re PR rtl-optimization/54455 (ICE: RTL check: expected elt 3 type 'B', have '0' ...
[platform/upstream/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3    Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "ggc.h"
40 #include "tree.h"
41 #include "vec.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
45
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 /* We don't have to use it except for sel_print_insn.  */
49 #include "sel-sched-dump.h"
50
51 /* A vector holding bb info for whole scheduling pass.  */
52 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
53
54 /* A vector holding bb info.  */
55 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
56
57 /* A pool for allocating all lists.  */
58 alloc_pool sched_lists_pool;
59
60 /* This contains information about successors for compute_av_set.  */
61 struct succs_info current_succs;
62
63 /* Data structure to describe interaction with the generic scheduler utils.  */
64 static struct common_sched_info_def sel_common_sched_info;
65
66 /* The loop nest being pipelined.  */
67 struct loop *current_loop_nest;
68
69 /* LOOP_NESTS is a vector containing the corresponding loop nest for
70    each region.  */
71 static VEC(loop_p, heap) *loop_nests = NULL;
72
73 /* Saves blocks already in loop regions, indexed by bb->index.  */
74 static sbitmap bbs_in_loop_rgns = NULL;
75
76 /* CFG hooks that are saved before changing create_basic_block hook.  */
77 static struct cfg_hooks orig_cfg_hooks;
78 \f
79
80 /* Array containing reverse topological index of function basic blocks,
81    indexed by BB->INDEX.  */
82 static int *rev_top_order_index = NULL;
83
84 /* Length of the above array.  */
85 static int rev_top_order_index_len = -1;
86
87 /* A regset pool structure.  */
88 static struct
89 {
90   /* The stack to which regsets are returned.  */
91   regset *v;
92
93   /* Its pointer.  */
94   int n;
95
96   /* Its size.  */
97   int s;
98
99   /* In VV we save all generated regsets so that, when destructing the
100      pool, we can compare it with V and check that every regset was returned
101      back to pool.  */
102   regset *vv;
103
104   /* The pointer of VV stack.  */
105   int nn;
106
107   /* Its size.  */
108   int ss;
109
110   /* The difference between allocated and returned regsets.  */
111   int diff;
112 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
113
114 /* This represents the nop pool.  */
115 static struct
116 {
117   /* The vector which holds previously emitted nops.  */
118   insn_t *v;
119
120   /* Its pointer.  */
121   int n;
122
123   /* Its size.  */
124   int s;
125 } nop_pool = { NULL, 0, 0 };
126
127 /* The pool for basic block notes.  */
128 static rtx_vec_t bb_note_pool;
129
130 /* A NOP pattern used to emit placeholder insns.  */
131 rtx nop_pattern = NULL_RTX;
132 /* A special instruction that resides in EXIT_BLOCK.
133    EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
134 rtx exit_insn = NULL_RTX;
135
136 /* TRUE if while scheduling current region, which is loop, its preheader
137    was removed.  */
138 bool preheader_removed = false;
139 \f
140
141 /* Forward static declarations.  */
142 static void fence_clear (fence_t);
143
144 static void deps_init_id (idata_t, insn_t, bool);
145 static void init_id_from_df (idata_t, insn_t, bool);
146 static expr_t set_insn_init (expr_t, vinsn_t, int);
147
148 static void cfg_preds (basic_block, insn_t **, int *);
149 static void prepare_insn_expr (insn_t, int);
150 static void free_history_vect (VEC (expr_history_def, heap) **);
151
152 static void move_bb_info (basic_block, basic_block);
153 static void remove_empty_bb (basic_block, bool);
154 static void sel_merge_blocks (basic_block, basic_block);
155 static void sel_remove_loop_preheader (void);
156 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
157
158 static bool insn_is_the_only_one_in_bb_p (insn_t);
159 static void create_initial_data_sets (basic_block);
160
161 static void free_av_set (basic_block);
162 static void invalidate_av_set (basic_block);
163 static void extend_insn_data (void);
164 static void sel_init_new_insn (insn_t, int);
165 static void finish_insns (void);
166 \f
167 /* Various list functions.  */
168
169 /* Copy an instruction list L.  */
170 ilist_t
171 ilist_copy (ilist_t l)
172 {
173   ilist_t head = NULL, *tailp = &head;
174
175   while (l)
176     {
177       ilist_add (tailp, ILIST_INSN (l));
178       tailp = &ILIST_NEXT (*tailp);
179       l = ILIST_NEXT (l);
180     }
181
182   return head;
183 }
184
185 /* Invert an instruction list L.  */
186 ilist_t
187 ilist_invert (ilist_t l)
188 {
189   ilist_t res = NULL;
190
191   while (l)
192     {
193       ilist_add (&res, ILIST_INSN (l));
194       l = ILIST_NEXT (l);
195     }
196
197   return res;
198 }
199
200 /* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
201 void
202 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
203 {
204   bnd_t bnd;
205
206   _list_add (lp);
207   bnd = BLIST_BND (*lp);
208
209   BND_TO (bnd) = to;
210   BND_PTR (bnd) = ptr;
211   BND_AV (bnd) = NULL;
212   BND_AV1 (bnd) = NULL;
213   BND_DC (bnd) = dc;
214 }
215
216 /* Remove the list note pointed to by LP.  */
217 void
218 blist_remove (blist_t *lp)
219 {
220   bnd_t b = BLIST_BND (*lp);
221
222   av_set_clear (&BND_AV (b));
223   av_set_clear (&BND_AV1 (b));
224   ilist_clear (&BND_PTR (b));
225
226   _list_remove (lp);
227 }
228
229 /* Init a fence tail L.  */
230 void
231 flist_tail_init (flist_tail_t l)
232 {
233   FLIST_TAIL_HEAD (l) = NULL;
234   FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
235 }
236
237 /* Try to find fence corresponding to INSN in L.  */
238 fence_t
239 flist_lookup (flist_t l, insn_t insn)
240 {
241   while (l)
242     {
243       if (FENCE_INSN (FLIST_FENCE (l)) == insn)
244         return FLIST_FENCE (l);
245
246       l = FLIST_NEXT (l);
247     }
248
249   return NULL;
250 }
251
252 /* Init the fields of F before running fill_insns.  */
253 static void
254 init_fence_for_scheduling (fence_t f)
255 {
256   FENCE_BNDS (f) = NULL;
257   FENCE_PROCESSED_P (f) = false;
258   FENCE_SCHEDULED_P (f) = false;
259 }
260
261 /* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
262 static void
263 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
264            insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
265            int *ready_ticks, int ready_ticks_size, insn_t sched_next,
266            int cycle, int cycle_issued_insns, int issue_more,
267            bool starts_cycle_p, bool after_stall_p)
268 {
269   fence_t f;
270
271   _list_add (lp);
272   f = FLIST_FENCE (*lp);
273
274   FENCE_INSN (f) = insn;
275
276   gcc_assert (state != NULL);
277   FENCE_STATE (f) = state;
278
279   FENCE_CYCLE (f) = cycle;
280   FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
281   FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
282   FENCE_AFTER_STALL_P (f) = after_stall_p;
283
284   gcc_assert (dc != NULL);
285   FENCE_DC (f) = dc;
286
287   gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
288   FENCE_TC (f) = tc;
289
290   FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
291   FENCE_ISSUE_MORE (f) = issue_more;
292   FENCE_EXECUTING_INSNS (f) = executing_insns;
293   FENCE_READY_TICKS (f) = ready_ticks;
294   FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
295   FENCE_SCHED_NEXT (f) = sched_next;
296
297   init_fence_for_scheduling (f);
298 }
299
300 /* Remove the head node of the list pointed to by LP.  */
301 static void
302 flist_remove (flist_t *lp)
303 {
304   if (FENCE_INSN (FLIST_FENCE (*lp)))
305     fence_clear (FLIST_FENCE (*lp));
306   _list_remove (lp);
307 }
308
309 /* Clear the fence list pointed to by LP.  */
310 void
311 flist_clear (flist_t *lp)
312 {
313   while (*lp)
314     flist_remove (lp);
315 }
316
317 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
318 void
319 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
320 {
321   def_t d;
322
323   _list_add (dl);
324   d = DEF_LIST_DEF (*dl);
325
326   d->orig_insn = original_insn;
327   d->crosses_call = crosses_call;
328 }
329 \f
330
331 /* Functions to work with target contexts.  */
332
333 /* Bulk target context.  It is convenient for debugging purposes to ensure
334    that there are no uninitialized (null) target contexts.  */
335 static tc_t bulk_tc = (tc_t) 1;
336
337 /* Target hooks wrappers.  In the future we can provide some default
338    implementations for them.  */
339
340 /* Allocate a store for the target context.  */
341 static tc_t
342 alloc_target_context (void)
343 {
344   return (targetm.sched.alloc_sched_context
345           ? targetm.sched.alloc_sched_context () : bulk_tc);
346 }
347
348 /* Init target context TC.
349    If CLEAN_P is true, then make TC as it is beginning of the scheduler.
350    Overwise, copy current backend context to TC.  */
351 static void
352 init_target_context (tc_t tc, bool clean_p)
353 {
354   if (targetm.sched.init_sched_context)
355     targetm.sched.init_sched_context (tc, clean_p);
356 }
357
358 /* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
359    int init_target_context ().  */
360 tc_t
361 create_target_context (bool clean_p)
362 {
363   tc_t tc = alloc_target_context ();
364
365   init_target_context (tc, clean_p);
366   return tc;
367 }
368
369 /* Copy TC to the current backend context.  */
370 void
371 set_target_context (tc_t tc)
372 {
373   if (targetm.sched.set_sched_context)
374     targetm.sched.set_sched_context (tc);
375 }
376
377 /* TC is about to be destroyed.  Free any internal data.  */
378 static void
379 clear_target_context (tc_t tc)
380 {
381   if (targetm.sched.clear_sched_context)
382     targetm.sched.clear_sched_context (tc);
383 }
384
385 /*  Clear and free it.  */
386 static void
387 delete_target_context (tc_t tc)
388 {
389   clear_target_context (tc);
390
391   if (targetm.sched.free_sched_context)
392     targetm.sched.free_sched_context (tc);
393 }
394
395 /* Make a copy of FROM in TO.
396    NB: May be this should be a hook.  */
397 static void
398 copy_target_context (tc_t to, tc_t from)
399 {
400   tc_t tmp = create_target_context (false);
401
402   set_target_context (from);
403   init_target_context (to, false);
404
405   set_target_context (tmp);
406   delete_target_context (tmp);
407 }
408
409 /* Create a copy of TC.  */
410 static tc_t
411 create_copy_of_target_context (tc_t tc)
412 {
413   tc_t copy = alloc_target_context ();
414
415   copy_target_context (copy, tc);
416
417   return copy;
418 }
419
420 /* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
421    is the same as in init_target_context ().  */
422 void
423 reset_target_context (tc_t tc, bool clean_p)
424 {
425   clear_target_context (tc);
426   init_target_context (tc, clean_p);
427 }
428 \f
429 /* Functions to work with dependence contexts.
430    Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
431    context.  It accumulates information about processed insns to decide if
432    current insn is dependent on the processed ones.  */
433
434 /* Make a copy of FROM in TO.  */
435 static void
436 copy_deps_context (deps_t to, deps_t from)
437 {
438   init_deps (to, false);
439   deps_join (to, from);
440 }
441
442 /* Allocate store for dep context.  */
443 static deps_t
444 alloc_deps_context (void)
445 {
446   return XNEW (struct deps_desc);
447 }
448
449 /* Allocate and initialize dep context.  */
450 static deps_t
451 create_deps_context (void)
452 {
453   deps_t dc = alloc_deps_context ();
454
455   init_deps (dc, false);
456   return dc;
457 }
458
459 /* Create a copy of FROM.  */
460 static deps_t
461 create_copy_of_deps_context (deps_t from)
462 {
463   deps_t to = alloc_deps_context ();
464
465   copy_deps_context (to, from);
466   return to;
467 }
468
469 /* Clean up internal data of DC.  */
470 static void
471 clear_deps_context (deps_t dc)
472 {
473   free_deps (dc);
474 }
475
476 /* Clear and free DC.  */
477 static void
478 delete_deps_context (deps_t dc)
479 {
480   clear_deps_context (dc);
481   free (dc);
482 }
483
484 /* Clear and init DC.  */
485 static void
486 reset_deps_context (deps_t dc)
487 {
488   clear_deps_context (dc);
489   init_deps (dc, false);
490 }
491
492 /* This structure describes the dependence analysis hooks for advancing
493    dependence context.  */
494 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
495   {
496     NULL,
497
498     NULL, /* start_insn */
499     NULL, /* finish_insn */
500     NULL, /* start_lhs */
501     NULL, /* finish_lhs */
502     NULL, /* start_rhs */
503     NULL, /* finish_rhs */
504     haifa_note_reg_set,
505     haifa_note_reg_clobber,
506     haifa_note_reg_use,
507     NULL, /* note_mem_dep */
508     NULL, /* note_dep */
509
510     0, 0, 0
511   };
512
513 /* Process INSN and add its impact on DC.  */
514 void
515 advance_deps_context (deps_t dc, insn_t insn)
516 {
517   sched_deps_info = &advance_deps_context_sched_deps_info;
518   deps_analyze_insn (dc, insn);
519 }
520 \f
521
522 /* Functions to work with DFA states.  */
523
524 /* Allocate store for a DFA state.  */
525 static state_t
526 state_alloc (void)
527 {
528   return xmalloc (dfa_state_size);
529 }
530
531 /* Allocate and initialize DFA state.  */
532 static state_t
533 state_create (void)
534 {
535   state_t state = state_alloc ();
536
537   state_reset (state);
538   advance_state (state);
539   return state;
540 }
541
542 /* Free DFA state.  */
543 static void
544 state_free (state_t state)
545 {
546   free (state);
547 }
548
549 /* Make a copy of FROM in TO.  */
550 static void
551 state_copy (state_t to, state_t from)
552 {
553   memcpy (to, from, dfa_state_size);
554 }
555
556 /* Create a copy of FROM.  */
557 static state_t
558 state_create_copy (state_t from)
559 {
560   state_t to = state_alloc ();
561
562   state_copy (to, from);
563   return to;
564 }
565 \f
566
567 /* Functions to work with fences.  */
568
569 /* Clear the fence.  */
570 static void
571 fence_clear (fence_t f)
572 {
573   state_t s = FENCE_STATE (f);
574   deps_t dc = FENCE_DC (f);
575   void *tc = FENCE_TC (f);
576
577   ilist_clear (&FENCE_BNDS (f));
578
579   gcc_assert ((s != NULL && dc != NULL && tc != NULL)
580               || (s == NULL && dc == NULL && tc == NULL));
581
582   free (s);
583
584   if (dc != NULL)
585     delete_deps_context (dc);
586
587   if (tc != NULL)
588     delete_target_context (tc);
589   VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
590   free (FENCE_READY_TICKS (f));
591   FENCE_READY_TICKS (f) = NULL;
592 }
593
594 /* Init a list of fences with successors of OLD_FENCE.  */
595 void
596 init_fences (insn_t old_fence)
597 {
598   insn_t succ;
599   succ_iterator si;
600   bool first = true;
601   int ready_ticks_size = get_max_uid () + 1;
602
603   FOR_EACH_SUCC_1 (succ, si, old_fence,
604                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
605     {
606
607       if (first)
608         first = false;
609       else
610         gcc_assert (flag_sel_sched_pipelining_outer_loops);
611
612       flist_add (&fences, succ,
613                  state_create (),
614                  create_deps_context () /* dc */,
615                  create_target_context (true) /* tc */,
616                  NULL_RTX /* last_scheduled_insn */,
617                  NULL, /* executing_insns */
618                  XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
619                  ready_ticks_size,
620                  NULL_RTX /* sched_next */,
621                  1 /* cycle */, 0 /* cycle_issued_insns */,
622                  issue_rate, /* issue_more */
623                  1 /* starts_cycle_p */, 0 /* after_stall_p */);
624     }
625 }
626
627 /* Merges two fences (filling fields of fence F with resulting values) by
628    following rules: 1) state, target context and last scheduled insn are
629    propagated from fallthrough edge if it is available;
630    2) deps context and cycle is propagated from more probable edge;
631    3) all other fields are set to corresponding constant values.
632
633    INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
634    READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
635    and AFTER_STALL_P are the corresponding fields of the second fence.  */
636 static void
637 merge_fences (fence_t f, insn_t insn,
638               state_t state, deps_t dc, void *tc,
639               rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
640               int *ready_ticks, int ready_ticks_size,
641               rtx sched_next, int cycle, int issue_more, bool after_stall_p)
642 {
643   insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
644
645   gcc_assert (sel_bb_head_p (FENCE_INSN (f))
646               && !sched_next && !FENCE_SCHED_NEXT (f));
647
648   /* Check if we can decide which path fences came.
649      If we can't (or don't want to) - reset all.  */
650   if (last_scheduled_insn == NULL
651       || last_scheduled_insn_old == NULL
652       /* This is a case when INSN is reachable on several paths from
653          one insn (this can happen when pipelining of outer loops is on and
654          there are two edges: one going around of inner loop and the other -
655          right through it; in such case just reset everything).  */
656       || last_scheduled_insn == last_scheduled_insn_old)
657     {
658       state_reset (FENCE_STATE (f));
659       state_free (state);
660
661       reset_deps_context (FENCE_DC (f));
662       delete_deps_context (dc);
663
664       reset_target_context (FENCE_TC (f), true);
665       delete_target_context (tc);
666
667       if (cycle > FENCE_CYCLE (f))
668         FENCE_CYCLE (f) = cycle;
669
670       FENCE_LAST_SCHEDULED_INSN (f) = NULL;
671       FENCE_ISSUE_MORE (f) = issue_rate;
672       VEC_free (rtx, gc, executing_insns);
673       free (ready_ticks);
674       if (FENCE_EXECUTING_INSNS (f))
675         VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
676                           VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
677       if (FENCE_READY_TICKS (f))
678         memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
679     }
680   else
681     {
682       edge edge_old = NULL, edge_new = NULL;
683       edge candidate;
684       succ_iterator si;
685       insn_t succ;
686
687       /* Find fallthrough edge.  */
688       gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
689       candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
690
691       if (!candidate
692           || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
693               && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
694         {
695           /* No fallthrough edge leading to basic block of INSN.  */
696           state_reset (FENCE_STATE (f));
697           state_free (state);
698
699           reset_target_context (FENCE_TC (f), true);
700           delete_target_context (tc);
701
702           FENCE_LAST_SCHEDULED_INSN (f) = NULL;
703           FENCE_ISSUE_MORE (f) = issue_rate;
704         }
705       else
706         if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
707           {
708             /* Would be weird if same insn is successor of several fallthrough
709                edges.  */
710             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
711                         != BLOCK_FOR_INSN (last_scheduled_insn_old));
712
713             state_free (FENCE_STATE (f));
714             FENCE_STATE (f) = state;
715
716             delete_target_context (FENCE_TC (f));
717             FENCE_TC (f) = tc;
718
719             FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
720             FENCE_ISSUE_MORE (f) = issue_more;
721           }
722         else
723           {
724             /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
725             state_free (state);
726             delete_target_context (tc);
727
728             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
729                         != BLOCK_FOR_INSN (last_scheduled_insn));
730           }
731
732         /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
733         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
734                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
735           {
736             if (succ == insn)
737               {
738                 /* No same successor allowed from several edges.  */
739                 gcc_assert (!edge_old);
740                 edge_old = si.e1;
741               }
742           }
743         /* Find edge of second predecessor (last_scheduled_insn->insn).  */
744         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
745                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
746           {
747             if (succ == insn)
748               {
749                 /* No same successor allowed from several edges.  */
750                 gcc_assert (!edge_new);
751                 edge_new = si.e1;
752               }
753           }
754
755         /* Check if we can choose most probable predecessor.  */
756         if (edge_old == NULL || edge_new == NULL)
757           {
758             reset_deps_context (FENCE_DC (f));
759             delete_deps_context (dc);
760             VEC_free (rtx, gc, executing_insns);
761             free (ready_ticks);
762
763             FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
764             if (FENCE_EXECUTING_INSNS (f))
765               VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
766                                 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
767             if (FENCE_READY_TICKS (f))
768               memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
769           }
770         else
771           if (edge_new->probability > edge_old->probability)
772             {
773               delete_deps_context (FENCE_DC (f));
774               FENCE_DC (f) = dc;
775               VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
776               FENCE_EXECUTING_INSNS (f) = executing_insns;
777               free (FENCE_READY_TICKS (f));
778               FENCE_READY_TICKS (f) = ready_ticks;
779               FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
780               FENCE_CYCLE (f) = cycle;
781             }
782           else
783             {
784               /* Leave DC and CYCLE untouched.  */
785               delete_deps_context (dc);
786               VEC_free (rtx, gc, executing_insns);
787               free (ready_ticks);
788             }
789     }
790
791   /* Fill remaining invariant fields.  */
792   if (after_stall_p)
793     FENCE_AFTER_STALL_P (f) = 1;
794
795   FENCE_ISSUED_INSNS (f) = 0;
796   FENCE_STARTS_CYCLE_P (f) = 1;
797   FENCE_SCHED_NEXT (f) = NULL;
798 }
799
800 /* Add a new fence to NEW_FENCES list, initializing it from all
801    other parameters.  */
802 static void
803 add_to_fences (flist_tail_t new_fences, insn_t insn,
804                state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
805                VEC(rtx, gc) *executing_insns, int *ready_ticks,
806                int ready_ticks_size, rtx sched_next, int cycle,
807                int cycle_issued_insns, int issue_rate,
808                bool starts_cycle_p, bool after_stall_p)
809 {
810   fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
811
812   if (! f)
813     {
814       flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
815                  last_scheduled_insn, executing_insns, ready_ticks,
816                  ready_ticks_size, sched_next, cycle, cycle_issued_insns,
817                  issue_rate, starts_cycle_p, after_stall_p);
818
819       FLIST_TAIL_TAILP (new_fences)
820         = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
821     }
822   else
823     {
824       merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
825                     executing_insns, ready_ticks, ready_ticks_size,
826                     sched_next, cycle, issue_rate, after_stall_p);
827     }
828 }
829
830 /* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
831 void
832 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
833 {
834   fence_t f, old;
835   flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
836
837   old = FLIST_FENCE (old_fences);
838   f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
839                     FENCE_INSN (FLIST_FENCE (old_fences)));
840   if (f)
841     {
842       merge_fences (f, old->insn, old->state, old->dc, old->tc,
843                     old->last_scheduled_insn, old->executing_insns,
844                     old->ready_ticks, old->ready_ticks_size,
845                     old->sched_next, old->cycle, old->issue_more,
846                     old->after_stall_p);
847     }
848   else
849     {
850       _list_add (tailp);
851       FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
852       *FLIST_FENCE (*tailp) = *old;
853       init_fence_for_scheduling (FLIST_FENCE (*tailp));
854     }
855   FENCE_INSN (old) = NULL;
856 }
857
858 /* Add a new fence to NEW_FENCES list and initialize most of its data
859    as a clean one.  */
860 void
861 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
862 {
863   int ready_ticks_size = get_max_uid () + 1;
864
865   add_to_fences (new_fences,
866                  succ, state_create (), create_deps_context (),
867                  create_target_context (true),
868                  NULL_RTX, NULL,
869                  XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
870                  NULL_RTX, FENCE_CYCLE (fence) + 1,
871                  0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
872 }
873
874 /* Add a new fence to NEW_FENCES list and initialize all of its data
875    from FENCE and SUCC.  */
876 void
877 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
878 {
879   int * new_ready_ticks
880     = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
881
882   memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
883           FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
884   add_to_fences (new_fences,
885                  succ, state_create_copy (FENCE_STATE (fence)),
886                  create_copy_of_deps_context (FENCE_DC (fence)),
887                  create_copy_of_target_context (FENCE_TC (fence)),
888                  FENCE_LAST_SCHEDULED_INSN (fence),
889                  VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
890                  new_ready_ticks,
891                  FENCE_READY_TICKS_SIZE (fence),
892                  FENCE_SCHED_NEXT (fence),
893                  FENCE_CYCLE (fence),
894                  FENCE_ISSUED_INSNS (fence),
895                  FENCE_ISSUE_MORE (fence),
896                  FENCE_STARTS_CYCLE_P (fence),
897                  FENCE_AFTER_STALL_P (fence));
898 }
899 \f
900
901 /* Functions to work with regset and nop pools.  */
902
903 /* Returns the new regset from pool.  It might have some of the bits set
904    from the previous usage.  */
905 regset
906 get_regset_from_pool (void)
907 {
908   regset rs;
909
910   if (regset_pool.n != 0)
911     rs = regset_pool.v[--regset_pool.n];
912   else
913     /* We need to create the regset.  */
914     {
915       rs = ALLOC_REG_SET (&reg_obstack);
916
917       if (regset_pool.nn == regset_pool.ss)
918         regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
919                                      (regset_pool.ss = 2 * regset_pool.ss + 1));
920       regset_pool.vv[regset_pool.nn++] = rs;
921     }
922
923   regset_pool.diff++;
924
925   return rs;
926 }
927
928 /* Same as above, but returns the empty regset.  */
929 regset
930 get_clear_regset_from_pool (void)
931 {
932   regset rs = get_regset_from_pool ();
933
934   CLEAR_REG_SET (rs);
935   return rs;
936 }
937
938 /* Return regset RS to the pool for future use.  */
939 void
940 return_regset_to_pool (regset rs)
941 {
942   gcc_assert (rs);
943   regset_pool.diff--;
944
945   if (regset_pool.n == regset_pool.s)
946     regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
947                                 (regset_pool.s = 2 * regset_pool.s + 1));
948   regset_pool.v[regset_pool.n++] = rs;
949 }
950
951 #ifdef ENABLE_CHECKING
952 /* This is used as a qsort callback for sorting regset pool stacks.
953    X and XX are addresses of two regsets.  They are never equal.  */
954 static int
955 cmp_v_in_regset_pool (const void *x, const void *xx)
956 {
957   uintptr_t r1 = (uintptr_t) *((const regset *) x);
958   uintptr_t r2 = (uintptr_t) *((const regset *) xx);
959   if (r1 > r2)
960     return 1;
961   else if (r1 < r2)
962     return -1;
963   gcc_unreachable ();
964 }
965 #endif
966
967 /*  Free the regset pool possibly checking for memory leaks.  */
968 void
969 free_regset_pool (void)
970 {
971 #ifdef ENABLE_CHECKING
972   {
973     regset *v = regset_pool.v;
974     int i = 0;
975     int n = regset_pool.n;
976
977     regset *vv = regset_pool.vv;
978     int ii = 0;
979     int nn = regset_pool.nn;
980
981     int diff = 0;
982
983     gcc_assert (n <= nn);
984
985     /* Sort both vectors so it will be possible to compare them.  */
986     qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
987     qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
988
989     while (ii < nn)
990       {
991         if (v[i] == vv[ii])
992           i++;
993         else
994           /* VV[II] was lost.  */
995           diff++;
996
997         ii++;
998       }
999
1000     gcc_assert (diff == regset_pool.diff);
1001   }
1002 #endif
1003
1004   /* If not true - we have a memory leak.  */
1005   gcc_assert (regset_pool.diff == 0);
1006
1007   while (regset_pool.n)
1008     {
1009       --regset_pool.n;
1010       FREE_REG_SET (regset_pool.v[regset_pool.n]);
1011     }
1012
1013   free (regset_pool.v);
1014   regset_pool.v = NULL;
1015   regset_pool.s = 0;
1016
1017   free (regset_pool.vv);
1018   regset_pool.vv = NULL;
1019   regset_pool.nn = 0;
1020   regset_pool.ss = 0;
1021
1022   regset_pool.diff = 0;
1023 }
1024 \f
1025
1026 /* Functions to work with nop pools.  NOP insns are used as temporary
1027    placeholders of the insns being scheduled to allow correct update of
1028    the data sets.  When update is finished, NOPs are deleted.  */
1029
1030 /* A vinsn that is used to represent a nop.  This vinsn is shared among all
1031    nops sel-sched generates.  */
1032 static vinsn_t nop_vinsn = NULL;
1033
1034 /* Emit a nop before INSN, taking it from pool.  */
1035 insn_t
1036 get_nop_from_pool (insn_t insn)
1037 {
1038   insn_t nop;
1039   bool old_p = nop_pool.n != 0;
1040   int flags;
1041
1042   if (old_p)
1043     nop = nop_pool.v[--nop_pool.n];
1044   else
1045     nop = nop_pattern;
1046
1047   nop = emit_insn_before (nop, insn);
1048
1049   if (old_p)
1050     flags = INSN_INIT_TODO_SSID;
1051   else
1052     flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1053
1054   set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1055   sel_init_new_insn (nop, flags);
1056
1057   return nop;
1058 }
1059
1060 /* Remove NOP from the instruction stream and return it to the pool.  */
1061 void
1062 return_nop_to_pool (insn_t nop, bool full_tidying)
1063 {
1064   gcc_assert (INSN_IN_STREAM_P (nop));
1065   sel_remove_insn (nop, false, full_tidying);
1066
1067   if (nop_pool.n == nop_pool.s)
1068     nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1069                              (nop_pool.s = 2 * nop_pool.s + 1));
1070   nop_pool.v[nop_pool.n++] = nop;
1071 }
1072
1073 /* Free the nop pool.  */
1074 void
1075 free_nop_pool (void)
1076 {
1077   nop_pool.n = 0;
1078   nop_pool.s = 0;
1079   free (nop_pool.v);
1080   nop_pool.v = NULL;
1081 }
1082 \f
1083
1084 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1085    The callback is given two rtxes XX and YY and writes the new rtxes
1086    to NX and NY in case some needs to be skipped.  */
1087 static int
1088 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089 {
1090   const_rtx x = *xx;
1091   const_rtx y = *yy;
1092
1093   if (GET_CODE (x) == UNSPEC
1094       && (targetm.sched.skip_rtx_p == NULL
1095           || targetm.sched.skip_rtx_p (x)))
1096     {
1097       *nx = XVECEXP (x, 0, 0);
1098       *ny = CONST_CAST_RTX (y);
1099       return 1;
1100     }
1101
1102   if (GET_CODE (y) == UNSPEC
1103       && (targetm.sched.skip_rtx_p == NULL
1104           || targetm.sched.skip_rtx_p (y)))
1105     {
1106       *nx = CONST_CAST_RTX (x);
1107       *ny = XVECEXP (y, 0, 0);
1108       return 1;
1109     }
1110
1111   return 0;
1112 }
1113
1114 /* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1115    to support ia64 speculation.  When changes are needed, new rtx X and new mode
1116    NMODE are written, and the callback returns true.  */
1117 static int
1118 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1119                            rtx *nx, enum machine_mode* nmode)
1120 {
1121   if (GET_CODE (x) == UNSPEC
1122       && targetm.sched.skip_rtx_p
1123       && targetm.sched.skip_rtx_p (x))
1124     {
1125       *nx = XVECEXP (x, 0 ,0);
1126       *nmode = VOIDmode;
1127       return 1;
1128     }
1129
1130   return 0;
1131 }
1132
1133 /* Returns LHS and RHS are ok to be scheduled separately.  */
1134 static bool
1135 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136 {
1137   if (lhs == NULL || rhs == NULL)
1138     return false;
1139
1140   /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1141      to use reg, if const can be used.  Moreover, scheduling const as rhs may
1142      lead to mode mismatch cause consts don't have modes but they could be
1143      merged from branches where the same const used in different modes.  */
1144   if (CONSTANT_P (rhs))
1145     return false;
1146
1147   /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1148   if (COMPARISON_P (rhs))
1149       return false;
1150
1151   /* Do not allow single REG to be an rhs.  */
1152   if (REG_P (rhs))
1153     return false;
1154
1155   /* See comment at find_used_regs_1 (*1) for explanation of this
1156      restriction.  */
1157   /* FIXME: remove this later.  */
1158   if (MEM_P (lhs))
1159     return false;
1160
1161   /* This will filter all tricky things like ZERO_EXTRACT etc.
1162      For now we don't handle it.  */
1163   if (!REG_P (lhs) && !MEM_P (lhs))
1164     return false;
1165
1166   return true;
1167 }
1168
1169 /* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1170    FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1171    used e.g. for insns from recovery blocks.  */
1172 static void
1173 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174 {
1175   hash_rtx_callback_function hrcf;
1176   int insn_class;
1177
1178   VINSN_INSN_RTX (vi) = insn;
1179   VINSN_COUNT (vi) = 0;
1180   vi->cost = -1;
1181
1182   if (INSN_NOP_P (insn))
1183     return;
1184
1185   if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186     init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187   else
1188     deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1189
1190   /* Hash vinsn depending on whether it is separable or not.  */
1191   hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192   if (VINSN_SEPARABLE_P (vi))
1193     {
1194       rtx rhs = VINSN_RHS (vi);
1195
1196       VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197                                      NULL, NULL, false, hrcf);
1198       VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199                                          VOIDmode, NULL, NULL,
1200                                          false, hrcf);
1201     }
1202   else
1203     {
1204       VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205                                      NULL, NULL, false, hrcf);
1206       VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1207     }
1208
1209   insn_class = haifa_classify_insn (insn);
1210   if (insn_class >= 2
1211       && (!targetm.sched.get_insn_spec_ds
1212           || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213               == 0)))
1214     VINSN_MAY_TRAP_P (vi) = true;
1215   else
1216     VINSN_MAY_TRAP_P (vi) = false;
1217 }
1218
1219 /* Indicate that VI has become the part of an rtx object.  */
1220 void
1221 vinsn_attach (vinsn_t vi)
1222 {
1223   /* Assert that VI is not pending for deletion.  */
1224   gcc_assert (VINSN_INSN_RTX (vi));
1225
1226   VINSN_COUNT (vi)++;
1227 }
1228
1229 /* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1230    VINSN_TYPE (VI).  */
1231 static vinsn_t
1232 vinsn_create (insn_t insn, bool force_unique_p)
1233 {
1234   vinsn_t vi = XCNEW (struct vinsn_def);
1235
1236   vinsn_init (vi, insn, force_unique_p);
1237   return vi;
1238 }
1239
1240 /* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1241    the copy.  */
1242 vinsn_t
1243 vinsn_copy (vinsn_t vi, bool reattach_p)
1244 {
1245   rtx copy;
1246   bool unique = VINSN_UNIQUE_P (vi);
1247   vinsn_t new_vi;
1248
1249   copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250   new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251   if (reattach_p)
1252     {
1253       vinsn_detach (vi);
1254       vinsn_attach (new_vi);
1255     }
1256
1257   return new_vi;
1258 }
1259
1260 /* Delete the VI vinsn and free its data.  */
1261 static void
1262 vinsn_delete (vinsn_t vi)
1263 {
1264   gcc_assert (VINSN_COUNT (vi) == 0);
1265
1266   if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267     {
1268       return_regset_to_pool (VINSN_REG_SETS (vi));
1269       return_regset_to_pool (VINSN_REG_USES (vi));
1270       return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1271     }
1272
1273   free (vi);
1274 }
1275
1276 /* Indicate that VI is no longer a part of some rtx object.
1277    Remove VI if it is no longer needed.  */
1278 void
1279 vinsn_detach (vinsn_t vi)
1280 {
1281   gcc_assert (VINSN_COUNT (vi) > 0);
1282
1283   if (--VINSN_COUNT (vi) == 0)
1284     vinsn_delete (vi);
1285 }
1286
1287 /* Returns TRUE if VI is a branch.  */
1288 bool
1289 vinsn_cond_branch_p (vinsn_t vi)
1290 {
1291   insn_t insn;
1292
1293   if (!VINSN_UNIQUE_P (vi))
1294     return false;
1295
1296   insn = VINSN_INSN_RTX (vi);
1297   if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298     return false;
1299
1300   return control_flow_insn_p (insn);
1301 }
1302
1303 /* Return latency of INSN.  */
1304 static int
1305 sel_insn_rtx_cost (rtx insn)
1306 {
1307   int cost;
1308
1309   /* A USE insn, or something else we don't need to
1310      understand.  We can't pass these directly to
1311      result_ready_cost or insn_default_latency because it will
1312      trigger a fatal error for unrecognizable insns.  */
1313   if (recog_memoized (insn) < 0)
1314     cost = 0;
1315   else
1316     {
1317       cost = insn_default_latency (insn);
1318
1319       if (cost < 0)
1320         cost = 0;
1321     }
1322
1323   return cost;
1324 }
1325
1326 /* Return the cost of the VI.
1327    !!! FIXME: Unify with haifa-sched.c: insn_cost ().  */
1328 int
1329 sel_vinsn_cost (vinsn_t vi)
1330 {
1331   int cost = vi->cost;
1332
1333   if (cost < 0)
1334     {
1335       cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336       vi->cost = cost;
1337     }
1338
1339   return cost;
1340 }
1341 \f
1342
1343 /* Functions for insn emitting.  */
1344
1345 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1346    EXPR and SEQNO.  */
1347 insn_t
1348 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349 {
1350   insn_t new_insn;
1351
1352   gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353
1354   new_insn = emit_insn_after (pattern, after);
1355   set_insn_init (expr, NULL, seqno);
1356   sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357
1358   return new_insn;
1359 }
1360
1361 /* Force newly generated vinsns to be unique.  */
1362 static bool init_insn_force_unique_p = false;
1363
1364 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1365    initialize its data from EXPR and SEQNO.  */
1366 insn_t
1367 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368                                       insn_t after)
1369 {
1370   insn_t insn;
1371
1372   gcc_assert (!init_insn_force_unique_p);
1373
1374   init_insn_force_unique_p = true;
1375   insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376   CANT_MOVE (insn) = 1;
1377   init_insn_force_unique_p = false;
1378
1379   return insn;
1380 }
1381
1382 /* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1383    take it as a new vinsn instead of EXPR's vinsn.
1384    We simplify insns later, after scheduling region in
1385    simplify_changed_insns.  */
1386 insn_t
1387 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1388                               insn_t after)
1389 {
1390   expr_t emit_expr;
1391   insn_t insn;
1392   int flags;
1393
1394   emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1395                              seqno);
1396   insn = EXPR_INSN_RTX (emit_expr);
1397   add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1398
1399   flags = INSN_INIT_TODO_SSID;
1400   if (INSN_LUID (insn) == 0)
1401     flags |= INSN_INIT_TODO_LUID;
1402   sel_init_new_insn (insn, flags);
1403
1404   return insn;
1405 }
1406
1407 /* Move insn from EXPR after AFTER.  */
1408 insn_t
1409 sel_move_insn (expr_t expr, int seqno, insn_t after)
1410 {
1411   insn_t insn = EXPR_INSN_RTX (expr);
1412   basic_block bb = BLOCK_FOR_INSN (after);
1413   insn_t next = NEXT_INSN (after);
1414
1415   /* Assert that in move_op we disconnected this insn properly.  */
1416   gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1417   PREV_INSN (insn) = after;
1418   NEXT_INSN (insn) = next;
1419
1420   NEXT_INSN (after) = insn;
1421   PREV_INSN (next) = insn;
1422
1423   /* Update links from insn to bb and vice versa.  */
1424   df_insn_change_bb (insn, bb);
1425   if (BB_END (bb) == after)
1426     BB_END (bb) = insn;
1427
1428   prepare_insn_expr (insn, seqno);
1429   return insn;
1430 }
1431
1432 \f
1433 /* Functions to work with right-hand sides.  */
1434
1435 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1436    VECT and return true when found.  Use NEW_VINSN for comparison only when
1437    COMPARE_VINSNS is true.  Write to INDP the index on which
1438    the search has stopped, such that inserting the new element at INDP will
1439    retain VECT's sort order.  */
1440 static bool
1441 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1442                         unsigned uid, vinsn_t new_vinsn,
1443                         bool compare_vinsns, int *indp)
1444 {
1445   expr_history_def *arr;
1446   int i, j, len = VEC_length (expr_history_def, vect);
1447
1448   if (len == 0)
1449     {
1450       *indp = 0;
1451       return false;
1452     }
1453
1454   arr = VEC_address (expr_history_def, vect);
1455   i = 0, j = len - 1;
1456
1457   while (i <= j)
1458     {
1459       unsigned auid = arr[i].uid;
1460       vinsn_t avinsn = arr[i].new_expr_vinsn;
1461
1462       if (auid == uid
1463           /* When undoing transformation on a bookkeeping copy, the new vinsn
1464              may not be exactly equal to the one that is saved in the vector.
1465              This is because the insn whose copy we're checking was possibly
1466              substituted itself.  */
1467           && (! compare_vinsns
1468               || vinsn_equal_p (avinsn, new_vinsn)))
1469         {
1470           *indp = i;
1471           return true;
1472         }
1473       else if (auid > uid)
1474         break;
1475       i++;
1476     }
1477
1478   *indp = i;
1479   return false;
1480 }
1481
1482 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1483    the position found or -1, if no such value is in vector.
1484    Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1485 int
1486 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1487                       vinsn_t new_vinsn, bool originators_p)
1488 {
1489   int ind;
1490
1491   if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1492                               false, &ind))
1493     return ind;
1494
1495   if (INSN_ORIGINATORS (insn) && originators_p)
1496     {
1497       unsigned uid;
1498       bitmap_iterator bi;
1499
1500       EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501         if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502           return ind;
1503     }
1504
1505   return -1;
1506 }
1507
1508 /* Insert new element in a sorted history vector pointed to by PVECT,
1509    if it is not there already.  The element is searched using
1510    UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511    the history of a transformation.  */
1512 void
1513 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1514                         unsigned uid, enum local_trans_type type,
1515                         vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1516                         ds_t spec_ds)
1517 {
1518   VEC(expr_history_def, heap) *vect = *pvect;
1519   expr_history_def temp;
1520   bool res;
1521   int ind;
1522
1523   res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1524
1525   if (res)
1526     {
1527       expr_history_def *phist = &VEC_index (expr_history_def, vect, ind);
1528
1529       /* It is possible that speculation types of expressions that were
1530          propagated through different paths will be different here.  In this
1531          case, merge the status to get the correct check later.  */
1532       if (phist->spec_ds != spec_ds)
1533         phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534       return;
1535     }
1536
1537   temp.uid = uid;
1538   temp.old_expr_vinsn = old_expr_vinsn;
1539   temp.new_expr_vinsn = new_expr_vinsn;
1540   temp.spec_ds = spec_ds;
1541   temp.type = type;
1542
1543   vinsn_attach (old_expr_vinsn);
1544   vinsn_attach (new_expr_vinsn);
1545   VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1546   *pvect = vect;
1547 }
1548
1549 /* Free history vector PVECT.  */
1550 static void
1551 free_history_vect (VEC (expr_history_def, heap) **pvect)
1552 {
1553   unsigned i;
1554   expr_history_def *phist;
1555
1556   if (! *pvect)
1557     return;
1558
1559   for (i = 0;
1560        VEC_iterate (expr_history_def, *pvect, i, phist);
1561        i++)
1562     {
1563       vinsn_detach (phist->old_expr_vinsn);
1564       vinsn_detach (phist->new_expr_vinsn);
1565     }
1566
1567   VEC_free (expr_history_def, heap, *pvect);
1568   *pvect = NULL;
1569 }
1570
1571 /* Merge vector FROM to PVECT.  */
1572 static void
1573 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1574                     VEC (expr_history_def, heap) *from)
1575 {
1576   expr_history_def *phist;
1577   int i;
1578
1579   /* We keep this vector sorted.  */
1580   for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1581     insert_in_history_vect (pvect, phist->uid, phist->type,
1582                             phist->old_expr_vinsn, phist->new_expr_vinsn,
1583                             phist->spec_ds);
1584 }
1585
1586 /* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1587 bool
1588 vinsn_equal_p (vinsn_t x, vinsn_t y)
1589 {
1590   rtx_equal_p_callback_function repcf;
1591
1592   if (x == y)
1593     return true;
1594
1595   if (VINSN_TYPE (x) != VINSN_TYPE (y))
1596     return false;
1597
1598   if (VINSN_HASH (x) != VINSN_HASH (y))
1599     return false;
1600
1601   repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1602   if (VINSN_SEPARABLE_P (x))
1603     {
1604       /* Compare RHSes of VINSNs.  */
1605       gcc_assert (VINSN_RHS (x));
1606       gcc_assert (VINSN_RHS (y));
1607
1608       return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1609     }
1610
1611   return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1612 }
1613 \f
1614
1615 /* Functions for working with expressions.  */
1616
1617 /* Initialize EXPR.  */
1618 static void
1619 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1620            int sched_times, int orig_bb_index, ds_t spec_done_ds,
1621            ds_t spec_to_check_ds, int orig_sched_cycle,
1622            VEC(expr_history_def, heap) *history, signed char target_available,
1623            bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1624            bool cant_move)
1625 {
1626   vinsn_attach (vi);
1627
1628   EXPR_VINSN (expr) = vi;
1629   EXPR_SPEC (expr) = spec;
1630   EXPR_USEFULNESS (expr) = use;
1631   EXPR_PRIORITY (expr) = priority;
1632   EXPR_PRIORITY_ADJ (expr) = 0;
1633   EXPR_SCHED_TIMES (expr) = sched_times;
1634   EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1635   EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1636   EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1637   EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1638
1639   if (history)
1640     EXPR_HISTORY_OF_CHANGES (expr) = history;
1641   else
1642     EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1643
1644   EXPR_TARGET_AVAILABLE (expr) = target_available;
1645   EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1646   EXPR_WAS_RENAMED (expr) = was_renamed;
1647   EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1648   EXPR_CANT_MOVE (expr) = cant_move;
1649 }
1650
1651 /* Make a copy of the expr FROM into the expr TO.  */
1652 void
1653 copy_expr (expr_t to, expr_t from)
1654 {
1655   VEC(expr_history_def, heap) *temp = NULL;
1656
1657   if (EXPR_HISTORY_OF_CHANGES (from))
1658     {
1659       unsigned i;
1660       expr_history_def *phist;
1661
1662       temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1663       for (i = 0;
1664            VEC_iterate (expr_history_def, temp, i, phist);
1665            i++)
1666         {
1667           vinsn_attach (phist->old_expr_vinsn);
1668           vinsn_attach (phist->new_expr_vinsn);
1669         }
1670     }
1671
1672   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1673              EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1674              EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1675              EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1676              EXPR_ORIG_SCHED_CYCLE (from), temp,
1677              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1678              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1679              EXPR_CANT_MOVE (from));
1680 }
1681
1682 /* Same, but the final expr will not ever be in av sets, so don't copy
1683    "uninteresting" data such as bitmap cache.  */
1684 void
1685 copy_expr_onside (expr_t to, expr_t from)
1686 {
1687   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1688              EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1689              EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1690              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1691              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1692              EXPR_CANT_MOVE (from));
1693 }
1694
1695 /* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1696    initializing new insns.  */
1697 static void
1698 prepare_insn_expr (insn_t insn, int seqno)
1699 {
1700   expr_t expr = INSN_EXPR (insn);
1701   ds_t ds;
1702
1703   INSN_SEQNO (insn) = seqno;
1704   EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1705   EXPR_SPEC (expr) = 0;
1706   EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1707   EXPR_WAS_SUBSTITUTED (expr) = 0;
1708   EXPR_WAS_RENAMED (expr) = 0;
1709   EXPR_TARGET_AVAILABLE (expr) = 1;
1710   INSN_LIVE_VALID_P (insn) = false;
1711
1712   /* ??? If this expression is speculative, make its dependence
1713      as weak as possible.  We can filter this expression later
1714      in process_spec_exprs, because we do not distinguish
1715      between the status we got during compute_av_set and the
1716      existing status.  To be fixed.  */
1717   ds = EXPR_SPEC_DONE_DS (expr);
1718   if (ds)
1719     EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1720
1721   free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1722 }
1723
1724 /* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1725    is non-null when expressions are merged from different successors at
1726    a split point.  */
1727 static void
1728 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1729 {
1730   if (EXPR_TARGET_AVAILABLE (to) < 0
1731       || EXPR_TARGET_AVAILABLE (from) < 0)
1732     EXPR_TARGET_AVAILABLE (to) = -1;
1733   else
1734     {
1735       /* We try to detect the case when one of the expressions
1736          can only be reached through another one.  In this case,
1737          we can do better.  */
1738       if (split_point == NULL)
1739         {
1740           int toind, fromind;
1741
1742           toind = EXPR_ORIG_BB_INDEX (to);
1743           fromind = EXPR_ORIG_BB_INDEX (from);
1744
1745           if (toind && toind == fromind)
1746             /* Do nothing -- everything is done in
1747                merge_with_other_exprs.  */
1748             ;
1749           else
1750             EXPR_TARGET_AVAILABLE (to) = -1;
1751         }
1752       else if (EXPR_TARGET_AVAILABLE (from) == 0
1753                && EXPR_LHS (from)
1754                && REG_P (EXPR_LHS (from))
1755                && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1756         EXPR_TARGET_AVAILABLE (to) = -1;
1757       else
1758         EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1759     }
1760 }
1761
1762 /* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1763    is non-null when expressions are merged from different successors at
1764    a split point.  */
1765 static void
1766 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1767 {
1768   ds_t old_to_ds, old_from_ds;
1769
1770   old_to_ds = EXPR_SPEC_DONE_DS (to);
1771   old_from_ds = EXPR_SPEC_DONE_DS (from);
1772
1773   EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1774   EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1775   EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1776
1777   /* When merging e.g. control & data speculative exprs, or a control
1778      speculative with a control&data speculative one, we really have
1779      to change vinsn too.  Also, when speculative status is changed,
1780      we also need to record this as a transformation in expr's history.  */
1781   if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1782     {
1783       old_to_ds = ds_get_speculation_types (old_to_ds);
1784       old_from_ds = ds_get_speculation_types (old_from_ds);
1785
1786       if (old_to_ds != old_from_ds)
1787         {
1788           ds_t record_ds;
1789
1790           /* When both expressions are speculative, we need to change
1791              the vinsn first.  */
1792           if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1793             {
1794               int res;
1795
1796               res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1797               gcc_assert (res >= 0);
1798             }
1799
1800           if (split_point != NULL)
1801             {
1802               /* Record the change with proper status.  */
1803               record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1804               record_ds &= ~(old_to_ds & SPECULATIVE);
1805               record_ds &= ~(old_from_ds & SPECULATIVE);
1806
1807               insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1808                                       INSN_UID (split_point), TRANS_SPECULATION,
1809                                       EXPR_VINSN (from), EXPR_VINSN (to),
1810                                       record_ds);
1811             }
1812         }
1813     }
1814 }
1815
1816
1817 /* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1818    this is done along different paths.  */
1819 void
1820 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1821 {
1822   /* Choose the maximum of the specs of merged exprs.  This is required
1823      for correctness of bookkeeping.  */
1824   if (EXPR_SPEC (to) < EXPR_SPEC (from))
1825     EXPR_SPEC (to) = EXPR_SPEC (from);
1826
1827   if (split_point)
1828     EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1829   else
1830     EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1831                                 EXPR_USEFULNESS (from));
1832
1833   if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1834     EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1835
1836   if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1837     EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1838
1839   if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1840     EXPR_ORIG_BB_INDEX (to) = 0;
1841
1842   EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1843                                     EXPR_ORIG_SCHED_CYCLE (from));
1844
1845   EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1846   EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1847   EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1848
1849   merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1850                       EXPR_HISTORY_OF_CHANGES (from));
1851   update_target_availability (to, from, split_point);
1852   update_speculative_bits (to, from, split_point);
1853 }
1854
1855 /* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1856    in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1857    are merged from different successors at a split point.  */
1858 void
1859 merge_expr (expr_t to, expr_t from, insn_t split_point)
1860 {
1861   vinsn_t to_vi = EXPR_VINSN (to);
1862   vinsn_t from_vi = EXPR_VINSN (from);
1863
1864   gcc_assert (vinsn_equal_p (to_vi, from_vi));
1865
1866   /* Make sure that speculative pattern is propagated into exprs that
1867      have non-speculative one.  This will provide us with consistent
1868      speculative bits and speculative patterns inside expr.  */
1869   if (EXPR_SPEC_DONE_DS (to) == 0
1870       && EXPR_SPEC_DONE_DS (from) != 0)
1871     change_vinsn_in_expr (to, EXPR_VINSN (from));
1872
1873   merge_expr_data (to, from, split_point);
1874   gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1875 }
1876
1877 /* Clear the information of this EXPR.  */
1878 void
1879 clear_expr (expr_t expr)
1880 {
1881
1882   vinsn_detach (EXPR_VINSN (expr));
1883   EXPR_VINSN (expr) = NULL;
1884
1885   free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1886 }
1887
1888 /* For a given LV_SET, mark EXPR having unavailable target register.  */
1889 static void
1890 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1891 {
1892   if (EXPR_SEPARABLE_P (expr))
1893     {
1894       if (REG_P (EXPR_LHS (expr))
1895           && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1896         {
1897           /* If it's an insn like r1 = use (r1, ...), and it exists in
1898              different forms in each of the av_sets being merged, we can't say
1899              whether original destination register is available or not.
1900              However, this still works if destination register is not used
1901              in the original expression: if the branch at which LV_SET we're
1902              looking here is not actually 'other branch' in sense that same
1903              expression is available through it (but it can't be determined
1904              at computation stage because of transformations on one of the
1905              branches), it still won't affect the availability.
1906              Liveness of a register somewhere on a code motion path means
1907              it's either read somewhere on a codemotion path, live on
1908              'other' branch, live at the point immediately following
1909              the original operation, or is read by the original operation.
1910              The latter case is filtered out in the condition below.
1911              It still doesn't cover the case when register is defined and used
1912              somewhere within the code motion path, and in this case we could
1913              miss a unifying code motion along both branches using a renamed
1914              register, but it won't affect a code correctness since upon
1915              an actual code motion a bookkeeping code would be generated.  */
1916           if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1917                                       EXPR_LHS (expr)))
1918             EXPR_TARGET_AVAILABLE (expr) = -1;
1919           else
1920             EXPR_TARGET_AVAILABLE (expr) = false;
1921         }
1922     }
1923   else
1924     {
1925       unsigned regno;
1926       reg_set_iterator rsi;
1927
1928       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1929                                  0, regno, rsi)
1930         if (bitmap_bit_p (lv_set, regno))
1931           {
1932             EXPR_TARGET_AVAILABLE (expr) = false;
1933             break;
1934           }
1935
1936       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1937                                  0, regno, rsi)
1938         if (bitmap_bit_p (lv_set, regno))
1939           {
1940             EXPR_TARGET_AVAILABLE (expr) = false;
1941             break;
1942           }
1943     }
1944 }
1945
1946 /* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1947    or dependence status have changed, 2 when also the target register
1948    became unavailable, 0 if nothing had to be changed.  */
1949 int
1950 speculate_expr (expr_t expr, ds_t ds)
1951 {
1952   int res;
1953   rtx orig_insn_rtx;
1954   rtx spec_pat;
1955   ds_t target_ds, current_ds;
1956
1957   /* Obtain the status we need to put on EXPR.   */
1958   target_ds = (ds & SPECULATIVE);
1959   current_ds = EXPR_SPEC_DONE_DS (expr);
1960   ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1961
1962   orig_insn_rtx = EXPR_INSN_RTX (expr);
1963
1964   res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1965
1966   switch (res)
1967     {
1968     case 0:
1969       EXPR_SPEC_DONE_DS (expr) = ds;
1970       return current_ds != ds ? 1 : 0;
1971
1972     case 1:
1973       {
1974         rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1975         vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1976
1977         change_vinsn_in_expr (expr, spec_vinsn);
1978         EXPR_SPEC_DONE_DS (expr) = ds;
1979         EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1980
1981         /* Do not allow clobbering the address register of speculative
1982            insns.  */
1983         if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1984                                     expr_dest_reg (expr)))
1985           {
1986             EXPR_TARGET_AVAILABLE (expr) = false;
1987             return 2;
1988           }
1989
1990         return 1;
1991       }
1992
1993     case -1:
1994       return -1;
1995
1996     default:
1997       gcc_unreachable ();
1998       return -1;
1999     }
2000 }
2001
2002 /* Return a destination register, if any, of EXPR.  */
2003 rtx
2004 expr_dest_reg (expr_t expr)
2005 {
2006   rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2007
2008   if (dest != NULL_RTX && REG_P (dest))
2009     return dest;
2010
2011   return NULL_RTX;
2012 }
2013
2014 /* Returns the REGNO of the R's destination.  */
2015 unsigned
2016 expr_dest_regno (expr_t expr)
2017 {
2018   rtx dest = expr_dest_reg (expr);
2019
2020   gcc_assert (dest != NULL_RTX);
2021   return REGNO (dest);
2022 }
2023
2024 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2025    AV_SET having unavailable target register.  */
2026 void
2027 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2028 {
2029   expr_t expr;
2030   av_set_iterator avi;
2031
2032   FOR_EACH_EXPR (expr, avi, join_set)
2033     if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2034       set_unavailable_target_for_expr (expr, lv_set);
2035 }
2036 \f
2037
2038 /* Returns true if REG (at least partially) is present in REGS.  */
2039 bool
2040 register_unavailable_p (regset regs, rtx reg)
2041 {
2042   unsigned regno, end_regno;
2043
2044   regno = REGNO (reg);
2045   if (bitmap_bit_p (regs, regno))
2046     return true;
2047
2048   end_regno = END_REGNO (reg);
2049
2050   while (++regno < end_regno)
2051     if (bitmap_bit_p (regs, regno))
2052       return true;
2053
2054   return false;
2055 }
2056
2057 /* Av set functions.  */
2058
2059 /* Add a new element to av set SETP.
2060    Return the element added.  */
2061 static av_set_t
2062 av_set_add_element (av_set_t *setp)
2063 {
2064   /* Insert at the beginning of the list.  */
2065   _list_add (setp);
2066   return *setp;
2067 }
2068
2069 /* Add EXPR to SETP.  */
2070 void
2071 av_set_add (av_set_t *setp, expr_t expr)
2072 {
2073   av_set_t elem;
2074
2075   gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2076   elem = av_set_add_element (setp);
2077   copy_expr (_AV_SET_EXPR (elem), expr);
2078 }
2079
2080 /* Same, but do not copy EXPR.  */
2081 static void
2082 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2083 {
2084   av_set_t elem;
2085
2086   elem = av_set_add_element (setp);
2087   *_AV_SET_EXPR (elem) = *expr;
2088 }
2089
2090 /* Remove expr pointed to by IP from the av_set.  */
2091 void
2092 av_set_iter_remove (av_set_iterator *ip)
2093 {
2094   clear_expr (_AV_SET_EXPR (*ip->lp));
2095   _list_iter_remove (ip);
2096 }
2097
2098 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2099    sense of vinsn_equal_p function. Return NULL if no such expr is
2100    in SET was found.  */
2101 expr_t
2102 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2103 {
2104   expr_t expr;
2105   av_set_iterator i;
2106
2107   FOR_EACH_EXPR (expr, i, set)
2108     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2109       return expr;
2110   return NULL;
2111 }
2112
2113 /* Same, but also remove the EXPR found.   */
2114 static expr_t
2115 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2116 {
2117   expr_t expr;
2118   av_set_iterator i;
2119
2120   FOR_EACH_EXPR_1 (expr, i, setp)
2121     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2122       {
2123         _list_iter_remove_nofree (&i);
2124         return expr;
2125       }
2126   return NULL;
2127 }
2128
2129 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2130    sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2131    Returns NULL if no such expr is in SET was found.  */
2132 static expr_t
2133 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2134 {
2135   expr_t cur_expr;
2136   av_set_iterator i;
2137
2138   FOR_EACH_EXPR (cur_expr, i, set)
2139     {
2140       if (cur_expr == expr)
2141         continue;
2142       if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2143         return cur_expr;
2144     }
2145
2146   return NULL;
2147 }
2148
2149 /* If other expression is already in AVP, remove one of them.  */
2150 expr_t
2151 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2152 {
2153   expr_t expr2;
2154
2155   expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2156   if (expr2 != NULL)
2157     {
2158       /* Reset target availability on merge, since taking it only from one
2159          of the exprs would be controversial for different code.  */
2160       EXPR_TARGET_AVAILABLE (expr2) = -1;
2161       EXPR_USEFULNESS (expr2) = 0;
2162
2163       merge_expr (expr2, expr, NULL);
2164
2165       /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2166       EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2167
2168       av_set_iter_remove (ip);
2169       return expr2;
2170     }
2171
2172   return expr;
2173 }
2174
2175 /* Return true if there is an expr that correlates to VI in SET.  */
2176 bool
2177 av_set_is_in_p (av_set_t set, vinsn_t vi)
2178 {
2179   return av_set_lookup (set, vi) != NULL;
2180 }
2181
2182 /* Return a copy of SET.  */
2183 av_set_t
2184 av_set_copy (av_set_t set)
2185 {
2186   expr_t expr;
2187   av_set_iterator i;
2188   av_set_t res = NULL;
2189
2190   FOR_EACH_EXPR (expr, i, set)
2191     av_set_add (&res, expr);
2192
2193   return res;
2194 }
2195
2196 /* Join two av sets that do not have common elements by attaching second set
2197    (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2198    _AV_SET_NEXT of first set's last element).  */
2199 static void
2200 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2201 {
2202   gcc_assert (*to_tailp == NULL);
2203   *to_tailp = *fromp;
2204   *fromp = NULL;
2205 }
2206
2207 /* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2208    pointed to by FROMP afterwards.  */
2209 void
2210 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2211 {
2212   expr_t expr1;
2213   av_set_iterator i;
2214
2215   /* Delete from TOP all exprs, that present in FROMP.  */
2216   FOR_EACH_EXPR_1 (expr1, i, top)
2217     {
2218       expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2219
2220       if (expr2)
2221         {
2222           merge_expr (expr2, expr1, insn);
2223           av_set_iter_remove (&i);
2224         }
2225     }
2226
2227   join_distinct_sets (i.lp, fromp);
2228 }
2229
2230 /* Same as above, but also update availability of target register in
2231    TOP judging by TO_LV_SET and FROM_LV_SET.  */
2232 void
2233 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2234                        regset from_lv_set, insn_t insn)
2235 {
2236   expr_t expr1;
2237   av_set_iterator i;
2238   av_set_t *to_tailp, in_both_set = NULL;
2239
2240   /* Delete from TOP all expres, that present in FROMP.  */
2241   FOR_EACH_EXPR_1 (expr1, i, top)
2242     {
2243       expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2244
2245       if (expr2)
2246         {
2247           /* It may be that the expressions have different destination
2248              registers, in which case we need to check liveness here.  */
2249           if (EXPR_SEPARABLE_P (expr1))
2250             {
2251               int regno1 = (REG_P (EXPR_LHS (expr1))
2252                             ? (int) expr_dest_regno (expr1) : -1);
2253               int regno2 = (REG_P (EXPR_LHS (expr2))
2254                             ? (int) expr_dest_regno (expr2) : -1);
2255
2256               /* ??? We don't have a way to check restrictions for
2257                *other* register on the current path, we did it only
2258                for the current target register.  Give up.  */
2259               if (regno1 != regno2)
2260                 EXPR_TARGET_AVAILABLE (expr2) = -1;
2261             }
2262           else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2263             EXPR_TARGET_AVAILABLE (expr2) = -1;
2264
2265           merge_expr (expr2, expr1, insn);
2266           av_set_add_nocopy (&in_both_set, expr2);
2267           av_set_iter_remove (&i);
2268         }
2269       else
2270         /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2271            FROM_LV_SET.  */
2272         set_unavailable_target_for_expr (expr1, from_lv_set);
2273     }
2274   to_tailp = i.lp;
2275
2276   /* These expressions are not present in TOP.  Check liveness
2277      restrictions on TO_LV_SET.  */
2278   FOR_EACH_EXPR (expr1, i, *fromp)
2279     set_unavailable_target_for_expr (expr1, to_lv_set);
2280
2281   join_distinct_sets (i.lp, &in_both_set);
2282   join_distinct_sets (to_tailp, fromp);
2283 }
2284
2285 /* Clear av_set pointed to by SETP.  */
2286 void
2287 av_set_clear (av_set_t *setp)
2288 {
2289   expr_t expr;
2290   av_set_iterator i;
2291
2292   FOR_EACH_EXPR_1 (expr, i, setp)
2293     av_set_iter_remove (&i);
2294
2295   gcc_assert (*setp == NULL);
2296 }
2297
2298 /* Leave only one non-speculative element in the SETP.  */
2299 void
2300 av_set_leave_one_nonspec (av_set_t *setp)
2301 {
2302   expr_t expr;
2303   av_set_iterator i;
2304   bool has_one_nonspec = false;
2305
2306   /* Keep all speculative exprs, and leave one non-speculative
2307      (the first one).  */
2308   FOR_EACH_EXPR_1 (expr, i, setp)
2309     {
2310       if (!EXPR_SPEC_DONE_DS (expr))
2311         {
2312           if (has_one_nonspec)
2313             av_set_iter_remove (&i);
2314           else
2315             has_one_nonspec = true;
2316         }
2317     }
2318 }
2319
2320 /* Return the N'th element of the SET.  */
2321 expr_t
2322 av_set_element (av_set_t set, int n)
2323 {
2324   expr_t expr;
2325   av_set_iterator i;
2326
2327   FOR_EACH_EXPR (expr, i, set)
2328     if (n-- == 0)
2329       return expr;
2330
2331   gcc_unreachable ();
2332   return NULL;
2333 }
2334
2335 /* Deletes all expressions from AVP that are conditional branches (IFs).  */
2336 void
2337 av_set_substract_cond_branches (av_set_t *avp)
2338 {
2339   av_set_iterator i;
2340   expr_t expr;
2341
2342   FOR_EACH_EXPR_1 (expr, i, avp)
2343     if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2344       av_set_iter_remove (&i);
2345 }
2346
2347 /* Multiplies usefulness attribute of each member of av-set *AVP by
2348    value PROB / ALL_PROB.  */
2349 void
2350 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2351 {
2352   av_set_iterator i;
2353   expr_t expr;
2354
2355   FOR_EACH_EXPR (expr, i, av)
2356     EXPR_USEFULNESS (expr) = (all_prob
2357                               ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2358                               : 0);
2359 }
2360
2361 /* Leave in AVP only those expressions, which are present in AV,
2362    and return it, merging history expressions.  */
2363 void
2364 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2365 {
2366   av_set_iterator i;
2367   expr_t expr, expr2;
2368
2369   FOR_EACH_EXPR_1 (expr, i, avp)
2370     if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2371       av_set_iter_remove (&i);
2372     else
2373       /* When updating av sets in bookkeeping blocks, we can add more insns
2374          there which will be transformed but the upper av sets will not
2375          reflect those transformations.  We then fail to undo those
2376          when searching for such insns.  So merge the history saved
2377          in the av set of the block we are processing.  */
2378       merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2379                           EXPR_HISTORY_OF_CHANGES (expr2));
2380 }
2381
2382 \f
2383
2384 /* Dependence hooks to initialize insn data.  */
2385
2386 /* This is used in hooks callable from dependence analysis when initializing
2387    instruction's data.  */
2388 static struct
2389 {
2390   /* Where the dependence was found (lhs/rhs).  */
2391   deps_where_t where;
2392
2393   /* The actual data object to initialize.  */
2394   idata_t id;
2395
2396   /* True when the insn should not be made clonable.  */
2397   bool force_unique_p;
2398
2399   /* True when insn should be treated as of type USE, i.e. never renamed.  */
2400   bool force_use_p;
2401 } deps_init_id_data;
2402
2403
2404 /* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2405    clonable.  */
2406 static void
2407 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2408 {
2409   int type;
2410
2411   /* Determine whether INSN could be cloned and return appropriate vinsn type.
2412      That clonable insns which can be separated into lhs and rhs have type SET.
2413      Other clonable insns have type USE.  */
2414   type = GET_CODE (insn);
2415
2416   /* Only regular insns could be cloned.  */
2417   if (type == INSN && !force_unique_p)
2418     type = SET;
2419   else if (type == JUMP_INSN && simplejump_p (insn))
2420     type = PC;
2421   else if (type == DEBUG_INSN)
2422     type = !force_unique_p ? USE : INSN;
2423
2424   IDATA_TYPE (id) = type;
2425   IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2426   IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2427   IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2428 }
2429
2430 /* Start initializing insn data.  */
2431 static void
2432 deps_init_id_start_insn (insn_t insn)
2433 {
2434   gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2435
2436   setup_id_for_insn (deps_init_id_data.id, insn,
2437                      deps_init_id_data.force_unique_p);
2438   deps_init_id_data.where = DEPS_IN_INSN;
2439 }
2440
2441 /* Start initializing lhs data.  */
2442 static void
2443 deps_init_id_start_lhs (rtx lhs)
2444 {
2445   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2446   gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2447
2448   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2449     {
2450       IDATA_LHS (deps_init_id_data.id) = lhs;
2451       deps_init_id_data.where = DEPS_IN_LHS;
2452     }
2453 }
2454
2455 /* Finish initializing lhs data.  */
2456 static void
2457 deps_init_id_finish_lhs (void)
2458 {
2459   deps_init_id_data.where = DEPS_IN_INSN;
2460 }
2461
2462 /* Note a set of REGNO.  */
2463 static void
2464 deps_init_id_note_reg_set (int regno)
2465 {
2466   haifa_note_reg_set (regno);
2467
2468   if (deps_init_id_data.where == DEPS_IN_RHS)
2469     deps_init_id_data.force_use_p = true;
2470
2471   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2472     SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2473
2474 #ifdef STACK_REGS
2475   /* Make instructions that set stack registers to be ineligible for
2476      renaming to avoid issues with find_used_regs.  */
2477   if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2478     deps_init_id_data.force_use_p = true;
2479 #endif
2480 }
2481
2482 /* Note a clobber of REGNO.  */
2483 static void
2484 deps_init_id_note_reg_clobber (int regno)
2485 {
2486   haifa_note_reg_clobber (regno);
2487
2488   if (deps_init_id_data.where == DEPS_IN_RHS)
2489     deps_init_id_data.force_use_p = true;
2490
2491   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2492     SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2493 }
2494
2495 /* Note a use of REGNO.  */
2496 static void
2497 deps_init_id_note_reg_use (int regno)
2498 {
2499   haifa_note_reg_use (regno);
2500
2501   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2502     SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2503 }
2504
2505 /* Start initializing rhs data.  */
2506 static void
2507 deps_init_id_start_rhs (rtx rhs)
2508 {
2509   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2510
2511   /* And there was no sel_deps_reset_to_insn ().  */
2512   if (IDATA_LHS (deps_init_id_data.id) != NULL)
2513     {
2514       IDATA_RHS (deps_init_id_data.id) = rhs;
2515       deps_init_id_data.where = DEPS_IN_RHS;
2516     }
2517 }
2518
2519 /* Finish initializing rhs data.  */
2520 static void
2521 deps_init_id_finish_rhs (void)
2522 {
2523   gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2524               || deps_init_id_data.where == DEPS_IN_INSN);
2525   deps_init_id_data.where = DEPS_IN_INSN;
2526 }
2527
2528 /* Finish initializing insn data.  */
2529 static void
2530 deps_init_id_finish_insn (void)
2531 {
2532   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2533
2534   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2535     {
2536       rtx lhs = IDATA_LHS (deps_init_id_data.id);
2537       rtx rhs = IDATA_RHS (deps_init_id_data.id);
2538
2539       if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2540           || deps_init_id_data.force_use_p)
2541         {
2542           /* This should be a USE, as we don't want to schedule its RHS
2543              separately.  However, we still want to have them recorded
2544              for the purposes of substitution.  That's why we don't
2545              simply call downgrade_to_use () here.  */
2546           gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2547           gcc_assert (!lhs == !rhs);
2548
2549           IDATA_TYPE (deps_init_id_data.id) = USE;
2550         }
2551     }
2552
2553   deps_init_id_data.where = DEPS_IN_NOWHERE;
2554 }
2555
2556 /* This is dependence info used for initializing insn's data.  */
2557 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2558
2559 /* This initializes most of the static part of the above structure.  */
2560 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2561   {
2562     NULL,
2563
2564     deps_init_id_start_insn,
2565     deps_init_id_finish_insn,
2566     deps_init_id_start_lhs,
2567     deps_init_id_finish_lhs,
2568     deps_init_id_start_rhs,
2569     deps_init_id_finish_rhs,
2570     deps_init_id_note_reg_set,
2571     deps_init_id_note_reg_clobber,
2572     deps_init_id_note_reg_use,
2573     NULL, /* note_mem_dep */
2574     NULL, /* note_dep */
2575
2576     0, /* use_cselib */
2577     0, /* use_deps_list */
2578     0 /* generate_spec_deps */
2579   };
2580
2581 /* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2582    we don't actually need information about lhs and rhs.  */
2583 static void
2584 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2585 {
2586   rtx pat = PATTERN (insn);
2587
2588   if (NONJUMP_INSN_P (insn)
2589       && GET_CODE (pat) == SET
2590       && !force_unique_p)
2591     {
2592       IDATA_RHS (id) = SET_SRC (pat);
2593       IDATA_LHS (id) = SET_DEST (pat);
2594     }
2595   else
2596     IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2597 }
2598
2599 /* Possibly downgrade INSN to USE.  */
2600 static void
2601 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2602 {
2603   bool must_be_use = false;
2604   unsigned uid = INSN_UID (insn);
2605   df_ref *rec;
2606   rtx lhs = IDATA_LHS (id);
2607   rtx rhs = IDATA_RHS (id);
2608
2609   /* We downgrade only SETs.  */
2610   if (IDATA_TYPE (id) != SET)
2611     return;
2612
2613   if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2614     {
2615       IDATA_TYPE (id) = USE;
2616       return;
2617     }
2618
2619   for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2620     {
2621       df_ref def = *rec;
2622
2623       if (DF_REF_INSN (def)
2624           && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2625           && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2626         {
2627           must_be_use = true;
2628           break;
2629         }
2630
2631 #ifdef STACK_REGS
2632       /* Make instructions that set stack registers to be ineligible for
2633          renaming to avoid issues with find_used_regs.  */
2634       if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2635         {
2636           must_be_use = true;
2637           break;
2638         }
2639 #endif
2640     }
2641
2642   if (must_be_use)
2643     IDATA_TYPE (id) = USE;
2644 }
2645
2646 /* Setup register sets describing INSN in ID.  */
2647 static void
2648 setup_id_reg_sets (idata_t id, insn_t insn)
2649 {
2650   unsigned uid = INSN_UID (insn);
2651   df_ref *rec;
2652   regset tmp = get_clear_regset_from_pool ();
2653
2654   for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2655     {
2656       df_ref def = *rec;
2657       unsigned int regno = DF_REF_REGNO (def);
2658
2659       /* Post modifies are treated like clobbers by sched-deps.c.  */
2660       if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2661                                      | DF_REF_PRE_POST_MODIFY)))
2662         SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2663       else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2664         {
2665           SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2666
2667 #ifdef STACK_REGS
2668           /* For stack registers, treat writes to them as writes
2669              to the first one to be consistent with sched-deps.c.  */
2670           if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2671             SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2672 #endif
2673         }
2674       /* Mark special refs that generate read/write def pair.  */
2675       if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2676           || regno == STACK_POINTER_REGNUM)
2677         bitmap_set_bit (tmp, regno);
2678     }
2679
2680   for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2681     {
2682       df_ref use = *rec;
2683       unsigned int regno = DF_REF_REGNO (use);
2684
2685       /* When these refs are met for the first time, skip them, as
2686          these uses are just counterparts of some defs.  */
2687       if (bitmap_bit_p (tmp, regno))
2688         bitmap_clear_bit (tmp, regno);
2689       else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2690         {
2691           SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2692
2693 #ifdef STACK_REGS
2694           /* For stack registers, treat reads from them as reads from
2695              the first one to be consistent with sched-deps.c.  */
2696           if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697             SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2698 #endif
2699         }
2700     }
2701
2702   return_regset_to_pool (tmp);
2703 }
2704
2705 /* Initialize instruction data for INSN in ID using DF's data.  */
2706 static void
2707 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2708 {
2709   gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2710
2711   setup_id_for_insn (id, insn, force_unique_p);
2712   setup_id_lhs_rhs (id, insn, force_unique_p);
2713
2714   if (INSN_NOP_P (insn))
2715     return;
2716
2717   maybe_downgrade_id_to_use (id, insn);
2718   setup_id_reg_sets (id, insn);
2719 }
2720
2721 /* Initialize instruction data for INSN in ID.  */
2722 static void
2723 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2724 {
2725   struct deps_desc _dc, *dc = &_dc;
2726
2727   deps_init_id_data.where = DEPS_IN_NOWHERE;
2728   deps_init_id_data.id = id;
2729   deps_init_id_data.force_unique_p = force_unique_p;
2730   deps_init_id_data.force_use_p = false;
2731
2732   init_deps (dc, false);
2733
2734   memcpy (&deps_init_id_sched_deps_info,
2735           &const_deps_init_id_sched_deps_info,
2736           sizeof (deps_init_id_sched_deps_info));
2737
2738   if (spec_info != NULL)
2739     deps_init_id_sched_deps_info.generate_spec_deps = 1;
2740
2741   sched_deps_info = &deps_init_id_sched_deps_info;
2742
2743   deps_analyze_insn (dc, insn);
2744
2745   free_deps (dc);
2746
2747   deps_init_id_data.id = NULL;
2748 }
2749
2750 \f
2751 struct sched_scan_info_def
2752 {
2753   /* This hook notifies scheduler frontend to extend its internal per basic
2754      block data structures.  This hook should be called once before a series of
2755      calls to bb_init ().  */
2756   void (*extend_bb) (void);
2757
2758   /* This hook makes scheduler frontend to initialize its internal data
2759      structures for the passed basic block.  */
2760   void (*init_bb) (basic_block);
2761
2762   /* This hook notifies scheduler frontend to extend its internal per insn data
2763      structures.  This hook should be called once before a series of calls to
2764      insn_init ().  */
2765   void (*extend_insn) (void);
2766
2767   /* This hook makes scheduler frontend to initialize its internal data
2768      structures for the passed insn.  */
2769   void (*init_insn) (rtx);
2770 };
2771
2772 /* A driver function to add a set of basic blocks (BBS) to the
2773    scheduling region.  */
2774 static void
2775 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2776 {
2777   unsigned i;
2778   basic_block bb;
2779
2780   if (ssi->extend_bb)
2781     ssi->extend_bb ();
2782
2783   if (ssi->init_bb)
2784     FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2785       ssi->init_bb (bb);
2786
2787   if (ssi->extend_insn)
2788     ssi->extend_insn ();
2789
2790   if (ssi->init_insn)
2791     FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2792       {
2793         rtx insn;
2794
2795         FOR_BB_INSNS (bb, insn)
2796           ssi->init_insn (insn);
2797       }
2798 }
2799
2800 /* Implement hooks for collecting fundamental insn properties like if insn is
2801    an ASM or is within a SCHED_GROUP.  */
2802
2803 /* True when a "one-time init" data for INSN was already inited.  */
2804 static bool
2805 first_time_insn_init (insn_t insn)
2806 {
2807   return INSN_LIVE (insn) == NULL;
2808 }
2809
2810 /* Hash an entry in a transformed_insns hashtable.  */
2811 static hashval_t
2812 hash_transformed_insns (const void *p)
2813 {
2814   return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2815 }
2816
2817 /* Compare the entries in a transformed_insns hashtable.  */
2818 static int
2819 eq_transformed_insns (const void *p, const void *q)
2820 {
2821   rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2822   rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2823
2824   if (INSN_UID (i1) == INSN_UID (i2))
2825     return 1;
2826   return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2827 }
2828
2829 /* Free an entry in a transformed_insns hashtable.  */
2830 static void
2831 free_transformed_insns (void *p)
2832 {
2833   struct transformed_insns *pti = (struct transformed_insns *) p;
2834
2835   vinsn_detach (pti->vinsn_old);
2836   vinsn_detach (pti->vinsn_new);
2837   free (pti);
2838 }
2839
2840 /* Init the s_i_d data for INSN which should be inited just once, when
2841    we first see the insn.  */
2842 static void
2843 init_first_time_insn_data (insn_t insn)
2844 {
2845   /* This should not be set if this is the first time we init data for
2846      insn.  */
2847   gcc_assert (first_time_insn_init (insn));
2848
2849   /* These are needed for nops too.  */
2850   INSN_LIVE (insn) = get_regset_from_pool ();
2851   INSN_LIVE_VALID_P (insn) = false;
2852
2853   if (!INSN_NOP_P (insn))
2854     {
2855       INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2856       INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2857       INSN_TRANSFORMED_INSNS (insn)
2858         = htab_create (16, hash_transformed_insns,
2859                        eq_transformed_insns, free_transformed_insns);
2860       init_deps (&INSN_DEPS_CONTEXT (insn), true);
2861     }
2862 }
2863
2864 /* Free almost all above data for INSN that is scheduled already.
2865    Used for extra-large basic blocks.  */
2866 void
2867 free_data_for_scheduled_insn (insn_t insn)
2868 {
2869   gcc_assert (! first_time_insn_init (insn));
2870
2871   if (! INSN_ANALYZED_DEPS (insn))
2872     return;
2873
2874   BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2875   BITMAP_FREE (INSN_FOUND_DEPS (insn));
2876   htab_delete (INSN_TRANSFORMED_INSNS (insn));
2877
2878   /* This is allocated only for bookkeeping insns.  */
2879   if (INSN_ORIGINATORS (insn))
2880     BITMAP_FREE (INSN_ORIGINATORS (insn));
2881   free_deps (&INSN_DEPS_CONTEXT (insn));
2882
2883   INSN_ANALYZED_DEPS (insn) = NULL;
2884
2885   /* Clear the readonly flag so we would ICE when trying to recalculate
2886      the deps context (as we believe that it should not happen).  */
2887   (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2888 }
2889
2890 /* Free the same data as above for INSN.  */
2891 static void
2892 free_first_time_insn_data (insn_t insn)
2893 {
2894   gcc_assert (! first_time_insn_init (insn));
2895
2896   free_data_for_scheduled_insn (insn);
2897   return_regset_to_pool (INSN_LIVE (insn));
2898   INSN_LIVE (insn) = NULL;
2899   INSN_LIVE_VALID_P (insn) = false;
2900 }
2901
2902 /* Initialize region-scope data structures for basic blocks.  */
2903 static void
2904 init_global_and_expr_for_bb (basic_block bb)
2905 {
2906   if (sel_bb_empty_p (bb))
2907     return;
2908
2909   invalidate_av_set (bb);
2910 }
2911
2912 /* Data for global dependency analysis (to initialize CANT_MOVE and
2913    SCHED_GROUP_P).  */
2914 static struct
2915 {
2916   /* Previous insn.  */
2917   insn_t prev_insn;
2918 } init_global_data;
2919
2920 /* Determine if INSN is in the sched_group, is an asm or should not be
2921    cloned.  After that initialize its expr.  */
2922 static void
2923 init_global_and_expr_for_insn (insn_t insn)
2924 {
2925   if (LABEL_P (insn))
2926     return;
2927
2928   if (NOTE_INSN_BASIC_BLOCK_P (insn))
2929     {
2930       init_global_data.prev_insn = NULL_RTX;
2931       return;
2932     }
2933
2934   gcc_assert (INSN_P (insn));
2935
2936   if (SCHED_GROUP_P (insn))
2937     /* Setup a sched_group.  */
2938     {
2939       insn_t prev_insn = init_global_data.prev_insn;
2940
2941       if (prev_insn)
2942         INSN_SCHED_NEXT (prev_insn) = insn;
2943
2944       init_global_data.prev_insn = insn;
2945     }
2946   else
2947     init_global_data.prev_insn = NULL_RTX;
2948
2949   if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2950       || asm_noperands (PATTERN (insn)) >= 0)
2951     /* Mark INSN as an asm.  */
2952     INSN_ASM_P (insn) = true;
2953
2954   {
2955     bool force_unique_p;
2956     ds_t spec_done_ds;
2957
2958     /* Certain instructions cannot be cloned, and frame related insns and
2959        the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2960        their block.  */
2961     if (prologue_epilogue_contains (insn))
2962       {
2963         if (RTX_FRAME_RELATED_P (insn))
2964           CANT_MOVE (insn) = 1;
2965         else
2966           {
2967             rtx note;
2968             for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2969               if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2970                   && ((enum insn_note) INTVAL (XEXP (note, 0))
2971                       == NOTE_INSN_EPILOGUE_BEG))
2972                 {
2973                   CANT_MOVE (insn) = 1;
2974                   break;
2975                 }
2976           }
2977         force_unique_p = true;
2978       }
2979     else
2980       if (CANT_MOVE (insn)
2981           || INSN_ASM_P (insn)
2982           || SCHED_GROUP_P (insn)
2983           || CALL_P (insn)
2984           /* Exception handling insns are always unique.  */
2985           || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2986           /* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
2987           || control_flow_insn_p (insn)
2988           || volatile_insn_p (PATTERN (insn))
2989           || (targetm.cannot_copy_insn_p
2990               && targetm.cannot_copy_insn_p (insn)))
2991         force_unique_p = true;
2992       else
2993         force_unique_p = false;
2994
2995     if (targetm.sched.get_insn_spec_ds)
2996       {
2997         spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2998         spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2999       }
3000     else
3001       spec_done_ds = 0;
3002
3003     /* Initialize INSN's expr.  */
3004     init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3005                REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3006                spec_done_ds, 0, 0, NULL, true, false, false, false,
3007                CANT_MOVE (insn));
3008   }
3009
3010   init_first_time_insn_data (insn);
3011 }
3012
3013 /* Scan the region and initialize instruction data for basic blocks BBS.  */
3014 void
3015 sel_init_global_and_expr (bb_vec_t bbs)
3016 {
3017   /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
3018   const struct sched_scan_info_def ssi =
3019     {
3020       NULL, /* extend_bb */
3021       init_global_and_expr_for_bb, /* init_bb */
3022       extend_insn_data, /* extend_insn */
3023       init_global_and_expr_for_insn /* init_insn */
3024     };
3025
3026   sched_scan (&ssi, bbs);
3027 }
3028
3029 /* Finalize region-scope data structures for basic blocks.  */
3030 static void
3031 finish_global_and_expr_for_bb (basic_block bb)
3032 {
3033   av_set_clear (&BB_AV_SET (bb));
3034   BB_AV_LEVEL (bb) = 0;
3035 }
3036
3037 /* Finalize INSN's data.  */
3038 static void
3039 finish_global_and_expr_insn (insn_t insn)
3040 {
3041   if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3042     return;
3043
3044   gcc_assert (INSN_P (insn));
3045
3046   if (INSN_LUID (insn) > 0)
3047     {
3048       free_first_time_insn_data (insn);
3049       INSN_WS_LEVEL (insn) = 0;
3050       CANT_MOVE (insn) = 0;
3051
3052       /* We can no longer assert this, as vinsns of this insn could be
3053          easily live in other insn's caches.  This should be changed to
3054          a counter-like approach among all vinsns.  */
3055       gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3056       clear_expr (INSN_EXPR (insn));
3057     }
3058 }
3059
3060 /* Finalize per instruction data for the whole region.  */
3061 void
3062 sel_finish_global_and_expr (void)
3063 {
3064   {
3065     bb_vec_t bbs;
3066     int i;
3067
3068     bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3069
3070     for (i = 0; i < current_nr_blocks; i++)
3071       VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3072
3073     /* Clear AV_SETs and INSN_EXPRs.  */
3074     {
3075       const struct sched_scan_info_def ssi =
3076         {
3077           NULL, /* extend_bb */
3078           finish_global_and_expr_for_bb, /* init_bb */
3079           NULL, /* extend_insn */
3080           finish_global_and_expr_insn /* init_insn */
3081         };
3082
3083       sched_scan (&ssi, bbs);
3084     }
3085
3086     VEC_free (basic_block, heap, bbs);
3087   }
3088
3089   finish_insns ();
3090 }
3091 \f
3092
3093 /* In the below hooks, we merely calculate whether or not a dependence
3094    exists, and in what part of insn.  However, we will need more data
3095    when we'll start caching dependence requests.  */
3096
3097 /* Container to hold information for dependency analysis.  */
3098 static struct
3099 {
3100   deps_t dc;
3101
3102   /* A variable to track which part of rtx we are scanning in
3103      sched-deps.c: sched_analyze_insn ().  */
3104   deps_where_t where;
3105
3106   /* Current producer.  */
3107   insn_t pro;
3108
3109   /* Current consumer.  */
3110   vinsn_t con;
3111
3112   /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3113      X is from { INSN, LHS, RHS }.  */
3114   ds_t has_dep_p[DEPS_IN_NOWHERE];
3115 } has_dependence_data;
3116
3117 /* Start analyzing dependencies of INSN.  */
3118 static void
3119 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3120 {
3121   gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3122
3123   has_dependence_data.where = DEPS_IN_INSN;
3124 }
3125
3126 /* Finish analyzing dependencies of an insn.  */
3127 static void
3128 has_dependence_finish_insn (void)
3129 {
3130   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3131
3132   has_dependence_data.where = DEPS_IN_NOWHERE;
3133 }
3134
3135 /* Start analyzing dependencies of LHS.  */
3136 static void
3137 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3138 {
3139   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3140
3141   if (VINSN_LHS (has_dependence_data.con) != NULL)
3142     has_dependence_data.where = DEPS_IN_LHS;
3143 }
3144
3145 /* Finish analyzing dependencies of an lhs.  */
3146 static void
3147 has_dependence_finish_lhs (void)
3148 {
3149   has_dependence_data.where = DEPS_IN_INSN;
3150 }
3151
3152 /* Start analyzing dependencies of RHS.  */
3153 static void
3154 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3155 {
3156   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3157
3158   if (VINSN_RHS (has_dependence_data.con) != NULL)
3159     has_dependence_data.where = DEPS_IN_RHS;
3160 }
3161
3162 /* Start analyzing dependencies of an rhs.  */
3163 static void
3164 has_dependence_finish_rhs (void)
3165 {
3166   gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3167               || has_dependence_data.where == DEPS_IN_INSN);
3168
3169   has_dependence_data.where = DEPS_IN_INSN;
3170 }
3171
3172 /* Note a set of REGNO.  */
3173 static void
3174 has_dependence_note_reg_set (int regno)
3175 {
3176   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3177
3178   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3179                                        VINSN_INSN_RTX
3180                                        (has_dependence_data.con)))
3181     {
3182       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3183
3184       if (reg_last->sets != NULL
3185           || reg_last->clobbers != NULL)
3186         *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3187
3188       if (reg_last->uses)
3189         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3190     }
3191 }
3192
3193 /* Note a clobber of REGNO.  */
3194 static void
3195 has_dependence_note_reg_clobber (int regno)
3196 {
3197   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3198
3199   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3200                                        VINSN_INSN_RTX
3201                                        (has_dependence_data.con)))
3202     {
3203       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3204
3205       if (reg_last->sets)
3206         *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3207
3208       if (reg_last->uses)
3209         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3210     }
3211 }
3212
3213 /* Note a use of REGNO.  */
3214 static void
3215 has_dependence_note_reg_use (int regno)
3216 {
3217   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3218
3219   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3220                                        VINSN_INSN_RTX
3221                                        (has_dependence_data.con)))
3222     {
3223       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3224
3225       if (reg_last->sets)
3226         *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3227
3228       if (reg_last->clobbers)
3229         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3230
3231       /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3232          is actually a check insn.  We need to do this for any register
3233          read-read dependency with the check unless we track properly
3234          all registers written by BE_IN_SPEC-speculated insns, as
3235          we don't have explicit dependence lists.  See PR 53975.  */
3236       if (reg_last->uses)
3237         {
3238           ds_t pro_spec_checked_ds;
3239
3240           pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3241           pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3242
3243           if (pro_spec_checked_ds != 0)
3244             *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3245                                   NULL_RTX, NULL_RTX);
3246         }
3247     }
3248 }
3249
3250 /* Note a memory dependence.  */
3251 static void
3252 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3253                              rtx pending_mem ATTRIBUTE_UNUSED,
3254                              insn_t pending_insn ATTRIBUTE_UNUSED,
3255                              ds_t ds ATTRIBUTE_UNUSED)
3256 {
3257   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3258                                        VINSN_INSN_RTX (has_dependence_data.con)))
3259     {
3260       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3261
3262       *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3263     }
3264 }
3265
3266 /* Note a dependence.  */
3267 static void
3268 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3269                          ds_t ds ATTRIBUTE_UNUSED)
3270 {
3271   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3272                                        VINSN_INSN_RTX (has_dependence_data.con)))
3273     {
3274       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3275
3276       *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3277     }
3278 }
3279
3280 /* Mark the insn as having a hard dependence that prevents speculation.  */
3281 void
3282 sel_mark_hard_insn (rtx insn)
3283 {
3284   int i;
3285
3286   /* Only work when we're in has_dependence_p mode.
3287      ??? This is a hack, this should actually be a hook.  */
3288   if (!has_dependence_data.dc || !has_dependence_data.pro)
3289     return;
3290
3291   gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3292   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3293
3294   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3295     has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3296 }
3297
3298 /* This structure holds the hooks for the dependency analysis used when
3299    actually processing dependencies in the scheduler.  */
3300 static struct sched_deps_info_def has_dependence_sched_deps_info;
3301
3302 /* This initializes most of the fields of the above structure.  */
3303 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3304   {
3305     NULL,
3306
3307     has_dependence_start_insn,
3308     has_dependence_finish_insn,
3309     has_dependence_start_lhs,
3310     has_dependence_finish_lhs,
3311     has_dependence_start_rhs,
3312     has_dependence_finish_rhs,
3313     has_dependence_note_reg_set,
3314     has_dependence_note_reg_clobber,
3315     has_dependence_note_reg_use,
3316     has_dependence_note_mem_dep,
3317     has_dependence_note_dep,
3318
3319     0, /* use_cselib */
3320     0, /* use_deps_list */
3321     0 /* generate_spec_deps */
3322   };
3323
3324 /* Initialize has_dependence_sched_deps_info with extra spec field.  */
3325 static void
3326 setup_has_dependence_sched_deps_info (void)
3327 {
3328   memcpy (&has_dependence_sched_deps_info,
3329           &const_has_dependence_sched_deps_info,
3330           sizeof (has_dependence_sched_deps_info));
3331
3332   if (spec_info != NULL)
3333     has_dependence_sched_deps_info.generate_spec_deps = 1;
3334
3335   sched_deps_info = &has_dependence_sched_deps_info;
3336 }
3337
3338 /* Remove all dependences found and recorded in has_dependence_data array.  */
3339 void
3340 sel_clear_has_dependence (void)
3341 {
3342   int i;
3343
3344   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3345     has_dependence_data.has_dep_p[i] = 0;
3346 }
3347
3348 /* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3349    to the dependence information array in HAS_DEP_PP.  */
3350 ds_t
3351 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3352 {
3353   int i;
3354   ds_t ds;
3355   struct deps_desc *dc;
3356
3357   if (INSN_SIMPLEJUMP_P (pred))
3358     /* Unconditional jump is just a transfer of control flow.
3359        Ignore it.  */
3360     return false;
3361
3362   dc = &INSN_DEPS_CONTEXT (pred);
3363
3364   /* We init this field lazily.  */
3365   if (dc->reg_last == NULL)
3366     init_deps_reg_last (dc);
3367
3368   if (!dc->readonly)
3369     {
3370       has_dependence_data.pro = NULL;
3371       /* Initialize empty dep context with information about PRED.  */
3372       advance_deps_context (dc, pred);
3373       dc->readonly = 1;
3374     }
3375
3376   has_dependence_data.where = DEPS_IN_NOWHERE;
3377   has_dependence_data.pro = pred;
3378   has_dependence_data.con = EXPR_VINSN (expr);
3379   has_dependence_data.dc = dc;
3380
3381   sel_clear_has_dependence ();
3382
3383   /* Now catch all dependencies that would be generated between PRED and
3384      INSN.  */
3385   setup_has_dependence_sched_deps_info ();
3386   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3387   has_dependence_data.dc = NULL;
3388
3389   /* When a barrier was found, set DEPS_IN_INSN bits.  */
3390   if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3391     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3392   else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3393     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3394
3395   /* Do not allow stores to memory to move through checks.  Currently
3396      we don't move this to sched-deps.c as the check doesn't have
3397      obvious places to which this dependence can be attached.
3398      FIMXE: this should go to a hook.  */
3399   if (EXPR_LHS (expr)
3400       && MEM_P (EXPR_LHS (expr))
3401       && sel_insn_is_speculation_check (pred))
3402     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3403
3404   *has_dep_pp = has_dependence_data.has_dep_p;
3405   ds = 0;
3406   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3407     ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3408                         NULL_RTX, NULL_RTX);
3409
3410   return ds;
3411 }
3412 \f
3413
3414 /* Dependence hooks implementation that checks dependence latency constraints
3415    on the insns being scheduled.  The entry point for these routines is
3416    tick_check_p predicate.  */
3417
3418 static struct
3419 {
3420   /* An expr we are currently checking.  */
3421   expr_t expr;
3422
3423   /* A minimal cycle for its scheduling.  */
3424   int cycle;
3425
3426   /* Whether we have seen a true dependence while checking.  */
3427   bool seen_true_dep_p;
3428 } tick_check_data;
3429
3430 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3431    on PRO with status DS and weight DW.  */
3432 static void
3433 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3434 {
3435   expr_t con_expr = tick_check_data.expr;
3436   insn_t con_insn = EXPR_INSN_RTX (con_expr);
3437
3438   if (con_insn != pro_insn)
3439     {
3440       enum reg_note dt;
3441       int tick;
3442
3443       if (/* PROducer was removed from above due to pipelining.  */
3444           !INSN_IN_STREAM_P (pro_insn)
3445           /* Or PROducer was originally on the next iteration regarding the
3446              CONsumer.  */
3447           || (INSN_SCHED_TIMES (pro_insn)
3448               - EXPR_SCHED_TIMES (con_expr)) > 1)
3449         /* Don't count this dependence.  */
3450         return;
3451
3452       dt = ds_to_dt (ds);
3453       if (dt == REG_DEP_TRUE)
3454         tick_check_data.seen_true_dep_p = true;
3455
3456       gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3457
3458       {
3459         dep_def _dep, *dep = &_dep;
3460
3461         init_dep (dep, pro_insn, con_insn, dt);
3462
3463         tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3464       }
3465
3466       /* When there are several kinds of dependencies between pro and con,
3467          only REG_DEP_TRUE should be taken into account.  */
3468       if (tick > tick_check_data.cycle
3469           && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3470         tick_check_data.cycle = tick;
3471     }
3472 }
3473
3474 /* An implementation of note_dep hook.  */
3475 static void
3476 tick_check_note_dep (insn_t pro, ds_t ds)
3477 {
3478   tick_check_dep_with_dw (pro, ds, 0);
3479 }
3480
3481 /* An implementation of note_mem_dep hook.  */
3482 static void
3483 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3484 {
3485   dw_t dw;
3486
3487   dw = (ds_to_dt (ds) == REG_DEP_TRUE
3488         ? estimate_dep_weak (mem1, mem2)
3489         : 0);
3490
3491   tick_check_dep_with_dw (pro, ds, dw);
3492 }
3493
3494 /* This structure contains hooks for dependence analysis used when determining
3495    whether an insn is ready for scheduling.  */
3496 static struct sched_deps_info_def tick_check_sched_deps_info =
3497   {
3498     NULL,
3499
3500     NULL,
3501     NULL,
3502     NULL,
3503     NULL,
3504     NULL,
3505     NULL,
3506     haifa_note_reg_set,
3507     haifa_note_reg_clobber,
3508     haifa_note_reg_use,
3509     tick_check_note_mem_dep,
3510     tick_check_note_dep,
3511
3512     0, 0, 0
3513   };
3514
3515 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3516    scheduled.  Return 0 if all data from producers in DC is ready.  */
3517 int
3518 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3519 {
3520   int cycles_left;
3521   /* Initialize variables.  */
3522   tick_check_data.expr = expr;
3523   tick_check_data.cycle = 0;
3524   tick_check_data.seen_true_dep_p = false;
3525   sched_deps_info = &tick_check_sched_deps_info;
3526
3527   gcc_assert (!dc->readonly);
3528   dc->readonly = 1;
3529   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3530   dc->readonly = 0;
3531
3532   cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3533
3534   return cycles_left >= 0 ? cycles_left : 0;
3535 }
3536 \f
3537
3538 /* Functions to work with insns.  */
3539
3540 /* Returns true if LHS of INSN is the same as DEST of an insn
3541    being moved.  */
3542 bool
3543 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3544 {
3545   rtx lhs = INSN_LHS (insn);
3546
3547   if (lhs == NULL || dest == NULL)
3548     return false;
3549
3550   return rtx_equal_p (lhs, dest);
3551 }
3552
3553 /* Return s_i_d entry of INSN.  Callable from debugger.  */
3554 sel_insn_data_def
3555 insn_sid (insn_t insn)
3556 {
3557   return *SID (insn);
3558 }
3559
3560 /* True when INSN is a speculative check.  We can tell this by looking
3561    at the data structures of the selective scheduler, not by examining
3562    the pattern.  */
3563 bool
3564 sel_insn_is_speculation_check (rtx insn)
3565 {
3566   return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3567 }
3568
3569 /* Extracts machine mode MODE and destination location DST_LOC
3570    for given INSN.  */
3571 void
3572 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3573 {
3574   rtx pat = PATTERN (insn);
3575
3576   gcc_assert (dst_loc);
3577   gcc_assert (GET_CODE (pat) == SET);
3578
3579   *dst_loc = SET_DEST (pat);
3580
3581   gcc_assert (*dst_loc);
3582   gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3583
3584   if (mode)
3585     *mode = GET_MODE (*dst_loc);
3586 }
3587
3588 /* Returns true when moving through JUMP will result in bookkeeping
3589    creation.  */
3590 bool
3591 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3592 {
3593   insn_t succ;
3594   succ_iterator si;
3595
3596   FOR_EACH_SUCC (succ, si, jump)
3597     if (sel_num_cfg_preds_gt_1 (succ))
3598       return true;
3599
3600   return false;
3601 }
3602
3603 /* Return 'true' if INSN is the only one in its basic block.  */
3604 static bool
3605 insn_is_the_only_one_in_bb_p (insn_t insn)
3606 {
3607   return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3608 }
3609
3610 #ifdef ENABLE_CHECKING
3611 /* Check that the region we're scheduling still has at most one
3612    backedge.  */
3613 static void
3614 verify_backedges (void)
3615 {
3616   if (pipelining_p)
3617     {
3618       int i, n = 0;
3619       edge e;
3620       edge_iterator ei;
3621
3622       for (i = 0; i < current_nr_blocks; i++)
3623         FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3624           if (in_current_region_p (e->dest)
3625               && BLOCK_TO_BB (e->dest->index) < i)
3626             n++;
3627
3628       gcc_assert (n <= 1);
3629     }
3630 }
3631 #endif
3632 \f
3633
3634 /* Functions to work with control flow.  */
3635
3636 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3637    are sorted in topological order (it might have been invalidated by
3638    redirecting an edge).  */
3639 static void
3640 sel_recompute_toporder (void)
3641 {
3642   int i, n, rgn;
3643   int *postorder, n_blocks;
3644
3645   postorder = XALLOCAVEC (int, n_basic_blocks);
3646   n_blocks = post_order_compute (postorder, false, false);
3647
3648   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3649   for (n = 0, i = n_blocks - 1; i >= 0; i--)
3650     if (CONTAINING_RGN (postorder[i]) == rgn)
3651       {
3652         BLOCK_TO_BB (postorder[i]) = n;
3653         BB_TO_BLOCK (n) = postorder[i];
3654         n++;
3655       }
3656
3657   /* Assert that we updated info for all blocks.  We may miss some blocks if
3658      this function is called when redirecting an edge made a block
3659      unreachable, but that block is not deleted yet.  */
3660   gcc_assert (n == RGN_NR_BLOCKS (rgn));
3661 }
3662
3663 /* Tidy the possibly empty block BB.  */
3664 static bool
3665 maybe_tidy_empty_bb (basic_block bb)
3666 {
3667   basic_block succ_bb, pred_bb, note_bb;
3668   VEC (basic_block, heap) *dom_bbs;
3669   edge e;
3670   edge_iterator ei;
3671   bool rescan_p;
3672
3673   /* Keep empty bb only if this block immediately precedes EXIT and
3674      has incoming non-fallthrough edge, or it has no predecessors or
3675      successors.  Otherwise remove it.  */
3676   if (!sel_bb_empty_p (bb)
3677       || (single_succ_p (bb)
3678           && single_succ (bb) == EXIT_BLOCK_PTR
3679           && (!single_pred_p (bb)
3680               || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3681       || EDGE_COUNT (bb->preds) == 0
3682       || EDGE_COUNT (bb->succs) == 0)
3683     return false;
3684
3685   /* Do not attempt to redirect complex edges.  */
3686   FOR_EACH_EDGE (e, ei, bb->preds)
3687     if (e->flags & EDGE_COMPLEX)
3688       return false;
3689     else if (e->flags & EDGE_FALLTHRU)
3690       {
3691         rtx note;
3692         /* If prev bb ends with asm goto, see if any of the
3693            ASM_OPERANDS_LABELs don't point to the fallthru
3694            label.  Do not attempt to redirect it in that case.  */
3695         if (JUMP_P (BB_END (e->src))
3696             && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3697           {
3698             int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3699
3700             for (i = 0; i < n; ++i)
3701               if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3702                 return false;
3703           }
3704       }
3705
3706   free_data_sets (bb);
3707
3708   /* Do not delete BB if it has more than one successor.
3709      That can occur when we moving a jump.  */
3710   if (!single_succ_p (bb))
3711     {
3712       gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3713       sel_merge_blocks (bb->prev_bb, bb);
3714       return true;
3715     }
3716
3717   succ_bb = single_succ (bb);
3718   rescan_p = true;
3719   pred_bb = NULL;
3720   dom_bbs = NULL;
3721
3722   /* Save a pred/succ from the current region to attach the notes to.  */
3723   note_bb = NULL;
3724   FOR_EACH_EDGE (e, ei, bb->preds)
3725     if (in_current_region_p (e->src))
3726       {
3727         note_bb = e->src;
3728         break;
3729       }
3730   if (note_bb == NULL)
3731     note_bb = succ_bb;
3732
3733   /* Redirect all non-fallthru edges to the next bb.  */
3734   while (rescan_p)
3735     {
3736       rescan_p = false;
3737
3738       FOR_EACH_EDGE (e, ei, bb->preds)
3739         {
3740           pred_bb = e->src;
3741
3742           if (!(e->flags & EDGE_FALLTHRU))
3743             {
3744               /* We can not invalidate computed topological order by moving
3745                  the edge destination block (E->SUCC) along a fallthru edge.
3746
3747                  We will update dominators here only when we'll get
3748                  an unreachable block when redirecting, otherwise
3749                  sel_redirect_edge_and_branch will take care of it.  */
3750               if (e->dest != bb
3751                   && single_pred_p (e->dest))
3752                 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3753               sel_redirect_edge_and_branch (e, succ_bb);
3754               rescan_p = true;
3755               break;
3756             }
3757           /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3758              to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3759              still have to adjust it.  */
3760           else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3761             {
3762               /* If possible, try to remove the unneeded conditional jump.  */
3763               if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3764                   && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3765                 {
3766                   if (!sel_remove_insn (BB_END (pred_bb), false, false))
3767                     tidy_fallthru_edge (e);
3768                 }
3769               else
3770                 sel_redirect_edge_and_branch (e, succ_bb);
3771               rescan_p = true;
3772               break;
3773             }
3774         }
3775     }
3776
3777   if (can_merge_blocks_p (bb->prev_bb, bb))
3778     sel_merge_blocks (bb->prev_bb, bb);
3779   else
3780     {
3781       /* This is a block without fallthru predecessor.  Just delete it.  */
3782       gcc_assert (note_bb);
3783       move_bb_info (note_bb, bb);
3784       remove_empty_bb (bb, true);
3785     }
3786
3787   if (!VEC_empty (basic_block, dom_bbs))
3788     {
3789       VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3790       iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3791       VEC_free (basic_block, heap, dom_bbs);
3792     }
3793
3794   return true;
3795 }
3796
3797 /* Tidy the control flow after we have removed original insn from
3798    XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3799    is true, also try to optimize control flow on non-empty blocks.  */
3800 bool
3801 tidy_control_flow (basic_block xbb, bool full_tidying)
3802 {
3803   bool changed = true;
3804   insn_t first, last;
3805
3806   /* First check whether XBB is empty.  */
3807   changed = maybe_tidy_empty_bb (xbb);
3808   if (changed || !full_tidying)
3809     return changed;
3810
3811   /* Check if there is a unnecessary jump after insn left.  */
3812   if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3813       && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3814       && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3815     {
3816       if (sel_remove_insn (BB_END (xbb), false, false))
3817         return true;
3818       tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3819     }
3820
3821   first = sel_bb_head (xbb);
3822   last = sel_bb_end (xbb);
3823   if (MAY_HAVE_DEBUG_INSNS)
3824     {
3825       if (first != last && DEBUG_INSN_P (first))
3826         do
3827           first = NEXT_INSN (first);
3828         while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3829
3830       if (first != last && DEBUG_INSN_P (last))
3831         do
3832           last = PREV_INSN (last);
3833         while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3834     }
3835   /* Check if there is an unnecessary jump in previous basic block leading
3836      to next basic block left after removing INSN from stream.
3837      If it is so, remove that jump and redirect edge to current
3838      basic block (where there was INSN before deletion).  This way
3839      when NOP will be deleted several instructions later with its
3840      basic block we will not get a jump to next instruction, which
3841      can be harmful.  */
3842   if (first == last
3843       && !sel_bb_empty_p (xbb)
3844       && INSN_NOP_P (last)
3845       /* Flow goes fallthru from current block to the next.  */
3846       && EDGE_COUNT (xbb->succs) == 1
3847       && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3848       /* When successor is an EXIT block, it may not be the next block.  */
3849       && single_succ (xbb) != EXIT_BLOCK_PTR
3850       /* And unconditional jump in previous basic block leads to
3851          next basic block of XBB and this jump can be safely removed.  */
3852       && in_current_region_p (xbb->prev_bb)
3853       && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3854       && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3855       /* Also this jump is not at the scheduling boundary.  */
3856       && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3857     {
3858       bool recompute_toporder_p;
3859       /* Clear data structures of jump - jump itself will be removed
3860          by sel_redirect_edge_and_branch.  */
3861       clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3862       recompute_toporder_p
3863         = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3864
3865       gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3866
3867       /* It can turn out that after removing unused jump, basic block
3868          that contained that jump, becomes empty too.  In such case
3869          remove it too.  */
3870       if (sel_bb_empty_p (xbb->prev_bb))
3871         changed = maybe_tidy_empty_bb (xbb->prev_bb);
3872       if (recompute_toporder_p)
3873         sel_recompute_toporder ();
3874     }
3875
3876 #ifdef ENABLE_CHECKING
3877   verify_backedges ();
3878   verify_dominators (CDI_DOMINATORS);
3879 #endif
3880
3881   return changed;
3882 }
3883
3884 /* Purge meaningless empty blocks in the middle of a region.  */
3885 void
3886 purge_empty_blocks (void)
3887 {
3888   int i;
3889
3890   /* Do not attempt to delete the first basic block in the region.  */
3891   for (i = 1; i < current_nr_blocks; )
3892     {
3893       basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3894
3895       if (maybe_tidy_empty_bb (b))
3896         continue;
3897
3898       i++;
3899     }
3900 }
3901
3902 /* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3903    do not delete insn's data, because it will be later re-emitted.
3904    Return true if we have removed some blocks afterwards.  */
3905 bool
3906 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3907 {
3908   basic_block bb = BLOCK_FOR_INSN (insn);
3909
3910   gcc_assert (INSN_IN_STREAM_P (insn));
3911
3912   if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3913     {
3914       expr_t expr;
3915       av_set_iterator i;
3916
3917       /* When we remove a debug insn that is head of a BB, it remains
3918          in the AV_SET of the block, but it shouldn't.  */
3919       FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3920         if (EXPR_INSN_RTX (expr) == insn)
3921           {
3922             av_set_iter_remove (&i);
3923             break;
3924           }
3925     }
3926
3927   if (only_disconnect)
3928     {
3929       insn_t prev = PREV_INSN (insn);
3930       insn_t next = NEXT_INSN (insn);
3931       basic_block bb = BLOCK_FOR_INSN (insn);
3932
3933       NEXT_INSN (prev) = next;
3934       PREV_INSN (next) = prev;
3935
3936       if (BB_HEAD (bb) == insn)
3937         {
3938           gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3939           BB_HEAD (bb) = prev;
3940         }
3941       if (BB_END (bb) == insn)
3942         BB_END (bb) = prev;
3943     }
3944   else
3945     {
3946       remove_insn (insn);
3947       clear_expr (INSN_EXPR (insn));
3948     }
3949
3950   /* It is necessary to null this fields before calling add_insn ().  */
3951   PREV_INSN (insn) = NULL_RTX;
3952   NEXT_INSN (insn) = NULL_RTX;
3953
3954   return tidy_control_flow (bb, full_tidying);
3955 }
3956
3957 /* Estimate number of the insns in BB.  */
3958 static int
3959 sel_estimate_number_of_insns (basic_block bb)
3960 {
3961   int res = 0;
3962   insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3963
3964   for (; insn != next_tail; insn = NEXT_INSN (insn))
3965     if (NONDEBUG_INSN_P (insn))
3966       res++;
3967
3968   return res;
3969 }
3970
3971 /* We don't need separate luids for notes or labels.  */
3972 static int
3973 sel_luid_for_non_insn (rtx x)
3974 {
3975   gcc_assert (NOTE_P (x) || LABEL_P (x));
3976
3977   return -1;
3978 }
3979
3980 /*  Find the proper seqno for inserting at INSN by successors.
3981     Return -1 if no successors with positive seqno exist.  */
3982 static int
3983 get_seqno_by_succs (rtx insn)
3984 {
3985   basic_block bb = BLOCK_FOR_INSN (insn);
3986   rtx tmp = insn, end = BB_END (bb);
3987   int seqno;
3988   insn_t succ = NULL;
3989   succ_iterator si;
3990
3991   while (tmp != end)
3992     {
3993       tmp = NEXT_INSN (tmp);
3994       if (INSN_P (tmp))
3995         return INSN_SEQNO (tmp);
3996     }
3997
3998   seqno = INT_MAX;
3999
4000   FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4001     if (INSN_SEQNO (succ) > 0)
4002       seqno = MIN (seqno, INSN_SEQNO (succ));
4003
4004   if (seqno == INT_MAX)
4005     return -1;
4006
4007   return seqno;
4008 }
4009
4010 /* Compute seqno for INSN by its preds or succs.  */
4011 static int
4012 get_seqno_for_a_jump (insn_t insn)
4013 {
4014   int seqno;
4015
4016   gcc_assert (INSN_SIMPLEJUMP_P (insn));
4017
4018   if (!sel_bb_head_p (insn))
4019     seqno = INSN_SEQNO (PREV_INSN (insn));
4020   else
4021     {
4022       basic_block bb = BLOCK_FOR_INSN (insn);
4023
4024       if (single_pred_p (bb)
4025           && !in_current_region_p (single_pred (bb)))
4026         {
4027           /* We can have preds outside a region when splitting edges
4028              for pipelining of an outer loop.  Use succ instead.
4029              There should be only one of them.  */
4030           insn_t succ = NULL;
4031           succ_iterator si;
4032           bool first = true;
4033
4034           gcc_assert (flag_sel_sched_pipelining_outer_loops
4035                       && current_loop_nest);
4036           FOR_EACH_SUCC_1 (succ, si, insn,
4037                            SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4038             {
4039               gcc_assert (first);
4040               first = false;
4041             }
4042
4043           gcc_assert (succ != NULL);
4044           seqno = INSN_SEQNO (succ);
4045         }
4046       else
4047         {
4048           insn_t *preds;
4049           int n;
4050
4051           cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4052
4053           gcc_assert (n > 0);
4054           /* For one predecessor, use simple method.  */
4055           if (n == 1)
4056             seqno = INSN_SEQNO (preds[0]);
4057           else
4058             seqno = get_seqno_by_preds (insn);
4059
4060           free (preds);
4061         }
4062     }
4063
4064   /* We were unable to find a good seqno among preds.  */
4065   if (seqno < 0)
4066     seqno = get_seqno_by_succs (insn);
4067
4068   gcc_assert (seqno >= 0);
4069
4070   return seqno;
4071 }
4072
4073 /*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
4074     with positive seqno exist.  */
4075 int
4076 get_seqno_by_preds (rtx insn)
4077 {
4078   basic_block bb = BLOCK_FOR_INSN (insn);
4079   rtx tmp = insn, head = BB_HEAD (bb);
4080   insn_t *preds;
4081   int n, i, seqno;
4082
4083   while (tmp != head)
4084     {
4085       tmp = PREV_INSN (tmp);
4086       if (INSN_P (tmp))
4087         return INSN_SEQNO (tmp);
4088     }
4089
4090   cfg_preds (bb, &preds, &n);
4091   for (i = 0, seqno = -1; i < n; i++)
4092     seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4093
4094   return seqno;
4095 }
4096
4097 \f
4098
4099 /* Extend pass-scope data structures for basic blocks.  */
4100 void
4101 sel_extend_global_bb_info (void)
4102 {
4103   VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4104                          last_basic_block);
4105 }
4106
4107 /* Extend region-scope data structures for basic blocks.  */
4108 static void
4109 extend_region_bb_info (void)
4110 {
4111   VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4112                          last_basic_block);
4113 }
4114
4115 /* Extend all data structures to fit for all basic blocks.  */
4116 static void
4117 extend_bb_info (void)
4118 {
4119   sel_extend_global_bb_info ();
4120   extend_region_bb_info ();
4121 }
4122
4123 /* Finalize pass-scope data structures for basic blocks.  */
4124 void
4125 sel_finish_global_bb_info (void)
4126 {
4127   VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4128 }
4129
4130 /* Finalize region-scope data structures for basic blocks.  */
4131 static void
4132 finish_region_bb_info (void)
4133 {
4134   VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4135 }
4136 \f
4137
4138 /* Data for each insn in current region.  */
4139 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4140
4141 /* Extend data structures for insns from current region.  */
4142 static void
4143 extend_insn_data (void)
4144 {
4145   int reserve;
4146
4147   sched_extend_target ();
4148   sched_deps_init (false);
4149
4150   /* Extend data structures for insns from current region.  */
4151   reserve = (sched_max_luid + 1
4152              - VEC_length (sel_insn_data_def, s_i_d));
4153   if (reserve > 0
4154       && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4155     {
4156       int size;
4157
4158       if (sched_max_luid / 2 > 1024)
4159         size = sched_max_luid + 1024;
4160       else
4161         size = 3 * sched_max_luid / 2;
4162
4163
4164       VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4165     }
4166 }
4167
4168 /* Finalize data structures for insns from current region.  */
4169 static void
4170 finish_insns (void)
4171 {
4172   unsigned i;
4173
4174   /* Clear here all dependence contexts that may have left from insns that were
4175      removed during the scheduling.  */
4176   for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4177     {
4178       sel_insn_data_def *sid_entry = &VEC_index (sel_insn_data_def, s_i_d, i);
4179
4180       if (sid_entry->live)
4181         return_regset_to_pool (sid_entry->live);
4182       if (sid_entry->analyzed_deps)
4183         {
4184           BITMAP_FREE (sid_entry->analyzed_deps);
4185           BITMAP_FREE (sid_entry->found_deps);
4186           htab_delete (sid_entry->transformed_insns);
4187           free_deps (&sid_entry->deps_context);
4188         }
4189       if (EXPR_VINSN (&sid_entry->expr))
4190         {
4191           clear_expr (&sid_entry->expr);
4192
4193           /* Also, clear CANT_MOVE bit here, because we really don't want it
4194              to be passed to the next region.  */
4195           CANT_MOVE_BY_LUID (i) = 0;
4196         }
4197     }
4198
4199   VEC_free (sel_insn_data_def, heap, s_i_d);
4200 }
4201
4202 /* A proxy to pass initialization data to init_insn ().  */
4203 static sel_insn_data_def _insn_init_ssid;
4204 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4205
4206 /* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4207 static bool insn_init_create_new_vinsn_p;
4208
4209 /* Set all necessary data for initialization of the new insn[s].  */
4210 static expr_t
4211 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4212 {
4213   expr_t x = &insn_init_ssid->expr;
4214
4215   copy_expr_onside (x, expr);
4216   if (vi != NULL)
4217     {
4218       insn_init_create_new_vinsn_p = false;
4219       change_vinsn_in_expr (x, vi);
4220     }
4221   else
4222     insn_init_create_new_vinsn_p = true;
4223
4224   insn_init_ssid->seqno = seqno;
4225   return x;
4226 }
4227
4228 /* Init data for INSN.  */
4229 static void
4230 init_insn_data (insn_t insn)
4231 {
4232   expr_t expr;
4233   sel_insn_data_t ssid = insn_init_ssid;
4234
4235   /* The fields mentioned below are special and hence are not being
4236      propagated to the new insns.  */
4237   gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4238               && !ssid->after_stall_p && ssid->sched_cycle == 0);
4239   gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4240
4241   expr = INSN_EXPR (insn);
4242   copy_expr (expr, &ssid->expr);
4243   prepare_insn_expr (insn, ssid->seqno);
4244
4245   if (insn_init_create_new_vinsn_p)
4246     change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4247
4248   if (first_time_insn_init (insn))
4249     init_first_time_insn_data (insn);
4250 }
4251
4252 /* This is used to initialize spurious jumps generated by
4253    sel_redirect_edge ().  */
4254 static void
4255 init_simplejump_data (insn_t insn)
4256 {
4257   init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4258              REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4259              false, true);
4260   INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4261   init_first_time_insn_data (insn);
4262 }
4263
4264 /* Perform deferred initialization of insns.  This is used to process
4265    a new jump that may be created by redirect_edge.  */
4266 void
4267 sel_init_new_insn (insn_t insn, int flags)
4268 {
4269   /* We create data structures for bb when the first insn is emitted in it.  */
4270   if (INSN_P (insn)
4271       && INSN_IN_STREAM_P (insn)
4272       && insn_is_the_only_one_in_bb_p (insn))
4273     {
4274       extend_bb_info ();
4275       create_initial_data_sets (BLOCK_FOR_INSN (insn));
4276     }
4277
4278   if (flags & INSN_INIT_TODO_LUID)
4279     {
4280       sched_extend_luids ();
4281       sched_init_insn_luid (insn);
4282     }
4283
4284   if (flags & INSN_INIT_TODO_SSID)
4285     {
4286       extend_insn_data ();
4287       init_insn_data (insn);
4288       clear_expr (&insn_init_ssid->expr);
4289     }
4290
4291   if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4292     {
4293       extend_insn_data ();
4294       init_simplejump_data (insn);
4295     }
4296
4297   gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4298               == CONTAINING_RGN (BB_TO_BLOCK (0)));
4299 }
4300 \f
4301
4302 /* Functions to init/finish work with lv sets.  */
4303
4304 /* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4305 static void
4306 init_lv_set (basic_block bb)
4307 {
4308   gcc_assert (!BB_LV_SET_VALID_P (bb));
4309
4310   BB_LV_SET (bb) = get_regset_from_pool ();
4311   COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4312   BB_LV_SET_VALID_P (bb) = true;
4313 }
4314
4315 /* Copy liveness information to BB from FROM_BB.  */
4316 static void
4317 copy_lv_set_from (basic_block bb, basic_block from_bb)
4318 {
4319   gcc_assert (!BB_LV_SET_VALID_P (bb));
4320
4321   COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4322   BB_LV_SET_VALID_P (bb) = true;
4323 }
4324
4325 /* Initialize lv set of all bb headers.  */
4326 void
4327 init_lv_sets (void)
4328 {
4329   basic_block bb;
4330
4331   /* Initialize of LV sets.  */
4332   FOR_EACH_BB (bb)
4333     init_lv_set (bb);
4334
4335   /* Don't forget EXIT_BLOCK.  */
4336   init_lv_set (EXIT_BLOCK_PTR);
4337 }
4338
4339 /* Release lv set of HEAD.  */
4340 static void
4341 free_lv_set (basic_block bb)
4342 {
4343   gcc_assert (BB_LV_SET (bb) != NULL);
4344
4345   return_regset_to_pool (BB_LV_SET (bb));
4346   BB_LV_SET (bb) = NULL;
4347   BB_LV_SET_VALID_P (bb) = false;
4348 }
4349
4350 /* Finalize lv sets of all bb headers.  */
4351 void
4352 free_lv_sets (void)
4353 {
4354   basic_block bb;
4355
4356   /* Don't forget EXIT_BLOCK.  */
4357   free_lv_set (EXIT_BLOCK_PTR);
4358
4359   /* Free LV sets.  */
4360   FOR_EACH_BB (bb)
4361     if (BB_LV_SET (bb))
4362       free_lv_set (bb);
4363 }
4364
4365 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4366    compute_av() processes BB.  This function is called when creating new basic
4367    blocks, as well as for blocks (either new or existing) where new jumps are
4368    created when the control flow is being updated.  */
4369 static void
4370 invalidate_av_set (basic_block bb)
4371 {
4372   BB_AV_LEVEL (bb) = -1;
4373 }
4374
4375 /* Create initial data sets for BB (they will be invalid).  */
4376 static void
4377 create_initial_data_sets (basic_block bb)
4378 {
4379   if (BB_LV_SET (bb))
4380     BB_LV_SET_VALID_P (bb) = false;
4381   else
4382     BB_LV_SET (bb) = get_regset_from_pool ();
4383   invalidate_av_set (bb);
4384 }
4385
4386 /* Free av set of BB.  */
4387 static void
4388 free_av_set (basic_block bb)
4389 {
4390   av_set_clear (&BB_AV_SET (bb));
4391   BB_AV_LEVEL (bb) = 0;
4392 }
4393
4394 /* Free data sets of BB.  */
4395 void
4396 free_data_sets (basic_block bb)
4397 {
4398   free_lv_set (bb);
4399   free_av_set (bb);
4400 }
4401
4402 /* Exchange lv sets of TO and FROM.  */
4403 static void
4404 exchange_lv_sets (basic_block to, basic_block from)
4405 {
4406   {
4407     regset to_lv_set = BB_LV_SET (to);
4408
4409     BB_LV_SET (to) = BB_LV_SET (from);
4410     BB_LV_SET (from) = to_lv_set;
4411   }
4412
4413   {
4414     bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4415
4416     BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4417     BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4418   }
4419 }
4420
4421
4422 /* Exchange av sets of TO and FROM.  */
4423 static void
4424 exchange_av_sets (basic_block to, basic_block from)
4425 {
4426   {
4427     av_set_t to_av_set = BB_AV_SET (to);
4428
4429     BB_AV_SET (to) = BB_AV_SET (from);
4430     BB_AV_SET (from) = to_av_set;
4431   }
4432
4433   {
4434     int to_av_level = BB_AV_LEVEL (to);
4435
4436     BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4437     BB_AV_LEVEL (from) = to_av_level;
4438   }
4439 }
4440
4441 /* Exchange data sets of TO and FROM.  */
4442 void
4443 exchange_data_sets (basic_block to, basic_block from)
4444 {
4445   exchange_lv_sets (to, from);
4446   exchange_av_sets (to, from);
4447 }
4448
4449 /* Copy data sets of FROM to TO.  */
4450 void
4451 copy_data_sets (basic_block to, basic_block from)
4452 {
4453   gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4454   gcc_assert (BB_AV_SET (to) == NULL);
4455
4456   BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4457   BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4458
4459   if (BB_AV_SET_VALID_P (from))
4460     {
4461       BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4462     }
4463   if (BB_LV_SET_VALID_P (from))
4464     {
4465       gcc_assert (BB_LV_SET (to) != NULL);
4466       COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4467     }
4468 }
4469
4470 /* Return an av set for INSN, if any.  */
4471 av_set_t
4472 get_av_set (insn_t insn)
4473 {
4474   av_set_t av_set;
4475
4476   gcc_assert (AV_SET_VALID_P (insn));
4477
4478   if (sel_bb_head_p (insn))
4479     av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4480   else
4481     av_set = NULL;
4482
4483   return av_set;
4484 }
4485
4486 /* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4487 int
4488 get_av_level (insn_t insn)
4489 {
4490   int av_level;
4491
4492   gcc_assert (INSN_P (insn));
4493
4494   if (sel_bb_head_p (insn))
4495     av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4496   else
4497     av_level = INSN_WS_LEVEL (insn);
4498
4499   return av_level;
4500 }
4501
4502 \f
4503
4504 /* Variables to work with control-flow graph.  */
4505
4506 /* The basic block that already has been processed by the sched_data_update (),
4507    but hasn't been in sel_add_bb () yet.  */
4508 static VEC (basic_block, heap) *last_added_blocks = NULL;
4509
4510 /* A pool for allocating successor infos.  */
4511 static struct
4512 {
4513   /* A stack for saving succs_info structures.  */
4514   struct succs_info *stack;
4515
4516   /* Its size.  */
4517   int size;
4518
4519   /* Top of the stack.  */
4520   int top;
4521
4522   /* Maximal value of the top.  */
4523   int max_top;
4524 }  succs_info_pool;
4525
4526 /* Functions to work with control-flow graph.  */
4527
4528 /* Return basic block note of BB.  */
4529 insn_t
4530 sel_bb_head (basic_block bb)
4531 {
4532   insn_t head;
4533
4534   if (bb == EXIT_BLOCK_PTR)
4535     {
4536       gcc_assert (exit_insn != NULL_RTX);
4537       head = exit_insn;
4538     }
4539   else
4540     {
4541       insn_t note;
4542
4543       note = bb_note (bb);
4544       head = next_nonnote_insn (note);
4545
4546       if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4547         head = NULL_RTX;
4548     }
4549
4550   return head;
4551 }
4552
4553 /* Return true if INSN is a basic block header.  */
4554 bool
4555 sel_bb_head_p (insn_t insn)
4556 {
4557   return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4558 }
4559
4560 /* Return last insn of BB.  */
4561 insn_t
4562 sel_bb_end (basic_block bb)
4563 {
4564   if (sel_bb_empty_p (bb))
4565     return NULL_RTX;
4566
4567   gcc_assert (bb != EXIT_BLOCK_PTR);
4568
4569   return BB_END (bb);
4570 }
4571
4572 /* Return true if INSN is the last insn in its basic block.  */
4573 bool
4574 sel_bb_end_p (insn_t insn)
4575 {
4576   return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4577 }
4578
4579 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4580 bool
4581 sel_bb_empty_p (basic_block bb)
4582 {
4583   return sel_bb_head (bb) == NULL;
4584 }
4585
4586 /* True when BB belongs to the current scheduling region.  */
4587 bool
4588 in_current_region_p (basic_block bb)
4589 {
4590   if (bb->index < NUM_FIXED_BLOCKS)
4591     return false;
4592
4593   return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4594 }
4595
4596 /* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4597 basic_block
4598 fallthru_bb_of_jump (rtx jump)
4599 {
4600   if (!JUMP_P (jump))
4601     return NULL;
4602
4603   if (!any_condjump_p (jump))
4604     return NULL;
4605
4606   /* A basic block that ends with a conditional jump may still have one successor
4607      (and be followed by a barrier), we are not interested.  */
4608   if (single_succ_p (BLOCK_FOR_INSN (jump)))
4609     return NULL;
4610
4611   return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4612 }
4613
4614 /* Remove all notes from BB.  */
4615 static void
4616 init_bb (basic_block bb)
4617 {
4618   remove_notes (bb_note (bb), BB_END (bb));
4619   BB_NOTE_LIST (bb) = note_list;
4620 }
4621
4622 void
4623 sel_init_bbs (bb_vec_t bbs)
4624 {
4625   const struct sched_scan_info_def ssi =
4626     {
4627       extend_bb_info, /* extend_bb */
4628       init_bb, /* init_bb */
4629       NULL, /* extend_insn */
4630       NULL /* init_insn */
4631     };
4632
4633   sched_scan (&ssi, bbs);
4634 }
4635
4636 /* Restore notes for the whole region.  */
4637 static void
4638 sel_restore_notes (void)
4639 {
4640   int bb;
4641   insn_t insn;
4642
4643   for (bb = 0; bb < current_nr_blocks; bb++)
4644     {
4645       basic_block first, last;
4646
4647       first = EBB_FIRST_BB (bb);
4648       last = EBB_LAST_BB (bb)->next_bb;
4649
4650       do
4651         {
4652           note_list = BB_NOTE_LIST (first);
4653           restore_other_notes (NULL, first);
4654           BB_NOTE_LIST (first) = NULL_RTX;
4655
4656           FOR_BB_INSNS (first, insn)
4657             if (NONDEBUG_INSN_P (insn))
4658               reemit_notes (insn);
4659
4660           first = first->next_bb;
4661         }
4662       while (first != last);
4663     }
4664 }
4665
4666 /* Free per-bb data structures.  */
4667 void
4668 sel_finish_bbs (void)
4669 {
4670   sel_restore_notes ();
4671
4672   /* Remove current loop preheader from this loop.  */
4673   if (current_loop_nest)
4674     sel_remove_loop_preheader ();
4675
4676   finish_region_bb_info ();
4677 }
4678
4679 /* Return true if INSN has a single successor of type FLAGS.  */
4680 bool
4681 sel_insn_has_single_succ_p (insn_t insn, int flags)
4682 {
4683   insn_t succ;
4684   succ_iterator si;
4685   bool first_p = true;
4686
4687   FOR_EACH_SUCC_1 (succ, si, insn, flags)
4688     {
4689       if (first_p)
4690         first_p = false;
4691       else
4692         return false;
4693     }
4694
4695   return true;
4696 }
4697
4698 /* Allocate successor's info.  */
4699 static struct succs_info *
4700 alloc_succs_info (void)
4701 {
4702   if (succs_info_pool.top == succs_info_pool.max_top)
4703     {
4704       int i;
4705
4706       if (++succs_info_pool.max_top >= succs_info_pool.size)
4707         gcc_unreachable ();
4708
4709       i = ++succs_info_pool.top;
4710       succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4711       succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4712       succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4713     }
4714   else
4715     succs_info_pool.top++;
4716
4717   return &succs_info_pool.stack[succs_info_pool.top];
4718 }
4719
4720 /* Free successor's info.  */
4721 void
4722 free_succs_info (struct succs_info * sinfo)
4723 {
4724   gcc_assert (succs_info_pool.top >= 0
4725               && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4726   succs_info_pool.top--;
4727
4728   /* Clear stale info.  */
4729   VEC_block_remove (rtx, sinfo->succs_ok,
4730                     0, VEC_length (rtx, sinfo->succs_ok));
4731   VEC_block_remove (rtx, sinfo->succs_other,
4732                     0, VEC_length (rtx, sinfo->succs_other));
4733   VEC_block_remove (int, sinfo->probs_ok,
4734                     0, VEC_length (int, sinfo->probs_ok));
4735   sinfo->all_prob = 0;
4736   sinfo->succs_ok_n = 0;
4737   sinfo->all_succs_n = 0;
4738 }
4739
4740 /* Compute successor info for INSN.  FLAGS are the flags passed
4741    to the FOR_EACH_SUCC_1 iterator.  */
4742 struct succs_info *
4743 compute_succs_info (insn_t insn, short flags)
4744 {
4745   succ_iterator si;
4746   insn_t succ;
4747   struct succs_info *sinfo = alloc_succs_info ();
4748
4749   /* Traverse *all* successors and decide what to do with each.  */
4750   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4751     {
4752       /* FIXME: this doesn't work for skipping to loop exits, as we don't
4753          perform code motion through inner loops.  */
4754       short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4755
4756       if (current_flags & flags)
4757         {
4758           VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4759           VEC_safe_push (int, heap, sinfo->probs_ok,
4760                          /* FIXME: Improve calculation when skipping
4761                             inner loop to exits.  */
4762                          (si.bb_end
4763                           ? si.e1->probability
4764                           : REG_BR_PROB_BASE));
4765           sinfo->succs_ok_n++;
4766         }
4767       else
4768         VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4769
4770       /* Compute all_prob.  */
4771       if (!si.bb_end)
4772         sinfo->all_prob = REG_BR_PROB_BASE;
4773       else
4774         sinfo->all_prob += si.e1->probability;
4775
4776       sinfo->all_succs_n++;
4777     }
4778
4779   return sinfo;
4780 }
4781
4782 /* Return the predecessors of BB in PREDS and their number in N.
4783    Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4784 static void
4785 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4786 {
4787   edge e;
4788   edge_iterator ei;
4789
4790   gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4791
4792   FOR_EACH_EDGE (e, ei, bb->preds)
4793     {
4794       basic_block pred_bb = e->src;
4795       insn_t bb_end = BB_END (pred_bb);
4796
4797       if (!in_current_region_p (pred_bb))
4798         {
4799           gcc_assert (flag_sel_sched_pipelining_outer_loops
4800                       && current_loop_nest);
4801           continue;
4802         }
4803
4804       if (sel_bb_empty_p (pred_bb))
4805         cfg_preds_1 (pred_bb, preds, n, size);
4806       else
4807         {
4808           if (*n == *size)
4809             *preds = XRESIZEVEC (insn_t, *preds,
4810                                  (*size = 2 * *size + 1));
4811           (*preds)[(*n)++] = bb_end;
4812         }
4813     }
4814
4815   gcc_assert (*n != 0
4816               || (flag_sel_sched_pipelining_outer_loops
4817                   && current_loop_nest));
4818 }
4819
4820 /* Find all predecessors of BB and record them in PREDS and their number
4821    in N.  Empty blocks are skipped, and only normal (forward in-region)
4822    edges are processed.  */
4823 static void
4824 cfg_preds (basic_block bb, insn_t **preds, int *n)
4825 {
4826   int size = 0;
4827
4828   *preds = NULL;
4829   *n = 0;
4830   cfg_preds_1 (bb, preds, n, &size);
4831 }
4832
4833 /* Returns true if we are moving INSN through join point.  */
4834 bool
4835 sel_num_cfg_preds_gt_1 (insn_t insn)
4836 {
4837   basic_block bb;
4838
4839   if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4840     return false;
4841
4842   bb = BLOCK_FOR_INSN (insn);
4843
4844   while (1)
4845     {
4846       if (EDGE_COUNT (bb->preds) > 1)
4847         return true;
4848
4849       gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4850       bb = EDGE_PRED (bb, 0)->src;
4851
4852       if (!sel_bb_empty_p (bb))
4853         break;
4854     }
4855
4856   return false;
4857 }
4858
4859 /* Returns true when BB should be the end of an ebb.  Adapted from the
4860    code in sched-ebb.c.  */
4861 bool
4862 bb_ends_ebb_p (basic_block bb)
4863 {
4864   basic_block next_bb = bb_next_bb (bb);
4865   edge e;
4866
4867   if (next_bb == EXIT_BLOCK_PTR
4868       || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4869       || (LABEL_P (BB_HEAD (next_bb))
4870           /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4871              Work around that.  */
4872           && !single_pred_p (next_bb)))
4873     return true;
4874
4875   if (!in_current_region_p (next_bb))
4876     return true;
4877
4878   e = find_fallthru_edge (bb->succs);
4879   if (e)
4880     {
4881       gcc_assert (e->dest == next_bb);
4882       
4883       return false;
4884     }
4885
4886   return true;
4887 }
4888
4889 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4890    successor of INSN.  */
4891 bool
4892 in_same_ebb_p (insn_t insn, insn_t succ)
4893 {
4894   basic_block ptr = BLOCK_FOR_INSN (insn);
4895
4896   for(;;)
4897     {
4898       if (ptr == BLOCK_FOR_INSN (succ))
4899         return true;
4900
4901       if (bb_ends_ebb_p (ptr))
4902         return false;
4903
4904       ptr = bb_next_bb (ptr);
4905     }
4906
4907   gcc_unreachable ();
4908   return false;
4909 }
4910
4911 /* Recomputes the reverse topological order for the function and
4912    saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4913    modified appropriately.  */
4914 static void
4915 recompute_rev_top_order (void)
4916 {
4917   int *postorder;
4918   int n_blocks, i;
4919
4920   if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4921     {
4922       rev_top_order_index_len = last_basic_block;
4923       rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4924                                         rev_top_order_index_len);
4925     }
4926
4927   postorder = XNEWVEC (int, n_basic_blocks);
4928
4929   n_blocks = post_order_compute (postorder, true, false);
4930   gcc_assert (n_basic_blocks == n_blocks);
4931
4932   /* Build reverse function: for each basic block with BB->INDEX == K
4933      rev_top_order_index[K] is it's reverse topological sort number.  */
4934   for (i = 0; i < n_blocks; i++)
4935     {
4936       gcc_assert (postorder[i] < rev_top_order_index_len);
4937       rev_top_order_index[postorder[i]] = i;
4938     }
4939
4940   free (postorder);
4941 }
4942
4943 /* Clear all flags from insns in BB that could spoil its rescheduling.  */
4944 void
4945 clear_outdated_rtx_info (basic_block bb)
4946 {
4947   rtx insn;
4948
4949   FOR_BB_INSNS (bb, insn)
4950     if (INSN_P (insn))
4951       {
4952         SCHED_GROUP_P (insn) = 0;
4953         INSN_AFTER_STALL_P (insn) = 0;
4954         INSN_SCHED_TIMES (insn) = 0;
4955         EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4956
4957         /* We cannot use the changed caches, as previously we could ignore
4958            the LHS dependence due to enabled renaming and transform
4959            the expression, and currently we'll be unable to do this.  */
4960         htab_empty (INSN_TRANSFORMED_INSNS (insn));
4961       }
4962 }
4963
4964 /* Add BB_NOTE to the pool of available basic block notes.  */
4965 static void
4966 return_bb_to_pool (basic_block bb)
4967 {
4968   rtx note = bb_note (bb);
4969
4970   gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4971               && bb->aux == NULL);
4972
4973   /* It turns out that current cfg infrastructure does not support
4974      reuse of basic blocks.  Don't bother for now.  */
4975   /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4976 }
4977
4978 /* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
4979 static rtx
4980 get_bb_note_from_pool (void)
4981 {
4982   if (VEC_empty (rtx, bb_note_pool))
4983     return NULL_RTX;
4984   else
4985     {
4986       rtx note = VEC_pop (rtx, bb_note_pool);
4987
4988       PREV_INSN (note) = NULL_RTX;
4989       NEXT_INSN (note) = NULL_RTX;
4990
4991       return note;
4992     }
4993 }
4994
4995 /* Free bb_note_pool.  */
4996 void
4997 free_bb_note_pool (void)
4998 {
4999   VEC_free (rtx, heap, bb_note_pool);
5000 }
5001
5002 /* Setup scheduler pool and successor structure.  */
5003 void
5004 alloc_sched_pools (void)
5005 {
5006   int succs_size;
5007
5008   succs_size = MAX_WS + 1;
5009   succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5010   succs_info_pool.size = succs_size;
5011   succs_info_pool.top = -1;
5012   succs_info_pool.max_top = -1;
5013
5014   sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5015                                         sizeof (struct _list_node), 500);
5016 }
5017
5018 /* Free the pools.  */
5019 void
5020 free_sched_pools (void)
5021 {
5022   int i;
5023
5024   free_alloc_pool (sched_lists_pool);
5025   gcc_assert (succs_info_pool.top == -1);
5026   for (i = 0; i < succs_info_pool.max_top; i++)
5027     {
5028       VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
5029       VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
5030       VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
5031     }
5032   free (succs_info_pool.stack);
5033 }
5034 \f
5035
5036 /* Returns a position in RGN where BB can be inserted retaining
5037    topological order.  */
5038 static int
5039 find_place_to_insert_bb (basic_block bb, int rgn)
5040 {
5041   bool has_preds_outside_rgn = false;
5042   edge e;
5043   edge_iterator ei;
5044
5045   /* Find whether we have preds outside the region.  */
5046   FOR_EACH_EDGE (e, ei, bb->preds)
5047     if (!in_current_region_p (e->src))
5048       {
5049         has_preds_outside_rgn = true;
5050         break;
5051       }
5052
5053   /* Recompute the top order -- needed when we have > 1 pred
5054      and in case we don't have preds outside.  */
5055   if (flag_sel_sched_pipelining_outer_loops
5056       && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5057     {
5058       int i, bbi = bb->index, cur_bbi;
5059
5060       recompute_rev_top_order ();
5061       for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5062         {
5063           cur_bbi = BB_TO_BLOCK (i);
5064           if (rev_top_order_index[bbi]
5065               < rev_top_order_index[cur_bbi])
5066             break;
5067         }
5068
5069       /* We skipped the right block, so we increase i.  We accommodate
5070          it for increasing by step later, so we decrease i.  */
5071       return (i + 1) - 1;
5072     }
5073   else if (has_preds_outside_rgn)
5074     {
5075       /* This is the case when we generate an extra empty block
5076          to serve as region head during pipelining.  */
5077       e = EDGE_SUCC (bb, 0);
5078       gcc_assert (EDGE_COUNT (bb->succs) == 1
5079                   && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5080                   && (BLOCK_TO_BB (e->dest->index) == 0));
5081       return -1;
5082     }
5083
5084   /* We don't have preds outside the region.  We should have
5085      the only pred, because the multiple preds case comes from
5086      the pipelining of outer loops, and that is handled above.
5087      Just take the bbi of this single pred.  */
5088   if (EDGE_COUNT (bb->succs) > 0)
5089     {
5090       int pred_bbi;
5091
5092       gcc_assert (EDGE_COUNT (bb->preds) == 1);
5093
5094       pred_bbi = EDGE_PRED (bb, 0)->src->index;
5095       return BLOCK_TO_BB (pred_bbi);
5096     }
5097   else
5098     /* BB has no successors.  It is safe to put it in the end.  */
5099     return current_nr_blocks - 1;
5100 }
5101
5102 /* Deletes an empty basic block freeing its data.  */
5103 static void
5104 delete_and_free_basic_block (basic_block bb)
5105 {
5106   gcc_assert (sel_bb_empty_p (bb));
5107
5108   if (BB_LV_SET (bb))
5109     free_lv_set (bb);
5110
5111   bitmap_clear_bit (blocks_to_reschedule, bb->index);
5112
5113   /* Can't assert av_set properties because we use sel_aremove_bb
5114      when removing loop preheader from the region.  At the point of
5115      removing the preheader we already have deallocated sel_region_bb_info.  */
5116   gcc_assert (BB_LV_SET (bb) == NULL
5117               && !BB_LV_SET_VALID_P (bb)
5118               && BB_AV_LEVEL (bb) == 0
5119               && BB_AV_SET (bb) == NULL);
5120
5121   delete_basic_block (bb);
5122 }
5123
5124 /* Add BB to the current region and update the region data.  */
5125 static void
5126 add_block_to_current_region (basic_block bb)
5127 {
5128   int i, pos, bbi = -2, rgn;
5129
5130   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5131   bbi = find_place_to_insert_bb (bb, rgn);
5132   bbi += 1;
5133   pos = RGN_BLOCKS (rgn) + bbi;
5134
5135   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5136               && ebb_head[bbi] == pos);
5137
5138   /* Make a place for the new block.  */
5139   extend_regions ();
5140
5141   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5142     BLOCK_TO_BB (rgn_bb_table[i])++;
5143
5144   memmove (rgn_bb_table + pos + 1,
5145            rgn_bb_table + pos,
5146            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5147
5148   /* Initialize data for BB.  */
5149   rgn_bb_table[pos] = bb->index;
5150   BLOCK_TO_BB (bb->index) = bbi;
5151   CONTAINING_RGN (bb->index) = rgn;
5152
5153   RGN_NR_BLOCKS (rgn)++;
5154
5155   for (i = rgn + 1; i <= nr_regions; i++)
5156     RGN_BLOCKS (i)++;
5157 }
5158
5159 /* Remove BB from the current region and update the region data.  */
5160 static void
5161 remove_bb_from_region (basic_block bb)
5162 {
5163   int i, pos, bbi = -2, rgn;
5164
5165   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5166   bbi = BLOCK_TO_BB (bb->index);
5167   pos = RGN_BLOCKS (rgn) + bbi;
5168
5169   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5170               && ebb_head[bbi] == pos);
5171
5172   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5173     BLOCK_TO_BB (rgn_bb_table[i])--;
5174
5175   memmove (rgn_bb_table + pos,
5176            rgn_bb_table + pos + 1,
5177            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5178
5179   RGN_NR_BLOCKS (rgn)--;
5180   for (i = rgn + 1; i <= nr_regions; i++)
5181     RGN_BLOCKS (i)--;
5182 }
5183
5184 /* Add BB to the current region  and update all data.  If BB is NULL, add all
5185    blocks from last_added_blocks vector.  */
5186 static void
5187 sel_add_bb (basic_block bb)
5188 {
5189   /* Extend luids so that new notes will receive zero luids.  */
5190   sched_extend_luids ();
5191   sched_init_bbs ();
5192   sel_init_bbs (last_added_blocks);
5193
5194   /* When bb is passed explicitly, the vector should contain
5195      the only element that equals to bb; otherwise, the vector
5196      should not be NULL.  */
5197   gcc_assert (last_added_blocks != NULL);
5198
5199   if (bb != NULL)
5200     {
5201       gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5202                   && VEC_index (basic_block,
5203                                 last_added_blocks, 0) == bb);
5204       add_block_to_current_region (bb);
5205
5206       /* We associate creating/deleting data sets with the first insn
5207          appearing / disappearing in the bb.  */
5208       if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5209         create_initial_data_sets (bb);
5210
5211       VEC_free (basic_block, heap, last_added_blocks);
5212     }
5213   else
5214     /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5215     {
5216       int i;
5217       basic_block temp_bb = NULL;
5218
5219       for (i = 0;
5220            VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5221         {
5222           add_block_to_current_region (bb);
5223           temp_bb = bb;
5224         }
5225
5226       /* We need to fetch at least one bb so we know the region
5227          to update.  */
5228       gcc_assert (temp_bb != NULL);
5229       bb = temp_bb;
5230
5231       VEC_free (basic_block, heap, last_added_blocks);
5232     }
5233
5234   rgn_setup_region (CONTAINING_RGN (bb->index));
5235 }
5236
5237 /* Remove BB from the current region and update all data.
5238    If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5239 static void
5240 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5241 {
5242   unsigned idx = bb->index;
5243
5244   gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5245
5246   remove_bb_from_region (bb);
5247   return_bb_to_pool (bb);
5248   bitmap_clear_bit (blocks_to_reschedule, idx);
5249
5250   if (remove_from_cfg_p)
5251     {
5252       basic_block succ = single_succ (bb);
5253       delete_and_free_basic_block (bb);
5254       set_immediate_dominator (CDI_DOMINATORS, succ,
5255                                recompute_dominator (CDI_DOMINATORS, succ));
5256     }
5257
5258   rgn_setup_region (CONTAINING_RGN (idx));
5259 }
5260
5261 /* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5262 static void
5263 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5264 {
5265   if (in_current_region_p (merge_bb))
5266     concat_note_lists (BB_NOTE_LIST (empty_bb),
5267                        &BB_NOTE_LIST (merge_bb));
5268   BB_NOTE_LIST (empty_bb) = NULL_RTX;
5269
5270 }
5271
5272 /* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5273    region, but keep it in CFG.  */
5274 static void
5275 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5276 {
5277   /* The block should contain just a note or a label.
5278      We try to check whether it is unused below.  */
5279   gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5280               || LABEL_P (BB_HEAD (empty_bb)));
5281
5282   /* If basic block has predecessors or successors, redirect them.  */
5283   if (remove_from_cfg_p
5284       && (EDGE_COUNT (empty_bb->preds) > 0
5285           || EDGE_COUNT (empty_bb->succs) > 0))
5286     {
5287       basic_block pred;
5288       basic_block succ;
5289
5290       /* We need to init PRED and SUCC before redirecting edges.  */
5291       if (EDGE_COUNT (empty_bb->preds) > 0)
5292         {
5293           edge e;
5294
5295           gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5296
5297           e = EDGE_PRED (empty_bb, 0);
5298           gcc_assert (e->src == empty_bb->prev_bb
5299                       && (e->flags & EDGE_FALLTHRU));
5300
5301           pred = empty_bb->prev_bb;
5302         }
5303       else
5304         pred = NULL;
5305
5306       if (EDGE_COUNT (empty_bb->succs) > 0)
5307         {
5308           /* We do not check fallthruness here as above, because
5309              after removing a jump the edge may actually be not fallthru.  */
5310           gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5311           succ = EDGE_SUCC (empty_bb, 0)->dest;
5312         }
5313       else
5314         succ = NULL;
5315
5316       if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5317         {
5318           edge e = EDGE_PRED (empty_bb, 0);
5319
5320           if (e->flags & EDGE_FALLTHRU)
5321             redirect_edge_succ_nodup (e, succ);
5322           else
5323             sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5324         }
5325
5326       if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5327         {
5328           edge e = EDGE_SUCC (empty_bb, 0);
5329
5330           if (find_edge (pred, e->dest) == NULL)
5331             redirect_edge_pred (e, pred);
5332         }
5333     }
5334
5335   /* Finish removing.  */
5336   sel_remove_bb (empty_bb, remove_from_cfg_p);
5337 }
5338
5339 /* An implementation of create_basic_block hook, which additionally updates
5340    per-bb data structures.  */
5341 static basic_block
5342 sel_create_basic_block (void *headp, void *endp, basic_block after)
5343 {
5344   basic_block new_bb;
5345   insn_t new_bb_note;
5346
5347   gcc_assert (flag_sel_sched_pipelining_outer_loops
5348               || last_added_blocks == NULL);
5349
5350   new_bb_note = get_bb_note_from_pool ();
5351
5352   if (new_bb_note == NULL_RTX)
5353     new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5354   else
5355     {
5356       new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5357                                              new_bb_note, after);
5358       new_bb->aux = NULL;
5359     }
5360
5361   VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5362
5363   return new_bb;
5364 }
5365
5366 /* Implement sched_init_only_bb ().  */
5367 static void
5368 sel_init_only_bb (basic_block bb, basic_block after)
5369 {
5370   gcc_assert (after == NULL);
5371
5372   extend_regions ();
5373   rgn_make_new_region_out_of_new_block (bb);
5374 }
5375
5376 /* Update the latch when we've splitted or merged it from FROM block to TO.
5377    This should be checked for all outer loops, too.  */
5378 static void
5379 change_loops_latches (basic_block from, basic_block to)
5380 {
5381   gcc_assert (from != to);
5382
5383   if (current_loop_nest)
5384     {
5385       struct loop *loop;
5386
5387       for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5388         if (considered_for_pipelining_p (loop) && loop->latch == from)
5389           {
5390             gcc_assert (loop == current_loop_nest);
5391             loop->latch = to;
5392             gcc_assert (loop_latch_edge (loop));
5393           }
5394     }
5395 }
5396
5397 /* Splits BB on two basic blocks, adding it to the region and extending
5398    per-bb data structures.  Returns the newly created bb.  */
5399 static basic_block
5400 sel_split_block (basic_block bb, rtx after)
5401 {
5402   basic_block new_bb;
5403   insn_t insn;
5404
5405   new_bb = sched_split_block_1 (bb, after);
5406   sel_add_bb (new_bb);
5407
5408   /* This should be called after sel_add_bb, because this uses
5409      CONTAINING_RGN for the new block, which is not yet initialized.
5410      FIXME: this function may be a no-op now.  */
5411   change_loops_latches (bb, new_bb);
5412
5413   /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5414   FOR_BB_INSNS (new_bb, insn)
5415    if (INSN_P (insn))
5416      EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5417
5418   if (sel_bb_empty_p (bb))
5419     {
5420       gcc_assert (!sel_bb_empty_p (new_bb));
5421
5422       /* NEW_BB has data sets that need to be updated and BB holds
5423          data sets that should be removed.  Exchange these data sets
5424          so that we won't lose BB's valid data sets.  */
5425       exchange_data_sets (new_bb, bb);
5426       free_data_sets (bb);
5427     }
5428
5429   if (!sel_bb_empty_p (new_bb)
5430       && bitmap_bit_p (blocks_to_reschedule, bb->index))
5431     bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5432
5433   return new_bb;
5434 }
5435
5436 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5437    Otherwise returns NULL.  */
5438 static rtx
5439 check_for_new_jump (basic_block bb, int prev_max_uid)
5440 {
5441   rtx end;
5442
5443   end = sel_bb_end (bb);
5444   if (end && INSN_UID (end) >= prev_max_uid)
5445     return end;
5446   return NULL;
5447 }
5448
5449 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5450    New means having UID at least equal to PREV_MAX_UID.  */
5451 static rtx
5452 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5453 {
5454   rtx jump;
5455
5456   /* Return immediately if no new insns were emitted.  */
5457   if (get_max_uid () == prev_max_uid)
5458     return NULL;
5459
5460   /* Now check both blocks for new jumps.  It will ever be only one.  */
5461   if ((jump = check_for_new_jump (from, prev_max_uid)))
5462     return jump;
5463
5464   if (jump_bb != NULL
5465       && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5466     return jump;
5467   return NULL;
5468 }
5469
5470 /* Splits E and adds the newly created basic block to the current region.
5471    Returns this basic block.  */
5472 basic_block
5473 sel_split_edge (edge e)
5474 {
5475   basic_block new_bb, src, other_bb = NULL;
5476   int prev_max_uid;
5477   rtx jump;
5478
5479   src = e->src;
5480   prev_max_uid = get_max_uid ();
5481   new_bb = split_edge (e);
5482
5483   if (flag_sel_sched_pipelining_outer_loops
5484       && current_loop_nest)
5485     {
5486       int i;
5487       basic_block bb;
5488
5489       /* Some of the basic blocks might not have been added to the loop.
5490          Add them here, until this is fixed in force_fallthru.  */
5491       for (i = 0;
5492            VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5493         if (!bb->loop_father)
5494           {
5495             add_bb_to_loop (bb, e->dest->loop_father);
5496
5497             gcc_assert (!other_bb && (new_bb->index != bb->index));
5498             other_bb = bb;
5499           }
5500     }
5501
5502   /* Add all last_added_blocks to the region.  */
5503   sel_add_bb (NULL);
5504
5505   jump = find_new_jump (src, new_bb, prev_max_uid);
5506   if (jump)
5507     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5508
5509   /* Put the correct lv set on this block.  */
5510   if (other_bb && !sel_bb_empty_p (other_bb))
5511     compute_live (sel_bb_head (other_bb));
5512
5513   return new_bb;
5514 }
5515
5516 /* Implement sched_create_empty_bb ().  */
5517 static basic_block
5518 sel_create_empty_bb (basic_block after)
5519 {
5520   basic_block new_bb;
5521
5522   new_bb = sched_create_empty_bb_1 (after);
5523
5524   /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5525      later.  */
5526   gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5527               && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5528
5529   VEC_free (basic_block, heap, last_added_blocks);
5530   return new_bb;
5531 }
5532
5533 /* Implement sched_create_recovery_block.  ORIG_INSN is where block
5534    will be splitted to insert a check.  */
5535 basic_block
5536 sel_create_recovery_block (insn_t orig_insn)
5537 {
5538   basic_block first_bb, second_bb, recovery_block;
5539   basic_block before_recovery = NULL;
5540   rtx jump;
5541
5542   first_bb = BLOCK_FOR_INSN (orig_insn);
5543   if (sel_bb_end_p (orig_insn))
5544     {
5545       /* Avoid introducing an empty block while splitting.  */
5546       gcc_assert (single_succ_p (first_bb));
5547       second_bb = single_succ (first_bb);
5548     }
5549   else
5550     second_bb = sched_split_block (first_bb, orig_insn);
5551
5552   recovery_block = sched_create_recovery_block (&before_recovery);
5553   if (before_recovery)
5554     copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5555
5556   gcc_assert (sel_bb_empty_p (recovery_block));
5557   sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5558   if (current_loops != NULL)
5559     add_bb_to_loop (recovery_block, first_bb->loop_father);
5560
5561   sel_add_bb (recovery_block);
5562
5563   jump = BB_END (recovery_block);
5564   gcc_assert (sel_bb_head (recovery_block) == jump);
5565   sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5566
5567   return recovery_block;
5568 }
5569
5570 /* Merge basic block B into basic block A.  */
5571 static void
5572 sel_merge_blocks (basic_block a, basic_block b)
5573 {
5574   gcc_assert (sel_bb_empty_p (b)
5575               && EDGE_COUNT (b->preds) == 1
5576               && EDGE_PRED (b, 0)->src == b->prev_bb);
5577
5578   move_bb_info (b->prev_bb, b);
5579   remove_empty_bb (b, false);
5580   merge_blocks (a, b);
5581   change_loops_latches (b, a);
5582 }
5583
5584 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5585    data structures for possibly created bb and insns.  Returns the newly
5586    added bb or NULL, when a bb was not needed.  */
5587 void
5588 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5589 {
5590   basic_block jump_bb, src, orig_dest = e->dest;
5591   int prev_max_uid;
5592   rtx jump;
5593
5594   /* This function is now used only for bookkeeping code creation, where
5595      we'll never get the single pred of orig_dest block and thus will not
5596      hit unreachable blocks when updating dominator info.  */
5597   gcc_assert (!sel_bb_empty_p (e->src)
5598               && !single_pred_p (orig_dest));
5599   src = e->src;
5600   prev_max_uid = get_max_uid ();
5601   jump_bb = redirect_edge_and_branch_force (e, to);
5602
5603   if (jump_bb != NULL)
5604     sel_add_bb (jump_bb);
5605
5606   /* This function could not be used to spoil the loop structure by now,
5607      thus we don't care to update anything.  But check it to be sure.  */
5608   if (current_loop_nest
5609       && pipelining_p)
5610     gcc_assert (loop_latch_edge (current_loop_nest));
5611
5612   jump = find_new_jump (src, jump_bb, prev_max_uid);
5613   if (jump)
5614     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5615   set_immediate_dominator (CDI_DOMINATORS, to,
5616                            recompute_dominator (CDI_DOMINATORS, to));
5617   set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5618                            recompute_dominator (CDI_DOMINATORS, orig_dest));
5619 }
5620
5621 /* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5622    redirected edge are in reverse topological order.  */
5623 bool
5624 sel_redirect_edge_and_branch (edge e, basic_block to)
5625 {
5626   bool latch_edge_p;
5627   basic_block src, orig_dest = e->dest;
5628   int prev_max_uid;
5629   rtx jump;
5630   edge redirected;
5631   bool recompute_toporder_p = false;
5632   bool maybe_unreachable = single_pred_p (orig_dest);
5633
5634   latch_edge_p = (pipelining_p
5635                   && current_loop_nest
5636                   && e == loop_latch_edge (current_loop_nest));
5637
5638   src = e->src;
5639   prev_max_uid = get_max_uid ();
5640
5641   redirected = redirect_edge_and_branch (e, to);
5642
5643   gcc_assert (redirected && last_added_blocks == NULL);
5644
5645   /* When we've redirected a latch edge, update the header.  */
5646   if (latch_edge_p)
5647     {
5648       current_loop_nest->header = to;
5649       gcc_assert (loop_latch_edge (current_loop_nest));
5650     }
5651
5652   /* In rare situations, the topological relation between the blocks connected
5653      by the redirected edge can change (see PR42245 for an example).  Update
5654      block_to_bb/bb_to_block.  */
5655   if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5656       && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5657     recompute_toporder_p = true;
5658
5659   jump = find_new_jump (src, NULL, prev_max_uid);
5660   if (jump)
5661     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5662
5663   /* Only update dominator info when we don't have unreachable blocks.
5664      Otherwise we'll update in maybe_tidy_empty_bb.  */
5665   if (!maybe_unreachable)
5666     {
5667       set_immediate_dominator (CDI_DOMINATORS, to,
5668                                recompute_dominator (CDI_DOMINATORS, to));
5669       set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5670                                recompute_dominator (CDI_DOMINATORS, orig_dest));
5671     }
5672   return recompute_toporder_p;
5673 }
5674
5675 /* This variable holds the cfg hooks used by the selective scheduler.  */
5676 static struct cfg_hooks sel_cfg_hooks;
5677
5678 /* Register sel-sched cfg hooks.  */
5679 void
5680 sel_register_cfg_hooks (void)
5681 {
5682   sched_split_block = sel_split_block;
5683
5684   orig_cfg_hooks = get_cfg_hooks ();
5685   sel_cfg_hooks = orig_cfg_hooks;
5686
5687   sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5688
5689   set_cfg_hooks (sel_cfg_hooks);
5690
5691   sched_init_only_bb = sel_init_only_bb;
5692   sched_split_block = sel_split_block;
5693   sched_create_empty_bb = sel_create_empty_bb;
5694 }
5695
5696 /* Unregister sel-sched cfg hooks.  */
5697 void
5698 sel_unregister_cfg_hooks (void)
5699 {
5700   sched_create_empty_bb = NULL;
5701   sched_split_block = NULL;
5702   sched_init_only_bb = NULL;
5703
5704   set_cfg_hooks (orig_cfg_hooks);
5705 }
5706 \f
5707
5708 /* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5709    LABEL is where this jump should be directed.  */
5710 rtx
5711 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5712 {
5713   rtx insn_rtx;
5714
5715   gcc_assert (!INSN_P (pattern));
5716
5717   start_sequence ();
5718
5719   if (label == NULL_RTX)
5720     insn_rtx = emit_insn (pattern);
5721   else if (DEBUG_INSN_P (label))
5722     insn_rtx = emit_debug_insn (pattern);
5723   else
5724     {
5725       insn_rtx = emit_jump_insn (pattern);
5726       JUMP_LABEL (insn_rtx) = label;
5727       ++LABEL_NUSES (label);
5728     }
5729
5730   end_sequence ();
5731
5732   sched_extend_luids ();
5733   sched_extend_target ();
5734   sched_deps_init (false);
5735
5736   /* Initialize INSN_CODE now.  */
5737   recog_memoized (insn_rtx);
5738   return insn_rtx;
5739 }
5740
5741 /* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5742    must not be clonable.  */
5743 vinsn_t
5744 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5745 {
5746   gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5747
5748   /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5749   return vinsn_create (insn_rtx, force_unique_p);
5750 }
5751
5752 /* Create a copy of INSN_RTX.  */
5753 rtx
5754 create_copy_of_insn_rtx (rtx insn_rtx)
5755 {
5756   rtx res, link;
5757
5758   if (DEBUG_INSN_P (insn_rtx))
5759     return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5760                                          insn_rtx);
5761
5762   gcc_assert (NONJUMP_INSN_P (insn_rtx));
5763
5764   res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5765                                       NULL_RTX);
5766
5767   /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5768      since mark_jump_label will make them.  REG_LABEL_TARGETs are created
5769      there too, but are supposed to be sticky, so we copy them.  */
5770   for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5771     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5772         && REG_NOTE_KIND (link) != REG_EQUAL
5773         && REG_NOTE_KIND (link) != REG_EQUIV)
5774       {
5775         if (GET_CODE (link) == EXPR_LIST)
5776           add_reg_note (res, REG_NOTE_KIND (link),
5777                         copy_insn_1 (XEXP (link, 0)));
5778         else
5779           add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5780       }
5781
5782   return res;
5783 }
5784
5785 /* Change vinsn field of EXPR to hold NEW_VINSN.  */
5786 void
5787 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5788 {
5789   vinsn_detach (EXPR_VINSN (expr));
5790
5791   EXPR_VINSN (expr) = new_vinsn;
5792   vinsn_attach (new_vinsn);
5793 }
5794
5795 /* Helpers for global init.  */
5796 /* This structure is used to be able to call existing bundling mechanism
5797    and calculate insn priorities.  */
5798 static struct haifa_sched_info sched_sel_haifa_sched_info =
5799 {
5800   NULL, /* init_ready_list */
5801   NULL, /* can_schedule_ready_p */
5802   NULL, /* schedule_more_p */
5803   NULL, /* new_ready */
5804   NULL, /* rgn_rank */
5805   sel_print_insn, /* rgn_print_insn */
5806   contributes_to_priority,
5807   NULL, /* insn_finishes_block_p */
5808
5809   NULL, NULL,
5810   NULL, NULL,
5811   0, 0,
5812
5813   NULL, /* add_remove_insn */
5814   NULL, /* begin_schedule_ready */
5815   NULL, /* begin_move_insn */
5816   NULL, /* advance_target_bb */
5817
5818   NULL,
5819   NULL,
5820
5821   SEL_SCHED | NEW_BBS
5822 };
5823
5824 /* Setup special insns used in the scheduler.  */
5825 void
5826 setup_nop_and_exit_insns (void)
5827 {
5828   gcc_assert (nop_pattern == NULL_RTX
5829               && exit_insn == NULL_RTX);
5830
5831   nop_pattern = constm1_rtx;
5832
5833   start_sequence ();
5834   emit_insn (nop_pattern);
5835   exit_insn = get_insns ();
5836   end_sequence ();
5837   set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5838 }
5839
5840 /* Free special insns used in the scheduler.  */
5841 void
5842 free_nop_and_exit_insns (void)
5843 {
5844   exit_insn = NULL_RTX;
5845   nop_pattern = NULL_RTX;
5846 }
5847
5848 /* Setup a special vinsn used in new insns initialization.  */
5849 void
5850 setup_nop_vinsn (void)
5851 {
5852   nop_vinsn = vinsn_create (exit_insn, false);
5853   vinsn_attach (nop_vinsn);
5854 }
5855
5856 /* Free a special vinsn used in new insns initialization.  */
5857 void
5858 free_nop_vinsn (void)
5859 {
5860   gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5861   vinsn_detach (nop_vinsn);
5862   nop_vinsn = NULL;
5863 }
5864
5865 /* Call a set_sched_flags hook.  */
5866 void
5867 sel_set_sched_flags (void)
5868 {
5869   /* ??? This means that set_sched_flags were called, and we decided to
5870      support speculation.  However, set_sched_flags also modifies flags
5871      on current_sched_info, doing this only at global init.  And we
5872      sometimes change c_s_i later.  So put the correct flags again.  */
5873   if (spec_info && targetm.sched.set_sched_flags)
5874     targetm.sched.set_sched_flags (spec_info);
5875 }
5876
5877 /* Setup pointers to global sched info structures.  */
5878 void
5879 sel_setup_sched_infos (void)
5880 {
5881   rgn_setup_common_sched_info ();
5882
5883   memcpy (&sel_common_sched_info, common_sched_info,
5884           sizeof (sel_common_sched_info));
5885
5886   sel_common_sched_info.fix_recovery_cfg = NULL;
5887   sel_common_sched_info.add_block = NULL;
5888   sel_common_sched_info.estimate_number_of_insns
5889     = sel_estimate_number_of_insns;
5890   sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5891   sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5892
5893   common_sched_info = &sel_common_sched_info;
5894
5895   current_sched_info = &sched_sel_haifa_sched_info;
5896   current_sched_info->sched_max_insns_priority =
5897     get_rgn_sched_max_insns_priority ();
5898
5899   sel_set_sched_flags ();
5900 }
5901 \f
5902
5903 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5904    *BB_ORD_INDEX after that is increased.  */
5905 static void
5906 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5907 {
5908   RGN_NR_BLOCKS (rgn) += 1;
5909   RGN_DONT_CALC_DEPS (rgn) = 0;
5910   RGN_HAS_REAL_EBB (rgn) = 0;
5911   CONTAINING_RGN (bb->index) = rgn;
5912   BLOCK_TO_BB (bb->index) = *bb_ord_index;
5913   rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5914   (*bb_ord_index)++;
5915
5916   /* FIXME: it is true only when not scheduling ebbs.  */
5917   RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5918 }
5919
5920 /* Functions to support pipelining of outer loops.  */
5921
5922 /* Creates a new empty region and returns it's number.  */
5923 static int
5924 sel_create_new_region (void)
5925 {
5926   int new_rgn_number = nr_regions;
5927
5928   RGN_NR_BLOCKS (new_rgn_number) = 0;
5929
5930   /* FIXME: This will work only when EBBs are not created.  */
5931   if (new_rgn_number != 0)
5932     RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5933       RGN_NR_BLOCKS (new_rgn_number - 1);
5934   else
5935     RGN_BLOCKS (new_rgn_number) = 0;
5936
5937   /* Set the blocks of the next region so the other functions may
5938      calculate the number of blocks in the region.  */
5939   RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5940     RGN_NR_BLOCKS (new_rgn_number);
5941
5942   nr_regions++;
5943
5944   return new_rgn_number;
5945 }
5946
5947 /* If X has a smaller topological sort number than Y, returns -1;
5948    if greater, returns 1.  */
5949 static int
5950 bb_top_order_comparator (const void *x, const void *y)
5951 {
5952   basic_block bb1 = *(const basic_block *) x;
5953   basic_block bb2 = *(const basic_block *) y;
5954
5955   gcc_assert (bb1 == bb2
5956               || rev_top_order_index[bb1->index]
5957                  != rev_top_order_index[bb2->index]);
5958
5959   /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5960      bbs with greater number should go earlier.  */
5961   if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5962     return -1;
5963   else
5964     return 1;
5965 }
5966
5967 /* Create a region for LOOP and return its number.  If we don't want
5968    to pipeline LOOP, return -1.  */
5969 static int
5970 make_region_from_loop (struct loop *loop)
5971 {
5972   unsigned int i;
5973   int new_rgn_number = -1;
5974   struct loop *inner;
5975
5976   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5977   int bb_ord_index = 0;
5978   basic_block *loop_blocks;
5979   basic_block preheader_block;
5980
5981   if (loop->num_nodes
5982       > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5983     return -1;
5984
5985   /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
5986   for (inner = loop->inner; inner; inner = inner->inner)
5987     if (flow_bb_inside_loop_p (inner, loop->latch))
5988       return -1;
5989
5990   loop->ninsns = num_loop_insns (loop);
5991   if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5992     return -1;
5993
5994   loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5995
5996   for (i = 0; i < loop->num_nodes; i++)
5997     if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5998       {
5999         free (loop_blocks);
6000         return -1;
6001       }
6002
6003   preheader_block = loop_preheader_edge (loop)->src;
6004   gcc_assert (preheader_block);
6005   gcc_assert (loop_blocks[0] == loop->header);
6006
6007   new_rgn_number = sel_create_new_region ();
6008
6009   sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6010   SET_BIT (bbs_in_loop_rgns, preheader_block->index);
6011
6012   for (i = 0; i < loop->num_nodes; i++)
6013     {
6014       /* Add only those blocks that haven't been scheduled in the inner loop.
6015          The exception is the basic blocks with bookkeeping code - they should
6016          be added to the region (and they actually don't belong to the loop
6017          body, but to the region containing that loop body).  */
6018
6019       gcc_assert (new_rgn_number >= 0);
6020
6021       if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
6022         {
6023           sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6024                                    new_rgn_number);
6025           SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
6026         }
6027     }
6028
6029   free (loop_blocks);
6030   MARK_LOOP_FOR_PIPELINING (loop);
6031
6032   return new_rgn_number;
6033 }
6034
6035 /* Create a new region from preheader blocks LOOP_BLOCKS.  */
6036 void
6037 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
6038 {
6039   unsigned int i;
6040   int new_rgn_number = -1;
6041   basic_block bb;
6042
6043   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6044   int bb_ord_index = 0;
6045
6046   new_rgn_number = sel_create_new_region ();
6047
6048   FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
6049     {
6050       gcc_assert (new_rgn_number >= 0);
6051
6052       sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6053     }
6054
6055   VEC_free (basic_block, heap, *loop_blocks);
6056   gcc_assert (*loop_blocks == NULL);
6057 }
6058
6059
6060 /* Create region(s) from loop nest LOOP, such that inner loops will be
6061    pipelined before outer loops.  Returns true when a region for LOOP
6062    is created.  */
6063 static bool
6064 make_regions_from_loop_nest (struct loop *loop)
6065 {
6066   struct loop *cur_loop;
6067   int rgn_number;
6068
6069   /* Traverse all inner nodes of the loop.  */
6070   for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6071     if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
6072       return false;
6073
6074   /* At this moment all regular inner loops should have been pipelined.
6075      Try to create a region from this loop.  */
6076   rgn_number = make_region_from_loop (loop);
6077
6078   if (rgn_number < 0)
6079     return false;
6080
6081   VEC_safe_push (loop_p, heap, loop_nests, loop);
6082   return true;
6083 }
6084
6085 /* Initalize data structures needed.  */
6086 void
6087 sel_init_pipelining (void)
6088 {
6089   /* Collect loop information to be used in outer loops pipelining.  */
6090   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6091                        | LOOPS_HAVE_FALLTHRU_PREHEADERS
6092                        | LOOPS_HAVE_RECORDED_EXITS
6093                        | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6094   current_loop_nest = NULL;
6095
6096   bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6097   sbitmap_zero (bbs_in_loop_rgns);
6098
6099   recompute_rev_top_order ();
6100 }
6101
6102 /* Returns a struct loop for region RGN.  */
6103 loop_p
6104 get_loop_nest_for_rgn (unsigned int rgn)
6105 {
6106   /* Regions created with extend_rgns don't have corresponding loop nests,
6107      because they don't represent loops.  */
6108   if (rgn < VEC_length (loop_p, loop_nests))
6109     return VEC_index (loop_p, loop_nests, rgn);
6110   else
6111     return NULL;
6112 }
6113
6114 /* True when LOOP was included into pipelining regions.   */
6115 bool
6116 considered_for_pipelining_p (struct loop *loop)
6117 {
6118   if (loop_depth (loop) == 0)
6119     return false;
6120
6121   /* Now, the loop could be too large or irreducible.  Check whether its
6122      region is in LOOP_NESTS.
6123      We determine the region number of LOOP as the region number of its
6124      latch.  We can't use header here, because this header could be
6125      just removed preheader and it will give us the wrong region number.
6126      Latch can't be used because it could be in the inner loop too.  */
6127   if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6128     {
6129       int rgn = CONTAINING_RGN (loop->latch->index);
6130
6131       gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6132       return true;
6133     }
6134
6135   return false;
6136 }
6137
6138 /* Makes regions from the rest of the blocks, after loops are chosen
6139    for pipelining.  */
6140 static void
6141 make_regions_from_the_rest (void)
6142 {
6143   int cur_rgn_blocks;
6144   int *loop_hdr;
6145   int i;
6146
6147   basic_block bb;
6148   edge e;
6149   edge_iterator ei;
6150   int *degree;
6151
6152   /* Index in rgn_bb_table where to start allocating new regions.  */
6153   cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6154
6155   /* Make regions from all the rest basic blocks - those that don't belong to
6156      any loop or belong to irreducible loops.  Prepare the data structures
6157      for extend_rgns.  */
6158
6159   /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6160      LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6161      loop.  */
6162   loop_hdr = XNEWVEC (int, last_basic_block);
6163   degree = XCNEWVEC (int, last_basic_block);
6164
6165
6166   /* For each basic block that belongs to some loop assign the number
6167      of innermost loop it belongs to.  */
6168   for (i = 0; i < last_basic_block; i++)
6169     loop_hdr[i] = -1;
6170
6171   FOR_EACH_BB (bb)
6172     {
6173       if (bb->loop_father && !bb->loop_father->num == 0
6174           && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6175         loop_hdr[bb->index] = bb->loop_father->num;
6176     }
6177
6178   /* For each basic block degree is calculated as the number of incoming
6179      edges, that are going out of bbs that are not yet scheduled.
6180      The basic blocks that are scheduled have degree value of zero.  */
6181   FOR_EACH_BB (bb)
6182     {
6183       degree[bb->index] = 0;
6184
6185       if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6186         {
6187           FOR_EACH_EDGE (e, ei, bb->preds)
6188             if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6189               degree[bb->index]++;
6190         }
6191       else
6192         degree[bb->index] = -1;
6193     }
6194
6195   extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6196
6197   /* Any block that did not end up in a region is placed into a region
6198      by itself.  */
6199   FOR_EACH_BB (bb)
6200     if (degree[bb->index] >= 0)
6201       {
6202         rgn_bb_table[cur_rgn_blocks] = bb->index;
6203         RGN_NR_BLOCKS (nr_regions) = 1;
6204         RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6205         RGN_DONT_CALC_DEPS (nr_regions) = 0;
6206         RGN_HAS_REAL_EBB (nr_regions) = 0;
6207         CONTAINING_RGN (bb->index) = nr_regions++;
6208         BLOCK_TO_BB (bb->index) = 0;
6209       }
6210
6211   free (degree);
6212   free (loop_hdr);
6213 }
6214
6215 /* Free data structures used in pipelining of loops.  */
6216 void sel_finish_pipelining (void)
6217 {
6218   loop_iterator li;
6219   struct loop *loop;
6220
6221   /* Release aux fields so we don't free them later by mistake.  */
6222   FOR_EACH_LOOP (li, loop, 0)
6223     loop->aux = NULL;
6224
6225   loop_optimizer_finalize ();
6226
6227   VEC_free (loop_p, heap, loop_nests);
6228
6229   free (rev_top_order_index);
6230   rev_top_order_index = NULL;
6231 }
6232
6233 /* This function replaces the find_rgns when
6234    FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6235 void
6236 sel_find_rgns (void)
6237 {
6238   sel_init_pipelining ();
6239   extend_regions ();
6240
6241   if (current_loops)
6242     {
6243       loop_p loop;
6244       loop_iterator li;
6245
6246       FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6247                                 ? LI_FROM_INNERMOST
6248                                 : LI_ONLY_INNERMOST))
6249         make_regions_from_loop_nest (loop);
6250     }
6251
6252   /* Make regions from all the rest basic blocks and schedule them.
6253      These blocks include blocks that don't belong to any loop or belong
6254      to irreducible loops.  */
6255   make_regions_from_the_rest ();
6256
6257   /* We don't need bbs_in_loop_rgns anymore.  */
6258   sbitmap_free (bbs_in_loop_rgns);
6259   bbs_in_loop_rgns = NULL;
6260 }
6261
6262 /* Add the preheader blocks from previous loop to current region taking
6263    it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6264    This function is only used with -fsel-sched-pipelining-outer-loops.  */
6265 void
6266 sel_add_loop_preheaders (bb_vec_t *bbs)
6267 {
6268   int i;
6269   basic_block bb;
6270   VEC(basic_block, heap) *preheader_blocks
6271     = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6272
6273   for (i = 0;
6274        VEC_iterate (basic_block, preheader_blocks, i, bb);
6275        i++)
6276     {
6277       VEC_safe_push (basic_block, heap, *bbs, bb);
6278       VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6279       sel_add_bb (bb);
6280     }
6281
6282   VEC_free (basic_block, heap, preheader_blocks);
6283 }
6284
6285 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6286    Please note that the function should also work when pipelining_p is
6287    false, because it is used when deciding whether we should or should
6288    not reschedule pipelined code.  */
6289 bool
6290 sel_is_loop_preheader_p (basic_block bb)
6291 {
6292   if (current_loop_nest)
6293     {
6294       struct loop *outer;
6295
6296       if (preheader_removed)
6297         return false;
6298
6299       /* Preheader is the first block in the region.  */
6300       if (BLOCK_TO_BB (bb->index) == 0)
6301         return true;
6302
6303       /* We used to find a preheader with the topological information.
6304          Check that the above code is equivalent to what we did before.  */
6305
6306       if (in_current_region_p (current_loop_nest->header))
6307         gcc_assert (!(BLOCK_TO_BB (bb->index)
6308                       < BLOCK_TO_BB (current_loop_nest->header->index)));
6309
6310       /* Support the situation when the latch block of outer loop
6311          could be from here.  */
6312       for (outer = loop_outer (current_loop_nest);
6313            outer;
6314            outer = loop_outer (outer))
6315         if (considered_for_pipelining_p (outer) && outer->latch == bb)
6316           gcc_unreachable ();
6317     }
6318
6319   return false;
6320 }
6321
6322 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6323    can be removed, making the corresponding edge fallthrough (assuming that
6324    all basic blocks between JUMP_BB and DEST_BB are empty).  */
6325 static bool
6326 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6327 {
6328   if (!onlyjump_p (BB_END (jump_bb))
6329       || tablejump_p (BB_END (jump_bb), NULL, NULL))
6330     return false;
6331
6332   /* Several outgoing edges, abnormal edge or destination of jump is
6333      not DEST_BB.  */
6334   if (EDGE_COUNT (jump_bb->succs) != 1
6335       || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6336       || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6337     return false;
6338
6339   /* If not anything of the upper.  */
6340   return true;
6341 }
6342
6343 /* Removes the loop preheader from the current region and saves it in
6344    PREHEADER_BLOCKS of the father loop, so they will be added later to
6345    region that represents an outer loop.  */
6346 static void
6347 sel_remove_loop_preheader (void)
6348 {
6349   int i, old_len;
6350   int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6351   basic_block bb;
6352   bool all_empty_p = true;
6353   VEC(basic_block, heap) *preheader_blocks
6354     = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6355
6356   gcc_assert (current_loop_nest);
6357   old_len = VEC_length (basic_block, preheader_blocks);
6358
6359   /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6360   for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6361     {
6362       bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6363
6364       /* If the basic block belongs to region, but doesn't belong to
6365          corresponding loop, then it should be a preheader.  */
6366       if (sel_is_loop_preheader_p (bb))
6367         {
6368           VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6369           if (BB_END (bb) != bb_note (bb))
6370             all_empty_p = false;
6371         }
6372     }
6373
6374   /* Remove these blocks only after iterating over the whole region.  */
6375   for (i = VEC_length (basic_block, preheader_blocks) - 1;
6376        i >= old_len;
6377        i--)
6378     {
6379       bb =  VEC_index (basic_block, preheader_blocks, i);
6380       sel_remove_bb (bb, false);
6381     }
6382
6383   if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6384     {
6385       if (!all_empty_p)
6386         /* Immediately create new region from preheader.  */
6387         make_region_from_loop_preheader (&preheader_blocks);
6388       else
6389         {
6390           /* If all preheader blocks are empty - dont create new empty region.
6391              Instead, remove them completely.  */
6392           FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6393             {
6394               edge e;
6395               edge_iterator ei;
6396               basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6397
6398               /* Redirect all incoming edges to next basic block.  */
6399               for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6400                 {
6401                   if (! (e->flags & EDGE_FALLTHRU))
6402                     redirect_edge_and_branch (e, bb->next_bb);
6403                   else
6404                     redirect_edge_succ (e, bb->next_bb);
6405                 }
6406               gcc_assert (BB_NOTE_LIST (bb) == NULL);
6407               delete_and_free_basic_block (bb);
6408
6409               /* Check if after deleting preheader there is a nonconditional
6410                  jump in PREV_BB that leads to the next basic block NEXT_BB.
6411                  If it is so - delete this jump and clear data sets of its
6412                  basic block if it becomes empty.  */
6413               if (next_bb->prev_bb == prev_bb
6414                   && prev_bb != ENTRY_BLOCK_PTR
6415                   && bb_has_removable_jump_to_p (prev_bb, next_bb))
6416                 {
6417                   redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6418                   if (BB_END (prev_bb) == bb_note (prev_bb))
6419                     free_data_sets (prev_bb);
6420                 }
6421
6422               set_immediate_dominator (CDI_DOMINATORS, next_bb,
6423                                        recompute_dominator (CDI_DOMINATORS,
6424                                                             next_bb));
6425             }
6426         }
6427       VEC_free (basic_block, heap, preheader_blocks);
6428     }
6429   else
6430     /* Store preheader within the father's loop structure.  */
6431     SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6432                                preheader_blocks);
6433 }
6434 #endif