Imported Upstream version 4.8.1
[platform/upstream/gcc48.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2    Copyright (C) 2006-2013 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr> 
4    Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree-flow.h"
26 #include "cfgloop.h"
27 #include "tree-data-ref.h"
28 #include "tree-scalar-evolution.h"
29 #include "gimple-pretty-print.h"
30 #include "tree-pass.h"
31 #include "langhooks.h"
32 #include "tree-vectorizer.h"
33
34 /* This pass tries to distribute iterations of loops into several threads.
35    The implementation is straightforward -- for each loop we test whether its
36    iterations are independent, and if it is the case (and some additional
37    conditions regarding profitability and correctness are satisfied), we
38    add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
39    machinery do its job.
40
41    The most of the complexity is in bringing the code into shape expected
42    by the omp expanders:
43    -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
44       variable and that the exit test is at the start of the loop body
45    -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
46       variables by accesses through pointers, and breaking up ssa chains
47       by storing the values incoming to the parallelized loop to a structure
48       passed to the new function as an argument (something similar is done
49       in omp gimplification, unfortunately only a small part of the code
50       can be shared).
51
52    TODO:
53    -- if there are several parallelizable loops in a function, it may be
54       possible to generate the threads just once (using synchronization to
55       ensure that cross-loop dependences are obeyed).
56    -- handling of common reduction patterns for outer loops.  
57     
58    More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC  */
59 /*
60   Reduction handling:
61   currently we use vect_force_simple_reduction() to detect reduction patterns.
62   The code transformation will be introduced by an example.
63
64
65 parloop
66 {
67   int sum=1;
68
69   for (i = 0; i < N; i++)
70    {
71     x[i] = i + 3;
72     sum+=x[i];
73    }
74 }
75
76 gimple-like code:
77 header_bb:
78
79   # sum_29 = PHI <sum_11(5), 1(3)>
80   # i_28 = PHI <i_12(5), 0(3)>
81   D.1795_8 = i_28 + 3;
82   x[i_28] = D.1795_8;
83   sum_11 = D.1795_8 + sum_29;
84   i_12 = i_28 + 1;
85   if (N_6(D) > i_12)
86     goto header_bb;
87
88
89 exit_bb:
90
91   # sum_21 = PHI <sum_11(4)>
92   printf (&"%d"[0], sum_21);
93
94
95 after reduction transformation (only relevant parts):
96
97 parloop
98 {
99
100 ....
101
102
103   # Storing the initial value given by the user.  #
104
105   .paral_data_store.32.sum.27 = 1;
106
107   #pragma omp parallel num_threads(4)
108
109   #pragma omp for schedule(static)
110
111   # The neutral element corresponding to the particular
112   reduction's operation, e.g. 0 for PLUS_EXPR,
113   1 for MULT_EXPR, etc. replaces the user's initial value.  #
114
115   # sum.27_29 = PHI <sum.27_11, 0>
116
117   sum.27_11 = D.1827_8 + sum.27_29;
118
119   GIMPLE_OMP_CONTINUE
120
121   # Adding this reduction phi is done at create_phi_for_local_result() #
122   # sum.27_56 = PHI <sum.27_11, 0>
123   GIMPLE_OMP_RETURN
124
125   # Creating the atomic operation is done at
126   create_call_for_reduction_1()  #
127
128   #pragma omp atomic_load
129   D.1839_59 = *&.paral_data_load.33_51->reduction.23;
130   D.1840_60 = sum.27_56 + D.1839_59;
131   #pragma omp atomic_store (D.1840_60);
132
133   GIMPLE_OMP_RETURN
134
135  # collecting the result after the join of the threads is done at
136   create_loads_for_reductions().
137   The value computed by the threads is loaded from the
138   shared struct.  #
139
140
141   .paral_data_load.33_52 = &.paral_data_store.32;
142   sum_37 =  .paral_data_load.33_52->sum.27;
143   sum_43 = D.1795_41 + sum_37;
144
145   exit bb:
146   # sum_21 = PHI <sum_43, sum_26>
147   printf (&"%d"[0], sum_21);
148
149 ...
150
151 }
152
153 */
154
155 /* Minimal number of iterations of a loop that should be executed in each
156    thread.  */
157 #define MIN_PER_THREAD 100
158
159 /* Element of the hashtable, representing a
160    reduction in the current loop.  */
161 struct reduction_info
162 {
163   gimple reduc_stmt;            /* reduction statement.  */
164   gimple reduc_phi;             /* The phi node defining the reduction.  */
165   enum tree_code reduction_code;/* code for the reduction operation.  */
166   unsigned reduc_version;       /* SSA_NAME_VERSION of original reduc_phi
167                                    result.  */
168   gimple keep_res;              /* The PHI_RESULT of this phi is the resulting value
169                                    of the reduction variable when existing the loop. */
170   tree initial_value;           /* The initial value of the reduction var before entering the loop.  */
171   tree field;                   /*  the name of the field in the parloop data structure intended for reduction.  */
172   tree init;                    /* reduction initialization value.  */
173   gimple new_phi;               /* (helper field) Newly created phi node whose result
174                                    will be passed to the atomic operation.  Represents
175                                    the local result each thread computed for the reduction
176                                    operation.  */
177 };
178
179 /* Equality and hash functions for hashtab code.  */
180
181 static int
182 reduction_info_eq (const void *aa, const void *bb)
183 {
184   const struct reduction_info *a = (const struct reduction_info *) aa;
185   const struct reduction_info *b = (const struct reduction_info *) bb;
186
187   return (a->reduc_phi == b->reduc_phi);
188 }
189
190 static hashval_t
191 reduction_info_hash (const void *aa)
192 {
193   const struct reduction_info *a = (const struct reduction_info *) aa;
194
195   return a->reduc_version;
196 }
197
198 static struct reduction_info *
199 reduction_phi (htab_t reduction_list, gimple phi)
200 {
201   struct reduction_info tmpred, *red;
202
203   if (htab_elements (reduction_list) == 0 || phi == NULL)
204     return NULL;
205
206   tmpred.reduc_phi = phi;
207   tmpred.reduc_version = gimple_uid (phi);
208   red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
209
210   return red;
211 }
212
213 /* Element of hashtable of names to copy.  */
214
215 struct name_to_copy_elt
216 {
217   unsigned version;     /* The version of the name to copy.  */
218   tree new_name;        /* The new name used in the copy.  */
219   tree field;           /* The field of the structure used to pass the
220                            value.  */
221 };
222
223 /* Equality and hash functions for hashtab code.  */
224
225 static int
226 name_to_copy_elt_eq (const void *aa, const void *bb)
227 {
228   const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
229   const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
230
231   return a->version == b->version;
232 }
233
234 static hashval_t
235 name_to_copy_elt_hash (const void *aa)
236 {
237   const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
238
239   return (hashval_t) a->version;
240 }
241
242 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
243    matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
244    represents the denominator for every element in the matrix.  */
245 typedef struct lambda_trans_matrix_s
246 {
247   lambda_matrix matrix;
248   int rowsize;
249   int colsize;
250   int denominator;
251 } *lambda_trans_matrix;
252 #define LTM_MATRIX(T) ((T)->matrix)
253 #define LTM_ROWSIZE(T) ((T)->rowsize)
254 #define LTM_COLSIZE(T) ((T)->colsize)
255 #define LTM_DENOMINATOR(T) ((T)->denominator)
256
257 /* Allocate a new transformation matrix.  */
258
259 static lambda_trans_matrix
260 lambda_trans_matrix_new (int colsize, int rowsize,
261                          struct obstack * lambda_obstack)
262 {
263   lambda_trans_matrix ret;
264
265   ret = (lambda_trans_matrix)
266     obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
267   LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
268   LTM_ROWSIZE (ret) = rowsize;
269   LTM_COLSIZE (ret) = colsize;
270   LTM_DENOMINATOR (ret) = 1;
271   return ret;
272 }
273
274 /* Multiply a vector VEC by a matrix MAT.
275    MAT is an M*N matrix, and VEC is a vector with length N.  The result
276    is stored in DEST which must be a vector of length M.  */
277
278 static void
279 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
280                            lambda_vector vec, lambda_vector dest)
281 {
282   int i, j;
283
284   lambda_vector_clear (dest, m);
285   for (i = 0; i < m; i++)
286     for (j = 0; j < n; j++)
287       dest[i] += matrix[i][j] * vec[j];
288 }
289
290 /* Return true if TRANS is a legal transformation matrix that respects
291    the dependence vectors in DISTS and DIRS.  The conservative answer
292    is false.
293
294    "Wolfe proves that a unimodular transformation represented by the
295    matrix T is legal when applied to a loop nest with a set of
296    lexicographically non-negative distance vectors RDG if and only if
297    for each vector d in RDG, (T.d >= 0) is lexicographically positive.
298    i.e.: if and only if it transforms the lexicographically positive
299    distance vectors to lexicographically positive vectors.  Note that
300    a unimodular matrix must transform the zero vector (and only it) to
301    the zero vector." S.Muchnick.  */
302
303 static bool
304 lambda_transform_legal_p (lambda_trans_matrix trans,
305                           int nb_loops,
306                           vec<ddr_p> dependence_relations)
307 {
308   unsigned int i, j;
309   lambda_vector distres;
310   struct data_dependence_relation *ddr;
311
312   gcc_assert (LTM_COLSIZE (trans) == nb_loops
313               && LTM_ROWSIZE (trans) == nb_loops);
314
315   /* When there are no dependences, the transformation is correct.  */
316   if (dependence_relations.length () == 0)
317     return true;
318
319   ddr = dependence_relations[0];
320   if (ddr == NULL)
321     return true;
322
323   /* When there is an unknown relation in the dependence_relations, we
324      know that it is no worth looking at this loop nest: give up.  */
325   if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
326     return false;
327
328   distres = lambda_vector_new (nb_loops);
329
330   /* For each distance vector in the dependence graph.  */
331   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
332     {
333       /* Don't care about relations for which we know that there is no
334          dependence, nor about read-read (aka. output-dependences):
335          these data accesses can happen in any order.  */
336       if (DDR_ARE_DEPENDENT (ddr) == chrec_known
337           || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
338         continue;
339
340       /* Conservatively answer: "this transformation is not valid".  */
341       if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
342         return false;
343
344       /* If the dependence could not be captured by a distance vector,
345          conservatively answer that the transform is not valid.  */
346       if (DDR_NUM_DIST_VECTS (ddr) == 0)
347         return false;
348
349       /* Compute trans.dist_vect */
350       for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
351         {
352           lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
353                                      DDR_DIST_VECT (ddr, j), distres);
354
355           if (!lambda_vector_lexico_pos (distres, nb_loops))
356             return false;
357         }
358     }
359   return true;
360 }
361
362 /* Data dependency analysis. Returns true if the iterations of LOOP
363    are independent on each other (that is, if we can execute them
364    in parallel).  */
365
366 static bool
367 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
368 {
369   vec<loop_p> loop_nest;
370   vec<ddr_p> dependence_relations;
371   vec<data_reference_p> datarefs;
372   lambda_trans_matrix trans;
373   bool ret = false;
374
375   if (dump_file && (dump_flags & TDF_DETAILS))
376   {
377     fprintf (dump_file, "Considering loop %d\n", loop->num);
378     if (!loop->inner)
379       fprintf (dump_file, "loop is innermost\n");
380     else
381       fprintf (dump_file, "loop NOT innermost\n");
382    }
383
384   /* Check for problems with dependences.  If the loop can be reversed,
385      the iterations are independent.  */
386   datarefs.create (10);
387   dependence_relations.create (10 * 10);
388   loop_nest.create (3);
389   if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
390                                            &dependence_relations))
391     {
392       if (dump_file && (dump_flags & TDF_DETAILS))
393         fprintf (dump_file, "  FAILED: cannot analyze data dependencies\n");
394       ret = false;
395       goto end;
396     }
397   if (dump_file && (dump_flags & TDF_DETAILS))
398     dump_data_dependence_relations (dump_file, dependence_relations);
399
400   trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
401   LTM_MATRIX (trans)[0][0] = -1;
402
403   if (lambda_transform_legal_p (trans, 1, dependence_relations))
404     {
405       ret = true;
406       if (dump_file && (dump_flags & TDF_DETAILS))
407         fprintf (dump_file, "  SUCCESS: may be parallelized\n");
408     }
409   else if (dump_file && (dump_flags & TDF_DETAILS))
410     fprintf (dump_file,
411              "  FAILED: data dependencies exist across iterations\n");
412
413  end:
414   loop_nest.release ();
415   free_dependence_relations (dependence_relations);
416   free_data_refs (datarefs);
417
418   return ret;
419 }
420
421 /* Return true when LOOP contains basic blocks marked with the
422    BB_IRREDUCIBLE_LOOP flag.  */
423
424 static inline bool
425 loop_has_blocks_with_irreducible_flag (struct loop *loop)
426 {
427   unsigned i;
428   basic_block *bbs = get_loop_body_in_dom_order (loop);
429   bool res = true;
430
431   for (i = 0; i < loop->num_nodes; i++)
432     if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
433       goto end;
434
435   res = false;
436  end:
437   free (bbs);
438   return res;
439 }
440
441 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
442    The assignment statement is placed on edge ENTRY.  DECL_ADDRESS maps decls
443    to their addresses that can be reused.  The address of OBJ is known to
444    be invariant in the whole function.  Other needed statements are placed
445    right before GSI.  */
446
447 static tree
448 take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
449                  gimple_stmt_iterator *gsi)
450 {
451   int uid;
452   void **dslot;
453   struct int_tree_map ielt, *nielt;
454   tree *var_p, name, addr;
455   gimple stmt;
456   gimple_seq stmts;
457
458   /* Since the address of OBJ is invariant, the trees may be shared.
459      Avoid rewriting unrelated parts of the code.  */
460   obj = unshare_expr (obj);
461   for (var_p = &obj;
462        handled_component_p (*var_p);
463        var_p = &TREE_OPERAND (*var_p, 0))
464     continue;
465
466   /* Canonicalize the access to base on a MEM_REF.  */
467   if (DECL_P (*var_p))
468     *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
469
470   /* Assign a canonical SSA name to the address of the base decl used
471      in the address and share it for all accesses and addresses based
472      on it.  */
473   uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
474   ielt.uid = uid;
475   dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
476   if (!*dslot)
477     {
478       if (gsi == NULL)
479         return NULL;
480       addr = TREE_OPERAND (*var_p, 0);
481       name = make_temp_ssa_name (TREE_TYPE (addr), NULL,
482                                  get_name (TREE_OPERAND
483                                            (TREE_OPERAND (*var_p, 0), 0)));
484       stmt = gimple_build_assign (name, addr);
485       gsi_insert_on_edge_immediate (entry, stmt);
486
487       nielt = XNEW (struct int_tree_map);
488       nielt->uid = uid;
489       nielt->to = name;
490       *dslot = nielt;
491     }
492   else
493     name = ((struct int_tree_map *) *dslot)->to;
494
495   /* Express the address in terms of the canonical SSA name.  */
496   TREE_OPERAND (*var_p, 0) = name;
497   if (gsi == NULL)
498     return build_fold_addr_expr_with_type (obj, type);
499
500   name = force_gimple_operand (build_addr (obj, current_function_decl),
501                                &stmts, true, NULL_TREE);
502   if (!gimple_seq_empty_p (stmts))
503     gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
504
505   if (!useless_type_conversion_p (type, TREE_TYPE (name)))
506     {
507       name = force_gimple_operand (fold_convert (type, name), &stmts, true,
508                                    NULL_TREE);
509       if (!gimple_seq_empty_p (stmts))
510         gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
511     }
512
513   return name;
514 }
515
516 /* Callback for htab_traverse.  Create the initialization statement
517    for reduction described in SLOT, and place it at the preheader of
518    the loop described in DATA.  */
519
520 static int
521 initialize_reductions (void **slot, void *data)
522 {
523   tree init, c;
524   tree bvar, type, arg;
525   edge e;
526
527   struct reduction_info *const reduc = (struct reduction_info *) *slot;
528   struct loop *loop = (struct loop *) data;
529
530   /* Create initialization in preheader:
531      reduction_variable = initialization value of reduction.  */
532
533   /* In the phi node at the header, replace the argument coming
534      from the preheader with the reduction initialization value.  */
535
536   /* Create a new variable to initialize the reduction.  */
537   type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
538   bvar = create_tmp_var (type, "reduction");
539
540   c = build_omp_clause (gimple_location (reduc->reduc_stmt),
541                         OMP_CLAUSE_REDUCTION);
542   OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
543   OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
544
545   init = omp_reduction_init (c, TREE_TYPE (bvar));
546   reduc->init = init;
547
548   /* Replace the argument representing the initialization value
549      with the initialization value for the reduction (neutral
550      element for the particular operation, e.g. 0 for PLUS_EXPR,
551      1 for MULT_EXPR, etc).
552      Keep the old value in a new variable "reduction_initial",
553      that will be taken in consideration after the parallel
554      computing is done.  */
555
556   e = loop_preheader_edge (loop);
557   arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
558   /* Create new variable to hold the initial value.  */
559
560   SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
561            (reduc->reduc_phi, loop_preheader_edge (loop)), init);
562   reduc->initial_value = arg;
563   return 1;
564 }
565
566 struct elv_data
567 {
568   struct walk_stmt_info info;
569   edge entry;
570   htab_t decl_address;
571   gimple_stmt_iterator *gsi;
572   bool changed;
573   bool reset;
574 };
575
576 /* Eliminates references to local variables in *TP out of the single
577    entry single exit region starting at DTA->ENTRY.
578    DECL_ADDRESS contains addresses of the references that had their
579    address taken already.  If the expression is changed, CHANGED is
580    set to true.  Callback for walk_tree.  */
581
582 static tree
583 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
584 {
585   struct elv_data *const dta = (struct elv_data *) data;
586   tree t = *tp, var, addr, addr_type, type, obj;
587
588   if (DECL_P (t))
589     {
590       *walk_subtrees = 0;
591
592       if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
593         return NULL_TREE;
594
595       type = TREE_TYPE (t);
596       addr_type = build_pointer_type (type);
597       addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
598                               dta->gsi);
599       if (dta->gsi == NULL && addr == NULL_TREE)
600         {
601           dta->reset = true;
602           return NULL_TREE;
603         }
604
605       *tp = build_simple_mem_ref (addr);
606
607       dta->changed = true;
608       return NULL_TREE;
609     }
610
611   if (TREE_CODE (t) == ADDR_EXPR)
612     {
613       /* ADDR_EXPR may appear in two contexts:
614          -- as a gimple operand, when the address taken is a function invariant
615          -- as gimple rhs, when the resulting address in not a function
616             invariant
617          We do not need to do anything special in the latter case (the base of
618          the memory reference whose address is taken may be replaced in the
619          DECL_P case).  The former case is more complicated, as we need to
620          ensure that the new address is still a gimple operand.  Thus, it
621          is not sufficient to replace just the base of the memory reference --
622          we need to move the whole computation of the address out of the
623          loop.  */
624       if (!is_gimple_val (t))
625         return NULL_TREE;
626
627       *walk_subtrees = 0;
628       obj = TREE_OPERAND (t, 0);
629       var = get_base_address (obj);
630       if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
631         return NULL_TREE;
632
633       addr_type = TREE_TYPE (t);
634       addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
635                               dta->gsi);
636       if (dta->gsi == NULL && addr == NULL_TREE)
637         {
638           dta->reset = true;
639           return NULL_TREE;
640         }
641       *tp = addr;
642
643       dta->changed = true;
644       return NULL_TREE;
645     }
646
647   if (!EXPR_P (t))
648     *walk_subtrees = 0;
649
650   return NULL_TREE;
651 }
652
653 /* Moves the references to local variables in STMT at *GSI out of the single
654    entry single exit region starting at ENTRY.  DECL_ADDRESS contains
655    addresses of the references that had their address taken
656    already.  */
657
658 static void
659 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
660                                 htab_t decl_address)
661 {
662   struct elv_data dta;
663   gimple stmt = gsi_stmt (*gsi);
664
665   memset (&dta.info, '\0', sizeof (dta.info));
666   dta.entry = entry;
667   dta.decl_address = decl_address;
668   dta.changed = false;
669   dta.reset = false;
670
671   if (gimple_debug_bind_p (stmt))
672     {
673       dta.gsi = NULL;
674       walk_tree (gimple_debug_bind_get_value_ptr (stmt),
675                  eliminate_local_variables_1, &dta.info, NULL);
676       if (dta.reset)
677         {
678           gimple_debug_bind_reset_value (stmt);
679           dta.changed = true;
680         }
681     }
682   else
683     {
684       dta.gsi = gsi;
685       walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
686     }
687
688   if (dta.changed)
689     update_stmt (stmt);
690 }
691
692 /* Eliminates the references to local variables from the single entry
693    single exit region between the ENTRY and EXIT edges.
694
695    This includes:
696    1) Taking address of a local variable -- these are moved out of the
697    region (and temporary variable is created to hold the address if
698    necessary).
699
700    2) Dereferencing a local variable -- these are replaced with indirect
701    references.  */
702
703 static void
704 eliminate_local_variables (edge entry, edge exit)
705 {
706   basic_block bb;
707   vec<basic_block> body;
708   body.create (3);
709   unsigned i;
710   gimple_stmt_iterator gsi;
711   bool has_debug_stmt = false;
712   htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
713                                      free);
714   basic_block entry_bb = entry->src;
715   basic_block exit_bb = exit->dest;
716
717   gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
718
719   FOR_EACH_VEC_ELT (body, i, bb)
720     if (bb != entry_bb && bb != exit_bb)
721       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
722         if (is_gimple_debug (gsi_stmt (gsi)))
723           {
724             if (gimple_debug_bind_p (gsi_stmt (gsi)))
725               has_debug_stmt = true;
726           }
727         else
728           eliminate_local_variables_stmt (entry, &gsi, decl_address);
729
730   if (has_debug_stmt)
731     FOR_EACH_VEC_ELT (body, i, bb)
732       if (bb != entry_bb && bb != exit_bb)
733         for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
734           if (gimple_debug_bind_p (gsi_stmt (gsi)))
735             eliminate_local_variables_stmt (entry, &gsi, decl_address);
736
737   htab_delete (decl_address);
738   body.release ();
739 }
740
741 /* Returns true if expression EXPR is not defined between ENTRY and
742    EXIT, i.e. if all its operands are defined outside of the region.  */
743
744 static bool
745 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
746 {
747   basic_block entry_bb = entry->src;
748   basic_block exit_bb = exit->dest;
749   basic_block def_bb;
750
751   if (is_gimple_min_invariant (expr))
752     return true;
753
754   if (TREE_CODE (expr) == SSA_NAME)
755     {
756       def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
757       if (def_bb
758           && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
759           && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
760         return false;
761
762       return true;
763     }
764
765   return false;
766 }
767
768 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
769    The copies are stored to NAME_COPIES, if NAME was already duplicated,
770    its duplicate stored in NAME_COPIES is returned.
771
772    Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
773    duplicated, storing the copies in DECL_COPIES.  */
774
775 static tree
776 separate_decls_in_region_name (tree name,
777                                htab_t name_copies, htab_t decl_copies,
778                                bool copy_name_p)
779 {
780   tree copy, var, var_copy;
781   unsigned idx, uid, nuid;
782   struct int_tree_map ielt, *nielt;
783   struct name_to_copy_elt elt, *nelt;
784   void **slot, **dslot;
785
786   if (TREE_CODE (name) != SSA_NAME)
787     return name;
788
789   idx = SSA_NAME_VERSION (name);
790   elt.version = idx;
791   slot = htab_find_slot_with_hash (name_copies, &elt, idx,
792                                    copy_name_p ? INSERT : NO_INSERT);
793   if (slot && *slot)
794     return ((struct name_to_copy_elt *) *slot)->new_name;
795
796   if (copy_name_p)
797     {
798       copy = duplicate_ssa_name (name, NULL);
799       nelt = XNEW (struct name_to_copy_elt);
800       nelt->version = idx;
801       nelt->new_name = copy;
802       nelt->field = NULL_TREE;
803       *slot = nelt;
804     }
805   else
806     {
807       gcc_assert (!slot);
808       copy = name;
809     }
810
811   var = SSA_NAME_VAR (name);
812   if (!var)
813     return copy;
814
815   uid = DECL_UID (var);
816   ielt.uid = uid;
817   dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
818   if (!*dslot)
819     {
820       var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
821       DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
822       nielt = XNEW (struct int_tree_map);
823       nielt->uid = uid;
824       nielt->to = var_copy;
825       *dslot = nielt;
826
827       /* Ensure that when we meet this decl next time, we won't duplicate
828          it again.  */
829       nuid = DECL_UID (var_copy);
830       ielt.uid = nuid;
831       dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
832       gcc_assert (!*dslot);
833       nielt = XNEW (struct int_tree_map);
834       nielt->uid = nuid;
835       nielt->to = var_copy;
836       *dslot = nielt;
837     }
838   else
839     var_copy = ((struct int_tree_map *) *dslot)->to;
840
841   replace_ssa_name_symbol (copy, var_copy);
842   return copy;
843 }
844
845 /* Finds the ssa names used in STMT that are defined outside the
846    region between ENTRY and EXIT and replaces such ssa names with
847    their duplicates.  The duplicates are stored to NAME_COPIES.  Base
848    decls of all ssa names used in STMT (including those defined in
849    LOOP) are replaced with the new temporary variables; the
850    replacement decls are stored in DECL_COPIES.  */
851
852 static void
853 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
854                                htab_t name_copies, htab_t decl_copies)
855 {
856   use_operand_p use;
857   def_operand_p def;
858   ssa_op_iter oi;
859   tree name, copy;
860   bool copy_name_p;
861
862   FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
863   {
864     name = DEF_FROM_PTR (def);
865     gcc_assert (TREE_CODE (name) == SSA_NAME);
866     copy = separate_decls_in_region_name (name, name_copies, decl_copies,
867                                           false);
868     gcc_assert (copy == name);
869   }
870
871   FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
872   {
873     name = USE_FROM_PTR (use);
874     if (TREE_CODE (name) != SSA_NAME)
875       continue;
876
877     copy_name_p = expr_invariant_in_region_p (entry, exit, name);
878     copy = separate_decls_in_region_name (name, name_copies, decl_copies,
879                                           copy_name_p);
880     SET_USE (use, copy);
881   }
882 }
883
884 /* Finds the ssa names used in STMT that are defined outside the
885    region between ENTRY and EXIT and replaces such ssa names with
886    their duplicates.  The duplicates are stored to NAME_COPIES.  Base
887    decls of all ssa names used in STMT (including those defined in
888    LOOP) are replaced with the new temporary variables; the
889    replacement decls are stored in DECL_COPIES.  */
890
891 static bool
892 separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
893                                 htab_t decl_copies)
894 {
895   use_operand_p use;
896   ssa_op_iter oi;
897   tree var, name;
898   struct int_tree_map ielt;
899   struct name_to_copy_elt elt;
900   void **slot, **dslot;
901
902   if (gimple_debug_bind_p (stmt))
903     var = gimple_debug_bind_get_var (stmt);
904   else if (gimple_debug_source_bind_p (stmt))
905     var = gimple_debug_source_bind_get_var (stmt);
906   else
907     return true;
908   if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
909     return true;
910   gcc_assert (DECL_P (var) && SSA_VAR_P (var));
911   ielt.uid = DECL_UID (var);
912   dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
913   if (!dslot)
914     return true;
915   if (gimple_debug_bind_p (stmt))
916     gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
917   else if (gimple_debug_source_bind_p (stmt))
918     gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
919
920   FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
921   {
922     name = USE_FROM_PTR (use);
923     if (TREE_CODE (name) != SSA_NAME)
924       continue;
925
926     elt.version = SSA_NAME_VERSION (name);
927     slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
928     if (!slot)
929       {
930         gimple_debug_bind_reset_value (stmt);
931         update_stmt (stmt);
932         break;
933       }
934
935     SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
936   }
937
938   return false;
939 }
940
941 /* Callback for htab_traverse.  Adds a field corresponding to the reduction
942    specified in SLOT. The type is passed in DATA.  */
943
944 static int
945 add_field_for_reduction (void **slot, void *data)
946 {
947
948   struct reduction_info *const red = (struct reduction_info *) *slot;
949   tree const type = (tree) data;
950   tree var = gimple_assign_lhs (red->reduc_stmt);
951   tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
952                            SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
953
954   insert_field_into_struct (type, field);
955
956   red->field = field;
957
958   return 1;
959 }
960
961 /* Callback for htab_traverse.  Adds a field corresponding to a ssa name
962    described in SLOT. The type is passed in DATA.  */
963
964 static int
965 add_field_for_name (void **slot, void *data)
966 {
967   struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
968   tree type = (tree) data;
969   tree name = ssa_name (elt->version);
970   tree field = build_decl (UNKNOWN_LOCATION,
971                            FIELD_DECL, SSA_NAME_IDENTIFIER (name),
972                            TREE_TYPE (name));
973
974   insert_field_into_struct (type, field);
975   elt->field = field;
976
977   return 1;
978 }
979
980 /* Callback for htab_traverse.  A local result is the intermediate result
981    computed by a single
982    thread, or the initial value in case no iteration was executed.
983    This function creates a phi node reflecting these values.
984    The phi's result will be stored in NEW_PHI field of the
985    reduction's data structure.  */
986
987 static int
988 create_phi_for_local_result (void **slot, void *data)
989 {
990   struct reduction_info *const reduc = (struct reduction_info *) *slot;
991   const struct loop *const loop = (const struct loop *) data;
992   edge e;
993   gimple new_phi;
994   basic_block store_bb;
995   tree local_res;
996   source_location locus;
997
998   /* STORE_BB is the block where the phi
999      should be stored.  It is the destination of the loop exit.
1000      (Find the fallthru edge from GIMPLE_OMP_CONTINUE).  */
1001   store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1002
1003   /* STORE_BB has two predecessors.  One coming from  the loop
1004      (the reduction's result is computed at the loop),
1005      and another coming from a block preceding the loop,
1006      when no iterations
1007      are executed (the initial value should be taken).  */
1008   if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1009     e = EDGE_PRED (store_bb, 1);
1010   else
1011     e = EDGE_PRED (store_bb, 0);
1012   local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
1013   locus = gimple_location (reduc->reduc_stmt);
1014   new_phi = create_phi_node (local_res, store_bb);
1015   add_phi_arg (new_phi, reduc->init, e, locus);
1016   add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1017                FALLTHRU_EDGE (loop->latch), locus);
1018   reduc->new_phi = new_phi;
1019
1020   return 1;
1021 }
1022
1023 struct clsn_data
1024 {
1025   tree store;
1026   tree load;
1027
1028   basic_block store_bb;
1029   basic_block load_bb;
1030 };
1031
1032 /* Callback for htab_traverse.  Create an atomic instruction for the
1033    reduction described in SLOT.
1034    DATA annotates the place in memory the atomic operation relates to,
1035    and the basic block it needs to be generated in.  */
1036
1037 static int
1038 create_call_for_reduction_1 (void **slot, void *data)
1039 {
1040   struct reduction_info *const reduc = (struct reduction_info *) *slot;
1041   struct clsn_data *const clsn_data = (struct clsn_data *) data;
1042   gimple_stmt_iterator gsi;
1043   tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1044   tree load_struct;
1045   basic_block bb;
1046   basic_block new_bb;
1047   edge e;
1048   tree t, addr, ref, x;
1049   tree tmp_load, name;
1050   gimple load;
1051
1052   load_struct = build_simple_mem_ref (clsn_data->load);
1053   t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1054
1055   addr = build_addr (t, current_function_decl);
1056
1057   /* Create phi node.  */
1058   bb = clsn_data->load_bb;
1059
1060   e = split_block (bb, t);
1061   new_bb = e->dest;
1062
1063   tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
1064   tmp_load = make_ssa_name (tmp_load, NULL);
1065   load = gimple_build_omp_atomic_load (tmp_load, addr);
1066   SSA_NAME_DEF_STMT (tmp_load) = load;
1067   gsi = gsi_start_bb (new_bb);
1068   gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1069
1070   e = split_block (new_bb, load);
1071   new_bb = e->dest;
1072   gsi = gsi_start_bb (new_bb);
1073   ref = tmp_load;
1074   x = fold_build2 (reduc->reduction_code,
1075                    TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1076                    PHI_RESULT (reduc->new_phi));
1077
1078   name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1079                                    GSI_CONTINUE_LINKING);
1080
1081   gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1082   return 1;
1083 }
1084
1085 /* Create the atomic operation at the join point of the threads.
1086    REDUCTION_LIST describes the reductions in the LOOP.
1087    LD_ST_DATA describes the shared data structure where
1088    shared data is stored in and loaded from.  */
1089 static void
1090 create_call_for_reduction (struct loop *loop, htab_t reduction_list,
1091                            struct clsn_data *ld_st_data)
1092 {
1093   htab_traverse (reduction_list, create_phi_for_local_result, loop);
1094   /* Find the fallthru edge from GIMPLE_OMP_CONTINUE.  */
1095   ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1096   htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1097 }
1098
1099 /* Callback for htab_traverse.  Loads the final reduction value at the
1100    join point of all threads, and inserts it in the right place.  */
1101
1102 static int
1103 create_loads_for_reductions (void **slot, void *data)
1104 {
1105   struct reduction_info *const red = (struct reduction_info *) *slot;
1106   struct clsn_data *const clsn_data = (struct clsn_data *) data;
1107   gimple stmt;
1108   gimple_stmt_iterator gsi;
1109   tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1110   tree load_struct;
1111   tree name;
1112   tree x;
1113
1114   gsi = gsi_after_labels (clsn_data->load_bb);
1115   load_struct = build_simple_mem_ref (clsn_data->load);
1116   load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1117                         NULL_TREE);
1118
1119   x = load_struct;
1120   name = PHI_RESULT (red->keep_res);
1121   stmt = gimple_build_assign (name, x);
1122   SSA_NAME_DEF_STMT (name) = stmt;
1123
1124   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1125
1126   for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1127        !gsi_end_p (gsi); gsi_next (&gsi))
1128     if (gsi_stmt (gsi) == red->keep_res)
1129       {
1130         remove_phi_node (&gsi, false);
1131         return 1;
1132       }
1133   gcc_unreachable ();
1134 }
1135
1136 /* Load the reduction result that was stored in LD_ST_DATA.
1137    REDUCTION_LIST describes the list of reductions that the
1138    loads should be generated for.  */
1139 static void
1140 create_final_loads_for_reduction (htab_t reduction_list,
1141                                   struct clsn_data *ld_st_data)
1142 {
1143   gimple_stmt_iterator gsi;
1144   tree t;
1145   gimple stmt;
1146
1147   gsi = gsi_after_labels (ld_st_data->load_bb);
1148   t = build_fold_addr_expr (ld_st_data->store);
1149   stmt = gimple_build_assign (ld_st_data->load, t);
1150
1151   gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1152   SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
1153
1154   htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1155
1156 }
1157
1158 /* Callback for htab_traverse.  Store the neutral value for the
1159   particular reduction's operation, e.g. 0 for PLUS_EXPR,
1160   1 for MULT_EXPR, etc. into the reduction field.
1161   The reduction is specified in SLOT. The store information is
1162   passed in DATA.  */
1163
1164 static int
1165 create_stores_for_reduction (void **slot, void *data)
1166 {
1167   struct reduction_info *const red = (struct reduction_info *) *slot;
1168   struct clsn_data *const clsn_data = (struct clsn_data *) data;
1169   tree t;
1170   gimple stmt;
1171   gimple_stmt_iterator gsi;
1172   tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1173
1174   gsi = gsi_last_bb (clsn_data->store_bb);
1175   t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1176   stmt = gimple_build_assign (t, red->initial_value);
1177   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1178
1179   return 1;
1180 }
1181
1182 /* Callback for htab_traverse.  Creates loads to a field of LOAD in LOAD_BB and
1183    store to a field of STORE in STORE_BB for the ssa name and its duplicate
1184    specified in SLOT.  */
1185
1186 static int
1187 create_loads_and_stores_for_name (void **slot, void *data)
1188 {
1189   struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1190   struct clsn_data *const clsn_data = (struct clsn_data *) data;
1191   tree t;
1192   gimple stmt;
1193   gimple_stmt_iterator gsi;
1194   tree type = TREE_TYPE (elt->new_name);
1195   tree load_struct;
1196
1197   gsi = gsi_last_bb (clsn_data->store_bb);
1198   t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1199   stmt = gimple_build_assign (t, ssa_name (elt->version));
1200   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1201
1202   gsi = gsi_last_bb (clsn_data->load_bb);
1203   load_struct = build_simple_mem_ref (clsn_data->load);
1204   t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1205   stmt = gimple_build_assign (elt->new_name, t);
1206   SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1207   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1208
1209   return 1;
1210 }
1211
1212 /* Moves all the variables used in LOOP and defined outside of it (including
1213    the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1214    name) to a structure created for this purpose.  The code
1215
1216    while (1)
1217      {
1218        use (a);
1219        use (b);
1220      }
1221
1222    is transformed this way:
1223
1224    bb0:
1225    old.a = a;
1226    old.b = b;
1227
1228    bb1:
1229    a' = new->a;
1230    b' = new->b;
1231    while (1)
1232      {
1233        use (a');
1234        use (b');
1235      }
1236
1237    `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT.  The
1238    pointer `new' is intentionally not initialized (the loop will be split to a
1239    separate function later, and `new' will be initialized from its arguments).
1240    LD_ST_DATA holds information about the shared data structure used to pass
1241    information among the threads.  It is initialized here, and
1242    gen_parallel_loop will pass it to create_call_for_reduction that
1243    needs this information.  REDUCTION_LIST describes the reductions
1244    in LOOP.  */
1245
1246 static void
1247 separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
1248                           tree *arg_struct, tree *new_arg_struct,
1249                           struct clsn_data *ld_st_data)
1250
1251 {
1252   basic_block bb1 = split_edge (entry);
1253   basic_block bb0 = single_pred (bb1);
1254   htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1255                                     name_to_copy_elt_eq, free);
1256   htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1257                                     free);
1258   unsigned i;
1259   tree type, type_name, nvar;
1260   gimple_stmt_iterator gsi;
1261   struct clsn_data clsn_data;
1262   vec<basic_block> body;
1263   body.create (3);
1264   basic_block bb;
1265   basic_block entry_bb = bb1;
1266   basic_block exit_bb = exit->dest;
1267   bool has_debug_stmt = false;
1268
1269   entry = single_succ_edge (entry_bb);
1270   gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1271
1272   FOR_EACH_VEC_ELT (body, i, bb)
1273     {
1274       if (bb != entry_bb && bb != exit_bb)
1275         {
1276           for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1277             separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1278                                            name_copies, decl_copies);
1279
1280           for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1281             {
1282               gimple stmt = gsi_stmt (gsi);
1283
1284               if (is_gimple_debug (stmt))
1285                 has_debug_stmt = true;
1286               else
1287                 separate_decls_in_region_stmt (entry, exit, stmt,
1288                                                name_copies, decl_copies);
1289             }
1290         }
1291     }
1292
1293   /* Now process debug bind stmts.  We must not create decls while
1294      processing debug stmts, so we defer their processing so as to
1295      make sure we will have debug info for as many variables as
1296      possible (all of those that were dealt with in the loop above),
1297      and discard those for which we know there's nothing we can
1298      do.  */
1299   if (has_debug_stmt)
1300     FOR_EACH_VEC_ELT (body, i, bb)
1301       if (bb != entry_bb && bb != exit_bb)
1302         {
1303           for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1304             {
1305               gimple stmt = gsi_stmt (gsi);
1306
1307               if (is_gimple_debug (stmt))
1308                 {
1309                   if (separate_decls_in_region_debug (stmt, name_copies,
1310                                                       decl_copies))
1311                     {
1312                       gsi_remove (&gsi, true);
1313                       continue;
1314                     }
1315                 }
1316
1317               gsi_next (&gsi);
1318             }
1319         }
1320
1321   body.release ();
1322
1323   if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
1324     {
1325       /* It may happen that there is nothing to copy (if there are only
1326          loop carried and external variables in the loop).  */
1327       *arg_struct = NULL;
1328       *new_arg_struct = NULL;
1329     }
1330   else
1331     {
1332       /* Create the type for the structure to store the ssa names to.  */
1333       type = lang_hooks.types.make_type (RECORD_TYPE);
1334       type_name = build_decl (UNKNOWN_LOCATION,
1335                               TYPE_DECL, create_tmp_var_name (".paral_data"),
1336                               type);
1337       TYPE_NAME (type) = type_name;
1338
1339       htab_traverse (name_copies, add_field_for_name, type);
1340       if (reduction_list && htab_elements (reduction_list) > 0)
1341         {
1342           /* Create the fields for reductions.  */
1343           htab_traverse (reduction_list, add_field_for_reduction,
1344                          type);
1345         }
1346       layout_type (type);
1347
1348       /* Create the loads and stores.  */
1349       *arg_struct = create_tmp_var (type, ".paral_data_store");
1350       nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1351       *new_arg_struct = make_ssa_name (nvar, NULL);
1352
1353       ld_st_data->store = *arg_struct;
1354       ld_st_data->load = *new_arg_struct;
1355       ld_st_data->store_bb = bb0;
1356       ld_st_data->load_bb = bb1;
1357
1358       htab_traverse (name_copies, create_loads_and_stores_for_name,
1359                      ld_st_data);
1360
1361       /* Load the calculation from memory (after the join of the threads).  */
1362
1363       if (reduction_list && htab_elements (reduction_list) > 0)
1364         {
1365           htab_traverse (reduction_list, create_stores_for_reduction,
1366                         ld_st_data);
1367           clsn_data.load = make_ssa_name (nvar, NULL);
1368           clsn_data.load_bb = exit->dest;
1369           clsn_data.store = ld_st_data->store;
1370           create_final_loads_for_reduction (reduction_list, &clsn_data);
1371         }
1372     }
1373
1374   htab_delete (decl_copies);
1375   htab_delete (name_copies);
1376 }
1377
1378 /* Bitmap containing uids of functions created by parallelization.  We cannot
1379    allocate it from the default obstack, as it must live across compilation
1380    of several functions; we make it gc allocated instead.  */
1381
1382 static GTY(()) bitmap parallelized_functions;
1383
1384 /* Returns true if FN was created by create_loop_fn.  */
1385
1386 bool
1387 parallelized_function_p (tree fn)
1388 {
1389   if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1390     return false;
1391
1392   return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1393 }
1394
1395 /* Creates and returns an empty function that will receive the body of
1396    a parallelized loop.  */
1397
1398 static tree
1399 create_loop_fn (location_t loc)
1400 {
1401   char buf[100];
1402   char *tname;
1403   tree decl, type, name, t;
1404   struct function *act_cfun = cfun;
1405   static unsigned loopfn_num;
1406
1407   loc = LOCATION_LOCUS (loc);
1408   snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1409   ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1410   clean_symbol_name (tname);
1411   name = get_identifier (tname);
1412   type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1413
1414   decl = build_decl (loc, FUNCTION_DECL, name, type);
1415   if (!parallelized_functions)
1416     parallelized_functions = BITMAP_GGC_ALLOC ();
1417   bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1418
1419   TREE_STATIC (decl) = 1;
1420   TREE_USED (decl) = 1;
1421   DECL_ARTIFICIAL (decl) = 1;
1422   DECL_IGNORED_P (decl) = 0;
1423   TREE_PUBLIC (decl) = 0;
1424   DECL_UNINLINABLE (decl) = 1;
1425   DECL_EXTERNAL (decl) = 0;
1426   DECL_CONTEXT (decl) = NULL_TREE;
1427   DECL_INITIAL (decl) = make_node (BLOCK);
1428
1429   t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1430   DECL_ARTIFICIAL (t) = 1;
1431   DECL_IGNORED_P (t) = 1;
1432   DECL_RESULT (decl) = t;
1433
1434   t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1435                   ptr_type_node);
1436   DECL_ARTIFICIAL (t) = 1;
1437   DECL_ARG_TYPE (t) = ptr_type_node;
1438   DECL_CONTEXT (t) = decl;
1439   TREE_USED (t) = 1;
1440   DECL_ARGUMENTS (decl) = t;
1441
1442   allocate_struct_function (decl, false);
1443
1444   /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1445      it.  */
1446   set_cfun (act_cfun);
1447
1448   return decl;
1449 }
1450
1451 /* Moves the exit condition of LOOP to the beginning of its header, and
1452    duplicates the part of the last iteration that gets disabled to the
1453    exit of the loop.  NIT is the number of iterations of the loop
1454    (used to initialize the variables in the duplicated part).
1455
1456    TODO: the common case is that latch of the loop is empty and immediately
1457    follows the loop exit.  In this case, it would be better not to copy the
1458    body of the loop, but only move the entry of the loop directly before the
1459    exit check and increase the number of iterations of the loop by one.
1460    This may need some additional preconditioning in case NIT = ~0.
1461    REDUCTION_LIST describes the reductions in LOOP.  */
1462
1463 static void
1464 transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
1465 {
1466   basic_block *bbs, *nbbs, ex_bb, orig_header;
1467   unsigned n;
1468   bool ok;
1469   edge exit = single_dom_exit (loop), hpred;
1470   tree control, control_name, res, t;
1471   gimple phi, nphi, cond_stmt, stmt, cond_nit;
1472   gimple_stmt_iterator gsi;
1473   tree nit_1;
1474
1475   split_block_after_labels (loop->header);
1476   orig_header = single_succ (loop->header);
1477   hpred = single_succ_edge (loop->header);
1478
1479   cond_stmt = last_stmt (exit->src);
1480   control = gimple_cond_lhs (cond_stmt);
1481   gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1482
1483   /* Make sure that we have phi nodes on exit for all loop header phis
1484      (create_parallel_loop requires that).  */
1485   for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1486     {
1487       phi = gsi_stmt (gsi);
1488       res = PHI_RESULT (phi);
1489       t = copy_ssa_name (res, phi);
1490       SET_PHI_RESULT (phi, t);
1491       nphi = create_phi_node (res, orig_header);
1492       add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1493
1494       if (res == control)
1495         {
1496           gimple_cond_set_lhs (cond_stmt, t);
1497           update_stmt (cond_stmt);
1498           control = t;
1499         }
1500     }
1501
1502   bbs = get_loop_body_in_dom_order (loop);
1503
1504   for (n = 0; bbs[n] != exit->src; n++)
1505    continue;
1506   nbbs = XNEWVEC (basic_block, n);
1507   ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1508                                    bbs + 1, n, nbbs);
1509   gcc_assert (ok);
1510   free (bbs);
1511   ex_bb = nbbs[0];
1512   free (nbbs);
1513
1514   /* Other than reductions, the only gimple reg that should be copied
1515      out of the loop is the control variable.  */
1516   exit = single_dom_exit (loop);
1517   control_name = NULL_TREE;
1518   for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1519     {
1520       phi = gsi_stmt (gsi);
1521       res = PHI_RESULT (phi);
1522       if (virtual_operand_p (res))
1523         {
1524           gsi_next (&gsi);
1525           continue;
1526         }
1527
1528       /* Check if it is a part of reduction.  If it is,
1529          keep the phi at the reduction's keep_res field.  The
1530          PHI_RESULT of this phi is the resulting value of the reduction
1531          variable when exiting the loop.  */
1532
1533       if (htab_elements (reduction_list) > 0)
1534         {
1535           struct reduction_info *red;
1536
1537           tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1538           red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1539           if (red)
1540             {
1541               red->keep_res = phi;
1542               gsi_next (&gsi);
1543               continue;
1544             }
1545         }
1546       gcc_assert (control_name == NULL_TREE
1547                   && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1548       control_name = res;
1549       remove_phi_node (&gsi, false);
1550     }
1551   gcc_assert (control_name != NULL_TREE);
1552
1553   /* Initialize the control variable to number of iterations
1554      according to the rhs of the exit condition.  */
1555   gsi = gsi_after_labels (ex_bb);
1556   cond_nit = last_stmt (exit->src);
1557   nit_1 =  gimple_cond_rhs (cond_nit);
1558   nit_1 = force_gimple_operand_gsi (&gsi,
1559                                   fold_convert (TREE_TYPE (control_name), nit_1),
1560                                   false, NULL_TREE, false, GSI_SAME_STMT);
1561   stmt = gimple_build_assign (control_name, nit_1);
1562   gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1563   SSA_NAME_DEF_STMT (control_name) = stmt;
1564 }
1565
1566 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1567    LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1568    NEW_DATA is the variable that should be initialized from the argument
1569    of LOOP_FN.  N_THREADS is the requested number of threads.  Returns the
1570    basic block containing GIMPLE_OMP_PARALLEL tree.  */
1571
1572 static basic_block
1573 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1574                       tree new_data, unsigned n_threads, location_t loc)
1575 {
1576   gimple_stmt_iterator gsi;
1577   basic_block bb, paral_bb, for_bb, ex_bb;
1578   tree t, param;
1579   gimple stmt, for_stmt, phi, cond_stmt;
1580   tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1581   edge exit, nexit, guard, end, e;
1582
1583   /* Prepare the GIMPLE_OMP_PARALLEL statement.  */
1584   bb = loop_preheader_edge (loop)->src;
1585   paral_bb = single_pred (bb);
1586   gsi = gsi_last_bb (paral_bb);
1587
1588   t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1589   OMP_CLAUSE_NUM_THREADS_EXPR (t)
1590     = build_int_cst (integer_type_node, n_threads);
1591   stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1592   gimple_set_location (stmt, loc);
1593
1594   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1595
1596   /* Initialize NEW_DATA.  */
1597   if (data)
1598     {
1599       gsi = gsi_after_labels (bb);
1600
1601       param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1602       stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1603       gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1604       SSA_NAME_DEF_STMT (param) = stmt;
1605
1606       stmt = gimple_build_assign (new_data,
1607                                   fold_convert (TREE_TYPE (new_data), param));
1608       gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1609       SSA_NAME_DEF_STMT (new_data) = stmt;
1610     }
1611
1612   /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL.  */
1613   bb = split_loop_exit_edge (single_dom_exit (loop));
1614   gsi = gsi_last_bb (bb);
1615   stmt = gimple_build_omp_return (false);
1616   gimple_set_location (stmt, loc);
1617   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1618
1619   /* Extract data for GIMPLE_OMP_FOR.  */
1620   gcc_assert (loop->header == single_dom_exit (loop)->src);
1621   cond_stmt = last_stmt (loop->header);
1622
1623   cvar = gimple_cond_lhs (cond_stmt);
1624   cvar_base = SSA_NAME_VAR (cvar);
1625   phi = SSA_NAME_DEF_STMT (cvar);
1626   cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1627   initvar = copy_ssa_name (cvar, NULL);
1628   SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1629            initvar);
1630   cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1631
1632   gsi = gsi_last_nondebug_bb (loop->latch);
1633   gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1634   gsi_remove (&gsi, true);
1635
1636   /* Prepare cfg.  */
1637   for_bb = split_edge (loop_preheader_edge (loop));
1638   ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1639   extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1640   gcc_assert (exit == single_dom_exit (loop));
1641
1642   guard = make_edge (for_bb, ex_bb, 0);
1643   single_succ_edge (loop->latch)->flags = 0;
1644   end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1645   for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1646     {
1647       source_location locus;
1648       tree def;
1649       phi = gsi_stmt (gsi);
1650       stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1651
1652       def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1653       locus = gimple_phi_arg_location_from_edge (stmt,
1654                                                  loop_preheader_edge (loop));
1655       add_phi_arg (phi, def, guard, locus);
1656
1657       def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1658       locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1659       add_phi_arg (phi, def, end, locus);
1660     }
1661   e = redirect_edge_and_branch (exit, nexit->dest);
1662   PENDING_STMT (e) = NULL;
1663
1664   /* Emit GIMPLE_OMP_FOR.  */
1665   gimple_cond_set_lhs (cond_stmt, cvar_base);
1666   type = TREE_TYPE (cvar);
1667   t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1668   OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1669
1670   for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
1671   gimple_set_location (for_stmt, loc);
1672   gimple_omp_for_set_index (for_stmt, 0, initvar);
1673   gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1674   gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1675   gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1676   gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1677                                                 cvar_base,
1678                                                 build_int_cst (type, 1)));
1679
1680   gsi = gsi_last_bb (for_bb);
1681   gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1682   SSA_NAME_DEF_STMT (initvar) = for_stmt;
1683
1684   /* Emit GIMPLE_OMP_CONTINUE.  */
1685   gsi = gsi_last_bb (loop->latch);
1686   stmt = gimple_build_omp_continue (cvar_next, cvar);
1687   gimple_set_location (stmt, loc);
1688   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1689   SSA_NAME_DEF_STMT (cvar_next) = stmt;
1690
1691   /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR.  */
1692   gsi = gsi_last_bb (ex_bb);
1693   stmt = gimple_build_omp_return (true);
1694   gimple_set_location (stmt, loc);
1695   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1696
1697   /* After the above dom info is hosed.  Re-compute it.  */
1698   free_dominance_info (CDI_DOMINATORS);
1699   calculate_dominance_info (CDI_DOMINATORS);
1700
1701   return paral_bb;
1702 }
1703
1704 /* Generates code to execute the iterations of LOOP in N_THREADS
1705    threads in parallel.
1706
1707    NITER describes number of iterations of LOOP.
1708    REDUCTION_LIST describes the reductions existent in the LOOP.  */
1709
1710 static void
1711 gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1712                    unsigned n_threads, struct tree_niter_desc *niter)
1713 {
1714   loop_iterator li;
1715   tree many_iterations_cond, type, nit;
1716   tree arg_struct, new_arg_struct;
1717   gimple_seq stmts;
1718   basic_block parallel_head;
1719   edge entry, exit;
1720   struct clsn_data clsn_data;
1721   unsigned prob;
1722   location_t loc;
1723   gimple cond_stmt;
1724   unsigned int m_p_thread=2;
1725
1726   /* From
1727
1728      ---------------------------------------------------------------------
1729      loop
1730        {
1731          IV = phi (INIT, IV + STEP)
1732          BODY1;
1733          if (COND)
1734            break;
1735          BODY2;
1736        }
1737      ---------------------------------------------------------------------
1738
1739      with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1740      we generate the following code:
1741
1742      ---------------------------------------------------------------------
1743
1744      if (MAY_BE_ZERO
1745      || NITER < MIN_PER_THREAD * N_THREADS)
1746      goto original;
1747
1748      BODY1;
1749      store all local loop-invariant variables used in body of the loop to DATA.
1750      GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1751      load the variables from DATA.
1752      GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1753      BODY2;
1754      BODY1;
1755      GIMPLE_OMP_CONTINUE;
1756      GIMPLE_OMP_RETURN         -- GIMPLE_OMP_FOR
1757      GIMPLE_OMP_RETURN         -- GIMPLE_OMP_PARALLEL
1758      goto end;
1759
1760      original:
1761      loop
1762        {
1763          IV = phi (INIT, IV + STEP)
1764          BODY1;
1765          if (COND)
1766            break;
1767          BODY2;
1768        }
1769
1770      end:
1771
1772    */
1773
1774   /* Create two versions of the loop -- in the old one, we know that the
1775      number of iterations is large enough, and we will transform it into the
1776      loop that will be split to loop_fn, the new one will be used for the
1777      remaining iterations.  */
1778
1779   /* We should compute a better number-of-iterations value for outer loops.
1780      That is, if we have
1781  
1782     for (i = 0; i < n; ++i)
1783       for (j = 0; j < m; ++j)
1784         ...
1785
1786     we should compute nit = n * m, not nit = n.  
1787     Also may_be_zero handling would need to be adjusted.  */
1788
1789   type = TREE_TYPE (niter->niter);
1790   nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1791                               NULL_TREE);
1792   if (stmts)
1793     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1794
1795   if (loop->inner)
1796     m_p_thread=2;
1797   else
1798     m_p_thread=MIN_PER_THREAD;
1799
1800    many_iterations_cond =
1801      fold_build2 (GE_EXPR, boolean_type_node,
1802                 nit, build_int_cst (type, m_p_thread * n_threads));
1803
1804   many_iterations_cond
1805     = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1806                    invert_truthvalue (unshare_expr (niter->may_be_zero)),
1807                    many_iterations_cond);
1808   many_iterations_cond
1809     = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1810   if (stmts)
1811     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1812   if (!is_gimple_condexpr (many_iterations_cond))
1813     {
1814       many_iterations_cond
1815         = force_gimple_operand (many_iterations_cond, &stmts,
1816                                 true, NULL_TREE);
1817       if (stmts)
1818         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1819     }
1820
1821   initialize_original_copy_tables ();
1822
1823   /* We assume that the loop usually iterates a lot.  */
1824   prob = 4 * REG_BR_PROB_BASE / 5;
1825   loop_version (loop, many_iterations_cond, NULL,
1826                 prob, prob, REG_BR_PROB_BASE - prob, true);
1827   update_ssa (TODO_update_ssa);
1828   free_original_copy_tables ();
1829
1830   /* Base all the induction variables in LOOP on a single control one.  */
1831   canonicalize_loop_ivs (loop, &nit, true);
1832
1833   /* Ensure that the exit condition is the first statement in the loop.  */
1834   transform_to_exit_first_loop (loop, reduction_list, nit);
1835
1836   /* Generate initializations for reductions.  */
1837   if (htab_elements (reduction_list) > 0)
1838     htab_traverse (reduction_list, initialize_reductions, loop);
1839
1840   /* Eliminate the references to local variables from the loop.  */
1841   gcc_assert (single_exit (loop));
1842   entry = loop_preheader_edge (loop);
1843   exit = single_dom_exit (loop);
1844
1845   eliminate_local_variables (entry, exit);
1846   /* In the old loop, move all variables non-local to the loop to a structure
1847      and back, and create separate decls for the variables used in loop.  */
1848   separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1849                             &new_arg_struct, &clsn_data);
1850
1851   /* Create the parallel constructs.  */
1852   loc = UNKNOWN_LOCATION;
1853   cond_stmt = last_stmt (loop->header);
1854   if (cond_stmt)
1855     loc = gimple_location (cond_stmt);
1856   parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1857                                         new_arg_struct, n_threads, loc);
1858   if (htab_elements (reduction_list) > 0)
1859     create_call_for_reduction (loop, reduction_list, &clsn_data);
1860
1861   scev_reset ();
1862
1863   /* Cancel the loop (it is simpler to do it here rather than to teach the
1864      expander to do it).  */
1865   cancel_loop_tree (loop);
1866
1867   /* Free loop bound estimations that could contain references to
1868      removed statements.  */
1869   FOR_EACH_LOOP (li, loop, 0)
1870     free_numbers_of_iterations_estimates_loop (loop);
1871
1872   /* Expand the parallel constructs.  We do it directly here instead of running
1873      a separate expand_omp pass, since it is more efficient, and less likely to
1874      cause troubles with further analyses not being able to deal with the
1875      OMP trees.  */
1876
1877   omp_expand_local (parallel_head);
1878 }
1879
1880 /* Returns true when LOOP contains vector phi nodes.  */
1881
1882 static bool
1883 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1884 {
1885   unsigned i;
1886   basic_block *bbs = get_loop_body_in_dom_order (loop);
1887   gimple_stmt_iterator gsi;
1888   bool res = true;
1889
1890   for (i = 0; i < loop->num_nodes; i++)
1891     for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1892       if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1893         goto end;
1894
1895   res = false;
1896  end:
1897   free (bbs);
1898   return res;
1899 }
1900
1901 /* Create a reduction_info struct, initialize it with REDUC_STMT
1902    and PHI, insert it to the REDUCTION_LIST.  */
1903
1904 static void
1905 build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
1906 {
1907   PTR *slot;
1908   struct reduction_info *new_reduction;
1909
1910   gcc_assert (reduc_stmt);
1911
1912   if (dump_file && (dump_flags & TDF_DETAILS))
1913     {
1914       fprintf (dump_file,
1915                "Detected reduction. reduction stmt is: \n");
1916       print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1917       fprintf (dump_file, "\n");
1918     }
1919
1920   new_reduction = XCNEW (struct reduction_info);
1921
1922   new_reduction->reduc_stmt = reduc_stmt;
1923   new_reduction->reduc_phi = phi;
1924   new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1925   new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1926   slot = htab_find_slot (reduction_list, new_reduction, INSERT);
1927   *slot = new_reduction;
1928 }
1929
1930 /* Callback for htab_traverse.  Sets gimple_uid of reduc_phi stmts.  */
1931
1932 static int
1933 set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
1934 {
1935   struct reduction_info *const red = (struct reduction_info *) *slot;
1936   gimple_set_uid (red->reduc_phi, red->reduc_version);
1937   return 1;
1938 }
1939
1940 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST.  */
1941
1942 static void
1943 gather_scalar_reductions (loop_p loop, htab_t reduction_list)
1944 {
1945   gimple_stmt_iterator gsi;
1946   loop_vec_info simple_loop_info;
1947
1948   simple_loop_info = vect_analyze_loop_form (loop);
1949
1950   for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1951     {
1952       gimple phi = gsi_stmt (gsi);
1953       affine_iv iv;
1954       tree res = PHI_RESULT (phi);
1955       bool double_reduc;
1956
1957       if (virtual_operand_p (res))
1958         continue;
1959
1960       if (!simple_iv (loop, loop, res, &iv, true)
1961         && simple_loop_info)
1962         {
1963            gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
1964                                                             phi, true,
1965                                                             &double_reduc);
1966            if (reduc_stmt && !double_reduc)
1967               build_new_reduction (reduction_list, reduc_stmt, phi);
1968         }
1969     }
1970   destroy_loop_vec_info (simple_loop_info, true);
1971
1972   /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
1973      and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
1974      only now.  */
1975   htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
1976 }
1977
1978 /* Try to initialize NITER for code generation part.  */
1979
1980 static bool
1981 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
1982 {
1983   edge exit = single_dom_exit (loop);
1984
1985   gcc_assert (exit);
1986
1987   /* We need to know # of iterations, and there should be no uses of values
1988      defined inside loop outside of it, unless the values are invariants of
1989      the loop.  */
1990   if (!number_of_iterations_exit (loop, exit, niter, false))
1991     {
1992       if (dump_file && (dump_flags & TDF_DETAILS))
1993         fprintf (dump_file, "  FAILED: number of iterations not known\n");
1994       return false;
1995     }
1996
1997   return true;
1998 }
1999
2000 /* Try to initialize REDUCTION_LIST for code generation part.
2001    REDUCTION_LIST describes the reductions.  */
2002
2003 static bool
2004 try_create_reduction_list (loop_p loop, htab_t reduction_list)
2005 {
2006   edge exit = single_dom_exit (loop);
2007   gimple_stmt_iterator gsi;
2008
2009   gcc_assert (exit);
2010
2011   gather_scalar_reductions (loop, reduction_list);
2012
2013
2014   for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2015     {
2016       gimple phi = gsi_stmt (gsi);
2017       struct reduction_info *red;
2018       imm_use_iterator imm_iter;
2019       use_operand_p use_p;
2020       gimple reduc_phi;
2021       tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2022
2023       if (!virtual_operand_p (val))
2024         {
2025           if (dump_file && (dump_flags & TDF_DETAILS))
2026             {
2027               fprintf (dump_file, "phi is ");
2028               print_gimple_stmt (dump_file, phi, 0, 0);
2029               fprintf (dump_file, "arg of phi to exit:   value ");
2030               print_generic_expr (dump_file, val, 0);
2031               fprintf (dump_file, " used outside loop\n");
2032               fprintf (dump_file,
2033                        "  checking if it a part of reduction pattern:  \n");
2034             }
2035           if (htab_elements (reduction_list) == 0)
2036             {
2037               if (dump_file && (dump_flags & TDF_DETAILS))
2038                 fprintf (dump_file,
2039                          "  FAILED: it is not a part of reduction.\n");
2040               return false;
2041             }
2042           reduc_phi = NULL;
2043           FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2044             {
2045               if (!gimple_debug_bind_p (USE_STMT (use_p))
2046                   && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2047                 {
2048                   reduc_phi = USE_STMT (use_p);
2049                   break;
2050                 }
2051             }
2052           red = reduction_phi (reduction_list, reduc_phi);
2053           if (red == NULL)
2054             {
2055               if (dump_file && (dump_flags & TDF_DETAILS))
2056                 fprintf (dump_file,
2057                          "  FAILED: it is not a part of reduction.\n");
2058               return false;
2059             }
2060           if (dump_file && (dump_flags & TDF_DETAILS))
2061             {
2062               fprintf (dump_file, "reduction phi is  ");
2063               print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2064               fprintf (dump_file, "reduction stmt is  ");
2065               print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2066             }
2067         }
2068     }
2069
2070   /* The iterations of the loop may communicate only through bivs whose
2071      iteration space can be distributed efficiently.  */
2072   for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2073     {
2074       gimple phi = gsi_stmt (gsi);
2075       tree def = PHI_RESULT (phi);
2076       affine_iv iv;
2077
2078       if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2079         {
2080           struct reduction_info *red;
2081
2082           red = reduction_phi (reduction_list, phi);
2083           if (red == NULL)
2084             {
2085               if (dump_file && (dump_flags & TDF_DETAILS))
2086                 fprintf (dump_file,
2087                          "  FAILED: scalar dependency between iterations\n");
2088               return false;
2089             }
2090         }
2091     }
2092
2093
2094   return true;
2095 }
2096
2097 /* Detect parallel loops and generate parallel code using libgomp
2098    primitives.  Returns true if some loop was parallelized, false
2099    otherwise.  */
2100
2101 bool
2102 parallelize_loops (void)
2103 {
2104   unsigned n_threads = flag_tree_parallelize_loops;
2105   bool changed = false;
2106   struct loop *loop;
2107   struct tree_niter_desc niter_desc;
2108   loop_iterator li;
2109   htab_t reduction_list;
2110   struct obstack parloop_obstack;
2111   HOST_WIDE_INT estimated;
2112   LOC loop_loc;
2113
2114   /* Do not parallelize loops in the functions created by parallelization.  */
2115   if (parallelized_function_p (cfun->decl))
2116     return false;
2117   if (cfun->has_nonlocal_label)
2118     return false;
2119
2120   gcc_obstack_init (&parloop_obstack);
2121   reduction_list = htab_create (10, reduction_info_hash,
2122                                      reduction_info_eq, free);
2123   init_stmt_vec_info_vec ();
2124
2125   FOR_EACH_LOOP (li, loop, 0)
2126     {
2127       htab_empty (reduction_list);
2128       if (dump_file && (dump_flags & TDF_DETAILS))
2129       {
2130         fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2131         if (loop->inner)
2132           fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2133         else
2134           fprintf (dump_file, "loop %d is innermost\n",loop->num);
2135       }
2136
2137       /* If we use autopar in graphite pass, we use its marked dependency
2138       checking results.  */
2139       if (flag_loop_parallelize_all && !loop->can_be_parallel)
2140       {
2141         if (dump_file && (dump_flags & TDF_DETAILS))
2142            fprintf (dump_file, "loop is not parallel according to graphite\n");
2143         continue;
2144       }
2145
2146       if (!single_dom_exit (loop))
2147       {
2148
2149         if (dump_file && (dump_flags & TDF_DETAILS))
2150           fprintf (dump_file, "loop is !single_dom_exit\n");
2151
2152         continue;
2153       }
2154
2155       if (/* And of course, the loop must be parallelizable.  */
2156           !can_duplicate_loop_p (loop)
2157           || loop_has_blocks_with_irreducible_flag (loop)
2158           || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2159           /* FIXME: the check for vector phi nodes could be removed.  */
2160           || loop_has_vector_phi_nodes (loop))
2161         continue;
2162
2163       estimated = estimated_stmt_executions_int (loop);
2164       if (estimated == -1)
2165         estimated = max_stmt_executions_int (loop);
2166       /* FIXME: Bypass this check as graphite doesn't update the
2167          count and frequency correctly now.  */
2168       if (!flag_loop_parallelize_all
2169           && ((estimated != -1
2170                && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2171               /* Do not bother with loops in cold areas.  */
2172               || optimize_loop_nest_for_size_p (loop)))
2173         continue;
2174
2175       if (!try_get_loop_niter (loop, &niter_desc))
2176         continue;
2177
2178       if (!try_create_reduction_list (loop, reduction_list))
2179         continue;
2180
2181       if (!flag_loop_parallelize_all
2182           && !loop_parallel_p (loop, &parloop_obstack))
2183         continue;
2184
2185       changed = true;
2186       if (dump_file && (dump_flags & TDF_DETAILS))
2187       {
2188         if (loop->inner)
2189           fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2190         else
2191           fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2192         loop_loc = find_loop_location (loop);
2193         if (loop_loc != UNKNOWN_LOC)
2194           fprintf (dump_file, "\nloop at %s:%d: ",
2195                    LOC_FILE (loop_loc), LOC_LINE (loop_loc));
2196       }
2197       gen_parallel_loop (loop, reduction_list,
2198                          n_threads, &niter_desc);
2199 #ifdef ENABLE_CHECKING
2200       verify_flow_info ();
2201       verify_loop_structure ();
2202       verify_loop_closed_ssa (true);
2203 #endif
2204     }
2205
2206   free_stmt_vec_info_vec ();
2207   htab_delete (reduction_list);
2208   obstack_free (&parloop_obstack, NULL);
2209
2210   /* Parallelization will cause new function calls to be inserted through
2211      which local variables will escape.  Reset the points-to solution
2212      for ESCAPED.  */
2213   if (changed)
2214     pt_solution_reset (&cfun->gimple_df->escaped);
2215
2216   return changed;
2217 }
2218
2219 #include "gt-tree-parloops.h"