Backport from GCC mainline.
[platform/upstream/linaro-gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "tm_p.h"
29 #include "cfgrtl.h"
30 #include "cfganal.h"
31 #include "cfgbuild.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
39
40 #ifdef INSN_SCHEDULING
41 #include "regset.h"
42 #include "cfgloop.h"
43 #include "sel-sched-ir.h"
44 /* We don't have to use it except for sel_print_insn.  */
45 #include "sel-sched-dump.h"
46
47 /* A vector holding bb info for whole scheduling pass.  */
48 vec<sel_global_bb_info_def>
49     sel_global_bb_info = vNULL;
50
51 /* A vector holding bb info.  */
52 vec<sel_region_bb_info_def>
53     sel_region_bb_info = vNULL;
54
55 /* A pool for allocating all lists.  */
56 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
57
58 /* This contains information about successors for compute_av_set.  */
59 struct succs_info current_succs;
60
61 /* Data structure to describe interaction with the generic scheduler utils.  */
62 static struct common_sched_info_def sel_common_sched_info;
63
64 /* The loop nest being pipelined.  */
65 struct loop *current_loop_nest;
66
67 /* LOOP_NESTS is a vector containing the corresponding loop nest for
68    each region.  */
69 static vec<loop_p> loop_nests = vNULL;
70
71 /* Saves blocks already in loop regions, indexed by bb->index.  */
72 static sbitmap bbs_in_loop_rgns = NULL;
73
74 /* CFG hooks that are saved before changing create_basic_block hook.  */
75 static struct cfg_hooks orig_cfg_hooks;
76 \f
77
78 /* Array containing reverse topological index of function basic blocks,
79    indexed by BB->INDEX.  */
80 static int *rev_top_order_index = NULL;
81
82 /* Length of the above array.  */
83 static int rev_top_order_index_len = -1;
84
85 /* A regset pool structure.  */
86 static struct
87 {
88   /* The stack to which regsets are returned.  */
89   regset *v;
90
91   /* Its pointer.  */
92   int n;
93
94   /* Its size.  */
95   int s;
96
97   /* In VV we save all generated regsets so that, when destructing the
98      pool, we can compare it with V and check that every regset was returned
99      back to pool.  */
100   regset *vv;
101
102   /* The pointer of VV stack.  */
103   int nn;
104
105   /* Its size.  */
106   int ss;
107
108   /* The difference between allocated and returned regsets.  */
109   int diff;
110 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
111
112 /* This represents the nop pool.  */
113 static struct
114 {
115   /* The vector which holds previously emitted nops.  */
116   insn_t *v;
117
118   /* Its pointer.  */
119   int n;
120
121   /* Its size.  */
122   int s;
123 } nop_pool = { NULL, 0, 0 };
124
125 /* The pool for basic block notes.  */
126 static vec<rtx_note *> bb_note_pool;
127
128 /* A NOP pattern used to emit placeholder insns.  */
129 rtx nop_pattern = NULL_RTX;
130 /* A special instruction that resides in EXIT_BLOCK.
131    EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
132 rtx_insn *exit_insn = NULL;
133
134 /* TRUE if while scheduling current region, which is loop, its preheader
135    was removed.  */
136 bool preheader_removed = false;
137 \f
138
139 /* Forward static declarations.  */
140 static void fence_clear (fence_t);
141
142 static void deps_init_id (idata_t, insn_t, bool);
143 static void init_id_from_df (idata_t, insn_t, bool);
144 static expr_t set_insn_init (expr_t, vinsn_t, int);
145
146 static void cfg_preds (basic_block, insn_t **, int *);
147 static void prepare_insn_expr (insn_t, int);
148 static void free_history_vect (vec<expr_history_def> &);
149
150 static void move_bb_info (basic_block, basic_block);
151 static void remove_empty_bb (basic_block, bool);
152 static void sel_merge_blocks (basic_block, basic_block);
153 static void sel_remove_loop_preheader (void);
154 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
155
156 static bool insn_is_the_only_one_in_bb_p (insn_t);
157 static void create_initial_data_sets (basic_block);
158
159 static void free_av_set (basic_block);
160 static void invalidate_av_set (basic_block);
161 static void extend_insn_data (void);
162 static void sel_init_new_insn (insn_t, int, int = -1);
163 static void finish_insns (void);
164 \f
165 /* Various list functions.  */
166
167 /* Copy an instruction list L.  */
168 ilist_t
169 ilist_copy (ilist_t l)
170 {
171   ilist_t head = NULL, *tailp = &head;
172
173   while (l)
174     {
175       ilist_add (tailp, ILIST_INSN (l));
176       tailp = &ILIST_NEXT (*tailp);
177       l = ILIST_NEXT (l);
178     }
179
180   return head;
181 }
182
183 /* Invert an instruction list L.  */
184 ilist_t
185 ilist_invert (ilist_t l)
186 {
187   ilist_t res = NULL;
188
189   while (l)
190     {
191       ilist_add (&res, ILIST_INSN (l));
192       l = ILIST_NEXT (l);
193     }
194
195   return res;
196 }
197
198 /* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
199 void
200 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
201 {
202   bnd_t bnd;
203
204   _list_add (lp);
205   bnd = BLIST_BND (*lp);
206
207   BND_TO (bnd) = to;
208   BND_PTR (bnd) = ptr;
209   BND_AV (bnd) = NULL;
210   BND_AV1 (bnd) = NULL;
211   BND_DC (bnd) = dc;
212 }
213
214 /* Remove the list note pointed to by LP.  */
215 void
216 blist_remove (blist_t *lp)
217 {
218   bnd_t b = BLIST_BND (*lp);
219
220   av_set_clear (&BND_AV (b));
221   av_set_clear (&BND_AV1 (b));
222   ilist_clear (&BND_PTR (b));
223
224   _list_remove (lp);
225 }
226
227 /* Init a fence tail L.  */
228 void
229 flist_tail_init (flist_tail_t l)
230 {
231   FLIST_TAIL_HEAD (l) = NULL;
232   FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
233 }
234
235 /* Try to find fence corresponding to INSN in L.  */
236 fence_t
237 flist_lookup (flist_t l, insn_t insn)
238 {
239   while (l)
240     {
241       if (FENCE_INSN (FLIST_FENCE (l)) == insn)
242         return FLIST_FENCE (l);
243
244       l = FLIST_NEXT (l);
245     }
246
247   return NULL;
248 }
249
250 /* Init the fields of F before running fill_insns.  */
251 static void
252 init_fence_for_scheduling (fence_t f)
253 {
254   FENCE_BNDS (f) = NULL;
255   FENCE_PROCESSED_P (f) = false;
256   FENCE_SCHEDULED_P (f) = false;
257 }
258
259 /* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
260 static void
261 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
262            insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
263            int *ready_ticks, int ready_ticks_size, insn_t sched_next,
264            int cycle, int cycle_issued_insns, int issue_more,
265            bool starts_cycle_p, bool after_stall_p)
266 {
267   fence_t f;
268
269   _list_add (lp);
270   f = FLIST_FENCE (*lp);
271
272   FENCE_INSN (f) = insn;
273
274   gcc_assert (state != NULL);
275   FENCE_STATE (f) = state;
276
277   FENCE_CYCLE (f) = cycle;
278   FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
279   FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
280   FENCE_AFTER_STALL_P (f) = after_stall_p;
281
282   gcc_assert (dc != NULL);
283   FENCE_DC (f) = dc;
284
285   gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
286   FENCE_TC (f) = tc;
287
288   FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
289   FENCE_ISSUE_MORE (f) = issue_more;
290   FENCE_EXECUTING_INSNS (f) = executing_insns;
291   FENCE_READY_TICKS (f) = ready_ticks;
292   FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
293   FENCE_SCHED_NEXT (f) = sched_next;
294
295   init_fence_for_scheduling (f);
296 }
297
298 /* Remove the head node of the list pointed to by LP.  */
299 static void
300 flist_remove (flist_t *lp)
301 {
302   if (FENCE_INSN (FLIST_FENCE (*lp)))
303     fence_clear (FLIST_FENCE (*lp));
304   _list_remove (lp);
305 }
306
307 /* Clear the fence list pointed to by LP.  */
308 void
309 flist_clear (flist_t *lp)
310 {
311   while (*lp)
312     flist_remove (lp);
313 }
314
315 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
316 void
317 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
318 {
319   def_t d;
320
321   _list_add (dl);
322   d = DEF_LIST_DEF (*dl);
323
324   d->orig_insn = original_insn;
325   d->crosses_call = crosses_call;
326 }
327 \f
328
329 /* Functions to work with target contexts.  */
330
331 /* Bulk target context.  It is convenient for debugging purposes to ensure
332    that there are no uninitialized (null) target contexts.  */
333 static tc_t bulk_tc = (tc_t) 1;
334
335 /* Target hooks wrappers.  In the future we can provide some default
336    implementations for them.  */
337
338 /* Allocate a store for the target context.  */
339 static tc_t
340 alloc_target_context (void)
341 {
342   return (targetm.sched.alloc_sched_context
343           ? targetm.sched.alloc_sched_context () : bulk_tc);
344 }
345
346 /* Init target context TC.
347    If CLEAN_P is true, then make TC as it is beginning of the scheduler.
348    Overwise, copy current backend context to TC.  */
349 static void
350 init_target_context (tc_t tc, bool clean_p)
351 {
352   if (targetm.sched.init_sched_context)
353     targetm.sched.init_sched_context (tc, clean_p);
354 }
355
356 /* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
357    int init_target_context ().  */
358 tc_t
359 create_target_context (bool clean_p)
360 {
361   tc_t tc = alloc_target_context ();
362
363   init_target_context (tc, clean_p);
364   return tc;
365 }
366
367 /* Copy TC to the current backend context.  */
368 void
369 set_target_context (tc_t tc)
370 {
371   if (targetm.sched.set_sched_context)
372     targetm.sched.set_sched_context (tc);
373 }
374
375 /* TC is about to be destroyed.  Free any internal data.  */
376 static void
377 clear_target_context (tc_t tc)
378 {
379   if (targetm.sched.clear_sched_context)
380     targetm.sched.clear_sched_context (tc);
381 }
382
383 /*  Clear and free it.  */
384 static void
385 delete_target_context (tc_t tc)
386 {
387   clear_target_context (tc);
388
389   if (targetm.sched.free_sched_context)
390     targetm.sched.free_sched_context (tc);
391 }
392
393 /* Make a copy of FROM in TO.
394    NB: May be this should be a hook.  */
395 static void
396 copy_target_context (tc_t to, tc_t from)
397 {
398   tc_t tmp = create_target_context (false);
399
400   set_target_context (from);
401   init_target_context (to, false);
402
403   set_target_context (tmp);
404   delete_target_context (tmp);
405 }
406
407 /* Create a copy of TC.  */
408 static tc_t
409 create_copy_of_target_context (tc_t tc)
410 {
411   tc_t copy = alloc_target_context ();
412
413   copy_target_context (copy, tc);
414
415   return copy;
416 }
417
418 /* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
419    is the same as in init_target_context ().  */
420 void
421 reset_target_context (tc_t tc, bool clean_p)
422 {
423   clear_target_context (tc);
424   init_target_context (tc, clean_p);
425 }
426 \f
427 /* Functions to work with dependence contexts.
428    Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
429    context.  It accumulates information about processed insns to decide if
430    current insn is dependent on the processed ones.  */
431
432 /* Make a copy of FROM in TO.  */
433 static void
434 copy_deps_context (deps_t to, deps_t from)
435 {
436   init_deps (to, false);
437   deps_join (to, from);
438 }
439
440 /* Allocate store for dep context.  */
441 static deps_t
442 alloc_deps_context (void)
443 {
444   return XNEW (struct deps_desc);
445 }
446
447 /* Allocate and initialize dep context.  */
448 static deps_t
449 create_deps_context (void)
450 {
451   deps_t dc = alloc_deps_context ();
452
453   init_deps (dc, false);
454   return dc;
455 }
456
457 /* Create a copy of FROM.  */
458 static deps_t
459 create_copy_of_deps_context (deps_t from)
460 {
461   deps_t to = alloc_deps_context ();
462
463   copy_deps_context (to, from);
464   return to;
465 }
466
467 /* Clean up internal data of DC.  */
468 static void
469 clear_deps_context (deps_t dc)
470 {
471   free_deps (dc);
472 }
473
474 /* Clear and free DC.  */
475 static void
476 delete_deps_context (deps_t dc)
477 {
478   clear_deps_context (dc);
479   free (dc);
480 }
481
482 /* Clear and init DC.  */
483 static void
484 reset_deps_context (deps_t dc)
485 {
486   clear_deps_context (dc);
487   init_deps (dc, false);
488 }
489
490 /* This structure describes the dependence analysis hooks for advancing
491    dependence context.  */
492 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
493   {
494     NULL,
495
496     NULL, /* start_insn */
497     NULL, /* finish_insn */
498     NULL, /* start_lhs */
499     NULL, /* finish_lhs */
500     NULL, /* start_rhs */
501     NULL, /* finish_rhs */
502     haifa_note_reg_set,
503     haifa_note_reg_clobber,
504     haifa_note_reg_use,
505     NULL, /* note_mem_dep */
506     NULL, /* note_dep */
507
508     0, 0, 0
509   };
510
511 /* Process INSN and add its impact on DC.  */
512 void
513 advance_deps_context (deps_t dc, insn_t insn)
514 {
515   sched_deps_info = &advance_deps_context_sched_deps_info;
516   deps_analyze_insn (dc, insn);
517 }
518 \f
519
520 /* Functions to work with DFA states.  */
521
522 /* Allocate store for a DFA state.  */
523 static state_t
524 state_alloc (void)
525 {
526   return xmalloc (dfa_state_size);
527 }
528
529 /* Allocate and initialize DFA state.  */
530 static state_t
531 state_create (void)
532 {
533   state_t state = state_alloc ();
534
535   state_reset (state);
536   advance_state (state);
537   return state;
538 }
539
540 /* Free DFA state.  */
541 static void
542 state_free (state_t state)
543 {
544   free (state);
545 }
546
547 /* Make a copy of FROM in TO.  */
548 static void
549 state_copy (state_t to, state_t from)
550 {
551   memcpy (to, from, dfa_state_size);
552 }
553
554 /* Create a copy of FROM.  */
555 static state_t
556 state_create_copy (state_t from)
557 {
558   state_t to = state_alloc ();
559
560   state_copy (to, from);
561   return to;
562 }
563 \f
564
565 /* Functions to work with fences.  */
566
567 /* Clear the fence.  */
568 static void
569 fence_clear (fence_t f)
570 {
571   state_t s = FENCE_STATE (f);
572   deps_t dc = FENCE_DC (f);
573   void *tc = FENCE_TC (f);
574
575   ilist_clear (&FENCE_BNDS (f));
576
577   gcc_assert ((s != NULL && dc != NULL && tc != NULL)
578               || (s == NULL && dc == NULL && tc == NULL));
579
580   free (s);
581
582   if (dc != NULL)
583     delete_deps_context (dc);
584
585   if (tc != NULL)
586     delete_target_context (tc);
587   vec_free (FENCE_EXECUTING_INSNS (f));
588   free (FENCE_READY_TICKS (f));
589   FENCE_READY_TICKS (f) = NULL;
590 }
591
592 /* Init a list of fences with successors of OLD_FENCE.  */
593 void
594 init_fences (insn_t old_fence)
595 {
596   insn_t succ;
597   succ_iterator si;
598   bool first = true;
599   int ready_ticks_size = get_max_uid () + 1;
600
601   FOR_EACH_SUCC_1 (succ, si, old_fence,
602                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
603     {
604
605       if (first)
606         first = false;
607       else
608         gcc_assert (flag_sel_sched_pipelining_outer_loops);
609
610       flist_add (&fences, succ,
611                  state_create (),
612                  create_deps_context () /* dc */,
613                  create_target_context (true) /* tc */,
614                  NULL /* last_scheduled_insn */,
615                  NULL, /* executing_insns */
616                  XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
617                  ready_ticks_size,
618                  NULL /* sched_next */,
619                  1 /* cycle */, 0 /* cycle_issued_insns */,
620                  issue_rate, /* issue_more */
621                  1 /* starts_cycle_p */, 0 /* after_stall_p */);
622     }
623 }
624
625 /* Merges two fences (filling fields of fence F with resulting values) by
626    following rules: 1) state, target context and last scheduled insn are
627    propagated from fallthrough edge if it is available;
628    2) deps context and cycle is propagated from more probable edge;
629    3) all other fields are set to corresponding constant values.
630
631    INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
632    READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
633    and AFTER_STALL_P are the corresponding fields of the second fence.  */
634 static void
635 merge_fences (fence_t f, insn_t insn,
636               state_t state, deps_t dc, void *tc,
637               rtx_insn *last_scheduled_insn,
638               vec<rtx_insn *, va_gc> *executing_insns,
639               int *ready_ticks, int ready_ticks_size,
640               rtx sched_next, int cycle, int issue_more, bool after_stall_p)
641 {
642   insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
643
644   gcc_assert (sel_bb_head_p (FENCE_INSN (f))
645               && !sched_next && !FENCE_SCHED_NEXT (f));
646
647   /* Check if we can decide which path fences came.
648      If we can't (or don't want to) - reset all.  */
649   if (last_scheduled_insn == NULL
650       || last_scheduled_insn_old == NULL
651       /* This is a case when INSN is reachable on several paths from
652          one insn (this can happen when pipelining of outer loops is on and
653          there are two edges: one going around of inner loop and the other -
654          right through it; in such case just reset everything).  */
655       || last_scheduled_insn == last_scheduled_insn_old)
656     {
657       state_reset (FENCE_STATE (f));
658       state_free (state);
659
660       reset_deps_context (FENCE_DC (f));
661       delete_deps_context (dc);
662
663       reset_target_context (FENCE_TC (f), true);
664       delete_target_context (tc);
665
666       if (cycle > FENCE_CYCLE (f))
667         FENCE_CYCLE (f) = cycle;
668
669       FENCE_LAST_SCHEDULED_INSN (f) = NULL;
670       FENCE_ISSUE_MORE (f) = issue_rate;
671       vec_free (executing_insns);
672       free (ready_ticks);
673       if (FENCE_EXECUTING_INSNS (f))
674         FENCE_EXECUTING_INSNS (f)->block_remove (0,
675                                           FENCE_EXECUTING_INSNS (f)->length ());
676       if (FENCE_READY_TICKS (f))
677         memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
678     }
679   else
680     {
681       edge edge_old = NULL, edge_new = NULL;
682       edge candidate;
683       succ_iterator si;
684       insn_t succ;
685
686       /* Find fallthrough edge.  */
687       gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
688       candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
689
690       if (!candidate
691           || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
692               && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
693         {
694           /* No fallthrough edge leading to basic block of INSN.  */
695           state_reset (FENCE_STATE (f));
696           state_free (state);
697
698           reset_target_context (FENCE_TC (f), true);
699           delete_target_context (tc);
700
701           FENCE_LAST_SCHEDULED_INSN (f) = NULL;
702           FENCE_ISSUE_MORE (f) = issue_rate;
703         }
704       else
705         if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
706           {
707             /* Would be weird if same insn is successor of several fallthrough
708                edges.  */
709             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
710                         != BLOCK_FOR_INSN (last_scheduled_insn_old));
711
712             state_free (FENCE_STATE (f));
713             FENCE_STATE (f) = state;
714
715             delete_target_context (FENCE_TC (f));
716             FENCE_TC (f) = tc;
717
718             FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
719             FENCE_ISSUE_MORE (f) = issue_more;
720           }
721         else
722           {
723             /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
724             state_free (state);
725             delete_target_context (tc);
726
727             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
728                         != BLOCK_FOR_INSN (last_scheduled_insn));
729           }
730
731         /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
732         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
733                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
734           {
735             if (succ == insn)
736               {
737                 /* No same successor allowed from several edges.  */
738                 gcc_assert (!edge_old);
739                 edge_old = si.e1;
740               }
741           }
742         /* Find edge of second predecessor (last_scheduled_insn->insn).  */
743         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
744                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
745           {
746             if (succ == insn)
747               {
748                 /* No same successor allowed from several edges.  */
749                 gcc_assert (!edge_new);
750                 edge_new = si.e1;
751               }
752           }
753
754         /* Check if we can choose most probable predecessor.  */
755         if (edge_old == NULL || edge_new == NULL)
756           {
757             reset_deps_context (FENCE_DC (f));
758             delete_deps_context (dc);
759             vec_free (executing_insns);
760             free (ready_ticks);
761
762             FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
763             if (FENCE_EXECUTING_INSNS (f))
764               FENCE_EXECUTING_INSNS (f)->block_remove (0,
765                                 FENCE_EXECUTING_INSNS (f)->length ());
766             if (FENCE_READY_TICKS (f))
767               memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
768           }
769         else
770           if (edge_new->probability > edge_old->probability)
771             {
772               delete_deps_context (FENCE_DC (f));
773               FENCE_DC (f) = dc;
774               vec_free (FENCE_EXECUTING_INSNS (f));
775               FENCE_EXECUTING_INSNS (f) = executing_insns;
776               free (FENCE_READY_TICKS (f));
777               FENCE_READY_TICKS (f) = ready_ticks;
778               FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
779               FENCE_CYCLE (f) = cycle;
780             }
781           else
782             {
783               /* Leave DC and CYCLE untouched.  */
784               delete_deps_context (dc);
785               vec_free (executing_insns);
786               free (ready_ticks);
787             }
788     }
789
790   /* Fill remaining invariant fields.  */
791   if (after_stall_p)
792     FENCE_AFTER_STALL_P (f) = 1;
793
794   FENCE_ISSUED_INSNS (f) = 0;
795   FENCE_STARTS_CYCLE_P (f) = 1;
796   FENCE_SCHED_NEXT (f) = NULL;
797 }
798
799 /* Add a new fence to NEW_FENCES list, initializing it from all
800    other parameters.  */
801 static void
802 add_to_fences (flist_tail_t new_fences, insn_t insn,
803                state_t state, deps_t dc, void *tc,
804                rtx_insn *last_scheduled_insn,
805                vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
806                int ready_ticks_size, rtx_insn *sched_next, int cycle,
807                int cycle_issued_insns, int issue_rate,
808                bool starts_cycle_p, bool after_stall_p)
809 {
810   fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
811
812   if (! f)
813     {
814       flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
815                  last_scheduled_insn, executing_insns, ready_ticks,
816                  ready_ticks_size, sched_next, cycle, cycle_issued_insns,
817                  issue_rate, starts_cycle_p, after_stall_p);
818
819       FLIST_TAIL_TAILP (new_fences)
820         = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
821     }
822   else
823     {
824       merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
825                     executing_insns, ready_ticks, ready_ticks_size,
826                     sched_next, cycle, issue_rate, after_stall_p);
827     }
828 }
829
830 /* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
831 void
832 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
833 {
834   fence_t f, old;
835   flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
836
837   old = FLIST_FENCE (old_fences);
838   f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
839                     FENCE_INSN (FLIST_FENCE (old_fences)));
840   if (f)
841     {
842       merge_fences (f, old->insn, old->state, old->dc, old->tc,
843                     old->last_scheduled_insn, old->executing_insns,
844                     old->ready_ticks, old->ready_ticks_size,
845                     old->sched_next, old->cycle, old->issue_more,
846                     old->after_stall_p);
847     }
848   else
849     {
850       _list_add (tailp);
851       FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
852       *FLIST_FENCE (*tailp) = *old;
853       init_fence_for_scheduling (FLIST_FENCE (*tailp));
854     }
855   FENCE_INSN (old) = NULL;
856 }
857
858 /* Add a new fence to NEW_FENCES list and initialize most of its data
859    as a clean one.  */
860 void
861 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
862 {
863   int ready_ticks_size = get_max_uid () + 1;
864
865   add_to_fences (new_fences,
866                  succ, state_create (), create_deps_context (),
867                  create_target_context (true),
868                  NULL, NULL,
869                  XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
870                  NULL, FENCE_CYCLE (fence) + 1,
871                  0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
872 }
873
874 /* Add a new fence to NEW_FENCES list and initialize all of its data
875    from FENCE and SUCC.  */
876 void
877 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
878 {
879   int * new_ready_ticks
880     = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
881
882   memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
883           FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
884   add_to_fences (new_fences,
885                  succ, state_create_copy (FENCE_STATE (fence)),
886                  create_copy_of_deps_context (FENCE_DC (fence)),
887                  create_copy_of_target_context (FENCE_TC (fence)),
888                  FENCE_LAST_SCHEDULED_INSN (fence),
889                  vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
890                  new_ready_ticks,
891                  FENCE_READY_TICKS_SIZE (fence),
892                  FENCE_SCHED_NEXT (fence),
893                  FENCE_CYCLE (fence),
894                  FENCE_ISSUED_INSNS (fence),
895                  FENCE_ISSUE_MORE (fence),
896                  FENCE_STARTS_CYCLE_P (fence),
897                  FENCE_AFTER_STALL_P (fence));
898 }
899 \f
900
901 /* Functions to work with regset and nop pools.  */
902
903 /* Returns the new regset from pool.  It might have some of the bits set
904    from the previous usage.  */
905 regset
906 get_regset_from_pool (void)
907 {
908   regset rs;
909
910   if (regset_pool.n != 0)
911     rs = regset_pool.v[--regset_pool.n];
912   else
913     /* We need to create the regset.  */
914     {
915       rs = ALLOC_REG_SET (&reg_obstack);
916
917       if (regset_pool.nn == regset_pool.ss)
918         regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
919                                      (regset_pool.ss = 2 * regset_pool.ss + 1));
920       regset_pool.vv[regset_pool.nn++] = rs;
921     }
922
923   regset_pool.diff++;
924
925   return rs;
926 }
927
928 /* Same as above, but returns the empty regset.  */
929 regset
930 get_clear_regset_from_pool (void)
931 {
932   regset rs = get_regset_from_pool ();
933
934   CLEAR_REG_SET (rs);
935   return rs;
936 }
937
938 /* Return regset RS to the pool for future use.  */
939 void
940 return_regset_to_pool (regset rs)
941 {
942   gcc_assert (rs);
943   regset_pool.diff--;
944
945   if (regset_pool.n == regset_pool.s)
946     regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
947                                 (regset_pool.s = 2 * regset_pool.s + 1));
948   regset_pool.v[regset_pool.n++] = rs;
949 }
950
951 /* This is used as a qsort callback for sorting regset pool stacks.
952    X and XX are addresses of two regsets.  They are never equal.  */
953 static int
954 cmp_v_in_regset_pool (const void *x, const void *xx)
955 {
956   uintptr_t r1 = (uintptr_t) *((const regset *) x);
957   uintptr_t r2 = (uintptr_t) *((const regset *) xx);
958   if (r1 > r2)
959     return 1;
960   else if (r1 < r2)
961     return -1;
962   gcc_unreachable ();
963 }
964
965 /* Free the regset pool possibly checking for memory leaks.  */
966 void
967 free_regset_pool (void)
968 {
969   if (flag_checking)
970     {
971       regset *v = regset_pool.v;
972       int i = 0;
973       int n = regset_pool.n;
974
975       regset *vv = regset_pool.vv;
976       int ii = 0;
977       int nn = regset_pool.nn;
978
979       int diff = 0;
980
981       gcc_assert (n <= nn);
982
983       /* Sort both vectors so it will be possible to compare them.  */
984       qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
985       qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
986
987       while (ii < nn)
988         {
989           if (v[i] == vv[ii])
990             i++;
991           else
992             /* VV[II] was lost.  */
993             diff++;
994
995           ii++;
996         }
997
998       gcc_assert (diff == regset_pool.diff);
999     }
1000
1001   /* If not true - we have a memory leak.  */
1002   gcc_assert (regset_pool.diff == 0);
1003
1004   while (regset_pool.n)
1005     {
1006       --regset_pool.n;
1007       FREE_REG_SET (regset_pool.v[regset_pool.n]);
1008     }
1009
1010   free (regset_pool.v);
1011   regset_pool.v = NULL;
1012   regset_pool.s = 0;
1013
1014   free (regset_pool.vv);
1015   regset_pool.vv = NULL;
1016   regset_pool.nn = 0;
1017   regset_pool.ss = 0;
1018
1019   regset_pool.diff = 0;
1020 }
1021 \f
1022
1023 /* Functions to work with nop pools.  NOP insns are used as temporary
1024    placeholders of the insns being scheduled to allow correct update of
1025    the data sets.  When update is finished, NOPs are deleted.  */
1026
1027 /* A vinsn that is used to represent a nop.  This vinsn is shared among all
1028    nops sel-sched generates.  */
1029 static vinsn_t nop_vinsn = NULL;
1030
1031 /* Emit a nop before INSN, taking it from pool.  */
1032 insn_t
1033 get_nop_from_pool (insn_t insn)
1034 {
1035   rtx nop_pat;
1036   insn_t nop;
1037   bool old_p = nop_pool.n != 0;
1038   int flags;
1039
1040   if (old_p)
1041     nop_pat = nop_pool.v[--nop_pool.n];
1042   else
1043     nop_pat = nop_pattern;
1044
1045   nop = emit_insn_before (nop_pat, insn);
1046
1047   if (old_p)
1048     flags = INSN_INIT_TODO_SSID;
1049   else
1050     flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1051
1052   set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1053   sel_init_new_insn (nop, flags);
1054
1055   return nop;
1056 }
1057
1058 /* Remove NOP from the instruction stream and return it to the pool.  */
1059 void
1060 return_nop_to_pool (insn_t nop, bool full_tidying)
1061 {
1062   gcc_assert (INSN_IN_STREAM_P (nop));
1063   sel_remove_insn (nop, false, full_tidying);
1064
1065   /* We'll recycle this nop.  */
1066   nop->set_undeleted ();
1067
1068   if (nop_pool.n == nop_pool.s)
1069     nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1070                              (nop_pool.s = 2 * nop_pool.s + 1));
1071   nop_pool.v[nop_pool.n++] = nop;
1072 }
1073
1074 /* Free the nop pool.  */
1075 void
1076 free_nop_pool (void)
1077 {
1078   nop_pool.n = 0;
1079   nop_pool.s = 0;
1080   free (nop_pool.v);
1081   nop_pool.v = NULL;
1082 }
1083 \f
1084
1085 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1086    The callback is given two rtxes XX and YY and writes the new rtxes
1087    to NX and NY in case some needs to be skipped.  */
1088 static int
1089 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1090 {
1091   const_rtx x = *xx;
1092   const_rtx y = *yy;
1093
1094   if (GET_CODE (x) == UNSPEC
1095       && (targetm.sched.skip_rtx_p == NULL
1096           || targetm.sched.skip_rtx_p (x)))
1097     {
1098       *nx = XVECEXP (x, 0, 0);
1099       *ny = CONST_CAST_RTX (y);
1100       return 1;
1101     }
1102
1103   if (GET_CODE (y) == UNSPEC
1104       && (targetm.sched.skip_rtx_p == NULL
1105           || targetm.sched.skip_rtx_p (y)))
1106     {
1107       *nx = CONST_CAST_RTX (x);
1108       *ny = XVECEXP (y, 0, 0);
1109       return 1;
1110     }
1111
1112   return 0;
1113 }
1114
1115 /* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1116    to support ia64 speculation.  When changes are needed, new rtx X and new mode
1117    NMODE are written, and the callback returns true.  */
1118 static int
1119 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1120                            rtx *nx, machine_mode* nmode)
1121 {
1122   if (GET_CODE (x) == UNSPEC
1123       && targetm.sched.skip_rtx_p
1124       && targetm.sched.skip_rtx_p (x))
1125     {
1126       *nx = XVECEXP (x, 0 ,0);
1127       *nmode = VOIDmode;
1128       return 1;
1129     }
1130
1131   return 0;
1132 }
1133
1134 /* Returns LHS and RHS are ok to be scheduled separately.  */
1135 static bool
1136 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1137 {
1138   if (lhs == NULL || rhs == NULL)
1139     return false;
1140
1141   /* Do not schedule constants as rhs: no point to use reg, if const
1142      can be used.  Moreover, scheduling const as rhs may lead to mode
1143      mismatch cause consts don't have modes but they could be merged
1144      from branches where the same const used in different modes.  */
1145   if (CONSTANT_P (rhs))
1146     return false;
1147
1148   /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1149   if (COMPARISON_P (rhs))
1150       return false;
1151
1152   /* Do not allow single REG to be an rhs.  */
1153   if (REG_P (rhs))
1154     return false;
1155
1156   /* See comment at find_used_regs_1 (*1) for explanation of this
1157      restriction.  */
1158   /* FIXME: remove this later.  */
1159   if (MEM_P (lhs))
1160     return false;
1161
1162   /* This will filter all tricky things like ZERO_EXTRACT etc.
1163      For now we don't handle it.  */
1164   if (!REG_P (lhs) && !MEM_P (lhs))
1165     return false;
1166
1167   return true;
1168 }
1169
1170 /* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1171    FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1172    used e.g. for insns from recovery blocks.  */
1173 static void
1174 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1175 {
1176   hash_rtx_callback_function hrcf;
1177   int insn_class;
1178
1179   VINSN_INSN_RTX (vi) = insn;
1180   VINSN_COUNT (vi) = 0;
1181   vi->cost = -1;
1182
1183   if (INSN_NOP_P (insn))
1184     return;
1185
1186   if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1187     init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1188   else
1189     deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1190
1191   /* Hash vinsn depending on whether it is separable or not.  */
1192   hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1193   if (VINSN_SEPARABLE_P (vi))
1194     {
1195       rtx rhs = VINSN_RHS (vi);
1196
1197       VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1198                                      NULL, NULL, false, hrcf);
1199       VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1200                                          VOIDmode, NULL, NULL,
1201                                          false, hrcf);
1202     }
1203   else
1204     {
1205       VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1206                                      NULL, NULL, false, hrcf);
1207       VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1208     }
1209
1210   insn_class = haifa_classify_insn (insn);
1211   if (insn_class >= 2
1212       && (!targetm.sched.get_insn_spec_ds
1213           || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1214               == 0)))
1215     VINSN_MAY_TRAP_P (vi) = true;
1216   else
1217     VINSN_MAY_TRAP_P (vi) = false;
1218 }
1219
1220 /* Indicate that VI has become the part of an rtx object.  */
1221 void
1222 vinsn_attach (vinsn_t vi)
1223 {
1224   /* Assert that VI is not pending for deletion.  */
1225   gcc_assert (VINSN_INSN_RTX (vi));
1226
1227   VINSN_COUNT (vi)++;
1228 }
1229
1230 /* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1231    VINSN_TYPE (VI).  */
1232 static vinsn_t
1233 vinsn_create (insn_t insn, bool force_unique_p)
1234 {
1235   vinsn_t vi = XCNEW (struct vinsn_def);
1236
1237   vinsn_init (vi, insn, force_unique_p);
1238   return vi;
1239 }
1240
1241 /* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1242    the copy.  */
1243 vinsn_t
1244 vinsn_copy (vinsn_t vi, bool reattach_p)
1245 {
1246   rtx_insn *copy;
1247   bool unique = VINSN_UNIQUE_P (vi);
1248   vinsn_t new_vi;
1249
1250   copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1251   new_vi = create_vinsn_from_insn_rtx (copy, unique);
1252   if (reattach_p)
1253     {
1254       vinsn_detach (vi);
1255       vinsn_attach (new_vi);
1256     }
1257
1258   return new_vi;
1259 }
1260
1261 /* Delete the VI vinsn and free its data.  */
1262 static void
1263 vinsn_delete (vinsn_t vi)
1264 {
1265   gcc_assert (VINSN_COUNT (vi) == 0);
1266
1267   if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1268     {
1269       return_regset_to_pool (VINSN_REG_SETS (vi));
1270       return_regset_to_pool (VINSN_REG_USES (vi));
1271       return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1272     }
1273
1274   free (vi);
1275 }
1276
1277 /* Indicate that VI is no longer a part of some rtx object.
1278    Remove VI if it is no longer needed.  */
1279 void
1280 vinsn_detach (vinsn_t vi)
1281 {
1282   gcc_assert (VINSN_COUNT (vi) > 0);
1283
1284   if (--VINSN_COUNT (vi) == 0)
1285     vinsn_delete (vi);
1286 }
1287
1288 /* Returns TRUE if VI is a branch.  */
1289 bool
1290 vinsn_cond_branch_p (vinsn_t vi)
1291 {
1292   insn_t insn;
1293
1294   if (!VINSN_UNIQUE_P (vi))
1295     return false;
1296
1297   insn = VINSN_INSN_RTX (vi);
1298   if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1299     return false;
1300
1301   return control_flow_insn_p (insn);
1302 }
1303
1304 /* Return latency of INSN.  */
1305 static int
1306 sel_insn_rtx_cost (rtx_insn *insn)
1307 {
1308   int cost;
1309
1310   /* A USE insn, or something else we don't need to
1311      understand.  We can't pass these directly to
1312      result_ready_cost or insn_default_latency because it will
1313      trigger a fatal error for unrecognizable insns.  */
1314   if (recog_memoized (insn) < 0)
1315     cost = 0;
1316   else
1317     {
1318       cost = insn_default_latency (insn);
1319
1320       if (cost < 0)
1321         cost = 0;
1322     }
1323
1324   return cost;
1325 }
1326
1327 /* Return the cost of the VI.
1328    !!! FIXME: Unify with haifa-sched.c: insn_cost ().  */
1329 int
1330 sel_vinsn_cost (vinsn_t vi)
1331 {
1332   int cost = vi->cost;
1333
1334   if (cost < 0)
1335     {
1336       cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1337       vi->cost = cost;
1338     }
1339
1340   return cost;
1341 }
1342 \f
1343
1344 /* Functions for insn emitting.  */
1345
1346 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1347    EXPR and SEQNO.  */
1348 insn_t
1349 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1350 {
1351   insn_t new_insn;
1352
1353   gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1354
1355   new_insn = emit_insn_after (pattern, after);
1356   set_insn_init (expr, NULL, seqno);
1357   sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1358
1359   return new_insn;
1360 }
1361
1362 /* Force newly generated vinsns to be unique.  */
1363 static bool init_insn_force_unique_p = false;
1364
1365 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1366    initialize its data from EXPR and SEQNO.  */
1367 insn_t
1368 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1369                                       insn_t after)
1370 {
1371   insn_t insn;
1372
1373   gcc_assert (!init_insn_force_unique_p);
1374
1375   init_insn_force_unique_p = true;
1376   insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1377   CANT_MOVE (insn) = 1;
1378   init_insn_force_unique_p = false;
1379
1380   return insn;
1381 }
1382
1383 /* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1384    take it as a new vinsn instead of EXPR's vinsn.
1385    We simplify insns later, after scheduling region in
1386    simplify_changed_insns.  */
1387 insn_t
1388 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1389                               insn_t after)
1390 {
1391   expr_t emit_expr;
1392   insn_t insn;
1393   int flags;
1394
1395   emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1396                              seqno);
1397   insn = EXPR_INSN_RTX (emit_expr);
1398
1399   /* The insn may come from the transformation cache, which may hold already
1400      deleted insns, so mark it as not deleted.  */
1401   insn->set_undeleted ();
1402
1403   add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1404
1405   flags = INSN_INIT_TODO_SSID;
1406   if (INSN_LUID (insn) == 0)
1407     flags |= INSN_INIT_TODO_LUID;
1408   sel_init_new_insn (insn, flags);
1409
1410   return insn;
1411 }
1412
1413 /* Move insn from EXPR after AFTER.  */
1414 insn_t
1415 sel_move_insn (expr_t expr, int seqno, insn_t after)
1416 {
1417   insn_t insn = EXPR_INSN_RTX (expr);
1418   basic_block bb = BLOCK_FOR_INSN (after);
1419   insn_t next = NEXT_INSN (after);
1420
1421   /* Assert that in move_op we disconnected this insn properly.  */
1422   gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1423   SET_PREV_INSN (insn) = after;
1424   SET_NEXT_INSN (insn) = next;
1425
1426   SET_NEXT_INSN (after) = insn;
1427   SET_PREV_INSN (next) = insn;
1428
1429   /* Update links from insn to bb and vice versa.  */
1430   df_insn_change_bb (insn, bb);
1431   if (BB_END (bb) == after)
1432     BB_END (bb) = insn;
1433
1434   prepare_insn_expr (insn, seqno);
1435   return insn;
1436 }
1437
1438 \f
1439 /* Functions to work with right-hand sides.  */
1440
1441 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1442    VECT and return true when found.  Use NEW_VINSN for comparison only when
1443    COMPARE_VINSNS is true.  Write to INDP the index on which
1444    the search has stopped, such that inserting the new element at INDP will
1445    retain VECT's sort order.  */
1446 static bool
1447 find_in_history_vect_1 (vec<expr_history_def> vect,
1448                         unsigned uid, vinsn_t new_vinsn,
1449                         bool compare_vinsns, int *indp)
1450 {
1451   expr_history_def *arr;
1452   int i, j, len = vect.length ();
1453
1454   if (len == 0)
1455     {
1456       *indp = 0;
1457       return false;
1458     }
1459
1460   arr = vect.address ();
1461   i = 0, j = len - 1;
1462
1463   while (i <= j)
1464     {
1465       unsigned auid = arr[i].uid;
1466       vinsn_t avinsn = arr[i].new_expr_vinsn;
1467
1468       if (auid == uid
1469           /* When undoing transformation on a bookkeeping copy, the new vinsn
1470              may not be exactly equal to the one that is saved in the vector.
1471              This is because the insn whose copy we're checking was possibly
1472              substituted itself.  */
1473           && (! compare_vinsns
1474               || vinsn_equal_p (avinsn, new_vinsn)))
1475         {
1476           *indp = i;
1477           return true;
1478         }
1479       else if (auid > uid)
1480         break;
1481       i++;
1482     }
1483
1484   *indp = i;
1485   return false;
1486 }
1487
1488 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1489    the position found or -1, if no such value is in vector.
1490    Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1491 int
1492 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1493                       vinsn_t new_vinsn, bool originators_p)
1494 {
1495   int ind;
1496
1497   if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1498                               false, &ind))
1499     return ind;
1500
1501   if (INSN_ORIGINATORS (insn) && originators_p)
1502     {
1503       unsigned uid;
1504       bitmap_iterator bi;
1505
1506       EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1507         if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1508           return ind;
1509     }
1510
1511   return -1;
1512 }
1513
1514 /* Insert new element in a sorted history vector pointed to by PVECT,
1515    if it is not there already.  The element is searched using
1516    UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1517    the history of a transformation.  */
1518 void
1519 insert_in_history_vect (vec<expr_history_def> *pvect,
1520                         unsigned uid, enum local_trans_type type,
1521                         vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1522                         ds_t spec_ds)
1523 {
1524   vec<expr_history_def> vect = *pvect;
1525   expr_history_def temp;
1526   bool res;
1527   int ind;
1528
1529   res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1530
1531   if (res)
1532     {
1533       expr_history_def *phist = &vect[ind];
1534
1535       /* It is possible that speculation types of expressions that were
1536          propagated through different paths will be different here.  In this
1537          case, merge the status to get the correct check later.  */
1538       if (phist->spec_ds != spec_ds)
1539         phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1540       return;
1541     }
1542
1543   temp.uid = uid;
1544   temp.old_expr_vinsn = old_expr_vinsn;
1545   temp.new_expr_vinsn = new_expr_vinsn;
1546   temp.spec_ds = spec_ds;
1547   temp.type = type;
1548
1549   vinsn_attach (old_expr_vinsn);
1550   vinsn_attach (new_expr_vinsn);
1551   vect.safe_insert (ind, temp);
1552   *pvect = vect;
1553 }
1554
1555 /* Free history vector PVECT.  */
1556 static void
1557 free_history_vect (vec<expr_history_def> &pvect)
1558 {
1559   unsigned i;
1560   expr_history_def *phist;
1561
1562   if (! pvect.exists ())
1563     return;
1564
1565   for (i = 0; pvect.iterate (i, &phist); i++)
1566     {
1567       vinsn_detach (phist->old_expr_vinsn);
1568       vinsn_detach (phist->new_expr_vinsn);
1569     }
1570
1571   pvect.release ();
1572 }
1573
1574 /* Merge vector FROM to PVECT.  */
1575 static void
1576 merge_history_vect (vec<expr_history_def> *pvect,
1577                     vec<expr_history_def> from)
1578 {
1579   expr_history_def *phist;
1580   int i;
1581
1582   /* We keep this vector sorted.  */
1583   for (i = 0; from.iterate (i, &phist); i++)
1584     insert_in_history_vect (pvect, phist->uid, phist->type,
1585                             phist->old_expr_vinsn, phist->new_expr_vinsn,
1586                             phist->spec_ds);
1587 }
1588
1589 /* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1590 bool
1591 vinsn_equal_p (vinsn_t x, vinsn_t y)
1592 {
1593   rtx_equal_p_callback_function repcf;
1594
1595   if (x == y)
1596     return true;
1597
1598   if (VINSN_TYPE (x) != VINSN_TYPE (y))
1599     return false;
1600
1601   if (VINSN_HASH (x) != VINSN_HASH (y))
1602     return false;
1603
1604   repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1605   if (VINSN_SEPARABLE_P (x))
1606     {
1607       /* Compare RHSes of VINSNs.  */
1608       gcc_assert (VINSN_RHS (x));
1609       gcc_assert (VINSN_RHS (y));
1610
1611       return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1612     }
1613
1614   return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1615 }
1616 \f
1617
1618 /* Functions for working with expressions.  */
1619
1620 /* Initialize EXPR.  */
1621 static void
1622 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1623            int sched_times, int orig_bb_index, ds_t spec_done_ds,
1624            ds_t spec_to_check_ds, int orig_sched_cycle,
1625            vec<expr_history_def> history,
1626            signed char target_available,
1627            bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1628            bool cant_move)
1629 {
1630   vinsn_attach (vi);
1631
1632   EXPR_VINSN (expr) = vi;
1633   EXPR_SPEC (expr) = spec;
1634   EXPR_USEFULNESS (expr) = use;
1635   EXPR_PRIORITY (expr) = priority;
1636   EXPR_PRIORITY_ADJ (expr) = 0;
1637   EXPR_SCHED_TIMES (expr) = sched_times;
1638   EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1639   EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1640   EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1641   EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1642
1643   if (history.exists ())
1644     EXPR_HISTORY_OF_CHANGES (expr) = history;
1645   else
1646     EXPR_HISTORY_OF_CHANGES (expr).create (0);
1647
1648   EXPR_TARGET_AVAILABLE (expr) = target_available;
1649   EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1650   EXPR_WAS_RENAMED (expr) = was_renamed;
1651   EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1652   EXPR_CANT_MOVE (expr) = cant_move;
1653 }
1654
1655 /* Make a copy of the expr FROM into the expr TO.  */
1656 void
1657 copy_expr (expr_t to, expr_t from)
1658 {
1659   vec<expr_history_def> temp = vNULL;
1660
1661   if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1662     {
1663       unsigned i;
1664       expr_history_def *phist;
1665
1666       temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1667       for (i = 0;
1668            temp.iterate (i, &phist);
1669            i++)
1670         {
1671           vinsn_attach (phist->old_expr_vinsn);
1672           vinsn_attach (phist->new_expr_vinsn);
1673         }
1674     }
1675
1676   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1677              EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1678              EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1679              EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1680              EXPR_ORIG_SCHED_CYCLE (from), temp,
1681              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1682              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1683              EXPR_CANT_MOVE (from));
1684 }
1685
1686 /* Same, but the final expr will not ever be in av sets, so don't copy
1687    "uninteresting" data such as bitmap cache.  */
1688 void
1689 copy_expr_onside (expr_t to, expr_t from)
1690 {
1691   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1692              EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1693              EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1694              vNULL,
1695              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1696              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1697              EXPR_CANT_MOVE (from));
1698 }
1699
1700 /* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1701    initializing new insns.  */
1702 static void
1703 prepare_insn_expr (insn_t insn, int seqno)
1704 {
1705   expr_t expr = INSN_EXPR (insn);
1706   ds_t ds;
1707
1708   INSN_SEQNO (insn) = seqno;
1709   EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1710   EXPR_SPEC (expr) = 0;
1711   EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1712   EXPR_WAS_SUBSTITUTED (expr) = 0;
1713   EXPR_WAS_RENAMED (expr) = 0;
1714   EXPR_TARGET_AVAILABLE (expr) = 1;
1715   INSN_LIVE_VALID_P (insn) = false;
1716
1717   /* ??? If this expression is speculative, make its dependence
1718      as weak as possible.  We can filter this expression later
1719      in process_spec_exprs, because we do not distinguish
1720      between the status we got during compute_av_set and the
1721      existing status.  To be fixed.  */
1722   ds = EXPR_SPEC_DONE_DS (expr);
1723   if (ds)
1724     EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1725
1726   free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1727 }
1728
1729 /* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1730    is non-null when expressions are merged from different successors at
1731    a split point.  */
1732 static void
1733 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1734 {
1735   if (EXPR_TARGET_AVAILABLE (to) < 0
1736       || EXPR_TARGET_AVAILABLE (from) < 0)
1737     EXPR_TARGET_AVAILABLE (to) = -1;
1738   else
1739     {
1740       /* We try to detect the case when one of the expressions
1741          can only be reached through another one.  In this case,
1742          we can do better.  */
1743       if (split_point == NULL)
1744         {
1745           int toind, fromind;
1746
1747           toind = EXPR_ORIG_BB_INDEX (to);
1748           fromind = EXPR_ORIG_BB_INDEX (from);
1749
1750           if (toind && toind == fromind)
1751             /* Do nothing -- everything is done in
1752                merge_with_other_exprs.  */
1753             ;
1754           else
1755             EXPR_TARGET_AVAILABLE (to) = -1;
1756         }
1757       else if (EXPR_TARGET_AVAILABLE (from) == 0
1758                && EXPR_LHS (from)
1759                && REG_P (EXPR_LHS (from))
1760                && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1761         EXPR_TARGET_AVAILABLE (to) = -1;
1762       else
1763         EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1764     }
1765 }
1766
1767 /* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1768    is non-null when expressions are merged from different successors at
1769    a split point.  */
1770 static void
1771 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1772 {
1773   ds_t old_to_ds, old_from_ds;
1774
1775   old_to_ds = EXPR_SPEC_DONE_DS (to);
1776   old_from_ds = EXPR_SPEC_DONE_DS (from);
1777
1778   EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1779   EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1780   EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1781
1782   /* When merging e.g. control & data speculative exprs, or a control
1783      speculative with a control&data speculative one, we really have
1784      to change vinsn too.  Also, when speculative status is changed,
1785      we also need to record this as a transformation in expr's history.  */
1786   if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1787     {
1788       old_to_ds = ds_get_speculation_types (old_to_ds);
1789       old_from_ds = ds_get_speculation_types (old_from_ds);
1790
1791       if (old_to_ds != old_from_ds)
1792         {
1793           ds_t record_ds;
1794
1795           /* When both expressions are speculative, we need to change
1796              the vinsn first.  */
1797           if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1798             {
1799               int res;
1800
1801               res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1802               gcc_assert (res >= 0);
1803             }
1804
1805           if (split_point != NULL)
1806             {
1807               /* Record the change with proper status.  */
1808               record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1809               record_ds &= ~(old_to_ds & SPECULATIVE);
1810               record_ds &= ~(old_from_ds & SPECULATIVE);
1811
1812               insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1813                                       INSN_UID (split_point), TRANS_SPECULATION,
1814                                       EXPR_VINSN (from), EXPR_VINSN (to),
1815                                       record_ds);
1816             }
1817         }
1818     }
1819 }
1820
1821
1822 /* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1823    this is done along different paths.  */
1824 void
1825 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1826 {
1827   /* Choose the maximum of the specs of merged exprs.  This is required
1828      for correctness of bookkeeping.  */
1829   if (EXPR_SPEC (to) < EXPR_SPEC (from))
1830     EXPR_SPEC (to) = EXPR_SPEC (from);
1831
1832   if (split_point)
1833     EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1834   else
1835     EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1836                                 EXPR_USEFULNESS (from));
1837
1838   if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1839     EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1840
1841   if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1842     EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1843
1844   if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1845     EXPR_ORIG_BB_INDEX (to) = 0;
1846
1847   EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1848                                     EXPR_ORIG_SCHED_CYCLE (from));
1849
1850   EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1851   EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1852   EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1853
1854   merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1855                       EXPR_HISTORY_OF_CHANGES (from));
1856   update_target_availability (to, from, split_point);
1857   update_speculative_bits (to, from, split_point);
1858 }
1859
1860 /* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1861    in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1862    are merged from different successors at a split point.  */
1863 void
1864 merge_expr (expr_t to, expr_t from, insn_t split_point)
1865 {
1866   vinsn_t to_vi = EXPR_VINSN (to);
1867   vinsn_t from_vi = EXPR_VINSN (from);
1868
1869   gcc_assert (vinsn_equal_p (to_vi, from_vi));
1870
1871   /* Make sure that speculative pattern is propagated into exprs that
1872      have non-speculative one.  This will provide us with consistent
1873      speculative bits and speculative patterns inside expr.  */
1874   if (EXPR_SPEC_DONE_DS (to) == 0
1875       && (EXPR_SPEC_DONE_DS (from) != 0
1876           /* Do likewise for volatile insns, so that we always retain
1877              the may_trap_p bit on the resulting expression.  However,
1878              avoid propagating the trapping bit into the instructions
1879              already speculated.  This would result in replacing the
1880              speculative pattern with the non-speculative one and breaking
1881              the speculation support.  */
1882           || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1883               && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1884     change_vinsn_in_expr (to, EXPR_VINSN (from));
1885
1886   merge_expr_data (to, from, split_point);
1887   gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1888 }
1889
1890 /* Clear the information of this EXPR.  */
1891 void
1892 clear_expr (expr_t expr)
1893 {
1894
1895   vinsn_detach (EXPR_VINSN (expr));
1896   EXPR_VINSN (expr) = NULL;
1897
1898   free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1899 }
1900
1901 /* For a given LV_SET, mark EXPR having unavailable target register.  */
1902 static void
1903 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1904 {
1905   if (EXPR_SEPARABLE_P (expr))
1906     {
1907       if (REG_P (EXPR_LHS (expr))
1908           && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1909         {
1910           /* If it's an insn like r1 = use (r1, ...), and it exists in
1911              different forms in each of the av_sets being merged, we can't say
1912              whether original destination register is available or not.
1913              However, this still works if destination register is not used
1914              in the original expression: if the branch at which LV_SET we're
1915              looking here is not actually 'other branch' in sense that same
1916              expression is available through it (but it can't be determined
1917              at computation stage because of transformations on one of the
1918              branches), it still won't affect the availability.
1919              Liveness of a register somewhere on a code motion path means
1920              it's either read somewhere on a codemotion path, live on
1921              'other' branch, live at the point immediately following
1922              the original operation, or is read by the original operation.
1923              The latter case is filtered out in the condition below.
1924              It still doesn't cover the case when register is defined and used
1925              somewhere within the code motion path, and in this case we could
1926              miss a unifying code motion along both branches using a renamed
1927              register, but it won't affect a code correctness since upon
1928              an actual code motion a bookkeeping code would be generated.  */
1929           if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1930                                       EXPR_LHS (expr)))
1931             EXPR_TARGET_AVAILABLE (expr) = -1;
1932           else
1933             EXPR_TARGET_AVAILABLE (expr) = false;
1934         }
1935     }
1936   else
1937     {
1938       unsigned regno;
1939       reg_set_iterator rsi;
1940
1941       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1942                                  0, regno, rsi)
1943         if (bitmap_bit_p (lv_set, regno))
1944           {
1945             EXPR_TARGET_AVAILABLE (expr) = false;
1946             break;
1947           }
1948
1949       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1950                                  0, regno, rsi)
1951         if (bitmap_bit_p (lv_set, regno))
1952           {
1953             EXPR_TARGET_AVAILABLE (expr) = false;
1954             break;
1955           }
1956     }
1957 }
1958
1959 /* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1960    or dependence status have changed, 2 when also the target register
1961    became unavailable, 0 if nothing had to be changed.  */
1962 int
1963 speculate_expr (expr_t expr, ds_t ds)
1964 {
1965   int res;
1966   rtx_insn *orig_insn_rtx;
1967   rtx spec_pat;
1968   ds_t target_ds, current_ds;
1969
1970   /* Obtain the status we need to put on EXPR.   */
1971   target_ds = (ds & SPECULATIVE);
1972   current_ds = EXPR_SPEC_DONE_DS (expr);
1973   ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1974
1975   orig_insn_rtx = EXPR_INSN_RTX (expr);
1976
1977   res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1978
1979   switch (res)
1980     {
1981     case 0:
1982       EXPR_SPEC_DONE_DS (expr) = ds;
1983       return current_ds != ds ? 1 : 0;
1984
1985     case 1:
1986       {
1987         rtx_insn *spec_insn_rtx =
1988           create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1989         vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1990
1991         change_vinsn_in_expr (expr, spec_vinsn);
1992         EXPR_SPEC_DONE_DS (expr) = ds;
1993         EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1994
1995         /* Do not allow clobbering the address register of speculative
1996            insns.  */
1997         if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1998                                     expr_dest_reg (expr)))
1999           {
2000             EXPR_TARGET_AVAILABLE (expr) = false;
2001             return 2;
2002           }
2003
2004         return 1;
2005       }
2006
2007     case -1:
2008       return -1;
2009
2010     default:
2011       gcc_unreachable ();
2012       return -1;
2013     }
2014 }
2015
2016 /* Return a destination register, if any, of EXPR.  */
2017 rtx
2018 expr_dest_reg (expr_t expr)
2019 {
2020   rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2021
2022   if (dest != NULL_RTX && REG_P (dest))
2023     return dest;
2024
2025   return NULL_RTX;
2026 }
2027
2028 /* Returns the REGNO of the R's destination.  */
2029 unsigned
2030 expr_dest_regno (expr_t expr)
2031 {
2032   rtx dest = expr_dest_reg (expr);
2033
2034   gcc_assert (dest != NULL_RTX);
2035   return REGNO (dest);
2036 }
2037
2038 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2039    AV_SET having unavailable target register.  */
2040 void
2041 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2042 {
2043   expr_t expr;
2044   av_set_iterator avi;
2045
2046   FOR_EACH_EXPR (expr, avi, join_set)
2047     if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2048       set_unavailable_target_for_expr (expr, lv_set);
2049 }
2050 \f
2051
2052 /* Returns true if REG (at least partially) is present in REGS.  */
2053 bool
2054 register_unavailable_p (regset regs, rtx reg)
2055 {
2056   unsigned regno, end_regno;
2057
2058   regno = REGNO (reg);
2059   if (bitmap_bit_p (regs, regno))
2060     return true;
2061
2062   end_regno = END_REGNO (reg);
2063
2064   while (++regno < end_regno)
2065     if (bitmap_bit_p (regs, regno))
2066       return true;
2067
2068   return false;
2069 }
2070
2071 /* Av set functions.  */
2072
2073 /* Add a new element to av set SETP.
2074    Return the element added.  */
2075 static av_set_t
2076 av_set_add_element (av_set_t *setp)
2077 {
2078   /* Insert at the beginning of the list.  */
2079   _list_add (setp);
2080   return *setp;
2081 }
2082
2083 /* Add EXPR to SETP.  */
2084 void
2085 av_set_add (av_set_t *setp, expr_t expr)
2086 {
2087   av_set_t elem;
2088
2089   gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2090   elem = av_set_add_element (setp);
2091   copy_expr (_AV_SET_EXPR (elem), expr);
2092 }
2093
2094 /* Same, but do not copy EXPR.  */
2095 static void
2096 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2097 {
2098   av_set_t elem;
2099
2100   elem = av_set_add_element (setp);
2101   *_AV_SET_EXPR (elem) = *expr;
2102 }
2103
2104 /* Remove expr pointed to by IP from the av_set.  */
2105 void
2106 av_set_iter_remove (av_set_iterator *ip)
2107 {
2108   clear_expr (_AV_SET_EXPR (*ip->lp));
2109   _list_iter_remove (ip);
2110 }
2111
2112 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2113    sense of vinsn_equal_p function. Return NULL if no such expr is
2114    in SET was found.  */
2115 expr_t
2116 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2117 {
2118   expr_t expr;
2119   av_set_iterator i;
2120
2121   FOR_EACH_EXPR (expr, i, set)
2122     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2123       return expr;
2124   return NULL;
2125 }
2126
2127 /* Same, but also remove the EXPR found.   */
2128 static expr_t
2129 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2130 {
2131   expr_t expr;
2132   av_set_iterator i;
2133
2134   FOR_EACH_EXPR_1 (expr, i, setp)
2135     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2136       {
2137         _list_iter_remove_nofree (&i);
2138         return expr;
2139       }
2140   return NULL;
2141 }
2142
2143 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2144    sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2145    Returns NULL if no such expr is in SET was found.  */
2146 static expr_t
2147 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2148 {
2149   expr_t cur_expr;
2150   av_set_iterator i;
2151
2152   FOR_EACH_EXPR (cur_expr, i, set)
2153     {
2154       if (cur_expr == expr)
2155         continue;
2156       if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2157         return cur_expr;
2158     }
2159
2160   return NULL;
2161 }
2162
2163 /* If other expression is already in AVP, remove one of them.  */
2164 expr_t
2165 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2166 {
2167   expr_t expr2;
2168
2169   expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2170   if (expr2 != NULL)
2171     {
2172       /* Reset target availability on merge, since taking it only from one
2173          of the exprs would be controversial for different code.  */
2174       EXPR_TARGET_AVAILABLE (expr2) = -1;
2175       EXPR_USEFULNESS (expr2) = 0;
2176
2177       merge_expr (expr2, expr, NULL);
2178
2179       /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2180       EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2181
2182       av_set_iter_remove (ip);
2183       return expr2;
2184     }
2185
2186   return expr;
2187 }
2188
2189 /* Return true if there is an expr that correlates to VI in SET.  */
2190 bool
2191 av_set_is_in_p (av_set_t set, vinsn_t vi)
2192 {
2193   return av_set_lookup (set, vi) != NULL;
2194 }
2195
2196 /* Return a copy of SET.  */
2197 av_set_t
2198 av_set_copy (av_set_t set)
2199 {
2200   expr_t expr;
2201   av_set_iterator i;
2202   av_set_t res = NULL;
2203
2204   FOR_EACH_EXPR (expr, i, set)
2205     av_set_add (&res, expr);
2206
2207   return res;
2208 }
2209
2210 /* Join two av sets that do not have common elements by attaching second set
2211    (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2212    _AV_SET_NEXT of first set's last element).  */
2213 static void
2214 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2215 {
2216   gcc_assert (*to_tailp == NULL);
2217   *to_tailp = *fromp;
2218   *fromp = NULL;
2219 }
2220
2221 /* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2222    pointed to by FROMP afterwards.  */
2223 void
2224 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2225 {
2226   expr_t expr1;
2227   av_set_iterator i;
2228
2229   /* Delete from TOP all exprs, that present in FROMP.  */
2230   FOR_EACH_EXPR_1 (expr1, i, top)
2231     {
2232       expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2233
2234       if (expr2)
2235         {
2236           merge_expr (expr2, expr1, insn);
2237           av_set_iter_remove (&i);
2238         }
2239     }
2240
2241   join_distinct_sets (i.lp, fromp);
2242 }
2243
2244 /* Same as above, but also update availability of target register in
2245    TOP judging by TO_LV_SET and FROM_LV_SET.  */
2246 void
2247 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2248                        regset from_lv_set, insn_t insn)
2249 {
2250   expr_t expr1;
2251   av_set_iterator i;
2252   av_set_t *to_tailp, in_both_set = NULL;
2253
2254   /* Delete from TOP all expres, that present in FROMP.  */
2255   FOR_EACH_EXPR_1 (expr1, i, top)
2256     {
2257       expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2258
2259       if (expr2)
2260         {
2261           /* It may be that the expressions have different destination
2262              registers, in which case we need to check liveness here.  */
2263           if (EXPR_SEPARABLE_P (expr1))
2264             {
2265               int regno1 = (REG_P (EXPR_LHS (expr1))
2266                             ? (int) expr_dest_regno (expr1) : -1);
2267               int regno2 = (REG_P (EXPR_LHS (expr2))
2268                             ? (int) expr_dest_regno (expr2) : -1);
2269
2270               /* ??? We don't have a way to check restrictions for
2271                *other* register on the current path, we did it only
2272                for the current target register.  Give up.  */
2273               if (regno1 != regno2)
2274                 EXPR_TARGET_AVAILABLE (expr2) = -1;
2275             }
2276           else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2277             EXPR_TARGET_AVAILABLE (expr2) = -1;
2278
2279           merge_expr (expr2, expr1, insn);
2280           av_set_add_nocopy (&in_both_set, expr2);
2281           av_set_iter_remove (&i);
2282         }
2283       else
2284         /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2285            FROM_LV_SET.  */
2286         set_unavailable_target_for_expr (expr1, from_lv_set);
2287     }
2288   to_tailp = i.lp;
2289
2290   /* These expressions are not present in TOP.  Check liveness
2291      restrictions on TO_LV_SET.  */
2292   FOR_EACH_EXPR (expr1, i, *fromp)
2293     set_unavailable_target_for_expr (expr1, to_lv_set);
2294
2295   join_distinct_sets (i.lp, &in_both_set);
2296   join_distinct_sets (to_tailp, fromp);
2297 }
2298
2299 /* Clear av_set pointed to by SETP.  */
2300 void
2301 av_set_clear (av_set_t *setp)
2302 {
2303   expr_t expr;
2304   av_set_iterator i;
2305
2306   FOR_EACH_EXPR_1 (expr, i, setp)
2307     av_set_iter_remove (&i);
2308
2309   gcc_assert (*setp == NULL);
2310 }
2311
2312 /* Leave only one non-speculative element in the SETP.  */
2313 void
2314 av_set_leave_one_nonspec (av_set_t *setp)
2315 {
2316   expr_t expr;
2317   av_set_iterator i;
2318   bool has_one_nonspec = false;
2319
2320   /* Keep all speculative exprs, and leave one non-speculative
2321      (the first one).  */
2322   FOR_EACH_EXPR_1 (expr, i, setp)
2323     {
2324       if (!EXPR_SPEC_DONE_DS (expr))
2325         {
2326           if (has_one_nonspec)
2327             av_set_iter_remove (&i);
2328           else
2329             has_one_nonspec = true;
2330         }
2331     }
2332 }
2333
2334 /* Return the N'th element of the SET.  */
2335 expr_t
2336 av_set_element (av_set_t set, int n)
2337 {
2338   expr_t expr;
2339   av_set_iterator i;
2340
2341   FOR_EACH_EXPR (expr, i, set)
2342     if (n-- == 0)
2343       return expr;
2344
2345   gcc_unreachable ();
2346   return NULL;
2347 }
2348
2349 /* Deletes all expressions from AVP that are conditional branches (IFs).  */
2350 void
2351 av_set_substract_cond_branches (av_set_t *avp)
2352 {
2353   av_set_iterator i;
2354   expr_t expr;
2355
2356   FOR_EACH_EXPR_1 (expr, i, avp)
2357     if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2358       av_set_iter_remove (&i);
2359 }
2360
2361 /* Multiplies usefulness attribute of each member of av-set *AVP by
2362    value PROB / ALL_PROB.  */
2363 void
2364 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2365 {
2366   av_set_iterator i;
2367   expr_t expr;
2368
2369   FOR_EACH_EXPR (expr, i, av)
2370     EXPR_USEFULNESS (expr) = (all_prob
2371                               ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2372                               : 0);
2373 }
2374
2375 /* Leave in AVP only those expressions, which are present in AV,
2376    and return it, merging history expressions.  */
2377 void
2378 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2379 {
2380   av_set_iterator i;
2381   expr_t expr, expr2;
2382
2383   FOR_EACH_EXPR_1 (expr, i, avp)
2384     if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2385       av_set_iter_remove (&i);
2386     else
2387       /* When updating av sets in bookkeeping blocks, we can add more insns
2388          there which will be transformed but the upper av sets will not
2389          reflect those transformations.  We then fail to undo those
2390          when searching for such insns.  So merge the history saved
2391          in the av set of the block we are processing.  */
2392       merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2393                           EXPR_HISTORY_OF_CHANGES (expr2));
2394 }
2395
2396 \f
2397
2398 /* Dependence hooks to initialize insn data.  */
2399
2400 /* This is used in hooks callable from dependence analysis when initializing
2401    instruction's data.  */
2402 static struct
2403 {
2404   /* Where the dependence was found (lhs/rhs).  */
2405   deps_where_t where;
2406
2407   /* The actual data object to initialize.  */
2408   idata_t id;
2409
2410   /* True when the insn should not be made clonable.  */
2411   bool force_unique_p;
2412
2413   /* True when insn should be treated as of type USE, i.e. never renamed.  */
2414   bool force_use_p;
2415 } deps_init_id_data;
2416
2417
2418 /* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2419    clonable.  */
2420 static void
2421 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2422 {
2423   int type;
2424
2425   /* Determine whether INSN could be cloned and return appropriate vinsn type.
2426      That clonable insns which can be separated into lhs and rhs have type SET.
2427      Other clonable insns have type USE.  */
2428   type = GET_CODE (insn);
2429
2430   /* Only regular insns could be cloned.  */
2431   if (type == INSN && !force_unique_p)
2432     type = SET;
2433   else if (type == JUMP_INSN && simplejump_p (insn))
2434     type = PC;
2435   else if (type == DEBUG_INSN)
2436     type = !force_unique_p ? USE : INSN;
2437
2438   IDATA_TYPE (id) = type;
2439   IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2440   IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2441   IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2442 }
2443
2444 /* Start initializing insn data.  */
2445 static void
2446 deps_init_id_start_insn (insn_t insn)
2447 {
2448   gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2449
2450   setup_id_for_insn (deps_init_id_data.id, insn,
2451                      deps_init_id_data.force_unique_p);
2452   deps_init_id_data.where = DEPS_IN_INSN;
2453 }
2454
2455 /* Start initializing lhs data.  */
2456 static void
2457 deps_init_id_start_lhs (rtx lhs)
2458 {
2459   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2460   gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2461
2462   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2463     {
2464       IDATA_LHS (deps_init_id_data.id) = lhs;
2465       deps_init_id_data.where = DEPS_IN_LHS;
2466     }
2467 }
2468
2469 /* Finish initializing lhs data.  */
2470 static void
2471 deps_init_id_finish_lhs (void)
2472 {
2473   deps_init_id_data.where = DEPS_IN_INSN;
2474 }
2475
2476 /* Note a set of REGNO.  */
2477 static void
2478 deps_init_id_note_reg_set (int regno)
2479 {
2480   haifa_note_reg_set (regno);
2481
2482   if (deps_init_id_data.where == DEPS_IN_RHS)
2483     deps_init_id_data.force_use_p = true;
2484
2485   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2486     SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2487
2488 #ifdef STACK_REGS
2489   /* Make instructions that set stack registers to be ineligible for
2490      renaming to avoid issues with find_used_regs.  */
2491   if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2492     deps_init_id_data.force_use_p = true;
2493 #endif
2494 }
2495
2496 /* Note a clobber of REGNO.  */
2497 static void
2498 deps_init_id_note_reg_clobber (int regno)
2499 {
2500   haifa_note_reg_clobber (regno);
2501
2502   if (deps_init_id_data.where == DEPS_IN_RHS)
2503     deps_init_id_data.force_use_p = true;
2504
2505   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2506     SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2507 }
2508
2509 /* Note a use of REGNO.  */
2510 static void
2511 deps_init_id_note_reg_use (int regno)
2512 {
2513   haifa_note_reg_use (regno);
2514
2515   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2516     SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2517 }
2518
2519 /* Start initializing rhs data.  */
2520 static void
2521 deps_init_id_start_rhs (rtx rhs)
2522 {
2523   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2524
2525   /* And there was no sel_deps_reset_to_insn ().  */
2526   if (IDATA_LHS (deps_init_id_data.id) != NULL)
2527     {
2528       IDATA_RHS (deps_init_id_data.id) = rhs;
2529       deps_init_id_data.where = DEPS_IN_RHS;
2530     }
2531 }
2532
2533 /* Finish initializing rhs data.  */
2534 static void
2535 deps_init_id_finish_rhs (void)
2536 {
2537   gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2538               || deps_init_id_data.where == DEPS_IN_INSN);
2539   deps_init_id_data.where = DEPS_IN_INSN;
2540 }
2541
2542 /* Finish initializing insn data.  */
2543 static void
2544 deps_init_id_finish_insn (void)
2545 {
2546   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2547
2548   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2549     {
2550       rtx lhs = IDATA_LHS (deps_init_id_data.id);
2551       rtx rhs = IDATA_RHS (deps_init_id_data.id);
2552
2553       if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2554           || deps_init_id_data.force_use_p)
2555         {
2556           /* This should be a USE, as we don't want to schedule its RHS
2557              separately.  However, we still want to have them recorded
2558              for the purposes of substitution.  That's why we don't
2559              simply call downgrade_to_use () here.  */
2560           gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2561           gcc_assert (!lhs == !rhs);
2562
2563           IDATA_TYPE (deps_init_id_data.id) = USE;
2564         }
2565     }
2566
2567   deps_init_id_data.where = DEPS_IN_NOWHERE;
2568 }
2569
2570 /* This is dependence info used for initializing insn's data.  */
2571 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2572
2573 /* This initializes most of the static part of the above structure.  */
2574 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2575   {
2576     NULL,
2577
2578     deps_init_id_start_insn,
2579     deps_init_id_finish_insn,
2580     deps_init_id_start_lhs,
2581     deps_init_id_finish_lhs,
2582     deps_init_id_start_rhs,
2583     deps_init_id_finish_rhs,
2584     deps_init_id_note_reg_set,
2585     deps_init_id_note_reg_clobber,
2586     deps_init_id_note_reg_use,
2587     NULL, /* note_mem_dep */
2588     NULL, /* note_dep */
2589
2590     0, /* use_cselib */
2591     0, /* use_deps_list */
2592     0 /* generate_spec_deps */
2593   };
2594
2595 /* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2596    we don't actually need information about lhs and rhs.  */
2597 static void
2598 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2599 {
2600   rtx pat = PATTERN (insn);
2601
2602   if (NONJUMP_INSN_P (insn)
2603       && GET_CODE (pat) == SET
2604       && !force_unique_p)
2605     {
2606       IDATA_RHS (id) = SET_SRC (pat);
2607       IDATA_LHS (id) = SET_DEST (pat);
2608     }
2609   else
2610     IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2611 }
2612
2613 /* Possibly downgrade INSN to USE.  */
2614 static void
2615 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2616 {
2617   bool must_be_use = false;
2618   df_ref def;
2619   rtx lhs = IDATA_LHS (id);
2620   rtx rhs = IDATA_RHS (id);
2621
2622   /* We downgrade only SETs.  */
2623   if (IDATA_TYPE (id) != SET)
2624     return;
2625
2626   if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2627     {
2628       IDATA_TYPE (id) = USE;
2629       return;
2630     }
2631
2632   FOR_EACH_INSN_DEF (def, insn)
2633     {
2634       if (DF_REF_INSN (def)
2635           && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2636           && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2637         {
2638           must_be_use = true;
2639           break;
2640         }
2641
2642 #ifdef STACK_REGS
2643       /* Make instructions that set stack registers to be ineligible for
2644          renaming to avoid issues with find_used_regs.  */
2645       if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2646         {
2647           must_be_use = true;
2648           break;
2649         }
2650 #endif
2651     }
2652
2653   if (must_be_use)
2654     IDATA_TYPE (id) = USE;
2655 }
2656
2657 /* Setup implicit register clobbers calculated by sched-deps for INSN
2658    before reload and save them in ID.  */
2659 static void
2660 setup_id_implicit_regs (idata_t id, insn_t insn)
2661 {
2662   if (reload_completed)
2663     return;
2664
2665   HARD_REG_SET temp;
2666   unsigned regno;
2667   hard_reg_set_iterator hrsi;
2668
2669   get_implicit_reg_pending_clobbers (&temp, insn);
2670   EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2671     SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2672 }
2673
2674 /* Setup register sets describing INSN in ID.  */
2675 static void
2676 setup_id_reg_sets (idata_t id, insn_t insn)
2677 {
2678   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2679   df_ref def, use;
2680   regset tmp = get_clear_regset_from_pool ();
2681
2682   FOR_EACH_INSN_INFO_DEF (def, insn_info)
2683     {
2684       unsigned int regno = DF_REF_REGNO (def);
2685
2686       /* Post modifies are treated like clobbers by sched-deps.c.  */
2687       if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2688                                      | DF_REF_PRE_POST_MODIFY)))
2689         SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2690       else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2691         {
2692           SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2693
2694 #ifdef STACK_REGS
2695           /* For stack registers, treat writes to them as writes
2696              to the first one to be consistent with sched-deps.c.  */
2697           if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2698             SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2699 #endif
2700         }
2701       /* Mark special refs that generate read/write def pair.  */
2702       if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2703           || regno == STACK_POINTER_REGNUM)
2704         bitmap_set_bit (tmp, regno);
2705     }
2706
2707   FOR_EACH_INSN_INFO_USE (use, insn_info)
2708     {
2709       unsigned int regno = DF_REF_REGNO (use);
2710
2711       /* When these refs are met for the first time, skip them, as
2712          these uses are just counterparts of some defs.  */
2713       if (bitmap_bit_p (tmp, regno))
2714         bitmap_clear_bit (tmp, regno);
2715       else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2716         {
2717           SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2718
2719 #ifdef STACK_REGS
2720           /* For stack registers, treat reads from them as reads from
2721              the first one to be consistent with sched-deps.c.  */
2722           if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2723             SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2724 #endif
2725         }
2726     }
2727
2728   /* Also get implicit reg clobbers from sched-deps.  */
2729   setup_id_implicit_regs (id, insn);
2730
2731   return_regset_to_pool (tmp);
2732 }
2733
2734 /* Initialize instruction data for INSN in ID using DF's data.  */
2735 static void
2736 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2737 {
2738   gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2739
2740   setup_id_for_insn (id, insn, force_unique_p);
2741   setup_id_lhs_rhs (id, insn, force_unique_p);
2742
2743   if (INSN_NOP_P (insn))
2744     return;
2745
2746   maybe_downgrade_id_to_use (id, insn);
2747   setup_id_reg_sets (id, insn);
2748 }
2749
2750 /* Initialize instruction data for INSN in ID.  */
2751 static void
2752 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2753 {
2754   struct deps_desc _dc, *dc = &_dc;
2755
2756   deps_init_id_data.where = DEPS_IN_NOWHERE;
2757   deps_init_id_data.id = id;
2758   deps_init_id_data.force_unique_p = force_unique_p;
2759   deps_init_id_data.force_use_p = false;
2760
2761   init_deps (dc, false);
2762   memcpy (&deps_init_id_sched_deps_info,
2763           &const_deps_init_id_sched_deps_info,
2764           sizeof (deps_init_id_sched_deps_info));
2765   if (spec_info != NULL)
2766     deps_init_id_sched_deps_info.generate_spec_deps = 1;
2767   sched_deps_info = &deps_init_id_sched_deps_info;
2768
2769   deps_analyze_insn (dc, insn);
2770   /* Implicit reg clobbers received from sched-deps separately.  */
2771   setup_id_implicit_regs (id, insn);
2772
2773   free_deps (dc);
2774   deps_init_id_data.id = NULL;
2775 }
2776
2777 \f
2778 struct sched_scan_info_def
2779 {
2780   /* This hook notifies scheduler frontend to extend its internal per basic
2781      block data structures.  This hook should be called once before a series of
2782      calls to bb_init ().  */
2783   void (*extend_bb) (void);
2784
2785   /* This hook makes scheduler frontend to initialize its internal data
2786      structures for the passed basic block.  */
2787   void (*init_bb) (basic_block);
2788
2789   /* This hook notifies scheduler frontend to extend its internal per insn data
2790      structures.  This hook should be called once before a series of calls to
2791      insn_init ().  */
2792   void (*extend_insn) (void);
2793
2794   /* This hook makes scheduler frontend to initialize its internal data
2795      structures for the passed insn.  */
2796   void (*init_insn) (insn_t);
2797 };
2798
2799 /* A driver function to add a set of basic blocks (BBS) to the
2800    scheduling region.  */
2801 static void
2802 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2803 {
2804   unsigned i;
2805   basic_block bb;
2806
2807   if (ssi->extend_bb)
2808     ssi->extend_bb ();
2809
2810   if (ssi->init_bb)
2811     FOR_EACH_VEC_ELT (bbs, i, bb)
2812       ssi->init_bb (bb);
2813
2814   if (ssi->extend_insn)
2815     ssi->extend_insn ();
2816
2817   if (ssi->init_insn)
2818     FOR_EACH_VEC_ELT (bbs, i, bb)
2819       {
2820         rtx_insn *insn;
2821
2822         FOR_BB_INSNS (bb, insn)
2823           ssi->init_insn (insn);
2824       }
2825 }
2826
2827 /* Implement hooks for collecting fundamental insn properties like if insn is
2828    an ASM or is within a SCHED_GROUP.  */
2829
2830 /* True when a "one-time init" data for INSN was already inited.  */
2831 static bool
2832 first_time_insn_init (insn_t insn)
2833 {
2834   return INSN_LIVE (insn) == NULL;
2835 }
2836
2837 /* Hash an entry in a transformed_insns hashtable.  */
2838 static hashval_t
2839 hash_transformed_insns (const void *p)
2840 {
2841   return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2842 }
2843
2844 /* Compare the entries in a transformed_insns hashtable.  */
2845 static int
2846 eq_transformed_insns (const void *p, const void *q)
2847 {
2848   rtx_insn *i1 =
2849     VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2850   rtx_insn *i2 =
2851     VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2852
2853   if (INSN_UID (i1) == INSN_UID (i2))
2854     return 1;
2855   return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2856 }
2857
2858 /* Free an entry in a transformed_insns hashtable.  */
2859 static void
2860 free_transformed_insns (void *p)
2861 {
2862   struct transformed_insns *pti = (struct transformed_insns *) p;
2863
2864   vinsn_detach (pti->vinsn_old);
2865   vinsn_detach (pti->vinsn_new);
2866   free (pti);
2867 }
2868
2869 /* Init the s_i_d data for INSN which should be inited just once, when
2870    we first see the insn.  */
2871 static void
2872 init_first_time_insn_data (insn_t insn)
2873 {
2874   /* This should not be set if this is the first time we init data for
2875      insn.  */
2876   gcc_assert (first_time_insn_init (insn));
2877
2878   /* These are needed for nops too.  */
2879   INSN_LIVE (insn) = get_regset_from_pool ();
2880   INSN_LIVE_VALID_P (insn) = false;
2881
2882   if (!INSN_NOP_P (insn))
2883     {
2884       INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2885       INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2886       INSN_TRANSFORMED_INSNS (insn)
2887         = htab_create (16, hash_transformed_insns,
2888                        eq_transformed_insns, free_transformed_insns);
2889       init_deps (&INSN_DEPS_CONTEXT (insn), true);
2890     }
2891 }
2892
2893 /* Free almost all above data for INSN that is scheduled already.
2894    Used for extra-large basic blocks.  */
2895 void
2896 free_data_for_scheduled_insn (insn_t insn)
2897 {
2898   gcc_assert (! first_time_insn_init (insn));
2899
2900   if (! INSN_ANALYZED_DEPS (insn))
2901     return;
2902
2903   BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2904   BITMAP_FREE (INSN_FOUND_DEPS (insn));
2905   htab_delete (INSN_TRANSFORMED_INSNS (insn));
2906
2907   /* This is allocated only for bookkeeping insns.  */
2908   if (INSN_ORIGINATORS (insn))
2909     BITMAP_FREE (INSN_ORIGINATORS (insn));
2910   free_deps (&INSN_DEPS_CONTEXT (insn));
2911
2912   INSN_ANALYZED_DEPS (insn) = NULL;
2913
2914   /* Clear the readonly flag so we would ICE when trying to recalculate
2915      the deps context (as we believe that it should not happen).  */
2916   (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2917 }
2918
2919 /* Free the same data as above for INSN.  */
2920 static void
2921 free_first_time_insn_data (insn_t insn)
2922 {
2923   gcc_assert (! first_time_insn_init (insn));
2924
2925   free_data_for_scheduled_insn (insn);
2926   return_regset_to_pool (INSN_LIVE (insn));
2927   INSN_LIVE (insn) = NULL;
2928   INSN_LIVE_VALID_P (insn) = false;
2929 }
2930
2931 /* Initialize region-scope data structures for basic blocks.  */
2932 static void
2933 init_global_and_expr_for_bb (basic_block bb)
2934 {
2935   if (sel_bb_empty_p (bb))
2936     return;
2937
2938   invalidate_av_set (bb);
2939 }
2940
2941 /* Data for global dependency analysis (to initialize CANT_MOVE and
2942    SCHED_GROUP_P).  */
2943 static struct
2944 {
2945   /* Previous insn.  */
2946   insn_t prev_insn;
2947 } init_global_data;
2948
2949 /* Determine if INSN is in the sched_group, is an asm or should not be
2950    cloned.  After that initialize its expr.  */
2951 static void
2952 init_global_and_expr_for_insn (insn_t insn)
2953 {
2954   if (LABEL_P (insn))
2955     return;
2956
2957   if (NOTE_INSN_BASIC_BLOCK_P (insn))
2958     {
2959       init_global_data.prev_insn = NULL;
2960       return;
2961     }
2962
2963   gcc_assert (INSN_P (insn));
2964
2965   if (SCHED_GROUP_P (insn))
2966     /* Setup a sched_group.  */
2967     {
2968       insn_t prev_insn = init_global_data.prev_insn;
2969
2970       if (prev_insn)
2971         INSN_SCHED_NEXT (prev_insn) = insn;
2972
2973       init_global_data.prev_insn = insn;
2974     }
2975   else
2976     init_global_data.prev_insn = NULL;
2977
2978   if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2979       || asm_noperands (PATTERN (insn)) >= 0)
2980     /* Mark INSN as an asm.  */
2981     INSN_ASM_P (insn) = true;
2982
2983   {
2984     bool force_unique_p;
2985     ds_t spec_done_ds;
2986
2987     /* Certain instructions cannot be cloned, and frame related insns and
2988        the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2989        their block.  */
2990     if (prologue_epilogue_contains (insn))
2991       {
2992         if (RTX_FRAME_RELATED_P (insn))
2993           CANT_MOVE (insn) = 1;
2994         else
2995           {
2996             rtx note;
2997             for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2998               if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2999                   && ((enum insn_note) INTVAL (XEXP (note, 0))
3000                       == NOTE_INSN_EPILOGUE_BEG))
3001                 {
3002                   CANT_MOVE (insn) = 1;
3003                   break;
3004                 }
3005           }
3006         force_unique_p = true;
3007       }
3008     else
3009       if (CANT_MOVE (insn)
3010           || INSN_ASM_P (insn)
3011           || SCHED_GROUP_P (insn)
3012           || CALL_P (insn)
3013           /* Exception handling insns are always unique.  */
3014           || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3015           /* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
3016           || control_flow_insn_p (insn)
3017           || volatile_insn_p (PATTERN (insn))
3018           || (targetm.cannot_copy_insn_p
3019               && targetm.cannot_copy_insn_p (insn)))
3020         force_unique_p = true;
3021       else
3022         force_unique_p = false;
3023
3024     if (targetm.sched.get_insn_spec_ds)
3025       {
3026         spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3027         spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3028       }
3029     else
3030       spec_done_ds = 0;
3031
3032     /* Initialize INSN's expr.  */
3033     init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3034                REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3035                spec_done_ds, 0, 0, vNULL, true,
3036                false, false, false, CANT_MOVE (insn));
3037   }
3038
3039   init_first_time_insn_data (insn);
3040 }
3041
3042 /* Scan the region and initialize instruction data for basic blocks BBS.  */
3043 void
3044 sel_init_global_and_expr (bb_vec_t bbs)
3045 {
3046   /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
3047   const struct sched_scan_info_def ssi =
3048     {
3049       NULL, /* extend_bb */
3050       init_global_and_expr_for_bb, /* init_bb */
3051       extend_insn_data, /* extend_insn */
3052       init_global_and_expr_for_insn /* init_insn */
3053     };
3054
3055   sched_scan (&ssi, bbs);
3056 }
3057
3058 /* Finalize region-scope data structures for basic blocks.  */
3059 static void
3060 finish_global_and_expr_for_bb (basic_block bb)
3061 {
3062   av_set_clear (&BB_AV_SET (bb));
3063   BB_AV_LEVEL (bb) = 0;
3064 }
3065
3066 /* Finalize INSN's data.  */
3067 static void
3068 finish_global_and_expr_insn (insn_t insn)
3069 {
3070   if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3071     return;
3072
3073   gcc_assert (INSN_P (insn));
3074
3075   if (INSN_LUID (insn) > 0)
3076     {
3077       free_first_time_insn_data (insn);
3078       INSN_WS_LEVEL (insn) = 0;
3079       CANT_MOVE (insn) = 0;
3080
3081       /* We can no longer assert this, as vinsns of this insn could be
3082          easily live in other insn's caches.  This should be changed to
3083          a counter-like approach among all vinsns.  */
3084       gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3085       clear_expr (INSN_EXPR (insn));
3086     }
3087 }
3088
3089 /* Finalize per instruction data for the whole region.  */
3090 void
3091 sel_finish_global_and_expr (void)
3092 {
3093   {
3094     bb_vec_t bbs;
3095     int i;
3096
3097     bbs.create (current_nr_blocks);
3098
3099     for (i = 0; i < current_nr_blocks; i++)
3100       bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3101
3102     /* Clear AV_SETs and INSN_EXPRs.  */
3103     {
3104       const struct sched_scan_info_def ssi =
3105         {
3106           NULL, /* extend_bb */
3107           finish_global_and_expr_for_bb, /* init_bb */
3108           NULL, /* extend_insn */
3109           finish_global_and_expr_insn /* init_insn */
3110         };
3111
3112       sched_scan (&ssi, bbs);
3113     }
3114
3115     bbs.release ();
3116   }
3117
3118   finish_insns ();
3119 }
3120 \f
3121
3122 /* In the below hooks, we merely calculate whether or not a dependence
3123    exists, and in what part of insn.  However, we will need more data
3124    when we'll start caching dependence requests.  */
3125
3126 /* Container to hold information for dependency analysis.  */
3127 static struct
3128 {
3129   deps_t dc;
3130
3131   /* A variable to track which part of rtx we are scanning in
3132      sched-deps.c: sched_analyze_insn ().  */
3133   deps_where_t where;
3134
3135   /* Current producer.  */
3136   insn_t pro;
3137
3138   /* Current consumer.  */
3139   vinsn_t con;
3140
3141   /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3142      X is from { INSN, LHS, RHS }.  */
3143   ds_t has_dep_p[DEPS_IN_NOWHERE];
3144 } has_dependence_data;
3145
3146 /* Start analyzing dependencies of INSN.  */
3147 static void
3148 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3149 {
3150   gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3151
3152   has_dependence_data.where = DEPS_IN_INSN;
3153 }
3154
3155 /* Finish analyzing dependencies of an insn.  */
3156 static void
3157 has_dependence_finish_insn (void)
3158 {
3159   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3160
3161   has_dependence_data.where = DEPS_IN_NOWHERE;
3162 }
3163
3164 /* Start analyzing dependencies of LHS.  */
3165 static void
3166 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3167 {
3168   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3169
3170   if (VINSN_LHS (has_dependence_data.con) != NULL)
3171     has_dependence_data.where = DEPS_IN_LHS;
3172 }
3173
3174 /* Finish analyzing dependencies of an lhs.  */
3175 static void
3176 has_dependence_finish_lhs (void)
3177 {
3178   has_dependence_data.where = DEPS_IN_INSN;
3179 }
3180
3181 /* Start analyzing dependencies of RHS.  */
3182 static void
3183 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3184 {
3185   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3186
3187   if (VINSN_RHS (has_dependence_data.con) != NULL)
3188     has_dependence_data.where = DEPS_IN_RHS;
3189 }
3190
3191 /* Start analyzing dependencies of an rhs.  */
3192 static void
3193 has_dependence_finish_rhs (void)
3194 {
3195   gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3196               || has_dependence_data.where == DEPS_IN_INSN);
3197
3198   has_dependence_data.where = DEPS_IN_INSN;
3199 }
3200
3201 /* Note a set of REGNO.  */
3202 static void
3203 has_dependence_note_reg_set (int regno)
3204 {
3205   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3206
3207   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3208                                        VINSN_INSN_RTX
3209                                        (has_dependence_data.con)))
3210     {
3211       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3212
3213       if (reg_last->sets != NULL
3214           || reg_last->clobbers != NULL)
3215         *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3216
3217       if (reg_last->uses || reg_last->implicit_sets)
3218         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3219     }
3220 }
3221
3222 /* Note a clobber of REGNO.  */
3223 static void
3224 has_dependence_note_reg_clobber (int regno)
3225 {
3226   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3227
3228   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3229                                        VINSN_INSN_RTX
3230                                        (has_dependence_data.con)))
3231     {
3232       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3233
3234       if (reg_last->sets)
3235         *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3236
3237       if (reg_last->uses || reg_last->implicit_sets)
3238         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3239     }
3240 }
3241
3242 /* Note a use of REGNO.  */
3243 static void
3244 has_dependence_note_reg_use (int regno)
3245 {
3246   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3247
3248   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3249                                        VINSN_INSN_RTX
3250                                        (has_dependence_data.con)))
3251     {
3252       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3253
3254       if (reg_last->sets)
3255         *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3256
3257       if (reg_last->clobbers || reg_last->implicit_sets)
3258         *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3259
3260       /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3261          is actually a check insn.  We need to do this for any register
3262          read-read dependency with the check unless we track properly
3263          all registers written by BE_IN_SPEC-speculated insns, as
3264          we don't have explicit dependence lists.  See PR 53975.  */
3265       if (reg_last->uses)
3266         {
3267           ds_t pro_spec_checked_ds;
3268
3269           pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3270           pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3271
3272           if (pro_spec_checked_ds != 0)
3273             *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3274                                   NULL_RTX, NULL_RTX);
3275         }
3276     }
3277 }
3278
3279 /* Note a memory dependence.  */
3280 static void
3281 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3282                              rtx pending_mem ATTRIBUTE_UNUSED,
3283                              insn_t pending_insn ATTRIBUTE_UNUSED,
3284                              ds_t ds ATTRIBUTE_UNUSED)
3285 {
3286   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3287                                        VINSN_INSN_RTX (has_dependence_data.con)))
3288     {
3289       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3290
3291       *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3292     }
3293 }
3294
3295 /* Note a dependence.  */
3296 static void
3297 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3298                          ds_t ds ATTRIBUTE_UNUSED)
3299 {
3300   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3301                                        VINSN_INSN_RTX (has_dependence_data.con)))
3302     {
3303       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3304
3305       *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3306     }
3307 }
3308
3309 /* Mark the insn as having a hard dependence that prevents speculation.  */
3310 void
3311 sel_mark_hard_insn (rtx insn)
3312 {
3313   int i;
3314
3315   /* Only work when we're in has_dependence_p mode.
3316      ??? This is a hack, this should actually be a hook.  */
3317   if (!has_dependence_data.dc || !has_dependence_data.pro)
3318     return;
3319
3320   gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3321   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3322
3323   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3324     has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3325 }
3326
3327 /* This structure holds the hooks for the dependency analysis used when
3328    actually processing dependencies in the scheduler.  */
3329 static struct sched_deps_info_def has_dependence_sched_deps_info;
3330
3331 /* This initializes most of the fields of the above structure.  */
3332 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3333   {
3334     NULL,
3335
3336     has_dependence_start_insn,
3337     has_dependence_finish_insn,
3338     has_dependence_start_lhs,
3339     has_dependence_finish_lhs,
3340     has_dependence_start_rhs,
3341     has_dependence_finish_rhs,
3342     has_dependence_note_reg_set,
3343     has_dependence_note_reg_clobber,
3344     has_dependence_note_reg_use,
3345     has_dependence_note_mem_dep,
3346     has_dependence_note_dep,
3347
3348     0, /* use_cselib */
3349     0, /* use_deps_list */
3350     0 /* generate_spec_deps */
3351   };
3352
3353 /* Initialize has_dependence_sched_deps_info with extra spec field.  */
3354 static void
3355 setup_has_dependence_sched_deps_info (void)
3356 {
3357   memcpy (&has_dependence_sched_deps_info,
3358           &const_has_dependence_sched_deps_info,
3359           sizeof (has_dependence_sched_deps_info));
3360
3361   if (spec_info != NULL)
3362     has_dependence_sched_deps_info.generate_spec_deps = 1;
3363
3364   sched_deps_info = &has_dependence_sched_deps_info;
3365 }
3366
3367 /* Remove all dependences found and recorded in has_dependence_data array.  */
3368 void
3369 sel_clear_has_dependence (void)
3370 {
3371   int i;
3372
3373   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3374     has_dependence_data.has_dep_p[i] = 0;
3375 }
3376
3377 /* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3378    to the dependence information array in HAS_DEP_PP.  */
3379 ds_t
3380 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3381 {
3382   int i;
3383   ds_t ds;
3384   struct deps_desc *dc;
3385
3386   if (INSN_SIMPLEJUMP_P (pred))
3387     /* Unconditional jump is just a transfer of control flow.
3388        Ignore it.  */
3389     return false;
3390
3391   dc = &INSN_DEPS_CONTEXT (pred);
3392
3393   /* We init this field lazily.  */
3394   if (dc->reg_last == NULL)
3395     init_deps_reg_last (dc);
3396
3397   if (!dc->readonly)
3398     {
3399       has_dependence_data.pro = NULL;
3400       /* Initialize empty dep context with information about PRED.  */
3401       advance_deps_context (dc, pred);
3402       dc->readonly = 1;
3403     }
3404
3405   has_dependence_data.where = DEPS_IN_NOWHERE;
3406   has_dependence_data.pro = pred;
3407   has_dependence_data.con = EXPR_VINSN (expr);
3408   has_dependence_data.dc = dc;
3409
3410   sel_clear_has_dependence ();
3411
3412   /* Now catch all dependencies that would be generated between PRED and
3413      INSN.  */
3414   setup_has_dependence_sched_deps_info ();
3415   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3416   has_dependence_data.dc = NULL;
3417
3418   /* When a barrier was found, set DEPS_IN_INSN bits.  */
3419   if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3420     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3421   else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3422     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3423
3424   /* Do not allow stores to memory to move through checks.  Currently
3425      we don't move this to sched-deps.c as the check doesn't have
3426      obvious places to which this dependence can be attached.
3427      FIMXE: this should go to a hook.  */
3428   if (EXPR_LHS (expr)
3429       && MEM_P (EXPR_LHS (expr))
3430       && sel_insn_is_speculation_check (pred))
3431     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3432
3433   *has_dep_pp = has_dependence_data.has_dep_p;
3434   ds = 0;
3435   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3436     ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3437                         NULL_RTX, NULL_RTX);
3438
3439   return ds;
3440 }
3441 \f
3442
3443 /* Dependence hooks implementation that checks dependence latency constraints
3444    on the insns being scheduled.  The entry point for these routines is
3445    tick_check_p predicate.  */
3446
3447 static struct
3448 {
3449   /* An expr we are currently checking.  */
3450   expr_t expr;
3451
3452   /* A minimal cycle for its scheduling.  */
3453   int cycle;
3454
3455   /* Whether we have seen a true dependence while checking.  */
3456   bool seen_true_dep_p;
3457 } tick_check_data;
3458
3459 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3460    on PRO with status DS and weight DW.  */
3461 static void
3462 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3463 {
3464   expr_t con_expr = tick_check_data.expr;
3465   insn_t con_insn = EXPR_INSN_RTX (con_expr);
3466
3467   if (con_insn != pro_insn)
3468     {
3469       enum reg_note dt;
3470       int tick;
3471
3472       if (/* PROducer was removed from above due to pipelining.  */
3473           !INSN_IN_STREAM_P (pro_insn)
3474           /* Or PROducer was originally on the next iteration regarding the
3475              CONsumer.  */
3476           || (INSN_SCHED_TIMES (pro_insn)
3477               - EXPR_SCHED_TIMES (con_expr)) > 1)
3478         /* Don't count this dependence.  */
3479         return;
3480
3481       dt = ds_to_dt (ds);
3482       if (dt == REG_DEP_TRUE)
3483         tick_check_data.seen_true_dep_p = true;
3484
3485       gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3486
3487       {
3488         dep_def _dep, *dep = &_dep;
3489
3490         init_dep (dep, pro_insn, con_insn, dt);
3491
3492         tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3493       }
3494
3495       /* When there are several kinds of dependencies between pro and con,
3496          only REG_DEP_TRUE should be taken into account.  */
3497       if (tick > tick_check_data.cycle
3498           && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3499         tick_check_data.cycle = tick;
3500     }
3501 }
3502
3503 /* An implementation of note_dep hook.  */
3504 static void
3505 tick_check_note_dep (insn_t pro, ds_t ds)
3506 {
3507   tick_check_dep_with_dw (pro, ds, 0);
3508 }
3509
3510 /* An implementation of note_mem_dep hook.  */
3511 static void
3512 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3513 {
3514   dw_t dw;
3515
3516   dw = (ds_to_dt (ds) == REG_DEP_TRUE
3517         ? estimate_dep_weak (mem1, mem2)
3518         : 0);
3519
3520   tick_check_dep_with_dw (pro, ds, dw);
3521 }
3522
3523 /* This structure contains hooks for dependence analysis used when determining
3524    whether an insn is ready for scheduling.  */
3525 static struct sched_deps_info_def tick_check_sched_deps_info =
3526   {
3527     NULL,
3528
3529     NULL,
3530     NULL,
3531     NULL,
3532     NULL,
3533     NULL,
3534     NULL,
3535     haifa_note_reg_set,
3536     haifa_note_reg_clobber,
3537     haifa_note_reg_use,
3538     tick_check_note_mem_dep,
3539     tick_check_note_dep,
3540
3541     0, 0, 0
3542   };
3543
3544 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3545    scheduled.  Return 0 if all data from producers in DC is ready.  */
3546 int
3547 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3548 {
3549   int cycles_left;
3550   /* Initialize variables.  */
3551   tick_check_data.expr = expr;
3552   tick_check_data.cycle = 0;
3553   tick_check_data.seen_true_dep_p = false;
3554   sched_deps_info = &tick_check_sched_deps_info;
3555
3556   gcc_assert (!dc->readonly);
3557   dc->readonly = 1;
3558   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3559   dc->readonly = 0;
3560
3561   cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3562
3563   return cycles_left >= 0 ? cycles_left : 0;
3564 }
3565 \f
3566
3567 /* Functions to work with insns.  */
3568
3569 /* Returns true if LHS of INSN is the same as DEST of an insn
3570    being moved.  */
3571 bool
3572 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3573 {
3574   rtx lhs = INSN_LHS (insn);
3575
3576   if (lhs == NULL || dest == NULL)
3577     return false;
3578
3579   return rtx_equal_p (lhs, dest);
3580 }
3581
3582 /* Return s_i_d entry of INSN.  Callable from debugger.  */
3583 sel_insn_data_def
3584 insn_sid (insn_t insn)
3585 {
3586   return *SID (insn);
3587 }
3588
3589 /* True when INSN is a speculative check.  We can tell this by looking
3590    at the data structures of the selective scheduler, not by examining
3591    the pattern.  */
3592 bool
3593 sel_insn_is_speculation_check (rtx insn)
3594 {
3595   return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3596 }
3597
3598 /* Extracts machine mode MODE and destination location DST_LOC
3599    for given INSN.  */
3600 void
3601 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3602 {
3603   rtx pat = PATTERN (insn);
3604
3605   gcc_assert (dst_loc);
3606   gcc_assert (GET_CODE (pat) == SET);
3607
3608   *dst_loc = SET_DEST (pat);
3609
3610   gcc_assert (*dst_loc);
3611   gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3612
3613   if (mode)
3614     *mode = GET_MODE (*dst_loc);
3615 }
3616
3617 /* Returns true when moving through JUMP will result in bookkeeping
3618    creation.  */
3619 bool
3620 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3621 {
3622   insn_t succ;
3623   succ_iterator si;
3624
3625   FOR_EACH_SUCC (succ, si, jump)
3626     if (sel_num_cfg_preds_gt_1 (succ))
3627       return true;
3628
3629   return false;
3630 }
3631
3632 /* Return 'true' if INSN is the only one in its basic block.  */
3633 static bool
3634 insn_is_the_only_one_in_bb_p (insn_t insn)
3635 {
3636   return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3637 }
3638
3639 /* Check that the region we're scheduling still has at most one
3640    backedge.  */
3641 static void
3642 verify_backedges (void)
3643 {
3644   if (pipelining_p)
3645     {
3646       int i, n = 0;
3647       edge e;
3648       edge_iterator ei;
3649
3650       for (i = 0; i < current_nr_blocks; i++)
3651         FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3652           if (in_current_region_p (e->dest)
3653               && BLOCK_TO_BB (e->dest->index) < i)
3654             n++;
3655
3656       gcc_assert (n <= 1);
3657     }
3658 }
3659 \f
3660
3661 /* Functions to work with control flow.  */
3662
3663 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3664    are sorted in topological order (it might have been invalidated by
3665    redirecting an edge).  */
3666 static void
3667 sel_recompute_toporder (void)
3668 {
3669   int i, n, rgn;
3670   int *postorder, n_blocks;
3671
3672   postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3673   n_blocks = post_order_compute (postorder, false, false);
3674
3675   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3676   for (n = 0, i = n_blocks - 1; i >= 0; i--)
3677     if (CONTAINING_RGN (postorder[i]) == rgn)
3678       {
3679         BLOCK_TO_BB (postorder[i]) = n;
3680         BB_TO_BLOCK (n) = postorder[i];
3681         n++;
3682       }
3683
3684   /* Assert that we updated info for all blocks.  We may miss some blocks if
3685      this function is called when redirecting an edge made a block
3686      unreachable, but that block is not deleted yet.  */
3687   gcc_assert (n == RGN_NR_BLOCKS (rgn));
3688 }
3689
3690 /* Tidy the possibly empty block BB.  */
3691 static bool
3692 maybe_tidy_empty_bb (basic_block bb)
3693 {
3694   basic_block succ_bb, pred_bb, note_bb;
3695   vec<basic_block> dom_bbs;
3696   edge e;
3697   edge_iterator ei;
3698   bool rescan_p;
3699
3700   /* Keep empty bb only if this block immediately precedes EXIT and
3701      has incoming non-fallthrough edge, or it has no predecessors or
3702      successors.  Otherwise remove it.  */
3703   if (!sel_bb_empty_p (bb)
3704       || (single_succ_p (bb)
3705           && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3706           && (!single_pred_p (bb)
3707               || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3708       || EDGE_COUNT (bb->preds) == 0
3709       || EDGE_COUNT (bb->succs) == 0)
3710     return false;
3711
3712   /* Do not attempt to redirect complex edges.  */
3713   FOR_EACH_EDGE (e, ei, bb->preds)
3714     if (e->flags & EDGE_COMPLEX)
3715       return false;
3716     else if (e->flags & EDGE_FALLTHRU)
3717       {
3718         rtx note;
3719         /* If prev bb ends with asm goto, see if any of the
3720            ASM_OPERANDS_LABELs don't point to the fallthru
3721            label.  Do not attempt to redirect it in that case.  */
3722         if (JUMP_P (BB_END (e->src))
3723             && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3724           {
3725             int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3726
3727             for (i = 0; i < n; ++i)
3728               if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3729                 return false;
3730           }
3731       }
3732
3733   free_data_sets (bb);
3734
3735   /* Do not delete BB if it has more than one successor.
3736      That can occur when we moving a jump.  */
3737   if (!single_succ_p (bb))
3738     {
3739       gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3740       sel_merge_blocks (bb->prev_bb, bb);
3741       return true;
3742     }
3743
3744   succ_bb = single_succ (bb);
3745   rescan_p = true;
3746   pred_bb = NULL;
3747   dom_bbs.create (0);
3748
3749   /* Save a pred/succ from the current region to attach the notes to.  */
3750   note_bb = NULL;
3751   FOR_EACH_EDGE (e, ei, bb->preds)
3752     if (in_current_region_p (e->src))
3753       {
3754         note_bb = e->src;
3755         break;
3756       }
3757   if (note_bb == NULL)
3758     note_bb = succ_bb;
3759
3760   /* Redirect all non-fallthru edges to the next bb.  */
3761   while (rescan_p)
3762     {
3763       rescan_p = false;
3764
3765       FOR_EACH_EDGE (e, ei, bb->preds)
3766         {
3767           pred_bb = e->src;
3768
3769           if (!(e->flags & EDGE_FALLTHRU))
3770             {
3771               /* We can not invalidate computed topological order by moving
3772                  the edge destination block (E->SUCC) along a fallthru edge.
3773
3774                  We will update dominators here only when we'll get
3775                  an unreachable block when redirecting, otherwise
3776                  sel_redirect_edge_and_branch will take care of it.  */
3777               if (e->dest != bb
3778                   && single_pred_p (e->dest))
3779                 dom_bbs.safe_push (e->dest);
3780               sel_redirect_edge_and_branch (e, succ_bb);
3781               rescan_p = true;
3782               break;
3783             }
3784           /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3785              to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3786              still have to adjust it.  */
3787           else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3788             {
3789               /* If possible, try to remove the unneeded conditional jump.  */
3790               if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3791                   && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3792                 {
3793                   if (!sel_remove_insn (BB_END (pred_bb), false, false))
3794                     tidy_fallthru_edge (e);
3795                 }
3796               else
3797                 sel_redirect_edge_and_branch (e, succ_bb);
3798               rescan_p = true;
3799               break;
3800             }
3801         }
3802     }
3803
3804   if (can_merge_blocks_p (bb->prev_bb, bb))
3805     sel_merge_blocks (bb->prev_bb, bb);
3806   else
3807     {
3808       /* This is a block without fallthru predecessor.  Just delete it.  */
3809       gcc_assert (note_bb);
3810       move_bb_info (note_bb, bb);
3811       remove_empty_bb (bb, true);
3812     }
3813
3814   if (!dom_bbs.is_empty ())
3815     {
3816       dom_bbs.safe_push (succ_bb);
3817       iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3818       dom_bbs.release ();
3819     }
3820
3821   return true;
3822 }
3823
3824 /* Tidy the control flow after we have removed original insn from
3825    XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3826    is true, also try to optimize control flow on non-empty blocks.  */
3827 bool
3828 tidy_control_flow (basic_block xbb, bool full_tidying)
3829 {
3830   bool changed = true;
3831   insn_t first, last;
3832
3833   /* First check whether XBB is empty.  */
3834   changed = maybe_tidy_empty_bb (xbb);
3835   if (changed || !full_tidying)
3836     return changed;
3837
3838   /* Check if there is a unnecessary jump after insn left.  */
3839   if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3840       && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3841       && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3842     {
3843       if (sel_remove_insn (BB_END (xbb), false, false))
3844         return true;
3845       tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3846     }
3847
3848   first = sel_bb_head (xbb);
3849   last = sel_bb_end (xbb);
3850   if (MAY_HAVE_DEBUG_INSNS)
3851     {
3852       if (first != last && DEBUG_INSN_P (first))
3853         do
3854           first = NEXT_INSN (first);
3855         while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3856
3857       if (first != last && DEBUG_INSN_P (last))
3858         do
3859           last = PREV_INSN (last);
3860         while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3861     }
3862   /* Check if there is an unnecessary jump in previous basic block leading
3863      to next basic block left after removing INSN from stream.
3864      If it is so, remove that jump and redirect edge to current
3865      basic block (where there was INSN before deletion).  This way
3866      when NOP will be deleted several instructions later with its
3867      basic block we will not get a jump to next instruction, which
3868      can be harmful.  */
3869   if (first == last
3870       && !sel_bb_empty_p (xbb)
3871       && INSN_NOP_P (last)
3872       /* Flow goes fallthru from current block to the next.  */
3873       && EDGE_COUNT (xbb->succs) == 1
3874       && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3875       /* When successor is an EXIT block, it may not be the next block.  */
3876       && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3877       /* And unconditional jump in previous basic block leads to
3878          next basic block of XBB and this jump can be safely removed.  */
3879       && in_current_region_p (xbb->prev_bb)
3880       && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3881       && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3882       /* Also this jump is not at the scheduling boundary.  */
3883       && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3884     {
3885       bool recompute_toporder_p;
3886       /* Clear data structures of jump - jump itself will be removed
3887          by sel_redirect_edge_and_branch.  */
3888       clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3889       recompute_toporder_p
3890         = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3891
3892       gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3893
3894       /* It can turn out that after removing unused jump, basic block
3895          that contained that jump, becomes empty too.  In such case
3896          remove it too.  */
3897       if (sel_bb_empty_p (xbb->prev_bb))
3898         changed = maybe_tidy_empty_bb (xbb->prev_bb);
3899       if (recompute_toporder_p)
3900         sel_recompute_toporder ();
3901     }
3902
3903   /* TODO: use separate flag for CFG checking.  */
3904   if (flag_checking)
3905     {
3906       verify_backedges ();
3907       verify_dominators (CDI_DOMINATORS);
3908     }
3909
3910   return changed;
3911 }
3912
3913 /* Purge meaningless empty blocks in the middle of a region.  */
3914 void
3915 purge_empty_blocks (void)
3916 {
3917   int i;
3918
3919   /* Do not attempt to delete the first basic block in the region.  */
3920   for (i = 1; i < current_nr_blocks; )
3921     {
3922       basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3923
3924       if (maybe_tidy_empty_bb (b))
3925         continue;
3926
3927       i++;
3928     }
3929 }
3930
3931 /* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3932    do not delete insn's data, because it will be later re-emitted.
3933    Return true if we have removed some blocks afterwards.  */
3934 bool
3935 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3936 {
3937   basic_block bb = BLOCK_FOR_INSN (insn);
3938
3939   gcc_assert (INSN_IN_STREAM_P (insn));
3940
3941   if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3942     {
3943       expr_t expr;
3944       av_set_iterator i;
3945
3946       /* When we remove a debug insn that is head of a BB, it remains
3947          in the AV_SET of the block, but it shouldn't.  */
3948       FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3949         if (EXPR_INSN_RTX (expr) == insn)
3950           {
3951             av_set_iter_remove (&i);
3952             break;
3953           }
3954     }
3955
3956   if (only_disconnect)
3957     remove_insn (insn);
3958   else
3959     {
3960       delete_insn (insn);
3961       clear_expr (INSN_EXPR (insn));
3962     }
3963
3964   /* It is necessary to NULL these fields in case we are going to re-insert
3965      INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3966      case, but also for NOPs that we will return to the nop pool.  */
3967   SET_PREV_INSN (insn) = NULL_RTX;
3968   SET_NEXT_INSN (insn) = NULL_RTX;
3969   set_block_for_insn (insn, NULL);
3970
3971   return tidy_control_flow (bb, full_tidying);
3972 }
3973
3974 /* Estimate number of the insns in BB.  */
3975 static int
3976 sel_estimate_number_of_insns (basic_block bb)
3977 {
3978   int res = 0;
3979   insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3980
3981   for (; insn != next_tail; insn = NEXT_INSN (insn))
3982     if (NONDEBUG_INSN_P (insn))
3983       res++;
3984
3985   return res;
3986 }
3987
3988 /* We don't need separate luids for notes or labels.  */
3989 static int
3990 sel_luid_for_non_insn (rtx x)
3991 {
3992   gcc_assert (NOTE_P (x) || LABEL_P (x));
3993
3994   return -1;
3995 }
3996
3997 /*  Find the proper seqno for inserting at INSN by successors.
3998     Return -1 if no successors with positive seqno exist.  */
3999 static int
4000 get_seqno_by_succs (rtx_insn *insn)
4001 {
4002   basic_block bb = BLOCK_FOR_INSN (insn);
4003   rtx_insn *tmp = insn, *end = BB_END (bb);
4004   int seqno;
4005   insn_t succ = NULL;
4006   succ_iterator si;
4007
4008   while (tmp != end)
4009     {
4010       tmp = NEXT_INSN (tmp);
4011       if (INSN_P (tmp))
4012         return INSN_SEQNO (tmp);
4013     }
4014
4015   seqno = INT_MAX;
4016
4017   FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4018     if (INSN_SEQNO (succ) > 0)
4019       seqno = MIN (seqno, INSN_SEQNO (succ));
4020
4021   if (seqno == INT_MAX)
4022     return -1;
4023
4024   return seqno;
4025 }
4026
4027 /* Compute seqno for INSN by its preds or succs.  Use OLD_SEQNO to compute
4028    seqno in corner cases.  */
4029 static int
4030 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4031 {
4032   int seqno;
4033
4034   gcc_assert (INSN_SIMPLEJUMP_P (insn));
4035
4036   if (!sel_bb_head_p (insn))
4037     seqno = INSN_SEQNO (PREV_INSN (insn));
4038   else
4039     {
4040       basic_block bb = BLOCK_FOR_INSN (insn);
4041
4042       if (single_pred_p (bb)
4043           && !in_current_region_p (single_pred (bb)))
4044         {
4045           /* We can have preds outside a region when splitting edges
4046              for pipelining of an outer loop.  Use succ instead.
4047              There should be only one of them.  */
4048           insn_t succ = NULL;
4049           succ_iterator si;
4050           bool first = true;
4051
4052           gcc_assert (flag_sel_sched_pipelining_outer_loops
4053                       && current_loop_nest);
4054           FOR_EACH_SUCC_1 (succ, si, insn,
4055                            SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4056             {
4057               gcc_assert (first);
4058               first = false;
4059             }
4060
4061           gcc_assert (succ != NULL);
4062           seqno = INSN_SEQNO (succ);
4063         }
4064       else
4065         {
4066           insn_t *preds;
4067           int n;
4068
4069           cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4070
4071           gcc_assert (n > 0);
4072           /* For one predecessor, use simple method.  */
4073           if (n == 1)
4074             seqno = INSN_SEQNO (preds[0]);
4075           else
4076             seqno = get_seqno_by_preds (insn);
4077
4078           free (preds);
4079         }
4080     }
4081
4082   /* We were unable to find a good seqno among preds.  */
4083   if (seqno < 0)
4084     seqno = get_seqno_by_succs (insn);
4085
4086   if (seqno < 0)
4087     {
4088       /* The only case where this could be here legally is that the only
4089          unscheduled insn was a conditional jump that got removed and turned
4090          into this unconditional one.  Initialize from the old seqno
4091          of that jump passed down to here.  */
4092       seqno = old_seqno;
4093     }
4094
4095   gcc_assert (seqno >= 0);
4096   return seqno;
4097 }
4098
4099 /*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
4100     with positive seqno exist.  */
4101 int
4102 get_seqno_by_preds (rtx_insn *insn)
4103 {
4104   basic_block bb = BLOCK_FOR_INSN (insn);
4105   rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4106   insn_t *preds;
4107   int n, i, seqno;
4108
4109   /* Loop backwards from INSN to HEAD including both.  */
4110   while (1)
4111     {
4112       if (INSN_P (tmp))
4113         return INSN_SEQNO (tmp);
4114       if (tmp == head)
4115         break;
4116       tmp = PREV_INSN (tmp);
4117     }
4118
4119   cfg_preds (bb, &preds, &n);
4120   for (i = 0, seqno = -1; i < n; i++)
4121     seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4122
4123   return seqno;
4124 }
4125
4126 \f
4127
4128 /* Extend pass-scope data structures for basic blocks.  */
4129 void
4130 sel_extend_global_bb_info (void)
4131 {
4132   sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4133 }
4134
4135 /* Extend region-scope data structures for basic blocks.  */
4136 static void
4137 extend_region_bb_info (void)
4138 {
4139   sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4140 }
4141
4142 /* Extend all data structures to fit for all basic blocks.  */
4143 static void
4144 extend_bb_info (void)
4145 {
4146   sel_extend_global_bb_info ();
4147   extend_region_bb_info ();
4148 }
4149
4150 /* Finalize pass-scope data structures for basic blocks.  */
4151 void
4152 sel_finish_global_bb_info (void)
4153 {
4154   sel_global_bb_info.release ();
4155 }
4156
4157 /* Finalize region-scope data structures for basic blocks.  */
4158 static void
4159 finish_region_bb_info (void)
4160 {
4161   sel_region_bb_info.release ();
4162 }
4163 \f
4164
4165 /* Data for each insn in current region.  */
4166 vec<sel_insn_data_def> s_i_d = vNULL;
4167
4168 /* Extend data structures for insns from current region.  */
4169 static void
4170 extend_insn_data (void)
4171 {
4172   int reserve;
4173
4174   sched_extend_target ();
4175   sched_deps_init (false);
4176
4177   /* Extend data structures for insns from current region.  */
4178   reserve = (sched_max_luid + 1 - s_i_d.length ());
4179   if (reserve > 0 && ! s_i_d.space (reserve))
4180     {
4181       int size;
4182
4183       if (sched_max_luid / 2 > 1024)
4184         size = sched_max_luid + 1024;
4185       else
4186         size = 3 * sched_max_luid / 2;
4187
4188
4189       s_i_d.safe_grow_cleared (size);
4190     }
4191 }
4192
4193 /* Finalize data structures for insns from current region.  */
4194 static void
4195 finish_insns (void)
4196 {
4197   unsigned i;
4198
4199   /* Clear here all dependence contexts that may have left from insns that were
4200      removed during the scheduling.  */
4201   for (i = 0; i < s_i_d.length (); i++)
4202     {
4203       sel_insn_data_def *sid_entry = &s_i_d[i];
4204
4205       if (sid_entry->live)
4206         return_regset_to_pool (sid_entry->live);
4207       if (sid_entry->analyzed_deps)
4208         {
4209           BITMAP_FREE (sid_entry->analyzed_deps);
4210           BITMAP_FREE (sid_entry->found_deps);
4211           htab_delete (sid_entry->transformed_insns);
4212           free_deps (&sid_entry->deps_context);
4213         }
4214       if (EXPR_VINSN (&sid_entry->expr))
4215         {
4216           clear_expr (&sid_entry->expr);
4217
4218           /* Also, clear CANT_MOVE bit here, because we really don't want it
4219              to be passed to the next region.  */
4220           CANT_MOVE_BY_LUID (i) = 0;
4221         }
4222     }
4223
4224   s_i_d.release ();
4225 }
4226
4227 /* A proxy to pass initialization data to init_insn ().  */
4228 static sel_insn_data_def _insn_init_ssid;
4229 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4230
4231 /* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4232 static bool insn_init_create_new_vinsn_p;
4233
4234 /* Set all necessary data for initialization of the new insn[s].  */
4235 static expr_t
4236 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4237 {
4238   expr_t x = &insn_init_ssid->expr;
4239
4240   copy_expr_onside (x, expr);
4241   if (vi != NULL)
4242     {
4243       insn_init_create_new_vinsn_p = false;
4244       change_vinsn_in_expr (x, vi);
4245     }
4246   else
4247     insn_init_create_new_vinsn_p = true;
4248
4249   insn_init_ssid->seqno = seqno;
4250   return x;
4251 }
4252
4253 /* Init data for INSN.  */
4254 static void
4255 init_insn_data (insn_t insn)
4256 {
4257   expr_t expr;
4258   sel_insn_data_t ssid = insn_init_ssid;
4259
4260   /* The fields mentioned below are special and hence are not being
4261      propagated to the new insns.  */
4262   gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4263               && !ssid->after_stall_p && ssid->sched_cycle == 0);
4264   gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4265
4266   expr = INSN_EXPR (insn);
4267   copy_expr (expr, &ssid->expr);
4268   prepare_insn_expr (insn, ssid->seqno);
4269
4270   if (insn_init_create_new_vinsn_p)
4271     change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4272
4273   if (first_time_insn_init (insn))
4274     init_first_time_insn_data (insn);
4275 }
4276
4277 /* This is used to initialize spurious jumps generated by
4278    sel_redirect_edge ().  OLD_SEQNO is used for initializing seqnos
4279    in corner cases within get_seqno_for_a_jump.  */
4280 static void
4281 init_simplejump_data (insn_t insn, int old_seqno)
4282 {
4283   init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4284              REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4285              vNULL, true, false, false,
4286              false, true);
4287   INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4288   init_first_time_insn_data (insn);
4289 }
4290
4291 /* Perform deferred initialization of insns.  This is used to process
4292    a new jump that may be created by redirect_edge.  OLD_SEQNO is used
4293    for initializing simplejumps in init_simplejump_data.  */
4294 static void
4295 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4296 {
4297   /* We create data structures for bb when the first insn is emitted in it.  */
4298   if (INSN_P (insn)
4299       && INSN_IN_STREAM_P (insn)
4300       && insn_is_the_only_one_in_bb_p (insn))
4301     {
4302       extend_bb_info ();
4303       create_initial_data_sets (BLOCK_FOR_INSN (insn));
4304     }
4305
4306   if (flags & INSN_INIT_TODO_LUID)
4307     {
4308       sched_extend_luids ();
4309       sched_init_insn_luid (insn);
4310     }
4311
4312   if (flags & INSN_INIT_TODO_SSID)
4313     {
4314       extend_insn_data ();
4315       init_insn_data (insn);
4316       clear_expr (&insn_init_ssid->expr);
4317     }
4318
4319   if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4320     {
4321       extend_insn_data ();
4322       init_simplejump_data (insn, old_seqno);
4323     }
4324
4325   gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4326               == CONTAINING_RGN (BB_TO_BLOCK (0)));
4327 }
4328 \f
4329
4330 /* Functions to init/finish work with lv sets.  */
4331
4332 /* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4333 static void
4334 init_lv_set (basic_block bb)
4335 {
4336   gcc_assert (!BB_LV_SET_VALID_P (bb));
4337
4338   BB_LV_SET (bb) = get_regset_from_pool ();
4339   COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4340   BB_LV_SET_VALID_P (bb) = true;
4341 }
4342
4343 /* Copy liveness information to BB from FROM_BB.  */
4344 static void
4345 copy_lv_set_from (basic_block bb, basic_block from_bb)
4346 {
4347   gcc_assert (!BB_LV_SET_VALID_P (bb));
4348
4349   COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4350   BB_LV_SET_VALID_P (bb) = true;
4351 }
4352
4353 /* Initialize lv set of all bb headers.  */
4354 void
4355 init_lv_sets (void)
4356 {
4357   basic_block bb;
4358
4359   /* Initialize of LV sets.  */
4360   FOR_EACH_BB_FN (bb, cfun)
4361     init_lv_set (bb);
4362
4363   /* Don't forget EXIT_BLOCK.  */
4364   init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4365 }
4366
4367 /* Release lv set of HEAD.  */
4368 static void
4369 free_lv_set (basic_block bb)
4370 {
4371   gcc_assert (BB_LV_SET (bb) != NULL);
4372
4373   return_regset_to_pool (BB_LV_SET (bb));
4374   BB_LV_SET (bb) = NULL;
4375   BB_LV_SET_VALID_P (bb) = false;
4376 }
4377
4378 /* Finalize lv sets of all bb headers.  */
4379 void
4380 free_lv_sets (void)
4381 {
4382   basic_block bb;
4383
4384   /* Don't forget EXIT_BLOCK.  */
4385   free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4386
4387   /* Free LV sets.  */
4388   FOR_EACH_BB_FN (bb, cfun)
4389     if (BB_LV_SET (bb))
4390       free_lv_set (bb);
4391 }
4392
4393 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4394    compute_av() processes BB.  This function is called when creating new basic
4395    blocks, as well as for blocks (either new or existing) where new jumps are
4396    created when the control flow is being updated.  */
4397 static void
4398 invalidate_av_set (basic_block bb)
4399 {
4400   BB_AV_LEVEL (bb) = -1;
4401 }
4402
4403 /* Create initial data sets for BB (they will be invalid).  */
4404 static void
4405 create_initial_data_sets (basic_block bb)
4406 {
4407   if (BB_LV_SET (bb))
4408     BB_LV_SET_VALID_P (bb) = false;
4409   else
4410     BB_LV_SET (bb) = get_regset_from_pool ();
4411   invalidate_av_set (bb);
4412 }
4413
4414 /* Free av set of BB.  */
4415 static void
4416 free_av_set (basic_block bb)
4417 {
4418   av_set_clear (&BB_AV_SET (bb));
4419   BB_AV_LEVEL (bb) = 0;
4420 }
4421
4422 /* Free data sets of BB.  */
4423 void
4424 free_data_sets (basic_block bb)
4425 {
4426   free_lv_set (bb);
4427   free_av_set (bb);
4428 }
4429
4430 /* Exchange data sets of TO and FROM.  */
4431 void
4432 exchange_data_sets (basic_block to, basic_block from)
4433 {
4434   /* Exchange lv sets of TO and FROM.  */
4435   std::swap (BB_LV_SET (from), BB_LV_SET (to));
4436   std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4437
4438   /* Exchange av sets of TO and FROM.  */
4439   std::swap (BB_AV_SET (from), BB_AV_SET (to));
4440   std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4441 }
4442
4443 /* Copy data sets of FROM to TO.  */
4444 void
4445 copy_data_sets (basic_block to, basic_block from)
4446 {
4447   gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4448   gcc_assert (BB_AV_SET (to) == NULL);
4449
4450   BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4451   BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4452
4453   if (BB_AV_SET_VALID_P (from))
4454     {
4455       BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4456     }
4457   if (BB_LV_SET_VALID_P (from))
4458     {
4459       gcc_assert (BB_LV_SET (to) != NULL);
4460       COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4461     }
4462 }
4463
4464 /* Return an av set for INSN, if any.  */
4465 av_set_t
4466 get_av_set (insn_t insn)
4467 {
4468   av_set_t av_set;
4469
4470   gcc_assert (AV_SET_VALID_P (insn));
4471
4472   if (sel_bb_head_p (insn))
4473     av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4474   else
4475     av_set = NULL;
4476
4477   return av_set;
4478 }
4479
4480 /* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4481 int
4482 get_av_level (insn_t insn)
4483 {
4484   int av_level;
4485
4486   gcc_assert (INSN_P (insn));
4487
4488   if (sel_bb_head_p (insn))
4489     av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4490   else
4491     av_level = INSN_WS_LEVEL (insn);
4492
4493   return av_level;
4494 }
4495
4496 \f
4497
4498 /* Variables to work with control-flow graph.  */
4499
4500 /* The basic block that already has been processed by the sched_data_update (),
4501    but hasn't been in sel_add_bb () yet.  */
4502 static vec<basic_block>
4503     last_added_blocks = vNULL;
4504
4505 /* A pool for allocating successor infos.  */
4506 static struct
4507 {
4508   /* A stack for saving succs_info structures.  */
4509   struct succs_info *stack;
4510
4511   /* Its size.  */
4512   int size;
4513
4514   /* Top of the stack.  */
4515   int top;
4516
4517   /* Maximal value of the top.  */
4518   int max_top;
4519 }  succs_info_pool;
4520
4521 /* Functions to work with control-flow graph.  */
4522
4523 /* Return basic block note of BB.  */
4524 rtx_insn *
4525 sel_bb_head (basic_block bb)
4526 {
4527   rtx_insn *head;
4528
4529   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4530     {
4531       gcc_assert (exit_insn != NULL_RTX);
4532       head = exit_insn;
4533     }
4534   else
4535     {
4536       rtx_note *note = bb_note (bb);
4537       head = next_nonnote_insn (note);
4538
4539       if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4540         head = NULL;
4541     }
4542
4543   return head;
4544 }
4545
4546 /* Return true if INSN is a basic block header.  */
4547 bool
4548 sel_bb_head_p (insn_t insn)
4549 {
4550   return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4551 }
4552
4553 /* Return last insn of BB.  */
4554 rtx_insn *
4555 sel_bb_end (basic_block bb)
4556 {
4557   if (sel_bb_empty_p (bb))
4558     return NULL;
4559
4560   gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4561
4562   return BB_END (bb);
4563 }
4564
4565 /* Return true if INSN is the last insn in its basic block.  */
4566 bool
4567 sel_bb_end_p (insn_t insn)
4568 {
4569   return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4570 }
4571
4572 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4573 bool
4574 sel_bb_empty_p (basic_block bb)
4575 {
4576   return sel_bb_head (bb) == NULL;
4577 }
4578
4579 /* True when BB belongs to the current scheduling region.  */
4580 bool
4581 in_current_region_p (basic_block bb)
4582 {
4583   if (bb->index < NUM_FIXED_BLOCKS)
4584     return false;
4585
4586   return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4587 }
4588
4589 /* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4590 basic_block
4591 fallthru_bb_of_jump (const rtx_insn *jump)
4592 {
4593   if (!JUMP_P (jump))
4594     return NULL;
4595
4596   if (!any_condjump_p (jump))
4597     return NULL;
4598
4599   /* A basic block that ends with a conditional jump may still have one successor
4600      (and be followed by a barrier), we are not interested.  */
4601   if (single_succ_p (BLOCK_FOR_INSN (jump)))
4602     return NULL;
4603
4604   return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4605 }
4606
4607 /* Remove all notes from BB.  */
4608 static void
4609 init_bb (basic_block bb)
4610 {
4611   remove_notes (bb_note (bb), BB_END (bb));
4612   BB_NOTE_LIST (bb) = note_list;
4613 }
4614
4615 void
4616 sel_init_bbs (bb_vec_t bbs)
4617 {
4618   const struct sched_scan_info_def ssi =
4619     {
4620       extend_bb_info, /* extend_bb */
4621       init_bb, /* init_bb */
4622       NULL, /* extend_insn */
4623       NULL /* init_insn */
4624     };
4625
4626   sched_scan (&ssi, bbs);
4627 }
4628
4629 /* Restore notes for the whole region.  */
4630 static void
4631 sel_restore_notes (void)
4632 {
4633   int bb;
4634   insn_t insn;
4635
4636   for (bb = 0; bb < current_nr_blocks; bb++)
4637     {
4638       basic_block first, last;
4639
4640       first = EBB_FIRST_BB (bb);
4641       last = EBB_LAST_BB (bb)->next_bb;
4642
4643       do
4644         {
4645           note_list = BB_NOTE_LIST (first);
4646           restore_other_notes (NULL, first);
4647           BB_NOTE_LIST (first) = NULL;
4648
4649           FOR_BB_INSNS (first, insn)
4650             if (NONDEBUG_INSN_P (insn))
4651               reemit_notes (insn);
4652
4653           first = first->next_bb;
4654         }
4655       while (first != last);
4656     }
4657 }
4658
4659 /* Free per-bb data structures.  */
4660 void
4661 sel_finish_bbs (void)
4662 {
4663   sel_restore_notes ();
4664
4665   /* Remove current loop preheader from this loop.  */
4666   if (current_loop_nest)
4667     sel_remove_loop_preheader ();
4668
4669   finish_region_bb_info ();
4670 }
4671
4672 /* Return true if INSN has a single successor of type FLAGS.  */
4673 bool
4674 sel_insn_has_single_succ_p (insn_t insn, int flags)
4675 {
4676   insn_t succ;
4677   succ_iterator si;
4678   bool first_p = true;
4679
4680   FOR_EACH_SUCC_1 (succ, si, insn, flags)
4681     {
4682       if (first_p)
4683         first_p = false;
4684       else
4685         return false;
4686     }
4687
4688   return true;
4689 }
4690
4691 /* Allocate successor's info.  */
4692 static struct succs_info *
4693 alloc_succs_info (void)
4694 {
4695   if (succs_info_pool.top == succs_info_pool.max_top)
4696     {
4697       int i;
4698
4699       if (++succs_info_pool.max_top >= succs_info_pool.size)
4700         gcc_unreachable ();
4701
4702       i = ++succs_info_pool.top;
4703       succs_info_pool.stack[i].succs_ok.create (10);
4704       succs_info_pool.stack[i].succs_other.create (10);
4705       succs_info_pool.stack[i].probs_ok.create (10);
4706     }
4707   else
4708     succs_info_pool.top++;
4709
4710   return &succs_info_pool.stack[succs_info_pool.top];
4711 }
4712
4713 /* Free successor's info.  */
4714 void
4715 free_succs_info (struct succs_info * sinfo)
4716 {
4717   gcc_assert (succs_info_pool.top >= 0
4718               && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4719   succs_info_pool.top--;
4720
4721   /* Clear stale info.  */
4722   sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4723   sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4724   sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4725   sinfo->all_prob = 0;
4726   sinfo->succs_ok_n = 0;
4727   sinfo->all_succs_n = 0;
4728 }
4729
4730 /* Compute successor info for INSN.  FLAGS are the flags passed
4731    to the FOR_EACH_SUCC_1 iterator.  */
4732 struct succs_info *
4733 compute_succs_info (insn_t insn, short flags)
4734 {
4735   succ_iterator si;
4736   insn_t succ;
4737   struct succs_info *sinfo = alloc_succs_info ();
4738
4739   /* Traverse *all* successors and decide what to do with each.  */
4740   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4741     {
4742       /* FIXME: this doesn't work for skipping to loop exits, as we don't
4743          perform code motion through inner loops.  */
4744       short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4745
4746       if (current_flags & flags)
4747         {
4748           sinfo->succs_ok.safe_push (succ);
4749           sinfo->probs_ok.safe_push (
4750                     /* FIXME: Improve calculation when skipping
4751                        inner loop to exits.  */
4752                     si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4753           sinfo->succs_ok_n++;
4754         }
4755       else
4756         sinfo->succs_other.safe_push (succ);
4757
4758       /* Compute all_prob.  */
4759       if (!si.bb_end)
4760         sinfo->all_prob = REG_BR_PROB_BASE;
4761       else
4762         sinfo->all_prob += si.e1->probability;
4763
4764       sinfo->all_succs_n++;
4765     }
4766
4767   return sinfo;
4768 }
4769
4770 /* Return the predecessors of BB in PREDS and their number in N.
4771    Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4772 static void
4773 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4774 {
4775   edge e;
4776   edge_iterator ei;
4777
4778   gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4779
4780   FOR_EACH_EDGE (e, ei, bb->preds)
4781     {
4782       basic_block pred_bb = e->src;
4783       insn_t bb_end = BB_END (pred_bb);
4784
4785       if (!in_current_region_p (pred_bb))
4786         {
4787           gcc_assert (flag_sel_sched_pipelining_outer_loops
4788                       && current_loop_nest);
4789           continue;
4790         }
4791
4792       if (sel_bb_empty_p (pred_bb))
4793         cfg_preds_1 (pred_bb, preds, n, size);
4794       else
4795         {
4796           if (*n == *size)
4797             *preds = XRESIZEVEC (insn_t, *preds,
4798                                  (*size = 2 * *size + 1));
4799           (*preds)[(*n)++] = bb_end;
4800         }
4801     }
4802
4803   gcc_assert (*n != 0
4804               || (flag_sel_sched_pipelining_outer_loops
4805                   && current_loop_nest));
4806 }
4807
4808 /* Find all predecessors of BB and record them in PREDS and their number
4809    in N.  Empty blocks are skipped, and only normal (forward in-region)
4810    edges are processed.  */
4811 static void
4812 cfg_preds (basic_block bb, insn_t **preds, int *n)
4813 {
4814   int size = 0;
4815
4816   *preds = NULL;
4817   *n = 0;
4818   cfg_preds_1 (bb, preds, n, &size);
4819 }
4820
4821 /* Returns true if we are moving INSN through join point.  */
4822 bool
4823 sel_num_cfg_preds_gt_1 (insn_t insn)
4824 {
4825   basic_block bb;
4826
4827   if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4828     return false;
4829
4830   bb = BLOCK_FOR_INSN (insn);
4831
4832   while (1)
4833     {
4834       if (EDGE_COUNT (bb->preds) > 1)
4835         return true;
4836
4837       gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4838       bb = EDGE_PRED (bb, 0)->src;
4839
4840       if (!sel_bb_empty_p (bb))
4841         break;
4842     }
4843
4844   return false;
4845 }
4846
4847 /* Returns true when BB should be the end of an ebb.  Adapted from the
4848    code in sched-ebb.c.  */
4849 bool
4850 bb_ends_ebb_p (basic_block bb)
4851 {
4852   basic_block next_bb = bb_next_bb (bb);
4853   edge e;
4854
4855   if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4856       || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4857       || (LABEL_P (BB_HEAD (next_bb))
4858           /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4859              Work around that.  */
4860           && !single_pred_p (next_bb)))
4861     return true;
4862
4863   if (!in_current_region_p (next_bb))
4864     return true;
4865
4866   e = find_fallthru_edge (bb->succs);
4867   if (e)
4868     {
4869       gcc_assert (e->dest == next_bb);
4870       
4871       return false;
4872     }
4873
4874   return true;
4875 }
4876
4877 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4878    successor of INSN.  */
4879 bool
4880 in_same_ebb_p (insn_t insn, insn_t succ)
4881 {
4882   basic_block ptr = BLOCK_FOR_INSN (insn);
4883
4884   for (;;)
4885     {
4886       if (ptr == BLOCK_FOR_INSN (succ))
4887         return true;
4888
4889       if (bb_ends_ebb_p (ptr))
4890         return false;
4891
4892       ptr = bb_next_bb (ptr);
4893     }
4894
4895   gcc_unreachable ();
4896   return false;
4897 }
4898
4899 /* Recomputes the reverse topological order for the function and
4900    saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4901    modified appropriately.  */
4902 static void
4903 recompute_rev_top_order (void)
4904 {
4905   int *postorder;
4906   int n_blocks, i;
4907
4908   if (!rev_top_order_index
4909       || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4910     {
4911       rev_top_order_index_len = last_basic_block_for_fn (cfun);
4912       rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4913                                         rev_top_order_index_len);
4914     }
4915
4916   postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4917
4918   n_blocks = post_order_compute (postorder, true, false);
4919   gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4920
4921   /* Build reverse function: for each basic block with BB->INDEX == K
4922      rev_top_order_index[K] is it's reverse topological sort number.  */
4923   for (i = 0; i < n_blocks; i++)
4924     {
4925       gcc_assert (postorder[i] < rev_top_order_index_len);
4926       rev_top_order_index[postorder[i]] = i;
4927     }
4928
4929   free (postorder);
4930 }
4931
4932 /* Clear all flags from insns in BB that could spoil its rescheduling.  */
4933 void
4934 clear_outdated_rtx_info (basic_block bb)
4935 {
4936   rtx_insn *insn;
4937
4938   FOR_BB_INSNS (bb, insn)
4939     if (INSN_P (insn))
4940       {
4941         SCHED_GROUP_P (insn) = 0;
4942         INSN_AFTER_STALL_P (insn) = 0;
4943         INSN_SCHED_TIMES (insn) = 0;
4944         EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4945
4946         /* We cannot use the changed caches, as previously we could ignore
4947            the LHS dependence due to enabled renaming and transform
4948            the expression, and currently we'll be unable to do this.  */
4949         htab_empty (INSN_TRANSFORMED_INSNS (insn));
4950       }
4951 }
4952
4953 /* Add BB_NOTE to the pool of available basic block notes.  */
4954 static void
4955 return_bb_to_pool (basic_block bb)
4956 {
4957   rtx_note *note = bb_note (bb);
4958
4959   gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4960               && bb->aux == NULL);
4961
4962   /* It turns out that current cfg infrastructure does not support
4963      reuse of basic blocks.  Don't bother for now.  */
4964   /*bb_note_pool.safe_push (note);*/
4965 }
4966
4967 /* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
4968 static rtx_note *
4969 get_bb_note_from_pool (void)
4970 {
4971   if (bb_note_pool.is_empty ())
4972     return NULL;
4973   else
4974     {
4975       rtx_note *note = bb_note_pool.pop ();
4976
4977       SET_PREV_INSN (note) = NULL_RTX;
4978       SET_NEXT_INSN (note) = NULL_RTX;
4979
4980       return note;
4981     }
4982 }
4983
4984 /* Free bb_note_pool.  */
4985 void
4986 free_bb_note_pool (void)
4987 {
4988   bb_note_pool.release ();
4989 }
4990
4991 /* Setup scheduler pool and successor structure.  */
4992 void
4993 alloc_sched_pools (void)
4994 {
4995   int succs_size;
4996
4997   succs_size = MAX_WS + 1;
4998   succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4999   succs_info_pool.size = succs_size;
5000   succs_info_pool.top = -1;
5001   succs_info_pool.max_top = -1;
5002 }
5003
5004 /* Free the pools.  */
5005 void
5006 free_sched_pools (void)
5007 {
5008   int i;
5009
5010   sched_lists_pool.release ();
5011   gcc_assert (succs_info_pool.top == -1);
5012   for (i = 0; i <= succs_info_pool.max_top; i++)
5013     {
5014       succs_info_pool.stack[i].succs_ok.release ();
5015       succs_info_pool.stack[i].succs_other.release ();
5016       succs_info_pool.stack[i].probs_ok.release ();
5017     }
5018   free (succs_info_pool.stack);
5019 }
5020 \f
5021
5022 /* Returns a position in RGN where BB can be inserted retaining
5023    topological order.  */
5024 static int
5025 find_place_to_insert_bb (basic_block bb, int rgn)
5026 {
5027   bool has_preds_outside_rgn = false;
5028   edge e;
5029   edge_iterator ei;
5030
5031   /* Find whether we have preds outside the region.  */
5032   FOR_EACH_EDGE (e, ei, bb->preds)
5033     if (!in_current_region_p (e->src))
5034       {
5035         has_preds_outside_rgn = true;
5036         break;
5037       }
5038
5039   /* Recompute the top order -- needed when we have > 1 pred
5040      and in case we don't have preds outside.  */
5041   if (flag_sel_sched_pipelining_outer_loops
5042       && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5043     {
5044       int i, bbi = bb->index, cur_bbi;
5045
5046       recompute_rev_top_order ();
5047       for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5048         {
5049           cur_bbi = BB_TO_BLOCK (i);
5050           if (rev_top_order_index[bbi]
5051               < rev_top_order_index[cur_bbi])
5052             break;
5053         }
5054
5055       /* We skipped the right block, so we increase i.  We accommodate
5056          it for increasing by step later, so we decrease i.  */
5057       return (i + 1) - 1;
5058     }
5059   else if (has_preds_outside_rgn)
5060     {
5061       /* This is the case when we generate an extra empty block
5062          to serve as region head during pipelining.  */
5063       e = EDGE_SUCC (bb, 0);
5064       gcc_assert (EDGE_COUNT (bb->succs) == 1
5065                   && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5066                   && (BLOCK_TO_BB (e->dest->index) == 0));
5067       return -1;
5068     }
5069
5070   /* We don't have preds outside the region.  We should have
5071      the only pred, because the multiple preds case comes from
5072      the pipelining of outer loops, and that is handled above.
5073      Just take the bbi of this single pred.  */
5074   if (EDGE_COUNT (bb->succs) > 0)
5075     {
5076       int pred_bbi;
5077
5078       gcc_assert (EDGE_COUNT (bb->preds) == 1);
5079
5080       pred_bbi = EDGE_PRED (bb, 0)->src->index;
5081       return BLOCK_TO_BB (pred_bbi);
5082     }
5083   else
5084     /* BB has no successors.  It is safe to put it in the end.  */
5085     return current_nr_blocks - 1;
5086 }
5087
5088 /* Deletes an empty basic block freeing its data.  */
5089 static void
5090 delete_and_free_basic_block (basic_block bb)
5091 {
5092   gcc_assert (sel_bb_empty_p (bb));
5093
5094   if (BB_LV_SET (bb))
5095     free_lv_set (bb);
5096
5097   bitmap_clear_bit (blocks_to_reschedule, bb->index);
5098
5099   /* Can't assert av_set properties because we use sel_aremove_bb
5100      when removing loop preheader from the region.  At the point of
5101      removing the preheader we already have deallocated sel_region_bb_info.  */
5102   gcc_assert (BB_LV_SET (bb) == NULL
5103               && !BB_LV_SET_VALID_P (bb)
5104               && BB_AV_LEVEL (bb) == 0
5105               && BB_AV_SET (bb) == NULL);
5106
5107   delete_basic_block (bb);
5108 }
5109
5110 /* Add BB to the current region and update the region data.  */
5111 static void
5112 add_block_to_current_region (basic_block bb)
5113 {
5114   int i, pos, bbi = -2, rgn;
5115
5116   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5117   bbi = find_place_to_insert_bb (bb, rgn);
5118   bbi += 1;
5119   pos = RGN_BLOCKS (rgn) + bbi;
5120
5121   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5122               && ebb_head[bbi] == pos);
5123
5124   /* Make a place for the new block.  */
5125   extend_regions ();
5126
5127   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5128     BLOCK_TO_BB (rgn_bb_table[i])++;
5129
5130   memmove (rgn_bb_table + pos + 1,
5131            rgn_bb_table + pos,
5132            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5133
5134   /* Initialize data for BB.  */
5135   rgn_bb_table[pos] = bb->index;
5136   BLOCK_TO_BB (bb->index) = bbi;
5137   CONTAINING_RGN (bb->index) = rgn;
5138
5139   RGN_NR_BLOCKS (rgn)++;
5140
5141   for (i = rgn + 1; i <= nr_regions; i++)
5142     RGN_BLOCKS (i)++;
5143 }
5144
5145 /* Remove BB from the current region and update the region data.  */
5146 static void
5147 remove_bb_from_region (basic_block bb)
5148 {
5149   int i, pos, bbi = -2, rgn;
5150
5151   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5152   bbi = BLOCK_TO_BB (bb->index);
5153   pos = RGN_BLOCKS (rgn) + bbi;
5154
5155   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5156               && ebb_head[bbi] == pos);
5157
5158   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5159     BLOCK_TO_BB (rgn_bb_table[i])--;
5160
5161   memmove (rgn_bb_table + pos,
5162            rgn_bb_table + pos + 1,
5163            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5164
5165   RGN_NR_BLOCKS (rgn)--;
5166   for (i = rgn + 1; i <= nr_regions; i++)
5167     RGN_BLOCKS (i)--;
5168 }
5169
5170 /* Add BB to the current region  and update all data.  If BB is NULL, add all
5171    blocks from last_added_blocks vector.  */
5172 static void
5173 sel_add_bb (basic_block bb)
5174 {
5175   /* Extend luids so that new notes will receive zero luids.  */
5176   sched_extend_luids ();
5177   sched_init_bbs ();
5178   sel_init_bbs (last_added_blocks);
5179
5180   /* When bb is passed explicitly, the vector should contain
5181      the only element that equals to bb; otherwise, the vector
5182      should not be NULL.  */
5183   gcc_assert (last_added_blocks.exists ());
5184
5185   if (bb != NULL)
5186     {
5187       gcc_assert (last_added_blocks.length () == 1
5188                   && last_added_blocks[0] == bb);
5189       add_block_to_current_region (bb);
5190
5191       /* We associate creating/deleting data sets with the first insn
5192          appearing / disappearing in the bb.  */
5193       if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5194         create_initial_data_sets (bb);
5195
5196       last_added_blocks.release ();
5197     }
5198   else
5199     /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5200     {
5201       int i;
5202       basic_block temp_bb = NULL;
5203
5204       for (i = 0;
5205            last_added_blocks.iterate (i, &bb); i++)
5206         {
5207           add_block_to_current_region (bb);
5208           temp_bb = bb;
5209         }
5210
5211       /* We need to fetch at least one bb so we know the region
5212          to update.  */
5213       gcc_assert (temp_bb != NULL);
5214       bb = temp_bb;
5215
5216       last_added_blocks.release ();
5217     }
5218
5219   rgn_setup_region (CONTAINING_RGN (bb->index));
5220 }
5221
5222 /* Remove BB from the current region and update all data.
5223    If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5224 static void
5225 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5226 {
5227   unsigned idx = bb->index;
5228
5229   gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5230
5231   remove_bb_from_region (bb);
5232   return_bb_to_pool (bb);
5233   bitmap_clear_bit (blocks_to_reschedule, idx);
5234
5235   if (remove_from_cfg_p)
5236     {
5237       basic_block succ = single_succ (bb);
5238       delete_and_free_basic_block (bb);
5239       set_immediate_dominator (CDI_DOMINATORS, succ,
5240                                recompute_dominator (CDI_DOMINATORS, succ));
5241     }
5242
5243   rgn_setup_region (CONTAINING_RGN (idx));
5244 }
5245
5246 /* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5247 static void
5248 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5249 {
5250   if (in_current_region_p (merge_bb))
5251     concat_note_lists (BB_NOTE_LIST (empty_bb),
5252                        &BB_NOTE_LIST (merge_bb));
5253   BB_NOTE_LIST (empty_bb) = NULL;
5254
5255 }
5256
5257 /* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5258    region, but keep it in CFG.  */
5259 static void
5260 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5261 {
5262   /* The block should contain just a note or a label.
5263      We try to check whether it is unused below.  */
5264   gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5265               || LABEL_P (BB_HEAD (empty_bb)));
5266
5267   /* If basic block has predecessors or successors, redirect them.  */
5268   if (remove_from_cfg_p
5269       && (EDGE_COUNT (empty_bb->preds) > 0
5270           || EDGE_COUNT (empty_bb->succs) > 0))
5271     {
5272       basic_block pred;
5273       basic_block succ;
5274
5275       /* We need to init PRED and SUCC before redirecting edges.  */
5276       if (EDGE_COUNT (empty_bb->preds) > 0)
5277         {
5278           edge e;
5279
5280           gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5281
5282           e = EDGE_PRED (empty_bb, 0);
5283           gcc_assert (e->src == empty_bb->prev_bb
5284                       && (e->flags & EDGE_FALLTHRU));
5285
5286           pred = empty_bb->prev_bb;
5287         }
5288       else
5289         pred = NULL;
5290
5291       if (EDGE_COUNT (empty_bb->succs) > 0)
5292         {
5293           /* We do not check fallthruness here as above, because
5294              after removing a jump the edge may actually be not fallthru.  */
5295           gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5296           succ = EDGE_SUCC (empty_bb, 0)->dest;
5297         }
5298       else
5299         succ = NULL;
5300
5301       if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5302         {
5303           edge e = EDGE_PRED (empty_bb, 0);
5304
5305           if (e->flags & EDGE_FALLTHRU)
5306             redirect_edge_succ_nodup (e, succ);
5307           else
5308             sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5309         }
5310
5311       if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5312         {
5313           edge e = EDGE_SUCC (empty_bb, 0);
5314
5315           if (find_edge (pred, e->dest) == NULL)
5316             redirect_edge_pred (e, pred);
5317         }
5318     }
5319
5320   /* Finish removing.  */
5321   sel_remove_bb (empty_bb, remove_from_cfg_p);
5322 }
5323
5324 /* An implementation of create_basic_block hook, which additionally updates
5325    per-bb data structures.  */
5326 static basic_block
5327 sel_create_basic_block (void *headp, void *endp, basic_block after)
5328 {
5329   basic_block new_bb;
5330   rtx_note *new_bb_note;
5331
5332   gcc_assert (flag_sel_sched_pipelining_outer_loops
5333               || !last_added_blocks.exists ());
5334
5335   new_bb_note = get_bb_note_from_pool ();
5336
5337   if (new_bb_note == NULL_RTX)
5338     new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5339   else
5340     {
5341       new_bb = create_basic_block_structure ((rtx_insn *) headp,
5342                                              (rtx_insn *) endp,
5343                                              new_bb_note, after);
5344       new_bb->aux = NULL;
5345     }
5346
5347   last_added_blocks.safe_push (new_bb);
5348
5349   return new_bb;
5350 }
5351
5352 /* Implement sched_init_only_bb ().  */
5353 static void
5354 sel_init_only_bb (basic_block bb, basic_block after)
5355 {
5356   gcc_assert (after == NULL);
5357
5358   extend_regions ();
5359   rgn_make_new_region_out_of_new_block (bb);
5360 }
5361
5362 /* Update the latch when we've splitted or merged it from FROM block to TO.
5363    This should be checked for all outer loops, too.  */
5364 static void
5365 change_loops_latches (basic_block from, basic_block to)
5366 {
5367   gcc_assert (from != to);
5368
5369   if (current_loop_nest)
5370     {
5371       struct loop *loop;
5372
5373       for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5374         if (considered_for_pipelining_p (loop) && loop->latch == from)
5375           {
5376             gcc_assert (loop == current_loop_nest);
5377             loop->latch = to;
5378             gcc_assert (loop_latch_edge (loop));
5379           }
5380     }
5381 }
5382
5383 /* Splits BB on two basic blocks, adding it to the region and extending
5384    per-bb data structures.  Returns the newly created bb.  */
5385 static basic_block
5386 sel_split_block (basic_block bb, rtx after)
5387 {
5388   basic_block new_bb;
5389   insn_t insn;
5390
5391   new_bb = sched_split_block_1 (bb, after);
5392   sel_add_bb (new_bb);
5393
5394   /* This should be called after sel_add_bb, because this uses
5395      CONTAINING_RGN for the new block, which is not yet initialized.
5396      FIXME: this function may be a no-op now.  */
5397   change_loops_latches (bb, new_bb);
5398
5399   /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5400   FOR_BB_INSNS (new_bb, insn)
5401    if (INSN_P (insn))
5402      EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5403
5404   if (sel_bb_empty_p (bb))
5405     {
5406       gcc_assert (!sel_bb_empty_p (new_bb));
5407
5408       /* NEW_BB has data sets that need to be updated and BB holds
5409          data sets that should be removed.  Exchange these data sets
5410          so that we won't lose BB's valid data sets.  */
5411       exchange_data_sets (new_bb, bb);
5412       free_data_sets (bb);
5413     }
5414
5415   if (!sel_bb_empty_p (new_bb)
5416       && bitmap_bit_p (blocks_to_reschedule, bb->index))
5417     bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5418
5419   return new_bb;
5420 }
5421
5422 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5423    Otherwise returns NULL.  */
5424 static rtx_insn *
5425 check_for_new_jump (basic_block bb, int prev_max_uid)
5426 {
5427   rtx_insn *end;
5428
5429   end = sel_bb_end (bb);
5430   if (end && INSN_UID (end) >= prev_max_uid)
5431     return end;
5432   return NULL;
5433 }
5434
5435 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5436    New means having UID at least equal to PREV_MAX_UID.  */
5437 static rtx_insn *
5438 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5439 {
5440   rtx_insn *jump;
5441
5442   /* Return immediately if no new insns were emitted.  */
5443   if (get_max_uid () == prev_max_uid)
5444     return NULL;
5445
5446   /* Now check both blocks for new jumps.  It will ever be only one.  */
5447   if ((jump = check_for_new_jump (from, prev_max_uid)))
5448     return jump;
5449
5450   if (jump_bb != NULL
5451       && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5452     return jump;
5453   return NULL;
5454 }
5455
5456 /* Splits E and adds the newly created basic block to the current region.
5457    Returns this basic block.  */
5458 basic_block
5459 sel_split_edge (edge e)
5460 {
5461   basic_block new_bb, src, other_bb = NULL;
5462   int prev_max_uid;
5463   rtx_insn *jump;
5464
5465   src = e->src;
5466   prev_max_uid = get_max_uid ();
5467   new_bb = split_edge (e);
5468
5469   if (flag_sel_sched_pipelining_outer_loops
5470       && current_loop_nest)
5471     {
5472       int i;
5473       basic_block bb;
5474
5475       /* Some of the basic blocks might not have been added to the loop.
5476          Add them here, until this is fixed in force_fallthru.  */
5477       for (i = 0;
5478            last_added_blocks.iterate (i, &bb); i++)
5479         if (!bb->loop_father)
5480           {
5481             add_bb_to_loop (bb, e->dest->loop_father);
5482
5483             gcc_assert (!other_bb && (new_bb->index != bb->index));
5484             other_bb = bb;
5485           }
5486     }
5487
5488   /* Add all last_added_blocks to the region.  */
5489   sel_add_bb (NULL);
5490
5491   jump = find_new_jump (src, new_bb, prev_max_uid);
5492   if (jump)
5493     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5494
5495   /* Put the correct lv set on this block.  */
5496   if (other_bb && !sel_bb_empty_p (other_bb))
5497     compute_live (sel_bb_head (other_bb));
5498
5499   return new_bb;
5500 }
5501
5502 /* Implement sched_create_empty_bb ().  */
5503 static basic_block
5504 sel_create_empty_bb (basic_block after)
5505 {
5506   basic_block new_bb;
5507
5508   new_bb = sched_create_empty_bb_1 (after);
5509
5510   /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5511      later.  */
5512   gcc_assert (last_added_blocks.length () == 1
5513               && last_added_blocks[0] == new_bb);
5514
5515   last_added_blocks.release ();
5516   return new_bb;
5517 }
5518
5519 /* Implement sched_create_recovery_block.  ORIG_INSN is where block
5520    will be splitted to insert a check.  */
5521 basic_block
5522 sel_create_recovery_block (insn_t orig_insn)
5523 {
5524   basic_block first_bb, second_bb, recovery_block;
5525   basic_block before_recovery = NULL;
5526   rtx_insn *jump;
5527
5528   first_bb = BLOCK_FOR_INSN (orig_insn);
5529   if (sel_bb_end_p (orig_insn))
5530     {
5531       /* Avoid introducing an empty block while splitting.  */
5532       gcc_assert (single_succ_p (first_bb));
5533       second_bb = single_succ (first_bb);
5534     }
5535   else
5536     second_bb = sched_split_block (first_bb, orig_insn);
5537
5538   recovery_block = sched_create_recovery_block (&before_recovery);
5539   if (before_recovery)
5540     copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5541
5542   gcc_assert (sel_bb_empty_p (recovery_block));
5543   sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5544   if (current_loops != NULL)
5545     add_bb_to_loop (recovery_block, first_bb->loop_father);
5546
5547   sel_add_bb (recovery_block);
5548
5549   jump = BB_END (recovery_block);
5550   gcc_assert (sel_bb_head (recovery_block) == jump);
5551   sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5552
5553   return recovery_block;
5554 }
5555
5556 /* Merge basic block B into basic block A.  */
5557 static void
5558 sel_merge_blocks (basic_block a, basic_block b)
5559 {
5560   gcc_assert (sel_bb_empty_p (b)
5561               && EDGE_COUNT (b->preds) == 1
5562               && EDGE_PRED (b, 0)->src == b->prev_bb);
5563
5564   move_bb_info (b->prev_bb, b);
5565   remove_empty_bb (b, false);
5566   merge_blocks (a, b);
5567   change_loops_latches (b, a);
5568 }
5569
5570 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5571    data structures for possibly created bb and insns.  */
5572 void
5573 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5574 {
5575   basic_block jump_bb, src, orig_dest = e->dest;
5576   int prev_max_uid;
5577   rtx_insn *jump;
5578   int old_seqno = -1;
5579
5580   /* This function is now used only for bookkeeping code creation, where
5581      we'll never get the single pred of orig_dest block and thus will not
5582      hit unreachable blocks when updating dominator info.  */
5583   gcc_assert (!sel_bb_empty_p (e->src)
5584               && !single_pred_p (orig_dest));
5585   src = e->src;
5586   prev_max_uid = get_max_uid ();
5587   /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5588      when the conditional jump being redirected may become unconditional.  */
5589   if (any_condjump_p (BB_END (src))
5590       && INSN_SEQNO (BB_END (src)) >= 0)
5591     old_seqno = INSN_SEQNO (BB_END (src));
5592
5593   jump_bb = redirect_edge_and_branch_force (e, to);
5594   if (jump_bb != NULL)
5595     sel_add_bb (jump_bb);
5596
5597   /* This function could not be used to spoil the loop structure by now,
5598      thus we don't care to update anything.  But check it to be sure.  */
5599   if (current_loop_nest
5600       && pipelining_p)
5601     gcc_assert (loop_latch_edge (current_loop_nest));
5602
5603   jump = find_new_jump (src, jump_bb, prev_max_uid);
5604   if (jump)
5605     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5606                        old_seqno);
5607   set_immediate_dominator (CDI_DOMINATORS, to,
5608                            recompute_dominator (CDI_DOMINATORS, to));
5609   set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5610                            recompute_dominator (CDI_DOMINATORS, orig_dest));
5611 }
5612
5613 /* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5614    redirected edge are in reverse topological order.  */
5615 bool
5616 sel_redirect_edge_and_branch (edge e, basic_block to)
5617 {
5618   bool latch_edge_p;
5619   basic_block src, orig_dest = e->dest;
5620   int prev_max_uid;
5621   rtx_insn *jump;
5622   edge redirected;
5623   bool recompute_toporder_p = false;
5624   bool maybe_unreachable = single_pred_p (orig_dest);
5625   int old_seqno = -1;
5626
5627   latch_edge_p = (pipelining_p
5628                   && current_loop_nest
5629                   && e == loop_latch_edge (current_loop_nest));
5630
5631   src = e->src;
5632   prev_max_uid = get_max_uid ();
5633
5634   /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5635      when the conditional jump being redirected may become unconditional.  */
5636   if (any_condjump_p (BB_END (src))
5637       && INSN_SEQNO (BB_END (src)) >= 0)
5638     old_seqno = INSN_SEQNO (BB_END (src));
5639
5640   redirected = redirect_edge_and_branch (e, to);
5641
5642   gcc_assert (redirected && !last_added_blocks.exists ());
5643
5644   /* When we've redirected a latch edge, update the header.  */
5645   if (latch_edge_p)
5646     {
5647       current_loop_nest->header = to;
5648       gcc_assert (loop_latch_edge (current_loop_nest));
5649     }
5650
5651   /* In rare situations, the topological relation between the blocks connected
5652      by the redirected edge can change (see PR42245 for an example).  Update
5653      block_to_bb/bb_to_block.  */
5654   if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5655       && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5656     recompute_toporder_p = true;
5657
5658   jump = find_new_jump (src, NULL, prev_max_uid);
5659   if (jump)
5660     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5661
5662   /* Only update dominator info when we don't have unreachable blocks.
5663      Otherwise we'll update in maybe_tidy_empty_bb.  */
5664   if (!maybe_unreachable)
5665     {
5666       set_immediate_dominator (CDI_DOMINATORS, to,
5667                                recompute_dominator (CDI_DOMINATORS, to));
5668       set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5669                                recompute_dominator (CDI_DOMINATORS, orig_dest));
5670     }
5671   return recompute_toporder_p;
5672 }
5673
5674 /* This variable holds the cfg hooks used by the selective scheduler.  */
5675 static struct cfg_hooks sel_cfg_hooks;
5676
5677 /* Register sel-sched cfg hooks.  */
5678 void
5679 sel_register_cfg_hooks (void)
5680 {
5681   sched_split_block = sel_split_block;
5682
5683   orig_cfg_hooks = get_cfg_hooks ();
5684   sel_cfg_hooks = orig_cfg_hooks;
5685
5686   sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5687
5688   set_cfg_hooks (sel_cfg_hooks);
5689
5690   sched_init_only_bb = sel_init_only_bb;
5691   sched_split_block = sel_split_block;
5692   sched_create_empty_bb = sel_create_empty_bb;
5693 }
5694
5695 /* Unregister sel-sched cfg hooks.  */
5696 void
5697 sel_unregister_cfg_hooks (void)
5698 {
5699   sched_create_empty_bb = NULL;
5700   sched_split_block = NULL;
5701   sched_init_only_bb = NULL;
5702
5703   set_cfg_hooks (orig_cfg_hooks);
5704 }
5705 \f
5706
5707 /* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5708    LABEL is where this jump should be directed.  */
5709 rtx_insn *
5710 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5711 {
5712   rtx_insn *insn_rtx;
5713
5714   gcc_assert (!INSN_P (pattern));
5715
5716   start_sequence ();
5717
5718   if (label == NULL_RTX)
5719     insn_rtx = emit_insn (pattern);
5720   else if (DEBUG_INSN_P (label))
5721     insn_rtx = emit_debug_insn (pattern);
5722   else
5723     {
5724       insn_rtx = emit_jump_insn (pattern);
5725       JUMP_LABEL (insn_rtx) = label;
5726       ++LABEL_NUSES (label);
5727     }
5728
5729   end_sequence ();
5730
5731   sched_extend_luids ();
5732   sched_extend_target ();
5733   sched_deps_init (false);
5734
5735   /* Initialize INSN_CODE now.  */
5736   recog_memoized (insn_rtx);
5737   return insn_rtx;
5738 }
5739
5740 /* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5741    must not be clonable.  */
5742 vinsn_t
5743 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5744 {
5745   gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5746
5747   /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5748   return vinsn_create (insn_rtx, force_unique_p);
5749 }
5750
5751 /* Create a copy of INSN_RTX.  */
5752 rtx_insn *
5753 create_copy_of_insn_rtx (rtx insn_rtx)
5754 {
5755   rtx_insn *res;
5756   rtx link;
5757
5758   if (DEBUG_INSN_P (insn_rtx))
5759     return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5760                                          insn_rtx);
5761
5762   gcc_assert (NONJUMP_INSN_P (insn_rtx));
5763
5764   res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5765                                       NULL_RTX);
5766
5767   /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5768      since mark_jump_label will make them.  REG_LABEL_TARGETs are created
5769      there too, but are supposed to be sticky, so we copy them.  */
5770   for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5771     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5772         && REG_NOTE_KIND (link) != REG_EQUAL
5773         && REG_NOTE_KIND (link) != REG_EQUIV)
5774       {
5775         if (GET_CODE (link) == EXPR_LIST)
5776           add_reg_note (res, REG_NOTE_KIND (link),
5777                         copy_insn_1 (XEXP (link, 0)));
5778         else
5779           add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5780       }
5781
5782   return res;
5783 }
5784
5785 /* Change vinsn field of EXPR to hold NEW_VINSN.  */
5786 void
5787 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5788 {
5789   vinsn_detach (EXPR_VINSN (expr));
5790
5791   EXPR_VINSN (expr) = new_vinsn;
5792   vinsn_attach (new_vinsn);
5793 }
5794
5795 /* Helpers for global init.  */
5796 /* This structure is used to be able to call existing bundling mechanism
5797    and calculate insn priorities.  */
5798 static struct haifa_sched_info sched_sel_haifa_sched_info =
5799 {
5800   NULL, /* init_ready_list */
5801   NULL, /* can_schedule_ready_p */
5802   NULL, /* schedule_more_p */
5803   NULL, /* new_ready */
5804   NULL, /* rgn_rank */
5805   sel_print_insn, /* rgn_print_insn */
5806   contributes_to_priority,
5807   NULL, /* insn_finishes_block_p */
5808
5809   NULL, NULL,
5810   NULL, NULL,
5811   0, 0,
5812
5813   NULL, /* add_remove_insn */
5814   NULL, /* begin_schedule_ready */
5815   NULL, /* begin_move_insn */
5816   NULL, /* advance_target_bb */
5817
5818   NULL,
5819   NULL,
5820
5821   SEL_SCHED | NEW_BBS
5822 };
5823
5824 /* Setup special insns used in the scheduler.  */
5825 void
5826 setup_nop_and_exit_insns (void)
5827 {
5828   gcc_assert (nop_pattern == NULL_RTX
5829               && exit_insn == NULL_RTX);
5830
5831   nop_pattern = constm1_rtx;
5832
5833   start_sequence ();
5834   emit_insn (nop_pattern);
5835   exit_insn = get_insns ();
5836   end_sequence ();
5837   set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5838 }
5839
5840 /* Free special insns used in the scheduler.  */
5841 void
5842 free_nop_and_exit_insns (void)
5843 {
5844   exit_insn = NULL;
5845   nop_pattern = NULL_RTX;
5846 }
5847
5848 /* Setup a special vinsn used in new insns initialization.  */
5849 void
5850 setup_nop_vinsn (void)
5851 {
5852   nop_vinsn = vinsn_create (exit_insn, false);
5853   vinsn_attach (nop_vinsn);
5854 }
5855
5856 /* Free a special vinsn used in new insns initialization.  */
5857 void
5858 free_nop_vinsn (void)
5859 {
5860   gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5861   vinsn_detach (nop_vinsn);
5862   nop_vinsn = NULL;
5863 }
5864
5865 /* Call a set_sched_flags hook.  */
5866 void
5867 sel_set_sched_flags (void)
5868 {
5869   /* ??? This means that set_sched_flags were called, and we decided to
5870      support speculation.  However, set_sched_flags also modifies flags
5871      on current_sched_info, doing this only at global init.  And we
5872      sometimes change c_s_i later.  So put the correct flags again.  */
5873   if (spec_info && targetm.sched.set_sched_flags)
5874     targetm.sched.set_sched_flags (spec_info);
5875 }
5876
5877 /* Setup pointers to global sched info structures.  */
5878 void
5879 sel_setup_sched_infos (void)
5880 {
5881   rgn_setup_common_sched_info ();
5882
5883   memcpy (&sel_common_sched_info, common_sched_info,
5884           sizeof (sel_common_sched_info));
5885
5886   sel_common_sched_info.fix_recovery_cfg = NULL;
5887   sel_common_sched_info.add_block = NULL;
5888   sel_common_sched_info.estimate_number_of_insns
5889     = sel_estimate_number_of_insns;
5890   sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5891   sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5892
5893   common_sched_info = &sel_common_sched_info;
5894
5895   current_sched_info = &sched_sel_haifa_sched_info;
5896   current_sched_info->sched_max_insns_priority =
5897     get_rgn_sched_max_insns_priority ();
5898
5899   sel_set_sched_flags ();
5900 }
5901 \f
5902
5903 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5904    *BB_ORD_INDEX after that is increased.  */
5905 static void
5906 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5907 {
5908   RGN_NR_BLOCKS (rgn) += 1;
5909   RGN_DONT_CALC_DEPS (rgn) = 0;
5910   RGN_HAS_REAL_EBB (rgn) = 0;
5911   CONTAINING_RGN (bb->index) = rgn;
5912   BLOCK_TO_BB (bb->index) = *bb_ord_index;
5913   rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5914   (*bb_ord_index)++;
5915
5916   /* FIXME: it is true only when not scheduling ebbs.  */
5917   RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5918 }
5919
5920 /* Functions to support pipelining of outer loops.  */
5921
5922 /* Creates a new empty region and returns it's number.  */
5923 static int
5924 sel_create_new_region (void)
5925 {
5926   int new_rgn_number = nr_regions;
5927
5928   RGN_NR_BLOCKS (new_rgn_number) = 0;
5929
5930   /* FIXME: This will work only when EBBs are not created.  */
5931   if (new_rgn_number != 0)
5932     RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5933       RGN_NR_BLOCKS (new_rgn_number - 1);
5934   else
5935     RGN_BLOCKS (new_rgn_number) = 0;
5936
5937   /* Set the blocks of the next region so the other functions may
5938      calculate the number of blocks in the region.  */
5939   RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5940     RGN_NR_BLOCKS (new_rgn_number);
5941
5942   nr_regions++;
5943
5944   return new_rgn_number;
5945 }
5946
5947 /* If X has a smaller topological sort number than Y, returns -1;
5948    if greater, returns 1.  */
5949 static int
5950 bb_top_order_comparator (const void *x, const void *y)
5951 {
5952   basic_block bb1 = *(const basic_block *) x;
5953   basic_block bb2 = *(const basic_block *) y;
5954
5955   gcc_assert (bb1 == bb2
5956               || rev_top_order_index[bb1->index]
5957                  != rev_top_order_index[bb2->index]);
5958
5959   /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5960      bbs with greater number should go earlier.  */
5961   if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5962     return -1;
5963   else
5964     return 1;
5965 }
5966
5967 /* Create a region for LOOP and return its number.  If we don't want
5968    to pipeline LOOP, return -1.  */
5969 static int
5970 make_region_from_loop (struct loop *loop)
5971 {
5972   unsigned int i;
5973   int new_rgn_number = -1;
5974   struct loop *inner;
5975
5976   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5977   int bb_ord_index = 0;
5978   basic_block *loop_blocks;
5979   basic_block preheader_block;
5980
5981   if (loop->num_nodes
5982       > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5983     return -1;
5984
5985   /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
5986   for (inner = loop->inner; inner; inner = inner->inner)
5987     if (flow_bb_inside_loop_p (inner, loop->latch))
5988       return -1;
5989
5990   loop->ninsns = num_loop_insns (loop);
5991   if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5992     return -1;
5993
5994   loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5995
5996   for (i = 0; i < loop->num_nodes; i++)
5997     if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5998       {
5999         free (loop_blocks);
6000         return -1;
6001       }
6002
6003   preheader_block = loop_preheader_edge (loop)->src;
6004   gcc_assert (preheader_block);
6005   gcc_assert (loop_blocks[0] == loop->header);
6006
6007   new_rgn_number = sel_create_new_region ();
6008
6009   sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6010   bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6011
6012   for (i = 0; i < loop->num_nodes; i++)
6013     {
6014       /* Add only those blocks that haven't been scheduled in the inner loop.
6015          The exception is the basic blocks with bookkeeping code - they should
6016          be added to the region (and they actually don't belong to the loop
6017          body, but to the region containing that loop body).  */
6018
6019       gcc_assert (new_rgn_number >= 0);
6020
6021       if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6022         {
6023           sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6024                                    new_rgn_number);
6025           bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6026         }
6027     }
6028
6029   free (loop_blocks);
6030   MARK_LOOP_FOR_PIPELINING (loop);
6031
6032   return new_rgn_number;
6033 }
6034
6035 /* Create a new region from preheader blocks LOOP_BLOCKS.  */
6036 void
6037 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6038 {
6039   unsigned int i;
6040   int new_rgn_number = -1;
6041   basic_block bb;
6042
6043   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6044   int bb_ord_index = 0;
6045
6046   new_rgn_number = sel_create_new_region ();
6047
6048   FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6049     {
6050       gcc_assert (new_rgn_number >= 0);
6051
6052       sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6053     }
6054
6055   vec_free (loop_blocks);
6056 }
6057
6058
6059 /* Create region(s) from loop nest LOOP, such that inner loops will be
6060    pipelined before outer loops.  Returns true when a region for LOOP
6061    is created.  */
6062 static bool
6063 make_regions_from_loop_nest (struct loop *loop)
6064 {
6065   struct loop *cur_loop;
6066   int rgn_number;
6067
6068   /* Traverse all inner nodes of the loop.  */
6069   for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6070     if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6071       return false;
6072
6073   /* At this moment all regular inner loops should have been pipelined.
6074      Try to create a region from this loop.  */
6075   rgn_number = make_region_from_loop (loop);
6076
6077   if (rgn_number < 0)
6078     return false;
6079
6080   loop_nests.safe_push (loop);
6081   return true;
6082 }
6083
6084 /* Initalize data structures needed.  */
6085 void
6086 sel_init_pipelining (void)
6087 {
6088   /* Collect loop information to be used in outer loops pipelining.  */
6089   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6090                        | LOOPS_HAVE_FALLTHRU_PREHEADERS
6091                        | LOOPS_HAVE_RECORDED_EXITS
6092                        | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6093   current_loop_nest = NULL;
6094
6095   bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6096   bitmap_clear (bbs_in_loop_rgns);
6097
6098   recompute_rev_top_order ();
6099 }
6100
6101 /* Returns a struct loop for region RGN.  */
6102 loop_p
6103 get_loop_nest_for_rgn (unsigned int rgn)
6104 {
6105   /* Regions created with extend_rgns don't have corresponding loop nests,
6106      because they don't represent loops.  */
6107   if (rgn < loop_nests.length ())
6108     return loop_nests[rgn];
6109   else
6110     return NULL;
6111 }
6112
6113 /* True when LOOP was included into pipelining regions.   */
6114 bool
6115 considered_for_pipelining_p (struct loop *loop)
6116 {
6117   if (loop_depth (loop) == 0)
6118     return false;
6119
6120   /* Now, the loop could be too large or irreducible.  Check whether its
6121      region is in LOOP_NESTS.
6122      We determine the region number of LOOP as the region number of its
6123      latch.  We can't use header here, because this header could be
6124      just removed preheader and it will give us the wrong region number.
6125      Latch can't be used because it could be in the inner loop too.  */
6126   if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6127     {
6128       int rgn = CONTAINING_RGN (loop->latch->index);
6129
6130       gcc_assert ((unsigned) rgn < loop_nests.length ());
6131       return true;
6132     }
6133
6134   return false;
6135 }
6136
6137 /* Makes regions from the rest of the blocks, after loops are chosen
6138    for pipelining.  */
6139 static void
6140 make_regions_from_the_rest (void)
6141 {
6142   int cur_rgn_blocks;
6143   int *loop_hdr;
6144   int i;
6145
6146   basic_block bb;
6147   edge e;
6148   edge_iterator ei;
6149   int *degree;
6150
6151   /* Index in rgn_bb_table where to start allocating new regions.  */
6152   cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6153
6154   /* Make regions from all the rest basic blocks - those that don't belong to
6155      any loop or belong to irreducible loops.  Prepare the data structures
6156      for extend_rgns.  */
6157
6158   /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6159      LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6160      loop.  */
6161   loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6162   degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6163
6164
6165   /* For each basic block that belongs to some loop assign the number
6166      of innermost loop it belongs to.  */
6167   for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6168     loop_hdr[i] = -1;
6169
6170   FOR_EACH_BB_FN (bb, cfun)
6171     {
6172       if (bb->loop_father && bb->loop_father->num != 0
6173           && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6174         loop_hdr[bb->index] = bb->loop_father->num;
6175     }
6176
6177   /* For each basic block degree is calculated as the number of incoming
6178      edges, that are going out of bbs that are not yet scheduled.
6179      The basic blocks that are scheduled have degree value of zero.  */
6180   FOR_EACH_BB_FN (bb, cfun)
6181     {
6182       degree[bb->index] = 0;
6183
6184       if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6185         {
6186           FOR_EACH_EDGE (e, ei, bb->preds)
6187             if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6188               degree[bb->index]++;
6189         }
6190       else
6191         degree[bb->index] = -1;
6192     }
6193
6194   extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6195
6196   /* Any block that did not end up in a region is placed into a region
6197      by itself.  */
6198   FOR_EACH_BB_FN (bb, cfun)
6199     if (degree[bb->index] >= 0)
6200       {
6201         rgn_bb_table[cur_rgn_blocks] = bb->index;
6202         RGN_NR_BLOCKS (nr_regions) = 1;
6203         RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6204         RGN_DONT_CALC_DEPS (nr_regions) = 0;
6205         RGN_HAS_REAL_EBB (nr_regions) = 0;
6206         CONTAINING_RGN (bb->index) = nr_regions++;
6207         BLOCK_TO_BB (bb->index) = 0;
6208       }
6209
6210   free (degree);
6211   free (loop_hdr);
6212 }
6213
6214 /* Free data structures used in pipelining of loops.  */
6215 void sel_finish_pipelining (void)
6216 {
6217   struct loop *loop;
6218
6219   /* Release aux fields so we don't free them later by mistake.  */
6220   FOR_EACH_LOOP (loop, 0)
6221     loop->aux = NULL;
6222
6223   loop_optimizer_finalize ();
6224
6225   loop_nests.release ();
6226
6227   free (rev_top_order_index);
6228   rev_top_order_index = NULL;
6229 }
6230
6231 /* This function replaces the find_rgns when
6232    FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6233 void
6234 sel_find_rgns (void)
6235 {
6236   sel_init_pipelining ();
6237   extend_regions ();
6238
6239   if (current_loops)
6240     {
6241       loop_p loop;
6242
6243       FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6244                             ? LI_FROM_INNERMOST
6245                             : LI_ONLY_INNERMOST))
6246         make_regions_from_loop_nest (loop);
6247     }
6248
6249   /* Make regions from all the rest basic blocks and schedule them.
6250      These blocks include blocks that don't belong to any loop or belong
6251      to irreducible loops.  */
6252   make_regions_from_the_rest ();
6253
6254   /* We don't need bbs_in_loop_rgns anymore.  */
6255   sbitmap_free (bbs_in_loop_rgns);
6256   bbs_in_loop_rgns = NULL;
6257 }
6258
6259 /* Add the preheader blocks from previous loop to current region taking
6260    it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6261    This function is only used with -fsel-sched-pipelining-outer-loops.  */
6262 void
6263 sel_add_loop_preheaders (bb_vec_t *bbs)
6264 {
6265   int i;
6266   basic_block bb;
6267   vec<basic_block> *preheader_blocks
6268     = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6269
6270   if (!preheader_blocks)
6271     return;
6272
6273   for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6274     {
6275       bbs->safe_push (bb);
6276       last_added_blocks.safe_push (bb);
6277       sel_add_bb (bb);
6278     }
6279
6280   vec_free (preheader_blocks);
6281 }
6282
6283 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6284    Please note that the function should also work when pipelining_p is
6285    false, because it is used when deciding whether we should or should
6286    not reschedule pipelined code.  */
6287 bool
6288 sel_is_loop_preheader_p (basic_block bb)
6289 {
6290   if (current_loop_nest)
6291     {
6292       struct loop *outer;
6293
6294       if (preheader_removed)
6295         return false;
6296
6297       /* Preheader is the first block in the region.  */
6298       if (BLOCK_TO_BB (bb->index) == 0)
6299         return true;
6300
6301       /* We used to find a preheader with the topological information.
6302          Check that the above code is equivalent to what we did before.  */
6303
6304       if (in_current_region_p (current_loop_nest->header))
6305         gcc_assert (!(BLOCK_TO_BB (bb->index)
6306                       < BLOCK_TO_BB (current_loop_nest->header->index)));
6307
6308       /* Support the situation when the latch block of outer loop
6309          could be from here.  */
6310       for (outer = loop_outer (current_loop_nest);
6311            outer;
6312            outer = loop_outer (outer))
6313         if (considered_for_pipelining_p (outer) && outer->latch == bb)
6314           gcc_unreachable ();
6315     }
6316
6317   return false;
6318 }
6319
6320 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6321    can be removed, making the corresponding edge fallthrough (assuming that
6322    all basic blocks between JUMP_BB and DEST_BB are empty).  */
6323 static bool
6324 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6325 {
6326   if (!onlyjump_p (BB_END (jump_bb))
6327       || tablejump_p (BB_END (jump_bb), NULL, NULL))
6328     return false;
6329
6330   /* Several outgoing edges, abnormal edge or destination of jump is
6331      not DEST_BB.  */
6332   if (EDGE_COUNT (jump_bb->succs) != 1
6333       || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6334       || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6335     return false;
6336
6337   /* If not anything of the upper.  */
6338   return true;
6339 }
6340
6341 /* Removes the loop preheader from the current region and saves it in
6342    PREHEADER_BLOCKS of the father loop, so they will be added later to
6343    region that represents an outer loop.  */
6344 static void
6345 sel_remove_loop_preheader (void)
6346 {
6347   int i, old_len;
6348   int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6349   basic_block bb;
6350   bool all_empty_p = true;
6351   vec<basic_block> *preheader_blocks
6352     = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6353
6354   vec_check_alloc (preheader_blocks, 0);
6355
6356   gcc_assert (current_loop_nest);
6357   old_len = preheader_blocks->length ();
6358
6359   /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6360   for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6361     {
6362       bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6363
6364       /* If the basic block belongs to region, but doesn't belong to
6365          corresponding loop, then it should be a preheader.  */
6366       if (sel_is_loop_preheader_p (bb))
6367         {
6368           preheader_blocks->safe_push (bb);
6369           if (BB_END (bb) != bb_note (bb))
6370             all_empty_p = false;
6371         }
6372     }
6373
6374   /* Remove these blocks only after iterating over the whole region.  */
6375   for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6376     {
6377       bb =  (*preheader_blocks)[i];
6378       sel_remove_bb (bb, false);
6379     }
6380
6381   if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6382     {
6383       if (!all_empty_p)
6384         /* Immediately create new region from preheader.  */
6385         make_region_from_loop_preheader (preheader_blocks);
6386       else
6387         {
6388           /* If all preheader blocks are empty - dont create new empty region.
6389              Instead, remove them completely.  */
6390           FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6391             {
6392               edge e;
6393               edge_iterator ei;
6394               basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6395
6396               /* Redirect all incoming edges to next basic block.  */
6397               for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6398                 {
6399                   if (! (e->flags & EDGE_FALLTHRU))
6400                     redirect_edge_and_branch (e, bb->next_bb);
6401                   else
6402                     redirect_edge_succ (e, bb->next_bb);
6403                 }
6404               gcc_assert (BB_NOTE_LIST (bb) == NULL);
6405               delete_and_free_basic_block (bb);
6406
6407               /* Check if after deleting preheader there is a nonconditional
6408                  jump in PREV_BB that leads to the next basic block NEXT_BB.
6409                  If it is so - delete this jump and clear data sets of its
6410                  basic block if it becomes empty.  */
6411               if (next_bb->prev_bb == prev_bb
6412                   && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6413                   && bb_has_removable_jump_to_p (prev_bb, next_bb))
6414                 {
6415                   redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6416                   if (BB_END (prev_bb) == bb_note (prev_bb))
6417                     free_data_sets (prev_bb);
6418                 }
6419
6420               set_immediate_dominator (CDI_DOMINATORS, next_bb,
6421                                        recompute_dominator (CDI_DOMINATORS,
6422                                                             next_bb));
6423             }
6424         }
6425       vec_free (preheader_blocks);
6426     }
6427   else
6428     /* Store preheader within the father's loop structure.  */
6429     SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6430                                preheader_blocks);
6431 }
6432
6433 #endif