Remove limit_scops
[platform/upstream/gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2    Copyright (C) 2003-2015 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23
24 #include "graphds.h"
25 #include "tree-chrec.h"
26
27 /*
28   innermost_loop_behavior describes the evolution of the address of the memory
29   reference in the innermost enclosing loop.  The address is expressed as
30   BASE + STEP * # of iteration, and base is further decomposed as the base
31   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
32   constant offset (INIT).  Examples, in loop nest
33
34   for (i = 0; i < 100; i++)
35     for (j = 3; j < 100; j++)
36
37                        Example 1                      Example 2
38       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
39
40
41   innermost_loop_behavior
42       base_address     &a                             p
43       offset           i * D_i                        x
44       init             3 * D_j + offsetof (b)         28
45       step             D_j                            4
46
47   */
48 struct innermost_loop_behavior
49 {
50   tree base_address;
51   tree offset;
52   tree init;
53   tree step;
54
55   /* Alignment information.  ALIGNED_TO is set to the largest power of two
56      that divides OFFSET.  */
57   tree aligned_to;
58 };
59
60 /* Describes the evolutions of indices of the memory reference.  The indices
61    are indices of the ARRAY_REFs, indexes in artificial dimensions
62    added for member selection of records and the operands of MEM_REFs.
63    BASE_OBJECT is the part of the reference that is loop-invariant
64    (note that this reference does not have to cover the whole object
65    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
66    not recommended to use BASE_OBJECT in any code generation).
67    For the examples above,
68
69    base_object:        a                              *(p + x + 4B * j_0)
70    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
71                        4
72                        {i_0, +, 1}_1
73                        {j_0, +, 1}_2
74 */
75
76 struct indices
77 {
78   /* The object.  */
79   tree base_object;
80
81   /* A list of chrecs.  Access functions of the indices.  */
82   vec<tree> access_fns;
83
84   /* Whether BASE_OBJECT is an access representing the whole object
85      or whether the access could not be constrained.  */
86   bool unconstrained_base;
87 };
88
89 struct dr_alias
90 {
91   /* The alias information that should be used for new pointers to this
92      location.  */
93   struct ptr_info_def *ptr_info;
94 };
95
96 /* An integer vector.  A vector formally consists of an element of a vector
97    space. A vector space is a set that is closed under vector addition
98    and scalar multiplication.  In this vector space, an element is a list of
99    integers.  */
100 typedef int *lambda_vector;
101
102 /* An integer matrix.  A matrix consists of m vectors of length n (IE
103    all vectors are the same length).  */
104 typedef lambda_vector *lambda_matrix;
105
106
107
108 struct data_reference
109 {
110   /* A pointer to the statement that contains this DR.  */
111   gimple stmt;
112
113   /* A pointer to the memory reference.  */
114   tree ref;
115
116   /* Auxiliary info specific to a pass.  */
117   void *aux;
118
119   /* True when the data reference is in RHS of a stmt.  */
120   bool is_read;
121
122   /* Behavior of the memory reference in the innermost loop.  */
123   struct innermost_loop_behavior innermost;
124
125   /* Subscripts of this data reference.  */
126   struct indices indices;
127
128   /* Alias information for the data reference.  */
129   struct dr_alias alias;
130 };
131
132 #define DR_STMT(DR)                (DR)->stmt
133 #define DR_REF(DR)                 (DR)->ref
134 #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
135 #define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
136 #define DR_ACCESS_FNS(DR)          (DR)->indices.access_fns
137 #define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
138 #define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
139 #define DR_IS_READ(DR)             (DR)->is_read
140 #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
141 #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
142 #define DR_OFFSET(DR)              (DR)->innermost.offset
143 #define DR_INIT(DR)                (DR)->innermost.init
144 #define DR_STEP(DR)                (DR)->innermost.step
145 #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
146 #define DR_ALIGNED_TO(DR)          (DR)->innermost.aligned_to
147
148 typedef struct data_reference *data_reference_p;
149
150 enum data_dependence_direction {
151   dir_positive,
152   dir_negative,
153   dir_equal,
154   dir_positive_or_negative,
155   dir_positive_or_equal,
156   dir_negative_or_equal,
157   dir_star,
158   dir_independent
159 };
160
161 /* The description of the grid of iterations that overlap.  At most
162    two loops are considered at the same time just now, hence at most
163    two functions are needed.  For each of the functions, we store
164    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
165    where x, y, ... are variables.  */
166
167 #define MAX_DIM 2
168
169 /* Special values of N.  */
170 #define NO_DEPENDENCE 0
171 #define NOT_KNOWN (MAX_DIM + 1)
172 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
173 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
174 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
175
176 typedef vec<tree> affine_fn;
177
178 struct conflict_function
179 {
180   unsigned n;
181   affine_fn fns[MAX_DIM];
182 };
183
184 /* What is a subscript?  Given two array accesses a subscript is the
185    tuple composed of the access functions for a given dimension.
186    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
187    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
188    are stored in the data_dependence_relation structure under the form
189    of an array of subscripts.  */
190
191 struct subscript
192 {
193   /* A description of the iterations for which the elements are
194      accessed twice.  */
195   conflict_function *conflicting_iterations_in_a;
196   conflict_function *conflicting_iterations_in_b;
197
198   /* This field stores the information about the iteration domain
199      validity of the dependence relation.  */
200   tree last_conflict;
201
202   /* Distance from the iteration that access a conflicting element in
203      A to the iteration that access this same conflicting element in
204      B.  The distance is a tree scalar expression, i.e. a constant or a
205      symbolic expression, but certainly not a chrec function.  */
206   tree distance;
207 };
208
209 typedef struct subscript *subscript_p;
210
211 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
212 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
213 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
214 #define SUB_DISTANCE(SUB) SUB->distance
215
216 /* A data_dependence_relation represents a relation between two
217    data_references A and B.  */
218
219 struct data_dependence_relation
220 {
221
222   struct data_reference *a;
223   struct data_reference *b;
224
225   /* A "yes/no/maybe" field for the dependence relation:
226
227      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
228        relation between A and B, and the description of this relation
229        is given in the SUBSCRIPTS array,
230
231      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
232        SUBSCRIPTS is empty,
233
234      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
235        but the analyzer cannot be more specific.  */
236   tree are_dependent;
237
238   /* For each subscript in the dependence test, there is an element in
239      this array.  This is the attribute that labels the edge A->B of
240      the data_dependence_relation.  */
241   vec<subscript_p> subscripts;
242
243   /* The analyzed loop nest.  */
244   vec<loop_p> loop_nest;
245
246   /* The classic direction vector.  */
247   vec<lambda_vector> dir_vects;
248
249   /* The classic distance vector.  */
250   vec<lambda_vector> dist_vects;
251
252   /* An index in loop_nest for the innermost loop that varies for
253      this data dependence relation.  */
254   unsigned inner_loop;
255
256   /* Is the dependence reversed with respect to the lexicographic order?  */
257   bool reversed_p;
258
259   /* When the dependence relation is affine, it can be represented by
260      a distance vector.  */
261   bool affine_p;
262
263   /* Set to true when the dependence relation is on the same data
264      access.  */
265   bool self_reference_p;
266 };
267
268 typedef struct data_dependence_relation *ddr_p;
269
270 #define DDR_A(DDR) DDR->a
271 #define DDR_B(DDR) DDR->b
272 #define DDR_AFFINE_P(DDR) DDR->affine_p
273 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
274 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
275 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
276 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
277
278 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
279 /* The size of the direction/distance vectors: the number of loops in
280    the loop nest.  */
281 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
282 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
283 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
284
285 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
286 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
287 #define DDR_NUM_DIST_VECTS(DDR) \
288   (DDR_DIST_VECTS (DDR).length ())
289 #define DDR_NUM_DIR_VECTS(DDR) \
290   (DDR_DIR_VECTS (DDR).length ())
291 #define DDR_DIR_VECT(DDR, I) \
292   DDR_DIR_VECTS (DDR)[I]
293 #define DDR_DIST_VECT(DDR, I) \
294   DDR_DIST_VECTS (DDR)[I]
295 #define DDR_REVERSED_P(DDR) DDR->reversed_p
296
297 \f
298 bool dr_analyze_innermost (struct data_reference *, struct loop *);
299 extern bool compute_data_dependences_for_loop (struct loop *, bool,
300                                                vec<loop_p> *,
301                                                vec<data_reference_p> *,
302                                                vec<ddr_p> *);
303 extern void debug_ddrs (vec<ddr_p> );
304 extern void dump_data_reference (FILE *, struct data_reference *);
305 extern void debug (data_reference &ref);
306 extern void debug (data_reference *ptr);
307 extern void debug_data_reference (struct data_reference *);
308 extern void debug_data_references (vec<data_reference_p> );
309 extern void debug (vec<data_reference_p> &ref);
310 extern void debug (vec<data_reference_p> *ptr);
311 extern void debug_data_dependence_relation (struct data_dependence_relation *);
312 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
313 extern void debug (vec<ddr_p> &ref);
314 extern void debug (vec<ddr_p> *ptr);
315 extern void debug_data_dependence_relations (vec<ddr_p> );
316 extern void free_dependence_relation (struct data_dependence_relation *);
317 extern void free_dependence_relations (vec<ddr_p> );
318 extern void free_data_ref (data_reference_p);
319 extern void free_data_refs (vec<data_reference_p> );
320 extern bool find_data_references_in_stmt (struct loop *, gimple,
321                                           vec<data_reference_p> *);
322 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
323                                                    vec<data_reference_p> *);
324 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
325 bool loop_nest_has_data_refs (loop_p loop);
326 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
327 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
328 extern struct data_dependence_relation *initialize_data_dependence_relation
329      (struct data_reference *, struct data_reference *, vec<loop_p>);
330 extern void compute_affine_dependence (struct data_dependence_relation *,
331                                        loop_p);
332 extern void compute_self_dependence (struct data_dependence_relation *);
333 extern bool compute_all_dependences (vec<data_reference_p> ,
334                                      vec<ddr_p> *,
335                                      vec<loop_p>, bool);
336 extern tree find_data_references_in_bb (struct loop *, basic_block,
337                                         vec<data_reference_p> *);
338
339 extern bool dr_may_alias_p (const struct data_reference *,
340                             const struct data_reference *, bool);
341 extern bool dr_equal_offsets_p (struct data_reference *,
342                                 struct data_reference *);
343
344 /* Return true when the base objects of data references A and B are
345    the same memory object.  */
346
347 static inline bool
348 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
349 {
350   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
351     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
352 }
353
354 /* Return true when the data references A and B are accessing the same
355    memory object with the same access functions.  */
356
357 static inline bool
358 same_data_refs (data_reference_p a, data_reference_p b)
359 {
360   unsigned int i;
361
362   /* The references are exactly the same.  */
363   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
364     return true;
365
366   if (!same_data_refs_base_objects (a, b))
367     return false;
368
369   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
370     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
371       return false;
372
373   return true;
374 }
375
376 /* Return true when the DDR contains two data references that have the
377    same access functions.  */
378
379 static inline bool
380 same_access_functions (const struct data_dependence_relation *ddr)
381 {
382   unsigned i;
383
384   for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
385     if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
386                           DR_ACCESS_FN (DDR_B (ddr), i)))
387       return false;
388
389   return true;
390 }
391
392 /* Returns true when all the dependences are computable.  */
393
394 inline bool
395 known_dependences_p (vec<ddr_p> dependence_relations)
396 {
397   ddr_p ddr;
398   unsigned int i;
399
400   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
401     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
402       return false;
403
404   return true;
405 }
406
407 /* Returns the dependence level for a vector DIST of size LENGTH.
408    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
409    to the sequence of statements, not carried by any loop.  */
410
411 static inline unsigned
412 dependence_level (lambda_vector dist_vect, int length)
413 {
414   int i;
415
416   for (i = 0; i < length; i++)
417     if (dist_vect[i] != 0)
418       return i + 1;
419
420   return 0;
421 }
422
423 /* Return the dependence level for the DDR relation.  */
424
425 static inline unsigned
426 ddr_dependence_level (ddr_p ddr)
427 {
428   unsigned vector;
429   unsigned level = 0;
430
431   if (DDR_DIST_VECTS (ddr).exists ())
432     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
433
434   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
435     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
436                                           DDR_NB_LOOPS (ddr)));
437   return level;
438 }
439
440 /* Return the index of the variable VAR in the LOOP_NEST array.  */
441
442 static inline int
443 index_in_loop_nest (int var, vec<loop_p> loop_nest)
444 {
445   struct loop *loopi;
446   int var_index;
447
448   for (var_index = 0; loop_nest.iterate (var_index, &loopi);
449        var_index++)
450     if (loopi->num == var)
451       break;
452
453   return var_index;
454 }
455
456 /* Returns true when the data reference DR the form "A[i] = ..."
457    with a stride equal to its unit type size.  */
458
459 static inline bool
460 adjacent_dr_p (struct data_reference *dr)
461 {
462   /* If this is a bitfield store bail out.  */
463   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
464       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
465     return false;
466
467   if (!DR_STEP (dr)
468       || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
469     return false;
470
471   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
472                                          DR_STEP (dr)),
473                              TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
474 }
475
476 void split_constant_offset (tree , tree *, tree *);
477
478 /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
479
480 static inline int
481 lambda_vector_gcd (lambda_vector vector, int size)
482 {
483   int i;
484   int gcd1 = 0;
485
486   if (size > 0)
487     {
488       gcd1 = vector[0];
489       for (i = 1; i < size; i++)
490         gcd1 = gcd (gcd1, vector[i]);
491     }
492   return gcd1;
493 }
494
495 /* Allocate a new vector of given SIZE.  */
496
497 static inline lambda_vector
498 lambda_vector_new (int size)
499 {
500   /* ???  We shouldn't abuse the GC allocator here.  */
501   return ggc_cleared_vec_alloc<int> (size);
502 }
503
504 /* Clear out vector VEC1 of length SIZE.  */
505
506 static inline void
507 lambda_vector_clear (lambda_vector vec1, int size)
508 {
509   memset (vec1, 0, size * sizeof (*vec1));
510 }
511
512 /* Returns true when the vector V is lexicographically positive, in
513    other words, when the first nonzero element is positive.  */
514
515 static inline bool
516 lambda_vector_lexico_pos (lambda_vector v,
517                           unsigned n)
518 {
519   unsigned i;
520   for (i = 0; i < n; i++)
521     {
522       if (v[i] == 0)
523         continue;
524       if (v[i] < 0)
525         return false;
526       if (v[i] > 0)
527         return true;
528     }
529   return true;
530 }
531
532 /* Return true if vector VEC1 of length SIZE is the zero vector.  */
533
534 static inline bool
535 lambda_vector_zerop (lambda_vector vec1, int size)
536 {
537   int i;
538   for (i = 0; i < size; i++)
539     if (vec1[i] != 0)
540       return false;
541   return true;
542 }
543
544 /* Allocate a matrix of M rows x  N cols.  */
545
546 static inline lambda_matrix
547 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
548 {
549   lambda_matrix mat;
550   int i;
551
552   mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
553
554   for (i = 0; i < m; i++)
555     mat[i] = XOBNEWVEC (lambda_obstack, int, n);
556
557   return mat;
558 }
559
560 #endif  /* GCC_TREE_DATA_REF_H  */