);
625 if (old_acc->first_lhs_link)
628 if (new_acc->first_lhs_link)
630 gcc_assert (!new_acc->last_lhs_link->next_lhs);
631 gcc_assert (!old_acc->last_lhs_link
632 || !old_acc->last_lhs_link->next_lhs);
634 new_acc->last_lhs_link->next_lhs = old_acc->first_lhs_link;
635 new_acc->last_lhs_link = old_acc->last_lhs_link;
639 gcc_assert (!new_acc->last_lhs_link);
641 new_acc->first_lhs_link = old_acc->first_lhs_link;
642 new_acc->last_lhs_link = old_acc->last_lhs_link;
644 old_acc->first_lhs_link = old_acc->last_lhs_link = NULL;
647 gcc_assert (!old_acc->last_lhs_link);
651 /* Add ACCESS to the work to queue for propagation of subaccesses from RHS to
652 LHS (which is actually a stack). */
655 add_access_to_rhs_work_queue (struct access *access)
657 if (access->first_rhs_link && !access->grp_rhs_queued)
659 gcc_assert (!access->next_rhs_queued);
660 access->next_rhs_queued = rhs_work_queue_head;
661 access->grp_rhs_queued = 1;
662 rhs_work_queue_head = access;
666 /* Add ACCESS to the work to queue for propagation of subaccesses from LHS to
667 RHS (which is actually a stack). */
670 add_access_to_lhs_work_queue (struct access *access)
672 if (access->first_lhs_link && !access->grp_lhs_queued)
674 gcc_assert (!access->next_lhs_queued);
675 access->next_lhs_queued = lhs_work_queue_head;
676 access->grp_lhs_queued = 1;
677 lhs_work_queue_head = access;
681 /* Pop an access from the work queue for propagating from RHS to LHS, and
682 return it, assuming there is one. */
684 static struct access *
685 pop_access_from_rhs_work_queue (void)
687 struct access *access = rhs_work_queue_head;
689 rhs_work_queue_head = access->next_rhs_queued;
690 access->next_rhs_queued = NULL;
691 access->grp_rhs_queued = 0;
695 /* Pop an access from the work queue for propagating from LHS to RHS, and
696 return it, assuming there is one. */
698 static struct access *
699 pop_access_from_lhs_work_queue (void)
701 struct access *access = lhs_work_queue_head;
703 lhs_work_queue_head = access->next_lhs_queued;
704 access->next_lhs_queued = NULL;
705 access->grp_lhs_queued = 0;
709 /* Allocate necessary structures. */
712 sra_initialize (void)
714 candidate_bitmap = BITMAP_ALLOC (NULL);
715 candidates = new hash_table<uid_decl_hasher>
716 (vec_safe_length (cfun->local_decls) / 2);
717 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
718 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
719 disqualified_constants = BITMAP_ALLOC (NULL);
720 gcc_obstack_init (&name_obstack);
721 base_access_vec = new hash_map<tree, auto_vec<access_p> >;
722 memset (&sra_stats, 0, sizeof (sra_stats));
725 /* Deallocate all general structures. */
728 sra_deinitialize (void)
730 BITMAP_FREE (candidate_bitmap);
733 BITMAP_FREE (should_scalarize_away_bitmap);
734 BITMAP_FREE (cannot_scalarize_away_bitmap);
735 BITMAP_FREE (disqualified_constants);
736 access_pool.release ();
737 assign_link_pool.release ();
738 obstack_free (&name_obstack, NULL);
740 delete base_access_vec;
743 /* Return true if DECL is a VAR_DECL in the constant pool, false otherwise. */
745 static bool constant_decl_p (tree decl)
747 return VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl);
750 /* Remove DECL from candidates for SRA and write REASON to the dump file if
754 disqualify_candidate (tree decl, const char *reason)
756 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
757 candidates->remove_elt_with_hash (decl, DECL_UID (decl));
758 if (constant_decl_p (decl))
759 bitmap_set_bit (disqualified_constants, DECL_UID (decl));
761 if (dump_file && (dump_flags & TDF_DETAILS))
763 fprintf (dump_file, "! Disqualifying ");
764 print_generic_expr (dump_file, decl);
765 fprintf (dump_file, " - %s\n", reason);
769 /* Return true iff the type contains a field or an element which does not allow
770 scalarization. Use VISITED_TYPES to avoid re-checking already checked
774 type_internals_preclude_sra_p_1 (tree type, const char **msg,
775 hash_set<tree> *visited_types)
780 if (visited_types->contains (type))
782 visited_types->add (type);
784 switch (TREE_CODE (type))
788 case QUAL_UNION_TYPE:
789 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
790 if (TREE_CODE (fld) == FIELD_DECL)
792 if (TREE_CODE (fld) == FUNCTION_DECL)
794 tree ft = TREE_TYPE (fld);
796 if (TREE_THIS_VOLATILE (fld))
798 *msg = "volatile structure field";
801 if (!DECL_FIELD_OFFSET (fld))
803 *msg = "no structure field offset";
806 if (!DECL_SIZE (fld))
808 *msg = "zero structure field size";
811 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
813 *msg = "structure field offset not fixed";
816 if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
818 *msg = "structure field size not fixed";
821 if (!tree_fits_shwi_p (bit_position (fld)))
823 *msg = "structure field size too big";
826 if (AGGREGATE_TYPE_P (ft)
827 && int_bit_position (fld) % BITS_PER_UNIT != 0)
829 *msg = "structure field is bit field";
833 if (AGGREGATE_TYPE_P (ft)
834 && type_internals_preclude_sra_p_1 (ft, msg, visited_types))
841 et = TREE_TYPE (type);
843 if (TYPE_VOLATILE (et))
845 *msg = "element type is volatile";
849 if (AGGREGATE_TYPE_P (et)
850 && type_internals_preclude_sra_p_1 (et, msg, visited_types))
860 /* Return true iff the type contains a field or an element which does not allow
864 type_internals_preclude_sra_p (tree type, const char **msg)
866 hash_set<tree> visited_types;
867 return type_internals_preclude_sra_p_1 (type, msg, &visited_types);
871 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
872 the three fields. Also add it to the vector of accesses corresponding to
873 the base. Finally, return the new access. */
875 static struct access *
876 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
878 struct access *access = access_pool.allocate ();
880 memset (access, 0, sizeof (struct access));
882 access->offset = offset;
885 base_access_vec->get_or_insert (base).safe_push (access);
890 static bool maybe_add_sra_candidate (tree);
892 /* Create and insert access for EXPR. Return created access, or NULL if it is
893 not possible. Also scan for uses of constant pool as we go along and add
896 static struct access *
897 create_access (tree expr, gimple *stmt, bool write)
899 struct access *access;
900 poly_int64 poffset, psize, pmax_size;
902 bool reverse, unscalarizable_region = false;
904 base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size,
907 /* For constant-pool entries, check we can substitute the constant value. */
908 if (constant_decl_p (base))
910 gcc_assert (!bitmap_bit_p (disqualified_constants, DECL_UID (base)));
912 && !is_gimple_reg_type (TREE_TYPE (expr))
913 && dump_file && (dump_flags & TDF_DETAILS))
915 /* This occurs in Ada with accesses to ARRAY_RANGE_REFs,
916 and elements of multidimensional arrays (which are
917 multi-element arrays in their own right). */
918 fprintf (dump_file, "Allowing non-reg-type load of part"
919 " of constant-pool entry: ");
920 print_generic_expr (dump_file, expr);
922 maybe_add_sra_candidate (base);
925 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
928 if (write && TREE_READONLY (base))
930 disqualify_candidate (base, "Encountered a store to a read-only decl.");
934 HOST_WIDE_INT offset, size, max_size;
935 if (!poffset.is_constant (&offset)
936 || !psize.is_constant (&size)
937 || !pmax_size.is_constant (&max_size))
939 disqualify_candidate (base, "Encountered a polynomial-sized access.");
943 if (size != max_size)
946 unscalarizable_region = true;
952 disqualify_candidate (base, "Encountered a negative offset access.");
957 disqualify_candidate (base, "Encountered an unconstrained access.");
960 if (offset + size > tree_to_shwi (DECL_SIZE (base)))
962 disqualify_candidate (base, "Encountered an access beyond the base.");
966 access = create_access_1 (base, offset, size);
968 access->type = TREE_TYPE (expr);
969 access->write = write;
970 access->grp_unscalarizable_region = unscalarizable_region;
972 access->reverse = reverse;
978 /* Return true iff TYPE is scalarizable - i.e. a RECORD_TYPE or fixed-length
979 ARRAY_TYPE with fields that are either of gimple register types (excluding
980 bit-fields) or (recursively) scalarizable types. CONST_DECL must be true if
981 we are considering a decl from constant pool. If it is false, char arrays
985 scalarizable_type_p (tree type, bool const_decl)
987 if (is_gimple_reg_type (type))
989 if (type_contains_placeholder_p (type))
992 bool have_predecessor_field = false;
993 HOST_WIDE_INT prev_pos = 0;
995 switch (TREE_CODE (type))
998 for (tree fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
999 if (TREE_CODE (fld) == FIELD_DECL)
1001 tree ft = TREE_TYPE (fld);
1003 if (zerop (DECL_SIZE (fld)))
1006 HOST_WIDE_INT pos = int_bit_position (fld);
1007 if (have_predecessor_field
1011 have_predecessor_field = true;
1014 if (DECL_BIT_FIELD (fld))
1017 if (!scalarizable_type_p (ft, const_decl))
1025 HOST_WIDE_INT min_elem_size;
1029 min_elem_size = BITS_PER_UNIT;
1031 if (TYPE_DOMAIN (type) == NULL_TREE
1032 || !tree_fits_shwi_p (TYPE_SIZE (type))
1033 || !tree_fits_shwi_p (TYPE_SIZE (TREE_TYPE (type)))
1034 || (tree_to_shwi (TYPE_SIZE (TREE_TYPE (type))) <= min_elem_size)
1035 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
1037 if (tree_to_shwi (TYPE_SIZE (type)) == 0
1038 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
1039 /* Zero-element array, should not prevent scalarization. */
1041 else if ((tree_to_shwi (TYPE_SIZE (type)) <= 0)
1042 || !tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
1043 /* Variable-length array, do not allow scalarization. */
1046 tree elem = TREE_TYPE (type);
1047 if (!scalarizable_type_p (elem, const_decl))
1056 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1059 contains_view_convert_expr_p (const_tree ref)
1061 while (handled_component_p (ref))
1063 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1065 ref = TREE_OPERAND (ref, 0);
1071 /* Return true if REF contains a VIEW_CONVERT_EXPR or a COMPONENT_REF with a
1072 bit-field field declaration. If TYPE_CHANGING_P is non-NULL, set the bool
1073 it points to will be set if REF contains any of the above or a MEM_REF
1074 expression that effectively performs type conversion. */
1077 contains_vce_or_bfcref_p (const_tree ref, bool *type_changing_p = NULL)
1079 while (handled_component_p (ref))
1081 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
1082 || (TREE_CODE (ref) == COMPONENT_REF
1083 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
1085 if (type_changing_p)
1086 *type_changing_p = true;
1089 ref = TREE_OPERAND (ref, 0);
1092 if (!type_changing_p
1093 || TREE_CODE (ref) != MEM_REF
1094 || TREE_CODE (TREE_OPERAND (ref, 0)) != ADDR_EXPR)
1097 tree mem = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
1098 if (TYPE_MAIN_VARIANT (TREE_TYPE (ref))
1099 != TYPE_MAIN_VARIANT (TREE_TYPE (mem)))
1100 *type_changing_p = true;
1105 /* Search the given tree for a declaration by skipping handled components and
1106 exclude it from the candidates. */
1109 disqualify_base_of_expr (tree t, const char *reason)
1111 t = get_base_address (t);
1112 if (t && DECL_P (t))
1113 disqualify_candidate (t, reason);
1116 /* Scan expression EXPR and create access structures for all accesses to
1117 candidates for scalarization. Return the created access or NULL if none is
1120 static struct access *
1121 build_access_from_expr_1 (tree expr, gimple *stmt, bool write)
1123 struct access *ret = NULL;
1126 if (TREE_CODE (expr) == BIT_FIELD_REF
1127 || TREE_CODE (expr) == IMAGPART_EXPR
1128 || TREE_CODE (expr) == REALPART_EXPR)
1130 expr = TREE_OPERAND (expr, 0);
1134 partial_ref = false;
1136 if (storage_order_barrier_p (expr))
1138 disqualify_base_of_expr (expr, "storage order barrier.");
1142 /* We need to dive through V_C_Es in order to get the size of its parameter
1143 and not the result type. Ada produces such statements. We are also
1144 capable of handling the topmost V_C_E but not any of those buried in other
1145 handled components. */
1146 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1147 expr = TREE_OPERAND (expr, 0);
1149 if (contains_view_convert_expr_p (expr))
1151 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1155 if (TREE_THIS_VOLATILE (expr))
1157 disqualify_base_of_expr (expr, "part of a volatile reference.");
1161 switch (TREE_CODE (expr))
1164 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR)
1172 case ARRAY_RANGE_REF:
1173 ret = create_access (expr, stmt, write);
1180 if (write && partial_ref && ret)
1181 ret->grp_partial_lhs = 1;
1186 /* Scan expression EXPR and create access structures for all accesses to
1187 candidates for scalarization. Return true if any access has been inserted.
1188 STMT must be the statement from which the expression is taken, WRITE must be
1189 true if the expression is a store and false otherwise. */
1192 build_access_from_expr (tree expr, gimple *stmt, bool write)
1194 struct access *access;
1196 access = build_access_from_expr_1 (expr, stmt, write);
1199 /* This means the aggregate is accesses as a whole in a way other than an
1200 assign statement and thus cannot be removed even if we had a scalar
1201 replacement for everything. */
1202 if (cannot_scalarize_away_bitmap)
1203 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1209 /* Return the single non-EH successor edge of BB or NULL if there is none or
1213 single_non_eh_succ (basic_block bb)
1218 FOR_EACH_EDGE (e, ei, bb->succs)
1219 if (!(e->flags & EDGE_EH))
1229 /* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
1230 there is no alternative spot where to put statements SRA might need to
1231 generate after it. The spot we are looking for is an edge leading to a
1232 single non-EH successor, if it exists and is indeed single. RHS may be
1233 NULL, in that case ignore it. */
1236 disqualify_if_bad_bb_terminating_stmt (gimple *stmt, tree lhs, tree rhs)
1238 if (stmt_ends_bb_p (stmt))
1240 if (single_non_eh_succ (gimple_bb (stmt)))
1243 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1245 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1251 /* Return true if the nature of BASE is such that it contains data even if
1252 there is no write to it in the function. */
1255 comes_initialized_p (tree base)
1257 return TREE_CODE (base) == PARM_DECL || constant_decl_p (base);
1260 /* Scan expressions occurring in STMT, create access structures for all accesses
1261 to candidates for scalarization and remove those candidates which occur in
1262 statements or expressions that prevent them from being split apart. Return
1263 true if any access has been inserted. */
1266 build_accesses_from_assign (gimple *stmt)
1269 struct access *lacc, *racc;
1271 if (!gimple_assign_single_p (stmt)
1272 /* Scope clobbers don't influence scalarization. */
1273 || gimple_clobber_p (stmt))
1276 lhs = gimple_assign_lhs (stmt);
1277 rhs = gimple_assign_rhs1 (stmt);
1279 if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
1282 racc = build_access_from_expr_1 (rhs, stmt, false);
1283 lacc = build_access_from_expr_1 (lhs, stmt, true);
1287 lacc->grp_assignment_write = 1;
1288 if (storage_order_barrier_p (rhs))
1289 lacc->grp_unscalarizable_region = 1;
1291 if (should_scalarize_away_bitmap && !is_gimple_reg_type (lacc->type))
1293 bool type_changing_p = false;
1294 contains_vce_or_bfcref_p (lhs, &type_changing_p);
1295 if (type_changing_p)
1296 bitmap_set_bit (cannot_scalarize_away_bitmap,
1297 DECL_UID (lacc->base));
1303 racc->grp_assignment_read = 1;
1304 if (should_scalarize_away_bitmap && !is_gimple_reg_type (racc->type))
1306 bool type_changing_p = false;
1307 contains_vce_or_bfcref_p (rhs, &type_changing_p);
1309 if (type_changing_p || gimple_has_volatile_ops (stmt))
1310 bitmap_set_bit (cannot_scalarize_away_bitmap,
1311 DECL_UID (racc->base));
1313 bitmap_set_bit (should_scalarize_away_bitmap,
1314 DECL_UID (racc->base));
1316 if (storage_order_barrier_p (lhs))
1317 racc->grp_unscalarizable_region = 1;
1321 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1322 && !lacc->grp_unscalarizable_region
1323 && !racc->grp_unscalarizable_region
1324 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1325 && lacc->size == racc->size
1326 && useless_type_conversion_p (lacc->type, racc->type))
1328 struct assign_link *link;
1330 link = assign_link_pool.allocate ();
1331 memset (link, 0, sizeof (struct assign_link));
1335 add_link_to_rhs (racc, link);
1336 add_link_to_lhs (lacc, link);
1337 add_access_to_rhs_work_queue (racc);
1338 add_access_to_lhs_work_queue (lacc);
1340 /* Let's delay marking the areas as written until propagation of accesses
1341 across link, unless the nature of rhs tells us that its data comes
1343 if (!comes_initialized_p (racc->base))
1344 lacc->write = false;
1347 return lacc || racc;
1350 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1351 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1354 asm_visit_addr (gimple *, tree op, tree, void *)
1356 op = get_base_address (op);
1359 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1364 /* Scan function and look for interesting expressions and create access
1365 structures for them. Return true iff any access is created. */
1368 scan_function (void)
1373 FOR_EACH_BB_FN (bb, cfun)
1375 gimple_stmt_iterator gsi;
1376 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1378 gimple *stmt = gsi_stmt (gsi);
1382 switch (gimple_code (stmt))
1385 t = gimple_return_retval (as_a <greturn *> (stmt));
1387 ret |= build_access_from_expr (t, stmt, false);
1391 ret |= build_accesses_from_assign (stmt);
1395 for (i = 0; i < gimple_call_num_args (stmt); i++)
1396 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1399 t = gimple_call_lhs (stmt);
1400 if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
1402 /* If the STMT is a call to DEFERRED_INIT, avoid setting
1403 cannot_scalarize_away_bitmap. */
1404 if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
1405 ret |= !!build_access_from_expr_1 (t, stmt, true);
1407 ret |= build_access_from_expr (t, stmt, true);
1413 gasm *asm_stmt = as_a <gasm *> (stmt);
1414 walk_stmt_load_store_addr_ops (asm_stmt, NULL, NULL, NULL,
1416 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
1418 t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
1419 ret |= build_access_from_expr (t, asm_stmt, false);
1421 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
1423 t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
1424 ret |= build_access_from_expr (t, asm_stmt, true);
1438 /* Helper of QSORT function. There are pointers to accesses in the array. An
1439 access is considered smaller than another if it has smaller offset or if the
1440 offsets are the same but is size is bigger. */
1443 compare_access_positions (const void *a, const void *b)
1445 const access_p *fp1 = (const access_p *) a;
1446 const access_p *fp2 = (const access_p *) b;
1447 const access_p f1 = *fp1;
1448 const access_p f2 = *fp2;
1450 if (f1->offset != f2->offset)
1451 return f1->offset < f2->offset ? -1 : 1;
1453 if (f1->size == f2->size)
1455 if (f1->type == f2->type)
1457 /* Put any non-aggregate type before any aggregate type. */
1458 else if (!is_gimple_reg_type (f1->type)
1459 && is_gimple_reg_type (f2->type))
1461 else if (is_gimple_reg_type (f1->type)
1462 && !is_gimple_reg_type (f2->type))
1464 /* Put any complex or vector type before any other scalar type. */
1465 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1466 && TREE_CODE (f1->type) != VECTOR_TYPE
1467 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1468 || TREE_CODE (f2->type) == VECTOR_TYPE))
1470 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1471 || TREE_CODE (f1->type) == VECTOR_TYPE)
1472 && TREE_CODE (f2->type) != COMPLEX_TYPE
1473 && TREE_CODE (f2->type) != VECTOR_TYPE)
1475 /* Put any integral type before any non-integral type. When splicing, we
1476 make sure that those with insufficient precision and occupying the
1477 same space are not scalarized. */
1478 else if (INTEGRAL_TYPE_P (f1->type)
1479 && !INTEGRAL_TYPE_P (f2->type))
1481 else if (!INTEGRAL_TYPE_P (f1->type)
1482 && INTEGRAL_TYPE_P (f2->type))
1484 /* Put the integral type with the bigger precision first. */
1485 else if (INTEGRAL_TYPE_P (f1->type)
1486 && INTEGRAL_TYPE_P (f2->type)
1487 && (TYPE_PRECISION (f2->type) != TYPE_PRECISION (f1->type)))
1488 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1489 /* Stabilize the sort. */
1490 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1493 /* We want the bigger accesses first, thus the opposite operator in the next
1495 return f1->size > f2->size ? -1 : 1;
1499 /* Append a name of the declaration to the name obstack. A helper function for
1503 make_fancy_decl_name (tree decl)
1507 tree name = DECL_NAME (decl);
1509 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1510 IDENTIFIER_LENGTH (name));
1513 sprintf (buffer, "D%u", DECL_UID (decl));
1514 obstack_grow (&name_obstack, buffer, strlen (buffer));
1518 /* Helper for make_fancy_name. */
1521 make_fancy_name_1 (tree expr)
1528 make_fancy_decl_name (expr);
1532 switch (TREE_CODE (expr))
1535 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1536 obstack_1grow (&name_obstack, '$');
1537 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1541 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1542 obstack_1grow (&name_obstack, '$');
1543 /* Arrays with only one element may not have a constant as their
1545 index = TREE_OPERAND (expr, 1);
1546 if (TREE_CODE (index) != INTEGER_CST)
1548 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1549 obstack_grow (&name_obstack, buffer, strlen (buffer));
1553 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1557 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1558 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1560 obstack_1grow (&name_obstack, '$');
1561 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1562 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1563 obstack_grow (&name_obstack, buffer, strlen (buffer));
1570 gcc_unreachable (); /* we treat these as scalars. */
1577 /* Create a human readable name for replacement variable of ACCESS. */
1580 make_fancy_name (tree expr)
1582 make_fancy_name_1 (expr);
1583 obstack_1grow (&name_obstack, '\0');
1584 return XOBFINISH (&name_obstack, char *);
1587 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1588 EXP_TYPE at the given OFFSET and with storage order REVERSE. If BASE is
1589 something for which get_addr_base_and_unit_offset returns NULL, gsi must
1590 be non-NULL and is used to insert new statements either before or below
1591 the current one as specified by INSERT_AFTER. This function is not capable
1592 of handling bitfields. */
1595 build_ref_for_offset (location_t loc, tree base, poly_int64 offset,
1596 bool reverse, tree exp_type, gimple_stmt_iterator *gsi,
1599 tree prev_base = base;
1602 poly_int64 base_offset;
1603 unsigned HOST_WIDE_INT misalign;
1606 /* Preserve address-space information. */
1607 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1608 if (as != TYPE_ADDR_SPACE (exp_type))
1609 exp_type = build_qualified_type (exp_type,
1610 TYPE_QUALS (exp_type)
1611 | ENCODE_QUAL_ADDR_SPACE (as));
1613 poly_int64 byte_offset = exact_div (offset, BITS_PER_UNIT);
1614 get_object_alignment_1 (base, &align, &misalign);
1615 base = get_addr_base_and_unit_offset (base, &base_offset);
1617 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1618 offset such as array[var_index]. */
1624 gcc_checking_assert (gsi);
1625 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)));
1626 addr = build_fold_addr_expr (unshare_expr (prev_base));
1627 STRIP_USELESS_TYPE_CONVERSION (addr);
1628 stmt = gimple_build_assign (tmp, addr);
1629 gimple_set_location (stmt, loc);
1631 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1633 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1635 off = build_int_cst (reference_alias_ptr_type (prev_base), byte_offset);
1638 else if (TREE_CODE (base) == MEM_REF)
1640 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1641 base_offset + byte_offset);
1642 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1643 base = unshare_expr (TREE_OPERAND (base, 0));
1647 off = build_int_cst (reference_alias_ptr_type (prev_base),
1648 base_offset + byte_offset);
1649 base = build_fold_addr_expr (unshare_expr (base));
1652 unsigned int align_bound = known_alignment (misalign + offset);
1653 if (align_bound != 0)
1654 align = MIN (align, align_bound);
1655 if (align != TYPE_ALIGN (exp_type))
1656 exp_type = build_aligned_type (exp_type, align);
1658 mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1659 REF_REVERSE_STORAGE_ORDER (mem_ref) = reverse;
1660 if (TREE_THIS_VOLATILE (prev_base))
1661 TREE_THIS_VOLATILE (mem_ref) = 1;
1662 if (TREE_SIDE_EFFECTS (prev_base))
1663 TREE_SIDE_EFFECTS (mem_ref) = 1;
1667 /* Construct and return a memory reference that is equal to a portion of
1668 MODEL->expr but is based on BASE. If this cannot be done, return NULL. */
1671 build_reconstructed_reference (location_t, tree base, struct access *model)
1673 tree expr = model->expr;
1674 /* We have to make sure to start just below the outermost union. */
1675 tree start_expr = expr;
1676 while (handled_component_p (expr))
1678 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == UNION_TYPE)
1680 expr = TREE_OPERAND (expr, 0);
1684 tree prev_expr = NULL_TREE;
1685 while (!types_compatible_p (TREE_TYPE (expr), TREE_TYPE (base)))
1687 if (!handled_component_p (expr))
1690 expr = TREE_OPERAND (expr, 0);
1693 /* Guard against broken VIEW_CONVERT_EXPRs... */
1697 TREE_OPERAND (prev_expr, 0) = base;
1698 tree ref = unshare_expr (model->expr);
1699 TREE_OPERAND (prev_expr, 0) = expr;
1703 /* Construct a memory reference to a part of an aggregate BASE at the given
1704 OFFSET and of the same type as MODEL. In case this is a reference to a
1705 bit-field, the function will replicate the last component_ref of model's
1706 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1707 build_ref_for_offset. */
1710 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1711 struct access *model, gimple_stmt_iterator *gsi,
1714 gcc_assert (offset >= 0);
1715 if (TREE_CODE (model->expr) == COMPONENT_REF
1716 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1718 /* This access represents a bit-field. */
1719 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1721 offset -= int_bit_position (fld);
1722 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1723 t = build_ref_for_offset (loc, base, offset, model->reverse, exp_type,
1725 /* The flag will be set on the record type. */
1726 REF_REVERSE_STORAGE_ORDER (t) = 0;
1727 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1733 if (model->grp_same_access_path
1734 && !TREE_THIS_VOLATILE (base)
1735 && (TYPE_ADDR_SPACE (TREE_TYPE (base))
1736 == TYPE_ADDR_SPACE (TREE_TYPE (model->expr)))
1737 && offset <= model->offset
1738 /* build_reconstructed_reference can still fail if we have already
1739 massaged BASE because of another type incompatibility. */
1740 && (res = build_reconstructed_reference (loc, base, model)))
1743 return build_ref_for_offset (loc, base, offset, model->reverse,
1744 model->type, gsi, insert_after);
1748 /* Attempt to build a memory reference that we could but into a gimple
1749 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1750 create statements and return s NULL instead. This function also ignores
1751 alignment issues and so its results should never end up in non-debug
1755 build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1756 struct access *model)
1758 poly_int64 base_offset;
1761 if (TREE_CODE (model->expr) == COMPONENT_REF
1762 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1765 base = get_addr_base_and_unit_offset (base, &base_offset);
1768 if (TREE_CODE (base) == MEM_REF)
1770 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1771 base_offset + offset / BITS_PER_UNIT);
1772 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1773 base = unshare_expr (TREE_OPERAND (base, 0));
1777 off = build_int_cst (reference_alias_ptr_type (base),
1778 base_offset + offset / BITS_PER_UNIT);
1779 base = build_fold_addr_expr (unshare_expr (base));
1782 return fold_build2_loc (loc, MEM_REF, model->type, base, off);
1785 /* Construct a memory reference consisting of component_refs and array_refs to
1786 a part of an aggregate *RES (which is of type TYPE). The requested part
1787 should have type EXP_TYPE at be the given OFFSET. This function might not
1788 succeed, it returns true when it does and only then *RES points to something
1789 meaningful. This function should be used only to build expressions that we
1790 might need to present to user (e.g. in warnings). In all other situations,
1791 build_ref_for_model or build_ref_for_offset should be used instead. */
1794 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1800 tree tr_size, index, minidx;
1801 HOST_WIDE_INT el_size;
1803 if (offset == 0 && exp_type
1804 && types_compatible_p (exp_type, type))
1807 switch (TREE_CODE (type))
1810 case QUAL_UNION_TYPE:
1812 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1814 HOST_WIDE_INT pos, size;
1815 tree tr_pos, expr, *expr_ptr;
1817 if (TREE_CODE (fld) != FIELD_DECL)
1820 tr_pos = bit_position (fld);
1821 if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
1823 pos = tree_to_uhwi (tr_pos);
1824 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1825 tr_size = DECL_SIZE (fld);
1826 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1828 size = tree_to_uhwi (tr_size);
1834 else if (pos > offset || (pos + size) <= offset)
1837 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1840 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1841 offset - pos, exp_type))
1850 tr_size = TYPE_SIZE (TREE_TYPE (type));
1851 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1853 el_size = tree_to_uhwi (tr_size);
1855 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1856 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1858 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1859 if (!integer_zerop (minidx))
1860 index = int_const_binop (PLUS_EXPR, index, minidx);
1861 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1862 NULL_TREE, NULL_TREE);
1863 offset = offset % el_size;
1864 type = TREE_TYPE (type);
1879 /* Print message to dump file why a variable was rejected. */
1882 reject (tree var, const char *msg)
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1886 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1887 print_generic_expr (dump_file, var);
1888 fprintf (dump_file, "\n");
1892 /* Return true if VAR is a candidate for SRA. */
1895 maybe_add_sra_candidate (tree var)
1897 tree type = TREE_TYPE (var);
1901 if (!AGGREGATE_TYPE_P (type))
1903 reject (var, "not aggregate");
1906 /* Allow constant-pool entries that "need to live in memory". */
1907 if (needs_to_live_in_memory (var) && !constant_decl_p (var))
1909 reject (var, "needs to live in memory");
1912 if (TREE_THIS_VOLATILE (var))
1914 reject (var, "is volatile");
1917 if (!COMPLETE_TYPE_P (type))
1919 reject (var, "has incomplete type");
1922 if (!tree_fits_shwi_p (TYPE_SIZE (type)))
1924 reject (var, "type size not fixed");
1927 if (tree_to_shwi (TYPE_SIZE (type)) == 0)
1929 reject (var, "type size is zero");
1932 if (type_internals_preclude_sra_p (type, &msg))
1937 if (/* Fix for PR 41089. tree-stdarg.cc needs to have va_lists intact but
1938 we also want to schedule it rather late. Thus we ignore it in
1940 (sra_mode == SRA_MODE_EARLY_INTRA
1941 && is_va_list_type (type)))
1943 reject (var, "is va_list");
1947 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1948 slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
1951 if (dump_file && (dump_flags & TDF_DETAILS))
1953 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1954 print_generic_expr (dump_file, var);
1955 fprintf (dump_file, "\n");
1961 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1962 those with type which is suitable for scalarization. */
1965 find_var_candidates (void)
1971 for (parm = DECL_ARGUMENTS (current_function_decl);
1973 parm = DECL_CHAIN (parm))
1974 ret |= maybe_add_sra_candidate (parm);
1976 FOR_EACH_LOCAL_DECL (cfun, i, var)
1981 ret |= maybe_add_sra_candidate (var);
1987 /* Return true if EXP is a reference chain of COMPONENT_REFs and AREAY_REFs
1988 ending either with a DECL or a MEM_REF with zero offset. */
1991 path_comparable_for_same_access (tree expr)
1993 while (handled_component_p (expr))
1995 if (TREE_CODE (expr) == ARRAY_REF)
1997 /* SSA name indices can occur here too when the array is of sie one.
1998 But we cannot just re-use array_refs with SSA names elsewhere in
1999 the function, so disallow non-constant indices. TODO: Remove this
2000 limitation after teaching build_reconstructed_reference to replace
2001 the index with the index type lower bound. */
2002 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST)
2005 expr = TREE_OPERAND (expr, 0);
2008 if (TREE_CODE (expr) == MEM_REF)
2010 if (!zerop (TREE_OPERAND (expr, 1)))
2014 gcc_assert (DECL_P (expr));
2019 /* Assuming that EXP1 consists of only COMPONENT_REFs and ARRAY_REFs, return
2020 true if the chain of these handled components are exactly the same as EXP2
2021 and the expression under them is the same DECL or an equivalent MEM_REF.
2022 The reference picked by compare_access_positions must go to EXP1. */
2025 same_access_path_p (tree exp1, tree exp2)
2027 if (TREE_CODE (exp1) != TREE_CODE (exp2))
2029 /* Special case single-field structures loaded sometimes as the field
2030 and sometimes as the structure. If the field is of a scalar type,
2031 compare_access_positions will put it into exp1.
2033 TODO: The gimple register type condition can be removed if teach
2034 compare_access_positions to put inner types first. */
2035 if (is_gimple_reg_type (TREE_TYPE (exp1))
2036 && TREE_CODE (exp1) == COMPONENT_REF
2037 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (exp1, 0)))
2038 == TYPE_MAIN_VARIANT (TREE_TYPE (exp2))))
2039 exp1 = TREE_OPERAND (exp1, 0);
2044 if (!operand_equal_p (exp1, exp2, OEP_ADDRESS_OF))
2050 /* Sort all accesses for the given variable, check for partial overlaps and
2051 return NULL if there are any. If there are none, pick a representative for
2052 each combination of offset and size and create a linked list out of them.
2053 Return the pointer to the first representative and make sure it is the first
2054 one in the vector of accesses. */
2056 static struct access *
2057 sort_and_splice_var_accesses (tree var)
2059 int i, j, access_count;
2060 struct access *res, **prev_acc_ptr = &res;
2061 vec<access_p> *access_vec;
2063 HOST_WIDE_INT low = -1, high = 0;
2065 access_vec = get_base_access_vector (var);
2068 access_count = access_vec->length ();
2070 /* Sort by <OFFSET, SIZE>. */
2071 access_vec->qsort (compare_access_positions);
2074 while (i < access_count)
2076 struct access *access = (*access_vec)[i];
2077 bool grp_write = access->write;
2078 bool grp_read = !access->write;
2079 bool grp_scalar_write = access->write
2080 && is_gimple_reg_type (access->type);
2081 bool grp_scalar_read = !access->write
2082 && is_gimple_reg_type (access->type);
2083 bool grp_assignment_read = access->grp_assignment_read;
2084 bool grp_assignment_write = access->grp_assignment_write;
2085 bool multiple_scalar_reads = false;
2086 bool grp_partial_lhs = access->grp_partial_lhs;
2087 bool first_scalar = is_gimple_reg_type (access->type);
2088 bool unscalarizable_region = access->grp_unscalarizable_region;
2089 bool grp_same_access_path = true;
2090 bool bf_non_full_precision
2091 = (INTEGRAL_TYPE_P (access->type)
2092 && TYPE_PRECISION (access->type) != access->size
2093 && TREE_CODE (access->expr) == COMPONENT_REF
2094 && DECL_BIT_FIELD (TREE_OPERAND (access->expr, 1)));
2096 if (first || access->offset >= high)
2099 low = access->offset;
2100 high = access->offset + access->size;
2102 else if (access->offset > low && access->offset + access->size > high)
2105 gcc_assert (access->offset >= low
2106 && access->offset + access->size <= high);
2108 grp_same_access_path = path_comparable_for_same_access (access->expr);
2111 while (j < access_count)
2113 struct access *ac2 = (*access_vec)[j];
2114 if (ac2->offset != access->offset || ac2->size != access->size)
2119 grp_scalar_write = (grp_scalar_write
2120 || is_gimple_reg_type (ac2->type));
2125 if (is_gimple_reg_type (ac2->type))
2127 if (grp_scalar_read)
2128 multiple_scalar_reads = true;
2130 grp_scalar_read = true;
2133 grp_assignment_read |= ac2->grp_assignment_read;
2134 grp_assignment_write |= ac2->grp_assignment_write;
2135 grp_partial_lhs |= ac2->grp_partial_lhs;
2136 unscalarizable_region |= ac2->grp_unscalarizable_region;
2137 relink_to_new_repr (access, ac2);
2139 /* If there are both aggregate-type and scalar-type accesses with
2140 this combination of size and offset, the comparison function
2141 should have put the scalars first. */
2142 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
2143 /* It also prefers integral types to non-integral. However, when the
2144 precision of the selected type does not span the entire area and
2145 should also be used for a non-integer (i.e. float), we must not
2146 let that happen. Normally analyze_access_subtree expands the type
2147 to cover the entire area but for bit-fields it doesn't. */
2148 if (bf_non_full_precision && !INTEGRAL_TYPE_P (ac2->type))
2150 if (dump_file && (dump_flags & TDF_DETAILS))
2152 fprintf (dump_file, "Cannot scalarize the following access "
2153 "because insufficient precision integer type was "
2155 dump_access (dump_file, access, false);
2157 unscalarizable_region = true;
2160 if (grp_same_access_path
2161 && !same_access_path_p (access->expr, ac2->expr))
2162 grp_same_access_path = false;
2164 ac2->group_representative = access;
2170 access->group_representative = access;
2171 access->grp_write = grp_write;
2172 access->grp_read = grp_read;
2173 access->grp_scalar_read = grp_scalar_read;
2174 access->grp_scalar_write = grp_scalar_write;
2175 access->grp_assignment_read = grp_assignment_read;
2176 access->grp_assignment_write = grp_assignment_write;
2177 access->grp_hint = multiple_scalar_reads && !constant_decl_p (var);
2178 access->grp_partial_lhs = grp_partial_lhs;
2179 access->grp_unscalarizable_region = unscalarizable_region;
2180 access->grp_same_access_path = grp_same_access_path;
2182 *prev_acc_ptr = access;
2183 prev_acc_ptr = &access->next_grp;
2186 gcc_assert (res == (*access_vec)[0]);
2190 /* Create a variable for the given ACCESS which determines the type, name and a
2191 few other properties. Return the variable declaration and store it also to
2192 ACCESS->replacement. REG_TREE is used when creating a declaration to base a
2193 default-definition SSA name on in order to facilitate an uninitialized
2194 warning. It is used instead of the actual ACCESS type if that is not of a
2195 gimple register type. */
2198 create_access_replacement (struct access *access, tree reg_type = NULL_TREE)
2202 tree type = access->type;
2203 if (reg_type && !is_gimple_reg_type (type))
2206 if (access->grp_to_be_debug_replaced)
2208 repl = create_tmp_var_raw (access->type);
2209 DECL_CONTEXT (repl) = current_function_decl;
2212 /* Drop any special alignment on the type if it's not on the main
2213 variant. This avoids issues with weirdo ABIs like AAPCS. */
2214 repl = create_tmp_var (build_qualified_type (TYPE_MAIN_VARIANT (type),
2215 TYPE_QUALS (type)), "SR");
2216 if (access->grp_partial_lhs
2217 && is_gimple_reg_type (type))
2218 DECL_NOT_GIMPLE_REG_P (repl) = 1;
2220 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
2221 DECL_ARTIFICIAL (repl) = 1;
2222 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
2224 if (DECL_NAME (access->base)
2225 && !DECL_IGNORED_P (access->base)
2226 && !DECL_ARTIFICIAL (access->base))
2228 char *pretty_name = make_fancy_name (access->expr);
2229 tree debug_expr = unshare_expr_without_location (access->expr), d;
2232 DECL_NAME (repl) = get_identifier (pretty_name);
2233 DECL_NAMELESS (repl) = 1;
2234 obstack_free (&name_obstack, pretty_name);
2236 /* Get rid of any SSA_NAMEs embedded in debug_expr,
2237 as DECL_DEBUG_EXPR isn't considered when looking for still
2238 used SSA_NAMEs and thus they could be freed. All debug info
2239 generation cares is whether something is constant or variable
2240 and that get_ref_base_and_extent works properly on the
2241 expression. It cannot handle accesses at a non-constant offset
2242 though, so just give up in those cases. */
2243 for (d = debug_expr;
2244 !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
2245 d = TREE_OPERAND (d, 0))
2246 switch (TREE_CODE (d))
2249 case ARRAY_RANGE_REF:
2250 if (TREE_OPERAND (d, 1)
2251 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
2253 if (TREE_OPERAND (d, 3)
2254 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
2258 if (TREE_OPERAND (d, 2)
2259 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
2263 if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
2266 d = TREE_OPERAND (d, 0);
2273 SET_DECL_DEBUG_EXPR (repl, debug_expr);
2274 DECL_HAS_DEBUG_EXPR_P (repl) = 1;
2276 if (access->grp_no_warning)
2277 suppress_warning (repl /* Be more selective! */);
2279 copy_warning (repl, access->base);
2282 suppress_warning (repl /* Be more selective! */);
2286 if (access->grp_to_be_debug_replaced)
2288 fprintf (dump_file, "Created a debug-only replacement for ");
2289 print_generic_expr (dump_file, access->base);
2290 fprintf (dump_file, " offset: %u, size: %u\n",
2291 (unsigned) access->offset, (unsigned) access->size);
2295 fprintf (dump_file, "Created a replacement for ");
2296 print_generic_expr (dump_file, access->base);
2297 fprintf (dump_file, " offset: %u, size: %u: ",
2298 (unsigned) access->offset, (unsigned) access->size);
2299 print_generic_expr (dump_file, repl, TDF_UID);
2300 fprintf (dump_file, "\n");
2303 sra_stats.replacements++;
2308 /* Return ACCESS scalar replacement, which must exist. */
2311 get_access_replacement (struct access *access)
2313 gcc_checking_assert (access->replacement_decl);
2314 return access->replacement_decl;
2318 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2319 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2320 to it is not "within" the root. Return false iff some accesses partially
2324 build_access_subtree (struct access **access)
2326 struct access *root = *access, *last_child = NULL;
2327 HOST_WIDE_INT limit = root->offset + root->size;
2329 *access = (*access)->next_grp;
2330 while (*access && (*access)->offset + (*access)->size <= limit)
2333 root->first_child = *access;
2335 last_child->next_sibling = *access;
2336 last_child = *access;
2337 (*access)->parent = root;
2338 (*access)->grp_write |= root->grp_write;
2340 if (!build_access_subtree (access))
2344 if (*access && (*access)->offset < limit)
2350 /* Build a tree of access representatives, ACCESS is the pointer to the first
2351 one, others are linked in a list by the next_grp field. Return false iff
2352 some accesses partially overlap. */
2355 build_access_trees (struct access *access)
2359 struct access *root = access;
2361 if (!build_access_subtree (&access))
2363 root->next_grp = access;
2368 /* Traverse the access forest where ROOT is the first root and verify that
2369 various important invariants hold true. */
2372 verify_sra_access_forest (struct access *root)
2374 struct access *access = root;
2375 tree first_base = root->base;
2376 gcc_assert (DECL_P (first_base));
2379 gcc_assert (access->base == first_base);
2381 gcc_assert (access->offset >= access->parent->offset
2382 && access->size <= access->parent->size);
2383 if (access->next_sibling)
2384 gcc_assert (access->next_sibling->offset
2385 >= access->offset + access->size);
2387 poly_int64 poffset, psize, pmax_size;
2389 tree base = get_ref_base_and_extent (access->expr, &poffset, &psize,
2390 &pmax_size, &reverse);
2391 HOST_WIDE_INT offset, size, max_size;
2392 if (!poffset.is_constant (&offset)
2393 || !psize.is_constant (&size)
2394 || !pmax_size.is_constant (&max_size))
2396 gcc_assert (base == first_base);
2397 gcc_assert (offset == access->offset);
2398 gcc_assert (access->grp_unscalarizable_region
2399 || access->grp_total_scalarization
2400 || size == max_size);
2401 gcc_assert (access->grp_unscalarizable_region
2402 || !is_gimple_reg_type (access->type)
2403 || size == access->size);
2404 gcc_assert (reverse == access->reverse);
2406 if (access->first_child)
2408 gcc_assert (access->first_child->parent == access);
2409 access = access->first_child;
2411 else if (access->next_sibling)
2413 gcc_assert (access->next_sibling->parent == access->parent);
2414 access = access->next_sibling;
2418 while (access->parent && !access->next_sibling)
2419 access = access->parent;
2420 if (access->next_sibling)
2421 access = access->next_sibling;
2424 gcc_assert (access == root);
2425 root = root->next_grp;
2433 /* Verify access forests of all candidates with accesses by calling
2434 verify_access_forest on each on them. */
2437 verify_all_sra_access_forests (void)
2441 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2443 tree var = candidate (i);
2444 struct access *access = get_first_repr_for_decl (var);
2447 gcc_assert (access->base == var);
2448 verify_sra_access_forest (access);
2453 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2457 expr_with_var_bounded_array_refs_p (tree expr)
2459 while (handled_component_p (expr))
2461 if (TREE_CODE (expr) == ARRAY_REF
2462 && !tree_fits_shwi_p (array_ref_low_bound (expr)))
2464 expr = TREE_OPERAND (expr, 0);
2469 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2470 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. If TOTALLY
2471 is set, we are totally scalarizing the aggregate. Also set all sorts of
2472 access flags appropriately along the way, notably always set grp_read and
2473 grp_assign_read according to MARK_READ and grp_write when MARK_WRITE is
2476 Creating a replacement for a scalar access is considered beneficial if its
2477 grp_hint ot TOTALLY is set (this means either that there is more than one
2478 direct read access or that we are attempting total scalarization) or
2479 according to the following table:
2481 Access written to through a scalar type (once or more times)
2483 | Written to in an assignment statement
2485 | | Access read as scalar _once_
2487 | | | Read in an assignment statement
2489 | | | | Scalarize Comment
2490 -----------------------------------------------------------------------------
2491 0 0 0 0 No access for the scalar
2492 0 0 0 1 No access for the scalar
2493 0 0 1 0 No Single read - won't help
2494 0 0 1 1 No The same case
2495 0 1 0 0 No access for the scalar
2496 0 1 0 1 No access for the scalar
2497 0 1 1 0 Yes s = *g; return s.i;
2498 0 1 1 1 Yes The same case as above
2499 1 0 0 0 No Won't help
2500 1 0 0 1 Yes s.i = 1; *g = s;
2501 1 0 1 0 Yes s.i = 5; g = s.i;
2502 1 0 1 1 Yes The same case as above
2503 1 1 0 0 No Won't help.
2504 1 1 0 1 Yes s.i = 1; *g = s;
2505 1 1 1 0 Yes s = *g; return s.i;
2506 1 1 1 1 Yes Any of the above yeses */
2509 analyze_access_subtree (struct access *root, struct access *parent,
2510 bool allow_replacements, bool totally)
2512 struct access *child;
2513 HOST_WIDE_INT limit = root->offset + root->size;
2514 HOST_WIDE_INT covered_to = root->offset;
2515 bool scalar = is_gimple_reg_type (root->type);
2516 bool hole = false, sth_created = false;
2520 if (parent->grp_read)
2522 if (parent->grp_assignment_read)
2523 root->grp_assignment_read = 1;
2524 if (parent->grp_write)
2525 root->grp_write = 1;
2526 if (parent->grp_assignment_write)
2527 root->grp_assignment_write = 1;
2528 if (!parent->grp_same_access_path)
2529 root->grp_same_access_path = 0;
2532 if (root->grp_unscalarizable_region)
2533 allow_replacements = false;
2535 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2536 allow_replacements = false;
2538 if (!totally && root->grp_result_of_prop_from_lhs)
2539 allow_replacements = false;
2541 for (child = root->first_child; child; child = child->next_sibling)
2543 hole |= covered_to < child->offset;
2544 sth_created |= analyze_access_subtree (child, root,
2545 allow_replacements && !scalar,
2548 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2549 if (child->grp_covered)
2550 covered_to += child->size;
2555 if (allow_replacements && scalar && !root->first_child
2556 && (totally || !root->grp_total_scalarization)
2559 || ((root->grp_scalar_read || root->grp_assignment_read)
2560 && (root->grp_scalar_write || root->grp_assignment_write))))
2562 /* Always create access replacements that cover the whole access.
2563 For integral types this means the precision has to match.
2564 Avoid assumptions based on the integral type kind, too. */
2565 if (INTEGRAL_TYPE_P (root->type)
2566 && (TREE_CODE (root->type) != INTEGER_TYPE
2567 || TYPE_PRECISION (root->type) != root->size)
2568 /* But leave bitfield accesses alone. */
2569 && (TREE_CODE (root->expr) != COMPONENT_REF
2570 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2572 tree rt = root->type;
2573 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2574 && (root->size % BITS_PER_UNIT) == 0);
2575 root->type = build_nonstandard_integer_type (root->size,
2576 TYPE_UNSIGNED (rt));
2577 root->expr = build_ref_for_offset (UNKNOWN_LOCATION, root->base,
2578 root->offset, root->reverse,
2579 root->type, NULL, false);
2581 if (dump_file && (dump_flags & TDF_DETAILS))
2583 fprintf (dump_file, "Changing the type of a replacement for ");
2584 print_generic_expr (dump_file, root->base);
2585 fprintf (dump_file, " offset: %u, size: %u ",
2586 (unsigned) root->offset, (unsigned) root->size);
2587 fprintf (dump_file, " to an integer.\n");
2591 root->grp_to_be_replaced = 1;
2592 root->replacement_decl = create_access_replacement (root);
2598 if (allow_replacements
2599 && scalar && !root->first_child
2600 && !root->grp_total_scalarization
2601 && (root->grp_scalar_write || root->grp_assignment_write)
2602 && !bitmap_bit_p (cannot_scalarize_away_bitmap,
2603 DECL_UID (root->base)))
2605 gcc_checking_assert (!root->grp_scalar_read
2606 && !root->grp_assignment_read);
2608 if (MAY_HAVE_DEBUG_BIND_STMTS)
2610 root->grp_to_be_debug_replaced = 1;
2611 root->replacement_decl = create_access_replacement (root);
2615 if (covered_to < limit)
2617 if (scalar || !allow_replacements)
2618 root->grp_total_scalarization = 0;
2621 if (!hole || totally)
2622 root->grp_covered = 1;
2623 else if (root->grp_write || comes_initialized_p (root->base))
2624 root->grp_unscalarized_data = 1; /* not covered and written to */
2628 /* Analyze all access trees linked by next_grp by the means of
2629 analyze_access_subtree. */
2631 analyze_access_trees (struct access *access)
2637 if (analyze_access_subtree (access, NULL, true,
2638 access->grp_total_scalarization))
2640 access = access->next_grp;
2646 /* Return true iff a potential new child of ACC at offset OFFSET and with size
2647 SIZE would conflict with an already existing one. If exactly such a child
2648 already exists in ACC, store a pointer to it in EXACT_MATCH. */
2651 child_would_conflict_in_acc (struct access *acc, HOST_WIDE_INT norm_offset,
2652 HOST_WIDE_INT size, struct access **exact_match)
2654 struct access *child;
2656 for (child = acc->first_child; child; child = child->next_sibling)
2658 if (child->offset == norm_offset && child->size == size)
2660 *exact_match = child;
2664 if (child->offset < norm_offset + size
2665 && child->offset + child->size > norm_offset)
2672 /* Create a new child access of PARENT, with all properties just like MODEL
2673 except for its offset and with its grp_write false and grp_read true.
2674 Return the new access or NULL if it cannot be created. Note that this
2675 access is created long after all splicing and sorting, it's not located in
2676 any access vector and is automatically a representative of its group. Set
2677 the gpr_write flag of the new accesss if SET_GRP_WRITE is true. */
2679 static struct access *
2680 create_artificial_child_access (struct access *parent, struct access *model,
2681 HOST_WIDE_INT new_offset,
2682 bool set_grp_read, bool set_grp_write)
2684 struct access **child;
2685 tree expr = parent->base;
2687 gcc_assert (!model->grp_unscalarizable_region);
2689 struct access *access = access_pool.allocate ();
2690 memset (access, 0, sizeof (struct access));
2691 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2694 access->grp_no_warning = true;
2695 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2696 new_offset, model, NULL, false);
2699 access->base = parent->base;
2700 access->expr = expr;
2701 access->offset = new_offset;
2702 access->size = model->size;
2703 access->type = model->type;
2704 access->parent = parent;
2705 access->grp_read = set_grp_read;
2706 access->grp_write = set_grp_write;
2707 access->reverse = model->reverse;
2709 child = &parent->first_child;
2710 while (*child && (*child)->offset < new_offset)
2711 child = &(*child)->next_sibling;
2713 access->next_sibling = *child;
2720 /* Beginning with ACCESS, traverse its whole access subtree and mark all
2721 sub-trees as written to. If any of them has not been marked so previously
2722 and has assignment links leading from it, re-enqueue it. */
2725 subtree_mark_written_and_rhs_enqueue (struct access *access)
2727 if (access->grp_write)
2729 access->grp_write = true;
2730 add_access_to_rhs_work_queue (access);
2732 struct access *child;
2733 for (child = access->first_child; child; child = child->next_sibling)
2734 subtree_mark_written_and_rhs_enqueue (child);
2737 /* If there is still budget to create a propagation access for DECL, return
2738 true and decrement the budget. Otherwise return false. */
2741 budget_for_propagation_access (tree decl)
2743 unsigned b, *p = propagation_budget->get (decl);
2747 b = param_sra_max_propagations;
2753 if (b == 0 && dump_file && (dump_flags & TDF_DETAILS))
2755 fprintf (dump_file, "The propagation budget of ");
2756 print_generic_expr (dump_file, decl);
2757 fprintf (dump_file, " (UID: %u) has been exhausted.\n", DECL_UID (decl));
2759 propagation_budget->put (decl, b);
2763 /* Return true if ACC or any of its subaccesses has grp_child set. */
2766 access_or_its_child_written (struct access *acc)
2770 for (struct access *sub = acc->first_child; sub; sub = sub->next_sibling)
2771 if (access_or_its_child_written (sub))
2776 /* Propagate subaccesses and grp_write flags of RACC across an assignment link
2777 to LACC. Enqueue sub-accesses as necessary so that the write flag is
2778 propagated transitively. Return true if anything changed. Additionally, if
2779 RACC is a scalar access but LACC is not, change the type of the latter, if
2783 propagate_subaccesses_from_rhs (struct access *lacc, struct access *racc)
2785 struct access *rchild;
2786 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2789 /* IF the LHS is still not marked as being written to, we only need to do so
2790 if the RHS at this level actually was. */
2791 if (!lacc->grp_write)
2793 gcc_checking_assert (!comes_initialized_p (racc->base));
2794 if (racc->grp_write)
2796 subtree_mark_written_and_rhs_enqueue (lacc);
2801 if (is_gimple_reg_type (lacc->type)
2802 || lacc->grp_unscalarizable_region
2803 || racc->grp_unscalarizable_region)
2805 if (!lacc->grp_write)
2808 subtree_mark_written_and_rhs_enqueue (lacc);
2813 if (is_gimple_reg_type (racc->type))
2815 if (!lacc->grp_write)
2818 subtree_mark_written_and_rhs_enqueue (lacc);
2820 if (!lacc->first_child && !racc->first_child)
2822 /* We are about to change the access type from aggregate to scalar,
2823 so we need to put the reverse flag onto the access, if any. */
2825 = TYPE_REVERSE_STORAGE_ORDER (lacc->type)
2826 && !POINTER_TYPE_P (racc->type)
2827 && !VECTOR_TYPE_P (racc->type);
2828 tree t = lacc->base;
2830 lacc->type = racc->type;
2831 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2832 lacc->offset, racc->type))
2835 lacc->grp_same_access_path = true;
2839 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2840 lacc->base, lacc->offset,
2842 if (TREE_CODE (lacc->expr) == MEM_REF)
2843 REF_REVERSE_STORAGE_ORDER (lacc->expr) = reverse;
2844 lacc->grp_no_warning = true;
2845 lacc->grp_same_access_path = false;
2847 lacc->reverse = reverse;
2852 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2854 struct access *new_acc = NULL;
2855 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2857 if (child_would_conflict_in_acc (lacc, norm_offset, rchild->size,
2862 if (!new_acc->grp_write && rchild->grp_write)
2864 gcc_assert (!lacc->grp_write);
2865 subtree_mark_written_and_rhs_enqueue (new_acc);
2869 rchild->grp_hint = 1;
2870 new_acc->grp_hint |= new_acc->grp_read;
2871 if (rchild->first_child
2872 && propagate_subaccesses_from_rhs (new_acc, rchild))
2875 add_access_to_rhs_work_queue (new_acc);
2880 if (!lacc->grp_write)
2883 subtree_mark_written_and_rhs_enqueue (lacc);
2889 if (rchild->grp_unscalarizable_region
2890 || !budget_for_propagation_access (lacc->base))
2892 if (!lacc->grp_write && access_or_its_child_written (rchild))
2895 subtree_mark_written_and_rhs_enqueue (lacc);
2900 rchild->grp_hint = 1;
2901 /* Because get_ref_base_and_extent always includes padding in size for
2902 accesses to DECLs but not necessarily for COMPONENT_REFs of the same
2903 type, we might be actually attempting to here to create a child of the
2904 same type as the parent. */
2905 if (!types_compatible_p (lacc->type, rchild->type))
2906 new_acc = create_artificial_child_access (lacc, rchild, norm_offset,
2909 || rchild->grp_write));
2912 gcc_checking_assert (new_acc);
2913 if (racc->first_child)
2914 propagate_subaccesses_from_rhs (new_acc, rchild);
2916 add_access_to_rhs_work_queue (lacc);
2923 /* Propagate subaccesses of LACC across an assignment link to RACC if they
2924 should inhibit total scalarization of the corresponding area. No flags are
2925 being propagated in the process. Return true if anything changed. */
2928 propagate_subaccesses_from_lhs (struct access *lacc, struct access *racc)
2930 if (is_gimple_reg_type (racc->type)
2931 || lacc->grp_unscalarizable_region
2932 || racc->grp_unscalarizable_region)
2935 /* TODO: Do we want set some new racc flag to stop potential total
2936 scalarization if lacc is a scalar access (and none fo the two have
2940 HOST_WIDE_INT norm_delta = racc->offset - lacc->offset;
2941 for (struct access *lchild = lacc->first_child;
2943 lchild = lchild->next_sibling)
2945 struct access *matching_acc = NULL;
2946 HOST_WIDE_INT norm_offset = lchild->offset + norm_delta;
2948 if (lchild->grp_unscalarizable_region
2949 || child_would_conflict_in_acc (racc, norm_offset, lchild->size,
2951 || !budget_for_propagation_access (racc->base))
2954 && propagate_subaccesses_from_lhs (lchild, matching_acc))
2955 add_access_to_lhs_work_queue (matching_acc);
2959 /* Because get_ref_base_and_extent always includes padding in size for
2960 accesses to DECLs but not necessarily for COMPONENT_REFs of the same
2961 type, we might be actually attempting to here to create a child of the
2962 same type as the parent. */
2963 if (!types_compatible_p (racc->type, lchild->type))
2965 struct access *new_acc
2966 = create_artificial_child_access (racc, lchild, norm_offset,
2968 new_acc->grp_result_of_prop_from_lhs = 1;
2969 propagate_subaccesses_from_lhs (lchild, new_acc);
2972 propagate_subaccesses_from_lhs (lchild, racc);
2978 /* Propagate all subaccesses across assignment links. */
2981 propagate_all_subaccesses (void)
2983 propagation_budget = new hash_map<tree, unsigned>;
2984 while (rhs_work_queue_head)
2986 struct access *racc = pop_access_from_rhs_work_queue ();
2987 struct assign_link *link;
2989 if (racc->group_representative)
2990 racc= racc->group_representative;
2991 gcc_assert (racc->first_rhs_link);
2993 for (link = racc->first_rhs_link; link; link = link->next_rhs)
2995 struct access *lacc = link->lacc;
2997 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2999 lacc = lacc->group_representative;
3001 bool reque_parents = false;
3002 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
3004 if (!lacc->grp_write)
3006 subtree_mark_written_and_rhs_enqueue (lacc);
3007 reque_parents = true;
3010 else if (propagate_subaccesses_from_rhs (lacc, racc))
3011 reque_parents = true;
3016 add_access_to_rhs_work_queue (lacc);
3017 lacc = lacc->parent;
3023 while (lhs_work_queue_head)
3025 struct access *lacc = pop_access_from_lhs_work_queue ();
3026 struct assign_link *link;
3028 if (lacc->group_representative)
3029 lacc = lacc->group_representative;
3030 gcc_assert (lacc->first_lhs_link);
3032 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
3035 for (link = lacc->first_lhs_link; link; link = link->next_lhs)
3037 struct access *racc = link->racc;
3039 if (racc->group_representative)
3040 racc = racc->group_representative;
3041 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
3043 if (propagate_subaccesses_from_lhs (lacc, racc))
3044 add_access_to_lhs_work_queue (racc);
3047 delete propagation_budget;
3050 /* Return true if the forest beginning with ROOT does not contain
3051 unscalarizable regions or non-byte aligned accesses. */
3054 can_totally_scalarize_forest_p (struct access *root)
3056 struct access *access = root;
3059 if (access->grp_unscalarizable_region
3060 || (access->offset % BITS_PER_UNIT) != 0
3061 || (access->size % BITS_PER_UNIT) != 0
3062 || (is_gimple_reg_type (access->type)
3063 && access->first_child))
3066 if (access->first_child)
3067 access = access->first_child;
3068 else if (access->next_sibling)
3069 access = access->next_sibling;
3072 while (access->parent && !access->next_sibling)
3073 access = access->parent;
3074 if (access->next_sibling)
3075 access = access->next_sibling;
3078 gcc_assert (access == root);
3079 root = root->next_grp;
3088 /* Create and return an ACCESS in PARENT spanning from POS with SIZE, TYPE and
3089 reference EXPR for total scalarization purposes and mark it as such. Within
3090 the children of PARENT, link it in between PTR and NEXT_SIBLING. */
3092 static struct access *
3093 create_total_scalarization_access (struct access *parent, HOST_WIDE_INT pos,
3094 HOST_WIDE_INT size, tree type, tree expr,
3095 struct access **ptr,
3096 struct access *next_sibling)
3098 struct access *access = access_pool.allocate ();
3099 memset (access, 0, sizeof (struct access));
3100 access->base = parent->base;
3101 access->offset = pos;
3102 access->size = size;
3103 access->expr = expr;
3104 access->type = type;
3105 access->parent = parent;
3106 access->grp_write = parent->grp_write;
3107 access->grp_total_scalarization = 1;
3108 access->grp_hint = 1;
3109 access->grp_same_access_path = path_comparable_for_same_access (expr);
3110 access->reverse = reverse_storage_order_for_component_p (expr);
3112 access->next_sibling = next_sibling;
3117 /* Create and return an ACCESS in PARENT spanning from POS with SIZE, TYPE and
3118 reference EXPR for total scalarization purposes and mark it as such, link it
3119 at *PTR and reshape the tree so that those elements at *PTR and their
3120 siblings which fall within the part described by POS and SIZE are moved to
3121 be children of the new access. If a partial overlap is detected, return
3124 static struct access *
3125 create_total_access_and_reshape (struct access *parent, HOST_WIDE_INT pos,
3126 HOST_WIDE_INT size, tree type, tree expr,
3127 struct access **ptr)
3129 struct access **p = ptr;
3131 while (*p && (*p)->offset < pos + size)
3133 if ((*p)->offset + (*p)->size > pos + size)
3135 p = &(*p)->next_sibling;
3138 struct access *next_child = *ptr;
3139 struct access *new_acc
3140 = create_total_scalarization_access (parent, pos, size, type, expr,
3144 new_acc->first_child = next_child;
3146 for (struct access *a = next_child; a; a = a->next_sibling)
3147 a->parent = new_acc;
3152 static bool totally_scalarize_subtree (struct access *root);
3154 /* Return true if INNER is either the same type as OUTER or if it is the type
3155 of a record field in OUTER at offset zero, possibly in nested
3159 access_and_field_type_match_p (tree outer, tree inner)
3161 if (TYPE_MAIN_VARIANT (outer) == TYPE_MAIN_VARIANT (inner))
3163 if (TREE_CODE (outer) != RECORD_TYPE)
3165 tree fld = TYPE_FIELDS (outer);
3168 if (TREE_CODE (fld) == FIELD_DECL)
3170 if (!zerop (DECL_FIELD_OFFSET (fld)))
3172 if (TYPE_MAIN_VARIANT (TREE_TYPE (fld)) == inner)
3174 if (TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE)
3175 fld = TYPE_FIELDS (TREE_TYPE (fld));
3180 fld = DECL_CHAIN (fld);
3185 /* Return type of total_should_skip_creating_access indicating whether a total
3186 scalarization access for a field/element should be created, whether it
3187 already exists or whether the entire total scalarization has to fail. */
3189 enum total_sra_field_state {TOTAL_FLD_CREATE, TOTAL_FLD_DONE, TOTAL_FLD_FAILED};
3191 /* Do all the necessary steps in total scalarization when the given aggregate
3192 type has a TYPE at POS with the given SIZE should be put into PARENT and
3193 when we have processed all its siblings with smaller offsets up until and
3194 including LAST_SEEN_SIBLING (which can be NULL).
3196 If some further siblings are to be skipped, set *LAST_SEEN_SIBLING as
3197 appropriate. Return TOTAL_FLD_CREATE id the caller should carry on with
3198 creating a new access, TOTAL_FLD_DONE if access or accesses capable of
3199 representing the described part of the aggregate for the purposes of total
3200 scalarization already exist or TOTAL_FLD_FAILED if there is a problem which
3201 prevents total scalarization from happening at all. */
3203 static enum total_sra_field_state
3204 total_should_skip_creating_access (struct access *parent,
3205 struct access **last_seen_sibling,
3206 tree type, HOST_WIDE_INT pos,
3209 struct access *next_child;
3210 if (!*last_seen_sibling)
3211 next_child = parent->first_child;
3213 next_child = (*last_seen_sibling)->next_sibling;
3215 /* First, traverse the chain of siblings until it points to an access with
3216 offset at least equal to POS. Check all skipped accesses whether they
3217 span the POS boundary and if so, return with a failure. */
3218 while (next_child && next_child->offset < pos)
3220 if (next_child->offset + next_child->size > pos)
3221 return TOTAL_FLD_FAILED;
3222 *last_seen_sibling = next_child;
3223 next_child = next_child->next_sibling;
3226 /* Now check whether next_child has exactly the right POS and SIZE and if so,
3227 whether it can represent what we need and can be totally scalarized
3229 if (next_child && next_child->offset == pos
3230 && next_child->size == size)
3232 if (!is_gimple_reg_type (next_child->type)
3233 && (!access_and_field_type_match_p (type, next_child->type)
3234 || !totally_scalarize_subtree (next_child)))
3235 return TOTAL_FLD_FAILED;
3237 *last_seen_sibling = next_child;
3238 return TOTAL_FLD_DONE;
3241 /* If the child we're looking at would partially overlap, we just cannot
3242 totally scalarize. */
3244 && next_child->offset < pos + size
3245 && next_child->offset + next_child->size > pos + size)
3246 return TOTAL_FLD_FAILED;
3248 if (is_gimple_reg_type (type))
3250 /* We don't scalarize accesses that are children of other scalar type
3251 accesses, so if we go on and create an access for a register type,
3252 there should not be any pre-existing children. There are rare cases
3253 where the requested type is a vector but we already have register
3254 accesses for all its elements which is equally good. Detect that
3255 situation or whether we need to bail out. */
3257 HOST_WIDE_INT covered = pos;
3258 bool skipping = false;
3260 && next_child->offset + next_child->size <= pos + size)
3262 if (next_child->offset != covered
3263 || !is_gimple_reg_type (next_child->type))
3264 return TOTAL_FLD_FAILED;
3266 covered += next_child->size;
3267 *last_seen_sibling = next_child;
3268 next_child = next_child->next_sibling;
3274 if (covered != pos + size)
3275 return TOTAL_FLD_FAILED;
3277 return TOTAL_FLD_DONE;
3281 return TOTAL_FLD_CREATE;
3284 /* Go over sub-tree rooted in ROOT and attempt to create scalar accesses
3285 spanning all uncovered areas covered by ROOT, return false if the attempt
3286 failed. All created accesses will have grp_unscalarizable_region set (and
3287 should be ignored if the function returns false). */
3290 totally_scalarize_subtree (struct access *root)
3292 gcc_checking_assert (!root->grp_unscalarizable_region);
3293 gcc_checking_assert (!is_gimple_reg_type (root->type));
3295 struct access *last_seen_sibling = NULL;
3297 switch (TREE_CODE (root->type))
3300 for (tree fld = TYPE_FIELDS (root->type); fld; fld = DECL_CHAIN (fld))
3301 if (TREE_CODE (fld) == FIELD_DECL)
3303 tree ft = TREE_TYPE (fld);
3304 HOST_WIDE_INT fsize = tree_to_uhwi (DECL_SIZE (fld));
3308 HOST_WIDE_INT pos = root->offset + int_bit_position (fld);
3309 if (pos + fsize > root->offset + root->size)
3311 enum total_sra_field_state
3312 state = total_should_skip_creating_access (root,
3317 case TOTAL_FLD_FAILED:
3319 case TOTAL_FLD_DONE:
3321 case TOTAL_FLD_CREATE:
3327 struct access **p = (last_seen_sibling
3328 ? &last_seen_sibling->next_sibling
3329 : &root->first_child);
3330 tree nref = build3 (COMPONENT_REF, ft, root->expr, fld, NULL_TREE);
3331 struct access *new_child
3332 = create_total_access_and_reshape (root, pos, fsize, ft, nref, p);
3336 if (!is_gimple_reg_type (ft)
3337 && !totally_scalarize_subtree (new_child))
3339 last_seen_sibling = new_child;
3344 tree elemtype = TREE_TYPE (root->type);
3345 tree elem_size = TYPE_SIZE (elemtype);
3346 gcc_assert (elem_size && tree_fits_shwi_p (elem_size));
3347 HOST_WIDE_INT el_size = tree_to_shwi (elem_size);
3348 gcc_assert (el_size > 0);
3350 tree minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (root->type));
3351 gcc_assert (TREE_CODE (minidx) == INTEGER_CST);
3352 tree maxidx = TYPE_MAX_VALUE (TYPE_DOMAIN (root->type));
3353 /* Skip (some) zero-length arrays; others have MAXIDX == MINIDX - 1. */
3356 gcc_assert (TREE_CODE (maxidx) == INTEGER_CST);
3357 tree domain = TYPE_DOMAIN (root->type);
3358 /* MINIDX and MAXIDX are inclusive, and must be interpreted in
3359 DOMAIN (e.g. signed int, whereas min/max may be size_int). */
3360 offset_int idx = wi::to_offset (minidx);
3361 offset_int max = wi::to_offset (maxidx);
3362 if (!TYPE_UNSIGNED (domain))
3364 idx = wi::sext (idx, TYPE_PRECISION (domain));
3365 max = wi::sext (max, TYPE_PRECISION (domain));
3367 for (HOST_WIDE_INT pos = root->offset;
3369 pos += el_size, ++idx)
3371 enum total_sra_field_state
3372 state = total_should_skip_creating_access (root,
3378 case TOTAL_FLD_FAILED:
3380 case TOTAL_FLD_DONE:
3382 case TOTAL_FLD_CREATE:
3388 struct access **p = (last_seen_sibling
3389 ? &last_seen_sibling->next_sibling
3390 : &root->first_child);
3391 tree nref = build4 (ARRAY_REF, elemtype, root->expr,
3392 wide_int_to_tree (domain, idx),
3393 NULL_TREE, NULL_TREE);
3394 struct access *new_child
3395 = create_total_access_and_reshape (root, pos, el_size, elemtype,
3400 if (!is_gimple_reg_type (elemtype)
3401 && !totally_scalarize_subtree (new_child))
3403 last_seen_sibling = new_child;
3415 /* Go through all accesses collected throughout the (intraprocedural) analysis
3416 stage, exclude overlapping ones, identify representatives and build trees
3417 out of them, making decisions about scalarization on the way. Return true
3418 iff there are any to-be-scalarized variables after this stage. */
3421 analyze_all_variable_accesses (void)
3424 bitmap tmp = BITMAP_ALLOC (NULL);
3428 bitmap_copy (tmp, candidate_bitmap);
3429 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
3431 tree var = candidate (i);
3432 struct access *access;
3434 access = sort_and_splice_var_accesses (var);
3435 if (!access || !build_access_trees (access))
3436 disqualify_candidate (var,
3437 "No or inhibitingly overlapping accesses.");
3440 propagate_all_subaccesses ();
3442 bool optimize_speed_p = !optimize_function_for_size_p (cfun);
3443 /* If the user didn't set PARAM_SRA_MAX_SCALARIZATION_SIZE_<...>,
3444 fall back to a target default. */
3445 unsigned HOST_WIDE_INT max_scalarization_size
3446 = get_move_ratio (optimize_speed_p) * UNITS_PER_WORD;
3448 if (optimize_speed_p)
3450 if (OPTION_SET_P (param_sra_max_scalarization_size_speed))
3451 max_scalarization_size = param_sra_max_scalarization_size_speed;
3455 if (OPTION_SET_P (param_sra_max_scalarization_size_size))
3456 max_scalarization_size = param_sra_max_scalarization_size_size;
3458 max_scalarization_size *= BITS_PER_UNIT;
3460 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
3461 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
3462 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
3464 tree var = candidate (i);
3468 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var))) > max_scalarization_size)
3470 if (dump_file && (dump_flags & TDF_DETAILS))
3472 fprintf (dump_file, "Too big to totally scalarize: ");
3473 print_generic_expr (dump_file, var);
3474 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
3479 bool all_types_ok = true;
3480 for (struct access *access = get_first_repr_for_decl (var);
3482 access = access->next_grp)
3483 if (!can_totally_scalarize_forest_p (access)
3484 || !scalarizable_type_p (access->type, constant_decl_p (var)))
3486 all_types_ok = false;
3492 if (dump_file && (dump_flags & TDF_DETAILS))
3494 fprintf (dump_file, "Will attempt to totally scalarize ");
3495 print_generic_expr (dump_file, var);
3496 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
3498 bool scalarized = true;
3499 for (struct access *access = get_first_repr_for_decl (var);
3501 access = access->next_grp)
3502 if (!is_gimple_reg_type (access->type)
3503 && !totally_scalarize_subtree (access))
3510 for (struct access *access = get_first_repr_for_decl (var);
3512 access = access->next_grp)
3513 access->grp_total_scalarization = true;
3517 verify_all_sra_access_forests ();
3519 bitmap_copy (tmp, candidate_bitmap);
3520 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
3522 tree var = candidate (i);
3523 struct access *access = get_first_repr_for_decl (var);
3525 if (analyze_access_trees (access))
3528 if (dump_file && (dump_flags & TDF_DETAILS))
3530 fprintf (dump_file, "\nAccess trees for ");
3531 print_generic_expr (dump_file, var);
3532 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
3533 dump_access_tree (dump_file, access);
3534 fprintf (dump_file, "\n");
3538 disqualify_candidate (var, "No scalar replacements to be created.");
3545 statistics_counter_event (cfun, "Scalarized aggregates", res);
3552 /* Generate statements copying scalar replacements of accesses within a subtree
3553 into or out of AGG. ACCESS, all its children, siblings and their children
3554 are to be processed. AGG is an aggregate type expression (can be a
3555 declaration but does not have to be, it can for example also be a mem_ref or
3556 a series of handled components). TOP_OFFSET is the offset of the processed
3557 subtree which has to be subtracted from offsets of individual accesses to
3558 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
3559 replacements in the interval <start_offset, start_offset + chunk_size>,
3560 otherwise copy all. GSI is a statement iterator used to place the new
3561 statements. WRITE should be true when the statements should write from AGG
3562 to the replacement and false if vice versa. if INSERT_AFTER is true, new
3563 statements will be added after the current statement in GSI, they will be
3564 added before the statement otherwise. */
3567 generate_subtree_copies (struct access *access, tree agg,
3568 HOST_WIDE_INT top_offset,
3569 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
3570 gimple_stmt_iterator *gsi, bool write,
3571 bool insert_after, location_t loc)
3573 /* Never write anything into constant pool decls. See PR70602. */
3574 if (!write && constant_decl_p (agg))
3578 if (chunk_size && access->offset >= start_offset + chunk_size)
3581 if (access->grp_to_be_replaced
3583 || access->offset + access->size > start_offset))
3585 tree expr, repl = get_access_replacement (access);
3588 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
3589 access, gsi, insert_after);
3593 if (access->grp_partial_lhs)
3594 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
3596 insert_after ? GSI_NEW_STMT
3598 stmt = gimple_build_assign (repl, expr);
3602 suppress_warning (repl /* Be more selective! */);
3603 if (access->grp_partial_lhs)
3604 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
3606 insert_after ? GSI_NEW_STMT
3608 stmt = gimple_build_assign (expr, repl);
3610 gimple_set_location (stmt, loc);
3613 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3615 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3617 sra_stats.subtree_copies++;
3620 && access->grp_to_be_debug_replaced
3622 || access->offset + access->size > start_offset))
3625 tree drhs = build_debug_ref_for_model (loc, agg,
3626 access->offset - top_offset,
3628 ds = gimple_build_debug_bind (get_access_replacement (access),
3629 drhs, gsi_stmt (*gsi));
3631 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3633 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3636 if (access->first_child)
3637 generate_subtree_copies (access->first_child, agg, top_offset,
3638 start_offset, chunk_size, gsi,
3639 write, insert_after, loc);
3641 access = access->next_sibling;
3646 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
3647 root of the subtree to be processed. GSI is the statement iterator used
3648 for inserting statements which are added after the current statement if
3649 INSERT_AFTER is true or before it otherwise. */
3652 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
3653 bool insert_after, location_t loc)
3656 struct access *child;
3658 if (access->grp_to_be_replaced)
3662 stmt = gimple_build_assign (get_access_replacement (access),
3663 build_zero_cst (access->type));
3665 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3667 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3669 gimple_set_location (stmt, loc);
3671 else if (access->grp_to_be_debug_replaced)
3674 = gimple_build_debug_bind (get_access_replacement (access),
3675 build_zero_cst (access->type),
3678 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3680 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3683 for (child = access->first_child; child; child = child->next_sibling)
3684 init_subtree_with_zero (child, gsi, insert_after, loc);
3687 /* Clobber all scalar replacements in an access subtree. ACCESS is the
3688 root of the subtree to be processed. GSI is the statement iterator used
3689 for inserting statements which are added after the current statement if
3690 INSERT_AFTER is true or before it otherwise. */
3693 clobber_subtree (struct access *access, gimple_stmt_iterator *gsi,
3694 bool insert_after, location_t loc)
3697 struct access *child;
3699 if (access->grp_to_be_replaced)
3701 tree rep = get_access_replacement (access);
3702 tree clobber = build_clobber (access->type);
3703 gimple *stmt = gimple_build_assign (rep, clobber);
3706 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3708 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3710 gimple_set_location (stmt, loc);
3713 for (child = access->first_child; child; child = child->next_sibling)
3714 clobber_subtree (child, gsi, insert_after, loc);
3717 /* Search for an access representative for the given expression EXPR and
3718 return it or NULL if it cannot be found. */
3720 static struct access *
3721 get_access_for_expr (tree expr)
3723 poly_int64 poffset, psize, pmax_size;
3724 HOST_WIDE_INT offset, max_size;
3728 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
3729 a different size than the size of its argument and we need the latter
3731 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3732 expr = TREE_OPERAND (expr, 0);
3734 base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size,
3736 if (!known_size_p (pmax_size)
3737 || !pmax_size.is_constant (&max_size)
3738 || !poffset.is_constant (&offset)
3742 if (tree basesize = DECL_SIZE (base))
3746 || !poly_int_tree_p (basesize, &sz)
3747 || known_le (sz, offset))
3752 || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
3755 return get_var_base_offset_size_access (base, offset, max_size);
3758 /* Replace the expression EXPR with a scalar replacement if there is one and
3759 generate other statements to do type conversion or subtree copying if
3760 necessary. GSI is used to place newly created statements, WRITE is true if
3761 the expression is being written to (it is on a LHS of a statement or output
3762 in an assembly statement). */
3765 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
3768 struct access *access;
3769 tree type, bfr, orig_expr;
3770 bool partial_cplx_access = false;
3772 if (TREE_CODE (*expr) == BIT_FIELD_REF)
3775 expr = &TREE_OPERAND (*expr, 0);
3780 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
3782 expr = &TREE_OPERAND (*expr, 0);
3783 partial_cplx_access = true;
3785 access = get_access_for_expr (*expr);
3788 type = TREE_TYPE (*expr);
3791 loc = gimple_location (gsi_stmt (*gsi));
3792 gimple_stmt_iterator alt_gsi = gsi_none ();
3793 if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
3795 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
3799 if (access->grp_to_be_replaced)
3801 tree repl = get_access_replacement (access);
3802 /* If we replace a non-register typed access simply use the original
3803 access expression to extract the scalar component afterwards.
3804 This happens if scalarizing a function return value or parameter
3805 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
3806 gcc.c-torture/compile/20011217-1.c.
3808 We also want to use this when accessing a complex or vector which can
3809 be accessed as a different type too, potentially creating a need for
3810 type conversion (see PR42196) and when scalarized unions are involved
3811 in assembler statements (see PR42398). */
3812 if (!bfr && !useless_type_conversion_p (type, access->type))
3816 ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
3818 if (partial_cplx_access)
3820 /* VIEW_CONVERT_EXPRs in partial complex access are always fine in
3821 the case of a write because in such case the replacement cannot
3822 be a gimple register. In the case of a load, we have to
3823 differentiate in between a register an non-register
3825 tree t = build1 (VIEW_CONVERT_EXPR, type, repl);
3826 gcc_checking_assert (!write || access->grp_partial_lhs);
3827 if (!access->grp_partial_lhs)
3829 tree tmp = make_ssa_name (type);
3830 gassign *stmt = gimple_build_assign (tmp, t);
3831 /* This is always a read. */
3832 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3841 if (access->grp_partial_lhs)
3842 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
3843 false, GSI_NEW_STMT);
3844 stmt = gimple_build_assign (repl, ref);
3845 gimple_set_location (stmt, loc);
3846 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3852 if (access->grp_partial_lhs)
3853 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
3854 true, GSI_SAME_STMT);
3855 stmt = gimple_build_assign (ref, repl);
3856 gimple_set_location (stmt, loc);
3857 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3864 else if (write && access->grp_to_be_debug_replaced)
3866 gdebug *ds = gimple_build_debug_bind (get_access_replacement (access),
3869 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3872 if (access->first_child && !TREE_READONLY (access->base))
3874 HOST_WIDE_INT start_offset, chunk_size;
3876 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
3877 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
3879 chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
3880 start_offset = access->offset
3881 + tree_to_uhwi (TREE_OPERAND (bfr, 2));
3884 start_offset = chunk_size = 0;
3886 generate_subtree_copies (access->first_child, orig_expr, access->offset,
3887 start_offset, chunk_size, gsi, write, write,
3893 /* Where scalar replacements of the RHS have been written to when a replacement
3894 of a LHS of an assigments cannot be direclty loaded from a replacement of
3896 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
3897 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
3898 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
3900 struct subreplacement_assignment_data
3902 /* Offset of the access representing the lhs of the assignment. */
3903 HOST_WIDE_INT left_offset;
3905 /* LHS and RHS of the original assignment. */
3906 tree assignment_lhs, assignment_rhs;
3908 /* Access representing the rhs of the whole assignment. */
3909 struct access *top_racc;
3911 /* Stmt iterator used for statement insertions after the original assignment.
3912 It points to the main GSI used to traverse a BB during function body
3914 gimple_stmt_iterator *new_gsi;
3916 /* Stmt iterator used for statement insertions before the original
3917 assignment. Keeps on pointing to the original statement. */
3918 gimple_stmt_iterator old_gsi;
3920 /* Location of the assignment. */
3923 /* Keeps the information whether we have needed to refresh replacements of
3924 the LHS and from which side of the assignments this takes place. */
3925 enum unscalarized_data_handling refreshed;
3928 /* Store all replacements in the access tree rooted in TOP_RACC either to their
3929 base aggregate if there are unscalarized data or directly to LHS of the
3930 statement that is pointed to by GSI otherwise. */
3933 handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
3936 /* If the RHS is a load from a constant, we do not need to (and must not)
3937 flush replacements to it and can use it directly as if we did. */
3938 if (TREE_READONLY (sad->top_racc->base))
3940 sad->refreshed = SRA_UDH_RIGHT;
3943 if (sad->top_racc->grp_unscalarized_data)
3945 src = sad->assignment_rhs;
3946 sad->refreshed = SRA_UDH_RIGHT;
3950 src = sad->assignment_lhs;
3951 sad->refreshed = SRA_UDH_LEFT;
3953 generate_subtree_copies (sad->top_racc->first_child, src,
3954 sad->top_racc->offset, 0, 0,
3955 &sad->old_gsi, false, false, sad->loc);
3958 /* Try to generate statements to load all sub-replacements in an access subtree
3959 formed by children of LACC from scalar replacements in the SAD->top_racc
3960 subtree. If that is not possible, refresh the SAD->top_racc base aggregate
3961 and load the accesses from it. */
3964 load_assign_lhs_subreplacements (struct access *lacc,
3965 struct subreplacement_assignment_data *sad)
3967 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
3969 HOST_WIDE_INT offset;
3970 offset = lacc->offset - sad->left_offset + sad->top_racc->offset;
3972 if (lacc->grp_to_be_replaced)
3974 struct access *racc;
3978 racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
3979 if (racc && racc->grp_to_be_replaced)
3981 rhs = get_access_replacement (racc);
3982 if (!useless_type_conversion_p (lacc->type, racc->type))
3983 rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
3986 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
3987 rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
3988 NULL_TREE, true, GSI_SAME_STMT);
3992 /* No suitable access on the right hand side, need to load from
3993 the aggregate. See if we have to update it first... */
3994 if (sad->refreshed == SRA_UDH_NONE)
3995 handle_unscalarized_data_in_subtree (sad);
3997 if (sad->refreshed == SRA_UDH_LEFT)
3998 rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
3999 lacc->offset - sad->left_offset,
4000 lacc, sad->new_gsi, true);
4002 rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
4003 lacc->offset - sad->left_offset,
4004 lacc, sad->new_gsi, true);
4005 if (lacc->grp_partial_lhs)
4006 rhs = force_gimple_operand_gsi (sad->new_gsi,
4007 rhs, true, NULL_TREE,
4008 false, GSI_NEW_STMT);
4011 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
4012 gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
4013 gimple_set_location (stmt, sad->loc);
4015 sra_stats.subreplacements++;
4019 if (sad->refreshed == SRA_UDH_NONE
4020 && lacc->grp_read && !lacc->grp_covered)
4021 handle_unscalarized_data_in_subtree (sad);
4023 if (lacc && lacc->grp_to_be_debug_replaced)
4027 struct access *racc = find_access_in_subtree (sad->top_racc,
4031 if (racc && racc->grp_to_be_replaced)
4033 if (racc->grp_write || constant_decl_p (racc->base))
4034 drhs = get_access_replacement (racc);
4038 else if (sad->refreshed == SRA_UDH_LEFT)
4039 drhs = build_debug_ref_for_model (sad->loc, lacc->base,
4040 lacc->offset, lacc);
4041 else if (sad->refreshed == SRA_UDH_RIGHT)
4042 drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
4047 && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
4048 drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
4050 ds = gimple_build_debug_bind (get_access_replacement (lacc),
4051 drhs, gsi_stmt (sad->old_gsi));
4052 gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
4056 if (lacc->first_child)
4057 load_assign_lhs_subreplacements (lacc, sad);
4061 /* Result code for SRA assignment modification. */
4062 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
4063 SRA_AM_MODIFIED, /* stmt changed but not
4065 SRA_AM_REMOVED }; /* stmt eliminated */
4067 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
4068 to the assignment and GSI is the statement iterator pointing at it. Returns
4069 the same values as sra_modify_assign. */
4071 static enum assignment_mod_result
4072 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
4074 tree lhs = gimple_assign_lhs (stmt);
4075 struct access *acc = get_access_for_expr (lhs);
4078 location_t loc = gimple_location (stmt);
4080 if (gimple_clobber_p (stmt))
4082 /* Clobber the replacement variable. */
4083 clobber_subtree (acc, gsi, !acc->grp_covered, loc);
4084 /* Remove clobbers of fully scalarized variables, they are dead. */
4085 if (acc->grp_covered)
4087 unlink_stmt_vdef (stmt);
4088 gsi_remove (gsi, true);
4089 release_defs (stmt);
4090 return SRA_AM_REMOVED;
4093 return SRA_AM_MODIFIED;
4096 if (CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)) > 0)
4098 /* I have never seen this code path trigger but if it can happen the
4099 following should handle it gracefully. */
4100 if (access_has_children_p (acc))
4101 generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
4103 return SRA_AM_MODIFIED;
4106 if (acc->grp_covered)
4108 init_subtree_with_zero (acc, gsi, false, loc);
4109 unlink_stmt_vdef (stmt);
4110 gsi_remove (gsi, true);
4111 release_defs (stmt);
4112 return SRA_AM_REMOVED;
4116 init_subtree_with_zero (acc, gsi, true, loc);
4117 return SRA_AM_MODIFIED;
4121 /* Create and return a new suitable default definition SSA_NAME for RACC which
4122 is an access describing an uninitialized part of an aggregate that is being
4123 loaded. REG_TREE is used instead of the actual RACC type if that is not of
4124 a gimple register type. */
4127 get_repl_default_def_ssa_name (struct access *racc, tree reg_type)
4129 gcc_checking_assert (!racc->grp_to_be_replaced
4130 && !racc->grp_to_be_debug_replaced);
4131 if (!racc->replacement_decl)
4132 racc->replacement_decl = create_access_replacement (racc, reg_type);
4133 return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
4137 /* Generate statements to call .DEFERRED_INIT to initialize scalar replacements
4138 of accesses within a subtree ACCESS; all its children, siblings and their
4139 children are to be processed.
4140 GSI is a statement iterator used to place the new statements. */
4142 generate_subtree_deferred_init (struct access *access,
4145 gimple_stmt_iterator *gsi,
4150 if (access->grp_to_be_replaced)
4152 tree repl = get_access_replacement (access);
4154 = gimple_build_call_internal (IFN_DEFERRED_INIT, 3,
4155 TYPE_SIZE_UNIT (TREE_TYPE (repl)),
4156 init_type, decl_name);
4157 gimple_call_set_lhs (call, repl);
4158 gsi_insert_before (gsi, call, GSI_SAME_STMT);
4160 gimple_set_location (call, loc);
4161 sra_stats.subtree_deferred_init++;
4163 if (access->first_child)
4164 generate_subtree_deferred_init (access->first_child, init_type,
4165 decl_name, gsi, loc);
4167 access = access ->next_sibling;
4172 /* For a call to .DEFERRED_INIT:
4173 var = .DEFERRED_INIT (size_of_var, init_type, name_of_var);
4174 examine the LHS variable VAR and replace it with a scalar replacement if
4175 there is one, also replace the RHS call to a call to .DEFERRED_INIT of
4176 the corresponding scalar relacement variable. Examine the subtree and
4177 do the scalar replacements in the subtree too. STMT is the call, GSI is
4178 the statment iterator to place newly created statement. */
4180 static enum assignment_mod_result
4181 sra_modify_deferred_init (gimple *stmt, gimple_stmt_iterator *gsi)
4183 tree lhs = gimple_call_lhs (stmt);
4184 tree init_type = gimple_call_arg (stmt, 1);
4185 tree decl_name = gimple_call_arg (stmt, 2);
4187 struct access *lhs_access = get_access_for_expr (lhs);
4191 location_t loc = gimple_location (stmt);
4193 if (lhs_access->grp_to_be_replaced)
4195 tree lhs_repl = get_access_replacement (lhs_access);
4196 gimple_call_set_lhs (stmt, lhs_repl);
4197 tree arg0_repl = TYPE_SIZE_UNIT (TREE_TYPE (lhs_repl));
4198 gimple_call_set_arg (stmt, 0, arg0_repl);
4199 sra_stats.deferred_init++;
4200 gcc_assert (!lhs_access->first_child);
4201 return SRA_AM_MODIFIED;
4204 if (lhs_access->first_child)
4205 generate_subtree_deferred_init (lhs_access->first_child,
4206 init_type, decl_name, gsi, loc);
4207 if (lhs_access->grp_covered)
4209 unlink_stmt_vdef (stmt);
4210 gsi_remove (gsi, true);
4211 release_defs (stmt);
4212 return SRA_AM_REMOVED;
4215 return SRA_AM_MODIFIED;
4218 /* Examine both sides of the assignment statement pointed to by STMT, replace
4219 them with a scalare replacement if there is one and generate copying of
4220 replacements if scalarized aggregates have been used in the assignment. GSI
4221 is used to hold generated statements for type conversions and subtree
4224 static enum assignment_mod_result
4225 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
4227 struct access *lacc, *racc;
4229 bool modify_this_stmt = false;
4230 bool force_gimple_rhs = false;
4232 gimple_stmt_iterator orig_gsi = *gsi;
4234 if (!gimple_assign_single_p (stmt))
4236 lhs = gimple_assign_lhs (stmt);
4237 rhs = gimple_assign_rhs1 (stmt);
4239 if (TREE_CODE (rhs) == CONSTRUCTOR)
4240 return sra_modify_constructor_assign (stmt, gsi);
4242 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
4243 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
4244 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
4246 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
4248 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
4250 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
4253 lacc = get_access_for_expr (lhs);
4254 racc = get_access_for_expr (rhs);
4257 /* Avoid modifying initializations of constant-pool replacements. */
4258 if (racc && (racc->replacement_decl == lhs))
4261 loc = gimple_location (stmt);
4262 if (lacc && lacc->grp_to_be_replaced)
4264 lhs = get_access_replacement (lacc);
4265 gimple_assign_set_lhs (stmt, lhs);
4266 modify_this_stmt = true;
4267 if (lacc->grp_partial_lhs)
4268 force_gimple_rhs = true;
4272 if (racc && racc->grp_to_be_replaced)
4274 rhs = get_access_replacement (racc);
4275 modify_this_stmt = true;
4276 if (racc->grp_partial_lhs)
4277 force_gimple_rhs = true;
4281 && !racc->grp_unscalarized_data
4282 && !racc->grp_unscalarizable_region
4283 && TREE_CODE (lhs) == SSA_NAME
4284 && !access_has_replacements_p (racc))
4286 rhs = get_repl_default_def_ssa_name (racc, TREE_TYPE (lhs));
4287 modify_this_stmt = true;
4291 if (modify_this_stmt
4292 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
4294 /* If we can avoid creating a VIEW_CONVERT_EXPR, then do so.
4295 ??? This should move to fold_stmt which we simply should
4296 call after building a VIEW_CONVERT_EXPR here. */
4297 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
4298 && TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (lhs)) == racc->reverse
4299 && !contains_bitfld_component_ref_p (lhs))
4301 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
4302 gimple_assign_set_lhs (stmt, lhs);
4305 && AGGREGATE_TYPE_P (TREE_TYPE (rhs))
4306 && TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (rhs)) == lacc->reverse
4307 && !contains_vce_or_bfcref_p (rhs))
4308 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
4310 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
4312 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
4313 if (is_gimple_reg_type (TREE_TYPE (lhs))
4314 && TREE_CODE (lhs) != SSA_NAME)
4315 force_gimple_rhs = true;
4319 if (lacc && lacc->grp_to_be_debug_replaced)
4321 tree dlhs = get_access_replacement (lacc);
4322 tree drhs = unshare_expr (rhs);
4323 if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
4325 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
4326 && !contains_vce_or_bfcref_p (drhs))
4327 drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
4329 && !useless_type_conversion_p (TREE_TYPE (dlhs),
4331 drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
4332 TREE_TYPE (dlhs), drhs);
4334 gdebug *ds = gimple_build_debug_bind (dlhs, drhs, stmt);
4335 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
4338 /* From this point on, the function deals with assignments in between
4339 aggregates when at least one has scalar reductions of some of its
4340 components. There are three possible scenarios: Both the LHS and RHS have
4341 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
4343 In the first case, we would like to load the LHS components from RHS
4344 components whenever possible. If that is not possible, we would like to
4345 read it directly from the RHS (after updating it by storing in it its own
4346 components). If there are some necessary unscalarized data in the LHS,
4347 those will be loaded by the original assignment too. If neither of these
4348 cases happen, the original statement can be removed. Most of this is done
4349 by load_assign_lhs_subreplacements.
4351 In the second case, we would like to store all RHS scalarized components
4352 directly into LHS and if they cover the aggregate completely, remove the
4353 statement too. In the third case, we want the LHS components to be loaded
4354 directly from the RHS (DSE will remove the original statement if it
4357 This is a bit complex but manageable when types match and when unions do
4358 not cause confusion in a way that we cannot really load a component of LHS
4359 from the RHS or vice versa (the access representing this level can have
4360 subaccesses that are accessible only through a different union field at a
4361 higher level - different from the one used in the examined expression).
4364 Therefore, I specially handle a fourth case, happening when there is a
4365 specific type cast or it is impossible to locate a scalarized subaccess on
4366 the other side of the expression. If that happens, I simply "refresh" the
4367 RHS by storing in it is scalarized components leave the original statement
4368 there to do the copying and then load the scalar replacements of the LHS.
4369 This is what the first branch does. */
4371 if (modify_this_stmt
4372 || gimple_has_volatile_ops (stmt)
4373 || contains_vce_or_bfcref_p (rhs)
4374 || contains_vce_or_bfcref_p (lhs)
4375 || stmt_ends_bb_p (stmt))
4377 /* No need to copy into a constant, it comes pre-initialized. */
4378 if (access_has_children_p (racc) && !TREE_READONLY (racc->base))
4379 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
4380 gsi, false, false, loc);
4381 if (access_has_children_p (lacc))
4383 gimple_stmt_iterator alt_gsi = gsi_none ();
4384 if (stmt_ends_bb_p (stmt))
4386 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
4389 generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
4390 gsi, true, true, loc);
4392 sra_stats.separate_lhs_rhs_handling++;
4394 /* This gimplification must be done after generate_subtree_copies,
4395 lest we insert the subtree copies in the middle of the gimplified
4397 if (force_gimple_rhs)
4398 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
4399 true, GSI_SAME_STMT);
4400 if (gimple_assign_rhs1 (stmt) != rhs)
4402 modify_this_stmt = true;
4403 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
4404 gcc_assert (stmt == gsi_stmt (orig_gsi));
4407 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
4411 if (access_has_children_p (lacc)
4412 && access_has_children_p (racc)
4413 /* When an access represents an unscalarizable region, it usually
4414 represents accesses with variable offset and thus must not be used
4415 to generate new memory accesses. */
4416 && !lacc->grp_unscalarizable_region
4417 && !racc->grp_unscalarizable_region)
4419 struct subreplacement_assignment_data sad;
4421 sad.left_offset = lacc->offset;
4422 sad.assignment_lhs = lhs;
4423 sad.assignment_rhs = rhs;
4424 sad.top_racc = racc;
4427 sad.loc = gimple_location (stmt);
4428 sad.refreshed = SRA_UDH_NONE;
4430 if (lacc->grp_read && !lacc->grp_covered)
4431 handle_unscalarized_data_in_subtree (&sad);
4433 load_assign_lhs_subreplacements (lacc, &sad);
4434 if (sad.refreshed != SRA_UDH_RIGHT)
4437 unlink_stmt_vdef (stmt);
4438 gsi_remove (&sad.old_gsi, true);
4439 release_defs (stmt);
4440 sra_stats.deleted++;
4441 return SRA_AM_REMOVED;
4446 if (access_has_children_p (racc)
4447 && !racc->grp_unscalarized_data
4448 && TREE_CODE (lhs) != SSA_NAME)
4452 fprintf (dump_file, "Removing load: ");
4453 print_gimple_stmt (dump_file, stmt, 0);
4455 generate_subtree_copies (racc->first_child, lhs,
4456 racc->offset, 0, 0, gsi,
4458 gcc_assert (stmt == gsi_stmt (*gsi));
4459 unlink_stmt_vdef (stmt);
4460 gsi_remove (gsi, true);
4461 release_defs (stmt);
4462 sra_stats.deleted++;
4463 return SRA_AM_REMOVED;
4465 /* Restore the aggregate RHS from its components so the
4466 prevailing aggregate copy does the right thing. */
4467 if (access_has_children_p (racc) && !TREE_READONLY (racc->base))
4468 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
4469 gsi, false, false, loc);
4470 /* Re-load the components of the aggregate copy destination.
4471 But use the RHS aggregate to load from to expose more
4472 optimization opportunities. */
4473 if (access_has_children_p (lacc))
4474 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
4475 0, 0, gsi, true, true, loc);
4482 /* Set any scalar replacements of values in the constant pool to the initial
4483 value of the constant. (Constant-pool decls like *.LC0 have effectively
4484 been initialized before the program starts, we must do the same for their
4485 replacements.) Thus, we output statements like 'SR.1 = *.LC0[0];' into
4486 the function's entry block. */
4489 initialize_constant_pool_replacements (void)
4491 gimple_seq seq = NULL;
4492 gimple_stmt_iterator gsi = gsi_start (seq);
4496 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
4498 tree var = candidate (i);
4499 if (!constant_decl_p (var))
4502 struct access *access = get_first_repr_for_decl (var);
4506 if (access->replacement_decl)
4509 = gimple_build_assign (get_access_replacement (access),
4510 unshare_expr (access->expr));
4511 if (dump_file && (dump_flags & TDF_DETAILS))
4513 fprintf (dump_file, "Generating constant initializer: ");
4514 print_gimple_stmt (dump_file, stmt, 0);
4515 fprintf (dump_file, "\n");
4517 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
4521 if (access->first_child)
4522 access = access->first_child;
4523 else if (access->next_sibling)
4524 access = access->next_sibling;
4527 while (access->parent && !access->next_sibling)
4528 access = access->parent;
4529 if (access->next_sibling)
4530 access = access->next_sibling;
4532 access = access->next_grp;
4537 seq = gsi_seq (gsi);
4539 gsi_insert_seq_on_edge_immediate (
4540 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
4543 /* Traverse the function body and all modifications as decided in
4544 analyze_all_variable_accesses. Return true iff the CFG has been
4548 sra_modify_function_body (void)
4550 bool cfg_changed = false;
4553 initialize_constant_pool_replacements ();
4555 FOR_EACH_BB_FN (bb, cfun)
4557 gimple_stmt_iterator gsi = gsi_start_bb (bb);
4558 while (!gsi_end_p (gsi))
4560 gimple *stmt = gsi_stmt (gsi);
4561 enum assignment_mod_result assign_result;
4562 bool modified = false, deleted = false;
4566 switch (gimple_code (stmt))
4569 t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
4570 if (*t != NULL_TREE)
4571 modified |= sra_modify_expr (t, &gsi, false);
4575 assign_result = sra_modify_assign (stmt, &gsi);
4576 modified |= assign_result == SRA_AM_MODIFIED;
4577 deleted = assign_result == SRA_AM_REMOVED;
4581 /* Handle calls to .DEFERRED_INIT specially. */
4582 if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
4584 assign_result = sra_modify_deferred_init (stmt, &gsi);
4585 modified |= assign_result == SRA_AM_MODIFIED;
4586 deleted = assign_result == SRA_AM_REMOVED;
4590 /* Operands must be processed before the lhs. */
4591 for (i = 0; i < gimple_call_num_args (stmt); i++)
4593 t = gimple_call_arg_ptr (stmt, i);
4594 modified |= sra_modify_expr (t, &gsi, false);
4597 if (gimple_call_lhs (stmt))
4599 t = gimple_call_lhs_ptr (stmt);
4600 modified |= sra_modify_expr (t, &gsi, true);
4607 gasm *asm_stmt = as_a <gasm *> (stmt);
4608 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
4610 t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
4611 modified |= sra_modify_expr (t, &gsi, false);
4613 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
4615 t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
4616 modified |= sra_modify_expr (t, &gsi, true);
4628 if (maybe_clean_eh_stmt (stmt)
4629 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4637 gsi_commit_edge_inserts ();
4641 /* Generate statements initializing scalar replacements of parts of function
4645 initialize_parameter_reductions (void)
4647 gimple_stmt_iterator gsi;
4648 gimple_seq seq = NULL;
4651 gsi = gsi_start (seq);
4652 for (parm = DECL_ARGUMENTS (current_function_decl);
4654 parm = DECL_CHAIN (parm))
4656 vec<access_p> *access_vec;
4657 struct access *access;
4659 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4661 access_vec = get_base_access_vector (parm);
4665 for (access = (*access_vec)[0];
4667 access = access->next_grp)
4668 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
4669 EXPR_LOCATION (parm));
4672 seq = gsi_seq (gsi);
4674 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
4677 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
4678 it reveals there are components of some aggregates to be scalarized, it runs
4679 the required transformations. */
4681 perform_intra_sra (void)
4686 if (!find_var_candidates ())
4689 if (!scan_function ())
4692 if (!analyze_all_variable_accesses ())
4695 if (sra_modify_function_body ())
4696 ret = TODO_update_ssa | TODO_cleanup_cfg;
4698 ret = TODO_update_ssa;
4699 initialize_parameter_reductions ();
4701 statistics_counter_event (cfun, "Scalar replacements created",
4702 sra_stats.replacements);
4703 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
4704 statistics_counter_event (cfun, "Subtree copy stmts",
4705 sra_stats.subtree_copies);
4706 statistics_counter_event (cfun, "Subreplacement stmts",
4707 sra_stats.subreplacements);
4708 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
4709 statistics_counter_event (cfun, "Separate LHS and RHS handling",
4710 sra_stats.separate_lhs_rhs_handling);
4713 sra_deinitialize ();
4717 /* Perform early intraprocedural SRA. */
4719 early_intra_sra (void)
4721 sra_mode = SRA_MODE_EARLY_INTRA;
4722 return perform_intra_sra ();
4725 /* Perform "late" intraprocedural SRA. */
4727 late_intra_sra (void)
4729 sra_mode = SRA_MODE_INTRA;
4730 return perform_intra_sra ();
4735 gate_intra_sra (void)
4737 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
4743 const pass_data pass_data_sra_early =
4745 GIMPLE_PASS, /* type */
4747 OPTGROUP_NONE, /* optinfo_flags */
4748 TV_TREE_SRA, /* tv_id */
4749 ( PROP_cfg | PROP_ssa ), /* properties_required */
4750 0, /* properties_provided */
4751 0, /* properties_destroyed */
4752 0, /* todo_flags_start */
4753 TODO_update_ssa, /* todo_flags_finish */
4756 class pass_sra_early : public gimple_opt_pass
4759 pass_sra_early (gcc::context *ctxt)
4760 : gimple_opt_pass (pass_data_sra_early, ctxt)
4763 /* opt_pass methods: */
4764 bool gate (function *) final override { return gate_intra_sra (); }
4765 unsigned int execute (function *) final override
4767 return early_intra_sra ();
4770 }; // class pass_sra_early
4775 make_pass_sra_early (gcc::context *ctxt)
4777 return new pass_sra_early (ctxt);
4782 const pass_data pass_data_sra =
4784 GIMPLE_PASS, /* type */
4786 OPTGROUP_NONE, /* optinfo_flags */
4787 TV_TREE_SRA, /* tv_id */
4788 ( PROP_cfg | PROP_ssa ), /* properties_required */
4789 0, /* properties_provided */
4790 0, /* properties_destroyed */
4791 TODO_update_address_taken, /* todo_flags_start */
4792 TODO_update_ssa, /* todo_flags_finish */
4795 class pass_sra : public gimple_opt_pass
4798 pass_sra (gcc::context *ctxt)
4799 : gimple_opt_pass (pass_data_sra, ctxt)
4802 /* opt_pass methods: */
4803 bool gate (function *) final override { return gate_intra_sra (); }
4804 unsigned int execute (function *) final override { return late_intra_sra (); }
4806 }; // class pass_sra
4811 make_pass_sra (gcc::context *ctxt)
4813 return new pass_sra (ctxt);