sel-sched: remove assert in merge_fences (PR 87273)
[platform/upstream/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
40
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 /* We don't have to use it except for sel_print_insn.  */
46 #include "sel-sched-dump.h"
47
48 /* A vector holding bb info for whole scheduling pass.  */
49 vec<sel_global_bb_info_def> sel_global_bb_info;
50
51 /* A vector holding bb info.  */
52 vec<sel_region_bb_info_def> sel_region_bb_info;
53
54 /* A pool for allocating all lists.  */
55 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
56
57 /* This contains information about successors for compute_av_set.  */
58 struct succs_info current_succs;
59
60 /* Data structure to describe interaction with the generic scheduler utils.  */
61 static struct common_sched_info_def sel_common_sched_info;
62
63 /* The loop nest being pipelined.  */
64 struct loop *current_loop_nest;
65
66 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67    each region.  */
68 static vec<loop_p> loop_nests;
69
70 /* Saves blocks already in loop regions, indexed by bb->index.  */
71 static sbitmap bbs_in_loop_rgns = NULL;
72
73 /* CFG hooks that are saved before changing create_basic_block hook.  */
74 static struct cfg_hooks orig_cfg_hooks;
75 \f
76
77 /* Array containing reverse topological index of function basic blocks,
78    indexed by BB->INDEX.  */
79 static int *rev_top_order_index = NULL;
80
81 /* Length of the above array.  */
82 static int rev_top_order_index_len = -1;
83
84 /* A regset pool structure.  */
85 static struct
86 {
87   /* The stack to which regsets are returned.  */
88   regset *v;
89
90   /* Its pointer.  */
91   int n;
92
93   /* Its size.  */
94   int s;
95
96   /* In VV we save all generated regsets so that, when destructing the
97      pool, we can compare it with V and check that every regset was returned
98      back to pool.  */
99   regset *vv;
100
101   /* The pointer of VV stack.  */
102   int nn;
103
104   /* Its size.  */
105   int ss;
106
107   /* The difference between allocated and returned regsets.  */
108   int diff;
109 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
110
111 /* This represents the nop pool.  */
112 static struct
113 {
114   /* The vector which holds previously emitted nops.  */
115   insn_t *v;
116
117   /* Its pointer.  */
118   int n;
119
120   /* Its size.  */
121   int s;
122 } nop_pool = { NULL, 0, 0 };
123
124 /* The pool for basic block notes.  */
125 static vec<rtx_note *> bb_note_pool;
126
127 /* A NOP pattern used to emit placeholder insns.  */
128 rtx nop_pattern = NULL_RTX;
129 /* A special instruction that resides in EXIT_BLOCK.
130    EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
131 rtx_insn *exit_insn = NULL;
132
133 /* TRUE if while scheduling current region, which is loop, its preheader
134    was removed.  */
135 bool preheader_removed = false;
136 \f
137
138 /* Forward static declarations.  */
139 static void fence_clear (fence_t);
140
141 static void deps_init_id (idata_t, insn_t, bool);
142 static void init_id_from_df (idata_t, insn_t, bool);
143 static expr_t set_insn_init (expr_t, vinsn_t, int);
144
145 static void cfg_preds (basic_block, insn_t **, int *);
146 static void prepare_insn_expr (insn_t, int);
147 static void free_history_vect (vec<expr_history_def> &);
148
149 static void move_bb_info (basic_block, basic_block);
150 static void remove_empty_bb (basic_block, bool);
151 static void sel_merge_blocks (basic_block, basic_block);
152 static void sel_remove_loop_preheader (void);
153 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
154
155 static bool insn_is_the_only_one_in_bb_p (insn_t);
156 static void create_initial_data_sets (basic_block);
157
158 static void free_av_set (basic_block);
159 static void invalidate_av_set (basic_block);
160 static void extend_insn_data (void);
161 static void sel_init_new_insn (insn_t, int, int = -1);
162 static void finish_insns (void);
163 \f
164 /* Various list functions.  */
165
166 /* Copy an instruction list L.  */
167 ilist_t
168 ilist_copy (ilist_t l)
169 {
170   ilist_t head = NULL, *tailp = &head;
171
172   while (l)
173     {
174       ilist_add (tailp, ILIST_INSN (l));
175       tailp = &ILIST_NEXT (*tailp);
176       l = ILIST_NEXT (l);
177     }
178
179   return head;
180 }
181
182 /* Invert an instruction list L.  */
183 ilist_t
184 ilist_invert (ilist_t l)
185 {
186   ilist_t res = NULL;
187
188   while (l)
189     {
190       ilist_add (&res, ILIST_INSN (l));
191       l = ILIST_NEXT (l);
192     }
193
194   return res;
195 }
196
197 /* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
198 void
199 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
200 {
201   bnd_t bnd;
202
203   _list_add (lp);
204   bnd = BLIST_BND (*lp);
205
206   BND_TO (bnd) = to;
207   BND_PTR (bnd) = ptr;
208   BND_AV (bnd) = NULL;
209   BND_AV1 (bnd) = NULL;
210   BND_DC (bnd) = dc;
211 }
212
213 /* Remove the list note pointed to by LP.  */
214 void
215 blist_remove (blist_t *lp)
216 {
217   bnd_t b = BLIST_BND (*lp);
218
219   av_set_clear (&BND_AV (b));
220   av_set_clear (&BND_AV1 (b));
221   ilist_clear (&BND_PTR (b));
222
223   _list_remove (lp);
224 }
225
226 /* Init a fence tail L.  */
227 void
228 flist_tail_init (flist_tail_t l)
229 {
230   FLIST_TAIL_HEAD (l) = NULL;
231   FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
232 }
233
234 /* Try to find fence corresponding to INSN in L.  */
235 fence_t
236 flist_lookup (flist_t l, insn_t insn)
237 {
238   while (l)
239     {
240       if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241         return FLIST_FENCE (l);
242
243       l = FLIST_NEXT (l);
244     }
245
246   return NULL;
247 }
248
249 /* Init the fields of F before running fill_insns.  */
250 static void
251 init_fence_for_scheduling (fence_t f)
252 {
253   FENCE_BNDS (f) = NULL;
254   FENCE_PROCESSED_P (f) = false;
255   FENCE_SCHEDULED_P (f) = false;
256 }
257
258 /* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
259 static void
260 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
261            insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
262            int *ready_ticks, int ready_ticks_size, insn_t sched_next,
263            int cycle, int cycle_issued_insns, int issue_more,
264            bool starts_cycle_p, bool after_stall_p)
265 {
266   fence_t f;
267
268   _list_add (lp);
269   f = FLIST_FENCE (*lp);
270
271   FENCE_INSN (f) = insn;
272
273   gcc_assert (state != NULL);
274   FENCE_STATE (f) = state;
275
276   FENCE_CYCLE (f) = cycle;
277   FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278   FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279   FENCE_AFTER_STALL_P (f) = after_stall_p;
280
281   gcc_assert (dc != NULL);
282   FENCE_DC (f) = dc;
283
284   gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285   FENCE_TC (f) = tc;
286
287   FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
288   FENCE_ISSUE_MORE (f) = issue_more;
289   FENCE_EXECUTING_INSNS (f) = executing_insns;
290   FENCE_READY_TICKS (f) = ready_ticks;
291   FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292   FENCE_SCHED_NEXT (f) = sched_next;
293
294   init_fence_for_scheduling (f);
295 }
296
297 /* Remove the head node of the list pointed to by LP.  */
298 static void
299 flist_remove (flist_t *lp)
300 {
301   if (FENCE_INSN (FLIST_FENCE (*lp)))
302     fence_clear (FLIST_FENCE (*lp));
303   _list_remove (lp);
304 }
305
306 /* Clear the fence list pointed to by LP.  */
307 void
308 flist_clear (flist_t *lp)
309 {
310   while (*lp)
311     flist_remove (lp);
312 }
313
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317 {
318   def_t d;
319
320   _list_add (dl);
321   d = DEF_LIST_DEF (*dl);
322
323   d->orig_insn = original_insn;
324   d->crosses_call = crosses_call;
325 }
326 \f
327
328 /* Functions to work with target contexts.  */
329
330 /* Bulk target context.  It is convenient for debugging purposes to ensure
331    that there are no uninitialized (null) target contexts.  */
332 static tc_t bulk_tc = (tc_t) 1;
333
334 /* Target hooks wrappers.  In the future we can provide some default
335    implementations for them.  */
336
337 /* Allocate a store for the target context.  */
338 static tc_t
339 alloc_target_context (void)
340 {
341   return (targetm.sched.alloc_sched_context
342           ? targetm.sched.alloc_sched_context () : bulk_tc);
343 }
344
345 /* Init target context TC.
346    If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347    Overwise, copy current backend context to TC.  */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
350 {
351   if (targetm.sched.init_sched_context)
352     targetm.sched.init_sched_context (tc, clean_p);
353 }
354
355 /* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
356    int init_target_context ().  */
357 tc_t
358 create_target_context (bool clean_p)
359 {
360   tc_t tc = alloc_target_context ();
361
362   init_target_context (tc, clean_p);
363   return tc;
364 }
365
366 /* Copy TC to the current backend context.  */
367 void
368 set_target_context (tc_t tc)
369 {
370   if (targetm.sched.set_sched_context)
371     targetm.sched.set_sched_context (tc);
372 }
373
374 /* TC is about to be destroyed.  Free any internal data.  */
375 static void
376 clear_target_context (tc_t tc)
377 {
378   if (targetm.sched.clear_sched_context)
379     targetm.sched.clear_sched_context (tc);
380 }
381
382 /*  Clear and free it.  */
383 static void
384 delete_target_context (tc_t tc)
385 {
386   clear_target_context (tc);
387
388   if (targetm.sched.free_sched_context)
389     targetm.sched.free_sched_context (tc);
390 }
391
392 /* Make a copy of FROM in TO.
393    NB: May be this should be a hook.  */
394 static void
395 copy_target_context (tc_t to, tc_t from)
396 {
397   tc_t tmp = create_target_context (false);
398
399   set_target_context (from);
400   init_target_context (to, false);
401
402   set_target_context (tmp);
403   delete_target_context (tmp);
404 }
405
406 /* Create a copy of TC.  */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
409 {
410   tc_t copy = alloc_target_context ();
411
412   copy_target_context (copy, tc);
413
414   return copy;
415 }
416
417 /* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
418    is the same as in init_target_context ().  */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
421 {
422   clear_target_context (tc);
423   init_target_context (tc, clean_p);
424 }
425 \f
426 /* Functions to work with dependence contexts.
427    Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
428    context.  It accumulates information about processed insns to decide if
429    current insn is dependent on the processed ones.  */
430
431 /* Make a copy of FROM in TO.  */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
434 {
435   init_deps (to, false);
436   deps_join (to, from);
437 }
438
439 /* Allocate store for dep context.  */
440 static deps_t
441 alloc_deps_context (void)
442 {
443   return XNEW (struct deps_desc);
444 }
445
446 /* Allocate and initialize dep context.  */
447 static deps_t
448 create_deps_context (void)
449 {
450   deps_t dc = alloc_deps_context ();
451
452   init_deps (dc, false);
453   return dc;
454 }
455
456 /* Create a copy of FROM.  */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
459 {
460   deps_t to = alloc_deps_context ();
461
462   copy_deps_context (to, from);
463   return to;
464 }
465
466 /* Clean up internal data of DC.  */
467 static void
468 clear_deps_context (deps_t dc)
469 {
470   free_deps (dc);
471 }
472
473 /* Clear and free DC.  */
474 static void
475 delete_deps_context (deps_t dc)
476 {
477   clear_deps_context (dc);
478   free (dc);
479 }
480
481 /* Clear and init DC.  */
482 static void
483 reset_deps_context (deps_t dc)
484 {
485   clear_deps_context (dc);
486   init_deps (dc, false);
487 }
488
489 /* This structure describes the dependence analysis hooks for advancing
490    dependence context.  */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492   {
493     NULL,
494
495     NULL, /* start_insn */
496     NULL, /* finish_insn */
497     NULL, /* start_lhs */
498     NULL, /* finish_lhs */
499     NULL, /* start_rhs */
500     NULL, /* finish_rhs */
501     haifa_note_reg_set,
502     haifa_note_reg_clobber,
503     haifa_note_reg_use,
504     NULL, /* note_mem_dep */
505     NULL, /* note_dep */
506
507     0, 0, 0
508   };
509
510 /* Process INSN and add its impact on DC.  */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
513 {
514   sched_deps_info = &advance_deps_context_sched_deps_info;
515   deps_analyze_insn (dc, insn);
516 }
517 \f
518
519 /* Functions to work with DFA states.  */
520
521 /* Allocate store for a DFA state.  */
522 static state_t
523 state_alloc (void)
524 {
525   return xmalloc (dfa_state_size);
526 }
527
528 /* Allocate and initialize DFA state.  */
529 static state_t
530 state_create (void)
531 {
532   state_t state = state_alloc ();
533
534   state_reset (state);
535   advance_state (state);
536   return state;
537 }
538
539 /* Free DFA state.  */
540 static void
541 state_free (state_t state)
542 {
543   free (state);
544 }
545
546 /* Make a copy of FROM in TO.  */
547 static void
548 state_copy (state_t to, state_t from)
549 {
550   memcpy (to, from, dfa_state_size);
551 }
552
553 /* Create a copy of FROM.  */
554 static state_t
555 state_create_copy (state_t from)
556 {
557   state_t to = state_alloc ();
558
559   state_copy (to, from);
560   return to;
561 }
562 \f
563
564 /* Functions to work with fences.  */
565
566 /* Clear the fence.  */
567 static void
568 fence_clear (fence_t f)
569 {
570   state_t s = FENCE_STATE (f);
571   deps_t dc = FENCE_DC (f);
572   void *tc = FENCE_TC (f);
573
574   ilist_clear (&FENCE_BNDS (f));
575
576   gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577               || (s == NULL && dc == NULL && tc == NULL));
578
579   free (s);
580
581   if (dc != NULL)
582     delete_deps_context (dc);
583
584   if (tc != NULL)
585     delete_target_context (tc);
586   vec_free (FENCE_EXECUTING_INSNS (f));
587   free (FENCE_READY_TICKS (f));
588   FENCE_READY_TICKS (f) = NULL;
589 }
590
591 /* Init a list of fences with successors of OLD_FENCE.  */
592 void
593 init_fences (insn_t old_fence)
594 {
595   insn_t succ;
596   succ_iterator si;
597   bool first = true;
598   int ready_ticks_size = get_max_uid () + 1;
599
600   FOR_EACH_SUCC_1 (succ, si, old_fence,
601                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602     {
603
604       if (first)
605         first = false;
606       else
607         gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609       flist_add (&fences, succ,
610                  state_create (),
611                  create_deps_context () /* dc */,
612                  create_target_context (true) /* tc */,
613                  NULL /* last_scheduled_insn */,
614                  NULL, /* executing_insns */
615                  XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616                  ready_ticks_size,
617                  NULL /* sched_next */,
618                  1 /* cycle */, 0 /* cycle_issued_insns */,
619                  issue_rate, /* issue_more */
620                  1 /* starts_cycle_p */, 0 /* after_stall_p */);
621     }
622 }
623
624 /* Merges two fences (filling fields of fence F with resulting values) by
625    following rules: 1) state, target context and last scheduled insn are
626    propagated from fallthrough edge if it is available;
627    2) deps context and cycle is propagated from more probable edge;
628    3) all other fields are set to corresponding constant values.
629
630    INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631    READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632    and AFTER_STALL_P are the corresponding fields of the second fence.  */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635               state_t state, deps_t dc, void *tc,
636               rtx_insn *last_scheduled_insn,
637               vec<rtx_insn *, va_gc> *executing_insns,
638               int *ready_ticks, int ready_ticks_size,
639               rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 {
641   insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643   gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644               && !sched_next && !FENCE_SCHED_NEXT (f));
645
646   /* Check if we can decide which path fences came.
647      If we can't (or don't want to) - reset all.  */
648   if (last_scheduled_insn == NULL
649       || last_scheduled_insn_old == NULL
650       /* This is a case when INSN is reachable on several paths from
651          one insn (this can happen when pipelining of outer loops is on and
652          there are two edges: one going around of inner loop and the other -
653          right through it; in such case just reset everything).  */
654       || last_scheduled_insn == last_scheduled_insn_old)
655     {
656       state_reset (FENCE_STATE (f));
657       state_free (state);
658
659       reset_deps_context (FENCE_DC (f));
660       delete_deps_context (dc);
661
662       reset_target_context (FENCE_TC (f), true);
663       delete_target_context (tc);
664
665       if (cycle > FENCE_CYCLE (f))
666         FENCE_CYCLE (f) = cycle;
667
668       FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669       FENCE_ISSUE_MORE (f) = issue_rate;
670       vec_free (executing_insns);
671       free (ready_ticks);
672       if (FENCE_EXECUTING_INSNS (f))
673         FENCE_EXECUTING_INSNS (f)->block_remove (0,
674                                           FENCE_EXECUTING_INSNS (f)->length ());
675       if (FENCE_READY_TICKS (f))
676         memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677     }
678   else
679     {
680       edge edge_old = NULL, edge_new = NULL;
681       edge candidate;
682       succ_iterator si;
683       insn_t succ;
684
685       /* Find fallthrough edge.  */
686       gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687       candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688
689       if (!candidate
690           || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691               && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692         {
693           /* No fallthrough edge leading to basic block of INSN.  */
694           state_reset (FENCE_STATE (f));
695           state_free (state);
696
697           reset_target_context (FENCE_TC (f), true);
698           delete_target_context (tc);
699
700           FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701           FENCE_ISSUE_MORE (f) = issue_rate;
702         }
703       else
704         if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705           {
706             state_free (FENCE_STATE (f));
707             FENCE_STATE (f) = state;
708
709             delete_target_context (FENCE_TC (f));
710             FENCE_TC (f) = tc;
711
712             FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
713             FENCE_ISSUE_MORE (f) = issue_more;
714           }
715         else
716           {
717             /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
718             state_free (state);
719             delete_target_context (tc);
720
721             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
722                         != BLOCK_FOR_INSN (last_scheduled_insn));
723           }
724
725         /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
726         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
727                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
728           {
729             if (succ == insn)
730               {
731                 /* No same successor allowed from several edges.  */
732                 gcc_assert (!edge_old);
733                 edge_old = si.e1;
734               }
735           }
736         /* Find edge of second predecessor (last_scheduled_insn->insn).  */
737         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
738                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
739           {
740             if (succ == insn)
741               {
742                 /* No same successor allowed from several edges.  */
743                 gcc_assert (!edge_new);
744                 edge_new = si.e1;
745               }
746           }
747
748         /* Check if we can choose most probable predecessor.  */
749         if (edge_old == NULL || edge_new == NULL)
750           {
751             reset_deps_context (FENCE_DC (f));
752             delete_deps_context (dc);
753             vec_free (executing_insns);
754             free (ready_ticks);
755
756             FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
757             if (FENCE_EXECUTING_INSNS (f))
758               FENCE_EXECUTING_INSNS (f)->block_remove (0,
759                                 FENCE_EXECUTING_INSNS (f)->length ());
760             if (FENCE_READY_TICKS (f))
761               memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
762           }
763         else
764           if (edge_new->probability > edge_old->probability)
765             {
766               delete_deps_context (FENCE_DC (f));
767               FENCE_DC (f) = dc;
768               vec_free (FENCE_EXECUTING_INSNS (f));
769               FENCE_EXECUTING_INSNS (f) = executing_insns;
770               free (FENCE_READY_TICKS (f));
771               FENCE_READY_TICKS (f) = ready_ticks;
772               FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
773               FENCE_CYCLE (f) = cycle;
774             }
775           else
776             {
777               /* Leave DC and CYCLE untouched.  */
778               delete_deps_context (dc);
779               vec_free (executing_insns);
780               free (ready_ticks);
781             }
782     }
783
784   /* Fill remaining invariant fields.  */
785   if (after_stall_p)
786     FENCE_AFTER_STALL_P (f) = 1;
787
788   FENCE_ISSUED_INSNS (f) = 0;
789   FENCE_STARTS_CYCLE_P (f) = 1;
790   FENCE_SCHED_NEXT (f) = NULL;
791 }
792
793 /* Add a new fence to NEW_FENCES list, initializing it from all
794    other parameters.  */
795 static void
796 add_to_fences (flist_tail_t new_fences, insn_t insn,
797                state_t state, deps_t dc, void *tc,
798                rtx_insn *last_scheduled_insn,
799                vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
800                int ready_ticks_size, rtx_insn *sched_next, int cycle,
801                int cycle_issued_insns, int issue_rate,
802                bool starts_cycle_p, bool after_stall_p)
803 {
804   fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806   if (! f)
807     {
808       flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
809                  last_scheduled_insn, executing_insns, ready_ticks,
810                  ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811                  issue_rate, starts_cycle_p, after_stall_p);
812
813       FLIST_TAIL_TAILP (new_fences)
814         = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815     }
816   else
817     {
818       merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819                     executing_insns, ready_ticks, ready_ticks_size,
820                     sched_next, cycle, issue_rate, after_stall_p);
821     }
822 }
823
824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
825 void
826 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827 {
828   fence_t f, old;
829   flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831   old = FLIST_FENCE (old_fences);
832   f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
833                     FENCE_INSN (FLIST_FENCE (old_fences)));
834   if (f)
835     {
836       merge_fences (f, old->insn, old->state, old->dc, old->tc,
837                     old->last_scheduled_insn, old->executing_insns,
838                     old->ready_ticks, old->ready_ticks_size,
839                     old->sched_next, old->cycle, old->issue_more,
840                     old->after_stall_p);
841     }
842   else
843     {
844       _list_add (tailp);
845       FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846       *FLIST_FENCE (*tailp) = *old;
847       init_fence_for_scheduling (FLIST_FENCE (*tailp));
848     }
849   FENCE_INSN (old) = NULL;
850 }
851
852 /* Add a new fence to NEW_FENCES list and initialize most of its data
853    as a clean one.  */
854 void
855 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856 {
857   int ready_ticks_size = get_max_uid () + 1;
858
859   add_to_fences (new_fences,
860                  succ, state_create (), create_deps_context (),
861                  create_target_context (true),
862                  NULL, NULL,
863                  XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864                  NULL, FENCE_CYCLE (fence) + 1,
865                  0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
866 }
867
868 /* Add a new fence to NEW_FENCES list and initialize all of its data
869    from FENCE and SUCC.  */
870 void
871 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872 {
873   int * new_ready_ticks
874     = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
875
876   memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877           FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878   add_to_fences (new_fences,
879                  succ, state_create_copy (FENCE_STATE (fence)),
880                  create_copy_of_deps_context (FENCE_DC (fence)),
881                  create_copy_of_target_context (FENCE_TC (fence)),
882                  FENCE_LAST_SCHEDULED_INSN (fence),
883                  vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
884                  new_ready_ticks,
885                  FENCE_READY_TICKS_SIZE (fence),
886                  FENCE_SCHED_NEXT (fence),
887                  FENCE_CYCLE (fence),
888                  FENCE_ISSUED_INSNS (fence),
889                  FENCE_ISSUE_MORE (fence),
890                  FENCE_STARTS_CYCLE_P (fence),
891                  FENCE_AFTER_STALL_P (fence));
892 }
893 \f
894
895 /* Functions to work with regset and nop pools.  */
896
897 /* Returns the new regset from pool.  It might have some of the bits set
898    from the previous usage.  */
899 regset
900 get_regset_from_pool (void)
901 {
902   regset rs;
903
904   if (regset_pool.n != 0)
905     rs = regset_pool.v[--regset_pool.n];
906   else
907     /* We need to create the regset.  */
908     {
909       rs = ALLOC_REG_SET (&reg_obstack);
910
911       if (regset_pool.nn == regset_pool.ss)
912         regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
913                                      (regset_pool.ss = 2 * regset_pool.ss + 1));
914       regset_pool.vv[regset_pool.nn++] = rs;
915     }
916
917   regset_pool.diff++;
918
919   return rs;
920 }
921
922 /* Same as above, but returns the empty regset.  */
923 regset
924 get_clear_regset_from_pool (void)
925 {
926   regset rs = get_regset_from_pool ();
927
928   CLEAR_REG_SET (rs);
929   return rs;
930 }
931
932 /* Return regset RS to the pool for future use.  */
933 void
934 return_regset_to_pool (regset rs)
935 {
936   gcc_assert (rs);
937   regset_pool.diff--;
938
939   if (regset_pool.n == regset_pool.s)
940     regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
941                                 (regset_pool.s = 2 * regset_pool.s + 1));
942   regset_pool.v[regset_pool.n++] = rs;
943 }
944
945 /* This is used as a qsort callback for sorting regset pool stacks.
946    X and XX are addresses of two regsets.  They are never equal.  */
947 static int
948 cmp_v_in_regset_pool (const void *x, const void *xx)
949 {
950   uintptr_t r1 = (uintptr_t) *((const regset *) x);
951   uintptr_t r2 = (uintptr_t) *((const regset *) xx);
952   if (r1 > r2)
953     return 1;
954   else if (r1 < r2)
955     return -1;
956   gcc_unreachable ();
957 }
958
959 /* Free the regset pool possibly checking for memory leaks.  */
960 void
961 free_regset_pool (void)
962 {
963   if (flag_checking)
964     {
965       regset *v = regset_pool.v;
966       int i = 0;
967       int n = regset_pool.n;
968
969       regset *vv = regset_pool.vv;
970       int ii = 0;
971       int nn = regset_pool.nn;
972
973       int diff = 0;
974
975       gcc_assert (n <= nn);
976
977       /* Sort both vectors so it will be possible to compare them.  */
978       qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
979       qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
980
981       while (ii < nn)
982         {
983           if (v[i] == vv[ii])
984             i++;
985           else
986             /* VV[II] was lost.  */
987             diff++;
988
989           ii++;
990         }
991
992       gcc_assert (diff == regset_pool.diff);
993     }
994
995   /* If not true - we have a memory leak.  */
996   gcc_assert (regset_pool.diff == 0);
997
998   while (regset_pool.n)
999     {
1000       --regset_pool.n;
1001       FREE_REG_SET (regset_pool.v[regset_pool.n]);
1002     }
1003
1004   free (regset_pool.v);
1005   regset_pool.v = NULL;
1006   regset_pool.s = 0;
1007
1008   free (regset_pool.vv);
1009   regset_pool.vv = NULL;
1010   regset_pool.nn = 0;
1011   regset_pool.ss = 0;
1012
1013   regset_pool.diff = 0;
1014 }
1015 \f
1016
1017 /* Functions to work with nop pools.  NOP insns are used as temporary
1018    placeholders of the insns being scheduled to allow correct update of
1019    the data sets.  When update is finished, NOPs are deleted.  */
1020
1021 /* A vinsn that is used to represent a nop.  This vinsn is shared among all
1022    nops sel-sched generates.  */
1023 static vinsn_t nop_vinsn = NULL;
1024
1025 /* Emit a nop before INSN, taking it from pool.  */
1026 insn_t
1027 get_nop_from_pool (insn_t insn)
1028 {
1029   rtx nop_pat;
1030   insn_t nop;
1031   bool old_p = nop_pool.n != 0;
1032   int flags;
1033
1034   if (old_p)
1035     nop_pat = nop_pool.v[--nop_pool.n];
1036   else
1037     nop_pat = nop_pattern;
1038
1039   nop = emit_insn_before (nop_pat, insn);
1040
1041   if (old_p)
1042     flags = INSN_INIT_TODO_SSID;
1043   else
1044     flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1045
1046   set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1047   sel_init_new_insn (nop, flags);
1048
1049   return nop;
1050 }
1051
1052 /* Remove NOP from the instruction stream and return it to the pool.  */
1053 void
1054 return_nop_to_pool (insn_t nop, bool full_tidying)
1055 {
1056   gcc_assert (INSN_IN_STREAM_P (nop));
1057   sel_remove_insn (nop, false, full_tidying);
1058
1059   /* We'll recycle this nop.  */
1060   nop->set_undeleted ();
1061
1062   if (nop_pool.n == nop_pool.s)
1063     nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1064                              (nop_pool.s = 2 * nop_pool.s + 1));
1065   nop_pool.v[nop_pool.n++] = nop;
1066 }
1067
1068 /* Free the nop pool.  */
1069 void
1070 free_nop_pool (void)
1071 {
1072   nop_pool.n = 0;
1073   nop_pool.s = 0;
1074   free (nop_pool.v);
1075   nop_pool.v = NULL;
1076 }
1077 \f
1078
1079 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1080    The callback is given two rtxes XX and YY and writes the new rtxes
1081    to NX and NY in case some needs to be skipped.  */
1082 static int
1083 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1084 {
1085   const_rtx x = *xx;
1086   const_rtx y = *yy;
1087
1088   if (GET_CODE (x) == UNSPEC
1089       && (targetm.sched.skip_rtx_p == NULL
1090           || targetm.sched.skip_rtx_p (x)))
1091     {
1092       *nx = XVECEXP (x, 0, 0);
1093       *ny = CONST_CAST_RTX (y);
1094       return 1;
1095     }
1096
1097   if (GET_CODE (y) == UNSPEC
1098       && (targetm.sched.skip_rtx_p == NULL
1099           || targetm.sched.skip_rtx_p (y)))
1100     {
1101       *nx = CONST_CAST_RTX (x);
1102       *ny = XVECEXP (y, 0, 0);
1103       return 1;
1104     }
1105
1106   return 0;
1107 }
1108
1109 /* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1110    to support ia64 speculation.  When changes are needed, new rtx X and new mode
1111    NMODE are written, and the callback returns true.  */
1112 static int
1113 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1114                            rtx *nx, machine_mode* nmode)
1115 {
1116   if (GET_CODE (x) == UNSPEC
1117       && targetm.sched.skip_rtx_p
1118       && targetm.sched.skip_rtx_p (x))
1119     {
1120       *nx = XVECEXP (x, 0 ,0);
1121       *nmode = VOIDmode;
1122       return 1;
1123     }
1124
1125   return 0;
1126 }
1127
1128 /* Returns LHS and RHS are ok to be scheduled separately.  */
1129 static bool
1130 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1131 {
1132   if (lhs == NULL || rhs == NULL)
1133     return false;
1134
1135   /* Do not schedule constants as rhs: no point to use reg, if const
1136      can be used.  Moreover, scheduling const as rhs may lead to mode
1137      mismatch cause consts don't have modes but they could be merged
1138      from branches where the same const used in different modes.  */
1139   if (CONSTANT_P (rhs))
1140     return false;
1141
1142   /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1143   if (COMPARISON_P (rhs))
1144       return false;
1145
1146   /* Do not allow single REG to be an rhs.  */
1147   if (REG_P (rhs))
1148     return false;
1149
1150   /* See comment at find_used_regs_1 (*1) for explanation of this
1151      restriction.  */
1152   /* FIXME: remove this later.  */
1153   if (MEM_P (lhs))
1154     return false;
1155
1156   /* This will filter all tricky things like ZERO_EXTRACT etc.
1157      For now we don't handle it.  */
1158   if (!REG_P (lhs) && !MEM_P (lhs))
1159     return false;
1160
1161   return true;
1162 }
1163
1164 /* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1165    FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1166    used e.g. for insns from recovery blocks.  */
1167 static void
1168 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1169 {
1170   hash_rtx_callback_function hrcf;
1171   int insn_class;
1172
1173   VINSN_INSN_RTX (vi) = insn;
1174   VINSN_COUNT (vi) = 0;
1175   vi->cost = -1;
1176
1177   if (INSN_NOP_P (insn))
1178     return;
1179
1180   if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1181     init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1182   else
1183     deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1184
1185   /* Hash vinsn depending on whether it is separable or not.  */
1186   hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1187   if (VINSN_SEPARABLE_P (vi))
1188     {
1189       rtx rhs = VINSN_RHS (vi);
1190
1191       VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1192                                      NULL, NULL, false, hrcf);
1193       VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1194                                          VOIDmode, NULL, NULL,
1195                                          false, hrcf);
1196     }
1197   else
1198     {
1199       VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1200                                      NULL, NULL, false, hrcf);
1201       VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1202     }
1203
1204   insn_class = haifa_classify_insn (insn);
1205   if (insn_class >= 2
1206       && (!targetm.sched.get_insn_spec_ds
1207           || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1208               == 0)))
1209     VINSN_MAY_TRAP_P (vi) = true;
1210   else
1211     VINSN_MAY_TRAP_P (vi) = false;
1212 }
1213
1214 /* Indicate that VI has become the part of an rtx object.  */
1215 void
1216 vinsn_attach (vinsn_t vi)
1217 {
1218   /* Assert that VI is not pending for deletion.  */
1219   gcc_assert (VINSN_INSN_RTX (vi));
1220
1221   VINSN_COUNT (vi)++;
1222 }
1223
1224 /* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1225    VINSN_TYPE (VI).  */
1226 static vinsn_t
1227 vinsn_create (insn_t insn, bool force_unique_p)
1228 {
1229   vinsn_t vi = XCNEW (struct vinsn_def);
1230
1231   vinsn_init (vi, insn, force_unique_p);
1232   return vi;
1233 }
1234
1235 /* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1236    the copy.  */
1237 vinsn_t
1238 vinsn_copy (vinsn_t vi, bool reattach_p)
1239 {
1240   rtx_insn *copy;
1241   bool unique = VINSN_UNIQUE_P (vi);
1242   vinsn_t new_vi;
1243
1244   copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1245   new_vi = create_vinsn_from_insn_rtx (copy, unique);
1246   if (reattach_p)
1247     {
1248       vinsn_detach (vi);
1249       vinsn_attach (new_vi);
1250     }
1251
1252   return new_vi;
1253 }
1254
1255 /* Delete the VI vinsn and free its data.  */
1256 static void
1257 vinsn_delete (vinsn_t vi)
1258 {
1259   gcc_assert (VINSN_COUNT (vi) == 0);
1260
1261   if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1262     {
1263       return_regset_to_pool (VINSN_REG_SETS (vi));
1264       return_regset_to_pool (VINSN_REG_USES (vi));
1265       return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1266     }
1267
1268   free (vi);
1269 }
1270
1271 /* Indicate that VI is no longer a part of some rtx object.
1272    Remove VI if it is no longer needed.  */
1273 void
1274 vinsn_detach (vinsn_t vi)
1275 {
1276   gcc_assert (VINSN_COUNT (vi) > 0);
1277
1278   if (--VINSN_COUNT (vi) == 0)
1279     vinsn_delete (vi);
1280 }
1281
1282 /* Returns TRUE if VI is a branch.  */
1283 bool
1284 vinsn_cond_branch_p (vinsn_t vi)
1285 {
1286   insn_t insn;
1287
1288   if (!VINSN_UNIQUE_P (vi))
1289     return false;
1290
1291   insn = VINSN_INSN_RTX (vi);
1292   if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1293     return false;
1294
1295   return control_flow_insn_p (insn);
1296 }
1297
1298 /* Return latency of INSN.  */
1299 static int
1300 sel_insn_rtx_cost (rtx_insn *insn)
1301 {
1302   int cost;
1303
1304   /* A USE insn, or something else we don't need to
1305      understand.  We can't pass these directly to
1306      result_ready_cost or insn_default_latency because it will
1307      trigger a fatal error for unrecognizable insns.  */
1308   if (recog_memoized (insn) < 0)
1309     cost = 0;
1310   else
1311     {
1312       cost = insn_default_latency (insn);
1313
1314       if (cost < 0)
1315         cost = 0;
1316     }
1317
1318   return cost;
1319 }
1320
1321 /* Return the cost of the VI.
1322    !!! FIXME: Unify with haifa-sched.c: insn_sched_cost ().  */
1323 int
1324 sel_vinsn_cost (vinsn_t vi)
1325 {
1326   int cost = vi->cost;
1327
1328   if (cost < 0)
1329     {
1330       cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1331       vi->cost = cost;
1332     }
1333
1334   return cost;
1335 }
1336 \f
1337
1338 /* Functions for insn emitting.  */
1339
1340 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1341    EXPR and SEQNO.  */
1342 insn_t
1343 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1344 {
1345   insn_t new_insn;
1346
1347   gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1348
1349   new_insn = emit_insn_after (pattern, after);
1350   set_insn_init (expr, NULL, seqno);
1351   sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1352
1353   return new_insn;
1354 }
1355
1356 /* Force newly generated vinsns to be unique.  */
1357 static bool init_insn_force_unique_p = false;
1358
1359 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1360    initialize its data from EXPR and SEQNO.  */
1361 insn_t
1362 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1363                                       insn_t after)
1364 {
1365   insn_t insn;
1366
1367   gcc_assert (!init_insn_force_unique_p);
1368
1369   init_insn_force_unique_p = true;
1370   insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1371   CANT_MOVE (insn) = 1;
1372   init_insn_force_unique_p = false;
1373
1374   return insn;
1375 }
1376
1377 /* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1378    take it as a new vinsn instead of EXPR's vinsn.
1379    We simplify insns later, after scheduling region in
1380    simplify_changed_insns.  */
1381 insn_t
1382 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1383                               insn_t after)
1384 {
1385   expr_t emit_expr;
1386   insn_t insn;
1387   int flags;
1388
1389   emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1390                              seqno);
1391   insn = EXPR_INSN_RTX (emit_expr);
1392
1393   /* The insn may come from the transformation cache, which may hold already
1394      deleted insns, so mark it as not deleted.  */
1395   insn->set_undeleted ();
1396
1397   add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1398
1399   flags = INSN_INIT_TODO_SSID;
1400   if (INSN_LUID (insn) == 0)
1401     flags |= INSN_INIT_TODO_LUID;
1402   sel_init_new_insn (insn, flags);
1403
1404   return insn;
1405 }
1406
1407 /* Move insn from EXPR after AFTER.  */
1408 insn_t
1409 sel_move_insn (expr_t expr, int seqno, insn_t after)
1410 {
1411   insn_t insn = EXPR_INSN_RTX (expr);
1412   basic_block bb = BLOCK_FOR_INSN (after);
1413   insn_t next = NEXT_INSN (after);
1414
1415   /* Assert that in move_op we disconnected this insn properly.  */
1416   gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1417   SET_PREV_INSN (insn) = after;
1418   SET_NEXT_INSN (insn) = next;
1419
1420   SET_NEXT_INSN (after) = insn;
1421   SET_PREV_INSN (next) = insn;
1422
1423   /* Update links from insn to bb and vice versa.  */
1424   df_insn_change_bb (insn, bb);
1425   if (BB_END (bb) == after)
1426     BB_END (bb) = insn;
1427
1428   prepare_insn_expr (insn, seqno);
1429   return insn;
1430 }
1431
1432 \f
1433 /* Functions to work with right-hand sides.  */
1434
1435 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1436    VECT and return true when found.  Use NEW_VINSN for comparison only when
1437    COMPARE_VINSNS is true.  Write to INDP the index on which
1438    the search has stopped, such that inserting the new element at INDP will
1439    retain VECT's sort order.  */
1440 static bool
1441 find_in_history_vect_1 (vec<expr_history_def> vect,
1442                         unsigned uid, vinsn_t new_vinsn,
1443                         bool compare_vinsns, int *indp)
1444 {
1445   expr_history_def *arr;
1446   int i, j, len = vect.length ();
1447
1448   if (len == 0)
1449     {
1450       *indp = 0;
1451       return false;
1452     }
1453
1454   arr = vect.address ();
1455   i = 0, j = len - 1;
1456
1457   while (i <= j)
1458     {
1459       unsigned auid = arr[i].uid;
1460       vinsn_t avinsn = arr[i].new_expr_vinsn;
1461
1462       if (auid == uid
1463           /* When undoing transformation on a bookkeeping copy, the new vinsn
1464              may not be exactly equal to the one that is saved in the vector.
1465              This is because the insn whose copy we're checking was possibly
1466              substituted itself.  */
1467           && (! compare_vinsns
1468               || vinsn_equal_p (avinsn, new_vinsn)))
1469         {
1470           *indp = i;
1471           return true;
1472         }
1473       else if (auid > uid)
1474         break;
1475       i++;
1476     }
1477
1478   *indp = i;
1479   return false;
1480 }
1481
1482 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1483    the position found or -1, if no such value is in vector.
1484    Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1485 int
1486 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1487                       vinsn_t new_vinsn, bool originators_p)
1488 {
1489   int ind;
1490
1491   if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1492                               false, &ind))
1493     return ind;
1494
1495   if (INSN_ORIGINATORS (insn) && originators_p)
1496     {
1497       unsigned uid;
1498       bitmap_iterator bi;
1499
1500       EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501         if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502           return ind;
1503     }
1504
1505   return -1;
1506 }
1507
1508 /* Insert new element in a sorted history vector pointed to by PVECT,
1509    if it is not there already.  The element is searched using
1510    UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511    the history of a transformation.  */
1512 void
1513 insert_in_history_vect (vec<expr_history_def> *pvect,
1514                         unsigned uid, enum local_trans_type type,
1515                         vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1516                         ds_t spec_ds)
1517 {
1518   vec<expr_history_def> vect = *pvect;
1519   expr_history_def temp;
1520   bool res;
1521   int ind;
1522
1523   res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1524
1525   if (res)
1526     {
1527       expr_history_def *phist = &vect[ind];
1528
1529       /* It is possible that speculation types of expressions that were
1530          propagated through different paths will be different here.  In this
1531          case, merge the status to get the correct check later.  */
1532       if (phist->spec_ds != spec_ds)
1533         phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534       return;
1535     }
1536
1537   temp.uid = uid;
1538   temp.old_expr_vinsn = old_expr_vinsn;
1539   temp.new_expr_vinsn = new_expr_vinsn;
1540   temp.spec_ds = spec_ds;
1541   temp.type = type;
1542
1543   vinsn_attach (old_expr_vinsn);
1544   vinsn_attach (new_expr_vinsn);
1545   vect.safe_insert (ind, temp);
1546   *pvect = vect;
1547 }
1548
1549 /* Free history vector PVECT.  */
1550 static void
1551 free_history_vect (vec<expr_history_def> &pvect)
1552 {
1553   unsigned i;
1554   expr_history_def *phist;
1555
1556   if (! pvect.exists ())
1557     return;
1558
1559   for (i = 0; pvect.iterate (i, &phist); i++)
1560     {
1561       vinsn_detach (phist->old_expr_vinsn);
1562       vinsn_detach (phist->new_expr_vinsn);
1563     }
1564
1565   pvect.release ();
1566 }
1567
1568 /* Merge vector FROM to PVECT.  */
1569 static void
1570 merge_history_vect (vec<expr_history_def> *pvect,
1571                     vec<expr_history_def> from)
1572 {
1573   expr_history_def *phist;
1574   int i;
1575
1576   /* We keep this vector sorted.  */
1577   for (i = 0; from.iterate (i, &phist); i++)
1578     insert_in_history_vect (pvect, phist->uid, phist->type,
1579                             phist->old_expr_vinsn, phist->new_expr_vinsn,
1580                             phist->spec_ds);
1581 }
1582
1583 /* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1584 bool
1585 vinsn_equal_p (vinsn_t x, vinsn_t y)
1586 {
1587   rtx_equal_p_callback_function repcf;
1588
1589   if (x == y)
1590     return true;
1591
1592   if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593     return false;
1594
1595   if (VINSN_HASH (x) != VINSN_HASH (y))
1596     return false;
1597
1598   repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1599   if (VINSN_SEPARABLE_P (x))
1600     {
1601       /* Compare RHSes of VINSNs.  */
1602       gcc_assert (VINSN_RHS (x));
1603       gcc_assert (VINSN_RHS (y));
1604
1605       return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1606     }
1607
1608   return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1609 }
1610 \f
1611
1612 /* Functions for working with expressions.  */
1613
1614 /* Initialize EXPR.  */
1615 static void
1616 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617            int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618            ds_t spec_to_check_ds, int orig_sched_cycle,
1619            vec<expr_history_def> history,
1620            signed char target_available,
1621            bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1622            bool cant_move)
1623 {
1624   vinsn_attach (vi);
1625
1626   EXPR_VINSN (expr) = vi;
1627   EXPR_SPEC (expr) = spec;
1628   EXPR_USEFULNESS (expr) = use;
1629   EXPR_PRIORITY (expr) = priority;
1630   EXPR_PRIORITY_ADJ (expr) = 0;
1631   EXPR_SCHED_TIMES (expr) = sched_times;
1632   EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1633   EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1634   EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1635   EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1636
1637   if (history.exists ())
1638     EXPR_HISTORY_OF_CHANGES (expr) = history;
1639   else
1640     EXPR_HISTORY_OF_CHANGES (expr).create (0);
1641
1642   EXPR_TARGET_AVAILABLE (expr) = target_available;
1643   EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1644   EXPR_WAS_RENAMED (expr) = was_renamed;
1645   EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1646   EXPR_CANT_MOVE (expr) = cant_move;
1647 }
1648
1649 /* Make a copy of the expr FROM into the expr TO.  */
1650 void
1651 copy_expr (expr_t to, expr_t from)
1652 {
1653   vec<expr_history_def> temp = vNULL;
1654
1655   if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1656     {
1657       unsigned i;
1658       expr_history_def *phist;
1659
1660       temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1661       for (i = 0;
1662            temp.iterate (i, &phist);
1663            i++)
1664         {
1665           vinsn_attach (phist->old_expr_vinsn);
1666           vinsn_attach (phist->new_expr_vinsn);
1667         }
1668     }
1669
1670   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1671              EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1672              EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1673              EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1674              EXPR_ORIG_SCHED_CYCLE (from), temp,
1675              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1676              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1677              EXPR_CANT_MOVE (from));
1678 }
1679
1680 /* Same, but the final expr will not ever be in av sets, so don't copy
1681    "uninteresting" data such as bitmap cache.  */
1682 void
1683 copy_expr_onside (expr_t to, expr_t from)
1684 {
1685   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1686              EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1687              EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1688              vNULL,
1689              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1690              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1691              EXPR_CANT_MOVE (from));
1692 }
1693
1694 /* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1695    initializing new insns.  */
1696 static void
1697 prepare_insn_expr (insn_t insn, int seqno)
1698 {
1699   expr_t expr = INSN_EXPR (insn);
1700   ds_t ds;
1701
1702   INSN_SEQNO (insn) = seqno;
1703   EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1704   EXPR_SPEC (expr) = 0;
1705   EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1706   EXPR_WAS_SUBSTITUTED (expr) = 0;
1707   EXPR_WAS_RENAMED (expr) = 0;
1708   EXPR_TARGET_AVAILABLE (expr) = 1;
1709   INSN_LIVE_VALID_P (insn) = false;
1710
1711   /* ??? If this expression is speculative, make its dependence
1712      as weak as possible.  We can filter this expression later
1713      in process_spec_exprs, because we do not distinguish
1714      between the status we got during compute_av_set and the
1715      existing status.  To be fixed.  */
1716   ds = EXPR_SPEC_DONE_DS (expr);
1717   if (ds)
1718     EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1719
1720   free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1721 }
1722
1723 /* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1724    is non-null when expressions are merged from different successors at
1725    a split point.  */
1726 static void
1727 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1728 {
1729   if (EXPR_TARGET_AVAILABLE (to) < 0
1730       || EXPR_TARGET_AVAILABLE (from) < 0)
1731     EXPR_TARGET_AVAILABLE (to) = -1;
1732   else
1733     {
1734       /* We try to detect the case when one of the expressions
1735          can only be reached through another one.  In this case,
1736          we can do better.  */
1737       if (split_point == NULL)
1738         {
1739           int toind, fromind;
1740
1741           toind = EXPR_ORIG_BB_INDEX (to);
1742           fromind = EXPR_ORIG_BB_INDEX (from);
1743
1744           if (toind && toind == fromind)
1745             /* Do nothing -- everything is done in
1746                merge_with_other_exprs.  */
1747             ;
1748           else
1749             EXPR_TARGET_AVAILABLE (to) = -1;
1750         }
1751       else if (EXPR_TARGET_AVAILABLE (from) == 0
1752                && EXPR_LHS (from)
1753                && REG_P (EXPR_LHS (from))
1754                && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1755         EXPR_TARGET_AVAILABLE (to) = -1;
1756       else
1757         EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1758     }
1759 }
1760
1761 /* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1762    is non-null when expressions are merged from different successors at
1763    a split point.  */
1764 static void
1765 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1766 {
1767   ds_t old_to_ds, old_from_ds;
1768
1769   old_to_ds = EXPR_SPEC_DONE_DS (to);
1770   old_from_ds = EXPR_SPEC_DONE_DS (from);
1771
1772   EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1773   EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1774   EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1775
1776   /* When merging e.g. control & data speculative exprs, or a control
1777      speculative with a control&data speculative one, we really have
1778      to change vinsn too.  Also, when speculative status is changed,
1779      we also need to record this as a transformation in expr's history.  */
1780   if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1781     {
1782       old_to_ds = ds_get_speculation_types (old_to_ds);
1783       old_from_ds = ds_get_speculation_types (old_from_ds);
1784
1785       if (old_to_ds != old_from_ds)
1786         {
1787           ds_t record_ds;
1788
1789           /* When both expressions are speculative, we need to change
1790              the vinsn first.  */
1791           if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1792             {
1793               int res;
1794
1795               res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1796               gcc_assert (res >= 0);
1797             }
1798
1799           if (split_point != NULL)
1800             {
1801               /* Record the change with proper status.  */
1802               record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1803               record_ds &= ~(old_to_ds & SPECULATIVE);
1804               record_ds &= ~(old_from_ds & SPECULATIVE);
1805
1806               insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1807                                       INSN_UID (split_point), TRANS_SPECULATION,
1808                                       EXPR_VINSN (from), EXPR_VINSN (to),
1809                                       record_ds);
1810             }
1811         }
1812     }
1813 }
1814
1815
1816 /* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1817    this is done along different paths.  */
1818 void
1819 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1820 {
1821   /* Choose the maximum of the specs of merged exprs.  This is required
1822      for correctness of bookkeeping.  */
1823   if (EXPR_SPEC (to) < EXPR_SPEC (from))
1824     EXPR_SPEC (to) = EXPR_SPEC (from);
1825
1826   if (split_point)
1827     EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1828   else
1829     EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1830                                 EXPR_USEFULNESS (from));
1831
1832   if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1833     EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1834
1835   /* We merge sched-times half-way to the larger value to avoid the endless
1836      pipelining of unneeded insns.  The average seems to be good compromise
1837      between pipelining opportunities and avoiding extra work.  */
1838   if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1839     EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1840                              + 1) / 2);
1841
1842   if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1843     EXPR_ORIG_BB_INDEX (to) = 0;
1844
1845   EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1846                                     EXPR_ORIG_SCHED_CYCLE (from));
1847
1848   EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1849   EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1850   EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1851
1852   merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1853                       EXPR_HISTORY_OF_CHANGES (from));
1854   update_target_availability (to, from, split_point);
1855   update_speculative_bits (to, from, split_point);
1856 }
1857
1858 /* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1859    in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1860    are merged from different successors at a split point.  */
1861 void
1862 merge_expr (expr_t to, expr_t from, insn_t split_point)
1863 {
1864   vinsn_t to_vi = EXPR_VINSN (to);
1865   vinsn_t from_vi = EXPR_VINSN (from);
1866
1867   gcc_assert (vinsn_equal_p (to_vi, from_vi));
1868
1869   /* Make sure that speculative pattern is propagated into exprs that
1870      have non-speculative one.  This will provide us with consistent
1871      speculative bits and speculative patterns inside expr.  */
1872   if (EXPR_SPEC_DONE_DS (to) == 0
1873       && (EXPR_SPEC_DONE_DS (from) != 0
1874           /* Do likewise for volatile insns, so that we always retain
1875              the may_trap_p bit on the resulting expression.  However,
1876              avoid propagating the trapping bit into the instructions
1877              already speculated.  This would result in replacing the
1878              speculative pattern with the non-speculative one and breaking
1879              the speculation support.  */
1880           || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1881               && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1882     change_vinsn_in_expr (to, EXPR_VINSN (from));
1883
1884   merge_expr_data (to, from, split_point);
1885   gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1886 }
1887
1888 /* Clear the information of this EXPR.  */
1889 void
1890 clear_expr (expr_t expr)
1891 {
1892
1893   vinsn_detach (EXPR_VINSN (expr));
1894   EXPR_VINSN (expr) = NULL;
1895
1896   free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1897 }
1898
1899 /* For a given LV_SET, mark EXPR having unavailable target register.  */
1900 static void
1901 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1902 {
1903   if (EXPR_SEPARABLE_P (expr))
1904     {
1905       if (REG_P (EXPR_LHS (expr))
1906           && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1907         {
1908           /* If it's an insn like r1 = use (r1, ...), and it exists in
1909              different forms in each of the av_sets being merged, we can't say
1910              whether original destination register is available or not.
1911              However, this still works if destination register is not used
1912              in the original expression: if the branch at which LV_SET we're
1913              looking here is not actually 'other branch' in sense that same
1914              expression is available through it (but it can't be determined
1915              at computation stage because of transformations on one of the
1916              branches), it still won't affect the availability.
1917              Liveness of a register somewhere on a code motion path means
1918              it's either read somewhere on a codemotion path, live on
1919              'other' branch, live at the point immediately following
1920              the original operation, or is read by the original operation.
1921              The latter case is filtered out in the condition below.
1922              It still doesn't cover the case when register is defined and used
1923              somewhere within the code motion path, and in this case we could
1924              miss a unifying code motion along both branches using a renamed
1925              register, but it won't affect a code correctness since upon
1926              an actual code motion a bookkeeping code would be generated.  */
1927           if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1928                                       EXPR_LHS (expr)))
1929             EXPR_TARGET_AVAILABLE (expr) = -1;
1930           else
1931             EXPR_TARGET_AVAILABLE (expr) = false;
1932         }
1933     }
1934   else
1935     {
1936       unsigned regno;
1937       reg_set_iterator rsi;
1938
1939       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1940                                  0, regno, rsi)
1941         if (bitmap_bit_p (lv_set, regno))
1942           {
1943             EXPR_TARGET_AVAILABLE (expr) = false;
1944             break;
1945           }
1946
1947       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1948                                  0, regno, rsi)
1949         if (bitmap_bit_p (lv_set, regno))
1950           {
1951             EXPR_TARGET_AVAILABLE (expr) = false;
1952             break;
1953           }
1954     }
1955 }
1956
1957 /* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1958    or dependence status have changed, 2 when also the target register
1959    became unavailable, 0 if nothing had to be changed.  */
1960 int
1961 speculate_expr (expr_t expr, ds_t ds)
1962 {
1963   int res;
1964   rtx_insn *orig_insn_rtx;
1965   rtx spec_pat;
1966   ds_t target_ds, current_ds;
1967
1968   /* Obtain the status we need to put on EXPR.   */
1969   target_ds = (ds & SPECULATIVE);
1970   current_ds = EXPR_SPEC_DONE_DS (expr);
1971   ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1972
1973   orig_insn_rtx = EXPR_INSN_RTX (expr);
1974
1975   res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1976
1977   switch (res)
1978     {
1979     case 0:
1980       EXPR_SPEC_DONE_DS (expr) = ds;
1981       return current_ds != ds ? 1 : 0;
1982
1983     case 1:
1984       {
1985         rtx_insn *spec_insn_rtx =
1986           create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987         vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1988
1989         change_vinsn_in_expr (expr, spec_vinsn);
1990         EXPR_SPEC_DONE_DS (expr) = ds;
1991         EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1992
1993         /* Do not allow clobbering the address register of speculative
1994            insns.  */
1995         if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996                                     expr_dest_reg (expr)))
1997           {
1998             EXPR_TARGET_AVAILABLE (expr) = false;
1999             return 2;
2000           }
2001
2002         return 1;
2003       }
2004
2005     case -1:
2006       return -1;
2007
2008     default:
2009       gcc_unreachable ();
2010       return -1;
2011     }
2012 }
2013
2014 /* Return a destination register, if any, of EXPR.  */
2015 rtx
2016 expr_dest_reg (expr_t expr)
2017 {
2018   rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2019
2020   if (dest != NULL_RTX && REG_P (dest))
2021     return dest;
2022
2023   return NULL_RTX;
2024 }
2025
2026 /* Returns the REGNO of the R's destination.  */
2027 unsigned
2028 expr_dest_regno (expr_t expr)
2029 {
2030   rtx dest = expr_dest_reg (expr);
2031
2032   gcc_assert (dest != NULL_RTX);
2033   return REGNO (dest);
2034 }
2035
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037    AV_SET having unavailable target register.  */
2038 void
2039 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2040 {
2041   expr_t expr;
2042   av_set_iterator avi;
2043
2044   FOR_EACH_EXPR (expr, avi, join_set)
2045     if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046       set_unavailable_target_for_expr (expr, lv_set);
2047 }
2048 \f
2049
2050 /* Returns true if REG (at least partially) is present in REGS.  */
2051 bool
2052 register_unavailable_p (regset regs, rtx reg)
2053 {
2054   unsigned regno, end_regno;
2055
2056   regno = REGNO (reg);
2057   if (bitmap_bit_p (regs, regno))
2058     return true;
2059
2060   end_regno = END_REGNO (reg);
2061
2062   while (++regno < end_regno)
2063     if (bitmap_bit_p (regs, regno))
2064       return true;
2065
2066   return false;
2067 }
2068
2069 /* Av set functions.  */
2070
2071 /* Add a new element to av set SETP.
2072    Return the element added.  */
2073 static av_set_t
2074 av_set_add_element (av_set_t *setp)
2075 {
2076   /* Insert at the beginning of the list.  */
2077   _list_add (setp);
2078   return *setp;
2079 }
2080
2081 /* Add EXPR to SETP.  */
2082 void
2083 av_set_add (av_set_t *setp, expr_t expr)
2084 {
2085   av_set_t elem;
2086
2087   gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088   elem = av_set_add_element (setp);
2089   copy_expr (_AV_SET_EXPR (elem), expr);
2090 }
2091
2092 /* Same, but do not copy EXPR.  */
2093 static void
2094 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2095 {
2096   av_set_t elem;
2097
2098   elem = av_set_add_element (setp);
2099   *_AV_SET_EXPR (elem) = *expr;
2100 }
2101
2102 /* Remove expr pointed to by IP from the av_set.  */
2103 void
2104 av_set_iter_remove (av_set_iterator *ip)
2105 {
2106   clear_expr (_AV_SET_EXPR (*ip->lp));
2107   _list_iter_remove (ip);
2108 }
2109
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111    sense of vinsn_equal_p function. Return NULL if no such expr is
2112    in SET was found.  */
2113 expr_t
2114 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2115 {
2116   expr_t expr;
2117   av_set_iterator i;
2118
2119   FOR_EACH_EXPR (expr, i, set)
2120     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121       return expr;
2122   return NULL;
2123 }
2124
2125 /* Same, but also remove the EXPR found.   */
2126 static expr_t
2127 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2128 {
2129   expr_t expr;
2130   av_set_iterator i;
2131
2132   FOR_EACH_EXPR_1 (expr, i, setp)
2133     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2134       {
2135         _list_iter_remove_nofree (&i);
2136         return expr;
2137       }
2138   return NULL;
2139 }
2140
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142    sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143    Returns NULL if no such expr is in SET was found.  */
2144 static expr_t
2145 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2146 {
2147   expr_t cur_expr;
2148   av_set_iterator i;
2149
2150   FOR_EACH_EXPR (cur_expr, i, set)
2151     {
2152       if (cur_expr == expr)
2153         continue;
2154       if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155         return cur_expr;
2156     }
2157
2158   return NULL;
2159 }
2160
2161 /* If other expression is already in AVP, remove one of them.  */
2162 expr_t
2163 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2164 {
2165   expr_t expr2;
2166
2167   expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168   if (expr2 != NULL)
2169     {
2170       /* Reset target availability on merge, since taking it only from one
2171          of the exprs would be controversial for different code.  */
2172       EXPR_TARGET_AVAILABLE (expr2) = -1;
2173       EXPR_USEFULNESS (expr2) = 0;
2174
2175       merge_expr (expr2, expr, NULL);
2176
2177       /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2178       EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2179
2180       av_set_iter_remove (ip);
2181       return expr2;
2182     }
2183
2184   return expr;
2185 }
2186
2187 /* Return true if there is an expr that correlates to VI in SET.  */
2188 bool
2189 av_set_is_in_p (av_set_t set, vinsn_t vi)
2190 {
2191   return av_set_lookup (set, vi) != NULL;
2192 }
2193
2194 /* Return a copy of SET.  */
2195 av_set_t
2196 av_set_copy (av_set_t set)
2197 {
2198   expr_t expr;
2199   av_set_iterator i;
2200   av_set_t res = NULL;
2201
2202   FOR_EACH_EXPR (expr, i, set)
2203     av_set_add (&res, expr);
2204
2205   return res;
2206 }
2207
2208 /* Join two av sets that do not have common elements by attaching second set
2209    (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210    _AV_SET_NEXT of first set's last element).  */
2211 static void
2212 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2213 {
2214   gcc_assert (*to_tailp == NULL);
2215   *to_tailp = *fromp;
2216   *fromp = NULL;
2217 }
2218
2219 /* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2220    pointed to by FROMP afterwards.  */
2221 void
2222 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2223 {
2224   expr_t expr1;
2225   av_set_iterator i;
2226
2227   /* Delete from TOP all exprs, that present in FROMP.  */
2228   FOR_EACH_EXPR_1 (expr1, i, top)
2229     {
2230       expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2231
2232       if (expr2)
2233         {
2234           merge_expr (expr2, expr1, insn);
2235           av_set_iter_remove (&i);
2236         }
2237     }
2238
2239   join_distinct_sets (i.lp, fromp);
2240 }
2241
2242 /* Same as above, but also update availability of target register in
2243    TOP judging by TO_LV_SET and FROM_LV_SET.  */
2244 void
2245 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246                        regset from_lv_set, insn_t insn)
2247 {
2248   expr_t expr1;
2249   av_set_iterator i;
2250   av_set_t *to_tailp, in_both_set = NULL;
2251
2252   /* Delete from TOP all expres, that present in FROMP.  */
2253   FOR_EACH_EXPR_1 (expr1, i, top)
2254     {
2255       expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2256
2257       if (expr2)
2258         {
2259           /* It may be that the expressions have different destination
2260              registers, in which case we need to check liveness here.  */
2261           if (EXPR_SEPARABLE_P (expr1))
2262             {
2263               int regno1 = (REG_P (EXPR_LHS (expr1))
2264                             ? (int) expr_dest_regno (expr1) : -1);
2265               int regno2 = (REG_P (EXPR_LHS (expr2))
2266                             ? (int) expr_dest_regno (expr2) : -1);
2267
2268               /* ??? We don't have a way to check restrictions for
2269                *other* register on the current path, we did it only
2270                for the current target register.  Give up.  */
2271               if (regno1 != regno2)
2272                 EXPR_TARGET_AVAILABLE (expr2) = -1;
2273             }
2274           else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275             EXPR_TARGET_AVAILABLE (expr2) = -1;
2276
2277           merge_expr (expr2, expr1, insn);
2278           av_set_add_nocopy (&in_both_set, expr2);
2279           av_set_iter_remove (&i);
2280         }
2281       else
2282         /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2283            FROM_LV_SET.  */
2284         set_unavailable_target_for_expr (expr1, from_lv_set);
2285     }
2286   to_tailp = i.lp;
2287
2288   /* These expressions are not present in TOP.  Check liveness
2289      restrictions on TO_LV_SET.  */
2290   FOR_EACH_EXPR (expr1, i, *fromp)
2291     set_unavailable_target_for_expr (expr1, to_lv_set);
2292
2293   join_distinct_sets (i.lp, &in_both_set);
2294   join_distinct_sets (to_tailp, fromp);
2295 }
2296
2297 /* Clear av_set pointed to by SETP.  */
2298 void
2299 av_set_clear (av_set_t *setp)
2300 {
2301   expr_t expr;
2302   av_set_iterator i;
2303
2304   FOR_EACH_EXPR_1 (expr, i, setp)
2305     av_set_iter_remove (&i);
2306
2307   gcc_assert (*setp == NULL);
2308 }
2309
2310 /* Leave only one non-speculative element in the SETP.  */
2311 void
2312 av_set_leave_one_nonspec (av_set_t *setp)
2313 {
2314   expr_t expr;
2315   av_set_iterator i;
2316   bool has_one_nonspec = false;
2317
2318   /* Keep all speculative exprs, and leave one non-speculative
2319      (the first one).  */
2320   FOR_EACH_EXPR_1 (expr, i, setp)
2321     {
2322       if (!EXPR_SPEC_DONE_DS (expr))
2323         {
2324           if (has_one_nonspec)
2325             av_set_iter_remove (&i);
2326           else
2327             has_one_nonspec = true;
2328         }
2329     }
2330 }
2331
2332 /* Return the N'th element of the SET.  */
2333 expr_t
2334 av_set_element (av_set_t set, int n)
2335 {
2336   expr_t expr;
2337   av_set_iterator i;
2338
2339   FOR_EACH_EXPR (expr, i, set)
2340     if (n-- == 0)
2341       return expr;
2342
2343   gcc_unreachable ();
2344   return NULL;
2345 }
2346
2347 /* Deletes all expressions from AVP that are conditional branches (IFs).  */
2348 void
2349 av_set_substract_cond_branches (av_set_t *avp)
2350 {
2351   av_set_iterator i;
2352   expr_t expr;
2353
2354   FOR_EACH_EXPR_1 (expr, i, avp)
2355     if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356       av_set_iter_remove (&i);
2357 }
2358
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360    value PROB / ALL_PROB.  */
2361 void
2362 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2363 {
2364   av_set_iterator i;
2365   expr_t expr;
2366
2367   FOR_EACH_EXPR (expr, i, av)
2368     EXPR_USEFULNESS (expr) = (all_prob
2369                               ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370                               : 0);
2371 }
2372
2373 /* Leave in AVP only those expressions, which are present in AV,
2374    and return it, merging history expressions.  */
2375 void
2376 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2377 {
2378   av_set_iterator i;
2379   expr_t expr, expr2;
2380
2381   FOR_EACH_EXPR_1 (expr, i, avp)
2382     if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2383       av_set_iter_remove (&i);
2384     else
2385       /* When updating av sets in bookkeeping blocks, we can add more insns
2386          there which will be transformed but the upper av sets will not
2387          reflect those transformations.  We then fail to undo those
2388          when searching for such insns.  So merge the history saved
2389          in the av set of the block we are processing.  */
2390       merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391                           EXPR_HISTORY_OF_CHANGES (expr2));
2392 }
2393
2394 \f
2395
2396 /* Dependence hooks to initialize insn data.  */
2397
2398 /* This is used in hooks callable from dependence analysis when initializing
2399    instruction's data.  */
2400 static struct
2401 {
2402   /* Where the dependence was found (lhs/rhs).  */
2403   deps_where_t where;
2404
2405   /* The actual data object to initialize.  */
2406   idata_t id;
2407
2408   /* True when the insn should not be made clonable.  */
2409   bool force_unique_p;
2410
2411   /* True when insn should be treated as of type USE, i.e. never renamed.  */
2412   bool force_use_p;
2413 } deps_init_id_data;
2414
2415
2416 /* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2417    clonable.  */
2418 static void
2419 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2420 {
2421   int type;
2422
2423   /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424      That clonable insns which can be separated into lhs and rhs have type SET.
2425      Other clonable insns have type USE.  */
2426   type = GET_CODE (insn);
2427
2428   /* Only regular insns could be cloned.  */
2429   if (type == INSN && !force_unique_p)
2430     type = SET;
2431   else if (type == JUMP_INSN && simplejump_p (insn))
2432     type = PC;
2433   else if (type == DEBUG_INSN)
2434     type = !force_unique_p ? USE : INSN;
2435
2436   IDATA_TYPE (id) = type;
2437   IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438   IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439   IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2440 }
2441
2442 /* Start initializing insn data.  */
2443 static void
2444 deps_init_id_start_insn (insn_t insn)
2445 {
2446   gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2447
2448   setup_id_for_insn (deps_init_id_data.id, insn,
2449                      deps_init_id_data.force_unique_p);
2450   deps_init_id_data.where = DEPS_IN_INSN;
2451 }
2452
2453 /* Start initializing lhs data.  */
2454 static void
2455 deps_init_id_start_lhs (rtx lhs)
2456 {
2457   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458   gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2459
2460   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2461     {
2462       IDATA_LHS (deps_init_id_data.id) = lhs;
2463       deps_init_id_data.where = DEPS_IN_LHS;
2464     }
2465 }
2466
2467 /* Finish initializing lhs data.  */
2468 static void
2469 deps_init_id_finish_lhs (void)
2470 {
2471   deps_init_id_data.where = DEPS_IN_INSN;
2472 }
2473
2474 /* Note a set of REGNO.  */
2475 static void
2476 deps_init_id_note_reg_set (int regno)
2477 {
2478   haifa_note_reg_set (regno);
2479
2480   if (deps_init_id_data.where == DEPS_IN_RHS)
2481     deps_init_id_data.force_use_p = true;
2482
2483   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484     SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2485
2486 #ifdef STACK_REGS
2487   /* Make instructions that set stack registers to be ineligible for
2488      renaming to avoid issues with find_used_regs.  */
2489   if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490     deps_init_id_data.force_use_p = true;
2491 #endif
2492 }
2493
2494 /* Note a clobber of REGNO.  */
2495 static void
2496 deps_init_id_note_reg_clobber (int regno)
2497 {
2498   haifa_note_reg_clobber (regno);
2499
2500   if (deps_init_id_data.where == DEPS_IN_RHS)
2501     deps_init_id_data.force_use_p = true;
2502
2503   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504     SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2505 }
2506
2507 /* Note a use of REGNO.  */
2508 static void
2509 deps_init_id_note_reg_use (int regno)
2510 {
2511   haifa_note_reg_use (regno);
2512
2513   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514     SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2515 }
2516
2517 /* Start initializing rhs data.  */
2518 static void
2519 deps_init_id_start_rhs (rtx rhs)
2520 {
2521   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2522
2523   /* And there was no sel_deps_reset_to_insn ().  */
2524   if (IDATA_LHS (deps_init_id_data.id) != NULL)
2525     {
2526       IDATA_RHS (deps_init_id_data.id) = rhs;
2527       deps_init_id_data.where = DEPS_IN_RHS;
2528     }
2529 }
2530
2531 /* Finish initializing rhs data.  */
2532 static void
2533 deps_init_id_finish_rhs (void)
2534 {
2535   gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536               || deps_init_id_data.where == DEPS_IN_INSN);
2537   deps_init_id_data.where = DEPS_IN_INSN;
2538 }
2539
2540 /* Finish initializing insn data.  */
2541 static void
2542 deps_init_id_finish_insn (void)
2543 {
2544   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2545
2546   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2547     {
2548       rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549       rtx rhs = IDATA_RHS (deps_init_id_data.id);
2550
2551       if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552           || deps_init_id_data.force_use_p)
2553         {
2554           /* This should be a USE, as we don't want to schedule its RHS
2555              separately.  However, we still want to have them recorded
2556              for the purposes of substitution.  That's why we don't
2557              simply call downgrade_to_use () here.  */
2558           gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559           gcc_assert (!lhs == !rhs);
2560
2561           IDATA_TYPE (deps_init_id_data.id) = USE;
2562         }
2563     }
2564
2565   deps_init_id_data.where = DEPS_IN_NOWHERE;
2566 }
2567
2568 /* This is dependence info used for initializing insn's data.  */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2570
2571 /* This initializes most of the static part of the above structure.  */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2573   {
2574     NULL,
2575
2576     deps_init_id_start_insn,
2577     deps_init_id_finish_insn,
2578     deps_init_id_start_lhs,
2579     deps_init_id_finish_lhs,
2580     deps_init_id_start_rhs,
2581     deps_init_id_finish_rhs,
2582     deps_init_id_note_reg_set,
2583     deps_init_id_note_reg_clobber,
2584     deps_init_id_note_reg_use,
2585     NULL, /* note_mem_dep */
2586     NULL, /* note_dep */
2587
2588     0, /* use_cselib */
2589     0, /* use_deps_list */
2590     0 /* generate_spec_deps */
2591   };
2592
2593 /* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2594    we don't actually need information about lhs and rhs.  */
2595 static void
2596 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2597 {
2598   rtx pat = PATTERN (insn);
2599
2600   if (NONJUMP_INSN_P (insn)
2601       && GET_CODE (pat) == SET
2602       && !force_unique_p)
2603     {
2604       IDATA_RHS (id) = SET_SRC (pat);
2605       IDATA_LHS (id) = SET_DEST (pat);
2606     }
2607   else
2608     IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2609 }
2610
2611 /* Possibly downgrade INSN to USE.  */
2612 static void
2613 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2614 {
2615   bool must_be_use = false;
2616   df_ref def;
2617   rtx lhs = IDATA_LHS (id);
2618   rtx rhs = IDATA_RHS (id);
2619
2620   /* We downgrade only SETs.  */
2621   if (IDATA_TYPE (id) != SET)
2622     return;
2623
2624   if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2625     {
2626       IDATA_TYPE (id) = USE;
2627       return;
2628     }
2629
2630   FOR_EACH_INSN_DEF (def, insn)
2631     {
2632       if (DF_REF_INSN (def)
2633           && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634           && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2635         {
2636           must_be_use = true;
2637           break;
2638         }
2639
2640 #ifdef STACK_REGS
2641       /* Make instructions that set stack registers to be ineligible for
2642          renaming to avoid issues with find_used_regs.  */
2643       if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2644         {
2645           must_be_use = true;
2646           break;
2647         }
2648 #endif
2649     }
2650
2651   if (must_be_use)
2652     IDATA_TYPE (id) = USE;
2653 }
2654
2655 /* Setup implicit register clobbers calculated by sched-deps for INSN
2656    before reload and save them in ID.  */
2657 static void
2658 setup_id_implicit_regs (idata_t id, insn_t insn)
2659 {
2660   if (reload_completed)
2661     return;
2662
2663   HARD_REG_SET temp;
2664   unsigned regno;
2665   hard_reg_set_iterator hrsi;
2666
2667   get_implicit_reg_pending_clobbers (&temp, insn);
2668   EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2669     SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2670 }
2671
2672 /* Setup register sets describing INSN in ID.  */
2673 static void
2674 setup_id_reg_sets (idata_t id, insn_t insn)
2675 {
2676   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2677   df_ref def, use;
2678   regset tmp = get_clear_regset_from_pool ();
2679
2680   FOR_EACH_INSN_INFO_DEF (def, insn_info)
2681     {
2682       unsigned int regno = DF_REF_REGNO (def);
2683
2684       /* Post modifies are treated like clobbers by sched-deps.c.  */
2685       if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2686                                      | DF_REF_PRE_POST_MODIFY)))
2687         SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2688       else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2689         {
2690           SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2691
2692 #ifdef STACK_REGS
2693           /* For stack registers, treat writes to them as writes
2694              to the first one to be consistent with sched-deps.c.  */
2695           if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2696             SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2697 #endif
2698         }
2699       /* Mark special refs that generate read/write def pair.  */
2700       if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2701           || regno == STACK_POINTER_REGNUM)
2702         bitmap_set_bit (tmp, regno);
2703     }
2704
2705   FOR_EACH_INSN_INFO_USE (use, insn_info)
2706     {
2707       unsigned int regno = DF_REF_REGNO (use);
2708
2709       /* When these refs are met for the first time, skip them, as
2710          these uses are just counterparts of some defs.  */
2711       if (bitmap_bit_p (tmp, regno))
2712         bitmap_clear_bit (tmp, regno);
2713       else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2714         {
2715           SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2716
2717 #ifdef STACK_REGS
2718           /* For stack registers, treat reads from them as reads from
2719              the first one to be consistent with sched-deps.c.  */
2720           if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2721             SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2722 #endif
2723         }
2724     }
2725
2726   /* Also get implicit reg clobbers from sched-deps.  */
2727   setup_id_implicit_regs (id, insn);
2728
2729   return_regset_to_pool (tmp);
2730 }
2731
2732 /* Initialize instruction data for INSN in ID using DF's data.  */
2733 static void
2734 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2735 {
2736   gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2737
2738   setup_id_for_insn (id, insn, force_unique_p);
2739   setup_id_lhs_rhs (id, insn, force_unique_p);
2740
2741   if (INSN_NOP_P (insn))
2742     return;
2743
2744   maybe_downgrade_id_to_use (id, insn);
2745   setup_id_reg_sets (id, insn);
2746 }
2747
2748 /* Initialize instruction data for INSN in ID.  */
2749 static void
2750 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2751 {
2752   struct deps_desc _dc, *dc = &_dc;
2753
2754   deps_init_id_data.where = DEPS_IN_NOWHERE;
2755   deps_init_id_data.id = id;
2756   deps_init_id_data.force_unique_p = force_unique_p;
2757   deps_init_id_data.force_use_p = false;
2758
2759   init_deps (dc, false);
2760   memcpy (&deps_init_id_sched_deps_info,
2761           &const_deps_init_id_sched_deps_info,
2762           sizeof (deps_init_id_sched_deps_info));
2763   if (spec_info != NULL)
2764     deps_init_id_sched_deps_info.generate_spec_deps = 1;
2765   sched_deps_info = &deps_init_id_sched_deps_info;
2766
2767   deps_analyze_insn (dc, insn);
2768   /* Implicit reg clobbers received from sched-deps separately.  */
2769   setup_id_implicit_regs (id, insn);
2770
2771   free_deps (dc);
2772   deps_init_id_data.id = NULL;
2773 }
2774
2775 \f
2776 struct sched_scan_info_def
2777 {
2778   /* This hook notifies scheduler frontend to extend its internal per basic
2779      block data structures.  This hook should be called once before a series of
2780      calls to bb_init ().  */
2781   void (*extend_bb) (void);
2782
2783   /* This hook makes scheduler frontend to initialize its internal data
2784      structures for the passed basic block.  */
2785   void (*init_bb) (basic_block);
2786
2787   /* This hook notifies scheduler frontend to extend its internal per insn data
2788      structures.  This hook should be called once before a series of calls to
2789      insn_init ().  */
2790   void (*extend_insn) (void);
2791
2792   /* This hook makes scheduler frontend to initialize its internal data
2793      structures for the passed insn.  */
2794   void (*init_insn) (insn_t);
2795 };
2796
2797 /* A driver function to add a set of basic blocks (BBS) to the
2798    scheduling region.  */
2799 static void
2800 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2801 {
2802   unsigned i;
2803   basic_block bb;
2804
2805   if (ssi->extend_bb)
2806     ssi->extend_bb ();
2807
2808   if (ssi->init_bb)
2809     FOR_EACH_VEC_ELT (bbs, i, bb)
2810       ssi->init_bb (bb);
2811
2812   if (ssi->extend_insn)
2813     ssi->extend_insn ();
2814
2815   if (ssi->init_insn)
2816     FOR_EACH_VEC_ELT (bbs, i, bb)
2817       {
2818         rtx_insn *insn;
2819
2820         FOR_BB_INSNS (bb, insn)
2821           ssi->init_insn (insn);
2822       }
2823 }
2824
2825 /* Implement hooks for collecting fundamental insn properties like if insn is
2826    an ASM or is within a SCHED_GROUP.  */
2827
2828 /* True when a "one-time init" data for INSN was already inited.  */
2829 static bool
2830 first_time_insn_init (insn_t insn)
2831 {
2832   return INSN_LIVE (insn) == NULL;
2833 }
2834
2835 /* Hash an entry in a transformed_insns hashtable.  */
2836 static hashval_t
2837 hash_transformed_insns (const void *p)
2838 {
2839   return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2840 }
2841
2842 /* Compare the entries in a transformed_insns hashtable.  */
2843 static int
2844 eq_transformed_insns (const void *p, const void *q)
2845 {
2846   rtx_insn *i1 =
2847     VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2848   rtx_insn *i2 =
2849     VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2850
2851   if (INSN_UID (i1) == INSN_UID (i2))
2852     return 1;
2853   return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2854 }
2855
2856 /* Free an entry in a transformed_insns hashtable.  */
2857 static void
2858 free_transformed_insns (void *p)
2859 {
2860   struct transformed_insns *pti = (struct transformed_insns *) p;
2861
2862   vinsn_detach (pti->vinsn_old);
2863   vinsn_detach (pti->vinsn_new);
2864   free (pti);
2865 }
2866
2867 /* Init the s_i_d data for INSN which should be inited just once, when
2868    we first see the insn.  */
2869 static void
2870 init_first_time_insn_data (insn_t insn)
2871 {
2872   /* This should not be set if this is the first time we init data for
2873      insn.  */
2874   gcc_assert (first_time_insn_init (insn));
2875
2876   /* These are needed for nops too.  */
2877   INSN_LIVE (insn) = get_regset_from_pool ();
2878   INSN_LIVE_VALID_P (insn) = false;
2879
2880   if (!INSN_NOP_P (insn))
2881     {
2882       INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2883       INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2884       INSN_TRANSFORMED_INSNS (insn)
2885         = htab_create (16, hash_transformed_insns,
2886                        eq_transformed_insns, free_transformed_insns);
2887       init_deps (&INSN_DEPS_CONTEXT (insn), true);
2888     }
2889 }
2890
2891 /* Free almost all above data for INSN that is scheduled already.
2892    Used for extra-large basic blocks.  */
2893 void
2894 free_data_for_scheduled_insn (insn_t insn)
2895 {
2896   gcc_assert (! first_time_insn_init (insn));
2897
2898   if (! INSN_ANALYZED_DEPS (insn))
2899     return;
2900
2901   BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2902   BITMAP_FREE (INSN_FOUND_DEPS (insn));
2903   htab_delete (INSN_TRANSFORMED_INSNS (insn));
2904
2905   /* This is allocated only for bookkeeping insns.  */
2906   if (INSN_ORIGINATORS (insn))
2907     BITMAP_FREE (INSN_ORIGINATORS (insn));
2908   free_deps (&INSN_DEPS_CONTEXT (insn));
2909
2910   INSN_ANALYZED_DEPS (insn) = NULL;
2911
2912   /* Clear the readonly flag so we would ICE when trying to recalculate
2913      the deps context (as we believe that it should not happen).  */
2914   (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2915 }
2916
2917 /* Free the same data as above for INSN.  */
2918 static void
2919 free_first_time_insn_data (insn_t insn)
2920 {
2921   gcc_assert (! first_time_insn_init (insn));
2922
2923   free_data_for_scheduled_insn (insn);
2924   return_regset_to_pool (INSN_LIVE (insn));
2925   INSN_LIVE (insn) = NULL;
2926   INSN_LIVE_VALID_P (insn) = false;
2927 }
2928
2929 /* Initialize region-scope data structures for basic blocks.  */
2930 static void
2931 init_global_and_expr_for_bb (basic_block bb)
2932 {
2933   if (sel_bb_empty_p (bb))
2934     return;
2935
2936   invalidate_av_set (bb);
2937 }
2938
2939 /* Data for global dependency analysis (to initialize CANT_MOVE and
2940    SCHED_GROUP_P).  */
2941 static struct
2942 {
2943   /* Previous insn.  */
2944   insn_t prev_insn;
2945 } init_global_data;
2946
2947 /* Determine if INSN is in the sched_group, is an asm or should not be
2948    cloned.  After that initialize its expr.  */
2949 static void
2950 init_global_and_expr_for_insn (insn_t insn)
2951 {
2952   if (LABEL_P (insn))
2953     return;
2954
2955   if (NOTE_INSN_BASIC_BLOCK_P (insn))
2956     {
2957       init_global_data.prev_insn = NULL;
2958       return;
2959     }
2960
2961   gcc_assert (INSN_P (insn));
2962
2963   if (SCHED_GROUP_P (insn))
2964     /* Setup a sched_group.  */
2965     {
2966       insn_t prev_insn = init_global_data.prev_insn;
2967
2968       if (prev_insn)
2969         INSN_SCHED_NEXT (prev_insn) = insn;
2970
2971       init_global_data.prev_insn = insn;
2972     }
2973   else
2974     init_global_data.prev_insn = NULL;
2975
2976   if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2977       || asm_noperands (PATTERN (insn)) >= 0)
2978     /* Mark INSN as an asm.  */
2979     INSN_ASM_P (insn) = true;
2980
2981   {
2982     bool force_unique_p;
2983     ds_t spec_done_ds;
2984
2985     /* Certain instructions cannot be cloned, and frame related insns and
2986        the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2987        their block.  */
2988     if (prologue_epilogue_contains (insn))
2989       {
2990         if (RTX_FRAME_RELATED_P (insn))
2991           CANT_MOVE (insn) = 1;
2992         else
2993           {
2994             rtx note;
2995             for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2996               if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2997                   && ((enum insn_note) INTVAL (XEXP (note, 0))
2998                       == NOTE_INSN_EPILOGUE_BEG))
2999                 {
3000                   CANT_MOVE (insn) = 1;
3001                   break;
3002                 }
3003           }
3004         force_unique_p = true;
3005       }
3006     else
3007       if (CANT_MOVE (insn)
3008           || INSN_ASM_P (insn)
3009           || SCHED_GROUP_P (insn)
3010           || CALL_P (insn)
3011           /* Exception handling insns are always unique.  */
3012           || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3013           /* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
3014           || control_flow_insn_p (insn)
3015           || volatile_insn_p (PATTERN (insn))
3016           || (targetm.cannot_copy_insn_p
3017               && targetm.cannot_copy_insn_p (insn)))
3018         force_unique_p = true;
3019       else
3020         force_unique_p = false;
3021
3022     if (targetm.sched.get_insn_spec_ds)
3023       {
3024         spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3025         spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3026       }
3027     else
3028       spec_done_ds = 0;
3029
3030     /* Initialize INSN's expr.  */
3031     init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3032                REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3033                spec_done_ds, 0, 0, vNULL, true,
3034                false, false, false, CANT_MOVE (insn));
3035   }
3036
3037   init_first_time_insn_data (insn);
3038 }
3039
3040 /* Scan the region and initialize instruction data for basic blocks BBS.  */
3041 void
3042 sel_init_global_and_expr (bb_vec_t bbs)
3043 {
3044   /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
3045   const struct sched_scan_info_def ssi =
3046     {
3047       NULL, /* extend_bb */
3048       init_global_and_expr_for_bb, /* init_bb */
3049       extend_insn_data, /* extend_insn */
3050       init_global_and_expr_for_insn /* init_insn */
3051     };
3052
3053   sched_scan (&ssi, bbs);
3054 }
3055
3056 /* Finalize region-scope data structures for basic blocks.  */
3057 static void
3058 finish_global_and_expr_for_bb (basic_block bb)
3059 {
3060   av_set_clear (&BB_AV_SET (bb));
3061   BB_AV_LEVEL (bb) = 0;
3062 }
3063
3064 /* Finalize INSN's data.  */
3065 static void
3066 finish_global_and_expr_insn (insn_t insn)
3067 {
3068   if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3069     return;
3070
3071   gcc_assert (INSN_P (insn));
3072
3073   if (INSN_LUID (insn) > 0)
3074     {
3075       free_first_time_insn_data (insn);
3076       INSN_WS_LEVEL (insn) = 0;
3077       CANT_MOVE (insn) = 0;
3078
3079       /* We can no longer assert this, as vinsns of this insn could be
3080          easily live in other insn's caches.  This should be changed to
3081          a counter-like approach among all vinsns.  */
3082       gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3083       clear_expr (INSN_EXPR (insn));
3084     }
3085 }
3086
3087 /* Finalize per instruction data for the whole region.  */
3088 void
3089 sel_finish_global_and_expr (void)
3090 {
3091   {
3092     bb_vec_t bbs;
3093     int i;
3094
3095     bbs.create (current_nr_blocks);
3096
3097     for (i = 0; i < current_nr_blocks; i++)
3098       bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3099
3100     /* Clear AV_SETs and INSN_EXPRs.  */
3101     {
3102       const struct sched_scan_info_def ssi =
3103         {
3104           NULL, /* extend_bb */
3105           finish_global_and_expr_for_bb, /* init_bb */
3106           NULL, /* extend_insn */
3107           finish_global_and_expr_insn /* init_insn */
3108         };
3109
3110       sched_scan (&ssi, bbs);
3111     }
3112
3113     bbs.release ();
3114   }
3115
3116   finish_insns ();
3117 }
3118 \f
3119
3120 /* In the below hooks, we merely calculate whether or not a dependence
3121    exists, and in what part of insn.  However, we will need more data
3122    when we'll start caching dependence requests.  */
3123
3124 /* Container to hold information for dependency analysis.  */
3125 static struct
3126 {
3127   deps_t dc;
3128
3129   /* A variable to track which part of rtx we are scanning in
3130      sched-deps.c: sched_analyze_insn ().  */
3131   deps_where_t where;
3132
3133   /* Current producer.  */
3134   insn_t pro;
3135
3136   /* Current consumer.  */
3137   vinsn_t con;
3138
3139   /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3140      X is from { INSN, LHS, RHS }.  */
3141   ds_t has_dep_p[DEPS_IN_NOWHERE];
3142 } has_dependence_data;
3143
3144 /* Start analyzing dependencies of INSN.  */
3145 static void
3146 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3147 {
3148   gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3149
3150   has_dependence_data.where = DEPS_IN_INSN;
3151 }
3152
3153 /* Finish analyzing dependencies of an insn.  */
3154 static void
3155 has_dependence_finish_insn (void)
3156 {
3157   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3158
3159   has_dependence_data.where = DEPS_IN_NOWHERE;
3160 }
3161
3162 /* Start analyzing dependencies of LHS.  */
3163 static void
3164 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3165 {
3166   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3167
3168   if (VINSN_LHS (has_dependence_data.con) != NULL)
3169     has_dependence_data.where = DEPS_IN_LHS;
3170 }
3171
3172 /* Finish analyzing dependencies of an lhs.  */
3173 static void
3174 has_dependence_finish_lhs (void)
3175 {
3176   has_dependence_data.where = DEPS_IN_INSN;
3177 }
3178
3179 /* Start analyzing dependencies of RHS.  */
3180 static void
3181 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3182 {
3183   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3184
3185   if (VINSN_RHS (has_dependence_data.con) != NULL)
3186     has_dependence_data.where = DEPS_IN_RHS;
3187 }
3188
3189 /* Start analyzing dependencies of an rhs.  */
3190 static void
3191 has_dependence_finish_rhs (void)
3192 {
3193   gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3194               || has_dependence_data.where == DEPS_IN_INSN);
3195
3196   has_dependence_data.where = DEPS_IN_INSN;
3197 }
3198
3199 /* Note a set of REGNO.  */
3200 static void
3201 has_dependence_note_reg_set (int regno)
3202 {
3203   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3204
3205   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3206                                        VINSN_INSN_RTX
3207                                        (has_dependence_data.con)))
3208     {
3209       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3210
3211       if (reg_last->sets != NULL
3212           || reg_last->clobbers != NULL)
3213         *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3214
3215       if (reg_last->uses || reg_last->implicit_sets)
3216         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3217     }
3218 }
3219
3220 /* Note a clobber of REGNO.  */
3221 static void
3222 has_dependence_note_reg_clobber (int regno)
3223 {
3224   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3225
3226   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227                                        VINSN_INSN_RTX
3228                                        (has_dependence_data.con)))
3229     {
3230       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3231
3232       if (reg_last->sets)
3233         *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3234
3235       if (reg_last->uses || reg_last->implicit_sets)
3236         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3237     }
3238 }
3239
3240 /* Note a use of REGNO.  */
3241 static void
3242 has_dependence_note_reg_use (int regno)
3243 {
3244   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3245
3246   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3247                                        VINSN_INSN_RTX
3248                                        (has_dependence_data.con)))
3249     {
3250       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3251
3252       if (reg_last->sets)
3253         *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3254
3255       if (reg_last->clobbers || reg_last->implicit_sets)
3256         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3257
3258       /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3259          is actually a check insn.  We need to do this for any register
3260          read-read dependency with the check unless we track properly
3261          all registers written by BE_IN_SPEC-speculated insns, as
3262          we don't have explicit dependence lists.  See PR 53975.  */
3263       if (reg_last->uses)
3264         {
3265           ds_t pro_spec_checked_ds;
3266
3267           pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3268           pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3269
3270           if (pro_spec_checked_ds != 0)
3271             *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3272                                   NULL_RTX, NULL_RTX);
3273         }
3274     }
3275 }
3276
3277 /* Note a memory dependence.  */
3278 static void
3279 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3280                              rtx pending_mem ATTRIBUTE_UNUSED,
3281                              insn_t pending_insn ATTRIBUTE_UNUSED,
3282                              ds_t ds ATTRIBUTE_UNUSED)
3283 {
3284   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3285                                        VINSN_INSN_RTX (has_dependence_data.con)))
3286     {
3287       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3288
3289       *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3290     }
3291 }
3292
3293 /* Note a dependence.  */
3294 static void
3295 has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3296 {
3297   insn_t real_pro = has_dependence_data.pro;
3298   insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3299
3300   /* We do not allow for debug insns to move through others unless they
3301      are at the start of bb.  This movement may create bookkeeping copies
3302      that later would not be able to move up, violating the invariant
3303      that a bookkeeping copy should be movable as the original insn.
3304      Detect that here and allow that movement if we allowed it before
3305      in the first place.  */
3306   if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
3307       && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3308     return;
3309
3310   if (!sched_insns_conditions_mutex_p (real_pro, real_con))
3311     {
3312       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3313
3314       *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3315     }
3316 }
3317
3318 /* Mark the insn as having a hard dependence that prevents speculation.  */
3319 void
3320 sel_mark_hard_insn (rtx insn)
3321 {
3322   int i;
3323
3324   /* Only work when we're in has_dependence_p mode.
3325      ??? This is a hack, this should actually be a hook.  */
3326   if (!has_dependence_data.dc || !has_dependence_data.pro)
3327     return;
3328
3329   gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3330   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3331
3332   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3333     has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3334 }
3335
3336 /* This structure holds the hooks for the dependency analysis used when
3337    actually processing dependencies in the scheduler.  */
3338 static struct sched_deps_info_def has_dependence_sched_deps_info;
3339
3340 /* This initializes most of the fields of the above structure.  */
3341 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3342   {
3343     NULL,
3344
3345     has_dependence_start_insn,
3346     has_dependence_finish_insn,
3347     has_dependence_start_lhs,
3348     has_dependence_finish_lhs,
3349     has_dependence_start_rhs,
3350     has_dependence_finish_rhs,
3351     has_dependence_note_reg_set,
3352     has_dependence_note_reg_clobber,
3353     has_dependence_note_reg_use,
3354     has_dependence_note_mem_dep,
3355     has_dependence_note_dep,
3356
3357     0, /* use_cselib */
3358     0, /* use_deps_list */
3359     0 /* generate_spec_deps */
3360   };
3361
3362 /* Initialize has_dependence_sched_deps_info with extra spec field.  */
3363 static void
3364 setup_has_dependence_sched_deps_info (void)
3365 {
3366   memcpy (&has_dependence_sched_deps_info,
3367           &const_has_dependence_sched_deps_info,
3368           sizeof (has_dependence_sched_deps_info));
3369
3370   if (spec_info != NULL)
3371     has_dependence_sched_deps_info.generate_spec_deps = 1;
3372
3373   sched_deps_info = &has_dependence_sched_deps_info;
3374 }
3375
3376 /* Remove all dependences found and recorded in has_dependence_data array.  */
3377 void
3378 sel_clear_has_dependence (void)
3379 {
3380   int i;
3381
3382   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3383     has_dependence_data.has_dep_p[i] = 0;
3384 }
3385
3386 /* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3387    to the dependence information array in HAS_DEP_PP.  */
3388 ds_t
3389 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3390 {
3391   int i;
3392   ds_t ds;
3393   struct deps_desc *dc;
3394
3395   if (INSN_SIMPLEJUMP_P (pred))
3396     /* Unconditional jump is just a transfer of control flow.
3397        Ignore it.  */
3398     return false;
3399
3400   dc = &INSN_DEPS_CONTEXT (pred);
3401
3402   /* We init this field lazily.  */
3403   if (dc->reg_last == NULL)
3404     init_deps_reg_last (dc);
3405
3406   if (!dc->readonly)
3407     {
3408       has_dependence_data.pro = NULL;
3409       /* Initialize empty dep context with information about PRED.  */
3410       advance_deps_context (dc, pred);
3411       dc->readonly = 1;
3412     }
3413
3414   has_dependence_data.where = DEPS_IN_NOWHERE;
3415   has_dependence_data.pro = pred;
3416   has_dependence_data.con = EXPR_VINSN (expr);
3417   has_dependence_data.dc = dc;
3418
3419   sel_clear_has_dependence ();
3420
3421   /* Now catch all dependencies that would be generated between PRED and
3422      INSN.  */
3423   setup_has_dependence_sched_deps_info ();
3424   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3425   has_dependence_data.dc = NULL;
3426
3427   /* When a barrier was found, set DEPS_IN_INSN bits.  */
3428   if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3429     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3430   else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3431     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3432
3433   /* Do not allow stores to memory to move through checks.  Currently
3434      we don't move this to sched-deps.c as the check doesn't have
3435      obvious places to which this dependence can be attached.
3436      FIMXE: this should go to a hook.  */
3437   if (EXPR_LHS (expr)
3438       && MEM_P (EXPR_LHS (expr))
3439       && sel_insn_is_speculation_check (pred))
3440     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3441
3442   *has_dep_pp = has_dependence_data.has_dep_p;
3443   ds = 0;
3444   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3445     ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3446                         NULL_RTX, NULL_RTX);
3447
3448   return ds;
3449 }
3450 \f
3451
3452 /* Dependence hooks implementation that checks dependence latency constraints
3453    on the insns being scheduled.  The entry point for these routines is
3454    tick_check_p predicate.  */
3455
3456 static struct
3457 {
3458   /* An expr we are currently checking.  */
3459   expr_t expr;
3460
3461   /* A minimal cycle for its scheduling.  */
3462   int cycle;
3463
3464   /* Whether we have seen a true dependence while checking.  */
3465   bool seen_true_dep_p;
3466 } tick_check_data;
3467
3468 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3469    on PRO with status DS and weight DW.  */
3470 static void
3471 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3472 {
3473   expr_t con_expr = tick_check_data.expr;
3474   insn_t con_insn = EXPR_INSN_RTX (con_expr);
3475
3476   if (con_insn != pro_insn)
3477     {
3478       enum reg_note dt;
3479       int tick;
3480
3481       if (/* PROducer was removed from above due to pipelining.  */
3482           !INSN_IN_STREAM_P (pro_insn)
3483           /* Or PROducer was originally on the next iteration regarding the
3484              CONsumer.  */
3485           || (INSN_SCHED_TIMES (pro_insn)
3486               - EXPR_SCHED_TIMES (con_expr)) > 1)
3487         /* Don't count this dependence.  */
3488         return;
3489
3490       dt = ds_to_dt (ds);
3491       if (dt == REG_DEP_TRUE)
3492         tick_check_data.seen_true_dep_p = true;
3493
3494       gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3495
3496       {
3497         dep_def _dep, *dep = &_dep;
3498
3499         init_dep (dep, pro_insn, con_insn, dt);
3500
3501         tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3502       }
3503
3504       /* When there are several kinds of dependencies between pro and con,
3505          only REG_DEP_TRUE should be taken into account.  */
3506       if (tick > tick_check_data.cycle
3507           && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3508         tick_check_data.cycle = tick;
3509     }
3510 }
3511
3512 /* An implementation of note_dep hook.  */
3513 static void
3514 tick_check_note_dep (insn_t pro, ds_t ds)
3515 {
3516   tick_check_dep_with_dw (pro, ds, 0);
3517 }
3518
3519 /* An implementation of note_mem_dep hook.  */
3520 static void
3521 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3522 {
3523   dw_t dw;
3524
3525   dw = (ds_to_dt (ds) == REG_DEP_TRUE
3526         ? estimate_dep_weak (mem1, mem2)
3527         : 0);
3528
3529   tick_check_dep_with_dw (pro, ds, dw);
3530 }
3531
3532 /* This structure contains hooks for dependence analysis used when determining
3533    whether an insn is ready for scheduling.  */
3534 static struct sched_deps_info_def tick_check_sched_deps_info =
3535   {
3536     NULL,
3537
3538     NULL,
3539     NULL,
3540     NULL,
3541     NULL,
3542     NULL,
3543     NULL,
3544     haifa_note_reg_set,
3545     haifa_note_reg_clobber,
3546     haifa_note_reg_use,
3547     tick_check_note_mem_dep,
3548     tick_check_note_dep,
3549
3550     0, 0, 0
3551   };
3552
3553 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3554    scheduled.  Return 0 if all data from producers in DC is ready.  */
3555 int
3556 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3557 {
3558   int cycles_left;
3559   /* Initialize variables.  */
3560   tick_check_data.expr = expr;
3561   tick_check_data.cycle = 0;
3562   tick_check_data.seen_true_dep_p = false;
3563   sched_deps_info = &tick_check_sched_deps_info;
3564
3565   gcc_assert (!dc->readonly);
3566   dc->readonly = 1;
3567   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3568   dc->readonly = 0;
3569
3570   cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3571
3572   return cycles_left >= 0 ? cycles_left : 0;
3573 }
3574 \f
3575
3576 /* Functions to work with insns.  */
3577
3578 /* Returns true if LHS of INSN is the same as DEST of an insn
3579    being moved.  */
3580 bool
3581 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3582 {
3583   rtx lhs = INSN_LHS (insn);
3584
3585   if (lhs == NULL || dest == NULL)
3586     return false;
3587
3588   return rtx_equal_p (lhs, dest);
3589 }
3590
3591 /* Return s_i_d entry of INSN.  Callable from debugger.  */
3592 sel_insn_data_def
3593 insn_sid (insn_t insn)
3594 {
3595   return *SID (insn);
3596 }
3597
3598 /* True when INSN is a speculative check.  We can tell this by looking
3599    at the data structures of the selective scheduler, not by examining
3600    the pattern.  */
3601 bool
3602 sel_insn_is_speculation_check (rtx insn)
3603 {
3604   return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3605 }
3606
3607 /* Extracts machine mode MODE and destination location DST_LOC
3608    for given INSN.  */
3609 void
3610 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3611 {
3612   rtx pat = PATTERN (insn);
3613
3614   gcc_assert (dst_loc);
3615   gcc_assert (GET_CODE (pat) == SET);
3616
3617   *dst_loc = SET_DEST (pat);
3618
3619   gcc_assert (*dst_loc);
3620   gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3621
3622   if (mode)
3623     *mode = GET_MODE (*dst_loc);
3624 }
3625
3626 /* Returns true when moving through JUMP will result in bookkeeping
3627    creation.  */
3628 bool
3629 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3630 {
3631   insn_t succ;
3632   succ_iterator si;
3633
3634   FOR_EACH_SUCC (succ, si, jump)
3635     if (sel_num_cfg_preds_gt_1 (succ))
3636       return true;
3637
3638   return false;
3639 }
3640
3641 /* Return 'true' if INSN is the only one in its basic block.  */
3642 static bool
3643 insn_is_the_only_one_in_bb_p (insn_t insn)
3644 {
3645   return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3646 }
3647
3648 /* Check that the region we're scheduling still has at most one
3649    backedge.  */
3650 static void
3651 verify_backedges (void)
3652 {
3653   if (pipelining_p)
3654     {
3655       int i, n = 0;
3656       edge e;
3657       edge_iterator ei;
3658
3659       for (i = 0; i < current_nr_blocks; i++)
3660         FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3661           if (in_current_region_p (e->dest)
3662               && BLOCK_TO_BB (e->dest->index) < i)
3663             n++;
3664
3665       gcc_assert (n <= 1);
3666     }
3667 }
3668 \f
3669
3670 /* Functions to work with control flow.  */
3671
3672 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3673    are sorted in topological order (it might have been invalidated by
3674    redirecting an edge).  */
3675 static void
3676 sel_recompute_toporder (void)
3677 {
3678   int i, n, rgn;
3679   int *postorder, n_blocks;
3680
3681   postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3682   n_blocks = post_order_compute (postorder, false, false);
3683
3684   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3685   for (n = 0, i = n_blocks - 1; i >= 0; i--)
3686     if (CONTAINING_RGN (postorder[i]) == rgn)
3687       {
3688         BLOCK_TO_BB (postorder[i]) = n;
3689         BB_TO_BLOCK (n) = postorder[i];
3690         n++;
3691       }
3692
3693   /* Assert that we updated info for all blocks.  We may miss some blocks if
3694      this function is called when redirecting an edge made a block
3695      unreachable, but that block is not deleted yet.  */
3696   gcc_assert (n == RGN_NR_BLOCKS (rgn));
3697 }
3698
3699 /* Tidy the possibly empty block BB.  */
3700 static bool
3701 maybe_tidy_empty_bb (basic_block bb)
3702 {
3703   basic_block succ_bb, pred_bb, note_bb;
3704   vec<basic_block> dom_bbs;
3705   edge e;
3706   edge_iterator ei;
3707   bool rescan_p;
3708
3709   /* Keep empty bb only if this block immediately precedes EXIT and
3710      has incoming non-fallthrough edge, or it has no predecessors or
3711      successors.  Otherwise remove it.  */
3712   if (!sel_bb_empty_p (bb)
3713       || (single_succ_p (bb)
3714           && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3715           && (!single_pred_p (bb)
3716               || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3717       || EDGE_COUNT (bb->preds) == 0
3718       || EDGE_COUNT (bb->succs) == 0)
3719     return false;
3720
3721   /* Do not attempt to redirect complex edges.  */
3722   FOR_EACH_EDGE (e, ei, bb->preds)
3723     if (e->flags & EDGE_COMPLEX)
3724       return false;
3725     else if (e->flags & EDGE_FALLTHRU)
3726       {
3727         rtx note;
3728         /* If prev bb ends with asm goto, see if any of the
3729            ASM_OPERANDS_LABELs don't point to the fallthru
3730            label.  Do not attempt to redirect it in that case.  */
3731         if (JUMP_P (BB_END (e->src))
3732             && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3733           {
3734             int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3735
3736             for (i = 0; i < n; ++i)
3737               if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3738                 return false;
3739           }
3740       }
3741
3742   free_data_sets (bb);
3743
3744   /* Do not delete BB if it has more than one successor.
3745      That can occur when we moving a jump.  */
3746   if (!single_succ_p (bb))
3747     {
3748       gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3749       sel_merge_blocks (bb->prev_bb, bb);
3750       return true;
3751     }
3752
3753   succ_bb = single_succ (bb);
3754   rescan_p = true;
3755   pred_bb = NULL;
3756   dom_bbs.create (0);
3757
3758   /* Save a pred/succ from the current region to attach the notes to.  */
3759   note_bb = NULL;
3760   FOR_EACH_EDGE (e, ei, bb->preds)
3761     if (in_current_region_p (e->src))
3762       {
3763         note_bb = e->src;
3764         break;
3765       }
3766   if (note_bb == NULL)
3767     note_bb = succ_bb;
3768
3769   /* Redirect all non-fallthru edges to the next bb.  */
3770   while (rescan_p)
3771     {
3772       rescan_p = false;
3773
3774       FOR_EACH_EDGE (e, ei, bb->preds)
3775         {
3776           pred_bb = e->src;
3777
3778           if (!(e->flags & EDGE_FALLTHRU))
3779             {
3780               /* We cannot invalidate computed topological order by moving
3781                  the edge destination block (E->SUCC) along a fallthru edge.
3782
3783                  We will update dominators here only when we'll get
3784                  an unreachable block when redirecting, otherwise
3785                  sel_redirect_edge_and_branch will take care of it.  */
3786               if (e->dest != bb
3787                   && single_pred_p (e->dest))
3788                 dom_bbs.safe_push (e->dest);
3789               sel_redirect_edge_and_branch (e, succ_bb);
3790               rescan_p = true;
3791               break;
3792             }
3793           /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3794              to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3795              still have to adjust it.  */
3796           else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3797             {
3798               /* If possible, try to remove the unneeded conditional jump.  */
3799               if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3800                   && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3801                 {
3802                   if (!sel_remove_insn (BB_END (pred_bb), false, false))
3803                     tidy_fallthru_edge (e);
3804                 }
3805               else
3806                 sel_redirect_edge_and_branch (e, succ_bb);
3807               rescan_p = true;
3808               break;
3809             }
3810         }
3811     }
3812
3813   if (can_merge_blocks_p (bb->prev_bb, bb))
3814     sel_merge_blocks (bb->prev_bb, bb);
3815   else
3816     {
3817       /* This is a block without fallthru predecessor.  Just delete it.  */
3818       gcc_assert (note_bb);
3819       move_bb_info (note_bb, bb);
3820       remove_empty_bb (bb, true);
3821     }
3822
3823   if (!dom_bbs.is_empty ())
3824     {
3825       dom_bbs.safe_push (succ_bb);
3826       iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3827       dom_bbs.release ();
3828     }
3829
3830   return true;
3831 }
3832
3833 /* Tidy the control flow after we have removed original insn from
3834    XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3835    is true, also try to optimize control flow on non-empty blocks.  */
3836 bool
3837 tidy_control_flow (basic_block xbb, bool full_tidying)
3838 {
3839   bool changed = true;
3840   insn_t first, last;
3841
3842   /* First check whether XBB is empty.  */
3843   changed = maybe_tidy_empty_bb (xbb);
3844   if (changed || !full_tidying)
3845     return changed;
3846
3847   /* Check if there is a unnecessary jump after insn left.  */
3848   if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3849       && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3850       && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3851     {
3852       /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3853          before we fix up the fallthru edge.  Correct that ordering by
3854          explicitly doing the latter before the former.  */
3855       clear_expr (INSN_EXPR (BB_END (xbb)));
3856       tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3857       if (tidy_control_flow (xbb, false))
3858         return true;
3859     }
3860
3861   first = sel_bb_head (xbb);
3862   last = sel_bb_end (xbb);
3863   if (MAY_HAVE_DEBUG_INSNS)
3864     {
3865       if (first != last && DEBUG_INSN_P (first))
3866         do
3867           first = NEXT_INSN (first);
3868         while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3869
3870       if (first != last && DEBUG_INSN_P (last))
3871         do
3872           last = PREV_INSN (last);
3873         while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3874     }
3875   /* Check if there is an unnecessary jump in previous basic block leading
3876      to next basic block left after removing INSN from stream.
3877      If it is so, remove that jump and redirect edge to current
3878      basic block (where there was INSN before deletion).  This way
3879      when NOP will be deleted several instructions later with its
3880      basic block we will not get a jump to next instruction, which
3881      can be harmful.  */
3882   if (first == last
3883       && !sel_bb_empty_p (xbb)
3884       && INSN_NOP_P (last)
3885       /* Flow goes fallthru from current block to the next.  */
3886       && EDGE_COUNT (xbb->succs) == 1
3887       && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3888       /* When successor is an EXIT block, it may not be the next block.  */
3889       && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3890       /* And unconditional jump in previous basic block leads to
3891          next basic block of XBB and this jump can be safely removed.  */
3892       && in_current_region_p (xbb->prev_bb)
3893       && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3894       && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3895       /* Also this jump is not at the scheduling boundary.  */
3896       && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3897     {
3898       bool recompute_toporder_p;
3899       /* Clear data structures of jump - jump itself will be removed
3900          by sel_redirect_edge_and_branch.  */
3901       clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3902       recompute_toporder_p
3903         = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3904
3905       gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3906
3907       /* We could have skipped some debug insns which did not get removed with the block,
3908          and the seqnos could become incorrect.  Fix them up here.  */
3909       if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3910        {
3911          if (!sel_bb_empty_p (xbb->prev_bb))
3912            {
3913              int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3914              if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3915                for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3916                  INSN_SEQNO (insn) = prev_seqno + 1;
3917            }
3918        }
3919
3920       /* It can turn out that after removing unused jump, basic block
3921          that contained that jump, becomes empty too.  In such case
3922          remove it too.  */
3923       if (sel_bb_empty_p (xbb->prev_bb))
3924         changed = maybe_tidy_empty_bb (xbb->prev_bb);
3925       if (recompute_toporder_p)
3926         sel_recompute_toporder ();
3927     }
3928
3929   /* TODO: use separate flag for CFG checking.  */
3930   if (flag_checking)
3931     {
3932       verify_backedges ();
3933       verify_dominators (CDI_DOMINATORS);
3934     }
3935
3936   return changed;
3937 }
3938
3939 /* Purge meaningless empty blocks in the middle of a region.  */
3940 void
3941 purge_empty_blocks (void)
3942 {
3943   int i;
3944
3945   /* Do not attempt to delete the first basic block in the region.  */
3946   for (i = 1; i < current_nr_blocks; )
3947     {
3948       basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3949
3950       if (maybe_tidy_empty_bb (b))
3951         continue;
3952
3953       i++;
3954     }
3955 }
3956
3957 /* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3958    do not delete insn's data, because it will be later re-emitted.
3959    Return true if we have removed some blocks afterwards.  */
3960 bool
3961 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3962 {
3963   basic_block bb = BLOCK_FOR_INSN (insn);
3964
3965   gcc_assert (INSN_IN_STREAM_P (insn));
3966
3967   if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3968     {
3969       expr_t expr;
3970       av_set_iterator i;
3971
3972       /* When we remove a debug insn that is head of a BB, it remains
3973          in the AV_SET of the block, but it shouldn't.  */
3974       FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3975         if (EXPR_INSN_RTX (expr) == insn)
3976           {
3977             av_set_iter_remove (&i);
3978             break;
3979           }
3980     }
3981
3982   if (only_disconnect)
3983     remove_insn (insn);
3984   else
3985     {
3986       delete_insn (insn);
3987       clear_expr (INSN_EXPR (insn));
3988     }
3989
3990   /* It is necessary to NULL these fields in case we are going to re-insert
3991      INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3992      case, but also for NOPs that we will return to the nop pool.  */
3993   SET_PREV_INSN (insn) = NULL_RTX;
3994   SET_NEXT_INSN (insn) = NULL_RTX;
3995   set_block_for_insn (insn, NULL);
3996
3997   return tidy_control_flow (bb, full_tidying);
3998 }
3999
4000 /* Estimate number of the insns in BB.  */
4001 static int
4002 sel_estimate_number_of_insns (basic_block bb)
4003 {
4004   int res = 0;
4005   insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4006
4007   for (; insn != next_tail; insn = NEXT_INSN (insn))
4008     if (NONDEBUG_INSN_P (insn))
4009       res++;
4010
4011   return res;
4012 }
4013
4014 /* We don't need separate luids for notes or labels.  */
4015 static int
4016 sel_luid_for_non_insn (rtx x)
4017 {
4018   gcc_assert (NOTE_P (x) || LABEL_P (x));
4019
4020   return -1;
4021 }
4022
4023 /*  Find the proper seqno for inserting at INSN by successors.
4024     Return -1 if no successors with positive seqno exist.  */
4025 static int
4026 get_seqno_by_succs (rtx_insn *insn)
4027 {
4028   basic_block bb = BLOCK_FOR_INSN (insn);
4029   rtx_insn *tmp = insn, *end = BB_END (bb);
4030   int seqno;
4031   insn_t succ = NULL;
4032   succ_iterator si;
4033
4034   while (tmp != end)
4035     {
4036       tmp = NEXT_INSN (tmp);
4037       if (INSN_P (tmp))
4038         return INSN_SEQNO (tmp);
4039     }
4040
4041   seqno = INT_MAX;
4042
4043   FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4044     if (INSN_SEQNO (succ) > 0)
4045       seqno = MIN (seqno, INSN_SEQNO (succ));
4046
4047   if (seqno == INT_MAX)
4048     return -1;
4049
4050   return seqno;
4051 }
4052
4053 /* Compute seqno for INSN by its preds or succs.  Use OLD_SEQNO to compute
4054    seqno in corner cases.  */
4055 static int
4056 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4057 {
4058   int seqno;
4059
4060   gcc_assert (INSN_SIMPLEJUMP_P (insn));
4061
4062   if (!sel_bb_head_p (insn))
4063     seqno = INSN_SEQNO (PREV_INSN (insn));
4064   else
4065     {
4066       basic_block bb = BLOCK_FOR_INSN (insn);
4067
4068       if (single_pred_p (bb)
4069           && !in_current_region_p (single_pred (bb)))
4070         {
4071           /* We can have preds outside a region when splitting edges
4072              for pipelining of an outer loop.  Use succ instead.
4073              There should be only one of them.  */
4074           insn_t succ = NULL;
4075           succ_iterator si;
4076           bool first = true;
4077
4078           gcc_assert (flag_sel_sched_pipelining_outer_loops
4079                       && current_loop_nest);
4080           FOR_EACH_SUCC_1 (succ, si, insn,
4081                            SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4082             {
4083               gcc_assert (first);
4084               first = false;
4085             }
4086
4087           gcc_assert (succ != NULL);
4088           seqno = INSN_SEQNO (succ);
4089         }
4090       else
4091         {
4092           insn_t *preds;
4093           int n;
4094
4095           cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4096
4097           gcc_assert (n > 0);
4098           /* For one predecessor, use simple method.  */
4099           if (n == 1)
4100             seqno = INSN_SEQNO (preds[0]);
4101           else
4102             seqno = get_seqno_by_preds (insn);
4103
4104           free (preds);
4105         }
4106     }
4107
4108   /* We were unable to find a good seqno among preds.  */
4109   if (seqno < 0)
4110     seqno = get_seqno_by_succs (insn);
4111
4112   if (seqno < 0)
4113     {
4114       /* The only case where this could be here legally is that the only
4115          unscheduled insn was a conditional jump that got removed and turned
4116          into this unconditional one.  Initialize from the old seqno
4117          of that jump passed down to here.  */
4118       seqno = old_seqno;
4119     }
4120
4121   gcc_assert (seqno >= 0);
4122   return seqno;
4123 }
4124
4125 /*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
4126     with positive seqno exist.  */
4127 int
4128 get_seqno_by_preds (rtx_insn *insn)
4129 {
4130   basic_block bb = BLOCK_FOR_INSN (insn);
4131   rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4132   insn_t *preds;
4133   int n, i, seqno;
4134
4135   /* Loop backwards from INSN to HEAD including both.  */
4136   while (1)
4137     {
4138       if (INSN_P (tmp))
4139         return INSN_SEQNO (tmp);
4140       if (tmp == head)
4141         break;
4142       tmp = PREV_INSN (tmp);
4143     }
4144
4145   cfg_preds (bb, &preds, &n);
4146   for (i = 0, seqno = -1; i < n; i++)
4147     seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4148
4149   return seqno;
4150 }
4151
4152 \f
4153
4154 /* Extend pass-scope data structures for basic blocks.  */
4155 void
4156 sel_extend_global_bb_info (void)
4157 {
4158   sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4159 }
4160
4161 /* Extend region-scope data structures for basic blocks.  */
4162 static void
4163 extend_region_bb_info (void)
4164 {
4165   sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4166 }
4167
4168 /* Extend all data structures to fit for all basic blocks.  */
4169 static void
4170 extend_bb_info (void)
4171 {
4172   sel_extend_global_bb_info ();
4173   extend_region_bb_info ();
4174 }
4175
4176 /* Finalize pass-scope data structures for basic blocks.  */
4177 void
4178 sel_finish_global_bb_info (void)
4179 {
4180   sel_global_bb_info.release ();
4181 }
4182
4183 /* Finalize region-scope data structures for basic blocks.  */
4184 static void
4185 finish_region_bb_info (void)
4186 {
4187   sel_region_bb_info.release ();
4188 }
4189 \f
4190
4191 /* Data for each insn in current region.  */
4192 vec<sel_insn_data_def> s_i_d;
4193
4194 /* Extend data structures for insns from current region.  */
4195 static void
4196 extend_insn_data (void)
4197 {
4198   int reserve;
4199
4200   sched_extend_target ();
4201   sched_deps_init (false);
4202
4203   /* Extend data structures for insns from current region.  */
4204   reserve = (sched_max_luid + 1 - s_i_d.length ());
4205   if (reserve > 0 && ! s_i_d.space (reserve))
4206     {
4207       int size;
4208
4209       if (sched_max_luid / 2 > 1024)
4210         size = sched_max_luid + 1024;
4211       else
4212         size = 3 * sched_max_luid / 2;
4213
4214
4215       s_i_d.safe_grow_cleared (size);
4216     }
4217 }
4218
4219 /* Finalize data structures for insns from current region.  */
4220 static void
4221 finish_insns (void)
4222 {
4223   unsigned i;
4224
4225   /* Clear here all dependence contexts that may have left from insns that were
4226      removed during the scheduling.  */
4227   for (i = 0; i < s_i_d.length (); i++)
4228     {
4229       sel_insn_data_def *sid_entry = &s_i_d[i];
4230
4231       if (sid_entry->live)
4232         return_regset_to_pool (sid_entry->live);
4233       if (sid_entry->analyzed_deps)
4234         {
4235           BITMAP_FREE (sid_entry->analyzed_deps);
4236           BITMAP_FREE (sid_entry->found_deps);
4237           htab_delete (sid_entry->transformed_insns);
4238           free_deps (&sid_entry->deps_context);
4239         }
4240       if (EXPR_VINSN (&sid_entry->expr))
4241         {
4242           clear_expr (&sid_entry->expr);
4243
4244           /* Also, clear CANT_MOVE bit here, because we really don't want it
4245              to be passed to the next region.  */
4246           CANT_MOVE_BY_LUID (i) = 0;
4247         }
4248     }
4249
4250   s_i_d.release ();
4251 }
4252
4253 /* A proxy to pass initialization data to init_insn ().  */
4254 static sel_insn_data_def _insn_init_ssid;
4255 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4256
4257 /* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4258 static bool insn_init_create_new_vinsn_p;
4259
4260 /* Set all necessary data for initialization of the new insn[s].  */
4261 static expr_t
4262 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4263 {
4264   expr_t x = &insn_init_ssid->expr;
4265
4266   copy_expr_onside (x, expr);
4267   if (vi != NULL)
4268     {
4269       insn_init_create_new_vinsn_p = false;
4270       change_vinsn_in_expr (x, vi);
4271     }
4272   else
4273     insn_init_create_new_vinsn_p = true;
4274
4275   insn_init_ssid->seqno = seqno;
4276   return x;
4277 }
4278
4279 /* Init data for INSN.  */
4280 static void
4281 init_insn_data (insn_t insn)
4282 {
4283   expr_t expr;
4284   sel_insn_data_t ssid = insn_init_ssid;
4285
4286   /* The fields mentioned below are special and hence are not being
4287      propagated to the new insns.  */
4288   gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4289               && !ssid->after_stall_p && ssid->sched_cycle == 0);
4290   gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4291
4292   expr = INSN_EXPR (insn);
4293   copy_expr (expr, &ssid->expr);
4294   prepare_insn_expr (insn, ssid->seqno);
4295
4296   if (insn_init_create_new_vinsn_p)
4297     change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4298
4299   if (first_time_insn_init (insn))
4300     init_first_time_insn_data (insn);
4301 }
4302
4303 /* This is used to initialize spurious jumps generated by
4304    sel_redirect_edge ().  OLD_SEQNO is used for initializing seqnos
4305    in corner cases within get_seqno_for_a_jump.  */
4306 static void
4307 init_simplejump_data (insn_t insn, int old_seqno)
4308 {
4309   init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4310              REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4311              vNULL, true, false, false,
4312              false, true);
4313   INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4314   init_first_time_insn_data (insn);
4315 }
4316
4317 /* Perform deferred initialization of insns.  This is used to process
4318    a new jump that may be created by redirect_edge.  OLD_SEQNO is used
4319    for initializing simplejumps in init_simplejump_data.  */
4320 static void
4321 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4322 {
4323   /* We create data structures for bb when the first insn is emitted in it.  */
4324   if (INSN_P (insn)
4325       && INSN_IN_STREAM_P (insn)
4326       && insn_is_the_only_one_in_bb_p (insn))
4327     {
4328       extend_bb_info ();
4329       create_initial_data_sets (BLOCK_FOR_INSN (insn));
4330     }
4331
4332   if (flags & INSN_INIT_TODO_LUID)
4333     {
4334       sched_extend_luids ();
4335       sched_init_insn_luid (insn);
4336     }
4337
4338   if (flags & INSN_INIT_TODO_SSID)
4339     {
4340       extend_insn_data ();
4341       init_insn_data (insn);
4342       clear_expr (&insn_init_ssid->expr);
4343     }
4344
4345   if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4346     {
4347       extend_insn_data ();
4348       init_simplejump_data (insn, old_seqno);
4349     }
4350
4351   gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4352               == CONTAINING_RGN (BB_TO_BLOCK (0)));
4353 }
4354 \f
4355
4356 /* Functions to init/finish work with lv sets.  */
4357
4358 /* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4359 static void
4360 init_lv_set (basic_block bb)
4361 {
4362   gcc_assert (!BB_LV_SET_VALID_P (bb));
4363
4364   BB_LV_SET (bb) = get_regset_from_pool ();
4365   COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4366   BB_LV_SET_VALID_P (bb) = true;
4367 }
4368
4369 /* Copy liveness information to BB from FROM_BB.  */
4370 static void
4371 copy_lv_set_from (basic_block bb, basic_block from_bb)
4372 {
4373   gcc_assert (!BB_LV_SET_VALID_P (bb));
4374
4375   COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4376   BB_LV_SET_VALID_P (bb) = true;
4377 }
4378
4379 /* Initialize lv set of all bb headers.  */
4380 void
4381 init_lv_sets (void)
4382 {
4383   basic_block bb;
4384
4385   /* Initialize of LV sets.  */
4386   FOR_EACH_BB_FN (bb, cfun)
4387     init_lv_set (bb);
4388
4389   /* Don't forget EXIT_BLOCK.  */
4390   init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4391 }
4392
4393 /* Release lv set of HEAD.  */
4394 static void
4395 free_lv_set (basic_block bb)
4396 {
4397   gcc_assert (BB_LV_SET (bb) != NULL);
4398
4399   return_regset_to_pool (BB_LV_SET (bb));
4400   BB_LV_SET (bb) = NULL;
4401   BB_LV_SET_VALID_P (bb) = false;
4402 }
4403
4404 /* Finalize lv sets of all bb headers.  */
4405 void
4406 free_lv_sets (void)
4407 {
4408   basic_block bb;
4409
4410   /* Don't forget EXIT_BLOCK.  */
4411   free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4412
4413   /* Free LV sets.  */
4414   FOR_EACH_BB_FN (bb, cfun)
4415     if (BB_LV_SET (bb))
4416       free_lv_set (bb);
4417 }
4418
4419 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4420    compute_av() processes BB.  This function is called when creating new basic
4421    blocks, as well as for blocks (either new or existing) where new jumps are
4422    created when the control flow is being updated.  */
4423 static void
4424 invalidate_av_set (basic_block bb)
4425 {
4426   BB_AV_LEVEL (bb) = -1;
4427 }
4428
4429 /* Create initial data sets for BB (they will be invalid).  */
4430 static void
4431 create_initial_data_sets (basic_block bb)
4432 {
4433   if (BB_LV_SET (bb))
4434     BB_LV_SET_VALID_P (bb) = false;
4435   else
4436     BB_LV_SET (bb) = get_regset_from_pool ();
4437   invalidate_av_set (bb);
4438 }
4439
4440 /* Free av set of BB.  */
4441 static void
4442 free_av_set (basic_block bb)
4443 {
4444   av_set_clear (&BB_AV_SET (bb));
4445   BB_AV_LEVEL (bb) = 0;
4446 }
4447
4448 /* Free data sets of BB.  */
4449 void
4450 free_data_sets (basic_block bb)
4451 {
4452   free_lv_set (bb);
4453   free_av_set (bb);
4454 }
4455
4456 /* Exchange data sets of TO and FROM.  */
4457 void
4458 exchange_data_sets (basic_block to, basic_block from)
4459 {
4460   /* Exchange lv sets of TO and FROM.  */
4461   std::swap (BB_LV_SET (from), BB_LV_SET (to));
4462   std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4463
4464   /* Exchange av sets of TO and FROM.  */
4465   std::swap (BB_AV_SET (from), BB_AV_SET (to));
4466   std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4467 }
4468
4469 /* Copy data sets of FROM to TO.  */
4470 void
4471 copy_data_sets (basic_block to, basic_block from)
4472 {
4473   gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4474   gcc_assert (BB_AV_SET (to) == NULL);
4475
4476   BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4477   BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4478
4479   if (BB_AV_SET_VALID_P (from))
4480     {
4481       BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4482     }
4483   if (BB_LV_SET_VALID_P (from))
4484     {
4485       gcc_assert (BB_LV_SET (to) != NULL);
4486       COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4487     }
4488 }
4489
4490 /* Return an av set for INSN, if any.  */
4491 av_set_t
4492 get_av_set (insn_t insn)
4493 {
4494   av_set_t av_set;
4495
4496   gcc_assert (AV_SET_VALID_P (insn));
4497
4498   if (sel_bb_head_p (insn))
4499     av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4500   else
4501     av_set = NULL;
4502
4503   return av_set;
4504 }
4505
4506 /* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4507 int
4508 get_av_level (insn_t insn)
4509 {
4510   int av_level;
4511
4512   gcc_assert (INSN_P (insn));
4513
4514   if (sel_bb_head_p (insn))
4515     av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4516   else
4517     av_level = INSN_WS_LEVEL (insn);
4518
4519   return av_level;
4520 }
4521
4522 \f
4523
4524 /* Variables to work with control-flow graph.  */
4525
4526 /* The basic block that already has been processed by the sched_data_update (),
4527    but hasn't been in sel_add_bb () yet.  */
4528 static vec<basic_block> last_added_blocks;
4529
4530 /* A pool for allocating successor infos.  */
4531 static struct
4532 {
4533   /* A stack for saving succs_info structures.  */
4534   struct succs_info *stack;
4535
4536   /* Its size.  */
4537   int size;
4538
4539   /* Top of the stack.  */
4540   int top;
4541
4542   /* Maximal value of the top.  */
4543   int max_top;
4544 }  succs_info_pool;
4545
4546 /* Functions to work with control-flow graph.  */
4547
4548 /* Return basic block note of BB.  */
4549 rtx_insn *
4550 sel_bb_head (basic_block bb)
4551 {
4552   rtx_insn *head;
4553
4554   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4555     {
4556       gcc_assert (exit_insn != NULL_RTX);
4557       head = exit_insn;
4558     }
4559   else
4560     {
4561       rtx_note *note = bb_note (bb);
4562       head = next_nonnote_insn (note);
4563
4564       if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4565         head = NULL;
4566     }
4567
4568   return head;
4569 }
4570
4571 /* Return true if INSN is a basic block header.  */
4572 bool
4573 sel_bb_head_p (insn_t insn)
4574 {
4575   return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4576 }
4577
4578 /* Return last insn of BB.  */
4579 rtx_insn *
4580 sel_bb_end (basic_block bb)
4581 {
4582   if (sel_bb_empty_p (bb))
4583     return NULL;
4584
4585   gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4586
4587   return BB_END (bb);
4588 }
4589
4590 /* Return true if INSN is the last insn in its basic block.  */
4591 bool
4592 sel_bb_end_p (insn_t insn)
4593 {
4594   return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4595 }
4596
4597 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4598 bool
4599 sel_bb_empty_p (basic_block bb)
4600 {
4601   return sel_bb_head (bb) == NULL;
4602 }
4603
4604 /* True when BB belongs to the current scheduling region.  */
4605 bool
4606 in_current_region_p (basic_block bb)
4607 {
4608   if (bb->index < NUM_FIXED_BLOCKS)
4609     return false;
4610
4611   return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4612 }
4613
4614 /* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4615 basic_block
4616 fallthru_bb_of_jump (const rtx_insn *jump)
4617 {
4618   if (!JUMP_P (jump))
4619     return NULL;
4620
4621   if (!any_condjump_p (jump))
4622     return NULL;
4623
4624   /* A basic block that ends with a conditional jump may still have one successor
4625      (and be followed by a barrier), we are not interested.  */
4626   if (single_succ_p (BLOCK_FOR_INSN (jump)))
4627     return NULL;
4628
4629   return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4630 }
4631
4632 /* Remove all notes from BB.  */
4633 static void
4634 init_bb (basic_block bb)
4635 {
4636   remove_notes (bb_note (bb), BB_END (bb));
4637   BB_NOTE_LIST (bb) = note_list;
4638 }
4639
4640 void
4641 sel_init_bbs (bb_vec_t bbs)
4642 {
4643   const struct sched_scan_info_def ssi =
4644     {
4645       extend_bb_info, /* extend_bb */
4646       init_bb, /* init_bb */
4647       NULL, /* extend_insn */
4648       NULL /* init_insn */
4649     };
4650
4651   sched_scan (&ssi, bbs);
4652 }
4653
4654 /* Restore notes for the whole region.  */
4655 static void
4656 sel_restore_notes (void)
4657 {
4658   int bb;
4659   insn_t insn;
4660
4661   for (bb = 0; bb < current_nr_blocks; bb++)
4662     {
4663       basic_block first, last;
4664
4665       first = EBB_FIRST_BB (bb);
4666       last = EBB_LAST_BB (bb)->next_bb;
4667
4668       do
4669         {
4670           note_list = BB_NOTE_LIST (first);
4671           restore_other_notes (NULL, first);
4672           BB_NOTE_LIST (first) = NULL;
4673
4674           FOR_BB_INSNS (first, insn)
4675             if (NONDEBUG_INSN_P (insn))
4676               reemit_notes (insn);
4677
4678           first = first->next_bb;
4679         }
4680       while (first != last);
4681     }
4682 }
4683
4684 /* Free per-bb data structures.  */
4685 void
4686 sel_finish_bbs (void)
4687 {
4688   sel_restore_notes ();
4689
4690   /* Remove current loop preheader from this loop.  */
4691   if (current_loop_nest)
4692     sel_remove_loop_preheader ();
4693
4694   finish_region_bb_info ();
4695 }
4696
4697 /* Return true if INSN has a single successor of type FLAGS.  */
4698 bool
4699 sel_insn_has_single_succ_p (insn_t insn, int flags)
4700 {
4701   insn_t succ;
4702   succ_iterator si;
4703   bool first_p = true;
4704
4705   FOR_EACH_SUCC_1 (succ, si, insn, flags)
4706     {
4707       if (first_p)
4708         first_p = false;
4709       else
4710         return false;
4711     }
4712
4713   return true;
4714 }
4715
4716 /* Allocate successor's info.  */
4717 static struct succs_info *
4718 alloc_succs_info (void)
4719 {
4720   if (succs_info_pool.top == succs_info_pool.max_top)
4721     {
4722       int i;
4723
4724       if (++succs_info_pool.max_top >= succs_info_pool.size)
4725         gcc_unreachable ();
4726
4727       i = ++succs_info_pool.top;
4728       succs_info_pool.stack[i].succs_ok.create (10);
4729       succs_info_pool.stack[i].succs_other.create (10);
4730       succs_info_pool.stack[i].probs_ok.create (10);
4731     }
4732   else
4733     succs_info_pool.top++;
4734
4735   return &succs_info_pool.stack[succs_info_pool.top];
4736 }
4737
4738 /* Free successor's info.  */
4739 void
4740 free_succs_info (struct succs_info * sinfo)
4741 {
4742   gcc_assert (succs_info_pool.top >= 0
4743               && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4744   succs_info_pool.top--;
4745
4746   /* Clear stale info.  */
4747   sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4748   sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4749   sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4750   sinfo->all_prob = 0;
4751   sinfo->succs_ok_n = 0;
4752   sinfo->all_succs_n = 0;
4753 }
4754
4755 /* Compute successor info for INSN.  FLAGS are the flags passed
4756    to the FOR_EACH_SUCC_1 iterator.  */
4757 struct succs_info *
4758 compute_succs_info (insn_t insn, short flags)
4759 {
4760   succ_iterator si;
4761   insn_t succ;
4762   struct succs_info *sinfo = alloc_succs_info ();
4763
4764   /* Traverse *all* successors and decide what to do with each.  */
4765   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4766     {
4767       /* FIXME: this doesn't work for skipping to loop exits, as we don't
4768          perform code motion through inner loops.  */
4769       short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4770
4771       if (current_flags & flags)
4772         {
4773           sinfo->succs_ok.safe_push (succ);
4774           sinfo->probs_ok.safe_push (
4775                     /* FIXME: Improve calculation when skipping
4776                        inner loop to exits.  */
4777                     si.bb_end
4778                     ? (si.e1->probability.initialized_p ()
4779                        ? si.e1->probability.to_reg_br_prob_base ()
4780                        : 0)
4781                     : REG_BR_PROB_BASE);
4782           sinfo->succs_ok_n++;
4783         }
4784       else
4785         sinfo->succs_other.safe_push (succ);
4786
4787       /* Compute all_prob.  */
4788       if (!si.bb_end)
4789         sinfo->all_prob = REG_BR_PROB_BASE;
4790       else if (si.e1->probability.initialized_p ())
4791         sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4792
4793       sinfo->all_succs_n++;
4794     }
4795
4796   return sinfo;
4797 }
4798
4799 /* Return the predecessors of BB in PREDS and their number in N.
4800    Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4801 static void
4802 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4803 {
4804   edge e;
4805   edge_iterator ei;
4806
4807   gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4808
4809   FOR_EACH_EDGE (e, ei, bb->preds)
4810     {
4811       basic_block pred_bb = e->src;
4812       insn_t bb_end = BB_END (pred_bb);
4813
4814       if (!in_current_region_p (pred_bb))
4815         {
4816           gcc_assert (flag_sel_sched_pipelining_outer_loops
4817                       && current_loop_nest);
4818           continue;
4819         }
4820
4821       if (sel_bb_empty_p (pred_bb))
4822         cfg_preds_1 (pred_bb, preds, n, size);
4823       else
4824         {
4825           if (*n == *size)
4826             *preds = XRESIZEVEC (insn_t, *preds,
4827                                  (*size = 2 * *size + 1));
4828           (*preds)[(*n)++] = bb_end;
4829         }
4830     }
4831
4832   gcc_assert (*n != 0
4833               || (flag_sel_sched_pipelining_outer_loops
4834                   && current_loop_nest));
4835 }
4836
4837 /* Find all predecessors of BB and record them in PREDS and their number
4838    in N.  Empty blocks are skipped, and only normal (forward in-region)
4839    edges are processed.  */
4840 static void
4841 cfg_preds (basic_block bb, insn_t **preds, int *n)
4842 {
4843   int size = 0;
4844
4845   *preds = NULL;
4846   *n = 0;
4847   cfg_preds_1 (bb, preds, n, &size);
4848 }
4849
4850 /* Returns true if we are moving INSN through join point.  */
4851 bool
4852 sel_num_cfg_preds_gt_1 (insn_t insn)
4853 {
4854   basic_block bb;
4855
4856   if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4857     return false;
4858
4859   bb = BLOCK_FOR_INSN (insn);
4860
4861   while (1)
4862     {
4863       if (EDGE_COUNT (bb->preds) > 1)
4864         return true;
4865
4866       gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4867       bb = EDGE_PRED (bb, 0)->src;
4868
4869       if (!sel_bb_empty_p (bb))
4870         break;
4871     }
4872
4873   return false;
4874 }
4875
4876 /* Returns true when BB should be the end of an ebb.  Adapted from the
4877    code in sched-ebb.c.  */
4878 bool
4879 bb_ends_ebb_p (basic_block bb)
4880 {
4881   basic_block next_bb = bb_next_bb (bb);
4882   edge e;
4883
4884   if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4885       || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4886       || (LABEL_P (BB_HEAD (next_bb))
4887           /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4888              Work around that.  */
4889           && !single_pred_p (next_bb)))
4890     return true;
4891
4892   if (!in_current_region_p (next_bb))
4893     return true;
4894
4895   e = find_fallthru_edge (bb->succs);
4896   if (e)
4897     {
4898       gcc_assert (e->dest == next_bb);
4899       
4900       return false;
4901     }
4902
4903   return true;
4904 }
4905
4906 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4907    successor of INSN.  */
4908 bool
4909 in_same_ebb_p (insn_t insn, insn_t succ)
4910 {
4911   basic_block ptr = BLOCK_FOR_INSN (insn);
4912
4913   for (;;)
4914     {
4915       if (ptr == BLOCK_FOR_INSN (succ))
4916         return true;
4917
4918       if (bb_ends_ebb_p (ptr))
4919         return false;
4920
4921       ptr = bb_next_bb (ptr);
4922     }
4923
4924   gcc_unreachable ();
4925   return false;
4926 }
4927
4928 /* Recomputes the reverse topological order for the function and
4929    saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4930    modified appropriately.  */
4931 static void
4932 recompute_rev_top_order (void)
4933 {
4934   int *postorder;
4935   int n_blocks, i;
4936
4937   if (!rev_top_order_index
4938       || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4939     {
4940       rev_top_order_index_len = last_basic_block_for_fn (cfun);
4941       rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4942                                         rev_top_order_index_len);
4943     }
4944
4945   postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4946
4947   n_blocks = post_order_compute (postorder, true, false);
4948   gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4949
4950   /* Build reverse function: for each basic block with BB->INDEX == K
4951      rev_top_order_index[K] is it's reverse topological sort number.  */
4952   for (i = 0; i < n_blocks; i++)
4953     {
4954       gcc_assert (postorder[i] < rev_top_order_index_len);
4955       rev_top_order_index[postorder[i]] = i;
4956     }
4957
4958   free (postorder);
4959 }
4960
4961 /* Clear all flags from insns in BB that could spoil its rescheduling.  */
4962 void
4963 clear_outdated_rtx_info (basic_block bb)
4964 {
4965   rtx_insn *insn;
4966
4967   FOR_BB_INSNS (bb, insn)
4968     if (INSN_P (insn))
4969       {
4970         SCHED_GROUP_P (insn) = 0;
4971         INSN_AFTER_STALL_P (insn) = 0;
4972         INSN_SCHED_TIMES (insn) = 0;
4973         EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4974
4975         /* We cannot use the changed caches, as previously we could ignore
4976            the LHS dependence due to enabled renaming and transform
4977            the expression, and currently we'll be unable to do this.  */
4978         htab_empty (INSN_TRANSFORMED_INSNS (insn));
4979       }
4980 }
4981
4982 /* Add BB_NOTE to the pool of available basic block notes.  */
4983 static void
4984 return_bb_to_pool (basic_block bb)
4985 {
4986   rtx_note *note = bb_note (bb);
4987
4988   gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4989               && bb->aux == NULL);
4990
4991   /* It turns out that current cfg infrastructure does not support
4992      reuse of basic blocks.  Don't bother for now.  */
4993   /*bb_note_pool.safe_push (note);*/
4994 }
4995
4996 /* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
4997 static rtx_note *
4998 get_bb_note_from_pool (void)
4999 {
5000   if (bb_note_pool.is_empty ())
5001     return NULL;
5002   else
5003     {
5004       rtx_note *note = bb_note_pool.pop ();
5005
5006       SET_PREV_INSN (note) = NULL_RTX;
5007       SET_NEXT_INSN (note) = NULL_RTX;
5008
5009       return note;
5010     }
5011 }
5012
5013 /* Free bb_note_pool.  */
5014 void
5015 free_bb_note_pool (void)
5016 {
5017   bb_note_pool.release ();
5018 }
5019
5020 /* Setup scheduler pool and successor structure.  */
5021 void
5022 alloc_sched_pools (void)
5023 {
5024   int succs_size;
5025
5026   succs_size = MAX_WS + 1;
5027   succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5028   succs_info_pool.size = succs_size;
5029   succs_info_pool.top = -1;
5030   succs_info_pool.max_top = -1;
5031 }
5032
5033 /* Free the pools.  */
5034 void
5035 free_sched_pools (void)
5036 {
5037   int i;
5038
5039   sched_lists_pool.release ();
5040   gcc_assert (succs_info_pool.top == -1);
5041   for (i = 0; i <= succs_info_pool.max_top; i++)
5042     {
5043       succs_info_pool.stack[i].succs_ok.release ();
5044       succs_info_pool.stack[i].succs_other.release ();
5045       succs_info_pool.stack[i].probs_ok.release ();
5046     }
5047   free (succs_info_pool.stack);
5048 }
5049 \f
5050
5051 /* Returns a position in RGN where BB can be inserted retaining
5052    topological order.  */
5053 static int
5054 find_place_to_insert_bb (basic_block bb, int rgn)
5055 {
5056   bool has_preds_outside_rgn = false;
5057   edge e;
5058   edge_iterator ei;
5059
5060   /* Find whether we have preds outside the region.  */
5061   FOR_EACH_EDGE (e, ei, bb->preds)
5062     if (!in_current_region_p (e->src))
5063       {
5064         has_preds_outside_rgn = true;
5065         break;
5066       }
5067
5068   /* Recompute the top order -- needed when we have > 1 pred
5069      and in case we don't have preds outside.  */
5070   if (flag_sel_sched_pipelining_outer_loops
5071       && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5072     {
5073       int i, bbi = bb->index, cur_bbi;
5074
5075       recompute_rev_top_order ();
5076       for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5077         {
5078           cur_bbi = BB_TO_BLOCK (i);
5079           if (rev_top_order_index[bbi]
5080               < rev_top_order_index[cur_bbi])
5081             break;
5082         }
5083
5084       /* We skipped the right block, so we increase i.  We accommodate
5085          it for increasing by step later, so we decrease i.  */
5086       return (i + 1) - 1;
5087     }
5088   else if (has_preds_outside_rgn)
5089     {
5090       /* This is the case when we generate an extra empty block
5091          to serve as region head during pipelining.  */
5092       e = EDGE_SUCC (bb, 0);
5093       gcc_assert (EDGE_COUNT (bb->succs) == 1
5094                   && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5095                   && (BLOCK_TO_BB (e->dest->index) == 0));
5096       return -1;
5097     }
5098
5099   /* We don't have preds outside the region.  We should have
5100      the only pred, because the multiple preds case comes from
5101      the pipelining of outer loops, and that is handled above.
5102      Just take the bbi of this single pred.  */
5103   if (EDGE_COUNT (bb->succs) > 0)
5104     {
5105       int pred_bbi;
5106
5107       gcc_assert (EDGE_COUNT (bb->preds) == 1);
5108
5109       pred_bbi = EDGE_PRED (bb, 0)->src->index;
5110       return BLOCK_TO_BB (pred_bbi);
5111     }
5112   else
5113     /* BB has no successors.  It is safe to put it in the end.  */
5114     return current_nr_blocks - 1;
5115 }
5116
5117 /* Deletes an empty basic block freeing its data.  */
5118 static void
5119 delete_and_free_basic_block (basic_block bb)
5120 {
5121   gcc_assert (sel_bb_empty_p (bb));
5122
5123   if (BB_LV_SET (bb))
5124     free_lv_set (bb);
5125
5126   bitmap_clear_bit (blocks_to_reschedule, bb->index);
5127
5128   /* Can't assert av_set properties because we use sel_aremove_bb
5129      when removing loop preheader from the region.  At the point of
5130      removing the preheader we already have deallocated sel_region_bb_info.  */
5131   gcc_assert (BB_LV_SET (bb) == NULL
5132               && !BB_LV_SET_VALID_P (bb)
5133               && BB_AV_LEVEL (bb) == 0
5134               && BB_AV_SET (bb) == NULL);
5135
5136   delete_basic_block (bb);
5137 }
5138
5139 /* Add BB to the current region and update the region data.  */
5140 static void
5141 add_block_to_current_region (basic_block bb)
5142 {
5143   int i, pos, bbi = -2, rgn;
5144
5145   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5146   bbi = find_place_to_insert_bb (bb, rgn);
5147   bbi += 1;
5148   pos = RGN_BLOCKS (rgn) + bbi;
5149
5150   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5151               && ebb_head[bbi] == pos);
5152
5153   /* Make a place for the new block.  */
5154   extend_regions ();
5155
5156   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5157     BLOCK_TO_BB (rgn_bb_table[i])++;
5158
5159   memmove (rgn_bb_table + pos + 1,
5160            rgn_bb_table + pos,
5161            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5162
5163   /* Initialize data for BB.  */
5164   rgn_bb_table[pos] = bb->index;
5165   BLOCK_TO_BB (bb->index) = bbi;
5166   CONTAINING_RGN (bb->index) = rgn;
5167
5168   RGN_NR_BLOCKS (rgn)++;
5169
5170   for (i = rgn + 1; i <= nr_regions; i++)
5171     RGN_BLOCKS (i)++;
5172 }
5173
5174 /* Remove BB from the current region and update the region data.  */
5175 static void
5176 remove_bb_from_region (basic_block bb)
5177 {
5178   int i, pos, bbi = -2, rgn;
5179
5180   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5181   bbi = BLOCK_TO_BB (bb->index);
5182   pos = RGN_BLOCKS (rgn) + bbi;
5183
5184   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5185               && ebb_head[bbi] == pos);
5186
5187   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5188     BLOCK_TO_BB (rgn_bb_table[i])--;
5189
5190   memmove (rgn_bb_table + pos,
5191            rgn_bb_table + pos + 1,
5192            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5193
5194   RGN_NR_BLOCKS (rgn)--;
5195   for (i = rgn + 1; i <= nr_regions; i++)
5196     RGN_BLOCKS (i)--;
5197 }
5198
5199 /* Add BB to the current region  and update all data.  If BB is NULL, add all
5200    blocks from last_added_blocks vector.  */
5201 static void
5202 sel_add_bb (basic_block bb)
5203 {
5204   /* Extend luids so that new notes will receive zero luids.  */
5205   sched_extend_luids ();
5206   sched_init_bbs ();
5207   sel_init_bbs (last_added_blocks);
5208
5209   /* When bb is passed explicitly, the vector should contain
5210      the only element that equals to bb; otherwise, the vector
5211      should not be NULL.  */
5212   gcc_assert (last_added_blocks.exists ());
5213
5214   if (bb != NULL)
5215     {
5216       gcc_assert (last_added_blocks.length () == 1
5217                   && last_added_blocks[0] == bb);
5218       add_block_to_current_region (bb);
5219
5220       /* We associate creating/deleting data sets with the first insn
5221          appearing / disappearing in the bb.  */
5222       if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5223         create_initial_data_sets (bb);
5224
5225       last_added_blocks.release ();
5226     }
5227   else
5228     /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5229     {
5230       int i;
5231       basic_block temp_bb = NULL;
5232
5233       for (i = 0;
5234            last_added_blocks.iterate (i, &bb); i++)
5235         {
5236           add_block_to_current_region (bb);
5237           temp_bb = bb;
5238         }
5239
5240       /* We need to fetch at least one bb so we know the region
5241          to update.  */
5242       gcc_assert (temp_bb != NULL);
5243       bb = temp_bb;
5244
5245       last_added_blocks.release ();
5246     }
5247
5248   rgn_setup_region (CONTAINING_RGN (bb->index));
5249 }
5250
5251 /* Remove BB from the current region and update all data.
5252    If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5253 static void
5254 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5255 {
5256   unsigned idx = bb->index;
5257
5258   gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5259
5260   remove_bb_from_region (bb);
5261   return_bb_to_pool (bb);
5262   bitmap_clear_bit (blocks_to_reschedule, idx);
5263
5264   if (remove_from_cfg_p)
5265     {
5266       basic_block succ = single_succ (bb);
5267       delete_and_free_basic_block (bb);
5268       set_immediate_dominator (CDI_DOMINATORS, succ,
5269                                recompute_dominator (CDI_DOMINATORS, succ));
5270     }
5271
5272   rgn_setup_region (CONTAINING_RGN (idx));
5273 }
5274
5275 /* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5276 static void
5277 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5278 {
5279   if (in_current_region_p (merge_bb))
5280     concat_note_lists (BB_NOTE_LIST (empty_bb),
5281                        &BB_NOTE_LIST (merge_bb));
5282   BB_NOTE_LIST (empty_bb) = NULL;
5283
5284 }
5285
5286 /* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5287    region, but keep it in CFG.  */
5288 static void
5289 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5290 {
5291   /* The block should contain just a note or a label.
5292      We try to check whether it is unused below.  */
5293   gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5294               || LABEL_P (BB_HEAD (empty_bb)));
5295
5296   /* If basic block has predecessors or successors, redirect them.  */
5297   if (remove_from_cfg_p
5298       && (EDGE_COUNT (empty_bb->preds) > 0
5299           || EDGE_COUNT (empty_bb->succs) > 0))
5300     {
5301       basic_block pred;
5302       basic_block succ;
5303
5304       /* We need to init PRED and SUCC before redirecting edges.  */
5305       if (EDGE_COUNT (empty_bb->preds) > 0)
5306         {
5307           edge e;
5308
5309           gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5310
5311           e = EDGE_PRED (empty_bb, 0);
5312           gcc_assert (e->src == empty_bb->prev_bb
5313                       && (e->flags & EDGE_FALLTHRU));
5314
5315           pred = empty_bb->prev_bb;
5316         }
5317       else
5318         pred = NULL;
5319
5320       if (EDGE_COUNT (empty_bb->succs) > 0)
5321         {
5322           /* We do not check fallthruness here as above, because
5323              after removing a jump the edge may actually be not fallthru.  */
5324           gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5325           succ = EDGE_SUCC (empty_bb, 0)->dest;
5326         }
5327       else
5328         succ = NULL;
5329
5330       if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5331         {
5332           edge e = EDGE_PRED (empty_bb, 0);
5333
5334           if (e->flags & EDGE_FALLTHRU)
5335             redirect_edge_succ_nodup (e, succ);
5336           else
5337             sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5338         }
5339
5340       if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5341         {
5342           edge e = EDGE_SUCC (empty_bb, 0);
5343
5344           if (find_edge (pred, e->dest) == NULL)
5345             redirect_edge_pred (e, pred);
5346         }
5347     }
5348
5349   /* Finish removing.  */
5350   sel_remove_bb (empty_bb, remove_from_cfg_p);
5351 }
5352
5353 /* An implementation of create_basic_block hook, which additionally updates
5354    per-bb data structures.  */
5355 static basic_block
5356 sel_create_basic_block (void *headp, void *endp, basic_block after)
5357 {
5358   basic_block new_bb;
5359   rtx_note *new_bb_note;
5360
5361   gcc_assert (flag_sel_sched_pipelining_outer_loops
5362               || !last_added_blocks.exists ());
5363
5364   new_bb_note = get_bb_note_from_pool ();
5365
5366   if (new_bb_note == NULL_RTX)
5367     new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5368   else
5369     {
5370       new_bb = create_basic_block_structure ((rtx_insn *) headp,
5371                                              (rtx_insn *) endp,
5372                                              new_bb_note, after);
5373       new_bb->aux = NULL;
5374     }
5375
5376   last_added_blocks.safe_push (new_bb);
5377
5378   return new_bb;
5379 }
5380
5381 /* Implement sched_init_only_bb ().  */
5382 static void
5383 sel_init_only_bb (basic_block bb, basic_block after)
5384 {
5385   gcc_assert (after == NULL);
5386
5387   extend_regions ();
5388   rgn_make_new_region_out_of_new_block (bb);
5389 }
5390
5391 /* Update the latch when we've splitted or merged it from FROM block to TO.
5392    This should be checked for all outer loops, too.  */
5393 static void
5394 change_loops_latches (basic_block from, basic_block to)
5395 {
5396   gcc_assert (from != to);
5397
5398   if (current_loop_nest)
5399     {
5400       struct loop *loop;
5401
5402       for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5403         if (considered_for_pipelining_p (loop) && loop->latch == from)
5404           {
5405             gcc_assert (loop == current_loop_nest);
5406             loop->latch = to;
5407             gcc_assert (loop_latch_edge (loop));
5408           }
5409     }
5410 }
5411
5412 /* Splits BB on two basic blocks, adding it to the region and extending
5413    per-bb data structures.  Returns the newly created bb.  */
5414 static basic_block
5415 sel_split_block (basic_block bb, rtx after)
5416 {
5417   basic_block new_bb;
5418   insn_t insn;
5419
5420   new_bb = sched_split_block_1 (bb, after);
5421   sel_add_bb (new_bb);
5422
5423   /* This should be called after sel_add_bb, because this uses
5424      CONTAINING_RGN for the new block, which is not yet initialized.
5425      FIXME: this function may be a no-op now.  */
5426   change_loops_latches (bb, new_bb);
5427
5428   /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5429   FOR_BB_INSNS (new_bb, insn)
5430    if (INSN_P (insn))
5431      EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5432
5433   if (sel_bb_empty_p (bb))
5434     {
5435       gcc_assert (!sel_bb_empty_p (new_bb));
5436
5437       /* NEW_BB has data sets that need to be updated and BB holds
5438          data sets that should be removed.  Exchange these data sets
5439          so that we won't lose BB's valid data sets.  */
5440       exchange_data_sets (new_bb, bb);
5441       free_data_sets (bb);
5442     }
5443
5444   if (!sel_bb_empty_p (new_bb)
5445       && bitmap_bit_p (blocks_to_reschedule, bb->index))
5446     bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5447
5448   return new_bb;
5449 }
5450
5451 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5452    Otherwise returns NULL.  */
5453 static rtx_insn *
5454 check_for_new_jump (basic_block bb, int prev_max_uid)
5455 {
5456   rtx_insn *end;
5457
5458   end = sel_bb_end (bb);
5459   if (end && INSN_UID (end) >= prev_max_uid)
5460     return end;
5461   return NULL;
5462 }
5463
5464 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5465    New means having UID at least equal to PREV_MAX_UID.  */
5466 static rtx_insn *
5467 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5468 {
5469   rtx_insn *jump;
5470
5471   /* Return immediately if no new insns were emitted.  */
5472   if (get_max_uid () == prev_max_uid)
5473     return NULL;
5474
5475   /* Now check both blocks for new jumps.  It will ever be only one.  */
5476   if ((jump = check_for_new_jump (from, prev_max_uid)))
5477     return jump;
5478
5479   if (jump_bb != NULL
5480       && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5481     return jump;
5482   return NULL;
5483 }
5484
5485 /* Splits E and adds the newly created basic block to the current region.
5486    Returns this basic block.  */
5487 basic_block
5488 sel_split_edge (edge e)
5489 {
5490   basic_block new_bb, src, other_bb = NULL;
5491   int prev_max_uid;
5492   rtx_insn *jump;
5493
5494   src = e->src;
5495   prev_max_uid = get_max_uid ();
5496   new_bb = split_edge (e);
5497
5498   if (flag_sel_sched_pipelining_outer_loops
5499       && current_loop_nest)
5500     {
5501       int i;
5502       basic_block bb;
5503
5504       /* Some of the basic blocks might not have been added to the loop.
5505          Add them here, until this is fixed in force_fallthru.  */
5506       for (i = 0;
5507            last_added_blocks.iterate (i, &bb); i++)
5508         if (!bb->loop_father)
5509           {
5510             add_bb_to_loop (bb, e->dest->loop_father);
5511
5512             gcc_assert (!other_bb && (new_bb->index != bb->index));
5513             other_bb = bb;
5514           }
5515     }
5516
5517   /* Add all last_added_blocks to the region.  */
5518   sel_add_bb (NULL);
5519
5520   jump = find_new_jump (src, new_bb, prev_max_uid);
5521   if (jump)
5522     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5523
5524   /* Put the correct lv set on this block.  */
5525   if (other_bb && !sel_bb_empty_p (other_bb))
5526     compute_live (sel_bb_head (other_bb));
5527
5528   return new_bb;
5529 }
5530
5531 /* Implement sched_create_empty_bb ().  */
5532 static basic_block
5533 sel_create_empty_bb (basic_block after)
5534 {
5535   basic_block new_bb;
5536
5537   new_bb = sched_create_empty_bb_1 (after);
5538
5539   /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5540      later.  */
5541   gcc_assert (last_added_blocks.length () == 1
5542               && last_added_blocks[0] == new_bb);
5543
5544   last_added_blocks.release ();
5545   return new_bb;
5546 }
5547
5548 /* Implement sched_create_recovery_block.  ORIG_INSN is where block
5549    will be splitted to insert a check.  */
5550 basic_block
5551 sel_create_recovery_block (insn_t orig_insn)
5552 {
5553   basic_block first_bb, second_bb, recovery_block;
5554   basic_block before_recovery = NULL;
5555   rtx_insn *jump;
5556
5557   first_bb = BLOCK_FOR_INSN (orig_insn);
5558   if (sel_bb_end_p (orig_insn))
5559     {
5560       /* Avoid introducing an empty block while splitting.  */
5561       gcc_assert (single_succ_p (first_bb));
5562       second_bb = single_succ (first_bb);
5563     }
5564   else
5565     second_bb = sched_split_block (first_bb, orig_insn);
5566
5567   recovery_block = sched_create_recovery_block (&before_recovery);
5568   if (before_recovery)
5569     copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5570
5571   gcc_assert (sel_bb_empty_p (recovery_block));
5572   sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5573   if (current_loops != NULL)
5574     add_bb_to_loop (recovery_block, first_bb->loop_father);
5575
5576   sel_add_bb (recovery_block);
5577
5578   jump = BB_END (recovery_block);
5579   gcc_assert (sel_bb_head (recovery_block) == jump);
5580   sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5581
5582   return recovery_block;
5583 }
5584
5585 /* Merge basic block B into basic block A.  */
5586 static void
5587 sel_merge_blocks (basic_block a, basic_block b)
5588 {
5589   gcc_assert (sel_bb_empty_p (b)
5590               && EDGE_COUNT (b->preds) == 1
5591               && EDGE_PRED (b, 0)->src == b->prev_bb);
5592
5593   move_bb_info (b->prev_bb, b);
5594   remove_empty_bb (b, false);
5595   merge_blocks (a, b);
5596   change_loops_latches (b, a);
5597 }
5598
5599 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5600    data structures for possibly created bb and insns.  */
5601 void
5602 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5603 {
5604   basic_block jump_bb, src, orig_dest = e->dest;
5605   int prev_max_uid;
5606   rtx_insn *jump;
5607   int old_seqno = -1;
5608
5609   /* This function is now used only for bookkeeping code creation, where
5610      we'll never get the single pred of orig_dest block and thus will not
5611      hit unreachable blocks when updating dominator info.  */
5612   gcc_assert (!sel_bb_empty_p (e->src)
5613               && !single_pred_p (orig_dest));
5614   src = e->src;
5615   prev_max_uid = get_max_uid ();
5616   /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5617      when the conditional jump being redirected may become unconditional.  */
5618   if (any_condjump_p (BB_END (src))
5619       && INSN_SEQNO (BB_END (src)) >= 0)
5620     old_seqno = INSN_SEQNO (BB_END (src));
5621
5622   jump_bb = redirect_edge_and_branch_force (e, to);
5623   if (jump_bb != NULL)
5624     sel_add_bb (jump_bb);
5625
5626   /* This function could not be used to spoil the loop structure by now,
5627      thus we don't care to update anything.  But check it to be sure.  */
5628   if (current_loop_nest
5629       && pipelining_p)
5630     gcc_assert (loop_latch_edge (current_loop_nest));
5631
5632   jump = find_new_jump (src, jump_bb, prev_max_uid);
5633   if (jump)
5634     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5635                        old_seqno);
5636   set_immediate_dominator (CDI_DOMINATORS, to,
5637                            recompute_dominator (CDI_DOMINATORS, to));
5638   set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5639                            recompute_dominator (CDI_DOMINATORS, orig_dest));
5640 }
5641
5642 /* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5643    redirected edge are in reverse topological order.  */
5644 bool
5645 sel_redirect_edge_and_branch (edge e, basic_block to)
5646 {
5647   bool latch_edge_p;
5648   basic_block src, orig_dest = e->dest;
5649   int prev_max_uid;
5650   rtx_insn *jump;
5651   edge redirected;
5652   bool recompute_toporder_p = false;
5653   bool maybe_unreachable = single_pred_p (orig_dest);
5654   int old_seqno = -1;
5655
5656   latch_edge_p = (pipelining_p
5657                   && current_loop_nest
5658                   && e == loop_latch_edge (current_loop_nest));
5659
5660   src = e->src;
5661   prev_max_uid = get_max_uid ();
5662
5663   /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5664      when the conditional jump being redirected may become unconditional.  */
5665   if (any_condjump_p (BB_END (src))
5666       && INSN_SEQNO (BB_END (src)) >= 0)
5667     old_seqno = INSN_SEQNO (BB_END (src));
5668
5669   redirected = redirect_edge_and_branch (e, to);
5670
5671   gcc_assert (redirected && !last_added_blocks.exists ());
5672
5673   /* When we've redirected a latch edge, update the header.  */
5674   if (latch_edge_p)
5675     {
5676       current_loop_nest->header = to;
5677       gcc_assert (loop_latch_edge (current_loop_nest));
5678     }
5679
5680   /* In rare situations, the topological relation between the blocks connected
5681      by the redirected edge can change (see PR42245 for an example).  Update
5682      block_to_bb/bb_to_block.  */
5683   if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5684       && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5685     recompute_toporder_p = true;
5686
5687   jump = find_new_jump (src, NULL, prev_max_uid);
5688   if (jump)
5689     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5690
5691   /* Only update dominator info when we don't have unreachable blocks.
5692      Otherwise we'll update in maybe_tidy_empty_bb.  */
5693   if (!maybe_unreachable)
5694     {
5695       set_immediate_dominator (CDI_DOMINATORS, to,
5696                                recompute_dominator (CDI_DOMINATORS, to));
5697       set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5698                                recompute_dominator (CDI_DOMINATORS, orig_dest));
5699     }
5700   return recompute_toporder_p;
5701 }
5702
5703 /* This variable holds the cfg hooks used by the selective scheduler.  */
5704 static struct cfg_hooks sel_cfg_hooks;
5705
5706 /* Register sel-sched cfg hooks.  */
5707 void
5708 sel_register_cfg_hooks (void)
5709 {
5710   sched_split_block = sel_split_block;
5711
5712   orig_cfg_hooks = get_cfg_hooks ();
5713   sel_cfg_hooks = orig_cfg_hooks;
5714
5715   sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5716
5717   set_cfg_hooks (sel_cfg_hooks);
5718
5719   sched_init_only_bb = sel_init_only_bb;
5720   sched_split_block = sel_split_block;
5721   sched_create_empty_bb = sel_create_empty_bb;
5722 }
5723
5724 /* Unregister sel-sched cfg hooks.  */
5725 void
5726 sel_unregister_cfg_hooks (void)
5727 {
5728   sched_create_empty_bb = NULL;
5729   sched_split_block = NULL;
5730   sched_init_only_bb = NULL;
5731
5732   set_cfg_hooks (orig_cfg_hooks);
5733 }
5734 \f
5735
5736 /* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5737    LABEL is where this jump should be directed.  */
5738 rtx_insn *
5739 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5740 {
5741   rtx_insn *insn_rtx;
5742
5743   gcc_assert (!INSN_P (pattern));
5744
5745   start_sequence ();
5746
5747   if (label == NULL_RTX)
5748     insn_rtx = emit_insn (pattern);
5749   else if (DEBUG_INSN_P (label))
5750     insn_rtx = emit_debug_insn (pattern);
5751   else
5752     {
5753       insn_rtx = emit_jump_insn (pattern);
5754       JUMP_LABEL (insn_rtx) = label;
5755       ++LABEL_NUSES (label);
5756     }
5757
5758   end_sequence ();
5759
5760   sched_extend_luids ();
5761   sched_extend_target ();
5762   sched_deps_init (false);
5763
5764   /* Initialize INSN_CODE now.  */
5765   recog_memoized (insn_rtx);
5766   return insn_rtx;
5767 }
5768
5769 /* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5770    must not be clonable.  */
5771 vinsn_t
5772 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5773 {
5774   gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5775
5776   /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5777   return vinsn_create (insn_rtx, force_unique_p);
5778 }
5779
5780 /* Create a copy of INSN_RTX.  */
5781 rtx_insn *
5782 create_copy_of_insn_rtx (rtx insn_rtx)
5783 {
5784   rtx_insn *res;
5785   rtx link;
5786
5787   if (DEBUG_INSN_P (insn_rtx))
5788     return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5789                                          insn_rtx);
5790
5791   gcc_assert (NONJUMP_INSN_P (insn_rtx));
5792
5793   res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5794                                       NULL_RTX);
5795
5796   /* Locate the end of existing REG_NOTES in NEW_RTX.  */
5797   rtx *ptail = &REG_NOTES (res);
5798   while (*ptail != NULL_RTX)
5799     ptail = &XEXP (*ptail, 1);
5800
5801   /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5802      since mark_jump_label will make them.  REG_LABEL_TARGETs are created
5803      there too, but are supposed to be sticky, so we copy them.  */
5804   for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5805     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5806         && REG_NOTE_KIND (link) != REG_EQUAL
5807         && REG_NOTE_KIND (link) != REG_EQUIV)
5808       {
5809         *ptail = duplicate_reg_note (link);
5810         ptail = &XEXP (*ptail, 1);
5811       }
5812
5813   return res;
5814 }
5815
5816 /* Change vinsn field of EXPR to hold NEW_VINSN.  */
5817 void
5818 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5819 {
5820   vinsn_detach (EXPR_VINSN (expr));
5821
5822   EXPR_VINSN (expr) = new_vinsn;
5823   vinsn_attach (new_vinsn);
5824 }
5825
5826 /* Helpers for global init.  */
5827 /* This structure is used to be able to call existing bundling mechanism
5828    and calculate insn priorities.  */
5829 static struct haifa_sched_info sched_sel_haifa_sched_info =
5830 {
5831   NULL, /* init_ready_list */
5832   NULL, /* can_schedule_ready_p */
5833   NULL, /* schedule_more_p */
5834   NULL, /* new_ready */
5835   NULL, /* rgn_rank */
5836   sel_print_insn, /* rgn_print_insn */
5837   contributes_to_priority,
5838   NULL, /* insn_finishes_block_p */
5839
5840   NULL, NULL,
5841   NULL, NULL,
5842   0, 0,
5843
5844   NULL, /* add_remove_insn */
5845   NULL, /* begin_schedule_ready */
5846   NULL, /* begin_move_insn */
5847   NULL, /* advance_target_bb */
5848
5849   NULL,
5850   NULL,
5851
5852   SEL_SCHED | NEW_BBS
5853 };
5854
5855 /* Setup special insns used in the scheduler.  */
5856 void
5857 setup_nop_and_exit_insns (void)
5858 {
5859   gcc_assert (nop_pattern == NULL_RTX
5860               && exit_insn == NULL_RTX);
5861
5862   nop_pattern = constm1_rtx;
5863
5864   start_sequence ();
5865   emit_insn (nop_pattern);
5866   exit_insn = get_insns ();
5867   end_sequence ();
5868   set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5869 }
5870
5871 /* Free special insns used in the scheduler.  */
5872 void
5873 free_nop_and_exit_insns (void)
5874 {
5875   exit_insn = NULL;
5876   nop_pattern = NULL_RTX;
5877 }
5878
5879 /* Setup a special vinsn used in new insns initialization.  */
5880 void
5881 setup_nop_vinsn (void)
5882 {
5883   nop_vinsn = vinsn_create (exit_insn, false);
5884   vinsn_attach (nop_vinsn);
5885 }
5886
5887 /* Free a special vinsn used in new insns initialization.  */
5888 void
5889 free_nop_vinsn (void)
5890 {
5891   gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5892   vinsn_detach (nop_vinsn);
5893   nop_vinsn = NULL;
5894 }
5895
5896 /* Call a set_sched_flags hook.  */
5897 void
5898 sel_set_sched_flags (void)
5899 {
5900   /* ??? This means that set_sched_flags were called, and we decided to
5901      support speculation.  However, set_sched_flags also modifies flags
5902      on current_sched_info, doing this only at global init.  And we
5903      sometimes change c_s_i later.  So put the correct flags again.  */
5904   if (spec_info && targetm.sched.set_sched_flags)
5905     targetm.sched.set_sched_flags (spec_info);
5906 }
5907
5908 /* Setup pointers to global sched info structures.  */
5909 void
5910 sel_setup_sched_infos (void)
5911 {
5912   rgn_setup_common_sched_info ();
5913
5914   memcpy (&sel_common_sched_info, common_sched_info,
5915           sizeof (sel_common_sched_info));
5916
5917   sel_common_sched_info.fix_recovery_cfg = NULL;
5918   sel_common_sched_info.add_block = NULL;
5919   sel_common_sched_info.estimate_number_of_insns
5920     = sel_estimate_number_of_insns;
5921   sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5922   sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5923
5924   common_sched_info = &sel_common_sched_info;
5925
5926   current_sched_info = &sched_sel_haifa_sched_info;
5927   current_sched_info->sched_max_insns_priority =
5928     get_rgn_sched_max_insns_priority ();
5929
5930   sel_set_sched_flags ();
5931 }
5932 \f
5933
5934 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5935    *BB_ORD_INDEX after that is increased.  */
5936 static void
5937 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5938 {
5939   RGN_NR_BLOCKS (rgn) += 1;
5940   RGN_DONT_CALC_DEPS (rgn) = 0;
5941   RGN_HAS_REAL_EBB (rgn) = 0;
5942   CONTAINING_RGN (bb->index) = rgn;
5943   BLOCK_TO_BB (bb->index) = *bb_ord_index;
5944   rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5945   (*bb_ord_index)++;
5946
5947   /* FIXME: it is true only when not scheduling ebbs.  */
5948   RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5949 }
5950
5951 /* Functions to support pipelining of outer loops.  */
5952
5953 /* Creates a new empty region and returns it's number.  */
5954 static int
5955 sel_create_new_region (void)
5956 {
5957   int new_rgn_number = nr_regions;
5958
5959   RGN_NR_BLOCKS (new_rgn_number) = 0;
5960
5961   /* FIXME: This will work only when EBBs are not created.  */
5962   if (new_rgn_number != 0)
5963     RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5964       RGN_NR_BLOCKS (new_rgn_number - 1);
5965   else
5966     RGN_BLOCKS (new_rgn_number) = 0;
5967
5968   /* Set the blocks of the next region so the other functions may
5969      calculate the number of blocks in the region.  */
5970   RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5971     RGN_NR_BLOCKS (new_rgn_number);
5972
5973   nr_regions++;
5974
5975   return new_rgn_number;
5976 }
5977
5978 /* If X has a smaller topological sort number than Y, returns -1;
5979    if greater, returns 1.  */
5980 static int
5981 bb_top_order_comparator (const void *x, const void *y)
5982 {
5983   basic_block bb1 = *(const basic_block *) x;
5984   basic_block bb2 = *(const basic_block *) y;
5985
5986   gcc_assert (bb1 == bb2
5987               || rev_top_order_index[bb1->index]
5988                  != rev_top_order_index[bb2->index]);
5989
5990   /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5991      bbs with greater number should go earlier.  */
5992   if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5993     return -1;
5994   else
5995     return 1;
5996 }
5997
5998 /* Create a region for LOOP and return its number.  If we don't want
5999    to pipeline LOOP, return -1.  */
6000 static int
6001 make_region_from_loop (struct loop *loop)
6002 {
6003   unsigned int i;
6004   int new_rgn_number = -1;
6005   struct loop *inner;
6006
6007   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6008   int bb_ord_index = 0;
6009   basic_block *loop_blocks;
6010   basic_block preheader_block;
6011
6012   if (loop->num_nodes
6013       > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6014     return -1;
6015
6016   /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
6017   for (inner = loop->inner; inner; inner = inner->inner)
6018     if (flow_bb_inside_loop_p (inner, loop->latch))
6019       return -1;
6020
6021   loop->ninsns = num_loop_insns (loop);
6022   if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6023     return -1;
6024
6025   loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6026
6027   for (i = 0; i < loop->num_nodes; i++)
6028     if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6029       {
6030         free (loop_blocks);
6031         return -1;
6032       }
6033
6034   preheader_block = loop_preheader_edge (loop)->src;
6035   gcc_assert (preheader_block);
6036   gcc_assert (loop_blocks[0] == loop->header);
6037
6038   new_rgn_number = sel_create_new_region ();
6039
6040   sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6041   bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6042
6043   for (i = 0; i < loop->num_nodes; i++)
6044     {
6045       /* Add only those blocks that haven't been scheduled in the inner loop.
6046          The exception is the basic blocks with bookkeeping code - they should
6047          be added to the region (and they actually don't belong to the loop
6048          body, but to the region containing that loop body).  */
6049
6050       gcc_assert (new_rgn_number >= 0);
6051
6052       if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6053         {
6054           sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6055                                    new_rgn_number);
6056           bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6057         }
6058     }
6059
6060   free (loop_blocks);
6061   MARK_LOOP_FOR_PIPELINING (loop);
6062
6063   return new_rgn_number;
6064 }
6065
6066 /* Create a new region from preheader blocks LOOP_BLOCKS.  */
6067 void
6068 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6069 {
6070   unsigned int i;
6071   int new_rgn_number = -1;
6072   basic_block bb;
6073
6074   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6075   int bb_ord_index = 0;
6076
6077   new_rgn_number = sel_create_new_region ();
6078
6079   FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6080     {
6081       gcc_assert (new_rgn_number >= 0);
6082
6083       sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6084     }
6085
6086   vec_free (loop_blocks);
6087 }
6088
6089
6090 /* Create region(s) from loop nest LOOP, such that inner loops will be
6091    pipelined before outer loops.  Returns true when a region for LOOP
6092    is created.  */
6093 static bool
6094 make_regions_from_loop_nest (struct loop *loop)
6095 {
6096   struct loop *cur_loop;
6097   int rgn_number;
6098
6099   /* Traverse all inner nodes of the loop.  */
6100   for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6101     if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6102       return false;
6103
6104   /* At this moment all regular inner loops should have been pipelined.
6105      Try to create a region from this loop.  */
6106   rgn_number = make_region_from_loop (loop);
6107
6108   if (rgn_number < 0)
6109     return false;
6110
6111   loop_nests.safe_push (loop);
6112   return true;
6113 }
6114
6115 /* Initalize data structures needed.  */
6116 void
6117 sel_init_pipelining (void)
6118 {
6119   /* Collect loop information to be used in outer loops pipelining.  */
6120   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6121                        | LOOPS_HAVE_FALLTHRU_PREHEADERS
6122                        | LOOPS_HAVE_RECORDED_EXITS
6123                        | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6124   current_loop_nest = NULL;
6125
6126   bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6127   bitmap_clear (bbs_in_loop_rgns);
6128
6129   recompute_rev_top_order ();
6130 }
6131
6132 /* Returns a struct loop for region RGN.  */
6133 loop_p
6134 get_loop_nest_for_rgn (unsigned int rgn)
6135 {
6136   /* Regions created with extend_rgns don't have corresponding loop nests,
6137      because they don't represent loops.  */
6138   if (rgn < loop_nests.length ())
6139     return loop_nests[rgn];
6140   else
6141     return NULL;
6142 }
6143
6144 /* True when LOOP was included into pipelining regions.   */
6145 bool
6146 considered_for_pipelining_p (struct loop *loop)
6147 {
6148   if (loop_depth (loop) == 0)
6149     return false;
6150
6151   /* Now, the loop could be too large or irreducible.  Check whether its
6152      region is in LOOP_NESTS.
6153      We determine the region number of LOOP as the region number of its
6154      latch.  We can't use header here, because this header could be
6155      just removed preheader and it will give us the wrong region number.
6156      Latch can't be used because it could be in the inner loop too.  */
6157   if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6158     {
6159       int rgn = CONTAINING_RGN (loop->latch->index);
6160
6161       gcc_assert ((unsigned) rgn < loop_nests.length ());
6162       return true;
6163     }
6164
6165   return false;
6166 }
6167
6168 /* Makes regions from the rest of the blocks, after loops are chosen
6169    for pipelining.  */
6170 static void
6171 make_regions_from_the_rest (void)
6172 {
6173   int cur_rgn_blocks;
6174   int *loop_hdr;
6175   int i;
6176
6177   basic_block bb;
6178   edge e;
6179   edge_iterator ei;
6180   int *degree;
6181
6182   /* Index in rgn_bb_table where to start allocating new regions.  */
6183   cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6184
6185   /* Make regions from all the rest basic blocks - those that don't belong to
6186      any loop or belong to irreducible loops.  Prepare the data structures
6187      for extend_rgns.  */
6188
6189   /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6190      LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6191      loop.  */
6192   loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6193   degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6194
6195
6196   /* For each basic block that belongs to some loop assign the number
6197      of innermost loop it belongs to.  */
6198   for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6199     loop_hdr[i] = -1;
6200
6201   FOR_EACH_BB_FN (bb, cfun)
6202     {
6203       if (bb->loop_father && bb->loop_father->num != 0
6204           && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6205         loop_hdr[bb->index] = bb->loop_father->num;
6206     }
6207
6208   /* For each basic block degree is calculated as the number of incoming
6209      edges, that are going out of bbs that are not yet scheduled.
6210      The basic blocks that are scheduled have degree value of zero.  */
6211   FOR_EACH_BB_FN (bb, cfun)
6212     {
6213       degree[bb->index] = 0;
6214
6215       if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6216         {
6217           FOR_EACH_EDGE (e, ei, bb->preds)
6218             if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6219               degree[bb->index]++;
6220         }
6221       else
6222         degree[bb->index] = -1;
6223     }
6224
6225   extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6226
6227   /* Any block that did not end up in a region is placed into a region
6228      by itself.  */
6229   FOR_EACH_BB_FN (bb, cfun)
6230     if (degree[bb->index] >= 0)
6231       {
6232         rgn_bb_table[cur_rgn_blocks] = bb->index;
6233         RGN_NR_BLOCKS (nr_regions) = 1;
6234         RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6235         RGN_DONT_CALC_DEPS (nr_regions) = 0;
6236         RGN_HAS_REAL_EBB (nr_regions) = 0;
6237         CONTAINING_RGN (bb->index) = nr_regions++;
6238         BLOCK_TO_BB (bb->index) = 0;
6239       }
6240
6241   free (degree);
6242   free (loop_hdr);
6243 }
6244
6245 /* Free data structures used in pipelining of loops.  */
6246 void sel_finish_pipelining (void)
6247 {
6248   struct loop *loop;
6249
6250   /* Release aux fields so we don't free them later by mistake.  */
6251   FOR_EACH_LOOP (loop, 0)
6252     loop->aux = NULL;
6253
6254   loop_optimizer_finalize ();
6255
6256   loop_nests.release ();
6257
6258   free (rev_top_order_index);
6259   rev_top_order_index = NULL;
6260 }
6261
6262 /* This function replaces the find_rgns when
6263    FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6264 void
6265 sel_find_rgns (void)
6266 {
6267   sel_init_pipelining ();
6268   extend_regions ();
6269
6270   if (current_loops)
6271     {
6272       loop_p loop;
6273
6274       FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6275                             ? LI_FROM_INNERMOST
6276                             : LI_ONLY_INNERMOST))
6277         make_regions_from_loop_nest (loop);
6278     }
6279
6280   /* Make regions from all the rest basic blocks and schedule them.
6281      These blocks include blocks that don't belong to any loop or belong
6282      to irreducible loops.  */
6283   make_regions_from_the_rest ();
6284
6285   /* We don't need bbs_in_loop_rgns anymore.  */
6286   sbitmap_free (bbs_in_loop_rgns);
6287   bbs_in_loop_rgns = NULL;
6288 }
6289
6290 /* Add the preheader blocks from previous loop to current region taking
6291    it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6292    This function is only used with -fsel-sched-pipelining-outer-loops.  */
6293 void
6294 sel_add_loop_preheaders (bb_vec_t *bbs)
6295 {
6296   int i;
6297   basic_block bb;
6298   vec<basic_block> *preheader_blocks
6299     = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6300
6301   if (!preheader_blocks)
6302     return;
6303
6304   for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6305     {
6306       bbs->safe_push (bb);
6307       last_added_blocks.safe_push (bb);
6308       sel_add_bb (bb);
6309     }
6310
6311   vec_free (preheader_blocks);
6312 }
6313
6314 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6315    Please note that the function should also work when pipelining_p is
6316    false, because it is used when deciding whether we should or should
6317    not reschedule pipelined code.  */
6318 bool
6319 sel_is_loop_preheader_p (basic_block bb)
6320 {
6321   if (current_loop_nest)
6322     {
6323       struct loop *outer;
6324
6325       if (preheader_removed)
6326         return false;
6327
6328       /* Preheader is the first block in the region.  */
6329       if (BLOCK_TO_BB (bb->index) == 0)
6330         return true;
6331
6332       /* We used to find a preheader with the topological information.
6333          Check that the above code is equivalent to what we did before.  */
6334
6335       if (in_current_region_p (current_loop_nest->header))
6336         gcc_assert (!(BLOCK_TO_BB (bb->index)
6337                       < BLOCK_TO_BB (current_loop_nest->header->index)));
6338
6339       /* Support the situation when the latch block of outer loop
6340          could be from here.  */
6341       for (outer = loop_outer (current_loop_nest);
6342            outer;
6343            outer = loop_outer (outer))
6344         if (considered_for_pipelining_p (outer) && outer->latch == bb)
6345           gcc_unreachable ();
6346     }
6347
6348   return false;
6349 }
6350
6351 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6352    can be removed, making the corresponding edge fallthrough (assuming that
6353    all basic blocks between JUMP_BB and DEST_BB are empty).  */
6354 static bool
6355 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6356 {
6357   if (!onlyjump_p (BB_END (jump_bb))
6358       || tablejump_p (BB_END (jump_bb), NULL, NULL))
6359     return false;
6360
6361   /* Several outgoing edges, abnormal edge or destination of jump is
6362      not DEST_BB.  */
6363   if (EDGE_COUNT (jump_bb->succs) != 1
6364       || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6365       || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6366     return false;
6367
6368   /* If not anything of the upper.  */
6369   return true;
6370 }
6371
6372 /* Removes the loop preheader from the current region and saves it in
6373    PREHEADER_BLOCKS of the father loop, so they will be added later to
6374    region that represents an outer loop.  */
6375 static void
6376 sel_remove_loop_preheader (void)
6377 {
6378   int i, old_len;
6379   int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6380   basic_block bb;
6381   bool all_empty_p = true;
6382   vec<basic_block> *preheader_blocks
6383     = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6384
6385   vec_check_alloc (preheader_blocks, 0);
6386
6387   gcc_assert (current_loop_nest);
6388   old_len = preheader_blocks->length ();
6389
6390   /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6391   for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6392     {
6393       bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6394
6395       /* If the basic block belongs to region, but doesn't belong to
6396          corresponding loop, then it should be a preheader.  */
6397       if (sel_is_loop_preheader_p (bb))
6398         {
6399           preheader_blocks->safe_push (bb);
6400           if (BB_END (bb) != bb_note (bb))
6401             all_empty_p = false;
6402         }
6403     }
6404
6405   /* Remove these blocks only after iterating over the whole region.  */
6406   for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6407     {
6408       bb =  (*preheader_blocks)[i];
6409       sel_remove_bb (bb, false);
6410     }
6411
6412   if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6413     {
6414       if (!all_empty_p)
6415         /* Immediately create new region from preheader.  */
6416         make_region_from_loop_preheader (preheader_blocks);
6417       else
6418         {
6419           /* If all preheader blocks are empty - dont create new empty region.
6420              Instead, remove them completely.  */
6421           FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6422             {
6423               edge e;
6424               edge_iterator ei;
6425               basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6426
6427               /* Redirect all incoming edges to next basic block.  */
6428               for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6429                 {
6430                   if (! (e->flags & EDGE_FALLTHRU))
6431                     redirect_edge_and_branch (e, bb->next_bb);
6432                   else
6433                     redirect_edge_succ (e, bb->next_bb);
6434                 }
6435               gcc_assert (BB_NOTE_LIST (bb) == NULL);
6436               delete_and_free_basic_block (bb);
6437
6438               /* Check if after deleting preheader there is a nonconditional
6439                  jump in PREV_BB that leads to the next basic block NEXT_BB.
6440                  If it is so - delete this jump and clear data sets of its
6441                  basic block if it becomes empty.  */
6442               if (next_bb->prev_bb == prev_bb
6443                   && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6444                   && bb_has_removable_jump_to_p (prev_bb, next_bb))
6445                 {
6446                   redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6447                   if (BB_END (prev_bb) == bb_note (prev_bb))
6448                     free_data_sets (prev_bb);
6449                 }
6450
6451               set_immediate_dominator (CDI_DOMINATORS, next_bb,
6452                                        recompute_dominator (CDI_DOMINATORS,
6453                                                             next_bb));
6454             }
6455         }
6456       vec_free (preheader_blocks);
6457     }
6458   else
6459     /* Store preheader within the father's loop structure.  */
6460     SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6461                                preheader_blocks);
6462 }
6463
6464 #endif