1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "tree-pass.h"
35 #include "diagnostic-core.h"
38 #include "tree-ssa-propagate.h"
39 #include "value-prof.h"
40 #include "pointer-set.h"
41 #include "tree-inline.h"
44 /* This file contains functions for building the Control Flow Graph (CFG)
45 for a function tree. */
47 /* Local declarations. */
49 /* Initial capacity for the basic block array. */
50 static const int initial_cfg_capacity = 20;
52 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
53 which use a particular edge. The CASE_LABEL_EXPRs are chained together
54 via their CASE_CHAIN field, which we clear after we're done with the
55 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
57 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
58 update the case vector in response to edge redirections.
60 Right now this table is set up and torn down at key points in the
61 compilation process. It would be nice if we could make the table
62 more persistent. The key is getting notification of changes to
63 the CFG (particularly edge removal, creation and redirection). */
65 static struct pointer_map_t *edge_to_cases;
67 /* If we record edge_to_cases, this bitmap will hold indexes
68 of basic blocks that end in a GIMPLE_SWITCH which we touched
69 due to edge manipulations. */
71 static bitmap touched_switch_bbs;
76 long num_merged_labels;
79 static struct cfg_stats_d cfg_stats;
81 /* Nonzero if we found a computed goto while building basic blocks. */
82 static bool found_computed_goto;
84 /* Hash table to store last discriminator assigned for each locus. */
85 struct locus_discrim_map
90 static htab_t discriminator_per_locus;
92 /* Basic blocks and flowgraphs. */
93 static void make_blocks (gimple_seq);
94 static void factor_computed_gotos (void);
97 static void make_edges (void);
98 static void make_cond_expr_edges (basic_block);
99 static void make_gimple_switch_edges (basic_block);
100 static void make_goto_expr_edges (basic_block);
101 static void make_gimple_asm_edges (basic_block);
102 static unsigned int locus_map_hash (const void *);
103 static int locus_map_eq (const void *, const void *);
104 static void assign_discriminator (location_t, basic_block);
105 static edge gimple_redirect_edge_and_branch (edge, basic_block);
106 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
107 static unsigned int split_critical_edges (void);
109 /* Various helpers. */
110 static inline bool stmt_starts_bb_p (gimple, gimple);
111 static int gimple_verify_flow_info (void);
112 static void gimple_make_forwarder_block (edge);
113 static gimple first_non_label_stmt (basic_block);
114 static bool verify_gimple_transaction (gimple);
116 /* Flowgraph optimization and cleanup. */
117 static void gimple_merge_blocks (basic_block, basic_block);
118 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
119 static void remove_bb (basic_block);
120 static edge find_taken_edge_computed_goto (basic_block, tree);
121 static edge find_taken_edge_cond_expr (basic_block, tree);
122 static edge find_taken_edge_switch_expr (basic_block, tree);
123 static tree find_case_label_for_value (gimple, tree);
126 init_empty_tree_cfg_for_function (struct function *fn)
128 /* Initialize the basic block array. */
130 profile_status_for_function (fn) = PROFILE_ABSENT;
131 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
132 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
133 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
134 vec_safe_grow_cleared (basic_block_info_for_function (fn),
135 initial_cfg_capacity);
137 /* Build a mapping of labels to their associated blocks. */
138 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
139 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
140 initial_cfg_capacity);
142 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
143 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
144 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
145 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
147 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
148 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
149 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
150 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
154 init_empty_tree_cfg (void)
156 init_empty_tree_cfg_for_function (cfun);
159 /*---------------------------------------------------------------------------
161 ---------------------------------------------------------------------------*/
163 /* Entry point to the CFG builder for trees. SEQ is the sequence of
164 statements to be added to the flowgraph. */
167 build_gimple_cfg (gimple_seq seq)
169 /* Register specific gimple functions. */
170 gimple_register_cfg_hooks ();
172 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
174 init_empty_tree_cfg ();
176 found_computed_goto = 0;
179 /* Computed gotos are hell to deal with, especially if there are
180 lots of them with a large number of destinations. So we factor
181 them to a common computed goto location before we build the
182 edge list. After we convert back to normal form, we will un-factor
183 the computed gotos since factoring introduces an unwanted jump. */
184 if (found_computed_goto)
185 factor_computed_gotos ();
187 /* Make sure there is always at least one block, even if it's empty. */
188 if (n_basic_blocks == NUM_FIXED_BLOCKS)
189 create_empty_bb (ENTRY_BLOCK_PTR);
191 /* Adjust the size of the array. */
192 if (basic_block_info->length () < (size_t) n_basic_blocks)
193 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
195 /* To speed up statement iterator walks, we first purge dead labels. */
196 cleanup_dead_labels ();
198 /* Group case nodes to reduce the number of edges.
199 We do this after cleaning up dead labels because otherwise we miss
200 a lot of obvious case merging opportunities. */
201 group_case_labels ();
203 /* Create the edges of the flowgraph. */
204 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
207 cleanup_dead_labels ();
208 htab_delete (discriminator_per_locus);
212 execute_build_cfg (void)
214 gimple_seq body = gimple_body (current_function_decl);
216 build_gimple_cfg (body);
217 gimple_set_body (current_function_decl, NULL);
218 if (dump_file && (dump_flags & TDF_DETAILS))
220 fprintf (dump_file, "Scope blocks:\n");
221 dump_scope_blocks (dump_file, dump_flags);
226 struct gimple_opt_pass pass_build_cfg =
231 OPTGROUP_NONE, /* optinfo_flags */
233 execute_build_cfg, /* execute */
236 0, /* static_pass_number */
237 TV_TREE_CFG, /* tv_id */
238 PROP_gimple_leh, /* properties_required */
239 PROP_cfg, /* properties_provided */
240 0, /* properties_destroyed */
241 0, /* todo_flags_start */
242 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
247 /* Return true if T is a computed goto. */
250 computed_goto_p (gimple t)
252 return (gimple_code (t) == GIMPLE_GOTO
253 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
257 /* Search the CFG for any computed gotos. If found, factor them to a
258 common computed goto site. Also record the location of that site so
259 that we can un-factor the gotos after we have converted back to
263 factor_computed_gotos (void)
266 tree factored_label_decl = NULL;
268 gimple factored_computed_goto_label = NULL;
269 gimple factored_computed_goto = NULL;
271 /* We know there are one or more computed gotos in this function.
272 Examine the last statement in each basic block to see if the block
273 ends with a computed goto. */
277 gimple_stmt_iterator gsi = gsi_last_bb (bb);
283 last = gsi_stmt (gsi);
285 /* Ignore the computed goto we create when we factor the original
287 if (last == factored_computed_goto)
290 /* If the last statement is a computed goto, factor it. */
291 if (computed_goto_p (last))
295 /* The first time we find a computed goto we need to create
296 the factored goto block and the variable each original
297 computed goto will use for their goto destination. */
298 if (!factored_computed_goto)
300 basic_block new_bb = create_empty_bb (bb);
301 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
303 /* Create the destination of the factored goto. Each original
304 computed goto will put its desired destination into this
305 variable and jump to the label we create immediately
307 var = create_tmp_var (ptr_type_node, "gotovar");
309 /* Build a label for the new block which will contain the
310 factored computed goto. */
311 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
312 factored_computed_goto_label
313 = gimple_build_label (factored_label_decl);
314 gsi_insert_after (&new_gsi, factored_computed_goto_label,
317 /* Build our new computed goto. */
318 factored_computed_goto = gimple_build_goto (var);
319 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
322 /* Copy the original computed goto's destination into VAR. */
323 assignment = gimple_build_assign (var, gimple_goto_dest (last));
324 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
326 /* And re-vector the computed goto to the new destination. */
327 gimple_goto_set_dest (last, factored_label_decl);
333 /* Build a flowgraph for the sequence of stmts SEQ. */
336 make_blocks (gimple_seq seq)
338 gimple_stmt_iterator i = gsi_start (seq);
340 bool start_new_block = true;
341 bool first_stmt_of_seq = true;
342 basic_block bb = ENTRY_BLOCK_PTR;
344 while (!gsi_end_p (i))
351 /* If the statement starts a new basic block or if we have determined
352 in a previous pass that we need to create a new block for STMT, do
354 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
356 if (!first_stmt_of_seq)
357 gsi_split_seq_before (&i, &seq);
358 bb = create_basic_block (seq, NULL, bb);
359 start_new_block = false;
362 /* Now add STMT to BB and create the subgraphs for special statement
364 gimple_set_bb (stmt, bb);
366 if (computed_goto_p (stmt))
367 found_computed_goto = true;
369 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
371 if (stmt_ends_bb_p (stmt))
373 /* If the stmt can make abnormal goto use a new temporary
374 for the assignment to the LHS. This makes sure the old value
375 of the LHS is available on the abnormal edge. Otherwise
376 we will end up with overlapping life-ranges for abnormal
378 if (gimple_has_lhs (stmt)
379 && stmt_can_make_abnormal_goto (stmt)
380 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
382 tree lhs = gimple_get_lhs (stmt);
383 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
384 gimple s = gimple_build_assign (lhs, tmp);
385 gimple_set_location (s, gimple_location (stmt));
386 gimple_set_block (s, gimple_block (stmt));
387 gimple_set_lhs (stmt, tmp);
388 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
389 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
390 DECL_GIMPLE_REG_P (tmp) = 1;
391 gsi_insert_after (&i, s, GSI_SAME_STMT);
393 start_new_block = true;
397 first_stmt_of_seq = false;
402 /* Create and return a new empty basic block after bb AFTER. */
405 create_bb (void *h, void *e, basic_block after)
411 /* Create and initialize a new basic block. Since alloc_block uses
412 GC allocation that clears memory to allocate a basic block, we do
413 not have to clear the newly allocated basic block here. */
416 bb->index = last_basic_block;
418 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
420 /* Add the new block to the linked list of blocks. */
421 link_block (bb, after);
423 /* Grow the basic block array if needed. */
424 if ((size_t) last_basic_block == basic_block_info->length ())
426 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
427 vec_safe_grow_cleared (basic_block_info, new_size);
430 /* Add the newly created block to the array. */
431 SET_BASIC_BLOCK (last_basic_block, bb);
440 /*---------------------------------------------------------------------------
442 ---------------------------------------------------------------------------*/
444 /* Fold COND_EXPR_COND of each COND_EXPR. */
447 fold_cond_expr_cond (void)
453 gimple stmt = last_stmt (bb);
455 if (stmt && gimple_code (stmt) == GIMPLE_COND)
457 location_t loc = gimple_location (stmt);
461 fold_defer_overflow_warnings ();
462 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
463 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
466 zerop = integer_zerop (cond);
467 onep = integer_onep (cond);
470 zerop = onep = false;
472 fold_undefer_overflow_warnings (zerop || onep,
474 WARN_STRICT_OVERFLOW_CONDITIONAL);
476 gimple_cond_make_false (stmt);
478 gimple_cond_make_true (stmt);
483 /* Join all the blocks in the flowgraph. */
489 struct omp_region *cur_region = NULL;
491 /* Create an edge from entry to the first block with executable
493 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
495 /* Traverse the basic block array placing edges. */
498 gimple last = last_stmt (bb);
503 enum gimple_code code = gimple_code (last);
507 make_goto_expr_edges (bb);
511 make_edge (bb, EXIT_BLOCK_PTR, 0);
515 make_cond_expr_edges (bb);
519 make_gimple_switch_edges (bb);
523 make_eh_edges (last);
526 case GIMPLE_EH_DISPATCH:
527 fallthru = make_eh_dispatch_edges (last);
531 /* If this function receives a nonlocal goto, then we need to
532 make edges from this call site to all the nonlocal goto
534 if (stmt_can_make_abnormal_goto (last))
535 make_abnormal_goto_edges (bb, true);
537 /* If this statement has reachable exception handlers, then
538 create abnormal edges to them. */
539 make_eh_edges (last);
541 /* BUILTIN_RETURN is really a return statement. */
542 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
543 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
544 /* Some calls are known not to return. */
546 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
550 /* A GIMPLE_ASSIGN may throw internally and thus be considered
552 if (is_ctrl_altering_stmt (last))
553 make_eh_edges (last);
558 make_gimple_asm_edges (bb);
562 case GIMPLE_OMP_PARALLEL:
563 case GIMPLE_OMP_TASK:
565 case GIMPLE_OMP_SINGLE:
566 case GIMPLE_OMP_MASTER:
567 case GIMPLE_OMP_ORDERED:
568 case GIMPLE_OMP_CRITICAL:
569 case GIMPLE_OMP_SECTION:
570 cur_region = new_omp_region (bb, code, cur_region);
574 case GIMPLE_OMP_SECTIONS:
575 cur_region = new_omp_region (bb, code, cur_region);
579 case GIMPLE_OMP_SECTIONS_SWITCH:
583 case GIMPLE_OMP_ATOMIC_LOAD:
584 case GIMPLE_OMP_ATOMIC_STORE:
588 case GIMPLE_OMP_RETURN:
589 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
590 somewhere other than the next block. This will be
592 cur_region->exit = bb;
593 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
594 cur_region = cur_region->outer;
597 case GIMPLE_OMP_CONTINUE:
598 cur_region->cont = bb;
599 switch (cur_region->type)
602 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
603 succs edges as abnormal to prevent splitting
605 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
606 /* Make the loopback edge. */
607 make_edge (bb, single_succ (cur_region->entry),
610 /* Create an edge from GIMPLE_OMP_FOR to exit, which
611 corresponds to the case that the body of the loop
612 is not executed at all. */
613 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
614 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
618 case GIMPLE_OMP_SECTIONS:
619 /* Wire up the edges into and out of the nested sections. */
621 basic_block switch_bb = single_succ (cur_region->entry);
623 struct omp_region *i;
624 for (i = cur_region->inner; i ; i = i->next)
626 gcc_assert (i->type == GIMPLE_OMP_SECTION);
627 make_edge (switch_bb, i->entry, 0);
628 make_edge (i->exit, bb, EDGE_FALLTHRU);
631 /* Make the loopback edge to the block with
632 GIMPLE_OMP_SECTIONS_SWITCH. */
633 make_edge (bb, switch_bb, 0);
635 /* Make the edge from the switch to exit. */
636 make_edge (switch_bb, bb->next_bb, 0);
646 case GIMPLE_TRANSACTION:
648 tree abort_label = gimple_transaction_label (last);
650 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
656 gcc_assert (!stmt_ends_bb_p (last));
665 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
667 assign_discriminator (gimple_location (last), bb->next_bb);
674 /* Fold COND_EXPR_COND of each COND_EXPR. */
675 fold_cond_expr_cond ();
678 /* Trivial hash function for a location_t. ITEM is a pointer to
679 a hash table entry that maps a location_t to a discriminator. */
682 locus_map_hash (const void *item)
684 return ((const struct locus_discrim_map *) item)->locus;
687 /* Equality function for the locus-to-discriminator map. VA and VB
688 point to the two hash table entries to compare. */
691 locus_map_eq (const void *va, const void *vb)
693 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
694 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
695 return a->locus == b->locus;
698 /* Find the next available discriminator value for LOCUS. The
699 discriminator distinguishes among several basic blocks that
700 share a common locus, allowing for more accurate sample-based
704 next_discriminator_for_locus (location_t locus)
706 struct locus_discrim_map item;
707 struct locus_discrim_map **slot;
710 item.discriminator = 0;
711 slot = (struct locus_discrim_map **)
712 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
713 (hashval_t) locus, INSERT);
715 if (*slot == HTAB_EMPTY_ENTRY)
717 *slot = XNEW (struct locus_discrim_map);
719 (*slot)->locus = locus;
720 (*slot)->discriminator = 0;
722 (*slot)->discriminator++;
723 return (*slot)->discriminator;
726 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
729 same_line_p (location_t locus1, location_t locus2)
731 expanded_location from, to;
733 if (locus1 == locus2)
736 from = expand_location (locus1);
737 to = expand_location (locus2);
739 if (from.line != to.line)
741 if (from.file == to.file)
743 return (from.file != NULL
745 && filename_cmp (from.file, to.file) == 0);
748 /* Assign a unique discriminator value to block BB if it begins at the same
749 LOCUS as its predecessor block. */
752 assign_discriminator (location_t locus, basic_block bb)
754 gimple first_in_to_bb, last_in_to_bb;
756 if (locus == 0 || bb->discriminator != 0)
759 first_in_to_bb = first_non_label_stmt (bb);
760 last_in_to_bb = last_stmt (bb);
761 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
762 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
763 bb->discriminator = next_discriminator_for_locus (locus);
766 /* Create the edges for a GIMPLE_COND starting at block BB. */
769 make_cond_expr_edges (basic_block bb)
771 gimple entry = last_stmt (bb);
772 gimple then_stmt, else_stmt;
773 basic_block then_bb, else_bb;
774 tree then_label, else_label;
776 location_t entry_locus;
779 gcc_assert (gimple_code (entry) == GIMPLE_COND);
781 entry_locus = gimple_location (entry);
783 /* Entry basic blocks for each component. */
784 then_label = gimple_cond_true_label (entry);
785 else_label = gimple_cond_false_label (entry);
786 then_bb = label_to_block (then_label);
787 else_bb = label_to_block (else_label);
788 then_stmt = first_stmt (then_bb);
789 else_stmt = first_stmt (else_bb);
791 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
792 assign_discriminator (entry_locus, then_bb);
793 e->goto_locus = gimple_location (then_stmt);
794 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
797 assign_discriminator (entry_locus, else_bb);
798 e->goto_locus = gimple_location (else_stmt);
801 /* We do not need the labels anymore. */
802 gimple_cond_set_true_label (entry, NULL_TREE);
803 gimple_cond_set_false_label (entry, NULL_TREE);
807 /* Called for each element in the hash table (P) as we delete the
808 edge to cases hash table.
810 Clear all the TREE_CHAINs to prevent problems with copying of
811 SWITCH_EXPRs and structure sharing rules, then free the hash table
815 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
816 void *data ATTRIBUTE_UNUSED)
820 for (t = (tree) *value; t; t = next)
822 next = CASE_CHAIN (t);
823 CASE_CHAIN (t) = NULL;
830 /* Start recording information mapping edges to case labels. */
833 start_recording_case_labels (void)
835 gcc_assert (edge_to_cases == NULL);
836 edge_to_cases = pointer_map_create ();
837 touched_switch_bbs = BITMAP_ALLOC (NULL);
840 /* Return nonzero if we are recording information for case labels. */
843 recording_case_labels_p (void)
845 return (edge_to_cases != NULL);
848 /* Stop recording information mapping edges to case labels and
849 remove any information we have recorded. */
851 end_recording_case_labels (void)
855 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
856 pointer_map_destroy (edge_to_cases);
857 edge_to_cases = NULL;
858 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
860 basic_block bb = BASIC_BLOCK (i);
863 gimple stmt = last_stmt (bb);
864 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
865 group_case_labels_stmt (stmt);
868 BITMAP_FREE (touched_switch_bbs);
871 /* If we are inside a {start,end}_recording_cases block, then return
872 a chain of CASE_LABEL_EXPRs from T which reference E.
874 Otherwise return NULL. */
877 get_cases_for_edge (edge e, gimple t)
882 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
883 chains available. Return NULL so the caller can detect this case. */
884 if (!recording_case_labels_p ())
887 slot = pointer_map_contains (edge_to_cases, e);
891 /* If we did not find E in the hash table, then this must be the first
892 time we have been queried for information about E & T. Add all the
893 elements from T to the hash table then perform the query again. */
895 n = gimple_switch_num_labels (t);
896 for (i = 0; i < n; i++)
898 tree elt = gimple_switch_label (t, i);
899 tree lab = CASE_LABEL (elt);
900 basic_block label_bb = label_to_block (lab);
901 edge this_edge = find_edge (e->src, label_bb);
903 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
905 slot = pointer_map_insert (edge_to_cases, this_edge);
906 CASE_CHAIN (elt) = (tree) *slot;
910 return (tree) *pointer_map_contains (edge_to_cases, e);
913 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
916 make_gimple_switch_edges (basic_block bb)
918 gimple entry = last_stmt (bb);
919 location_t entry_locus;
922 entry_locus = gimple_location (entry);
924 n = gimple_switch_num_labels (entry);
926 for (i = 0; i < n; ++i)
928 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
929 basic_block label_bb = label_to_block (lab);
930 make_edge (bb, label_bb, 0);
931 assign_discriminator (entry_locus, label_bb);
936 /* Return the basic block holding label DEST. */
939 label_to_block_fn (struct function *ifun, tree dest)
941 int uid = LABEL_DECL_UID (dest);
943 /* We would die hard when faced by an undefined label. Emit a label to
944 the very first basic block. This will hopefully make even the dataflow
945 and undefined variable warnings quite right. */
946 if (seen_error () && uid < 0)
948 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
951 stmt = gimple_build_label (dest);
952 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
953 uid = LABEL_DECL_UID (dest);
955 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
957 return (*ifun->cfg->x_label_to_block_map)[uid];
960 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
961 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
964 make_abnormal_goto_edges (basic_block bb, bool for_call)
966 basic_block target_bb;
967 gimple_stmt_iterator gsi;
969 FOR_EACH_BB (target_bb)
970 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
972 gimple label_stmt = gsi_stmt (gsi);
975 if (gimple_code (label_stmt) != GIMPLE_LABEL)
978 target = gimple_label_label (label_stmt);
980 /* Make an edge to every label block that has been marked as a
981 potential target for a computed goto or a non-local goto. */
982 if ((FORCED_LABEL (target) && !for_call)
983 || (DECL_NONLOCAL (target) && for_call))
985 make_edge (bb, target_bb, EDGE_ABNORMAL);
991 /* Create edges for a goto statement at block BB. */
994 make_goto_expr_edges (basic_block bb)
996 gimple_stmt_iterator last = gsi_last_bb (bb);
997 gimple goto_t = gsi_stmt (last);
999 /* A simple GOTO creates normal edges. */
1000 if (simple_goto_p (goto_t))
1002 tree dest = gimple_goto_dest (goto_t);
1003 basic_block label_bb = label_to_block (dest);
1004 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1005 e->goto_locus = gimple_location (goto_t);
1006 assign_discriminator (e->goto_locus, label_bb);
1007 gsi_remove (&last, true);
1011 /* A computed GOTO creates abnormal edges. */
1012 make_abnormal_goto_edges (bb, false);
1015 /* Create edges for an asm statement with labels at block BB. */
1018 make_gimple_asm_edges (basic_block bb)
1020 gimple stmt = last_stmt (bb);
1021 location_t stmt_loc = gimple_location (stmt);
1022 int i, n = gimple_asm_nlabels (stmt);
1024 for (i = 0; i < n; ++i)
1026 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1027 basic_block label_bb = label_to_block (label);
1028 make_edge (bb, label_bb, 0);
1029 assign_discriminator (stmt_loc, label_bb);
1033 /*---------------------------------------------------------------------------
1035 ---------------------------------------------------------------------------*/
1037 /* Cleanup useless labels in basic blocks. This is something we wish
1038 to do early because it allows us to group case labels before creating
1039 the edges for the CFG, and it speeds up block statement iterators in
1040 all passes later on.
1041 We rerun this pass after CFG is created, to get rid of the labels that
1042 are no longer referenced. After then we do not run it any more, since
1043 (almost) no new labels should be created. */
1045 /* A map from basic block index to the leading label of that block. */
1046 static struct label_record
1051 /* True if the label is referenced from somewhere. */
1055 /* Given LABEL return the first label in the same basic block. */
1058 main_block_label (tree label)
1060 basic_block bb = label_to_block (label);
1061 tree main_label = label_for_bb[bb->index].label;
1063 /* label_to_block possibly inserted undefined label into the chain. */
1066 label_for_bb[bb->index].label = label;
1070 label_for_bb[bb->index].used = true;
1074 /* Clean up redundant labels within the exception tree. */
1077 cleanup_dead_labels_eh (void)
1084 if (cfun->eh == NULL)
1087 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1088 if (lp && lp->post_landing_pad)
1090 lab = main_block_label (lp->post_landing_pad);
1091 if (lab != lp->post_landing_pad)
1093 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1094 EH_LANDING_PAD_NR (lab) = lp->index;
1098 FOR_ALL_EH_REGION (r)
1102 case ERT_MUST_NOT_THROW:
1108 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1112 c->label = main_block_label (lab);
1117 case ERT_ALLOWED_EXCEPTIONS:
1118 lab = r->u.allowed.label;
1120 r->u.allowed.label = main_block_label (lab);
1126 /* Cleanup redundant labels. This is a three-step process:
1127 1) Find the leading label for each block.
1128 2) Redirect all references to labels to the leading labels.
1129 3) Cleanup all useless labels. */
1132 cleanup_dead_labels (void)
1135 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1137 /* Find a suitable label for each block. We use the first user-defined
1138 label if there is one, or otherwise just the first label we see. */
1141 gimple_stmt_iterator i;
1143 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1146 gimple stmt = gsi_stmt (i);
1148 if (gimple_code (stmt) != GIMPLE_LABEL)
1151 label = gimple_label_label (stmt);
1153 /* If we have not yet seen a label for the current block,
1154 remember this one and see if there are more labels. */
1155 if (!label_for_bb[bb->index].label)
1157 label_for_bb[bb->index].label = label;
1161 /* If we did see a label for the current block already, but it
1162 is an artificially created label, replace it if the current
1163 label is a user defined label. */
1164 if (!DECL_ARTIFICIAL (label)
1165 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1167 label_for_bb[bb->index].label = label;
1173 /* Now redirect all jumps/branches to the selected label.
1174 First do so for each block ending in a control statement. */
1177 gimple stmt = last_stmt (bb);
1178 tree label, new_label;
1183 switch (gimple_code (stmt))
1186 label = gimple_cond_true_label (stmt);
1189 new_label = main_block_label (label);
1190 if (new_label != label)
1191 gimple_cond_set_true_label (stmt, new_label);
1194 label = gimple_cond_false_label (stmt);
1197 new_label = main_block_label (label);
1198 if (new_label != label)
1199 gimple_cond_set_false_label (stmt, new_label);
1205 size_t i, n = gimple_switch_num_labels (stmt);
1207 /* Replace all destination labels. */
1208 for (i = 0; i < n; ++i)
1210 tree case_label = gimple_switch_label (stmt, i);
1211 label = CASE_LABEL (case_label);
1212 new_label = main_block_label (label);
1213 if (new_label != label)
1214 CASE_LABEL (case_label) = new_label;
1221 int i, n = gimple_asm_nlabels (stmt);
1223 for (i = 0; i < n; ++i)
1225 tree cons = gimple_asm_label_op (stmt, i);
1226 tree label = main_block_label (TREE_VALUE (cons));
1227 TREE_VALUE (cons) = label;
1232 /* We have to handle gotos until they're removed, and we don't
1233 remove them until after we've created the CFG edges. */
1235 if (!computed_goto_p (stmt))
1237 label = gimple_goto_dest (stmt);
1238 new_label = main_block_label (label);
1239 if (new_label != label)
1240 gimple_goto_set_dest (stmt, new_label);
1244 case GIMPLE_TRANSACTION:
1246 tree label = gimple_transaction_label (stmt);
1249 tree new_label = main_block_label (label);
1250 if (new_label != label)
1251 gimple_transaction_set_label (stmt, new_label);
1261 /* Do the same for the exception region tree labels. */
1262 cleanup_dead_labels_eh ();
1264 /* Finally, purge dead labels. All user-defined labels and labels that
1265 can be the target of non-local gotos and labels which have their
1266 address taken are preserved. */
1269 gimple_stmt_iterator i;
1270 tree label_for_this_bb = label_for_bb[bb->index].label;
1272 if (!label_for_this_bb)
1275 /* If the main label of the block is unused, we may still remove it. */
1276 if (!label_for_bb[bb->index].used)
1277 label_for_this_bb = NULL;
1279 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1282 gimple stmt = gsi_stmt (i);
1284 if (gimple_code (stmt) != GIMPLE_LABEL)
1287 label = gimple_label_label (stmt);
1289 if (label == label_for_this_bb
1290 || !DECL_ARTIFICIAL (label)
1291 || DECL_NONLOCAL (label)
1292 || FORCED_LABEL (label))
1295 gsi_remove (&i, true);
1299 free (label_for_bb);
1302 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1303 the ones jumping to the same label.
1304 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1307 group_case_labels_stmt (gimple stmt)
1309 int old_size = gimple_switch_num_labels (stmt);
1310 int i, j, new_size = old_size;
1311 basic_block default_bb = NULL;
1313 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1315 /* Look for possible opportunities to merge cases. */
1317 while (i < old_size)
1319 tree base_case, base_high;
1320 basic_block base_bb;
1322 base_case = gimple_switch_label (stmt, i);
1324 gcc_assert (base_case);
1325 base_bb = label_to_block (CASE_LABEL (base_case));
1327 /* Discard cases that have the same destination as the
1329 if (base_bb == default_bb)
1331 gimple_switch_set_label (stmt, i, NULL_TREE);
1337 base_high = CASE_HIGH (base_case)
1338 ? CASE_HIGH (base_case)
1339 : CASE_LOW (base_case);
1342 /* Try to merge case labels. Break out when we reach the end
1343 of the label vector or when we cannot merge the next case
1344 label with the current one. */
1345 while (i < old_size)
1347 tree merge_case = gimple_switch_label (stmt, i);
1348 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1349 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1351 /* Merge the cases if they jump to the same place,
1352 and their ranges are consecutive. */
1353 if (merge_bb == base_bb
1354 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1356 base_high = CASE_HIGH (merge_case) ?
1357 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1358 CASE_HIGH (base_case) = base_high;
1359 gimple_switch_set_label (stmt, i, NULL_TREE);
1368 /* Compress the case labels in the label vector, and adjust the
1369 length of the vector. */
1370 for (i = 0, j = 0; i < new_size; i++)
1372 while (! gimple_switch_label (stmt, j))
1374 gimple_switch_set_label (stmt, i,
1375 gimple_switch_label (stmt, j++));
1378 gcc_assert (new_size <= old_size);
1379 gimple_switch_set_num_labels (stmt, new_size);
1382 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1383 and scan the sorted vector of cases. Combine the ones jumping to the
1387 group_case_labels (void)
1393 gimple stmt = last_stmt (bb);
1394 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1395 group_case_labels_stmt (stmt);
1399 /* Checks whether we can merge block B into block A. */
1402 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1405 gimple_stmt_iterator gsi;
1407 if (!single_succ_p (a))
1410 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1413 if (single_succ (a) != b)
1416 if (!single_pred_p (b))
1419 if (b == EXIT_BLOCK_PTR)
1422 /* If A ends by a statement causing exceptions or something similar, we
1423 cannot merge the blocks. */
1424 stmt = last_stmt (a);
1425 if (stmt && stmt_ends_bb_p (stmt))
1428 /* Do not allow a block with only a non-local label to be merged. */
1430 && gimple_code (stmt) == GIMPLE_LABEL
1431 && DECL_NONLOCAL (gimple_label_label (stmt)))
1434 /* Examine the labels at the beginning of B. */
1435 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1438 stmt = gsi_stmt (gsi);
1439 if (gimple_code (stmt) != GIMPLE_LABEL)
1441 lab = gimple_label_label (stmt);
1443 /* Do not remove user forced labels or for -O0 any user labels. */
1444 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1448 /* Protect the loop latches. */
1449 if (current_loops && b->loop_father->latch == b)
1452 /* It must be possible to eliminate all phi nodes in B. If ssa form
1453 is not up-to-date and a name-mapping is registered, we cannot eliminate
1454 any phis. Symbols marked for renaming are never a problem though. */
1455 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1457 gimple phi = gsi_stmt (gsi);
1458 /* Technically only new names matter. */
1459 if (name_registered_for_update_p (PHI_RESULT (phi)))
1463 /* When not optimizing, don't merge if we'd lose goto_locus. */
1465 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1467 location_t goto_locus = single_succ_edge (a)->goto_locus;
1468 gimple_stmt_iterator prev, next;
1469 prev = gsi_last_nondebug_bb (a);
1470 next = gsi_after_labels (b);
1471 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1472 gsi_next_nondebug (&next);
1473 if ((gsi_end_p (prev)
1474 || gimple_location (gsi_stmt (prev)) != goto_locus)
1475 && (gsi_end_p (next)
1476 || gimple_location (gsi_stmt (next)) != goto_locus))
1483 /* Return true if the var whose chain of uses starts at PTR has no
1486 has_zero_uses_1 (const ssa_use_operand_t *head)
1488 const ssa_use_operand_t *ptr;
1490 for (ptr = head->next; ptr != head; ptr = ptr->next)
1491 if (!is_gimple_debug (USE_STMT (ptr)))
1497 /* Return true if the var whose chain of uses starts at PTR has a
1498 single nondebug use. Set USE_P and STMT to that single nondebug
1499 use, if so, or to NULL otherwise. */
1501 single_imm_use_1 (const ssa_use_operand_t *head,
1502 use_operand_p *use_p, gimple *stmt)
1504 ssa_use_operand_t *ptr, *single_use = 0;
1506 for (ptr = head->next; ptr != head; ptr = ptr->next)
1507 if (!is_gimple_debug (USE_STMT (ptr)))
1518 *use_p = single_use;
1521 *stmt = single_use ? single_use->loc.stmt : NULL;
1523 return !!single_use;
1526 /* Replaces all uses of NAME by VAL. */
1529 replace_uses_by (tree name, tree val)
1531 imm_use_iterator imm_iter;
1536 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1538 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1540 replace_exp (use, val);
1542 if (gimple_code (stmt) == GIMPLE_PHI)
1544 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1545 if (e->flags & EDGE_ABNORMAL)
1547 /* This can only occur for virtual operands, since
1548 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1549 would prevent replacement. */
1550 gcc_checking_assert (virtual_operand_p (name));
1551 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1556 if (gimple_code (stmt) != GIMPLE_PHI)
1558 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1559 gimple orig_stmt = stmt;
1562 /* Mark the block if we changed the last stmt in it. */
1563 if (cfgcleanup_altered_bbs
1564 && stmt_ends_bb_p (stmt))
1565 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1567 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1568 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1569 only change sth from non-invariant to invariant, and only
1570 when propagating constants. */
1571 if (is_gimple_min_invariant (val))
1572 for (i = 0; i < gimple_num_ops (stmt); i++)
1574 tree op = gimple_op (stmt, i);
1575 /* Operands may be empty here. For example, the labels
1576 of a GIMPLE_COND are nulled out following the creation
1577 of the corresponding CFG edges. */
1578 if (op && TREE_CODE (op) == ADDR_EXPR)
1579 recompute_tree_invariant_for_addr_expr (op);
1582 if (fold_stmt (&gsi))
1583 stmt = gsi_stmt (gsi);
1585 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1586 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1592 gcc_checking_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 bool may_replace_uses = (virtual_operand_p (def)
1626 || may_propagate_copy (def, use));
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && !virtual_operand_p (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1637 if (!may_replace_uses)
1639 gcc_assert (!virtual_operand_p (def));
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1654 if (virtual_operand_p (def))
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 replace_uses_by (def, use);
1670 remove_phi_node (&psi, true);
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 tree label = gimple_label_label (stmt);
1689 gsi_remove (&gsi, false);
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 /* Other user labels keep around in a form of a debug stmt. */
1703 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1705 gimple dbg = gimple_build_debug_bind (label,
1708 gimple_debug_bind_reset_value (dbg);
1709 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1712 lp_nr = EH_LANDING_PAD_NR (label);
1715 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1716 lp->post_landing_pad = NULL;
1721 gimple_set_bb (stmt, a);
1726 /* Merge the sequences. */
1727 last = gsi_last_bb (a);
1728 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1729 set_bb_seq (b, NULL);
1731 if (cfgcleanup_altered_bbs)
1732 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1736 /* Return the one of two successors of BB that is not reachable by a
1737 complex edge, if there is one. Else, return BB. We use
1738 this in optimizations that use post-dominators for their heuristics,
1739 to catch the cases in C++ where function calls are involved. */
1742 single_noncomplex_succ (basic_block bb)
1745 if (EDGE_COUNT (bb->succs) != 2)
1748 e0 = EDGE_SUCC (bb, 0);
1749 e1 = EDGE_SUCC (bb, 1);
1750 if (e0->flags & EDGE_COMPLEX)
1752 if (e1->flags & EDGE_COMPLEX)
1758 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1761 notice_special_calls (gimple call)
1763 int flags = gimple_call_flags (call);
1765 if (flags & ECF_MAY_BE_ALLOCA)
1766 cfun->calls_alloca = true;
1767 if (flags & ECF_RETURNS_TWICE)
1768 cfun->calls_setjmp = true;
1772 /* Clear flags set by notice_special_calls. Used by dead code removal
1773 to update the flags. */
1776 clear_special_calls (void)
1778 cfun->calls_alloca = false;
1779 cfun->calls_setjmp = false;
1782 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1785 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1787 /* Since this block is no longer reachable, we can just delete all
1788 of its PHI nodes. */
1789 remove_phi_nodes (bb);
1791 /* Remove edges to BB's successors. */
1792 while (EDGE_COUNT (bb->succs) > 0)
1793 remove_edge (EDGE_SUCC (bb, 0));
1797 /* Remove statements of basic block BB. */
1800 remove_bb (basic_block bb)
1802 gimple_stmt_iterator i;
1806 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1807 if (dump_flags & TDF_DETAILS)
1809 dump_bb (dump_file, bb, 0, dump_flags);
1810 fprintf (dump_file, "\n");
1816 struct loop *loop = bb->loop_father;
1818 /* If a loop gets removed, clean up the information associated
1820 if (loop->latch == bb
1821 || loop->header == bb)
1822 free_numbers_of_iterations_estimates_loop (loop);
1825 /* Remove all the instructions in the block. */
1826 if (bb_seq (bb) != NULL)
1828 /* Walk backwards so as to get a chance to substitute all
1829 released DEFs into debug stmts. See
1830 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1832 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1834 gimple stmt = gsi_stmt (i);
1835 if (gimple_code (stmt) == GIMPLE_LABEL
1836 && (FORCED_LABEL (gimple_label_label (stmt))
1837 || DECL_NONLOCAL (gimple_label_label (stmt))))
1840 gimple_stmt_iterator new_gsi;
1842 /* A non-reachable non-local label may still be referenced.
1843 But it no longer needs to carry the extra semantics of
1845 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1847 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1848 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1851 new_bb = bb->prev_bb;
1852 new_gsi = gsi_start_bb (new_bb);
1853 gsi_remove (&i, false);
1854 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1858 /* Release SSA definitions if we are in SSA. Note that we
1859 may be called when not in SSA. For example,
1860 final_cleanup calls this function via
1861 cleanup_tree_cfg. */
1862 if (gimple_in_ssa_p (cfun))
1863 release_defs (stmt);
1865 gsi_remove (&i, true);
1869 i = gsi_last_bb (bb);
1875 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1876 bb->il.gimple.seq = NULL;
1877 bb->il.gimple.phi_nodes = NULL;
1881 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1882 predicate VAL, return the edge that will be taken out of the block.
1883 If VAL does not match a unique edge, NULL is returned. */
1886 find_taken_edge (basic_block bb, tree val)
1890 stmt = last_stmt (bb);
1893 gcc_assert (is_ctrl_stmt (stmt));
1898 if (!is_gimple_min_invariant (val))
1901 if (gimple_code (stmt) == GIMPLE_COND)
1902 return find_taken_edge_cond_expr (bb, val);
1904 if (gimple_code (stmt) == GIMPLE_SWITCH)
1905 return find_taken_edge_switch_expr (bb, val);
1907 if (computed_goto_p (stmt))
1909 /* Only optimize if the argument is a label, if the argument is
1910 not a label then we can not construct a proper CFG.
1912 It may be the case that we only need to allow the LABEL_REF to
1913 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1914 appear inside a LABEL_EXPR just to be safe. */
1915 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1916 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1917 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1924 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1925 statement, determine which of the outgoing edges will be taken out of the
1926 block. Return NULL if either edge may be taken. */
1929 find_taken_edge_computed_goto (basic_block bb, tree val)
1934 dest = label_to_block (val);
1937 e = find_edge (bb, dest);
1938 gcc_assert (e != NULL);
1944 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1945 statement, determine which of the two edges will be taken out of the
1946 block. Return NULL if either edge may be taken. */
1949 find_taken_edge_cond_expr (basic_block bb, tree val)
1951 edge true_edge, false_edge;
1953 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1955 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1956 return (integer_zerop (val) ? false_edge : true_edge);
1959 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1960 statement, determine which edge will be taken out of the block. Return
1961 NULL if any edge may be taken. */
1964 find_taken_edge_switch_expr (basic_block bb, tree val)
1966 basic_block dest_bb;
1971 switch_stmt = last_stmt (bb);
1972 taken_case = find_case_label_for_value (switch_stmt, val);
1973 dest_bb = label_to_block (CASE_LABEL (taken_case));
1975 e = find_edge (bb, dest_bb);
1981 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1982 We can make optimal use here of the fact that the case labels are
1983 sorted: We can do a binary search for a case matching VAL. */
1986 find_case_label_for_value (gimple switch_stmt, tree val)
1988 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1989 tree default_case = gimple_switch_default_label (switch_stmt);
1991 for (low = 0, high = n; high - low > 1; )
1993 size_t i = (high + low) / 2;
1994 tree t = gimple_switch_label (switch_stmt, i);
1997 /* Cache the result of comparing CASE_LOW and val. */
1998 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2005 if (CASE_HIGH (t) == NULL)
2007 /* A singe-valued case label. */
2013 /* A case range. We can only handle integer ranges. */
2014 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2019 return default_case;
2023 /* Dump a basic block on stderr. */
2026 gimple_debug_bb (basic_block bb)
2028 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2032 /* Dump basic block with index N on stderr. */
2035 gimple_debug_bb_n (int n)
2037 gimple_debug_bb (BASIC_BLOCK (n));
2038 return BASIC_BLOCK (n);
2042 /* Dump the CFG on stderr.
2044 FLAGS are the same used by the tree dumping functions
2045 (see TDF_* in dumpfile.h). */
2048 gimple_debug_cfg (int flags)
2050 gimple_dump_cfg (stderr, flags);
2054 /* Dump the program showing basic block boundaries on the given FILE.
2056 FLAGS are the same used by the tree dumping functions (see TDF_* in
2060 gimple_dump_cfg (FILE *file, int flags)
2062 if (flags & TDF_DETAILS)
2064 dump_function_header (file, current_function_decl, flags);
2065 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2066 n_basic_blocks, n_edges, last_basic_block);
2068 brief_dump_cfg (file, flags | TDF_COMMENT);
2069 fprintf (file, "\n");
2072 if (flags & TDF_STATS)
2073 dump_cfg_stats (file);
2075 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2079 /* Dump CFG statistics on FILE. */
2082 dump_cfg_stats (FILE *file)
2084 static long max_num_merged_labels = 0;
2085 unsigned long size, total = 0;
2088 const char * const fmt_str = "%-30s%-13s%12s\n";
2089 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2090 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2091 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2092 const char *funcname = current_function_name ();
2094 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2096 fprintf (file, "---------------------------------------------------------\n");
2097 fprintf (file, fmt_str, "", " Number of ", "Memory");
2098 fprintf (file, fmt_str, "", " instances ", "used ");
2099 fprintf (file, "---------------------------------------------------------\n");
2101 size = n_basic_blocks * sizeof (struct basic_block_def);
2103 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2104 SCALE (size), LABEL (size));
2108 num_edges += EDGE_COUNT (bb->succs);
2109 size = num_edges * sizeof (struct edge_def);
2111 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2116 fprintf (file, "---------------------------------------------------------\n");
2117 fprintf (file, "\n");
2119 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2120 max_num_merged_labels = cfg_stats.num_merged_labels;
2122 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2123 cfg_stats.num_merged_labels, max_num_merged_labels);
2125 fprintf (file, "\n");
2129 /* Dump CFG statistics on stderr. Keep extern so that it's always
2130 linked in the final executable. */
2133 debug_cfg_stats (void)
2135 dump_cfg_stats (stderr);
2138 /*---------------------------------------------------------------------------
2139 Miscellaneous helpers
2140 ---------------------------------------------------------------------------*/
2142 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2143 flow. Transfers of control flow associated with EH are excluded. */
2146 call_can_make_abnormal_goto (gimple t)
2148 /* If the function has no non-local labels, then a call cannot make an
2149 abnormal transfer of control. */
2150 if (!cfun->has_nonlocal_label)
2153 /* Likewise if the call has no side effects. */
2154 if (!gimple_has_side_effects (t))
2157 /* Likewise if the called function is leaf. */
2158 if (gimple_call_flags (t) & ECF_LEAF)
2165 /* Return true if T can make an abnormal transfer of control flow.
2166 Transfers of control flow associated with EH are excluded. */
2169 stmt_can_make_abnormal_goto (gimple t)
2171 if (computed_goto_p (t))
2173 if (is_gimple_call (t))
2174 return call_can_make_abnormal_goto (t);
2179 /* Return true if T represents a stmt that always transfers control. */
2182 is_ctrl_stmt (gimple t)
2184 switch (gimple_code (t))
2198 /* Return true if T is a statement that may alter the flow of control
2199 (e.g., a call to a non-returning function). */
2202 is_ctrl_altering_stmt (gimple t)
2206 switch (gimple_code (t))
2210 int flags = gimple_call_flags (t);
2212 /* A call alters control flow if it can make an abnormal goto. */
2213 if (call_can_make_abnormal_goto (t))
2216 /* A call also alters control flow if it does not return. */
2217 if (flags & ECF_NORETURN)
2220 /* TM ending statements have backedges out of the transaction.
2221 Return true so we split the basic block containing them.
2222 Note that the TM_BUILTIN test is merely an optimization. */
2223 if ((flags & ECF_TM_BUILTIN)
2224 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2227 /* BUILT_IN_RETURN call is same as return statement. */
2228 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2233 case GIMPLE_EH_DISPATCH:
2234 /* EH_DISPATCH branches to the individual catch handlers at
2235 this level of a try or allowed-exceptions region. It can
2236 fallthru to the next statement as well. */
2240 if (gimple_asm_nlabels (t) > 0)
2245 /* OpenMP directives alter control flow. */
2248 case GIMPLE_TRANSACTION:
2249 /* A transaction start alters control flow. */
2256 /* If a statement can throw, it alters control flow. */
2257 return stmt_can_throw_internal (t);
2261 /* Return true if T is a simple local goto. */
2264 simple_goto_p (gimple t)
2266 return (gimple_code (t) == GIMPLE_GOTO
2267 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2271 /* Return true if STMT should start a new basic block. PREV_STMT is
2272 the statement preceding STMT. It is used when STMT is a label or a
2273 case label. Labels should only start a new basic block if their
2274 previous statement wasn't a label. Otherwise, sequence of labels
2275 would generate unnecessary basic blocks that only contain a single
2279 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2284 /* Labels start a new basic block only if the preceding statement
2285 wasn't a label of the same type. This prevents the creation of
2286 consecutive blocks that have nothing but a single label. */
2287 if (gimple_code (stmt) == GIMPLE_LABEL)
2289 /* Nonlocal and computed GOTO targets always start a new block. */
2290 if (DECL_NONLOCAL (gimple_label_label (stmt))
2291 || FORCED_LABEL (gimple_label_label (stmt)))
2294 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2296 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2299 cfg_stats.num_merged_labels++;
2310 /* Return true if T should end a basic block. */
2313 stmt_ends_bb_p (gimple t)
2315 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2318 /* Remove block annotations and other data structures. */
2321 delete_tree_cfg_annotations (void)
2323 vec_free (label_to_block_map);
2327 /* Return the first statement in basic block BB. */
2330 first_stmt (basic_block bb)
2332 gimple_stmt_iterator i = gsi_start_bb (bb);
2335 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2343 /* Return the first non-label statement in basic block BB. */
2346 first_non_label_stmt (basic_block bb)
2348 gimple_stmt_iterator i = gsi_start_bb (bb);
2349 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2351 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2354 /* Return the last statement in basic block BB. */
2357 last_stmt (basic_block bb)
2359 gimple_stmt_iterator i = gsi_last_bb (bb);
2362 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2370 /* Return the last statement of an otherwise empty block. Return NULL
2371 if the block is totally empty, or if it contains more than one
2375 last_and_only_stmt (basic_block bb)
2377 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2383 last = gsi_stmt (i);
2384 gsi_prev_nondebug (&i);
2388 /* Empty statements should no longer appear in the instruction stream.
2389 Everything that might have appeared before should be deleted by
2390 remove_useless_stmts, and the optimizers should just gsi_remove
2391 instead of smashing with build_empty_stmt.
2393 Thus the only thing that should appear here in a block containing
2394 one executable statement is a label. */
2395 prev = gsi_stmt (i);
2396 if (gimple_code (prev) == GIMPLE_LABEL)
2402 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2405 reinstall_phi_args (edge new_edge, edge old_edge)
2407 edge_var_map_vector *v;
2410 gimple_stmt_iterator phis;
2412 v = redirect_edge_var_map_vector (old_edge);
2416 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2417 v->iterate (i, &vm) && !gsi_end_p (phis);
2418 i++, gsi_next (&phis))
2420 gimple phi = gsi_stmt (phis);
2421 tree result = redirect_edge_var_map_result (vm);
2422 tree arg = redirect_edge_var_map_def (vm);
2424 gcc_assert (result == gimple_phi_result (phi));
2426 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2429 redirect_edge_var_map_clear (old_edge);
2432 /* Returns the basic block after which the new basic block created
2433 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2434 near its "logical" location. This is of most help to humans looking
2435 at debugging dumps. */
2438 split_edge_bb_loc (edge edge_in)
2440 basic_block dest = edge_in->dest;
2441 basic_block dest_prev = dest->prev_bb;
2445 edge e = find_edge (dest_prev, dest);
2446 if (e && !(e->flags & EDGE_COMPLEX))
2447 return edge_in->src;
2452 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2453 Abort on abnormal edges. */
2456 gimple_split_edge (edge edge_in)
2458 basic_block new_bb, after_bb, dest;
2461 /* Abnormal edges cannot be split. */
2462 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2464 dest = edge_in->dest;
2466 after_bb = split_edge_bb_loc (edge_in);
2468 new_bb = create_empty_bb (after_bb);
2469 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2470 new_bb->count = edge_in->count;
2471 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2472 new_edge->probability = REG_BR_PROB_BASE;
2473 new_edge->count = edge_in->count;
2475 e = redirect_edge_and_branch (edge_in, new_bb);
2476 gcc_assert (e == edge_in);
2477 reinstall_phi_args (new_edge, e);
2483 /* Verify properties of the address expression T with base object BASE. */
2486 verify_address (tree t, tree base)
2489 bool old_side_effects;
2491 bool new_side_effects;
2493 old_constant = TREE_CONSTANT (t);
2494 old_side_effects = TREE_SIDE_EFFECTS (t);
2496 recompute_tree_invariant_for_addr_expr (t);
2497 new_side_effects = TREE_SIDE_EFFECTS (t);
2498 new_constant = TREE_CONSTANT (t);
2500 if (old_constant != new_constant)
2502 error ("constant not recomputed when ADDR_EXPR changed");
2505 if (old_side_effects != new_side_effects)
2507 error ("side effects not recomputed when ADDR_EXPR changed");
2511 if (!(TREE_CODE (base) == VAR_DECL
2512 || TREE_CODE (base) == PARM_DECL
2513 || TREE_CODE (base) == RESULT_DECL))
2516 if (DECL_GIMPLE_REG_P (base))
2518 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2525 /* Callback for walk_tree, check that all elements with address taken are
2526 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2527 inside a PHI node. */
2530 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2537 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2538 #define CHECK_OP(N, MSG) \
2539 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2540 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2542 switch (TREE_CODE (t))
2545 if (SSA_NAME_IN_FREE_LIST (t))
2547 error ("SSA name in freelist but still referenced");
2553 error ("INDIRECT_REF in gimple IL");
2557 x = TREE_OPERAND (t, 0);
2558 if (!POINTER_TYPE_P (TREE_TYPE (x))
2559 || !is_gimple_mem_ref_addr (x))
2561 error ("invalid first operand of MEM_REF");
2564 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2565 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2567 error ("invalid offset operand of MEM_REF");
2568 return TREE_OPERAND (t, 1);
2570 if (TREE_CODE (x) == ADDR_EXPR
2571 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2577 x = fold (ASSERT_EXPR_COND (t));
2578 if (x == boolean_false_node)
2580 error ("ASSERT_EXPR with an always-false condition");
2586 error ("MODIFY_EXPR not expected while having tuples");
2593 gcc_assert (is_gimple_address (t));
2595 /* Skip any references (they will be checked when we recurse down the
2596 tree) and ensure that any variable used as a prefix is marked
2598 for (x = TREE_OPERAND (t, 0);
2599 handled_component_p (x);
2600 x = TREE_OPERAND (x, 0))
2603 if ((tem = verify_address (t, x)))
2606 if (!(TREE_CODE (x) == VAR_DECL
2607 || TREE_CODE (x) == PARM_DECL
2608 || TREE_CODE (x) == RESULT_DECL))
2611 if (!TREE_ADDRESSABLE (x))
2613 error ("address taken, but ADDRESSABLE bit not set");
2621 x = COND_EXPR_COND (t);
2622 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2624 error ("non-integral used in condition");
2627 if (!is_gimple_condexpr (x))
2629 error ("invalid conditional operand");
2634 case NON_LVALUE_EXPR:
2635 case TRUTH_NOT_EXPR:
2639 case FIX_TRUNC_EXPR:
2644 CHECK_OP (0, "invalid operand to unary operator");
2651 case ARRAY_RANGE_REF:
2653 case VIEW_CONVERT_EXPR:
2654 /* We have a nest of references. Verify that each of the operands
2655 that determine where to reference is either a constant or a variable,
2656 verify that the base is valid, and then show we've already checked
2658 while (handled_component_p (t))
2660 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2661 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2662 else if (TREE_CODE (t) == ARRAY_REF
2663 || TREE_CODE (t) == ARRAY_RANGE_REF)
2665 CHECK_OP (1, "invalid array index");
2666 if (TREE_OPERAND (t, 2))
2667 CHECK_OP (2, "invalid array lower bound");
2668 if (TREE_OPERAND (t, 3))
2669 CHECK_OP (3, "invalid array stride");
2671 else if (TREE_CODE (t) == BIT_FIELD_REF)
2673 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2674 || !host_integerp (TREE_OPERAND (t, 2), 1))
2676 error ("invalid position or size operand to BIT_FIELD_REF");
2679 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2680 && (TYPE_PRECISION (TREE_TYPE (t))
2681 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2683 error ("integral result type precision does not match "
2684 "field size of BIT_FIELD_REF");
2687 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2688 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2689 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2690 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2691 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2693 error ("mode precision of non-integral result does not "
2694 "match field size of BIT_FIELD_REF");
2699 t = TREE_OPERAND (t, 0);
2702 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2704 error ("invalid reference prefix");
2711 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2712 POINTER_PLUS_EXPR. */
2713 if (POINTER_TYPE_P (TREE_TYPE (t)))
2715 error ("invalid operand to plus/minus, type is a pointer");
2718 CHECK_OP (0, "invalid operand to binary operator");
2719 CHECK_OP (1, "invalid operand to binary operator");
2722 case POINTER_PLUS_EXPR:
2723 /* Check to make sure the first operand is a pointer or reference type. */
2724 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2726 error ("invalid operand to pointer plus, first operand is not a pointer");
2729 /* Check to make sure the second operand is a ptrofftype. */
2730 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2732 error ("invalid operand to pointer plus, second operand is not an "
2733 "integer type of appropriate width");
2743 case UNORDERED_EXPR:
2752 case TRUNC_DIV_EXPR:
2754 case FLOOR_DIV_EXPR:
2755 case ROUND_DIV_EXPR:
2756 case TRUNC_MOD_EXPR:
2758 case FLOOR_MOD_EXPR:
2759 case ROUND_MOD_EXPR:
2761 case EXACT_DIV_EXPR:
2771 CHECK_OP (0, "invalid operand to binary operator");
2772 CHECK_OP (1, "invalid operand to binary operator");
2776 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2780 case CASE_LABEL_EXPR:
2783 error ("invalid CASE_CHAIN");
2797 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2798 Returns true if there is an error, otherwise false. */
2801 verify_types_in_gimple_min_lval (tree expr)
2805 if (is_gimple_id (expr))
2808 if (TREE_CODE (expr) != TARGET_MEM_REF
2809 && TREE_CODE (expr) != MEM_REF)
2811 error ("invalid expression for min lvalue");
2815 /* TARGET_MEM_REFs are strange beasts. */
2816 if (TREE_CODE (expr) == TARGET_MEM_REF)
2819 op = TREE_OPERAND (expr, 0);
2820 if (!is_gimple_val (op))
2822 error ("invalid operand in indirect reference");
2823 debug_generic_stmt (op);
2826 /* Memory references now generally can involve a value conversion. */
2831 /* Verify if EXPR is a valid GIMPLE reference expression. If
2832 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2833 if there is an error, otherwise false. */
2836 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2838 while (handled_component_p (expr))
2840 tree op = TREE_OPERAND (expr, 0);
2842 if (TREE_CODE (expr) == ARRAY_REF
2843 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2845 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2846 || (TREE_OPERAND (expr, 2)
2847 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2848 || (TREE_OPERAND (expr, 3)
2849 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2851 error ("invalid operands to array reference");
2852 debug_generic_stmt (expr);
2857 /* Verify if the reference array element types are compatible. */
2858 if (TREE_CODE (expr) == ARRAY_REF
2859 && !useless_type_conversion_p (TREE_TYPE (expr),
2860 TREE_TYPE (TREE_TYPE (op))))
2862 error ("type mismatch in array reference");
2863 debug_generic_stmt (TREE_TYPE (expr));
2864 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2867 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2868 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2869 TREE_TYPE (TREE_TYPE (op))))
2871 error ("type mismatch in array range reference");
2872 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2873 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2877 if ((TREE_CODE (expr) == REALPART_EXPR
2878 || TREE_CODE (expr) == IMAGPART_EXPR)
2879 && !useless_type_conversion_p (TREE_TYPE (expr),
2880 TREE_TYPE (TREE_TYPE (op))))
2882 error ("type mismatch in real/imagpart reference");
2883 debug_generic_stmt (TREE_TYPE (expr));
2884 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2888 if (TREE_CODE (expr) == COMPONENT_REF
2889 && !useless_type_conversion_p (TREE_TYPE (expr),
2890 TREE_TYPE (TREE_OPERAND (expr, 1))))
2892 error ("type mismatch in component reference");
2893 debug_generic_stmt (TREE_TYPE (expr));
2894 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2898 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2900 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2901 that their operand is not an SSA name or an invariant when
2902 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2903 bug). Otherwise there is nothing to verify, gross mismatches at
2904 most invoke undefined behavior. */
2906 && (TREE_CODE (op) == SSA_NAME
2907 || is_gimple_min_invariant (op)))
2909 error ("conversion of an SSA_NAME on the left hand side");
2910 debug_generic_stmt (expr);
2913 else if (TREE_CODE (op) == SSA_NAME
2914 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2916 error ("conversion of register to a different size");
2917 debug_generic_stmt (expr);
2920 else if (!handled_component_p (op))
2927 if (TREE_CODE (expr) == MEM_REF)
2929 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2931 error ("invalid address operand in MEM_REF");
2932 debug_generic_stmt (expr);
2935 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2936 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2938 error ("invalid offset operand in MEM_REF");
2939 debug_generic_stmt (expr);
2943 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2945 if (!TMR_BASE (expr)
2946 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2948 error ("invalid address operand in TARGET_MEM_REF");
2951 if (!TMR_OFFSET (expr)
2952 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2953 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2955 error ("invalid offset operand in TARGET_MEM_REF");
2956 debug_generic_stmt (expr);
2961 return ((require_lvalue || !is_gimple_min_invariant (expr))
2962 && verify_types_in_gimple_min_lval (expr));
2965 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2966 list of pointer-to types that is trivially convertible to DEST. */
2969 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2973 if (!TYPE_POINTER_TO (src_obj))
2976 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
2977 if (useless_type_conversion_p (dest, src))
2983 /* Return true if TYPE1 is a fixed-point type and if conversions to and
2984 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
2987 valid_fixed_convert_types_p (tree type1, tree type2)
2989 return (FIXED_POINT_TYPE_P (type1)
2990 && (INTEGRAL_TYPE_P (type2)
2991 || SCALAR_FLOAT_TYPE_P (type2)
2992 || FIXED_POINT_TYPE_P (type2)));
2995 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
2996 is a problem, otherwise false. */
2999 verify_gimple_call (gimple stmt)
3001 tree fn = gimple_call_fn (stmt);
3002 tree fntype, fndecl;
3005 if (gimple_call_internal_p (stmt))
3009 error ("gimple call has two targets");
3010 debug_generic_stmt (fn);
3018 error ("gimple call has no target");
3023 if (fn && !is_gimple_call_addr (fn))
3025 error ("invalid function in gimple call");
3026 debug_generic_stmt (fn);
3031 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3032 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3033 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3035 error ("non-function in gimple call");
3039 fndecl = gimple_call_fndecl (stmt);
3041 && TREE_CODE (fndecl) == FUNCTION_DECL
3042 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3043 && !DECL_PURE_P (fndecl)
3044 && !TREE_READONLY (fndecl))
3046 error ("invalid pure const state for function");
3050 if (gimple_call_lhs (stmt)
3051 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3052 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3054 error ("invalid LHS in gimple call");
3058 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3060 error ("LHS in noreturn call");
3064 fntype = gimple_call_fntype (stmt);
3066 && gimple_call_lhs (stmt)
3067 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3069 /* ??? At least C++ misses conversions at assignments from
3070 void * call results.
3071 ??? Java is completely off. Especially with functions
3072 returning java.lang.Object.
3073 For now simply allow arbitrary pointer type conversions. */
3074 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3075 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3077 error ("invalid conversion in gimple call");
3078 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3079 debug_generic_stmt (TREE_TYPE (fntype));
3083 if (gimple_call_chain (stmt)
3084 && !is_gimple_val (gimple_call_chain (stmt)))
3086 error ("invalid static chain in gimple call");
3087 debug_generic_stmt (gimple_call_chain (stmt));
3091 /* If there is a static chain argument, this should not be an indirect
3092 call, and the decl should have DECL_STATIC_CHAIN set. */
3093 if (gimple_call_chain (stmt))
3095 if (!gimple_call_fndecl (stmt))
3097 error ("static chain in indirect gimple call");
3100 fn = TREE_OPERAND (fn, 0);
3102 if (!DECL_STATIC_CHAIN (fn))
3104 error ("static chain with function that doesn%'t use one");
3109 /* ??? The C frontend passes unpromoted arguments in case it
3110 didn't see a function declaration before the call. So for now
3111 leave the call arguments mostly unverified. Once we gimplify
3112 unit-at-a-time we have a chance to fix this. */
3114 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3116 tree arg = gimple_call_arg (stmt, i);
3117 if ((is_gimple_reg_type (TREE_TYPE (arg))
3118 && !is_gimple_val (arg))
3119 || (!is_gimple_reg_type (TREE_TYPE (arg))
3120 && !is_gimple_lvalue (arg)))
3122 error ("invalid argument to gimple call");
3123 debug_generic_expr (arg);
3131 /* Verifies the gimple comparison with the result type TYPE and
3132 the operands OP0 and OP1. */
3135 verify_gimple_comparison (tree type, tree op0, tree op1)
3137 tree op0_type = TREE_TYPE (op0);
3138 tree op1_type = TREE_TYPE (op1);
3140 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3142 error ("invalid operands in gimple comparison");
3146 /* For comparisons we do not have the operations type as the
3147 effective type the comparison is carried out in. Instead
3148 we require that either the first operand is trivially
3149 convertible into the second, or the other way around.
3150 Because we special-case pointers to void we allow
3151 comparisons of pointers with the same mode as well. */
3152 if (!useless_type_conversion_p (op0_type, op1_type)
3153 && !useless_type_conversion_p (op1_type, op0_type)
3154 && (!POINTER_TYPE_P (op0_type)
3155 || !POINTER_TYPE_P (op1_type)
3156 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3158 error ("mismatching comparison operand types");
3159 debug_generic_expr (op0_type);
3160 debug_generic_expr (op1_type);
3164 /* The resulting type of a comparison may be an effective boolean type. */
3165 if (INTEGRAL_TYPE_P (type)
3166 && (TREE_CODE (type) == BOOLEAN_TYPE
3167 || TYPE_PRECISION (type) == 1))
3169 if (TREE_CODE (op0_type) == VECTOR_TYPE
3170 || TREE_CODE (op1_type) == VECTOR_TYPE)
3172 error ("vector comparison returning a boolean");
3173 debug_generic_expr (op0_type);
3174 debug_generic_expr (op1_type);
3178 /* Or an integer vector type with the same size and element count
3179 as the comparison operand types. */
3180 else if (TREE_CODE (type) == VECTOR_TYPE
3181 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3183 if (TREE_CODE (op0_type) != VECTOR_TYPE
3184 || TREE_CODE (op1_type) != VECTOR_TYPE)
3186 error ("non-vector operands in vector comparison");
3187 debug_generic_expr (op0_type);
3188 debug_generic_expr (op1_type);
3192 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3193 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3194 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3196 error ("invalid vector comparison resulting type");
3197 debug_generic_expr (type);
3203 error ("bogus comparison result type");
3204 debug_generic_expr (type);
3211 /* Verify a gimple assignment statement STMT with an unary rhs.
3212 Returns true if anything is wrong. */
3215 verify_gimple_assign_unary (gimple stmt)
3217 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3218 tree lhs = gimple_assign_lhs (stmt);
3219 tree lhs_type = TREE_TYPE (lhs);
3220 tree rhs1 = gimple_assign_rhs1 (stmt);
3221 tree rhs1_type = TREE_TYPE (rhs1);
3223 if (!is_gimple_reg (lhs))
3225 error ("non-register as LHS of unary operation");
3229 if (!is_gimple_val (rhs1))
3231 error ("invalid operand in unary operation");
3235 /* First handle conversions. */
3240 /* Allow conversions from pointer type to integral type only if
3241 there is no sign or zero extension involved.
3242 For targets were the precision of ptrofftype doesn't match that
3243 of pointers we need to allow arbitrary conversions to ptrofftype. */
3244 if ((POINTER_TYPE_P (lhs_type)
3245 && INTEGRAL_TYPE_P (rhs1_type))
3246 || (POINTER_TYPE_P (rhs1_type)
3247 && INTEGRAL_TYPE_P (lhs_type)
3248 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3249 || ptrofftype_p (sizetype))))
3252 /* Allow conversion from integral to offset type and vice versa. */
3253 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3254 && INTEGRAL_TYPE_P (rhs1_type))
3255 || (INTEGRAL_TYPE_P (lhs_type)
3256 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3259 /* Otherwise assert we are converting between types of the
3261 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3263 error ("invalid types in nop conversion");
3264 debug_generic_expr (lhs_type);
3265 debug_generic_expr (rhs1_type);
3272 case ADDR_SPACE_CONVERT_EXPR:
3274 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3275 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3276 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3278 error ("invalid types in address space conversion");
3279 debug_generic_expr (lhs_type);
3280 debug_generic_expr (rhs1_type);
3287 case FIXED_CONVERT_EXPR:
3289 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3290 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3292 error ("invalid types in fixed-point conversion");
3293 debug_generic_expr (lhs_type);
3294 debug_generic_expr (rhs1_type);
3303 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3304 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3305 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3307 error ("invalid types in conversion to floating point");
3308 debug_generic_expr (lhs_type);
3309 debug_generic_expr (rhs1_type);
3316 case FIX_TRUNC_EXPR:
3318 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3319 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3320 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3322 error ("invalid types in conversion to integer");
3323 debug_generic_expr (lhs_type);
3324 debug_generic_expr (rhs1_type);
3331 case VEC_UNPACK_HI_EXPR:
3332 case VEC_UNPACK_LO_EXPR:
3333 case REDUC_MAX_EXPR:
3334 case REDUC_MIN_EXPR:
3335 case REDUC_PLUS_EXPR:
3336 case VEC_UNPACK_FLOAT_HI_EXPR:
3337 case VEC_UNPACK_FLOAT_LO_EXPR:
3345 case NON_LVALUE_EXPR:
3353 /* For the remaining codes assert there is no conversion involved. */
3354 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3356 error ("non-trivial conversion in unary operation");
3357 debug_generic_expr (lhs_type);
3358 debug_generic_expr (rhs1_type);
3365 /* Verify a gimple assignment statement STMT with a binary rhs.
3366 Returns true if anything is wrong. */
3369 verify_gimple_assign_binary (gimple stmt)
3371 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3372 tree lhs = gimple_assign_lhs (stmt);
3373 tree lhs_type = TREE_TYPE (lhs);
3374 tree rhs1 = gimple_assign_rhs1 (stmt);
3375 tree rhs1_type = TREE_TYPE (rhs1);
3376 tree rhs2 = gimple_assign_rhs2 (stmt);
3377 tree rhs2_type = TREE_TYPE (rhs2);
3379 if (!is_gimple_reg (lhs))
3381 error ("non-register as LHS of binary operation");
3385 if (!is_gimple_val (rhs1)
3386 || !is_gimple_val (rhs2))
3388 error ("invalid operands in binary operation");
3392 /* First handle operations that involve different types. */
3397 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3398 || !(INTEGRAL_TYPE_P (rhs1_type)
3399 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3400 || !(INTEGRAL_TYPE_P (rhs2_type)
3401 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3403 error ("type mismatch in complex expression");
3404 debug_generic_expr (lhs_type);
3405 debug_generic_expr (rhs1_type);
3406 debug_generic_expr (rhs2_type);
3418 /* Shifts and rotates are ok on integral types, fixed point
3419 types and integer vector types. */
3420 if ((!INTEGRAL_TYPE_P (rhs1_type)
3421 && !FIXED_POINT_TYPE_P (rhs1_type)
3422 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3423 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3424 || (!INTEGRAL_TYPE_P (rhs2_type)
3425 /* Vector shifts of vectors are also ok. */
3426 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3427 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3428 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3429 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3432 error ("type mismatch in shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3442 case VEC_LSHIFT_EXPR:
3443 case VEC_RSHIFT_EXPR:
3445 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3446 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3447 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3448 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3449 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3450 || (!INTEGRAL_TYPE_P (rhs2_type)
3451 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3452 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3453 || !useless_type_conversion_p (lhs_type, rhs1_type))
3455 error ("type mismatch in vector shift expression");
3456 debug_generic_expr (lhs_type);
3457 debug_generic_expr (rhs1_type);
3458 debug_generic_expr (rhs2_type);
3461 /* For shifting a vector of non-integral components we
3462 only allow shifting by a constant multiple of the element size. */
3463 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3464 && (TREE_CODE (rhs2) != INTEGER_CST
3465 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3466 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3468 error ("non-element sized vector shift of floating point vector");
3475 case WIDEN_LSHIFT_EXPR:
3477 if (!INTEGRAL_TYPE_P (lhs_type)
3478 || !INTEGRAL_TYPE_P (rhs1_type)
3479 || TREE_CODE (rhs2) != INTEGER_CST
3480 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3482 error ("type mismatch in widening vector shift expression");
3483 debug_generic_expr (lhs_type);
3484 debug_generic_expr (rhs1_type);
3485 debug_generic_expr (rhs2_type);
3492 case VEC_WIDEN_LSHIFT_HI_EXPR:
3493 case VEC_WIDEN_LSHIFT_LO_EXPR:
3495 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3496 || TREE_CODE (lhs_type) != VECTOR_TYPE
3497 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3498 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3499 || TREE_CODE (rhs2) != INTEGER_CST
3500 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3501 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3503 error ("type mismatch in widening vector shift expression");
3504 debug_generic_expr (lhs_type);
3505 debug_generic_expr (rhs1_type);
3506 debug_generic_expr (rhs2_type);
3516 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3517 ??? This just makes the checker happy and may not be what is
3519 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3520 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3522 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3523 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3525 error ("invalid non-vector operands to vector valued plus");
3528 lhs_type = TREE_TYPE (lhs_type);
3529 rhs1_type = TREE_TYPE (rhs1_type);
3530 rhs2_type = TREE_TYPE (rhs2_type);
3531 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3532 the pointer to 2nd place. */
3533 if (POINTER_TYPE_P (rhs2_type))
3535 tree tem = rhs1_type;
3536 rhs1_type = rhs2_type;
3539 goto do_pointer_plus_expr_check;
3541 if (POINTER_TYPE_P (lhs_type)
3542 || POINTER_TYPE_P (rhs1_type)
3543 || POINTER_TYPE_P (rhs2_type))
3545 error ("invalid (pointer) operands to plus/minus");
3549 /* Continue with generic binary expression handling. */
3553 case POINTER_PLUS_EXPR:
3555 do_pointer_plus_expr_check:
3556 if (!POINTER_TYPE_P (rhs1_type)
3557 || !useless_type_conversion_p (lhs_type, rhs1_type)
3558 || !ptrofftype_p (rhs2_type))
3560 error ("type mismatch in pointer plus expression");
3561 debug_generic_stmt (lhs_type);
3562 debug_generic_stmt (rhs1_type);
3563 debug_generic_stmt (rhs2_type);
3570 case TRUTH_ANDIF_EXPR:
3571 case TRUTH_ORIF_EXPR:
3572 case TRUTH_AND_EXPR:
3574 case TRUTH_XOR_EXPR:
3584 case UNORDERED_EXPR:
3592 /* Comparisons are also binary, but the result type is not
3593 connected to the operand types. */
3594 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3596 case WIDEN_MULT_EXPR:
3597 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3599 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3600 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3602 case WIDEN_SUM_EXPR:
3603 case VEC_WIDEN_MULT_HI_EXPR:
3604 case VEC_WIDEN_MULT_LO_EXPR:
3605 case VEC_WIDEN_MULT_EVEN_EXPR:
3606 case VEC_WIDEN_MULT_ODD_EXPR:
3607 case VEC_PACK_TRUNC_EXPR:
3608 case VEC_PACK_SAT_EXPR:
3609 case VEC_PACK_FIX_TRUNC_EXPR:
3614 case MULT_HIGHPART_EXPR:
3615 case TRUNC_DIV_EXPR:
3617 case FLOOR_DIV_EXPR:
3618 case ROUND_DIV_EXPR:
3619 case TRUNC_MOD_EXPR:
3621 case FLOOR_MOD_EXPR:
3622 case ROUND_MOD_EXPR:
3624 case EXACT_DIV_EXPR:
3630 /* Continue with generic binary expression handling. */
3637 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3638 || !useless_type_conversion_p (lhs_type, rhs2_type))
3640 error ("type mismatch in binary expression");
3641 debug_generic_stmt (lhs_type);
3642 debug_generic_stmt (rhs1_type);
3643 debug_generic_stmt (rhs2_type);
3650 /* Verify a gimple assignment statement STMT with a ternary rhs.
3651 Returns true if anything is wrong. */
3654 verify_gimple_assign_ternary (gimple stmt)
3656 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3657 tree lhs = gimple_assign_lhs (stmt);
3658 tree lhs_type = TREE_TYPE (lhs);
3659 tree rhs1 = gimple_assign_rhs1 (stmt);
3660 tree rhs1_type = TREE_TYPE (rhs1);
3661 tree rhs2 = gimple_assign_rhs2 (stmt);
3662 tree rhs2_type = TREE_TYPE (rhs2);
3663 tree rhs3 = gimple_assign_rhs3 (stmt);
3664 tree rhs3_type = TREE_TYPE (rhs3);
3666 if (!is_gimple_reg (lhs))
3668 error ("non-register as LHS of ternary operation");
3672 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3673 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3674 || !is_gimple_val (rhs2)
3675 || !is_gimple_val (rhs3))
3677 error ("invalid operands in ternary operation");
3681 /* First handle operations that involve different types. */
3684 case WIDEN_MULT_PLUS_EXPR:
3685 case WIDEN_MULT_MINUS_EXPR:
3686 if ((!INTEGRAL_TYPE_P (rhs1_type)
3687 && !FIXED_POINT_TYPE_P (rhs1_type))
3688 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3689 || !useless_type_conversion_p (lhs_type, rhs3_type)
3690 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3691 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3693 error ("type mismatch in widening multiply-accumulate expression");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 debug_generic_expr (rhs2_type);
3697 debug_generic_expr (rhs3_type);
3703 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3704 || !useless_type_conversion_p (lhs_type, rhs2_type)
3705 || !useless_type_conversion_p (lhs_type, rhs3_type))
3707 error ("type mismatch in fused multiply-add expression");
3708 debug_generic_expr (lhs_type);
3709 debug_generic_expr (rhs1_type);
3710 debug_generic_expr (rhs2_type);
3711 debug_generic_expr (rhs3_type);
3718 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3719 || !useless_type_conversion_p (lhs_type, rhs3_type))
3721 error ("type mismatch in conditional expression");
3722 debug_generic_expr (lhs_type);
3723 debug_generic_expr (rhs2_type);
3724 debug_generic_expr (rhs3_type);
3730 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3731 || !useless_type_conversion_p (lhs_type, rhs2_type))
3733 error ("type mismatch in vector permute expression");
3734 debug_generic_expr (lhs_type);
3735 debug_generic_expr (rhs1_type);
3736 debug_generic_expr (rhs2_type);
3737 debug_generic_expr (rhs3_type);
3741 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3742 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3743 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3745 error ("vector types expected in vector permute expression");
3746 debug_generic_expr (lhs_type);
3747 debug_generic_expr (rhs1_type);
3748 debug_generic_expr (rhs2_type);
3749 debug_generic_expr (rhs3_type);
3753 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3754 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3755 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3756 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3757 != TYPE_VECTOR_SUBPARTS (lhs_type))
3759 error ("vectors with different element number found "
3760 "in vector permute expression");
3761 debug_generic_expr (lhs_type);
3762 debug_generic_expr (rhs1_type);
3763 debug_generic_expr (rhs2_type);
3764 debug_generic_expr (rhs3_type);
3768 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3769 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3770 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3772 error ("invalid mask type in vector permute expression");
3773 debug_generic_expr (lhs_type);
3774 debug_generic_expr (rhs1_type);
3775 debug_generic_expr (rhs2_type);
3776 debug_generic_expr (rhs3_type);
3783 case REALIGN_LOAD_EXPR:
3793 /* Verify a gimple assignment statement STMT with a single rhs.
3794 Returns true if anything is wrong. */
3797 verify_gimple_assign_single (gimple stmt)
3799 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3800 tree lhs = gimple_assign_lhs (stmt);
3801 tree lhs_type = TREE_TYPE (lhs);
3802 tree rhs1 = gimple_assign_rhs1 (stmt);
3803 tree rhs1_type = TREE_TYPE (rhs1);
3806 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3808 error ("non-trivial conversion at assignment");
3809 debug_generic_expr (lhs_type);
3810 debug_generic_expr (rhs1_type);
3814 if (gimple_clobber_p (stmt)
3817 error ("non-decl LHS in clobber statement");
3818 debug_generic_expr (lhs);
3822 if (handled_component_p (lhs))
3823 res |= verify_types_in_gimple_reference (lhs, true);
3825 /* Special codes we cannot handle via their class. */
3830 tree op = TREE_OPERAND (rhs1, 0);
3831 if (!is_gimple_addressable (op))
3833 error ("invalid operand in unary expression");
3837 /* Technically there is no longer a need for matching types, but
3838 gimple hygiene asks for this check. In LTO we can end up
3839 combining incompatible units and thus end up with addresses
3840 of globals that change their type to a common one. */
3842 && !types_compatible_p (TREE_TYPE (op),
3843 TREE_TYPE (TREE_TYPE (rhs1)))
3844 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3847 error ("type mismatch in address expression");
3848 debug_generic_stmt (TREE_TYPE (rhs1));
3849 debug_generic_stmt (TREE_TYPE (op));
3853 return verify_types_in_gimple_reference (op, true);
3858 error ("INDIRECT_REF in gimple IL");
3864 case ARRAY_RANGE_REF:
3865 case VIEW_CONVERT_EXPR:
3868 case TARGET_MEM_REF:
3870 if (!is_gimple_reg (lhs)
3871 && is_gimple_reg_type (TREE_TYPE (lhs)))
3873 error ("invalid rhs for gimple memory store");
3874 debug_generic_stmt (lhs);
3875 debug_generic_stmt (rhs1);
3878 return res || verify_types_in_gimple_reference (rhs1, false);
3890 /* tcc_declaration */
3895 if (!is_gimple_reg (lhs)
3896 && !is_gimple_reg (rhs1)
3897 && is_gimple_reg_type (TREE_TYPE (lhs)))
3899 error ("invalid rhs for gimple memory store");
3900 debug_generic_stmt (lhs);
3901 debug_generic_stmt (rhs1);
3907 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3910 tree elt_i, elt_v, elt_t = NULL_TREE;
3912 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3914 /* For vector CONSTRUCTORs we require that either it is empty
3915 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3916 (then the element count must be correct to cover the whole
3917 outer vector and index must be NULL on all elements, or it is
3918 a CONSTRUCTOR of scalar elements, where we as an exception allow
3919 smaller number of elements (assuming zero filling) and
3920 consecutive indexes as compared to NULL indexes (such
3921 CONSTRUCTORs can appear in the IL from FEs). */
3922 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3924 if (elt_t == NULL_TREE)
3926 elt_t = TREE_TYPE (elt_v);
3927 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3929 tree elt_t = TREE_TYPE (elt_v);
3930 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3933 error ("incorrect type of vector CONSTRUCTOR"
3935 debug_generic_stmt (rhs1);
3938 else if (CONSTRUCTOR_NELTS (rhs1)
3939 * TYPE_VECTOR_SUBPARTS (elt_t)
3940 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3942 error ("incorrect number of vector CONSTRUCTOR"
3944 debug_generic_stmt (rhs1);
3948 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3951 error ("incorrect type of vector CONSTRUCTOR elements");
3952 debug_generic_stmt (rhs1);
3955 else if (CONSTRUCTOR_NELTS (rhs1)
3956 > TYPE_VECTOR_SUBPARTS (rhs1_type))
3958 error ("incorrect number of vector CONSTRUCTOR elements");
3959 debug_generic_stmt (rhs1);
3963 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
3965 error ("incorrect type of vector CONSTRUCTOR elements");
3966 debug_generic_stmt (rhs1);
3969 if (elt_i != NULL_TREE
3970 && (TREE_CODE (elt_t) == VECTOR_TYPE
3971 || TREE_CODE (elt_i) != INTEGER_CST
3972 || compare_tree_int (elt_i, i) != 0))
3974 error ("vector CONSTRUCTOR with non-NULL element index");
3975 debug_generic_stmt (rhs1);
3983 case WITH_SIZE_EXPR:
3993 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3994 is a problem, otherwise false. */
3997 verify_gimple_assign (gimple stmt)
3999 switch (gimple_assign_rhs_class (stmt))
4001 case GIMPLE_SINGLE_RHS:
4002 return verify_gimple_assign_single (stmt);
4004 case GIMPLE_UNARY_RHS:
4005 return verify_gimple_assign_unary (stmt);
4007 case GIMPLE_BINARY_RHS:
4008 return verify_gimple_assign_binary (stmt);
4010 case GIMPLE_TERNARY_RHS:
4011 return verify_gimple_assign_ternary (stmt);
4018 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4019 is a problem, otherwise false. */
4022 verify_gimple_return (gimple stmt)
4024 tree op = gimple_return_retval (stmt);
4025 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4027 /* We cannot test for present return values as we do not fix up missing
4028 return values from the original source. */
4032 if (!is_gimple_val (op)
4033 && TREE_CODE (op) != RESULT_DECL)
4035 error ("invalid operand in return statement");
4036 debug_generic_stmt (op);
4040 if ((TREE_CODE (op) == RESULT_DECL
4041 && DECL_BY_REFERENCE (op))
4042 || (TREE_CODE (op) == SSA_NAME
4043 && SSA_NAME_VAR (op)
4044 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4045 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4046 op = TREE_TYPE (op);
4048 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4050 error ("invalid conversion in return statement");
4051 debug_generic_stmt (restype);
4052 debug_generic_stmt (TREE_TYPE (op));
4060 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4061 is a problem, otherwise false. */
4064 verify_gimple_goto (gimple stmt)
4066 tree dest = gimple_goto_dest (stmt);
4068 /* ??? We have two canonical forms of direct goto destinations, a
4069 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4070 if (TREE_CODE (dest) != LABEL_DECL
4071 && (!is_gimple_val (dest)
4072 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4074 error ("goto destination is neither a label nor a pointer");
4081 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4082 is a problem, otherwise false. */
4085 verify_gimple_switch (gimple stmt)
4088 tree elt, prev_upper_bound = NULL_TREE;
4089 tree index_type, elt_type = NULL_TREE;
4091 if (!is_gimple_val (gimple_switch_index (stmt)))
4093 error ("invalid operand to switch statement");
4094 debug_generic_stmt (gimple_switch_index (stmt));
4098 index_type = TREE_TYPE (gimple_switch_index (stmt));
4099 if (! INTEGRAL_TYPE_P (index_type))
4101 error ("non-integral type switch statement");
4102 debug_generic_expr (index_type);
4106 elt = gimple_switch_label (stmt, 0);
4107 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4109 error ("invalid default case label in switch statement");
4110 debug_generic_expr (elt);
4114 n = gimple_switch_num_labels (stmt);
4115 for (i = 1; i < n; i++)
4117 elt = gimple_switch_label (stmt, i);
4119 if (! CASE_LOW (elt))
4121 error ("invalid case label in switch statement");
4122 debug_generic_expr (elt);
4126 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4128 error ("invalid case range in switch statement");
4129 debug_generic_expr (elt);
4135 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4136 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4138 error ("type mismatch for case label in switch statement");
4139 debug_generic_expr (elt);
4145 elt_type = TREE_TYPE (CASE_LOW (elt));
4146 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4148 error ("type precision mismatch in switch statement");
4153 if (prev_upper_bound)
4155 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4157 error ("case labels not sorted in switch statement");
4162 prev_upper_bound = CASE_HIGH (elt);
4163 if (! prev_upper_bound)
4164 prev_upper_bound = CASE_LOW (elt);
4170 /* Verify a gimple debug statement STMT.
4171 Returns true if anything is wrong. */
4174 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4176 /* There isn't much that could be wrong in a gimple debug stmt. A
4177 gimple debug bind stmt, for example, maps a tree, that's usually
4178 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4179 component or member of an aggregate type, to another tree, that
4180 can be an arbitrary expression. These stmts expand into debug
4181 insns, and are converted to debug notes by var-tracking.c. */
4185 /* Verify a gimple label statement STMT.
4186 Returns true if anything is wrong. */
4189 verify_gimple_label (gimple stmt)
4191 tree decl = gimple_label_label (stmt);
4195 if (TREE_CODE (decl) != LABEL_DECL)
4198 uid = LABEL_DECL_UID (decl);
4200 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4202 error ("incorrect entry in label_to_block_map");
4206 uid = EH_LANDING_PAD_NR (decl);
4209 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4210 if (decl != lp->post_landing_pad)
4212 error ("incorrect setting of landing pad number");
4220 /* Verify the GIMPLE statement STMT. Returns true if there is an
4221 error, otherwise false. */
4224 verify_gimple_stmt (gimple stmt)
4226 switch (gimple_code (stmt))
4229 return verify_gimple_assign (stmt);
4232 return verify_gimple_label (stmt);
4235 return verify_gimple_call (stmt);
4238 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4240 error ("invalid comparison code in gimple cond");
4243 if (!(!gimple_cond_true_label (stmt)
4244 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4245 || !(!gimple_cond_false_label (stmt)
4246 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4248 error ("invalid labels in gimple cond");
4252 return verify_gimple_comparison (boolean_type_node,
4253 gimple_cond_lhs (stmt),
4254 gimple_cond_rhs (stmt));
4257 return verify_gimple_goto (stmt);
4260 return verify_gimple_switch (stmt);
4263 return verify_gimple_return (stmt);
4268 case GIMPLE_TRANSACTION:
4269 return verify_gimple_transaction (stmt);
4271 /* Tuples that do not have tree operands. */
4273 case GIMPLE_PREDICT:
4275 case GIMPLE_EH_DISPATCH:
4276 case GIMPLE_EH_MUST_NOT_THROW:
4280 /* OpenMP directives are validated by the FE and never operated
4281 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4282 non-gimple expressions when the main index variable has had
4283 its address taken. This does not affect the loop itself
4284 because the header of an GIMPLE_OMP_FOR is merely used to determine
4285 how to setup the parallel iteration. */
4289 return verify_gimple_debug (stmt);
4296 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4297 and false otherwise. */
4300 verify_gimple_phi (gimple phi)
4304 tree phi_result = gimple_phi_result (phi);
4309 error ("invalid PHI result");
4313 virtual_p = virtual_operand_p (phi_result);
4314 if (TREE_CODE (phi_result) != SSA_NAME
4316 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4318 error ("invalid PHI result");
4322 for (i = 0; i < gimple_phi_num_args (phi); i++)
4324 tree t = gimple_phi_arg_def (phi, i);
4328 error ("missing PHI def");
4332 /* Addressable variables do have SSA_NAMEs but they
4333 are not considered gimple values. */
4334 else if ((TREE_CODE (t) == SSA_NAME
4335 && virtual_p != virtual_operand_p (t))
4337 && (TREE_CODE (t) != SSA_NAME
4338 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4340 && !is_gimple_val (t)))
4342 error ("invalid PHI argument");
4343 debug_generic_expr (t);
4346 #ifdef ENABLE_TYPES_CHECKING
4347 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4349 error ("incompatible types in PHI argument %u", i);
4350 debug_generic_stmt (TREE_TYPE (phi_result));
4351 debug_generic_stmt (TREE_TYPE (t));
4360 /* Verify the GIMPLE statements inside the sequence STMTS. */
4363 verify_gimple_in_seq_2 (gimple_seq stmts)
4365 gimple_stmt_iterator ittr;
4368 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4370 gimple stmt = gsi_stmt (ittr);
4372 switch (gimple_code (stmt))
4375 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4379 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4380 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4383 case GIMPLE_EH_FILTER:
4384 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4387 case GIMPLE_EH_ELSE:
4388 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4389 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4393 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4396 case GIMPLE_TRANSACTION:
4397 err |= verify_gimple_transaction (stmt);
4402 bool err2 = verify_gimple_stmt (stmt);
4404 debug_gimple_stmt (stmt);
4413 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4414 is a problem, otherwise false. */
4417 verify_gimple_transaction (gimple stmt)
4419 tree lab = gimple_transaction_label (stmt);
4420 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4422 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4426 /* Verify the GIMPLE statements inside the statement list STMTS. */
4429 verify_gimple_in_seq (gimple_seq stmts)
4431 timevar_push (TV_TREE_STMT_VERIFY);
4432 if (verify_gimple_in_seq_2 (stmts))
4433 internal_error ("verify_gimple failed");
4434 timevar_pop (TV_TREE_STMT_VERIFY);
4437 /* Return true when the T can be shared. */
4440 tree_node_can_be_shared (tree t)
4442 if (IS_TYPE_OR_DECL_P (t)
4443 || is_gimple_min_invariant (t)
4444 || TREE_CODE (t) == SSA_NAME
4445 || t == error_mark_node
4446 || TREE_CODE (t) == IDENTIFIER_NODE)
4449 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4458 /* Called via walk_tree. Verify tree sharing. */
4461 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4463 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4465 if (tree_node_can_be_shared (*tp))
4467 *walk_subtrees = false;
4471 if (pointer_set_insert (visited, *tp))
4477 /* Called via walk_gimple_stmt. Verify tree sharing. */
4480 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4482 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4483 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4486 static bool eh_error_found;
4488 verify_eh_throw_stmt_node (void **slot, void *data)
4490 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4491 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4493 if (!pointer_set_contains (visited, node->stmt))
4495 error ("dead STMT in EH table");
4496 debug_gimple_stmt (node->stmt);
4497 eh_error_found = true;
4502 /* Verify if the location LOCs block is in BLOCKS. */
4505 verify_location (pointer_set_t *blocks, location_t loc)
4507 tree block = LOCATION_BLOCK (loc);
4508 if (block != NULL_TREE
4509 && !pointer_set_contains (blocks, block))
4511 error ("location references block not in block tree");
4514 if (block != NULL_TREE)
4515 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4519 /* Called via walk_tree. Verify locations of expressions. */
4522 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4524 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4526 if (TREE_CODE (*tp) == VAR_DECL
4527 && DECL_DEBUG_EXPR_IS_FROM (*tp))
4529 tree t = DECL_DEBUG_EXPR (*tp);
4530 tree addr = walk_tree (&t, verify_expr_location_1, blocks, NULL);
4537 *walk_subtrees = false;
4541 location_t loc = EXPR_LOCATION (*tp);
4542 if (verify_location (blocks, loc))
4548 /* Called via walk_gimple_op. Verify locations of expressions. */
4551 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4553 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4554 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4557 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4560 collect_subblocks (pointer_set_t *blocks, tree block)
4563 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4565 pointer_set_insert (blocks, t);
4566 collect_subblocks (blocks, t);
4570 /* Verify the GIMPLE statements in the CFG of FN. */
4573 verify_gimple_in_cfg (struct function *fn)
4577 struct pointer_set_t *visited, *visited_stmts, *blocks;
4579 timevar_push (TV_TREE_STMT_VERIFY);
4580 visited = pointer_set_create ();
4581 visited_stmts = pointer_set_create ();
4583 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4584 blocks = pointer_set_create ();
4585 if (DECL_INITIAL (fn->decl))
4587 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4588 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4591 FOR_EACH_BB_FN (bb, fn)
4593 gimple_stmt_iterator gsi;
4595 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4597 gimple phi = gsi_stmt (gsi);
4601 pointer_set_insert (visited_stmts, phi);
4603 if (gimple_bb (phi) != bb)
4605 error ("gimple_bb (phi) is set to a wrong basic block");
4609 err2 |= verify_gimple_phi (phi);
4611 /* Only PHI arguments have locations. */
4612 if (gimple_location (phi) != UNKNOWN_LOCATION)
4614 error ("PHI node with location");
4618 for (i = 0; i < gimple_phi_num_args (phi); i++)
4620 tree arg = gimple_phi_arg_def (phi, i);
4621 tree addr = walk_tree (&arg, verify_node_sharing_1,
4625 error ("incorrect sharing of tree nodes");
4626 debug_generic_expr (addr);
4629 location_t loc = gimple_phi_arg_location (phi, i);
4630 if (virtual_operand_p (gimple_phi_result (phi))
4631 && loc != UNKNOWN_LOCATION)
4633 error ("virtual PHI with argument locations");
4636 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4639 debug_generic_expr (addr);
4642 err2 |= verify_location (blocks, loc);
4646 debug_gimple_stmt (phi);
4650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4652 gimple stmt = gsi_stmt (gsi);
4654 struct walk_stmt_info wi;
4658 pointer_set_insert (visited_stmts, stmt);
4660 if (gimple_bb (stmt) != bb)
4662 error ("gimple_bb (stmt) is set to a wrong basic block");
4666 err2 |= verify_gimple_stmt (stmt);
4667 err2 |= verify_location (blocks, gimple_location (stmt));
4669 memset (&wi, 0, sizeof (wi));
4670 wi.info = (void *) visited;
4671 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4674 error ("incorrect sharing of tree nodes");
4675 debug_generic_expr (addr);
4679 memset (&wi, 0, sizeof (wi));
4680 wi.info = (void *) blocks;
4681 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4684 debug_generic_expr (addr);
4688 /* ??? Instead of not checking these stmts at all the walker
4689 should know its context via wi. */
4690 if (!is_gimple_debug (stmt)
4691 && !is_gimple_omp (stmt))
4693 memset (&wi, 0, sizeof (wi));
4694 addr = walk_gimple_op (stmt, verify_expr, &wi);
4697 debug_generic_expr (addr);
4698 inform (gimple_location (stmt), "in statement");
4703 /* If the statement is marked as part of an EH region, then it is
4704 expected that the statement could throw. Verify that when we
4705 have optimizations that simplify statements such that we prove
4706 that they cannot throw, that we update other data structures
4708 lp_nr = lookup_stmt_eh_lp (stmt);
4711 if (!stmt_could_throw_p (stmt))
4713 error ("statement marked for throw, but doesn%'t");
4717 && !gsi_one_before_end_p (gsi)
4718 && stmt_can_throw_internal (stmt))
4720 error ("statement marked for throw in middle of block");
4726 debug_gimple_stmt (stmt);
4731 eh_error_found = false;
4732 if (get_eh_throw_stmt_table (cfun))
4733 htab_traverse (get_eh_throw_stmt_table (cfun),
4734 verify_eh_throw_stmt_node,
4737 if (err || eh_error_found)
4738 internal_error ("verify_gimple failed");
4740 pointer_set_destroy (visited);
4741 pointer_set_destroy (visited_stmts);
4742 pointer_set_destroy (blocks);
4743 verify_histograms ();
4744 timevar_pop (TV_TREE_STMT_VERIFY);
4748 /* Verifies that the flow information is OK. */
4751 gimple_verify_flow_info (void)
4755 gimple_stmt_iterator gsi;
4760 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4762 error ("ENTRY_BLOCK has IL associated with it");
4766 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4768 error ("EXIT_BLOCK has IL associated with it");
4772 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4773 if (e->flags & EDGE_FALLTHRU)
4775 error ("fallthru to exit from bb %d", e->src->index);
4781 bool found_ctrl_stmt = false;
4785 /* Skip labels on the start of basic block. */
4786 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4789 gimple prev_stmt = stmt;
4791 stmt = gsi_stmt (gsi);
4793 if (gimple_code (stmt) != GIMPLE_LABEL)
4796 label = gimple_label_label (stmt);
4797 if (prev_stmt && DECL_NONLOCAL (label))
4799 error ("nonlocal label ");
4800 print_generic_expr (stderr, label, 0);
4801 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4806 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4808 error ("EH landing pad label ");
4809 print_generic_expr (stderr, label, 0);
4810 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4815 if (label_to_block (label) != bb)
4818 print_generic_expr (stderr, label, 0);
4819 fprintf (stderr, " to block does not match in bb %d",
4824 if (decl_function_context (label) != current_function_decl)
4827 print_generic_expr (stderr, label, 0);
4828 fprintf (stderr, " has incorrect context in bb %d",
4834 /* Verify that body of basic block BB is free of control flow. */
4835 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4837 gimple stmt = gsi_stmt (gsi);
4839 if (found_ctrl_stmt)
4841 error ("control flow in the middle of basic block %d",
4846 if (stmt_ends_bb_p (stmt))
4847 found_ctrl_stmt = true;
4849 if (gimple_code (stmt) == GIMPLE_LABEL)
4852 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4853 fprintf (stderr, " in the middle of basic block %d", bb->index);
4858 gsi = gsi_last_bb (bb);
4859 if (gsi_end_p (gsi))
4862 stmt = gsi_stmt (gsi);
4864 if (gimple_code (stmt) == GIMPLE_LABEL)
4867 err |= verify_eh_edges (stmt);
4869 if (is_ctrl_stmt (stmt))
4871 FOR_EACH_EDGE (e, ei, bb->succs)
4872 if (e->flags & EDGE_FALLTHRU)
4874 error ("fallthru edge after a control statement in bb %d",
4880 if (gimple_code (stmt) != GIMPLE_COND)
4882 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4883 after anything else but if statement. */
4884 FOR_EACH_EDGE (e, ei, bb->succs)
4885 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4887 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4893 switch (gimple_code (stmt))
4900 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4904 || !(true_edge->flags & EDGE_TRUE_VALUE)
4905 || !(false_edge->flags & EDGE_FALSE_VALUE)
4906 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4907 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4908 || EDGE_COUNT (bb->succs) >= 3)
4910 error ("wrong outgoing edge flags at end of bb %d",
4918 if (simple_goto_p (stmt))
4920 error ("explicit goto at end of bb %d", bb->index);
4925 /* FIXME. We should double check that the labels in the
4926 destination blocks have their address taken. */
4927 FOR_EACH_EDGE (e, ei, bb->succs)
4928 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4929 | EDGE_FALSE_VALUE))
4930 || !(e->flags & EDGE_ABNORMAL))
4932 error ("wrong outgoing edge flags at end of bb %d",
4940 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4942 /* ... fallthru ... */
4944 if (!single_succ_p (bb)
4945 || (single_succ_edge (bb)->flags
4946 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4947 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4949 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4952 if (single_succ (bb) != EXIT_BLOCK_PTR)
4954 error ("return edge does not point to exit in bb %d",
4966 n = gimple_switch_num_labels (stmt);
4968 /* Mark all the destination basic blocks. */
4969 for (i = 0; i < n; ++i)
4971 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4972 basic_block label_bb = label_to_block (lab);
4973 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4974 label_bb->aux = (void *)1;
4977 /* Verify that the case labels are sorted. */
4978 prev = gimple_switch_label (stmt, 0);
4979 for (i = 1; i < n; ++i)
4981 tree c = gimple_switch_label (stmt, i);
4984 error ("found default case not at the start of "
4990 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4992 error ("case labels not sorted: ");
4993 print_generic_expr (stderr, prev, 0);
4994 fprintf (stderr," is greater than ");
4995 print_generic_expr (stderr, c, 0);
4996 fprintf (stderr," but comes before it.\n");
5001 /* VRP will remove the default case if it can prove it will
5002 never be executed. So do not verify there always exists
5003 a default case here. */
5005 FOR_EACH_EDGE (e, ei, bb->succs)
5009 error ("extra outgoing edge %d->%d",
5010 bb->index, e->dest->index);
5014 e->dest->aux = (void *)2;
5015 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5016 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5018 error ("wrong outgoing edge flags at end of bb %d",
5024 /* Check that we have all of them. */
5025 for (i = 0; i < n; ++i)
5027 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5028 basic_block label_bb = label_to_block (lab);
5030 if (label_bb->aux != (void *)2)
5032 error ("missing edge %i->%i", bb->index, label_bb->index);
5037 FOR_EACH_EDGE (e, ei, bb->succs)
5038 e->dest->aux = (void *)0;
5042 case GIMPLE_EH_DISPATCH:
5043 err |= verify_eh_dispatch_edge (stmt);
5051 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5052 verify_dominators (CDI_DOMINATORS);
5058 /* Updates phi nodes after creating a forwarder block joined
5059 by edge FALLTHRU. */
5062 gimple_make_forwarder_block (edge fallthru)
5066 basic_block dummy, bb;
5068 gimple_stmt_iterator gsi;
5070 dummy = fallthru->src;
5071 bb = fallthru->dest;
5073 if (single_pred_p (bb))
5076 /* If we redirected a branch we must create new PHI nodes at the
5078 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5080 gimple phi, new_phi;
5082 phi = gsi_stmt (gsi);
5083 var = gimple_phi_result (phi);
5084 new_phi = create_phi_node (var, bb);
5085 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5086 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5090 /* Add the arguments we have stored on edges. */
5091 FOR_EACH_EDGE (e, ei, bb->preds)
5096 flush_pending_stmts (e);
5101 /* Return a non-special label in the head of basic block BLOCK.
5102 Create one if it doesn't exist. */
5105 gimple_block_label (basic_block bb)
5107 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5112 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5114 stmt = gsi_stmt (i);
5115 if (gimple_code (stmt) != GIMPLE_LABEL)
5117 label = gimple_label_label (stmt);
5118 if (!DECL_NONLOCAL (label))
5121 gsi_move_before (&i, &s);
5126 label = create_artificial_label (UNKNOWN_LOCATION);
5127 stmt = gimple_build_label (label);
5128 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5133 /* Attempt to perform edge redirection by replacing a possibly complex
5134 jump instruction by a goto or by removing the jump completely.
5135 This can apply only if all edges now point to the same block. The
5136 parameters and return values are equivalent to
5137 redirect_edge_and_branch. */
5140 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5142 basic_block src = e->src;
5143 gimple_stmt_iterator i;
5146 /* We can replace or remove a complex jump only when we have exactly
5148 if (EDGE_COUNT (src->succs) != 2
5149 /* Verify that all targets will be TARGET. Specifically, the
5150 edge that is not E must also go to TARGET. */
5151 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5154 i = gsi_last_bb (src);
5158 stmt = gsi_stmt (i);
5160 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5162 gsi_remove (&i, true);
5163 e = ssa_redirect_edge (e, target);
5164 e->flags = EDGE_FALLTHRU;
5172 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5173 edge representing the redirected branch. */
5176 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5178 basic_block bb = e->src;
5179 gimple_stmt_iterator gsi;
5183 if (e->flags & EDGE_ABNORMAL)
5186 if (e->dest == dest)
5189 if (e->flags & EDGE_EH)
5190 return redirect_eh_edge (e, dest);
5192 if (e->src != ENTRY_BLOCK_PTR)
5194 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5199 gsi = gsi_last_bb (bb);
5200 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5202 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5205 /* For COND_EXPR, we only need to redirect the edge. */
5209 /* No non-abnormal edges should lead from a non-simple goto, and
5210 simple ones should be represented implicitly. */
5215 tree label = gimple_block_label (dest);
5216 tree cases = get_cases_for_edge (e, stmt);
5218 /* If we have a list of cases associated with E, then use it
5219 as it's a lot faster than walking the entire case vector. */
5222 edge e2 = find_edge (e->src, dest);
5229 CASE_LABEL (cases) = label;
5230 cases = CASE_CHAIN (cases);
5233 /* If there was already an edge in the CFG, then we need
5234 to move all the cases associated with E to E2. */
5237 tree cases2 = get_cases_for_edge (e2, stmt);
5239 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5240 CASE_CHAIN (cases2) = first;
5242 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5246 size_t i, n = gimple_switch_num_labels (stmt);
5248 for (i = 0; i < n; i++)
5250 tree elt = gimple_switch_label (stmt, i);
5251 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5252 CASE_LABEL (elt) = label;
5260 int i, n = gimple_asm_nlabels (stmt);
5263 for (i = 0; i < n; ++i)
5265 tree cons = gimple_asm_label_op (stmt, i);
5266 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5269 label = gimple_block_label (dest);
5270 TREE_VALUE (cons) = label;
5274 /* If we didn't find any label matching the former edge in the
5275 asm labels, we must be redirecting the fallthrough
5277 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5282 gsi_remove (&gsi, true);
5283 e->flags |= EDGE_FALLTHRU;
5286 case GIMPLE_OMP_RETURN:
5287 case GIMPLE_OMP_CONTINUE:
5288 case GIMPLE_OMP_SECTIONS_SWITCH:
5289 case GIMPLE_OMP_FOR:
5290 /* The edges from OMP constructs can be simply redirected. */
5293 case GIMPLE_EH_DISPATCH:
5294 if (!(e->flags & EDGE_FALLTHRU))
5295 redirect_eh_dispatch_edge (stmt, e, dest);
5298 case GIMPLE_TRANSACTION:
5299 /* The ABORT edge has a stored label associated with it, otherwise
5300 the edges are simply redirectable. */
5302 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5306 /* Otherwise it must be a fallthru edge, and we don't need to
5307 do anything besides redirecting it. */
5308 gcc_assert (e->flags & EDGE_FALLTHRU);
5312 /* Update/insert PHI nodes as necessary. */
5314 /* Now update the edges in the CFG. */
5315 e = ssa_redirect_edge (e, dest);
5320 /* Returns true if it is possible to remove edge E by redirecting
5321 it to the destination of the other edge from E->src. */
5324 gimple_can_remove_branch_p (const_edge e)
5326 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5332 /* Simple wrapper, as we can always redirect fallthru edges. */
5335 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5337 e = gimple_redirect_edge_and_branch (e, dest);
5344 /* Splits basic block BB after statement STMT (but at least after the
5345 labels). If STMT is NULL, BB is split just after the labels. */
5348 gimple_split_block (basic_block bb, void *stmt)
5350 gimple_stmt_iterator gsi;
5351 gimple_stmt_iterator gsi_tgt;
5358 new_bb = create_empty_bb (bb);
5360 /* Redirect the outgoing edges. */
5361 new_bb->succs = bb->succs;
5363 FOR_EACH_EDGE (e, ei, new_bb->succs)
5366 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5369 /* Move everything from GSI to the new basic block. */
5370 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5372 act = gsi_stmt (gsi);
5373 if (gimple_code (act) == GIMPLE_LABEL)
5386 if (gsi_end_p (gsi))
5389 /* Split the statement list - avoid re-creating new containers as this
5390 brings ugly quadratic memory consumption in the inliner.
5391 (We are still quadratic since we need to update stmt BB pointers,
5393 gsi_split_seq_before (&gsi, &list);
5394 set_bb_seq (new_bb, list);
5395 for (gsi_tgt = gsi_start (list);
5396 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5397 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5403 /* Moves basic block BB after block AFTER. */
5406 gimple_move_block_after (basic_block bb, basic_block after)
5408 if (bb->prev_bb == after)
5412 link_block (bb, after);
5418 /* Return TRUE if block BB has no executable statements, otherwise return
5422 gimple_empty_block_p (basic_block bb)
5424 /* BB must have no executable statements. */
5425 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5428 if (gsi_end_p (gsi))
5430 if (is_gimple_debug (gsi_stmt (gsi)))
5431 gsi_next_nondebug (&gsi);
5432 return gsi_end_p (gsi);
5436 /* Split a basic block if it ends with a conditional branch and if the
5437 other part of the block is not empty. */
5440 gimple_split_block_before_cond_jump (basic_block bb)
5442 gimple last, split_point;
5443 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5444 if (gsi_end_p (gsi))
5446 last = gsi_stmt (gsi);
5447 if (gimple_code (last) != GIMPLE_COND
5448 && gimple_code (last) != GIMPLE_SWITCH)
5450 gsi_prev_nondebug (&gsi);
5451 split_point = gsi_stmt (gsi);
5452 return split_block (bb, split_point)->dest;
5456 /* Return true if basic_block can be duplicated. */
5459 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5464 /* Create a duplicate of the basic block BB. NOTE: This does not
5465 preserve SSA form. */
5468 gimple_duplicate_bb (basic_block bb)
5471 gimple_stmt_iterator gsi, gsi_tgt;
5472 gimple_seq phis = phi_nodes (bb);
5473 gimple phi, stmt, copy;
5475 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5477 /* Copy the PHI nodes. We ignore PHI node arguments here because
5478 the incoming edges have not been setup yet. */
5479 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5481 phi = gsi_stmt (gsi);
5482 copy = create_phi_node (NULL_TREE, new_bb);
5483 create_new_def_for (gimple_phi_result (phi), copy,
5484 gimple_phi_result_ptr (copy));
5487 gsi_tgt = gsi_start_bb (new_bb);
5488 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5490 def_operand_p def_p;
5491 ssa_op_iter op_iter;
5494 stmt = gsi_stmt (gsi);
5495 if (gimple_code (stmt) == GIMPLE_LABEL)
5498 /* Don't duplicate label debug stmts. */
5499 if (gimple_debug_bind_p (stmt)
5500 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5504 /* Create a new copy of STMT and duplicate STMT's virtual
5506 copy = gimple_copy (stmt);
5507 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5509 maybe_duplicate_eh_stmt (copy, stmt);
5510 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5512 /* When copying around a stmt writing into a local non-user
5513 aggregate, make sure it won't share stack slot with other
5515 lhs = gimple_get_lhs (stmt);
5516 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5518 tree base = get_base_address (lhs);
5520 && (TREE_CODE (base) == VAR_DECL
5521 || TREE_CODE (base) == RESULT_DECL)
5522 && DECL_IGNORED_P (base)
5523 && !TREE_STATIC (base)
5524 && !DECL_EXTERNAL (base)
5525 && (TREE_CODE (base) != VAR_DECL
5526 || !DECL_HAS_VALUE_EXPR_P (base)))
5527 DECL_NONSHAREABLE (base) = 1;
5530 /* Create new names for all the definitions created by COPY and
5531 add replacement mappings for each new name. */
5532 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5533 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5539 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5542 add_phi_args_after_copy_edge (edge e_copy)
5544 basic_block bb, bb_copy = e_copy->src, dest;
5547 gimple phi, phi_copy;
5549 gimple_stmt_iterator psi, psi_copy;
5551 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5554 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5556 if (e_copy->dest->flags & BB_DUPLICATED)
5557 dest = get_bb_original (e_copy->dest);
5559 dest = e_copy->dest;
5561 e = find_edge (bb, dest);
5564 /* During loop unrolling the target of the latch edge is copied.
5565 In this case we are not looking for edge to dest, but to
5566 duplicated block whose original was dest. */
5567 FOR_EACH_EDGE (e, ei, bb->succs)
5569 if ((e->dest->flags & BB_DUPLICATED)
5570 && get_bb_original (e->dest) == dest)
5574 gcc_assert (e != NULL);
5577 for (psi = gsi_start_phis (e->dest),
5578 psi_copy = gsi_start_phis (e_copy->dest);
5580 gsi_next (&psi), gsi_next (&psi_copy))
5582 phi = gsi_stmt (psi);
5583 phi_copy = gsi_stmt (psi_copy);
5584 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5585 add_phi_arg (phi_copy, def, e_copy,
5586 gimple_phi_arg_location_from_edge (phi, e));
5591 /* Basic block BB_COPY was created by code duplication. Add phi node
5592 arguments for edges going out of BB_COPY. The blocks that were
5593 duplicated have BB_DUPLICATED set. */
5596 add_phi_args_after_copy_bb (basic_block bb_copy)
5601 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5603 add_phi_args_after_copy_edge (e_copy);
5607 /* Blocks in REGION_COPY array of length N_REGION were created by
5608 duplication of basic blocks. Add phi node arguments for edges
5609 going from these blocks. If E_COPY is not NULL, also add
5610 phi node arguments for its destination.*/
5613 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5618 for (i = 0; i < n_region; i++)
5619 region_copy[i]->flags |= BB_DUPLICATED;
5621 for (i = 0; i < n_region; i++)
5622 add_phi_args_after_copy_bb (region_copy[i]);
5624 add_phi_args_after_copy_edge (e_copy);
5626 for (i = 0; i < n_region; i++)
5627 region_copy[i]->flags &= ~BB_DUPLICATED;
5630 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5631 important exit edge EXIT. By important we mean that no SSA name defined
5632 inside region is live over the other exit edges of the region. All entry
5633 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5634 to the duplicate of the region. Dominance and loop information is
5635 updated, but not the SSA web. The new basic blocks are stored to
5636 REGION_COPY in the same order as they had in REGION, provided that
5637 REGION_COPY is not NULL.
5638 The function returns false if it is unable to copy the region,
5642 gimple_duplicate_sese_region (edge entry, edge exit,
5643 basic_block *region, unsigned n_region,
5644 basic_block *region_copy)
5647 bool free_region_copy = false, copying_header = false;
5648 struct loop *loop = entry->dest->loop_father;
5650 vec<basic_block> doms;
5652 int total_freq = 0, entry_freq = 0;
5653 gcov_type total_count = 0, entry_count = 0;
5655 if (!can_copy_bbs_p (region, n_region))
5658 /* Some sanity checking. Note that we do not check for all possible
5659 missuses of the functions. I.e. if you ask to copy something weird,
5660 it will work, but the state of structures probably will not be
5662 for (i = 0; i < n_region; i++)
5664 /* We do not handle subloops, i.e. all the blocks must belong to the
5666 if (region[i]->loop_father != loop)
5669 if (region[i] != entry->dest
5670 && region[i] == loop->header)
5674 set_loop_copy (loop, loop);
5676 /* In case the function is used for loop header copying (which is the primary
5677 use), ensure that EXIT and its copy will be new latch and entry edges. */
5678 if (loop->header == entry->dest)
5680 copying_header = true;
5681 set_loop_copy (loop, loop_outer (loop));
5683 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5686 for (i = 0; i < n_region; i++)
5687 if (region[i] != exit->src
5688 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5694 region_copy = XNEWVEC (basic_block, n_region);
5695 free_region_copy = true;
5698 /* Record blocks outside the region that are dominated by something
5701 initialize_original_copy_tables ();
5703 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5705 if (entry->dest->count)
5707 total_count = entry->dest->count;
5708 entry_count = entry->count;
5709 /* Fix up corner cases, to avoid division by zero or creation of negative
5711 if (entry_count > total_count)
5712 entry_count = total_count;
5716 total_freq = entry->dest->frequency;
5717 entry_freq = EDGE_FREQUENCY (entry);
5718 /* Fix up corner cases, to avoid division by zero or creation of negative
5720 if (total_freq == 0)
5722 else if (entry_freq > total_freq)
5723 entry_freq = total_freq;
5726 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5727 split_edge_bb_loc (entry));
5730 scale_bbs_frequencies_gcov_type (region, n_region,
5731 total_count - entry_count,
5733 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5738 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5740 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5745 loop->header = exit->dest;
5746 loop->latch = exit->src;
5749 /* Redirect the entry and add the phi node arguments. */
5750 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5751 gcc_assert (redirected != NULL);
5752 flush_pending_stmts (entry);
5754 /* Concerning updating of dominators: We must recount dominators
5755 for entry block and its copy. Anything that is outside of the
5756 region, but was dominated by something inside needs recounting as
5758 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5759 doms.safe_push (get_bb_original (entry->dest));
5760 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5763 /* Add the other PHI node arguments. */
5764 add_phi_args_after_copy (region_copy, n_region, NULL);
5766 if (free_region_copy)
5769 free_original_copy_tables ();
5773 /* Checks if BB is part of the region defined by N_REGION BBS. */
5775 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5779 for (n = 0; n < n_region; n++)
5787 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5788 are stored to REGION_COPY in the same order in that they appear
5789 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5790 the region, EXIT an exit from it. The condition guarding EXIT
5791 is moved to ENTRY. Returns true if duplication succeeds, false
5817 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5818 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5819 basic_block *region_copy ATTRIBUTE_UNUSED)
5822 bool free_region_copy = false;
5823 struct loop *loop = exit->dest->loop_father;
5824 struct loop *orig_loop = entry->dest->loop_father;
5825 basic_block switch_bb, entry_bb, nentry_bb;
5826 vec<basic_block> doms;
5827 int total_freq = 0, exit_freq = 0;
5828 gcov_type total_count = 0, exit_count = 0;
5829 edge exits[2], nexits[2], e;
5830 gimple_stmt_iterator gsi;
5833 basic_block exit_bb;
5834 gimple_stmt_iterator psi;
5837 struct loop *target, *aloop, *cloop;
5839 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5841 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5843 if (!can_copy_bbs_p (region, n_region))
5846 initialize_original_copy_tables ();
5847 set_loop_copy (orig_loop, loop);
5850 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5852 if (bb_part_of_region_p (aloop->header, region, n_region))
5854 cloop = duplicate_loop (aloop, target);
5855 duplicate_subloops (aloop, cloop);
5861 region_copy = XNEWVEC (basic_block, n_region);
5862 free_region_copy = true;
5865 gcc_assert (!need_ssa_update_p (cfun));
5867 /* Record blocks outside the region that are dominated by something
5869 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5871 if (exit->src->count)
5873 total_count = exit->src->count;
5874 exit_count = exit->count;
5875 /* Fix up corner cases, to avoid division by zero or creation of negative
5877 if (exit_count > total_count)
5878 exit_count = total_count;
5882 total_freq = exit->src->frequency;
5883 exit_freq = EDGE_FREQUENCY (exit);
5884 /* Fix up corner cases, to avoid division by zero or creation of negative
5886 if (total_freq == 0)
5888 if (exit_freq > total_freq)
5889 exit_freq = total_freq;
5892 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5893 split_edge_bb_loc (exit));
5896 scale_bbs_frequencies_gcov_type (region, n_region,
5897 total_count - exit_count,
5899 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5904 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5906 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5909 /* Create the switch block, and put the exit condition to it. */
5910 entry_bb = entry->dest;
5911 nentry_bb = get_bb_copy (entry_bb);
5912 if (!last_stmt (entry->src)
5913 || !stmt_ends_bb_p (last_stmt (entry->src)))
5914 switch_bb = entry->src;
5916 switch_bb = split_edge (entry);
5917 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5919 gsi = gsi_last_bb (switch_bb);
5920 cond_stmt = last_stmt (exit->src);
5921 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5922 cond_stmt = gimple_copy (cond_stmt);
5924 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5926 sorig = single_succ_edge (switch_bb);
5927 sorig->flags = exits[1]->flags;
5928 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5930 /* Register the new edge from SWITCH_BB in loop exit lists. */
5931 rescan_loop_exit (snew, true, false);
5933 /* Add the PHI node arguments. */
5934 add_phi_args_after_copy (region_copy, n_region, snew);
5936 /* Get rid of now superfluous conditions and associated edges (and phi node
5938 exit_bb = exit->dest;
5940 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5941 PENDING_STMT (e) = NULL;
5943 /* The latch of ORIG_LOOP was copied, and so was the backedge
5944 to the original header. We redirect this backedge to EXIT_BB. */
5945 for (i = 0; i < n_region; i++)
5946 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5948 gcc_assert (single_succ_edge (region_copy[i]));
5949 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5950 PENDING_STMT (e) = NULL;
5951 for (psi = gsi_start_phis (exit_bb);
5955 phi = gsi_stmt (psi);
5956 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5957 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5960 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5961 PENDING_STMT (e) = NULL;
5963 /* Anything that is outside of the region, but was dominated by something
5964 inside needs to update dominance info. */
5965 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5967 /* Update the SSA web. */
5968 update_ssa (TODO_update_ssa);
5970 if (free_region_copy)
5973 free_original_copy_tables ();
5977 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5978 adding blocks when the dominator traversal reaches EXIT. This
5979 function silently assumes that ENTRY strictly dominates EXIT. */
5982 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5983 vec<basic_block> *bbs_p)
5987 for (son = first_dom_son (CDI_DOMINATORS, entry);
5989 son = next_dom_son (CDI_DOMINATORS, son))
5991 bbs_p->safe_push (son);
5993 gather_blocks_in_sese_region (son, exit, bbs_p);
5997 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5998 The duplicates are recorded in VARS_MAP. */
6001 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6004 tree t = *tp, new_t;
6005 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6008 if (DECL_CONTEXT (t) == to_context)
6011 loc = pointer_map_contains (vars_map, t);
6015 loc = pointer_map_insert (vars_map, t);
6019 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6020 add_local_decl (f, new_t);
6024 gcc_assert (TREE_CODE (t) == CONST_DECL);
6025 new_t = copy_node (t);
6027 DECL_CONTEXT (new_t) = to_context;
6032 new_t = (tree) *loc;
6038 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6039 VARS_MAP maps old ssa names and var_decls to the new ones. */
6042 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6048 gcc_assert (!virtual_operand_p (name));
6050 loc = pointer_map_contains (vars_map, name);
6054 tree decl = SSA_NAME_VAR (name);
6057 replace_by_duplicate_decl (&decl, vars_map, to_context);
6058 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6059 decl, SSA_NAME_DEF_STMT (name));
6060 if (SSA_NAME_IS_DEFAULT_DEF (name))
6061 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6065 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6066 name, SSA_NAME_DEF_STMT (name));
6068 loc = pointer_map_insert (vars_map, name);
6072 new_name = (tree) *loc;
6083 struct pointer_map_t *vars_map;
6084 htab_t new_label_map;
6085 struct pointer_map_t *eh_map;
6089 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6090 contained in *TP if it has been ORIG_BLOCK previously and change the
6091 DECL_CONTEXT of every local variable referenced in *TP. */
6094 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6096 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6097 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6102 tree block = TREE_BLOCK (t);
6103 if (block == p->orig_block
6104 || (p->orig_block == NULL_TREE
6105 && block != NULL_TREE))
6106 TREE_SET_BLOCK (t, p->new_block);
6107 #ifdef ENABLE_CHECKING
6108 else if (block != NULL_TREE)
6110 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6111 block = BLOCK_SUPERCONTEXT (block);
6112 gcc_assert (block == p->orig_block);
6116 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6118 if (TREE_CODE (t) == SSA_NAME)
6119 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6120 else if (TREE_CODE (t) == LABEL_DECL)
6122 if (p->new_label_map)
6124 struct tree_map in, *out;
6126 out = (struct tree_map *)
6127 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6132 DECL_CONTEXT (t) = p->to_context;
6134 else if (p->remap_decls_p)
6136 /* Replace T with its duplicate. T should no longer appear in the
6137 parent function, so this looks wasteful; however, it may appear
6138 in referenced_vars, and more importantly, as virtual operands of
6139 statements, and in alias lists of other variables. It would be
6140 quite difficult to expunge it from all those places. ??? It might
6141 suffice to do this for addressable variables. */
6142 if ((TREE_CODE (t) == VAR_DECL
6143 && !is_global_var (t))
6144 || TREE_CODE (t) == CONST_DECL)
6145 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6149 else if (TYPE_P (t))
6155 /* Helper for move_stmt_r. Given an EH region number for the source
6156 function, map that to the duplicate EH regio number in the dest. */
6159 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6161 eh_region old_r, new_r;
6164 old_r = get_eh_region_from_number (old_nr);
6165 slot = pointer_map_contains (p->eh_map, old_r);
6166 new_r = (eh_region) *slot;
6168 return new_r->index;
6171 /* Similar, but operate on INTEGER_CSTs. */
6174 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6178 old_nr = tree_low_cst (old_t_nr, 0);
6179 new_nr = move_stmt_eh_region_nr (old_nr, p);
6181 return build_int_cst (integer_type_node, new_nr);
6184 /* Like move_stmt_op, but for gimple statements.
6186 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6187 contained in the current statement in *GSI_P and change the
6188 DECL_CONTEXT of every local variable referenced in the current
6192 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6193 struct walk_stmt_info *wi)
6195 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6196 gimple stmt = gsi_stmt (*gsi_p);
6197 tree block = gimple_block (stmt);
6199 if (block == p->orig_block
6200 || (p->orig_block == NULL_TREE
6201 && block != NULL_TREE))
6202 gimple_set_block (stmt, p->new_block);
6204 switch (gimple_code (stmt))
6207 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6209 tree r, fndecl = gimple_call_fndecl (stmt);
6210 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6211 switch (DECL_FUNCTION_CODE (fndecl))
6213 case BUILT_IN_EH_COPY_VALUES:
6214 r = gimple_call_arg (stmt, 1);
6215 r = move_stmt_eh_region_tree_nr (r, p);
6216 gimple_call_set_arg (stmt, 1, r);
6219 case BUILT_IN_EH_POINTER:
6220 case BUILT_IN_EH_FILTER:
6221 r = gimple_call_arg (stmt, 0);
6222 r = move_stmt_eh_region_tree_nr (r, p);
6223 gimple_call_set_arg (stmt, 0, r);
6234 int r = gimple_resx_region (stmt);
6235 r = move_stmt_eh_region_nr (r, p);
6236 gimple_resx_set_region (stmt, r);
6240 case GIMPLE_EH_DISPATCH:
6242 int r = gimple_eh_dispatch_region (stmt);
6243 r = move_stmt_eh_region_nr (r, p);
6244 gimple_eh_dispatch_set_region (stmt, r);
6248 case GIMPLE_OMP_RETURN:
6249 case GIMPLE_OMP_CONTINUE:
6252 if (is_gimple_omp (stmt))
6254 /* Do not remap variables inside OMP directives. Variables
6255 referenced in clauses and directive header belong to the
6256 parent function and should not be moved into the child
6258 bool save_remap_decls_p = p->remap_decls_p;
6259 p->remap_decls_p = false;
6260 *handled_ops_p = true;
6262 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6265 p->remap_decls_p = save_remap_decls_p;
6273 /* Move basic block BB from function CFUN to function DEST_FN. The
6274 block is moved out of the original linked list and placed after
6275 block AFTER in the new list. Also, the block is removed from the
6276 original array of blocks and placed in DEST_FN's array of blocks.
6277 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6278 updated to reflect the moved edges.
6280 The local variables are remapped to new instances, VARS_MAP is used
6281 to record the mapping. */
6284 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6285 basic_block after, bool update_edge_count_p,
6286 struct move_stmt_d *d)
6288 struct control_flow_graph *cfg;
6291 gimple_stmt_iterator si;
6292 unsigned old_len, new_len;
6294 /* Remove BB from dominance structures. */
6295 delete_from_dominance_info (CDI_DOMINATORS, bb);
6297 remove_bb_from_loops (bb);
6299 /* Link BB to the new linked list. */
6300 move_block_after (bb, after);
6302 /* Update the edge count in the corresponding flowgraphs. */
6303 if (update_edge_count_p)
6304 FOR_EACH_EDGE (e, ei, bb->succs)
6306 cfun->cfg->x_n_edges--;
6307 dest_cfun->cfg->x_n_edges++;
6310 /* Remove BB from the original basic block array. */
6311 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6312 cfun->cfg->x_n_basic_blocks--;
6314 /* Grow DEST_CFUN's basic block array if needed. */
6315 cfg = dest_cfun->cfg;
6316 cfg->x_n_basic_blocks++;
6317 if (bb->index >= cfg->x_last_basic_block)
6318 cfg->x_last_basic_block = bb->index + 1;
6320 old_len = vec_safe_length (cfg->x_basic_block_info);
6321 if ((unsigned) cfg->x_last_basic_block >= old_len)
6323 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6324 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6327 (*cfg->x_basic_block_info)[bb->index] = bb;
6329 /* Remap the variables in phi nodes. */
6330 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6332 gimple phi = gsi_stmt (si);
6334 tree op = PHI_RESULT (phi);
6338 if (virtual_operand_p (op))
6340 /* Remove the phi nodes for virtual operands (alias analysis will be
6341 run for the new function, anyway). */
6342 remove_phi_node (&si, true);
6346 SET_PHI_RESULT (phi,
6347 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6348 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6350 op = USE_FROM_PTR (use);
6351 if (TREE_CODE (op) == SSA_NAME)
6352 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6355 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6357 location_t locus = gimple_phi_arg_location (phi, i);
6358 tree block = LOCATION_BLOCK (locus);
6360 if (locus == UNKNOWN_LOCATION)
6362 if (d->orig_block == NULL_TREE || block == d->orig_block)
6364 if (d->new_block == NULL_TREE)
6365 locus = LOCATION_LOCUS (locus);
6367 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6368 gimple_phi_arg_set_location (phi, i, locus);
6375 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6377 gimple stmt = gsi_stmt (si);
6378 struct walk_stmt_info wi;
6380 memset (&wi, 0, sizeof (wi));
6382 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6384 if (gimple_code (stmt) == GIMPLE_LABEL)
6386 tree label = gimple_label_label (stmt);
6387 int uid = LABEL_DECL_UID (label);
6389 gcc_assert (uid > -1);
6391 old_len = vec_safe_length (cfg->x_label_to_block_map);
6392 if (old_len <= (unsigned) uid)
6394 new_len = 3 * uid / 2 + 1;
6395 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6398 (*cfg->x_label_to_block_map)[uid] = bb;
6399 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6401 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6403 if (uid >= dest_cfun->cfg->last_label_uid)
6404 dest_cfun->cfg->last_label_uid = uid + 1;
6407 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6408 remove_stmt_from_eh_lp_fn (cfun, stmt);
6410 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6411 gimple_remove_stmt_histograms (cfun, stmt);
6413 /* We cannot leave any operands allocated from the operand caches of
6414 the current function. */
6415 free_stmt_operands (stmt);
6416 push_cfun (dest_cfun);
6421 FOR_EACH_EDGE (e, ei, bb->succs)
6422 if (e->goto_locus != UNKNOWN_LOCATION)
6424 tree block = LOCATION_BLOCK (e->goto_locus);
6425 if (d->orig_block == NULL_TREE
6426 || block == d->orig_block)
6427 e->goto_locus = d->new_block ?
6428 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6429 LOCATION_LOCUS (e->goto_locus);
6433 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6434 the outermost EH region. Use REGION as the incoming base EH region. */
6437 find_outermost_region_in_block (struct function *src_cfun,
6438 basic_block bb, eh_region region)
6440 gimple_stmt_iterator si;
6442 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6444 gimple stmt = gsi_stmt (si);
6445 eh_region stmt_region;
6448 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6449 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6453 region = stmt_region;
6454 else if (stmt_region != region)
6456 region = eh_region_outermost (src_cfun, stmt_region, region);
6457 gcc_assert (region != NULL);
6466 new_label_mapper (tree decl, void *data)
6468 htab_t hash = (htab_t) data;
6472 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6474 m = XNEW (struct tree_map);
6475 m->hash = DECL_UID (decl);
6476 m->base.from = decl;
6477 m->to = create_artificial_label (UNKNOWN_LOCATION);
6478 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6479 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6480 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6482 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6483 gcc_assert (*slot == NULL);
6490 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6494 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6499 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6502 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6504 replace_by_duplicate_decl (&t, vars_map, to_context);
6507 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6509 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6510 DECL_HAS_VALUE_EXPR_P (t) = 1;
6512 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6517 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6518 replace_block_vars_by_duplicates (block, vars_map, to_context);
6521 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6522 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6523 single basic block in the original CFG and the new basic block is
6524 returned. DEST_CFUN must not have a CFG yet.
6526 Note that the region need not be a pure SESE region. Blocks inside
6527 the region may contain calls to abort/exit. The only restriction
6528 is that ENTRY_BB should be the only entry point and it must
6531 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6532 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6533 to the new function.
6535 All local variables referenced in the region are assumed to be in
6536 the corresponding BLOCK_VARS and unexpanded variable lists
6537 associated with DEST_CFUN. */
6540 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6541 basic_block exit_bb, tree orig_block)
6543 vec<basic_block> bbs, dom_bbs;
6544 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6545 basic_block after, bb, *entry_pred, *exit_succ, abb;
6546 struct function *saved_cfun = cfun;
6547 int *entry_flag, *exit_flag;
6548 unsigned *entry_prob, *exit_prob;
6549 unsigned i, num_entry_edges, num_exit_edges;
6552 htab_t new_label_map;
6553 struct pointer_map_t *vars_map, *eh_map;
6554 struct loop *loop = entry_bb->loop_father;
6555 struct move_stmt_d d;
6557 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6559 gcc_assert (entry_bb != exit_bb
6561 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6563 /* Collect all the blocks in the region. Manually add ENTRY_BB
6564 because it won't be added by dfs_enumerate_from. */
6566 bbs.safe_push (entry_bb);
6567 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6569 /* The blocks that used to be dominated by something in BBS will now be
6570 dominated by the new block. */
6571 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6575 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6576 the predecessor edges to ENTRY_BB and the successor edges to
6577 EXIT_BB so that we can re-attach them to the new basic block that
6578 will replace the region. */
6579 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6580 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6581 entry_flag = XNEWVEC (int, num_entry_edges);
6582 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6584 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6586 entry_prob[i] = e->probability;
6587 entry_flag[i] = e->flags;
6588 entry_pred[i++] = e->src;
6594 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6595 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6596 exit_flag = XNEWVEC (int, num_exit_edges);
6597 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6599 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6601 exit_prob[i] = e->probability;
6602 exit_flag[i] = e->flags;
6603 exit_succ[i++] = e->dest;
6615 /* Switch context to the child function to initialize DEST_FN's CFG. */
6616 gcc_assert (dest_cfun->cfg == NULL);
6617 push_cfun (dest_cfun);
6619 init_empty_tree_cfg ();
6621 /* Initialize EH information for the new function. */
6623 new_label_map = NULL;
6626 eh_region region = NULL;
6628 FOR_EACH_VEC_ELT (bbs, i, bb)
6629 region = find_outermost_region_in_block (saved_cfun, bb, region);
6631 init_eh_for_function ();
6634 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6635 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6636 new_label_mapper, new_label_map);
6642 /* Move blocks from BBS into DEST_CFUN. */
6643 gcc_assert (bbs.length () >= 2);
6644 after = dest_cfun->cfg->x_entry_block_ptr;
6645 vars_map = pointer_map_create ();
6647 memset (&d, 0, sizeof (d));
6648 d.orig_block = orig_block;
6649 d.new_block = DECL_INITIAL (dest_cfun->decl);
6650 d.from_context = cfun->decl;
6651 d.to_context = dest_cfun->decl;
6652 d.vars_map = vars_map;
6653 d.new_label_map = new_label_map;
6655 d.remap_decls_p = true;
6657 FOR_EACH_VEC_ELT (bbs, i, bb)
6659 /* No need to update edge counts on the last block. It has
6660 already been updated earlier when we detached the region from
6661 the original CFG. */
6662 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6666 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6670 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6672 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6673 = BLOCK_SUBBLOCKS (orig_block);
6674 for (block = BLOCK_SUBBLOCKS (orig_block);
6675 block; block = BLOCK_CHAIN (block))
6676 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6677 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6680 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6681 vars_map, dest_cfun->decl);
6684 htab_delete (new_label_map);
6686 pointer_map_destroy (eh_map);
6687 pointer_map_destroy (vars_map);
6689 /* Rewire the entry and exit blocks. The successor to the entry
6690 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6691 the child function. Similarly, the predecessor of DEST_FN's
6692 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6693 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6694 various CFG manipulation function get to the right CFG.
6696 FIXME, this is silly. The CFG ought to become a parameter to
6698 push_cfun (dest_cfun);
6699 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6701 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6704 /* Back in the original function, the SESE region has disappeared,
6705 create a new basic block in its place. */
6706 bb = create_empty_bb (entry_pred[0]);
6708 add_bb_to_loop (bb, loop);
6709 for (i = 0; i < num_entry_edges; i++)
6711 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6712 e->probability = entry_prob[i];
6715 for (i = 0; i < num_exit_edges; i++)
6717 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6718 e->probability = exit_prob[i];
6721 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6722 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6723 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6741 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6745 dump_function_to_file (tree fndecl, FILE *file, int flags)
6747 tree arg, var, old_current_fndecl = current_function_decl;
6748 struct function *dsf;
6749 bool ignore_topmost_bind = false, any_var = false;
6752 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6753 && decl_is_tm_clone (fndecl));
6754 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6756 current_function_decl = fndecl;
6757 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6759 arg = DECL_ARGUMENTS (fndecl);
6762 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6763 fprintf (file, " ");
6764 print_generic_expr (file, arg, dump_flags);
6765 if (flags & TDF_VERBOSE)
6766 print_node (file, "", arg, 4);
6767 if (DECL_CHAIN (arg))
6768 fprintf (file, ", ");
6769 arg = DECL_CHAIN (arg);
6771 fprintf (file, ")\n");
6773 if (flags & TDF_VERBOSE)
6774 print_node (file, "", fndecl, 2);
6776 dsf = DECL_STRUCT_FUNCTION (fndecl);
6777 if (dsf && (flags & TDF_EH))
6778 dump_eh_tree (file, dsf);
6780 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6782 dump_node (fndecl, TDF_SLIM | flags, file);
6783 current_function_decl = old_current_fndecl;
6787 /* When GIMPLE is lowered, the variables are no longer available in
6788 BIND_EXPRs, so display them separately. */
6789 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6792 ignore_topmost_bind = true;
6794 fprintf (file, "{\n");
6795 if (!vec_safe_is_empty (fun->local_decls))
6796 FOR_EACH_LOCAL_DECL (fun, ix, var)
6798 print_generic_decl (file, var, flags);
6799 if (flags & TDF_VERBOSE)
6800 print_node (file, "", var, 4);
6801 fprintf (file, "\n");
6805 if (gimple_in_ssa_p (cfun))
6806 for (ix = 1; ix < num_ssa_names; ++ix)
6808 tree name = ssa_name (ix);
6809 if (name && !SSA_NAME_VAR (name))
6811 fprintf (file, " ");
6812 print_generic_expr (file, TREE_TYPE (name), flags);
6813 fprintf (file, " ");
6814 print_generic_expr (file, name, flags);
6815 fprintf (file, ";\n");
6822 if (fun && fun->decl == fndecl
6824 && basic_block_info_for_function (fun))
6826 /* If the CFG has been built, emit a CFG-based dump. */
6827 if (!ignore_topmost_bind)
6828 fprintf (file, "{\n");
6830 if (any_var && n_basic_blocks_for_function (fun))
6831 fprintf (file, "\n");
6833 FOR_EACH_BB_FN (bb, fun)
6834 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6836 fprintf (file, "}\n");
6838 else if (DECL_SAVED_TREE (fndecl) == NULL)
6840 /* The function is now in GIMPLE form but the CFG has not been
6841 built yet. Emit the single sequence of GIMPLE statements
6842 that make up its body. */
6843 gimple_seq body = gimple_body (fndecl);
6845 if (gimple_seq_first_stmt (body)
6846 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6847 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6848 print_gimple_seq (file, body, 0, flags);
6851 if (!ignore_topmost_bind)
6852 fprintf (file, "{\n");
6855 fprintf (file, "\n");
6857 print_gimple_seq (file, body, 2, flags);
6858 fprintf (file, "}\n");
6865 /* Make a tree based dump. */
6866 chain = DECL_SAVED_TREE (fndecl);
6867 if (chain && TREE_CODE (chain) == BIND_EXPR)
6869 if (ignore_topmost_bind)
6871 chain = BIND_EXPR_BODY (chain);
6879 if (!ignore_topmost_bind)
6880 fprintf (file, "{\n");
6885 fprintf (file, "\n");
6887 print_generic_stmt_indented (file, chain, flags, indent);
6888 if (ignore_topmost_bind)
6889 fprintf (file, "}\n");
6892 if (flags & TDF_ENUMERATE_LOCALS)
6893 dump_enumerated_decls (file, flags);
6894 fprintf (file, "\n\n");
6896 current_function_decl = old_current_fndecl;
6899 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6902 debug_function (tree fn, int flags)
6904 dump_function_to_file (fn, stderr, flags);
6908 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6911 print_pred_bbs (FILE *file, basic_block bb)
6916 FOR_EACH_EDGE (e, ei, bb->preds)
6917 fprintf (file, "bb_%d ", e->src->index);
6921 /* Print on FILE the indexes for the successors of basic_block BB. */
6924 print_succ_bbs (FILE *file, basic_block bb)
6929 FOR_EACH_EDGE (e, ei, bb->succs)
6930 fprintf (file, "bb_%d ", e->dest->index);
6933 /* Print to FILE the basic block BB following the VERBOSITY level. */
6936 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6938 char *s_indent = (char *) alloca ((size_t) indent + 1);
6939 memset ((void *) s_indent, ' ', (size_t) indent);
6940 s_indent[indent] = '\0';
6942 /* Print basic_block's header. */
6945 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6946 print_pred_bbs (file, bb);
6947 fprintf (file, "}, succs = {");
6948 print_succ_bbs (file, bb);
6949 fprintf (file, "})\n");
6952 /* Print basic_block's body. */
6955 fprintf (file, "%s {\n", s_indent);
6956 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6957 fprintf (file, "%s }\n", s_indent);
6961 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6963 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6964 VERBOSITY level this outputs the contents of the loop, or just its
6968 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6976 s_indent = (char *) alloca ((size_t) indent + 1);
6977 memset ((void *) s_indent, ' ', (size_t) indent);
6978 s_indent[indent] = '\0';
6980 /* Print loop's header. */
6981 fprintf (file, "%sloop_%d (", s_indent, loop->num);
6983 fprintf (file, "header = %d", loop->header->index);
6986 fprintf (file, "deleted)\n");
6990 fprintf (file, ", latch = %d", loop->latch->index);
6992 fprintf (file, ", multiple latches");
6993 fprintf (file, ", niter = ");
6994 print_generic_expr (file, loop->nb_iterations, 0);
6996 if (loop->any_upper_bound)
6998 fprintf (file, ", upper_bound = ");
6999 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7002 if (loop->any_estimate)
7004 fprintf (file, ", estimate = ");
7005 dump_double_int (file, loop->nb_iterations_estimate, true);
7007 fprintf (file, ")\n");
7009 /* Print loop's body. */
7012 fprintf (file, "%s{\n", s_indent);
7014 if (bb->loop_father == loop)
7015 print_loops_bb (file, bb, indent, verbosity);
7017 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7018 fprintf (file, "%s}\n", s_indent);
7022 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7023 spaces. Following VERBOSITY level this outputs the contents of the
7024 loop, or just its structure. */
7027 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
7032 print_loop (file, loop, indent, verbosity);
7033 print_loop_and_siblings (file, loop->next, indent, verbosity);
7036 /* Follow a CFG edge from the entry point of the program, and on entry
7037 of a loop, pretty print the loop structure on FILE. */
7040 print_loops (FILE *file, int verbosity)
7044 bb = ENTRY_BLOCK_PTR;
7045 if (bb && bb->loop_father)
7046 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7050 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7053 debug_loops (int verbosity)
7055 print_loops (stderr, verbosity);
7058 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7061 debug_loop (struct loop *loop, int verbosity)
7063 print_loop (stderr, loop, 0, verbosity);
7066 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7070 debug_loop_num (unsigned num, int verbosity)
7072 debug_loop (get_loop (num), verbosity);
7075 /* Return true if BB ends with a call, possibly followed by some
7076 instructions that must stay with the call. Return false,
7080 gimple_block_ends_with_call_p (basic_block bb)
7082 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7083 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7087 /* Return true if BB ends with a conditional branch. Return false,
7091 gimple_block_ends_with_condjump_p (const_basic_block bb)
7093 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7094 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7098 /* Return true if we need to add fake edge to exit at statement T.
7099 Helper function for gimple_flow_call_edges_add. */
7102 need_fake_edge_p (gimple t)
7104 tree fndecl = NULL_TREE;
7107 /* NORETURN and LONGJMP calls already have an edge to exit.
7108 CONST and PURE calls do not need one.
7109 We don't currently check for CONST and PURE here, although
7110 it would be a good idea, because those attributes are
7111 figured out from the RTL in mark_constant_function, and
7112 the counter incrementation code from -fprofile-arcs
7113 leads to different results from -fbranch-probabilities. */
7114 if (is_gimple_call (t))
7116 fndecl = gimple_call_fndecl (t);
7117 call_flags = gimple_call_flags (t);
7120 if (is_gimple_call (t)
7122 && DECL_BUILT_IN (fndecl)
7123 && (call_flags & ECF_NOTHROW)
7124 && !(call_flags & ECF_RETURNS_TWICE)
7125 /* fork() doesn't really return twice, but the effect of
7126 wrapping it in __gcov_fork() which calls __gcov_flush()
7127 and clears the counters before forking has the same
7128 effect as returning twice. Force a fake edge. */
7129 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7130 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7133 if (is_gimple_call (t))
7139 if (!(call_flags & ECF_NORETURN))
7143 FOR_EACH_EDGE (e, ei, bb->succs)
7144 if ((e->flags & EDGE_FAKE) == 0)
7148 if (gimple_code (t) == GIMPLE_ASM
7149 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7156 /* Add fake edges to the function exit for any non constant and non
7157 noreturn calls (or noreturn calls with EH/abnormal edges),
7158 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7159 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7162 The goal is to expose cases in which entering a basic block does
7163 not imply that all subsequent instructions must be executed. */
7166 gimple_flow_call_edges_add (sbitmap blocks)
7169 int blocks_split = 0;
7170 int last_bb = last_basic_block;
7171 bool check_last_block = false;
7173 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7177 check_last_block = true;
7179 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7181 /* In the last basic block, before epilogue generation, there will be
7182 a fallthru edge to EXIT. Special care is required if the last insn
7183 of the last basic block is a call because make_edge folds duplicate
7184 edges, which would result in the fallthru edge also being marked
7185 fake, which would result in the fallthru edge being removed by
7186 remove_fake_edges, which would result in an invalid CFG.
7188 Moreover, we can't elide the outgoing fake edge, since the block
7189 profiler needs to take this into account in order to solve the minimal
7190 spanning tree in the case that the call doesn't return.
7192 Handle this by adding a dummy instruction in a new last basic block. */
7193 if (check_last_block)
7195 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7196 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7199 if (!gsi_end_p (gsi))
7202 if (t && need_fake_edge_p (t))
7206 e = find_edge (bb, EXIT_BLOCK_PTR);
7209 gsi_insert_on_edge (e, gimple_build_nop ());
7210 gsi_commit_edge_inserts ();
7215 /* Now add fake edges to the function exit for any non constant
7216 calls since there is no way that we can determine if they will
7218 for (i = 0; i < last_bb; i++)
7220 basic_block bb = BASIC_BLOCK (i);
7221 gimple_stmt_iterator gsi;
7222 gimple stmt, last_stmt;
7227 if (blocks && !bitmap_bit_p (blocks, i))
7230 gsi = gsi_last_nondebug_bb (bb);
7231 if (!gsi_end_p (gsi))
7233 last_stmt = gsi_stmt (gsi);
7236 stmt = gsi_stmt (gsi);
7237 if (need_fake_edge_p (stmt))
7241 /* The handling above of the final block before the
7242 epilogue should be enough to verify that there is
7243 no edge to the exit block in CFG already.
7244 Calling make_edge in such case would cause us to
7245 mark that edge as fake and remove it later. */
7246 #ifdef ENABLE_CHECKING
7247 if (stmt == last_stmt)
7249 e = find_edge (bb, EXIT_BLOCK_PTR);
7250 gcc_assert (e == NULL);
7254 /* Note that the following may create a new basic block
7255 and renumber the existing basic blocks. */
7256 if (stmt != last_stmt)
7258 e = split_block (bb, stmt);
7262 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7266 while (!gsi_end_p (gsi));
7271 verify_flow_info ();
7273 return blocks_split;
7276 /* Removes edge E and all the blocks dominated by it, and updates dominance
7277 information. The IL in E->src needs to be updated separately.
7278 If dominance info is not available, only the edge E is removed.*/
7281 remove_edge_and_dominated_blocks (edge e)
7283 vec<basic_block> bbs_to_remove = vNULL;
7284 vec<basic_block> bbs_to_fix_dom = vNULL;
7288 bool none_removed = false;
7290 basic_block bb, dbb;
7293 if (!dom_info_available_p (CDI_DOMINATORS))
7299 /* No updating is needed for edges to exit. */
7300 if (e->dest == EXIT_BLOCK_PTR)
7302 if (cfgcleanup_altered_bbs)
7303 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7308 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7309 that is not dominated by E->dest, then this set is empty. Otherwise,
7310 all the basic blocks dominated by E->dest are removed.
7312 Also, to DF_IDOM we store the immediate dominators of the blocks in
7313 the dominance frontier of E (i.e., of the successors of the
7314 removed blocks, if there are any, and of E->dest otherwise). */
7315 FOR_EACH_EDGE (f, ei, e->dest->preds)
7320 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7322 none_removed = true;
7327 df = BITMAP_ALLOC (NULL);
7328 df_idom = BITMAP_ALLOC (NULL);
7331 bitmap_set_bit (df_idom,
7332 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7335 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7336 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7338 FOR_EACH_EDGE (f, ei, bb->succs)
7340 if (f->dest != EXIT_BLOCK_PTR)
7341 bitmap_set_bit (df, f->dest->index);
7344 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7345 bitmap_clear_bit (df, bb->index);
7347 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7349 bb = BASIC_BLOCK (i);
7350 bitmap_set_bit (df_idom,
7351 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7355 if (cfgcleanup_altered_bbs)
7357 /* Record the set of the altered basic blocks. */
7358 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7359 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7362 /* Remove E and the cancelled blocks. */
7367 /* Walk backwards so as to get a chance to substitute all
7368 released DEFs into debug stmts. See
7369 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7371 for (i = bbs_to_remove.length (); i-- > 0; )
7372 delete_basic_block (bbs_to_remove[i]);
7375 /* Update the dominance information. The immediate dominator may change only
7376 for blocks whose immediate dominator belongs to DF_IDOM:
7378 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7379 removal. Let Z the arbitrary block such that idom(Z) = Y and
7380 Z dominates X after the removal. Before removal, there exists a path P
7381 from Y to X that avoids Z. Let F be the last edge on P that is
7382 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7383 dominates W, and because of P, Z does not dominate W), and W belongs to
7384 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7385 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7387 bb = BASIC_BLOCK (i);
7388 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7390 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7391 bbs_to_fix_dom.safe_push (dbb);
7394 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7397 BITMAP_FREE (df_idom);
7398 bbs_to_remove.release ();
7399 bbs_to_fix_dom.release ();
7402 /* Purge dead EH edges from basic block BB. */
7405 gimple_purge_dead_eh_edges (basic_block bb)
7407 bool changed = false;
7410 gimple stmt = last_stmt (bb);
7412 if (stmt && stmt_can_throw_internal (stmt))
7415 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7417 if (e->flags & EDGE_EH)
7419 remove_edge_and_dominated_blocks (e);
7429 /* Purge dead EH edges from basic block listed in BLOCKS. */
7432 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7434 bool changed = false;
7438 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7440 basic_block bb = BASIC_BLOCK (i);
7442 /* Earlier gimple_purge_dead_eh_edges could have removed
7443 this basic block already. */
7444 gcc_assert (bb || changed);
7446 changed |= gimple_purge_dead_eh_edges (bb);
7452 /* Purge dead abnormal call edges from basic block BB. */
7455 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7457 bool changed = false;
7460 gimple stmt = last_stmt (bb);
7462 if (!cfun->has_nonlocal_label)
7465 if (stmt && stmt_can_make_abnormal_goto (stmt))
7468 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7470 if (e->flags & EDGE_ABNORMAL)
7472 remove_edge_and_dominated_blocks (e);
7482 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7485 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7487 bool changed = false;
7491 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7493 basic_block bb = BASIC_BLOCK (i);
7495 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7496 this basic block already. */
7497 gcc_assert (bb || changed);
7499 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7505 /* This function is called whenever a new edge is created or
7509 gimple_execute_on_growing_pred (edge e)
7511 basic_block bb = e->dest;
7513 if (!gimple_seq_empty_p (phi_nodes (bb)))
7514 reserve_phi_args_for_new_edge (bb);
7517 /* This function is called immediately before edge E is removed from
7518 the edge vector E->dest->preds. */
7521 gimple_execute_on_shrinking_pred (edge e)
7523 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7524 remove_phi_args (e);
7527 /*---------------------------------------------------------------------------
7528 Helper functions for Loop versioning
7529 ---------------------------------------------------------------------------*/
7531 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7532 of 'first'. Both of them are dominated by 'new_head' basic block. When
7533 'new_head' was created by 'second's incoming edge it received phi arguments
7534 on the edge by split_edge(). Later, additional edge 'e' was created to
7535 connect 'new_head' and 'first'. Now this routine adds phi args on this
7536 additional edge 'e' that new_head to second edge received as part of edge
7540 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7541 basic_block new_head, edge e)
7544 gimple_stmt_iterator psi1, psi2;
7546 edge e2 = find_edge (new_head, second);
7548 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7549 edge, we should always have an edge from NEW_HEAD to SECOND. */
7550 gcc_assert (e2 != NULL);
7552 /* Browse all 'second' basic block phi nodes and add phi args to
7553 edge 'e' for 'first' head. PHI args are always in correct order. */
7555 for (psi2 = gsi_start_phis (second),
7556 psi1 = gsi_start_phis (first);
7557 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7558 gsi_next (&psi2), gsi_next (&psi1))
7560 phi1 = gsi_stmt (psi1);
7561 phi2 = gsi_stmt (psi2);
7562 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7563 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7568 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7569 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7570 the destination of the ELSE part. */
7573 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7574 basic_block second_head ATTRIBUTE_UNUSED,
7575 basic_block cond_bb, void *cond_e)
7577 gimple_stmt_iterator gsi;
7578 gimple new_cond_expr;
7579 tree cond_expr = (tree) cond_e;
7582 /* Build new conditional expr */
7583 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7584 NULL_TREE, NULL_TREE);
7586 /* Add new cond in cond_bb. */
7587 gsi = gsi_last_bb (cond_bb);
7588 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7590 /* Adjust edges appropriately to connect new head with first head
7591 as well as second head. */
7592 e0 = single_succ_edge (cond_bb);
7593 e0->flags &= ~EDGE_FALLTHRU;
7594 e0->flags |= EDGE_FALSE_VALUE;
7598 /* Do book-keeping of basic block BB for the profile consistency checker.
7599 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7600 then do post-pass accounting. Store the counting in RECORD. */
7602 gimple_account_profile_record (basic_block bb, int after_pass,
7603 struct profile_record *record)
7605 gimple_stmt_iterator i;
7606 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7608 record->size[after_pass]
7609 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7610 if (profile_status == PROFILE_READ)
7611 record->time[after_pass]
7612 += estimate_num_insns (gsi_stmt (i),
7613 &eni_time_weights) * bb->count;
7614 else if (profile_status == PROFILE_GUESSED)
7615 record->time[after_pass]
7616 += estimate_num_insns (gsi_stmt (i),
7617 &eni_time_weights) * bb->frequency;
7621 struct cfg_hooks gimple_cfg_hooks = {
7623 gimple_verify_flow_info,
7624 gimple_dump_bb, /* dump_bb */
7625 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7626 create_bb, /* create_basic_block */
7627 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7628 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7629 gimple_can_remove_branch_p, /* can_remove_branch_p */
7630 remove_bb, /* delete_basic_block */
7631 gimple_split_block, /* split_block */
7632 gimple_move_block_after, /* move_block_after */
7633 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7634 gimple_merge_blocks, /* merge_blocks */
7635 gimple_predict_edge, /* predict_edge */
7636 gimple_predicted_by_p, /* predicted_by_p */
7637 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7638 gimple_duplicate_bb, /* duplicate_block */
7639 gimple_split_edge, /* split_edge */
7640 gimple_make_forwarder_block, /* make_forward_block */
7641 NULL, /* tidy_fallthru_edge */
7642 NULL, /* force_nonfallthru */
7643 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7644 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7645 gimple_flow_call_edges_add, /* flow_call_edges_add */
7646 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7647 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7648 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7649 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7650 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7651 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7652 flush_pending_stmts, /* flush_pending_stmts */
7653 gimple_empty_block_p, /* block_empty_p */
7654 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7655 gimple_account_profile_record,
7659 /* Split all critical edges. */
7662 split_critical_edges (void)
7668 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7669 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7670 mappings around the calls to split_edge. */
7671 start_recording_case_labels ();
7674 FOR_EACH_EDGE (e, ei, bb->succs)
7676 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7678 /* PRE inserts statements to edges and expects that
7679 since split_critical_edges was done beforehand, committing edge
7680 insertions will not split more edges. In addition to critical
7681 edges we must split edges that have multiple successors and
7682 end by control flow statements, such as RESX.
7683 Go ahead and split them too. This matches the logic in
7684 gimple_find_edge_insert_loc. */
7685 else if ((!single_pred_p (e->dest)
7686 || !gimple_seq_empty_p (phi_nodes (e->dest))
7687 || e->dest == EXIT_BLOCK_PTR)
7688 && e->src != ENTRY_BLOCK_PTR
7689 && !(e->flags & EDGE_ABNORMAL))
7691 gimple_stmt_iterator gsi;
7693 gsi = gsi_last_bb (e->src);
7694 if (!gsi_end_p (gsi)
7695 && stmt_ends_bb_p (gsi_stmt (gsi))
7696 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7697 && !gimple_call_builtin_p (gsi_stmt (gsi),
7703 end_recording_case_labels ();
7707 struct gimple_opt_pass pass_split_crit_edges =
7711 "crited", /* name */
7712 OPTGROUP_NONE, /* optinfo_flags */
7714 split_critical_edges, /* execute */
7717 0, /* static_pass_number */
7718 TV_TREE_SPLIT_EDGES, /* tv_id */
7719 PROP_cfg, /* properties required */
7720 PROP_no_crit_edges, /* properties_provided */
7721 0, /* properties_destroyed */
7722 0, /* todo_flags_start */
7723 TODO_verify_flow /* todo_flags_finish */
7728 /* Build a ternary operation and gimplify it. Emit code before GSI.
7729 Return the gimple_val holding the result. */
7732 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7733 tree type, tree a, tree b, tree c)
7736 location_t loc = gimple_location (gsi_stmt (*gsi));
7738 ret = fold_build3_loc (loc, code, type, a, b, c);
7741 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7745 /* Build a binary operation and gimplify it. Emit code before GSI.
7746 Return the gimple_val holding the result. */
7749 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7750 tree type, tree a, tree b)
7754 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7757 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7761 /* Build a unary operation and gimplify it. Emit code before GSI.
7762 Return the gimple_val holding the result. */
7765 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7770 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7773 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7779 /* Emit return warnings. */
7782 execute_warn_function_return (void)
7784 source_location location;
7789 if (!targetm.warn_func_return (cfun->decl))
7792 /* If we have a path to EXIT, then we do return. */
7793 if (TREE_THIS_VOLATILE (cfun->decl)
7794 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7796 location = UNKNOWN_LOCATION;
7797 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7799 last = last_stmt (e->src);
7800 if ((gimple_code (last) == GIMPLE_RETURN
7801 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7802 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7805 if (location == UNKNOWN_LOCATION)
7806 location = cfun->function_end_locus;
7807 warning_at (location, 0, "%<noreturn%> function does return");
7810 /* If we see "return;" in some basic block, then we do reach the end
7811 without returning a value. */
7812 else if (warn_return_type
7813 && !TREE_NO_WARNING (cfun->decl)
7814 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7815 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7817 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7819 gimple last = last_stmt (e->src);
7820 if (gimple_code (last) == GIMPLE_RETURN
7821 && gimple_return_retval (last) == NULL
7822 && !gimple_no_warning_p (last))
7824 location = gimple_location (last);
7825 if (location == UNKNOWN_LOCATION)
7826 location = cfun->function_end_locus;
7827 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7828 TREE_NO_WARNING (cfun->decl) = 1;
7837 /* Given a basic block B which ends with a conditional and has
7838 precisely two successors, determine which of the edges is taken if
7839 the conditional is true and which is taken if the conditional is
7840 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7843 extract_true_false_edges_from_block (basic_block b,
7847 edge e = EDGE_SUCC (b, 0);
7849 if (e->flags & EDGE_TRUE_VALUE)
7852 *false_edge = EDGE_SUCC (b, 1);
7857 *true_edge = EDGE_SUCC (b, 1);
7861 struct gimple_opt_pass pass_warn_function_return =
7865 "*warn_function_return", /* name */
7866 OPTGROUP_NONE, /* optinfo_flags */
7868 execute_warn_function_return, /* execute */
7871 0, /* static_pass_number */
7872 TV_NONE, /* tv_id */
7873 PROP_cfg, /* properties_required */
7874 0, /* properties_provided */
7875 0, /* properties_destroyed */
7876 0, /* todo_flags_start */
7877 0 /* todo_flags_finish */
7881 /* Emit noreturn warnings. */
7884 execute_warn_function_noreturn (void)
7886 if (!TREE_THIS_VOLATILE (current_function_decl)
7887 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7888 warn_function_noreturn (current_function_decl);
7893 gate_warn_function_noreturn (void)
7895 return warn_suggest_attribute_noreturn;
7898 struct gimple_opt_pass pass_warn_function_noreturn =
7902 "*warn_function_noreturn", /* name */
7903 OPTGROUP_NONE, /* optinfo_flags */
7904 gate_warn_function_noreturn, /* gate */
7905 execute_warn_function_noreturn, /* execute */
7908 0, /* static_pass_number */
7909 TV_NONE, /* tv_id */
7910 PROP_cfg, /* properties_required */
7911 0, /* properties_provided */
7912 0, /* properties_destroyed */
7913 0, /* todo_flags_start */
7914 0 /* todo_flags_finish */
7919 /* Walk a gimplified function and warn for functions whose return value is
7920 ignored and attribute((warn_unused_result)) is set. This is done before
7921 inlining, so we don't have to worry about that. */
7924 do_warn_unused_result (gimple_seq seq)
7927 gimple_stmt_iterator i;
7929 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7931 gimple g = gsi_stmt (i);
7933 switch (gimple_code (g))
7936 do_warn_unused_result (gimple_bind_body (g));
7939 do_warn_unused_result (gimple_try_eval (g));
7940 do_warn_unused_result (gimple_try_cleanup (g));
7943 do_warn_unused_result (gimple_catch_handler (g));
7945 case GIMPLE_EH_FILTER:
7946 do_warn_unused_result (gimple_eh_filter_failure (g));
7950 if (gimple_call_lhs (g))
7952 if (gimple_call_internal_p (g))
7955 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7956 LHS. All calls whose value is ignored should be
7957 represented like this. Look for the attribute. */
7958 fdecl = gimple_call_fndecl (g);
7959 ftype = gimple_call_fntype (g);
7961 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7963 location_t loc = gimple_location (g);
7966 warning_at (loc, OPT_Wunused_result,
7967 "ignoring return value of %qD, "
7968 "declared with attribute warn_unused_result",
7971 warning_at (loc, OPT_Wunused_result,
7972 "ignoring return value of function "
7973 "declared with attribute warn_unused_result");
7978 /* Not a container, not a call, or a call whose value is used. */
7985 run_warn_unused_result (void)
7987 do_warn_unused_result (gimple_body (current_function_decl));
7992 gate_warn_unused_result (void)
7994 return flag_warn_unused_result;
7997 struct gimple_opt_pass pass_warn_unused_result =
8001 "*warn_unused_result", /* name */
8002 OPTGROUP_NONE, /* optinfo_flags */
8003 gate_warn_unused_result, /* gate */
8004 run_warn_unused_result, /* execute */
8007 0, /* static_pass_number */
8008 TV_NONE, /* tv_id */
8009 PROP_gimple_any, /* properties_required */
8010 0, /* properties_provided */
8011 0, /* properties_destroyed */
8012 0, /* todo_flags_start */
8013 0, /* todo_flags_finish */
8018 /* Garbage collection support for edge_def. */
8020 extern void gt_ggc_mx (tree&);
8021 extern void gt_ggc_mx (gimple&);
8022 extern void gt_ggc_mx (rtx&);
8023 extern void gt_ggc_mx (basic_block&);
8026 gt_ggc_mx (edge_def *e)
8028 tree block = LOCATION_BLOCK (e->goto_locus);
8030 gt_ggc_mx (e->dest);
8031 if (current_ir_type () == IR_GIMPLE)
8032 gt_ggc_mx (e->insns.g);
8034 gt_ggc_mx (e->insns.r);
8038 /* PCH support for edge_def. */
8040 extern void gt_pch_nx (tree&);
8041 extern void gt_pch_nx (gimple&);
8042 extern void gt_pch_nx (rtx&);
8043 extern void gt_pch_nx (basic_block&);
8046 gt_pch_nx (edge_def *e)
8048 tree block = LOCATION_BLOCK (e->goto_locus);
8050 gt_pch_nx (e->dest);
8051 if (current_ir_type () == IR_GIMPLE)
8052 gt_pch_nx (e->insns.g);
8054 gt_pch_nx (e->insns.r);
8059 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8061 tree block = LOCATION_BLOCK (e->goto_locus);
8062 op (&(e->src), cookie);
8063 op (&(e->dest), cookie);
8064 if (current_ir_type () == IR_GIMPLE)
8065 op (&(e->insns.g), cookie);
8067 op (&(e->insns.r), cookie);
8068 op (&(block), cookie);