1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2021 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
41 expand_vec_cmp_expr_p)
44 (define_operator_list tcc_comparison
45 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
46 (define_operator_list inverted_tcc_comparison
47 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
48 (define_operator_list inverted_tcc_comparison_with_nans
49 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
50 (define_operator_list swapped_tcc_comparison
51 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
52 (define_operator_list simple_comparison lt le eq ne ge gt)
53 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
55 #include "cfn-operators.pd"
57 /* Define operand lists for math rounding functions {,i,l,ll}FN,
58 where the versions prefixed with "i" return an int, those prefixed with
59 "l" return a long and those prefixed with "ll" return a long long.
61 Also define operand lists:
63 X<FN>F for all float functions, in the order i, l, ll
64 X<FN> for all double functions, in the same order
65 X<FN>L for all long double functions, in the same order. */
66 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
67 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
70 (define_operator_list X##FN BUILT_IN_I##FN \
73 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
77 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
82 /* Unary operations and their associated IFN_COND_* function. */
83 (define_operator_list UNCOND_UNARY
85 (define_operator_list COND_UNARY
88 /* Binary operations and their associated IFN_COND_* function. */
89 (define_operator_list UNCOND_BINARY
91 mult trunc_div trunc_mod rdiv
93 bit_and bit_ior bit_xor
95 (define_operator_list COND_BINARY
96 IFN_COND_ADD IFN_COND_SUB
97 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
98 IFN_COND_MIN IFN_COND_MAX
99 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
100 IFN_COND_SHL IFN_COND_SHR)
102 /* Same for ternary operations. */
103 (define_operator_list UNCOND_TERNARY
104 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
105 (define_operator_list COND_TERNARY
106 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
108 /* With nop_convert? combine convert? and view_convert? in one pattern
109 plus conditionalize on tree_nop_conversion_p conversions. */
110 (match (nop_convert @0)
112 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
113 (match (nop_convert @0)
115 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
116 && known_eq (TYPE_VECTOR_SUBPARTS (type),
117 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
118 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
120 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
121 ABSU_EXPR returns unsigned absolute value of the operand and the operand
122 of the ABSU_EXPR will have the corresponding signed type. */
123 (simplify (abs (convert @0))
124 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
125 && !TYPE_UNSIGNED (TREE_TYPE (@0))
126 && element_precision (type) > element_precision (TREE_TYPE (@0)))
127 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
128 (convert (absu:utype @0)))))
131 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
133 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
134 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
135 && !TYPE_UNSIGNED (TREE_TYPE (@0))
136 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
140 /* Simplifications of operations with one constant operand and
141 simplifications to constants or single values. */
143 (for op (plus pointer_plus minus bit_ior bit_xor)
145 (op @0 integer_zerop)
148 /* 0 +p index -> (type)index */
150 (pointer_plus integer_zerop @1)
151 (non_lvalue (convert @1)))
153 /* ptr - 0 -> (type)ptr */
155 (pointer_diff @0 integer_zerop)
158 /* See if ARG1 is zero and X + ARG1 reduces to X.
159 Likewise if the operands are reversed. */
161 (plus:c @0 real_zerop@1)
162 (if (fold_real_zero_addition_p (type, @0, @1, 0))
165 /* See if ARG1 is zero and X - ARG1 reduces to X. */
167 (minus @0 real_zerop@1)
168 (if (fold_real_zero_addition_p (type, @0, @1, 1))
171 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
172 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
173 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
174 if not -frounding-math. For sNaNs the first operation would raise
175 exceptions but turn the result into qNan, so the second operation
176 would not raise it. */
177 (for inner_op (plus minus)
178 (for outer_op (plus minus)
180 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
183 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
184 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
185 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
187 = ((outer_op == PLUS_EXPR)
188 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
189 (if (outer_plus && !inner_plus)
194 This is unsafe for certain floats even in non-IEEE formats.
195 In IEEE, it is unsafe because it does wrong for NaNs.
196 Also note that operand_equal_p is always false if an operand
200 (if (!FLOAT_TYPE_P (type) || !tree_expr_maybe_nan_p (@0))
201 { build_zero_cst (type); }))
203 (pointer_diff @@0 @0)
204 { build_zero_cst (type); })
207 (mult @0 integer_zerop@1)
210 /* Maybe fold x * 0 to 0. The expressions aren't the same
211 when x is NaN, since x * 0 is also NaN. Nor are they the
212 same in modes with signed zeros, since multiplying a
213 negative value by 0 gives -0, not +0. */
215 (mult @0 real_zerop@1)
216 (if (!tree_expr_maybe_nan_p (@0)
217 && !tree_expr_maybe_real_minus_zero_p (@0)
218 && !tree_expr_maybe_real_minus_zero_p (@1))
221 /* In IEEE floating point, x*1 is not equivalent to x for snans.
222 Likewise for complex arithmetic with signed zeros. */
225 (if (!tree_expr_maybe_signaling_nan_p (@0)
226 && (!HONOR_SIGNED_ZEROS (type)
227 || !COMPLEX_FLOAT_TYPE_P (type)))
230 /* Transform x * -1.0 into -x. */
232 (mult @0 real_minus_onep)
233 (if (!tree_expr_maybe_signaling_nan_p (@0)
234 && (!HONOR_SIGNED_ZEROS (type)
235 || !COMPLEX_FLOAT_TYPE_P (type)))
238 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
240 (mult SSA_NAME@1 SSA_NAME@2)
241 (if (INTEGRAL_TYPE_P (type)
242 && get_nonzero_bits (@1) == 1
243 && get_nonzero_bits (@2) == 1)
246 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
247 unless the target has native support for the former but not the latter. */
249 (mult @0 VECTOR_CST@1)
250 (if (initializer_each_zero_or_onep (@1)
251 && !HONOR_SNANS (type)
252 && !HONOR_SIGNED_ZEROS (type))
253 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
255 && (!VECTOR_MODE_P (TYPE_MODE (type))
256 || (VECTOR_MODE_P (TYPE_MODE (itype))
257 && optab_handler (and_optab,
258 TYPE_MODE (itype)) != CODE_FOR_nothing)))
259 (view_convert (bit_and:itype (view_convert @0)
260 (ne @1 { build_zero_cst (type); })))))))
262 (for cmp (gt ge lt le)
263 outp (convert convert negate negate)
264 outn (negate negate convert convert)
265 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
266 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
267 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
268 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
270 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
271 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
273 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
274 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
275 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
276 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
278 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
279 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
282 /* Transform X * copysign (1.0, X) into abs(X). */
284 (mult:c @0 (COPYSIGN_ALL real_onep @0))
285 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
288 /* Transform X * copysign (1.0, -X) into -abs(X). */
290 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
291 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
294 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
296 (COPYSIGN_ALL REAL_CST@0 @1)
297 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
298 (COPYSIGN_ALL (negate @0) @1)))
300 /* X * 1, X / 1 -> X. */
301 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
306 /* (A / (1 << B)) -> (A >> B).
307 Only for unsigned A. For signed A, this would not preserve rounding
309 For example: (-1 / ( 1 << B)) != -1 >> B.
310 Also also widening conversions, like:
311 (A / (unsigned long long) (1U << B)) -> (A >> B)
313 (A / (unsigned long long) (1 << B)) -> (A >> B).
314 If the left shift is signed, it can be done only if the upper bits
315 of A starting from shift's type sign bit are zero, as
316 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
317 so it is valid only if A >> 31 is zero. */
319 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
320 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
321 && (!VECTOR_TYPE_P (type)
322 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
323 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
324 && (useless_type_conversion_p (type, TREE_TYPE (@1))
325 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
326 && (TYPE_UNSIGNED (TREE_TYPE (@1))
327 || (element_precision (type)
328 == element_precision (TREE_TYPE (@1)))
329 || (INTEGRAL_TYPE_P (type)
330 && (tree_nonzero_bits (@0)
331 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
333 element_precision (type))) == 0)))))
334 (if (!VECTOR_TYPE_P (type)
335 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
336 && element_precision (TREE_TYPE (@3)) < element_precision (type))
337 (convert (rshift @3 @2))
340 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
341 undefined behavior in constexpr evaluation, and assuming that the division
342 traps enables better optimizations than these anyway. */
343 (for div (trunc_div ceil_div floor_div round_div exact_div)
344 /* 0 / X is always zero. */
346 (div integer_zerop@0 @1)
347 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
348 (if (!integer_zerop (@1))
352 (div @0 integer_minus_onep@1)
353 (if (!TYPE_UNSIGNED (type))
355 /* X / bool_range_Y is X. */
358 (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1))
363 /* But not for 0 / 0 so that we can get the proper warnings and errors.
364 And not for _Fract types where we can't build 1. */
365 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
366 { build_one_cst (type); }))
367 /* X / abs (X) is X < 0 ? -1 : 1. */
370 (if (INTEGRAL_TYPE_P (type)
371 && TYPE_OVERFLOW_UNDEFINED (type))
372 (cond (lt @0 { build_zero_cst (type); })
373 { build_minus_one_cst (type); } { build_one_cst (type); })))
376 (div:C @0 (negate @0))
377 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
378 && TYPE_OVERFLOW_UNDEFINED (type))
379 { build_minus_one_cst (type); })))
381 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
382 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
385 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
386 && TYPE_UNSIGNED (type))
389 /* Combine two successive divisions. Note that combining ceil_div
390 and floor_div is trickier and combining round_div even more so. */
391 (for div (trunc_div exact_div)
393 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
395 wi::overflow_type overflow;
396 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
397 TYPE_SIGN (type), &overflow);
399 (if (div == EXACT_DIV_EXPR
400 || optimize_successive_divisions_p (@2, @3))
402 (div @0 { wide_int_to_tree (type, mul); })
403 (if (TYPE_UNSIGNED (type)
404 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
405 { build_zero_cst (type); }))))))
407 /* Combine successive multiplications. Similar to above, but handling
408 overflow is different. */
410 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
412 wi::overflow_type overflow;
413 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
414 TYPE_SIGN (type), &overflow);
416 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
417 otherwise undefined overflow implies that @0 must be zero. */
418 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
419 (mult @0 { wide_int_to_tree (type, mul); }))))
421 /* Optimize A / A to 1.0 if we don't care about
422 NaNs or Infinities. */
425 (if (FLOAT_TYPE_P (type)
426 && ! HONOR_NANS (type)
427 && ! HONOR_INFINITIES (type))
428 { build_one_cst (type); }))
430 /* Optimize -A / A to -1.0 if we don't care about
431 NaNs or Infinities. */
433 (rdiv:C @0 (negate @0))
434 (if (FLOAT_TYPE_P (type)
435 && ! HONOR_NANS (type)
436 && ! HONOR_INFINITIES (type))
437 { build_minus_one_cst (type); }))
439 /* PR71078: x / abs(x) -> copysign (1.0, x) */
441 (rdiv:C (convert? @0) (convert? (abs @0)))
442 (if (SCALAR_FLOAT_TYPE_P (type)
443 && ! HONOR_NANS (type)
444 && ! HONOR_INFINITIES (type))
446 (if (types_match (type, float_type_node))
447 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
448 (if (types_match (type, double_type_node))
449 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
450 (if (types_match (type, long_double_type_node))
451 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
453 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
456 (if (!tree_expr_maybe_signaling_nan_p (@0))
459 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
461 (rdiv @0 real_minus_onep)
462 (if (!tree_expr_maybe_signaling_nan_p (@0))
465 (if (flag_reciprocal_math)
466 /* Convert (A/B)/C to A/(B*C). */
468 (rdiv (rdiv:s @0 @1) @2)
469 (rdiv @0 (mult @1 @2)))
471 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
473 (rdiv @0 (mult:s @1 REAL_CST@2))
475 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
477 (rdiv (mult @0 { tem; } ) @1))))
479 /* Convert A/(B/C) to (A/B)*C */
481 (rdiv @0 (rdiv:s @1 @2))
482 (mult (rdiv @0 @1) @2)))
484 /* Simplify x / (- y) to -x / y. */
486 (rdiv @0 (negate @1))
487 (rdiv (negate @0) @1))
489 (if (flag_unsafe_math_optimizations)
490 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
491 Since C / x may underflow to zero, do this only for unsafe math. */
492 (for op (lt le gt ge)
495 (op (rdiv REAL_CST@0 @1) real_zerop@2)
496 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
498 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
500 /* For C < 0, use the inverted operator. */
501 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
504 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
505 (for div (trunc_div ceil_div floor_div round_div exact_div)
507 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
508 (if (integer_pow2p (@2)
509 && tree_int_cst_sgn (@2) > 0
510 && tree_nop_conversion_p (type, TREE_TYPE (@0))
511 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
513 { build_int_cst (integer_type_node,
514 wi::exact_log2 (wi::to_wide (@2))); }))))
516 /* If ARG1 is a constant, we can convert this to a multiply by the
517 reciprocal. This does not have the same rounding properties,
518 so only do this if -freciprocal-math. We can actually
519 always safely do it if ARG1 is a power of two, but it's hard to
520 tell if it is or not in a portable manner. */
521 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
525 (if (flag_reciprocal_math
528 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
530 (mult @0 { tem; } )))
531 (if (cst != COMPLEX_CST)
532 (with { tree inverse = exact_inverse (type, @1); }
534 (mult @0 { inverse; } ))))))))
536 (for mod (ceil_mod floor_mod round_mod trunc_mod)
537 /* 0 % X is always zero. */
539 (mod integer_zerop@0 @1)
540 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
541 (if (!integer_zerop (@1))
543 /* X % 1 is always zero. */
545 (mod @0 integer_onep)
546 { build_zero_cst (type); })
547 /* X % -1 is zero. */
549 (mod @0 integer_minus_onep@1)
550 (if (!TYPE_UNSIGNED (type))
551 { build_zero_cst (type); }))
555 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
556 (if (!integer_zerop (@0))
557 { build_zero_cst (type); }))
558 /* (X % Y) % Y is just X % Y. */
560 (mod (mod@2 @0 @1) @1)
562 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
564 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
565 (if (ANY_INTEGRAL_TYPE_P (type)
566 && TYPE_OVERFLOW_UNDEFINED (type)
567 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
569 { build_zero_cst (type); }))
570 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
571 modulo and comparison, since it is simpler and equivalent. */
574 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
575 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
576 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
577 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
579 /* X % -C is the same as X % C. */
581 (trunc_mod @0 INTEGER_CST@1)
582 (if (TYPE_SIGN (type) == SIGNED
583 && !TREE_OVERFLOW (@1)
584 && wi::neg_p (wi::to_wide (@1))
585 && !TYPE_OVERFLOW_TRAPS (type)
586 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
587 && !sign_bit_p (@1, @1))
588 (trunc_mod @0 (negate @1))))
590 /* X % -Y is the same as X % Y. */
592 (trunc_mod @0 (convert? (negate @1)))
593 (if (INTEGRAL_TYPE_P (type)
594 && !TYPE_UNSIGNED (type)
595 && !TYPE_OVERFLOW_TRAPS (type)
596 && tree_nop_conversion_p (type, TREE_TYPE (@1))
597 /* Avoid this transformation if X might be INT_MIN or
598 Y might be -1, because we would then change valid
599 INT_MIN % -(-1) into invalid INT_MIN % -1. */
600 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
601 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
603 (trunc_mod @0 (convert @1))))
605 /* X - (X / Y) * Y is the same as X % Y. */
607 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
608 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
609 (convert (trunc_mod @0 @1))))
611 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
612 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
613 Also optimize A % (C << N) where C is a power of 2,
614 to A & ((C << N) - 1).
615 Also optimize "A shift (B % C)", if C is a power of 2, to
616 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
617 and assume (B % C) is nonnegative as shifts negative values would
619 (match (power_of_two_cand @1)
621 (match (power_of_two_cand @1)
622 (lshift INTEGER_CST@1 @2))
623 (for mod (trunc_mod floor_mod)
624 (for shift (lshift rshift)
626 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
627 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
628 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
631 (mod @0 (convert? (power_of_two_cand@1 @2)))
632 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
633 /* Allow any integral conversions of the divisor, except
634 conversion from narrower signed to wider unsigned type
635 where if @1 would be negative power of two, the divisor
636 would not be a power of two. */
637 && INTEGRAL_TYPE_P (type)
638 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
639 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
640 || TYPE_UNSIGNED (TREE_TYPE (@1))
641 || !TYPE_UNSIGNED (type))
642 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
643 (with { tree utype = TREE_TYPE (@1);
644 if (!TYPE_OVERFLOW_WRAPS (utype))
645 utype = unsigned_type_for (utype); }
646 (bit_and @0 (convert (minus (convert:utype @1)
647 { build_one_cst (utype); })))))))
649 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
651 (trunc_div (mult @0 integer_pow2p@1) @1)
652 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
653 (bit_and @0 { wide_int_to_tree
654 (type, wi::mask (TYPE_PRECISION (type)
655 - wi::exact_log2 (wi::to_wide (@1)),
656 false, TYPE_PRECISION (type))); })))
658 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
660 (mult (trunc_div @0 integer_pow2p@1) @1)
661 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
662 (bit_and @0 (negate @1))))
664 /* Simplify (t * 2) / 2) -> t. */
665 (for div (trunc_div ceil_div floor_div round_div exact_div)
667 (div (mult:c @0 @1) @1)
668 (if (ANY_INTEGRAL_TYPE_P (type))
669 (if (TYPE_OVERFLOW_UNDEFINED (type))
674 bool overflowed = true;
675 value_range vr0, vr1;
676 if (INTEGRAL_TYPE_P (type)
677 && get_global_range_query ()->range_of_expr (vr0, @0)
678 && get_global_range_query ()->range_of_expr (vr1, @1)
679 && vr0.kind () == VR_RANGE
680 && vr1.kind () == VR_RANGE)
682 wide_int wmin0 = vr0.lower_bound ();
683 wide_int wmax0 = vr0.upper_bound ();
684 wide_int wmin1 = vr1.lower_bound ();
685 wide_int wmax1 = vr1.upper_bound ();
686 /* If the multiplication can't overflow/wrap around, then
687 it can be optimized too. */
688 wi::overflow_type min_ovf, max_ovf;
689 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
690 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
691 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
693 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
694 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
695 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
706 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
711 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
714 (pows (op @0) REAL_CST@1)
715 (with { HOST_WIDE_INT n; }
716 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
718 /* Likewise for powi. */
721 (pows (op @0) INTEGER_CST@1)
722 (if ((wi::to_wide (@1) & 1) == 0)
724 /* Strip negate and abs from both operands of hypot. */
732 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
733 (for copysigns (COPYSIGN_ALL)
735 (copysigns (op @0) @1)
738 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
743 /* Convert absu(x)*absu(x) -> x*x. */
745 (mult (absu@1 @0) @1)
746 (mult (convert@2 @0) @2))
748 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
752 (coss (copysigns @0 @1))
755 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
759 (pows (copysigns @0 @2) REAL_CST@1)
760 (with { HOST_WIDE_INT n; }
761 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
763 /* Likewise for powi. */
767 (pows (copysigns @0 @2) INTEGER_CST@1)
768 (if ((wi::to_wide (@1) & 1) == 0)
773 /* hypot(copysign(x, y), z) -> hypot(x, z). */
775 (hypots (copysigns @0 @1) @2)
777 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
779 (hypots @0 (copysigns @1 @2))
782 /* copysign(x, CST) -> [-]abs (x). */
783 (for copysigns (COPYSIGN_ALL)
785 (copysigns @0 REAL_CST@1)
786 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
790 /* copysign(copysign(x, y), z) -> copysign(x, z). */
791 (for copysigns (COPYSIGN_ALL)
793 (copysigns (copysigns @0 @1) @2)
796 /* copysign(x,y)*copysign(x,y) -> x*x. */
797 (for copysigns (COPYSIGN_ALL)
799 (mult (copysigns@2 @0 @1) @2)
802 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
803 (for ccoss (CCOS CCOSH)
808 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
809 (for ops (conj negate)
815 /* Fold (a * (1 << b)) into (a << b) */
817 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
818 (if (! FLOAT_TYPE_P (type)
819 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
822 /* Fold (1 << (C - x)) where C = precision(type) - 1
823 into ((1 << C) >> x). */
825 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
826 (if (INTEGRAL_TYPE_P (type)
827 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
829 (if (TYPE_UNSIGNED (type))
830 (rshift (lshift @0 @2) @3)
832 { tree utype = unsigned_type_for (type); }
833 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
835 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
836 (for cst (INTEGER_CST VECTOR_CST)
838 (rshift (negate:s @0) cst@1)
839 (if (!TYPE_UNSIGNED (type)
840 && TYPE_OVERFLOW_UNDEFINED (type))
841 (with { tree stype = TREE_TYPE (@1);
842 tree bt = truth_type_for (type);
843 tree zeros = build_zero_cst (type);
844 tree cst = NULL_TREE; }
846 /* Handle scalar case. */
847 (if (INTEGRAL_TYPE_P (type)
848 /* If we apply the rule to the scalar type before vectorization
849 we will enforce the result of the comparison being a bool
850 which will require an extra AND on the result that will be
851 indistinguishable from when the user did actually want 0
852 or 1 as the result so it can't be removed. */
853 && canonicalize_math_after_vectorization_p ()
854 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
855 (negate (convert (gt @0 { zeros; }))))
856 /* Handle vector case. */
857 (if (VECTOR_INTEGER_TYPE_P (type)
858 /* First check whether the target has the same mode for vector
859 comparison results as it's operands do. */
860 && TYPE_MODE (bt) == TYPE_MODE (type)
861 /* Then check to see if the target is able to expand the comparison
862 with the given type later on, otherwise we may ICE. */
863 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
864 && (cst = uniform_integer_cst_p (@1)) != NULL
865 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
866 (view_convert (gt:bt @0 { zeros; }))))))))
868 /* Fold (C1/X)*C2 into (C1*C2)/X. */
870 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
871 (if (flag_associative_math
874 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
876 (rdiv { tem; } @1)))))
878 /* Simplify ~X & X as zero. */
880 (bit_and:c (convert? @0) (convert? (bit_not @0)))
881 { build_zero_cst (type); })
883 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
885 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
886 (if (TYPE_UNSIGNED (type))
887 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
889 (for bitop (bit_and bit_ior)
891 /* PR35691: Transform
892 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
893 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
895 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
896 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
897 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
898 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
899 (cmp (bit_ior @0 (convert @1)) @2)))
901 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
902 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
904 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
905 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
906 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
907 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
908 (cmp (bit_and @0 (convert @1)) @2))))
910 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
912 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
913 (minus (bit_xor @0 @1) @1))
915 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
916 (if (~wi::to_wide (@2) == wi::to_wide (@1))
917 (minus (bit_xor @0 @1) @1)))
919 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
921 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
922 (minus @1 (bit_xor @0 @1)))
924 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
925 (for op (bit_ior bit_xor plus)
927 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
930 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
931 (if (~wi::to_wide (@2) == wi::to_wide (@1))
934 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
936 (bit_ior:c (bit_xor:c @0 @1) @0)
939 /* (a & ~b) | (a ^ b) --> a ^ b */
941 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
944 /* (a & ~b) ^ ~a --> ~(a & b) */
946 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
947 (bit_not (bit_and @0 @1)))
949 /* (~a & b) ^ a --> (a | b) */
951 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
954 /* (a | b) & ~(a ^ b) --> a & b */
956 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
959 /* a | ~(a ^ b) --> a | ~b */
961 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
962 (bit_ior @0 (bit_not @1)))
964 /* (a | b) | (a &^ b) --> a | b */
965 (for op (bit_and bit_xor)
967 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
970 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
972 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
975 /* ~(~a & b) --> a | ~b */
977 (bit_not (bit_and:cs (bit_not @0) @1))
978 (bit_ior @0 (bit_not @1)))
980 /* ~(~a | b) --> a & ~b */
982 (bit_not (bit_ior:cs (bit_not @0) @1))
983 (bit_and @0 (bit_not @1)))
985 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
987 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
988 (bit_and @3 (bit_not @2)))
990 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
992 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
996 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
998 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
999 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1001 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1003 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1004 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1006 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1008 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1009 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1010 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1014 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1015 ((A & N) + B) & M -> (A + B) & M
1016 Similarly if (N & M) == 0,
1017 ((A | N) + B) & M -> (A + B) & M
1018 and for - instead of + (or unary - instead of +)
1019 and/or ^ instead of |.
1020 If B is constant and (B & M) == 0, fold into A & M. */
1021 (for op (plus minus)
1022 (for bitop (bit_and bit_ior bit_xor)
1024 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1027 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1028 @3, @4, @1, ERROR_MARK, NULL_TREE,
1031 (convert (bit_and (op (convert:utype { pmop[0]; })
1032 (convert:utype { pmop[1]; }))
1033 (convert:utype @2))))))
1035 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1038 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1039 NULL_TREE, NULL_TREE, @1, bitop, @3,
1042 (convert (bit_and (op (convert:utype { pmop[0]; })
1043 (convert:utype { pmop[1]; }))
1044 (convert:utype @2)))))))
1046 (bit_and (op:s @0 @1) INTEGER_CST@2)
1049 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1050 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1051 NULL_TREE, NULL_TREE, pmop); }
1053 (convert (bit_and (op (convert:utype { pmop[0]; })
1054 (convert:utype { pmop[1]; }))
1055 (convert:utype @2)))))))
1056 (for bitop (bit_and bit_ior bit_xor)
1058 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1061 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1062 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1063 NULL_TREE, NULL_TREE, pmop); }
1065 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1066 (convert:utype @1)))))))
1068 /* X % Y is smaller than Y. */
1071 (cmp (trunc_mod @0 @1) @1)
1072 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1073 { constant_boolean_node (cmp == LT_EXPR, type); })))
1076 (cmp @1 (trunc_mod @0 @1))
1077 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1078 { constant_boolean_node (cmp == GT_EXPR, type); })))
1082 (bit_ior @0 integer_all_onesp@1)
1087 (bit_ior @0 integer_zerop)
1092 (bit_and @0 integer_zerop@1)
1098 (for op (bit_ior bit_xor plus)
1100 (op:c (convert? @0) (convert? (bit_not @0)))
1101 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1106 { build_zero_cst (type); })
1108 /* Canonicalize X ^ ~0 to ~X. */
1110 (bit_xor @0 integer_all_onesp@1)
1115 (bit_and @0 integer_all_onesp)
1118 /* x & x -> x, x | x -> x */
1119 (for bitop (bit_and bit_ior)
1124 /* x & C -> x if we know that x & ~C == 0. */
1127 (bit_and SSA_NAME@0 INTEGER_CST@1)
1128 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1129 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1133 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1135 (bit_not (minus (bit_not @0) @1))
1138 (bit_not (plus:c (bit_not @0) @1))
1141 /* ~(X - Y) -> ~X + Y. */
1143 (bit_not (minus:s @0 @1))
1144 (plus (bit_not @0) @1))
1146 (bit_not (plus:s @0 INTEGER_CST@1))
1147 (if ((INTEGRAL_TYPE_P (type)
1148 && TYPE_UNSIGNED (type))
1149 || (!TYPE_OVERFLOW_SANITIZED (type)
1150 && may_negate_without_overflow_p (@1)))
1151 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1154 /* ~X + Y -> (Y - X) - 1. */
1156 (plus:c (bit_not @0) @1)
1157 (if (ANY_INTEGRAL_TYPE_P (type)
1158 && TYPE_OVERFLOW_WRAPS (type)
1159 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1160 && !integer_all_onesp (@1))
1161 (plus (minus @1 @0) { build_minus_one_cst (type); })
1162 (if (INTEGRAL_TYPE_P (type)
1163 && TREE_CODE (@1) == INTEGER_CST
1164 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1166 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1168 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1170 (bit_not (rshift:s @0 @1))
1171 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1172 (rshift (bit_not! @0) @1)
1173 /* For logical right shifts, this is possible only if @0 doesn't
1174 have MSB set and the logical right shift is changed into
1175 arithmetic shift. */
1176 (if (!wi::neg_p (tree_nonzero_bits (@0)))
1177 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1178 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1181 /* x + (x & 1) -> (x + 1) & ~1 */
1183 (plus:c @0 (bit_and:s @0 integer_onep@1))
1184 (bit_and (plus @0 @1) (bit_not @1)))
1186 /* x & ~(x & y) -> x & ~y */
1187 /* x | ~(x | y) -> x | ~y */
1188 (for bitop (bit_and bit_ior)
1190 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1191 (bitop @0 (bit_not @1))))
1193 /* (~x & y) | ~(x | y) -> ~x */
1195 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1198 /* (x | y) ^ (x | ~y) -> ~x */
1200 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1203 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1205 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1206 (bit_not (bit_xor @0 @1)))
1208 /* (~x | y) ^ (x ^ y) -> x | ~y */
1210 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1211 (bit_ior @0 (bit_not @1)))
1213 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1215 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1216 (bit_not (bit_and @0 @1)))
1218 /* (x | y) & ~x -> y & ~x */
1219 /* (x & y) | ~x -> y | ~x */
1220 (for bitop (bit_and bit_ior)
1221 rbitop (bit_ior bit_and)
1223 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1226 /* (x & y) ^ (x | y) -> x ^ y */
1228 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1231 /* (x ^ y) ^ (x | y) -> x & y */
1233 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1236 /* (x & y) + (x ^ y) -> x | y */
1237 /* (x & y) | (x ^ y) -> x | y */
1238 /* (x & y) ^ (x ^ y) -> x | y */
1239 (for op (plus bit_ior bit_xor)
1241 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1244 /* (x & y) + (x | y) -> x + y */
1246 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1249 /* (x + y) - (x | y) -> x & y */
1251 (minus (plus @0 @1) (bit_ior @0 @1))
1252 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1253 && !TYPE_SATURATING (type))
1256 /* (x + y) - (x & y) -> x | y */
1258 (minus (plus @0 @1) (bit_and @0 @1))
1259 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1260 && !TYPE_SATURATING (type))
1263 /* (x | y) - y -> (x & ~y) */
1265 (minus (bit_ior:cs @0 @1) @1)
1266 (bit_and @0 (bit_not @1)))
1268 /* (x | y) - (x ^ y) -> x & y */
1270 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1273 /* (x | y) - (x & y) -> x ^ y */
1275 (minus (bit_ior @0 @1) (bit_and @0 @1))
1278 /* (x | y) & ~(x & y) -> x ^ y */
1280 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1283 /* (x | y) & (~x ^ y) -> x & y */
1285 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1288 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1290 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1291 (bit_not (bit_xor @0 @1)))
1293 /* (~x | y) ^ (x | ~y) -> x ^ y */
1295 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1298 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1300 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1301 (nop_convert2? (bit_ior @0 @1))))
1303 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1304 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1305 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1306 && !TYPE_SATURATING (TREE_TYPE (@2)))
1307 (bit_not (convert (bit_xor @0 @1)))))
1309 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1311 (nop_convert3? (bit_ior @0 @1)))
1312 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1313 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1314 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1315 && !TYPE_SATURATING (TREE_TYPE (@2)))
1316 (bit_not (convert (bit_xor @0 @1)))))
1318 (minus (nop_convert1? (bit_and @0 @1))
1319 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1321 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1322 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1323 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1324 && !TYPE_SATURATING (TREE_TYPE (@2)))
1325 (bit_not (convert (bit_xor @0 @1)))))
1327 /* ~x & ~y -> ~(x | y)
1328 ~x | ~y -> ~(x & y) */
1329 (for op (bit_and bit_ior)
1330 rop (bit_ior bit_and)
1332 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1333 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1334 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1335 (bit_not (rop (convert @0) (convert @1))))))
1337 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1338 with a constant, and the two constants have no bits in common,
1339 we should treat this as a BIT_IOR_EXPR since this may produce more
1341 (for op (bit_xor plus)
1343 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1344 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1345 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1346 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1347 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1348 (bit_ior (convert @4) (convert @5)))))
1350 /* (X | Y) ^ X -> Y & ~ X*/
1352 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1353 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1354 (convert (bit_and @1 (bit_not @0)))))
1356 /* Convert ~X ^ ~Y to X ^ Y. */
1358 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1359 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1360 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1361 (bit_xor (convert @0) (convert @1))))
1363 /* Convert ~X ^ C to X ^ ~C. */
1365 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1366 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1367 (bit_xor (convert @0) (bit_not @1))))
1369 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1370 (for opo (bit_and bit_xor)
1371 opi (bit_xor bit_and)
1373 (opo:c (opi:cs @0 @1) @1)
1374 (bit_and (bit_not @0) @1)))
1376 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1377 operands are another bit-wise operation with a common input. If so,
1378 distribute the bit operations to save an operation and possibly two if
1379 constants are involved. For example, convert
1380 (A | B) & (A | C) into A | (B & C)
1381 Further simplification will occur if B and C are constants. */
1382 (for op (bit_and bit_ior bit_xor)
1383 rop (bit_ior bit_and bit_and)
1385 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1386 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1387 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1388 (rop (convert @0) (op (convert @1) (convert @2))))))
1390 /* Some simple reassociation for bit operations, also handled in reassoc. */
1391 /* (X & Y) & Y -> X & Y
1392 (X | Y) | Y -> X | Y */
1393 (for op (bit_and bit_ior)
1395 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1397 /* (X ^ Y) ^ Y -> X */
1399 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1401 /* (X & Y) & (X & Z) -> (X & Y) & Z
1402 (X | Y) | (X | Z) -> (X | Y) | Z */
1403 (for op (bit_and bit_ior)
1405 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1406 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1407 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1408 (if (single_use (@5) && single_use (@6))
1409 (op @3 (convert @2))
1410 (if (single_use (@3) && single_use (@4))
1411 (op (convert @1) @5))))))
1412 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1414 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1415 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1416 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1417 (bit_xor (convert @1) (convert @2))))
1419 /* Convert abs (abs (X)) into abs (X).
1420 also absu (absu (X)) into absu (X). */
1426 (absu (convert@2 (absu@1 @0)))
1427 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1430 /* Convert abs[u] (-X) -> abs[u] (X). */
1439 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1441 (abs tree_expr_nonnegative_p@0)
1445 (absu tree_expr_nonnegative_p@0)
1448 /* Simplify (-(X < 0) | 1) * X into abs (X). */
1450 (mult:c (bit_ior (negate (convert? (lt @0 integer_zerop))) integer_onep) @0)
1451 (if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type))
1454 /* Similarly (-(X < 0) | 1U) * X into absu (X). */
1456 (mult:c (bit_ior (nop_convert (negate (convert? (lt @0 integer_zerop))))
1457 integer_onep) (nop_convert @0))
1458 (if (INTEGRAL_TYPE_P (type)
1459 && TYPE_UNSIGNED (type)
1460 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1461 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1464 /* A few cases of fold-const.c negate_expr_p predicate. */
1465 (match negate_expr_p
1467 (if ((INTEGRAL_TYPE_P (type)
1468 && TYPE_UNSIGNED (type))
1469 || (!TYPE_OVERFLOW_SANITIZED (type)
1470 && may_negate_without_overflow_p (t)))))
1471 (match negate_expr_p
1473 (match negate_expr_p
1475 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1476 (match negate_expr_p
1478 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1479 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1481 (match negate_expr_p
1483 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1484 (match negate_expr_p
1486 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1487 || (FLOAT_TYPE_P (type)
1488 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1489 && !HONOR_SIGNED_ZEROS (type)))))
1491 /* (-A) * (-B) -> A * B */
1493 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1494 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1495 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1496 (mult (convert @0) (convert (negate @1)))))
1498 /* -(A + B) -> (-B) - A. */
1500 (negate (plus:c @0 negate_expr_p@1))
1501 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1502 && !HONOR_SIGNED_ZEROS (type))
1503 (minus (negate @1) @0)))
1505 /* -(A - B) -> B - A. */
1507 (negate (minus @0 @1))
1508 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1509 || (FLOAT_TYPE_P (type)
1510 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1511 && !HONOR_SIGNED_ZEROS (type)))
1514 (negate (pointer_diff @0 @1))
1515 (if (TYPE_OVERFLOW_UNDEFINED (type))
1516 (pointer_diff @1 @0)))
1518 /* A - B -> A + (-B) if B is easily negatable. */
1520 (minus @0 negate_expr_p@1)
1521 (if (!FIXED_POINT_TYPE_P (type))
1522 (plus @0 (negate @1))))
1524 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1526 (negate (mult:c@0 @1 negate_expr_p@2))
1527 (if (! TYPE_UNSIGNED (type)
1528 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1530 (mult @1 (negate @2))))
1533 (negate (rdiv@0 @1 negate_expr_p@2))
1534 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1536 (rdiv @1 (negate @2))))
1539 (negate (rdiv@0 negate_expr_p@1 @2))
1540 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1542 (rdiv (negate @1) @2)))
1544 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1546 (negate (convert? (rshift @0 INTEGER_CST@1)))
1547 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1548 && wi::to_wide (@1) == element_precision (type) - 1)
1549 (with { tree stype = TREE_TYPE (@0);
1550 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1551 : unsigned_type_for (stype); }
1552 (convert (rshift:ntype (convert:ntype @0) @1)))))
1554 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1556 For bitwise binary operations apply operand conversions to the
1557 binary operation result instead of to the operands. This allows
1558 to combine successive conversions and bitwise binary operations.
1559 We combine the above two cases by using a conditional convert. */
1560 (for bitop (bit_and bit_ior bit_xor)
1562 (bitop (convert@2 @0) (convert?@3 @1))
1563 (if (((TREE_CODE (@1) == INTEGER_CST
1564 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1565 && int_fits_type_p (@1, TREE_TYPE (@0)))
1566 || types_match (@0, @1))
1567 /* ??? This transform conflicts with fold-const.c doing
1568 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1569 constants (if x has signed type, the sign bit cannot be set
1570 in c). This folds extension into the BIT_AND_EXPR.
1571 Restrict it to GIMPLE to avoid endless recursions. */
1572 && (bitop != BIT_AND_EXPR || GIMPLE)
1573 && (/* That's a good idea if the conversion widens the operand, thus
1574 after hoisting the conversion the operation will be narrower. */
1575 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1576 /* It's also a good idea if the conversion is to a non-integer
1578 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1579 /* Or if the precision of TO is not the same as the precision
1581 || !type_has_mode_precision_p (type)
1582 /* In GIMPLE, getting rid of 2 conversions for one new results
1585 && TREE_CODE (@1) != INTEGER_CST
1586 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1588 && single_use (@3))))
1589 (convert (bitop @0 (convert @1)))))
1590 /* In GIMPLE, getting rid of 2 conversions for one new results
1593 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1595 && TREE_CODE (@1) != INTEGER_CST
1596 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1597 && types_match (type, @0))
1598 (bitop @0 (convert @1)))))
1600 (for bitop (bit_and bit_ior)
1601 rbitop (bit_ior bit_and)
1602 /* (x | y) & x -> x */
1603 /* (x & y) | x -> x */
1605 (bitop:c (rbitop:c @0 @1) @0)
1607 /* (~x | y) & x -> x & y */
1608 /* (~x & y) | x -> x | y */
1610 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1613 /* ((x | y) & z) | x -> (z & y) | x */
1615 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1616 (bit_ior (bit_and @2 @1) @0))
1618 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1620 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1621 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1623 /* Combine successive equal operations with constants. */
1624 (for bitop (bit_and bit_ior bit_xor)
1626 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1627 (if (!CONSTANT_CLASS_P (@0))
1628 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1629 folded to a constant. */
1630 (bitop @0 (bitop @1 @2))
1631 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1632 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1633 the values involved are such that the operation can't be decided at
1634 compile time. Try folding one of @0 or @1 with @2 to see whether
1635 that combination can be decided at compile time.
1637 Keep the existing form if both folds fail, to avoid endless
1639 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1641 (bitop @1 { cst1; })
1642 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1644 (bitop @0 { cst2; }))))))))
1646 /* Try simple folding for X op !X, and X op X with the help
1647 of the truth_valued_p and logical_inverted_value predicates. */
1648 (match truth_valued_p
1650 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1651 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1652 (match truth_valued_p
1654 (match truth_valued_p
1657 (match (logical_inverted_value @0)
1659 (match (logical_inverted_value @0)
1660 (bit_not truth_valued_p@0))
1661 (match (logical_inverted_value @0)
1662 (eq @0 integer_zerop))
1663 (match (logical_inverted_value @0)
1664 (ne truth_valued_p@0 integer_truep))
1665 (match (logical_inverted_value @0)
1666 (bit_xor truth_valued_p@0 integer_truep))
1670 (bit_and:c @0 (logical_inverted_value @0))
1671 { build_zero_cst (type); })
1672 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1673 (for op (bit_ior bit_xor)
1675 (op:c truth_valued_p@0 (logical_inverted_value @0))
1676 { constant_boolean_node (true, type); }))
1677 /* X ==/!= !X is false/true. */
1680 (op:c truth_valued_p@0 (logical_inverted_value @0))
1681 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1685 (bit_not (bit_not @0))
1688 /* Convert ~ (-A) to A - 1. */
1690 (bit_not (convert? (negate @0)))
1691 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1692 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1693 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1695 /* Convert - (~A) to A + 1. */
1697 (negate (nop_convert? (bit_not @0)))
1698 (plus (view_convert @0) { build_each_one_cst (type); }))
1700 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1702 (bit_not (convert? (minus @0 integer_each_onep)))
1703 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1704 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1705 (convert (negate @0))))
1707 (bit_not (convert? (plus @0 integer_all_onesp)))
1708 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1709 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1710 (convert (negate @0))))
1712 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1714 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1715 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1716 (convert (bit_xor @0 (bit_not @1)))))
1718 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1719 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1720 (convert (bit_xor @0 @1))))
1722 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1724 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1725 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1726 (bit_not (bit_xor (view_convert @0) @1))))
1728 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1730 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1731 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1733 /* Fold A - (A & B) into ~B & A. */
1735 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1736 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1737 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1738 (convert (bit_and (bit_not @1) @0))))
1740 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1741 (for cmp (gt lt ge le)
1743 (mult (convert (cmp @0 @1)) @2)
1744 (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1745 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1747 /* For integral types with undefined overflow and C != 0 fold
1748 x * C EQ/NE y * C into x EQ/NE y. */
1751 (cmp (mult:c @0 @1) (mult:c @2 @1))
1752 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1753 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1754 && tree_expr_nonzero_p (@1))
1757 /* For integral types with wrapping overflow and C odd fold
1758 x * C EQ/NE y * C into x EQ/NE y. */
1761 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1762 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1763 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1764 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1767 /* For integral types with undefined overflow and C != 0 fold
1768 x * C RELOP y * C into:
1770 x RELOP y for nonnegative C
1771 y RELOP x for negative C */
1772 (for cmp (lt gt le ge)
1774 (cmp (mult:c @0 @1) (mult:c @2 @1))
1775 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1776 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1777 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1779 (if (TREE_CODE (@1) == INTEGER_CST
1780 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1783 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1787 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1788 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1789 && TYPE_UNSIGNED (TREE_TYPE (@0))
1790 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1791 && (wi::to_wide (@2)
1792 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1793 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1794 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1796 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1797 (for cmp (simple_comparison)
1799 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1800 (if (element_precision (@3) >= element_precision (@0)
1801 && types_match (@0, @1))
1802 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1803 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1805 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1808 tree utype = unsigned_type_for (TREE_TYPE (@0));
1810 (cmp (convert:utype @1) (convert:utype @0)))))
1811 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1812 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1816 tree utype = unsigned_type_for (TREE_TYPE (@0));
1818 (cmp (convert:utype @0) (convert:utype @1)))))))))
1820 /* X / C1 op C2 into a simple range test. */
1821 (for cmp (simple_comparison)
1823 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1824 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1825 && integer_nonzerop (@1)
1826 && !TREE_OVERFLOW (@1)
1827 && !TREE_OVERFLOW (@2))
1828 (with { tree lo, hi; bool neg_overflow;
1829 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1832 (if (code == LT_EXPR || code == GE_EXPR)
1833 (if (TREE_OVERFLOW (lo))
1834 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1835 (if (code == LT_EXPR)
1838 (if (code == LE_EXPR || code == GT_EXPR)
1839 (if (TREE_OVERFLOW (hi))
1840 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1841 (if (code == LE_EXPR)
1845 { build_int_cst (type, code == NE_EXPR); })
1846 (if (code == EQ_EXPR && !hi)
1848 (if (code == EQ_EXPR && !lo)
1850 (if (code == NE_EXPR && !hi)
1852 (if (code == NE_EXPR && !lo)
1855 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1859 tree etype = range_check_type (TREE_TYPE (@0));
1862 hi = fold_convert (etype, hi);
1863 lo = fold_convert (etype, lo);
1864 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1867 (if (etype && hi && !TREE_OVERFLOW (hi))
1868 (if (code == EQ_EXPR)
1869 (le (minus (convert:etype @0) { lo; }) { hi; })
1870 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1872 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1873 (for op (lt le ge gt)
1875 (op (plus:c @0 @2) (plus:c @1 @2))
1876 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1877 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1879 /* For equality and subtraction, this is also true with wrapping overflow. */
1880 (for op (eq ne minus)
1882 (op (plus:c @0 @2) (plus:c @1 @2))
1883 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1884 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1885 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1888 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1889 (for op (lt le ge gt)
1891 (op (minus @0 @2) (minus @1 @2))
1892 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1893 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1895 /* For equality and subtraction, this is also true with wrapping overflow. */
1896 (for op (eq ne minus)
1898 (op (minus @0 @2) (minus @1 @2))
1899 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1900 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1901 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1903 /* And for pointers... */
1904 (for op (simple_comparison)
1906 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1907 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1910 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1911 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1912 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1913 (pointer_diff @0 @1)))
1915 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1916 (for op (lt le ge gt)
1918 (op (minus @2 @0) (minus @2 @1))
1919 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1920 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1922 /* For equality and subtraction, this is also true with wrapping overflow. */
1923 (for op (eq ne minus)
1925 (op (minus @2 @0) (minus @2 @1))
1926 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1927 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1928 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1930 /* And for pointers... */
1931 (for op (simple_comparison)
1933 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1934 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1937 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1938 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1939 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1940 (pointer_diff @1 @0)))
1942 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1943 (for op (lt le gt ge)
1945 (op:c (plus:c@2 @0 @1) @1)
1946 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1947 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1948 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1949 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1950 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1951 /* For equality, this is also true with wrapping overflow. */
1954 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1955 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1956 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1957 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1958 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1959 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1960 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1961 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1963 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1964 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1965 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1966 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1967 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1969 /* X - Y < X is the same as Y > 0 when there is no overflow.
1970 For equality, this is also true with wrapping overflow. */
1971 (for op (simple_comparison)
1973 (op:c @0 (minus@2 @0 @1))
1974 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1975 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1976 || ((op == EQ_EXPR || op == NE_EXPR)
1977 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1978 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1979 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1982 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1983 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1987 (cmp (trunc_div @0 @1) integer_zerop)
1988 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1989 /* Complex ==/!= is allowed, but not </>=. */
1990 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1991 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1994 /* X == C - X can never be true if C is odd. */
1997 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1998 (if (TREE_INT_CST_LOW (@1) & 1)
1999 { constant_boolean_node (cmp == NE_EXPR, type); })))
2001 /* Arguments on which one can call get_nonzero_bits to get the bits
2003 (match with_possible_nonzero_bits
2005 (match with_possible_nonzero_bits
2007 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2008 /* Slightly extended version, do not make it recursive to keep it cheap. */
2009 (match (with_possible_nonzero_bits2 @0)
2010 with_possible_nonzero_bits@0)
2011 (match (with_possible_nonzero_bits2 @0)
2012 (bit_and:c with_possible_nonzero_bits@0 @2))
2014 /* Same for bits that are known to be set, but we do not have
2015 an equivalent to get_nonzero_bits yet. */
2016 (match (with_certain_nonzero_bits2 @0)
2018 (match (with_certain_nonzero_bits2 @0)
2019 (bit_ior @1 INTEGER_CST@0))
2021 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2024 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2025 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2026 { constant_boolean_node (cmp == NE_EXPR, type); })))
2028 /* ((X inner_op C0) outer_op C1)
2029 With X being a tree where value_range has reasoned certain bits to always be
2030 zero throughout its computed value range,
2031 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2032 where zero_mask has 1's for all bits that are sure to be 0 in
2034 if (inner_op == '^') C0 &= ~C1;
2035 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2036 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2038 (for inner_op (bit_ior bit_xor)
2039 outer_op (bit_xor bit_ior)
2042 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2046 wide_int zero_mask_not;
2050 if (TREE_CODE (@2) == SSA_NAME)
2051 zero_mask_not = get_nonzero_bits (@2);
2055 if (inner_op == BIT_XOR_EXPR)
2057 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2058 cst_emit = C0 | wi::to_wide (@1);
2062 C0 = wi::to_wide (@0);
2063 cst_emit = C0 ^ wi::to_wide (@1);
2066 (if (!fail && (C0 & zero_mask_not) == 0)
2067 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2068 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2069 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2071 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2073 (pointer_plus (pointer_plus:s @0 @1) @3)
2074 (pointer_plus @0 (plus @1 @3)))
2080 tem4 = (unsigned long) tem3;
2085 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2086 /* Conditionally look through a sign-changing conversion. */
2087 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2088 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2089 || (GENERIC && type == TREE_TYPE (@1))))
2092 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2093 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2097 tem = (sizetype) ptr;
2101 and produce the simpler and easier to analyze with respect to alignment
2102 ... = ptr & ~algn; */
2104 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2105 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2106 (bit_and @0 { algn; })))
2108 /* Try folding difference of addresses. */
2110 (minus (convert ADDR_EXPR@0) (convert @1))
2111 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2112 (with { poly_int64 diff; }
2113 (if (ptr_difference_const (@0, @1, &diff))
2114 { build_int_cst_type (type, diff); }))))
2116 (minus (convert @0) (convert ADDR_EXPR@1))
2117 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2118 (with { poly_int64 diff; }
2119 (if (ptr_difference_const (@0, @1, &diff))
2120 { build_int_cst_type (type, diff); }))))
2122 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2123 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2124 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2125 (with { poly_int64 diff; }
2126 (if (ptr_difference_const (@0, @1, &diff))
2127 { build_int_cst_type (type, diff); }))))
2129 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2130 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2131 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2132 (with { poly_int64 diff; }
2133 (if (ptr_difference_const (@0, @1, &diff))
2134 { build_int_cst_type (type, diff); }))))
2136 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2138 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2139 (with { poly_int64 diff; }
2140 (if (ptr_difference_const (@0, @2, &diff))
2141 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2143 /* (&a+b) !=/== (&a[1] + c) -> sizeof(a[0]) + b !=/== c */
2146 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2147 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2148 (if (ptr_difference_const (@0, @2, &diff))
2149 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2151 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2153 (convert (pointer_diff @0 INTEGER_CST@1))
2154 (if (POINTER_TYPE_P (type))
2155 { build_fold_addr_expr_with_type
2156 (build2 (MEM_REF, char_type_node, @0,
2157 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2160 /* If arg0 is derived from the address of an object or function, we may
2161 be able to fold this expression using the object or function's
2164 (bit_and (convert? @0) INTEGER_CST@1)
2165 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2166 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2170 unsigned HOST_WIDE_INT bitpos;
2171 get_pointer_alignment_1 (@0, &align, &bitpos);
2173 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2174 { wide_int_to_tree (type, (wi::to_wide (@1)
2175 & (bitpos / BITS_PER_UNIT))); }))))
2179 (if (INTEGRAL_TYPE_P (type)
2180 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2184 (if (INTEGRAL_TYPE_P (type)
2185 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2187 /* x > y && x != XXX_MIN --> x > y
2188 x > y && x == XXX_MIN --> false . */
2191 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2193 (if (eqne == EQ_EXPR)
2194 { constant_boolean_node (false, type); })
2195 (if (eqne == NE_EXPR)
2199 /* x < y && x != XXX_MAX --> x < y
2200 x < y && x == XXX_MAX --> false. */
2203 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2205 (if (eqne == EQ_EXPR)
2206 { constant_boolean_node (false, type); })
2207 (if (eqne == NE_EXPR)
2211 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2213 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2216 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2218 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2221 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2223 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2226 /* x <= y || x != XXX_MIN --> true. */
2228 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2229 { constant_boolean_node (true, type); })
2231 /* x <= y || x == XXX_MIN --> x <= y. */
2233 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2236 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2238 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2241 /* x >= y || x != XXX_MAX --> true
2242 x >= y || x == XXX_MAX --> x >= y. */
2245 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2247 (if (eqne == EQ_EXPR)
2249 (if (eqne == NE_EXPR)
2250 { constant_boolean_node (true, type); }))))
2252 /* y == XXX_MIN || x < y --> x <= y - 1 */
2254 (bit_ior:c (eq:s @1 min_value) (lt:s @0 @1))
2255 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2256 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2257 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2259 /* y != XXX_MIN && x >= y --> x > y - 1 */
2261 (bit_and:c (ne:s @1 min_value) (ge:s @0 @1))
2262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2263 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2264 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2266 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2267 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2270 (for code2 (eq ne lt gt le ge)
2272 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2275 int cmp = tree_int_cst_compare (@1, @2);
2279 case EQ_EXPR: val = (cmp == 0); break;
2280 case NE_EXPR: val = (cmp != 0); break;
2281 case LT_EXPR: val = (cmp < 0); break;
2282 case GT_EXPR: val = (cmp > 0); break;
2283 case LE_EXPR: val = (cmp <= 0); break;
2284 case GE_EXPR: val = (cmp >= 0); break;
2285 default: gcc_unreachable ();
2289 (if (code1 == EQ_EXPR && val) @3)
2290 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2291 (if (code1 == NE_EXPR && !val) @4))))))
2293 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2295 (for code1 (lt le gt ge)
2296 (for code2 (lt le gt ge)
2298 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2301 int cmp = tree_int_cst_compare (@1, @2);
2304 /* Choose the more restrictive of two < or <= comparisons. */
2305 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2306 && (code2 == LT_EXPR || code2 == LE_EXPR))
2307 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2310 /* Likewise chose the more restrictive of two > or >= comparisons. */
2311 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2312 && (code2 == GT_EXPR || code2 == GE_EXPR))
2313 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2316 /* Check for singleton ranges. */
2318 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2319 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2321 /* Check for disjoint ranges. */
2323 && (code1 == LT_EXPR || code1 == LE_EXPR)
2324 && (code2 == GT_EXPR || code2 == GE_EXPR))
2325 { constant_boolean_node (false, type); })
2327 && (code1 == GT_EXPR || code1 == GE_EXPR)
2328 && (code2 == LT_EXPR || code2 == LE_EXPR))
2329 { constant_boolean_node (false, type); })
2332 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2333 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2336 (for code2 (eq ne lt gt le ge)
2338 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2341 int cmp = tree_int_cst_compare (@1, @2);
2345 case EQ_EXPR: val = (cmp == 0); break;
2346 case NE_EXPR: val = (cmp != 0); break;
2347 case LT_EXPR: val = (cmp < 0); break;
2348 case GT_EXPR: val = (cmp > 0); break;
2349 case LE_EXPR: val = (cmp <= 0); break;
2350 case GE_EXPR: val = (cmp >= 0); break;
2351 default: gcc_unreachable ();
2355 (if (code1 == EQ_EXPR && val) @4)
2356 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2357 (if (code1 == NE_EXPR && !val) @3))))))
2359 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2361 (for code1 (lt le gt ge)
2362 (for code2 (lt le gt ge)
2364 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2367 int cmp = tree_int_cst_compare (@1, @2);
2370 /* Choose the more restrictive of two < or <= comparisons. */
2371 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2372 && (code2 == LT_EXPR || code2 == LE_EXPR))
2373 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2376 /* Likewise chose the more restrictive of two > or >= comparisons. */
2377 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2378 && (code2 == GT_EXPR || code2 == GE_EXPR))
2379 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2382 /* Check for singleton ranges. */
2384 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2385 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2387 /* Check for disjoint ranges. */
2389 && (code1 == LT_EXPR || code1 == LE_EXPR)
2390 && (code2 == GT_EXPR || code2 == GE_EXPR))
2391 { constant_boolean_node (true, type); })
2393 && (code1 == GT_EXPR || code1 == GE_EXPR)
2394 && (code2 == LT_EXPR || code2 == LE_EXPR))
2395 { constant_boolean_node (true, type); })
2398 /* We can't reassociate at all for saturating types. */
2399 (if (!TYPE_SATURATING (type))
2401 /* Contract negates. */
2402 /* A + (-B) -> A - B */
2404 (plus:c @0 (convert? (negate @1)))
2405 /* Apply STRIP_NOPS on the negate. */
2406 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2407 && !TYPE_OVERFLOW_SANITIZED (type))
2411 if (INTEGRAL_TYPE_P (type)
2412 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2413 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2415 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2416 /* A - (-B) -> A + B */
2418 (minus @0 (convert? (negate @1)))
2419 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2420 && !TYPE_OVERFLOW_SANITIZED (type))
2424 if (INTEGRAL_TYPE_P (type)
2425 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2426 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2428 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2430 Sign-extension is ok except for INT_MIN, which thankfully cannot
2431 happen without overflow. */
2433 (negate (convert (negate @1)))
2434 (if (INTEGRAL_TYPE_P (type)
2435 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2436 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2437 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2438 && !TYPE_OVERFLOW_SANITIZED (type)
2439 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2442 (negate (convert negate_expr_p@1))
2443 (if (SCALAR_FLOAT_TYPE_P (type)
2444 && ((DECIMAL_FLOAT_TYPE_P (type)
2445 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2446 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2447 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2448 (convert (negate @1))))
2450 (negate (nop_convert? (negate @1)))
2451 (if (!TYPE_OVERFLOW_SANITIZED (type)
2452 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2455 /* We can't reassociate floating-point unless -fassociative-math
2456 or fixed-point plus or minus because of saturation to +-Inf. */
2457 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2458 && !FIXED_POINT_TYPE_P (type))
2460 /* Match patterns that allow contracting a plus-minus pair
2461 irrespective of overflow issues. */
2462 /* (A +- B) - A -> +- B */
2463 /* (A +- B) -+ B -> A */
2464 /* A - (A +- B) -> -+ B */
2465 /* A +- (B -+ A) -> +- B */
2467 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2470 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2471 (if (!ANY_INTEGRAL_TYPE_P (type)
2472 || TYPE_OVERFLOW_WRAPS (type))
2473 (negate (view_convert @1))
2474 (view_convert (negate @1))))
2476 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2479 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2480 (if (!ANY_INTEGRAL_TYPE_P (type)
2481 || TYPE_OVERFLOW_WRAPS (type))
2482 (negate (view_convert @1))
2483 (view_convert (negate @1))))
2485 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2487 /* (A +- B) + (C - A) -> C +- B */
2488 /* (A + B) - (A - C) -> B + C */
2489 /* More cases are handled with comparisons. */
2491 (plus:c (plus:c @0 @1) (minus @2 @0))
2494 (plus:c (minus @0 @1) (minus @2 @0))
2497 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2498 (if (TYPE_OVERFLOW_UNDEFINED (type)
2499 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2500 (pointer_diff @2 @1)))
2502 (minus (plus:c @0 @1) (minus @0 @2))
2505 /* (A +- CST1) +- CST2 -> A + CST3
2506 Use view_convert because it is safe for vectors and equivalent for
2508 (for outer_op (plus minus)
2509 (for inner_op (plus minus)
2510 neg_inner_op (minus plus)
2512 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2514 /* If one of the types wraps, use that one. */
2515 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2516 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2517 forever if something doesn't simplify into a constant. */
2518 (if (!CONSTANT_CLASS_P (@0))
2519 (if (outer_op == PLUS_EXPR)
2520 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2521 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2522 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2523 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2524 (if (outer_op == PLUS_EXPR)
2525 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2526 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2527 /* If the constant operation overflows we cannot do the transform
2528 directly as we would introduce undefined overflow, for example
2529 with (a - 1) + INT_MIN. */
2530 (if (types_match (type, @0))
2531 (with { tree cst = const_binop (outer_op == inner_op
2532 ? PLUS_EXPR : MINUS_EXPR,
2534 (if (cst && !TREE_OVERFLOW (cst))
2535 (inner_op @0 { cst; } )
2536 /* X+INT_MAX+1 is X-INT_MIN. */
2537 (if (INTEGRAL_TYPE_P (type) && cst
2538 && wi::to_wide (cst) == wi::min_value (type))
2539 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2540 /* Last resort, use some unsigned type. */
2541 (with { tree utype = unsigned_type_for (type); }
2543 (view_convert (inner_op
2544 (view_convert:utype @0)
2546 { drop_tree_overflow (cst); }))))))))))))))
2548 /* (CST1 - A) +- CST2 -> CST3 - A */
2549 (for outer_op (plus minus)
2551 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2552 /* If one of the types wraps, use that one. */
2553 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2554 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2555 forever if something doesn't simplify into a constant. */
2556 (if (!CONSTANT_CLASS_P (@0))
2557 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2558 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2559 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2560 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2561 (if (types_match (type, @0))
2562 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2563 (if (cst && !TREE_OVERFLOW (cst))
2564 (minus { cst; } @0))))))))
2566 /* CST1 - (CST2 - A) -> CST3 + A
2567 Use view_convert because it is safe for vectors and equivalent for
2570 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2571 /* If one of the types wraps, use that one. */
2572 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2573 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2574 forever if something doesn't simplify into a constant. */
2575 (if (!CONSTANT_CLASS_P (@0))
2576 (plus (view_convert @0) (minus @1 (view_convert @2))))
2577 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2578 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2579 (view_convert (plus @0 (minus (view_convert @1) @2)))
2580 (if (types_match (type, @0))
2581 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2582 (if (cst && !TREE_OVERFLOW (cst))
2583 (plus { cst; } @0)))))))
2585 /* ((T)(A)) + CST -> (T)(A + CST) */
2588 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2589 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2590 && TREE_CODE (type) == INTEGER_TYPE
2591 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2592 && int_fits_type_p (@1, TREE_TYPE (@0)))
2593 /* Perform binary operation inside the cast if the constant fits
2594 and (A + CST)'s range does not overflow. */
2597 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2598 max_ovf = wi::OVF_OVERFLOW;
2599 tree inner_type = TREE_TYPE (@0);
2602 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2603 TYPE_SIGN (inner_type));
2606 if (get_global_range_query ()->range_of_expr (vr, @0)
2607 && vr.kind () == VR_RANGE)
2609 wide_int wmin0 = vr.lower_bound ();
2610 wide_int wmax0 = vr.upper_bound ();
2611 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2612 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2615 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2616 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2620 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2622 (for op (plus minus)
2624 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2625 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2626 && TREE_CODE (type) == INTEGER_TYPE
2627 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2628 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2629 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2630 && TYPE_OVERFLOW_WRAPS (type))
2631 (plus (convert @0) (op @2 (convert @1))))))
2634 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2635 to a simple value. */
2637 (for op (plus minus)
2639 (op (convert @0) (convert @1))
2640 (if (INTEGRAL_TYPE_P (type)
2641 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2642 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2643 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2644 && !TYPE_OVERFLOW_TRAPS (type)
2645 && !TYPE_OVERFLOW_SANITIZED (type))
2646 (convert (op! @0 @1)))))
2651 (plus:c (bit_not @0) @0)
2652 (if (!TYPE_OVERFLOW_TRAPS (type))
2653 { build_all_ones_cst (type); }))
2657 (plus (convert? (bit_not @0)) integer_each_onep)
2658 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2659 (negate (convert @0))))
2663 (minus (convert? (negate @0)) integer_each_onep)
2664 (if (!TYPE_OVERFLOW_TRAPS (type)
2665 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2666 (bit_not (convert @0))))
2670 (minus integer_all_onesp @0)
2673 /* (T)(P + A) - (T)P -> (T) A */
2675 (minus (convert (plus:c @@0 @1))
2677 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2678 /* For integer types, if A has a smaller type
2679 than T the result depends on the possible
2681 E.g. T=size_t, A=(unsigned)429497295, P>0.
2682 However, if an overflow in P + A would cause
2683 undefined behavior, we can assume that there
2685 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2686 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2689 (minus (convert (pointer_plus @@0 @1))
2691 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2692 /* For pointer types, if the conversion of A to the
2693 final type requires a sign- or zero-extension,
2694 then we have to punt - it is not defined which
2696 || (POINTER_TYPE_P (TREE_TYPE (@0))
2697 && TREE_CODE (@1) == INTEGER_CST
2698 && tree_int_cst_sign_bit (@1) == 0))
2701 (pointer_diff (pointer_plus @@0 @1) @0)
2702 /* The second argument of pointer_plus must be interpreted as signed, and
2703 thus sign-extended if necessary. */
2704 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2705 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2706 second arg is unsigned even when we need to consider it as signed,
2707 we don't want to diagnose overflow here. */
2708 (convert (view_convert:stype @1))))
2710 /* (T)P - (T)(P + A) -> -(T) A */
2712 (minus (convert? @0)
2713 (convert (plus:c @@0 @1)))
2714 (if (INTEGRAL_TYPE_P (type)
2715 && TYPE_OVERFLOW_UNDEFINED (type)
2716 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2717 (with { tree utype = unsigned_type_for (type); }
2718 (convert (negate (convert:utype @1))))
2719 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2720 /* For integer types, if A has a smaller type
2721 than T the result depends on the possible
2723 E.g. T=size_t, A=(unsigned)429497295, P>0.
2724 However, if an overflow in P + A would cause
2725 undefined behavior, we can assume that there
2727 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2728 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2729 (negate (convert @1)))))
2732 (convert (pointer_plus @@0 @1)))
2733 (if (INTEGRAL_TYPE_P (type)
2734 && TYPE_OVERFLOW_UNDEFINED (type)
2735 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2736 (with { tree utype = unsigned_type_for (type); }
2737 (convert (negate (convert:utype @1))))
2738 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2739 /* For pointer types, if the conversion of A to the
2740 final type requires a sign- or zero-extension,
2741 then we have to punt - it is not defined which
2743 || (POINTER_TYPE_P (TREE_TYPE (@0))
2744 && TREE_CODE (@1) == INTEGER_CST
2745 && tree_int_cst_sign_bit (@1) == 0))
2746 (negate (convert @1)))))
2748 (pointer_diff @0 (pointer_plus @@0 @1))
2749 /* The second argument of pointer_plus must be interpreted as signed, and
2750 thus sign-extended if necessary. */
2751 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2752 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2753 second arg is unsigned even when we need to consider it as signed,
2754 we don't want to diagnose overflow here. */
2755 (negate (convert (view_convert:stype @1)))))
2757 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2759 (minus (convert (plus:c @@0 @1))
2760 (convert (plus:c @0 @2)))
2761 (if (INTEGRAL_TYPE_P (type)
2762 && TYPE_OVERFLOW_UNDEFINED (type)
2763 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2764 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2765 (with { tree utype = unsigned_type_for (type); }
2766 (convert (minus (convert:utype @1) (convert:utype @2))))
2767 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2768 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2769 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2770 /* For integer types, if A has a smaller type
2771 than T the result depends on the possible
2773 E.g. T=size_t, A=(unsigned)429497295, P>0.
2774 However, if an overflow in P + A would cause
2775 undefined behavior, we can assume that there
2777 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2778 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2779 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2780 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2781 (minus (convert @1) (convert @2)))))
2783 (minus (convert (pointer_plus @@0 @1))
2784 (convert (pointer_plus @0 @2)))
2785 (if (INTEGRAL_TYPE_P (type)
2786 && TYPE_OVERFLOW_UNDEFINED (type)
2787 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2788 (with { tree utype = unsigned_type_for (type); }
2789 (convert (minus (convert:utype @1) (convert:utype @2))))
2790 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2791 /* For pointer types, if the conversion of A to the
2792 final type requires a sign- or zero-extension,
2793 then we have to punt - it is not defined which
2795 || (POINTER_TYPE_P (TREE_TYPE (@0))
2796 && TREE_CODE (@1) == INTEGER_CST
2797 && tree_int_cst_sign_bit (@1) == 0
2798 && TREE_CODE (@2) == INTEGER_CST
2799 && tree_int_cst_sign_bit (@2) == 0))
2800 (minus (convert @1) (convert @2)))))
2802 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2803 (pointer_diff @0 @1))
2805 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2806 /* The second argument of pointer_plus must be interpreted as signed, and
2807 thus sign-extended if necessary. */
2808 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2809 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2810 second arg is unsigned even when we need to consider it as signed,
2811 we don't want to diagnose overflow here. */
2812 (minus (convert (view_convert:stype @1))
2813 (convert (view_convert:stype @2)))))))
2815 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2816 Modeled after fold_plusminus_mult_expr. */
2817 (if (!TYPE_SATURATING (type)
2818 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2819 (for plusminus (plus minus)
2821 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2822 (if (!ANY_INTEGRAL_TYPE_P (type)
2823 || TYPE_OVERFLOW_WRAPS (type)
2824 || (INTEGRAL_TYPE_P (type)
2825 && tree_expr_nonzero_p (@0)
2826 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2827 (if (single_use (@3) || single_use (@4))
2828 /* If @1 +- @2 is constant require a hard single-use on either
2829 original operand (but not on both). */
2830 (mult (plusminus @1 @2) @0)
2832 (mult! (plusminus @1 @2) @0)
2835 /* We cannot generate constant 1 for fract. */
2836 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2838 (plusminus @0 (mult:c@3 @0 @2))
2839 (if ((!ANY_INTEGRAL_TYPE_P (type)
2840 || TYPE_OVERFLOW_WRAPS (type)
2841 /* For @0 + @0*@2 this transformation would introduce UB
2842 (where there was none before) for @0 in [-1,0] and @2 max.
2843 For @0 - @0*@2 this transformation would introduce UB
2844 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2845 || (INTEGRAL_TYPE_P (type)
2846 && ((tree_expr_nonzero_p (@0)
2847 && expr_not_equal_to (@0,
2848 wi::minus_one (TYPE_PRECISION (type))))
2849 || (plusminus == PLUS_EXPR
2850 ? expr_not_equal_to (@2,
2851 wi::max_value (TYPE_PRECISION (type), SIGNED))
2852 /* Let's ignore the @0 -1 and @2 min case. */
2853 : (expr_not_equal_to (@2,
2854 wi::min_value (TYPE_PRECISION (type), SIGNED))
2855 && expr_not_equal_to (@2,
2856 wi::min_value (TYPE_PRECISION (type), SIGNED)
2859 (mult (plusminus { build_one_cst (type); } @2) @0)))
2861 (plusminus (mult:c@3 @0 @2) @0)
2862 (if ((!ANY_INTEGRAL_TYPE_P (type)
2863 || TYPE_OVERFLOW_WRAPS (type)
2864 /* For @0*@2 + @0 this transformation would introduce UB
2865 (where there was none before) for @0 in [-1,0] and @2 max.
2866 For @0*@2 - @0 this transformation would introduce UB
2867 for @0 0 and @2 min. */
2868 || (INTEGRAL_TYPE_P (type)
2869 && ((tree_expr_nonzero_p (@0)
2870 && (plusminus == MINUS_EXPR
2871 || expr_not_equal_to (@0,
2872 wi::minus_one (TYPE_PRECISION (type)))))
2873 || expr_not_equal_to (@2,
2874 (plusminus == PLUS_EXPR
2875 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2876 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2878 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2881 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2882 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
2884 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2885 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2886 && tree_fits_uhwi_p (@1)
2887 && tree_to_uhwi (@1) < element_precision (type)
2888 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2889 || optab_handler (smul_optab,
2890 TYPE_MODE (type)) != CODE_FOR_nothing))
2891 (with { tree t = type;
2892 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2893 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2894 element_precision (type));
2896 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2898 cst = build_uniform_cst (t, cst); }
2899 (convert (mult (convert:t @0) { cst; })))))
2901 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2902 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2903 && tree_fits_uhwi_p (@1)
2904 && tree_to_uhwi (@1) < element_precision (type)
2905 && tree_fits_uhwi_p (@2)
2906 && tree_to_uhwi (@2) < element_precision (type)
2907 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2908 || optab_handler (smul_optab,
2909 TYPE_MODE (type)) != CODE_FOR_nothing))
2910 (with { tree t = type;
2911 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2912 unsigned int prec = element_precision (type);
2913 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2914 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2915 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2917 cst = build_uniform_cst (t, cst); }
2918 (convert (mult (convert:t @0) { cst; })))))
2921 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
2922 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
2923 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
2924 (for op (bit_ior bit_xor)
2926 (op (mult:s@0 @1 INTEGER_CST@2)
2927 (mult:s@3 @1 INTEGER_CST@4))
2928 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
2929 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
2931 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
2933 (op:c (mult:s@0 @1 INTEGER_CST@2)
2934 (lshift:s@3 @1 INTEGER_CST@4))
2935 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
2936 && tree_int_cst_sgn (@4) > 0
2937 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
2938 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
2939 wide_int c = wi::add (wi::to_wide (@2),
2940 wi::lshift (wone, wi::to_wide (@4))); }
2941 (mult @1 { wide_int_to_tree (type, c); }))))
2943 (op:c (mult:s@0 @1 INTEGER_CST@2)
2945 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
2946 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
2948 { wide_int_to_tree (type,
2949 wi::add (wi::to_wide (@2), 1)); })))
2951 (op (lshift:s@0 @1 INTEGER_CST@2)
2952 (lshift:s@3 @1 INTEGER_CST@4))
2953 (if (INTEGRAL_TYPE_P (type)
2954 && tree_int_cst_sgn (@2) > 0
2955 && tree_int_cst_sgn (@4) > 0
2956 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
2957 (with { tree t = type;
2958 if (!TYPE_OVERFLOW_WRAPS (t))
2959 t = unsigned_type_for (t);
2960 wide_int wone = wi::one (TYPE_PRECISION (t));
2961 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
2962 wi::lshift (wone, wi::to_wide (@4))); }
2963 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
2965 (op:c (lshift:s@0 @1 INTEGER_CST@2)
2967 (if (INTEGRAL_TYPE_P (type)
2968 && tree_int_cst_sgn (@2) > 0
2969 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
2970 (with { tree t = type;
2971 if (!TYPE_OVERFLOW_WRAPS (t))
2972 t = unsigned_type_for (t);
2973 wide_int wone = wi::one (TYPE_PRECISION (t));
2974 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
2975 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
2977 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2979 (for minmax (min max FMIN_ALL FMAX_ALL)
2983 /* min(max(x,y),y) -> y. */
2985 (min:c (max:c @0 @1) @1)
2987 /* max(min(x,y),y) -> y. */
2989 (max:c (min:c @0 @1) @1)
2991 /* max(a,-a) -> abs(a). */
2993 (max:c @0 (negate @0))
2994 (if (TREE_CODE (type) != COMPLEX_TYPE
2995 && (! ANY_INTEGRAL_TYPE_P (type)
2996 || TYPE_OVERFLOW_UNDEFINED (type)))
2998 /* min(a,-a) -> -abs(a). */
3000 (min:c @0 (negate @0))
3001 (if (TREE_CODE (type) != COMPLEX_TYPE
3002 && (! ANY_INTEGRAL_TYPE_P (type)
3003 || TYPE_OVERFLOW_UNDEFINED (type)))
3008 (if (INTEGRAL_TYPE_P (type)
3009 && TYPE_MIN_VALUE (type)
3010 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3012 (if (INTEGRAL_TYPE_P (type)
3013 && TYPE_MAX_VALUE (type)
3014 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3019 (if (INTEGRAL_TYPE_P (type)
3020 && TYPE_MAX_VALUE (type)
3021 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3023 (if (INTEGRAL_TYPE_P (type)
3024 && TYPE_MIN_VALUE (type)
3025 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3028 /* max (a, a + CST) -> a + CST where CST is positive. */
3029 /* max (a, a + CST) -> a where CST is negative. */
3031 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3032 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3033 (if (tree_int_cst_sgn (@1) > 0)
3037 /* min (a, a + CST) -> a where CST is positive. */
3038 /* min (a, a + CST) -> a + CST where CST is negative. */
3040 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3041 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3042 (if (tree_int_cst_sgn (@1) > 0)
3046 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3047 the addresses are known to be less, equal or greater. */
3048 (for minmax (min max)
3051 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3054 poly_int64 off0, off1;
3056 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3057 off0, off1, GENERIC);
3060 (if (minmax == MIN_EXPR)
3061 (if (known_le (off0, off1))
3063 (if (known_gt (off0, off1))
3065 (if (known_ge (off0, off1))
3067 (if (known_lt (off0, off1))
3070 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3071 and the outer convert demotes the expression back to x's type. */
3072 (for minmax (min max)
3074 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3075 (if (INTEGRAL_TYPE_P (type)
3076 && types_match (@1, type) && int_fits_type_p (@2, type)
3077 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3078 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3079 (minmax @1 (convert @2)))))
3081 (for minmax (FMIN_ALL FMAX_ALL)
3082 /* If either argument is NaN, return the other one. Avoid the
3083 transformation if we get (and honor) a signalling NaN. */
3085 (minmax:c @0 REAL_CST@1)
3086 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3087 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
3089 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3090 functions to return the numeric arg if the other one is NaN.
3091 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3092 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3093 worry about it either. */
3094 (if (flag_finite_math_only)
3101 /* min (-A, -B) -> -max (A, B) */
3102 (for minmax (min max FMIN_ALL FMAX_ALL)
3103 maxmin (max min FMAX_ALL FMIN_ALL)
3105 (minmax (negate:s@2 @0) (negate:s@3 @1))
3106 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3107 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3108 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3109 (negate (maxmin @0 @1)))))
3110 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3111 MAX (~X, ~Y) -> ~MIN (X, Y) */
3112 (for minmax (min max)
3115 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3116 (bit_not (maxmin @0 @1))))
3118 /* MIN (X, Y) == X -> X <= Y */
3119 (for minmax (min min max max)
3123 (cmp:c (minmax:c @0 @1) @0)
3124 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3126 /* MIN (X, 5) == 0 -> X == 0
3127 MIN (X, 5) == 7 -> false */
3130 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3131 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3132 TYPE_SIGN (TREE_TYPE (@0))))
3133 { constant_boolean_node (cmp == NE_EXPR, type); }
3134 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3135 TYPE_SIGN (TREE_TYPE (@0))))
3139 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3140 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3141 TYPE_SIGN (TREE_TYPE (@0))))
3142 { constant_boolean_node (cmp == NE_EXPR, type); }
3143 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3144 TYPE_SIGN (TREE_TYPE (@0))))
3146 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3147 (for minmax (min min max max min min max max )
3148 cmp (lt le gt ge gt ge lt le )
3149 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3151 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3152 (comb (cmp @0 @2) (cmp @1 @2))))
3154 /* X <= MAX(X, Y) -> true
3155 X > MAX(X, Y) -> false
3156 X >= MIN(X, Y) -> true
3157 X < MIN(X, Y) -> false */
3158 (for minmax (min min max max )
3161 (cmp @0 (minmax:c @0 @1))
3162 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3164 /* Undo fancy way of writing max/min or other ?: expressions,
3165 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
3166 People normally use ?: and that is what we actually try to optimize. */
3167 (for cmp (simple_comparison)
3169 (minus @0 (bit_and:c (minus @0 @1)
3170 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3171 (if (INTEGRAL_TYPE_P (type)
3172 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3173 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3174 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3175 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3176 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3177 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3178 (cond (cmp @2 @3) @1 @0)))
3180 (plus:c @0 (bit_and:c (minus @1 @0)
3181 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3182 (if (INTEGRAL_TYPE_P (type)
3183 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3184 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3185 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3186 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3187 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3188 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3189 (cond (cmp @2 @3) @1 @0)))
3190 /* Similarly with ^ instead of - though in that case with :c. */
3192 (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
3193 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3194 (if (INTEGRAL_TYPE_P (type)
3195 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3196 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3197 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3198 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3199 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3200 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3201 (cond (cmp @2 @3) @1 @0))))
3203 /* Simplifications of shift and rotates. */
3205 (for rotate (lrotate rrotate)
3207 (rotate integer_all_onesp@0 @1)
3210 /* Optimize -1 >> x for arithmetic right shifts. */
3212 (rshift integer_all_onesp@0 @1)
3213 (if (!TYPE_UNSIGNED (type))
3216 /* Optimize (x >> c) << c into x & (-1<<c). */
3218 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3219 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3220 /* It doesn't matter if the right shift is arithmetic or logical. */
3221 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3224 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3225 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3226 /* Allow intermediate conversion to integral type with whatever sign, as
3227 long as the low TYPE_PRECISION (type)
3228 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3229 && INTEGRAL_TYPE_P (type)
3230 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3231 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3232 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3233 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3234 || wi::geu_p (wi::to_wide (@1),
3235 TYPE_PRECISION (type)
3236 - TYPE_PRECISION (TREE_TYPE (@2)))))
3237 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3239 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3242 (rshift (lshift @0 INTEGER_CST@1) @1)
3243 (if (TYPE_UNSIGNED (type)
3244 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3245 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3247 /* Optimize x >> x into 0 */
3250 { build_zero_cst (type); })
3252 (for shiftrotate (lrotate rrotate lshift rshift)
3254 (shiftrotate @0 integer_zerop)
3257 (shiftrotate integer_zerop@0 @1)
3259 /* Prefer vector1 << scalar to vector1 << vector2
3260 if vector2 is uniform. */
3261 (for vec (VECTOR_CST CONSTRUCTOR)
3263 (shiftrotate @0 vec@1)
3264 (with { tree tem = uniform_vector_p (@1); }
3266 (shiftrotate @0 { tem; }))))))
3268 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3269 Y is 0. Similarly for X >> Y. */
3271 (for shift (lshift rshift)
3273 (shift @0 SSA_NAME@1)
3274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3276 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3277 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3279 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3283 /* Rewrite an LROTATE_EXPR by a constant into an
3284 RROTATE_EXPR by a new constant. */
3286 (lrotate @0 INTEGER_CST@1)
3287 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3288 build_int_cst (TREE_TYPE (@1),
3289 element_precision (type)), @1); }))
3291 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3292 (for op (lrotate rrotate rshift lshift)
3294 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3295 (with { unsigned int prec = element_precision (type); }
3296 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3297 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3298 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3299 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3300 (with { unsigned int low = (tree_to_uhwi (@1)
3301 + tree_to_uhwi (@2)); }
3302 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3303 being well defined. */
3305 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3306 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3307 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3308 { build_zero_cst (type); }
3309 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3310 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3313 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3315 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3316 (if ((wi::to_wide (@1) & 1) != 0)
3317 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3318 { build_zero_cst (type); }))
3320 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3321 either to false if D is smaller (unsigned comparison) than C, or to
3322 x == log2 (D) - log2 (C). Similarly for right shifts. */
3326 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3327 (with { int c1 = wi::clz (wi::to_wide (@1));
3328 int c2 = wi::clz (wi::to_wide (@2)); }
3330 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3331 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3333 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3334 (if (tree_int_cst_sgn (@1) > 0)
3335 (with { int c1 = wi::clz (wi::to_wide (@1));
3336 int c2 = wi::clz (wi::to_wide (@2)); }
3338 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3339 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3341 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3342 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3346 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3347 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3349 || (!integer_zerop (@2)
3350 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3351 { constant_boolean_node (cmp == NE_EXPR, type); }
3352 (if (!integer_zerop (@2)
3353 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3354 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3356 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3357 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3358 if the new mask might be further optimized. */
3359 (for shift (lshift rshift)
3361 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3363 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3364 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3365 && tree_fits_uhwi_p (@1)
3366 && tree_to_uhwi (@1) > 0
3367 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3370 unsigned int shiftc = tree_to_uhwi (@1);
3371 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3372 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3373 tree shift_type = TREE_TYPE (@3);
3376 if (shift == LSHIFT_EXPR)
3377 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3378 else if (shift == RSHIFT_EXPR
3379 && type_has_mode_precision_p (shift_type))
3381 prec = TYPE_PRECISION (TREE_TYPE (@3));
3383 /* See if more bits can be proven as zero because of
3386 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3388 tree inner_type = TREE_TYPE (@0);
3389 if (type_has_mode_precision_p (inner_type)
3390 && TYPE_PRECISION (inner_type) < prec)
3392 prec = TYPE_PRECISION (inner_type);
3393 /* See if we can shorten the right shift. */
3395 shift_type = inner_type;
3396 /* Otherwise X >> C1 is all zeros, so we'll optimize
3397 it into (X, 0) later on by making sure zerobits
3401 zerobits = HOST_WIDE_INT_M1U;
3404 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3405 zerobits <<= prec - shiftc;
3407 /* For arithmetic shift if sign bit could be set, zerobits
3408 can contain actually sign bits, so no transformation is
3409 possible, unless MASK masks them all away. In that
3410 case the shift needs to be converted into logical shift. */
3411 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3412 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3414 if ((mask & zerobits) == 0)
3415 shift_type = unsigned_type_for (TREE_TYPE (@3));
3421 /* ((X << 16) & 0xff00) is (X, 0). */
3422 (if ((mask & zerobits) == mask)
3423 { build_int_cst (type, 0); }
3424 (with { newmask = mask | zerobits; }
3425 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3428 /* Only do the transformation if NEWMASK is some integer
3430 for (prec = BITS_PER_UNIT;
3431 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3432 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3435 (if (prec < HOST_BITS_PER_WIDE_INT
3436 || newmask == HOST_WIDE_INT_M1U)
3438 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3439 (if (!tree_int_cst_equal (newmaskt, @2))
3440 (if (shift_type != TREE_TYPE (@3))
3441 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3442 (bit_and @4 { newmaskt; })))))))))))))
3444 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3450 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3451 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3452 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3453 wi::exact_log2 (wi::to_wide (@1))); }))))
3455 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3456 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3457 (for shift (lshift rshift)
3458 (for bit_op (bit_and bit_xor bit_ior)
3460 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3461 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3462 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3464 (bit_op (shift (convert @0) @1) { mask; })))))))
3466 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3468 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3469 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3470 && (element_precision (TREE_TYPE (@0))
3471 <= element_precision (TREE_TYPE (@1))
3472 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3474 { tree shift_type = TREE_TYPE (@0); }
3475 (convert (rshift (convert:shift_type @1) @2)))))
3477 /* ~(~X >>r Y) -> X >>r Y
3478 ~(~X <<r Y) -> X <<r Y */
3479 (for rotate (lrotate rrotate)
3481 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3482 (if ((element_precision (TREE_TYPE (@0))
3483 <= element_precision (TREE_TYPE (@1))
3484 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3485 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3486 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3488 { tree rotate_type = TREE_TYPE (@0); }
3489 (convert (rotate (convert:rotate_type @1) @2))))))
3492 (for rotate (lrotate rrotate)
3493 invrot (rrotate lrotate)
3494 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3496 (cmp (rotate @1 @0) (rotate @2 @0))
3498 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3500 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3501 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3502 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3504 (cmp (rotate @0 @1) INTEGER_CST@2)
3505 (if (integer_zerop (@2) || integer_all_onesp (@2))
3508 /* Both signed and unsigned lshift produce the same result, so use
3509 the form that minimizes the number of conversions. Postpone this
3510 transformation until after shifts by zero have been folded. */
3512 (convert (lshift:s@0 (convert:s@1 @2) INTEGER_CST@3))
3513 (if (INTEGRAL_TYPE_P (type)
3514 && tree_nop_conversion_p (type, TREE_TYPE (@0))
3515 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3516 && TYPE_PRECISION (TREE_TYPE (@2)) <= TYPE_PRECISION (type)
3517 && !integer_zerop (@3))
3518 (lshift (convert @2) @3)))
3520 /* Simplifications of conversions. */
3522 /* Basic strip-useless-type-conversions / strip_nops. */
3523 (for cvt (convert view_convert float fix_trunc)
3526 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3527 || (GENERIC && type == TREE_TYPE (@0)))
3530 /* Contract view-conversions. */
3532 (view_convert (view_convert @0))
3535 /* For integral conversions with the same precision or pointer
3536 conversions use a NOP_EXPR instead. */
3539 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3540 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3541 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3544 /* Strip inner integral conversions that do not change precision or size, or
3545 zero-extend while keeping the same size (for bool-to-char). */
3547 (view_convert (convert@0 @1))
3548 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3549 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3550 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3551 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3552 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3553 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3556 /* Simplify a view-converted empty constructor. */
3558 (view_convert CONSTRUCTOR@0)
3559 (if (TREE_CODE (@0) != SSA_NAME
3560 && CONSTRUCTOR_NELTS (@0) == 0)
3561 { build_zero_cst (type); }))
3563 /* Re-association barriers around constants and other re-association
3564 barriers can be removed. */
3566 (paren CONSTANT_CLASS_P@0)
3569 (paren (paren@1 @0))
3572 /* Handle cases of two conversions in a row. */
3573 (for ocvt (convert float fix_trunc)
3574 (for icvt (convert float)
3579 tree inside_type = TREE_TYPE (@0);
3580 tree inter_type = TREE_TYPE (@1);
3581 int inside_int = INTEGRAL_TYPE_P (inside_type);
3582 int inside_ptr = POINTER_TYPE_P (inside_type);
3583 int inside_float = FLOAT_TYPE_P (inside_type);
3584 int inside_vec = VECTOR_TYPE_P (inside_type);
3585 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3586 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3587 int inter_int = INTEGRAL_TYPE_P (inter_type);
3588 int inter_ptr = POINTER_TYPE_P (inter_type);
3589 int inter_float = FLOAT_TYPE_P (inter_type);
3590 int inter_vec = VECTOR_TYPE_P (inter_type);
3591 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3592 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3593 int final_int = INTEGRAL_TYPE_P (type);
3594 int final_ptr = POINTER_TYPE_P (type);
3595 int final_float = FLOAT_TYPE_P (type);
3596 int final_vec = VECTOR_TYPE_P (type);
3597 unsigned int final_prec = TYPE_PRECISION (type);
3598 int final_unsignedp = TYPE_UNSIGNED (type);
3601 /* In addition to the cases of two conversions in a row
3602 handled below, if we are converting something to its own
3603 type via an object of identical or wider precision, neither
3604 conversion is needed. */
3605 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3607 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3608 && (((inter_int || inter_ptr) && final_int)
3609 || (inter_float && final_float))
3610 && inter_prec >= final_prec)
3613 /* Likewise, if the intermediate and initial types are either both
3614 float or both integer, we don't need the middle conversion if the
3615 former is wider than the latter and doesn't change the signedness
3616 (for integers). Avoid this if the final type is a pointer since
3617 then we sometimes need the middle conversion. */
3618 (if (((inter_int && inside_int) || (inter_float && inside_float))
3619 && (final_int || final_float)
3620 && inter_prec >= inside_prec
3621 && (inter_float || inter_unsignedp == inside_unsignedp))
3624 /* If we have a sign-extension of a zero-extended value, we can
3625 replace that by a single zero-extension. Likewise if the
3626 final conversion does not change precision we can drop the
3627 intermediate conversion. */
3628 (if (inside_int && inter_int && final_int
3629 && ((inside_prec < inter_prec && inter_prec < final_prec
3630 && inside_unsignedp && !inter_unsignedp)
3631 || final_prec == inter_prec))
3634 /* Two conversions in a row are not needed unless:
3635 - some conversion is floating-point (overstrict for now), or
3636 - some conversion is a vector (overstrict for now), or
3637 - the intermediate type is narrower than both initial and
3639 - the intermediate type and innermost type differ in signedness,
3640 and the outermost type is wider than the intermediate, or
3641 - the initial type is a pointer type and the precisions of the
3642 intermediate and final types differ, or
3643 - the final type is a pointer type and the precisions of the
3644 initial and intermediate types differ. */
3645 (if (! inside_float && ! inter_float && ! final_float
3646 && ! inside_vec && ! inter_vec && ! final_vec
3647 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3648 && ! (inside_int && inter_int
3649 && inter_unsignedp != inside_unsignedp
3650 && inter_prec < final_prec)
3651 && ((inter_unsignedp && inter_prec > inside_prec)
3652 == (final_unsignedp && final_prec > inter_prec))
3653 && ! (inside_ptr && inter_prec != final_prec)
3654 && ! (final_ptr && inside_prec != inter_prec))
3657 /* A truncation to an unsigned type (a zero-extension) should be
3658 canonicalized as bitwise and of a mask. */
3659 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3660 && final_int && inter_int && inside_int
3661 && final_prec == inside_prec
3662 && final_prec > inter_prec
3664 (convert (bit_and @0 { wide_int_to_tree
3666 wi::mask (inter_prec, false,
3667 TYPE_PRECISION (inside_type))); })))
3669 /* If we are converting an integer to a floating-point that can
3670 represent it exactly and back to an integer, we can skip the
3671 floating-point conversion. */
3672 (if (GIMPLE /* PR66211 */
3673 && inside_int && inter_float && final_int &&
3674 (unsigned) significand_size (TYPE_MODE (inter_type))
3675 >= inside_prec - !inside_unsignedp)
3678 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
3679 float_type. Only do the transformation if we do not need to preserve
3680 trapping behaviour, so require !flag_trapping_math. */
3683 (float (fix_trunc @0))
3684 (if (!flag_trapping_math
3685 && types_match (type, TREE_TYPE (@0))
3686 && direct_internal_fn_supported_p (IFN_TRUNC, type,
3691 /* If we have a narrowing conversion to an integral type that is fed by a
3692 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3693 masks off bits outside the final type (and nothing else). */
3695 (convert (bit_and @0 INTEGER_CST@1))
3696 (if (INTEGRAL_TYPE_P (type)
3697 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3698 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3699 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3700 TYPE_PRECISION (type)), 0))
3704 /* (X /[ex] A) * A -> X. */
3706 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3709 /* Simplify (A / B) * B + (A % B) -> A. */
3710 (for div (trunc_div ceil_div floor_div round_div)
3711 mod (trunc_mod ceil_mod floor_mod round_mod)
3713 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3716 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3717 (for op (plus minus)
3719 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3720 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3721 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3724 wi::overflow_type overflow;
3725 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3726 TYPE_SIGN (type), &overflow);
3728 (if (types_match (type, TREE_TYPE (@2))
3729 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3730 (op @0 { wide_int_to_tree (type, mul); })
3731 (with { tree utype = unsigned_type_for (type); }
3732 (convert (op (convert:utype @0)
3733 (mult (convert:utype @1) (convert:utype @2))))))))))
3735 /* Canonicalization of binary operations. */
3737 /* Convert X + -C into X - C. */
3739 (plus @0 REAL_CST@1)
3740 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3741 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3742 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3743 (minus @0 { tem; })))))
3745 /* Convert x+x into x*2. */
3748 (if (SCALAR_FLOAT_TYPE_P (type))
3749 (mult @0 { build_real (type, dconst2); })
3750 (if (INTEGRAL_TYPE_P (type))
3751 (mult @0 { build_int_cst (type, 2); }))))
3755 (minus integer_zerop @1)
3758 (pointer_diff integer_zerop @1)
3759 (negate (convert @1)))
3761 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3762 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3763 (-ARG1 + ARG0) reduces to -ARG1. */
3765 (minus real_zerop@0 @1)
3766 (if (fold_real_zero_addition_p (type, @1, @0, 0))
3769 /* Transform x * -1 into -x. */
3771 (mult @0 integer_minus_onep)
3774 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3775 signed overflow for CST != 0 && CST != -1. */
3777 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3778 (if (TREE_CODE (@2) != INTEGER_CST
3780 && !integer_zerop (@1) && !integer_minus_onep (@1))
3781 (mult (mult @0 @2) @1)))
3783 /* True if we can easily extract the real and imaginary parts of a complex
3785 (match compositional_complex
3786 (convert? (complex @0 @1)))
3788 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3790 (complex (realpart @0) (imagpart @0))
3793 (realpart (complex @0 @1))
3796 (imagpart (complex @0 @1))
3799 /* Sometimes we only care about half of a complex expression. */
3801 (realpart (convert?:s (conj:s @0)))
3802 (convert (realpart @0)))
3804 (imagpart (convert?:s (conj:s @0)))
3805 (convert (negate (imagpart @0))))
3806 (for part (realpart imagpart)
3807 (for op (plus minus)
3809 (part (convert?:s@2 (op:s @0 @1)))
3810 (convert (op (part @0) (part @1))))))
3812 (realpart (convert?:s (CEXPI:s @0)))
3815 (imagpart (convert?:s (CEXPI:s @0)))
3818 /* conj(conj(x)) -> x */
3820 (conj (convert? (conj @0)))
3821 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3824 /* conj({x,y}) -> {x,-y} */
3826 (conj (convert?:s (complex:s @0 @1)))
3827 (with { tree itype = TREE_TYPE (type); }
3828 (complex (convert:itype @0) (negate (convert:itype @1)))))
3830 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3831 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
3832 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
3837 (bswap (bit_not (bswap @0)))
3839 (for bitop (bit_xor bit_ior bit_and)
3841 (bswap (bitop:c (bswap @0) @1))
3842 (bitop @0 (bswap @1))))
3845 (cmp (bswap@2 @0) (bswap @1))
3846 (with { tree ctype = TREE_TYPE (@2); }
3847 (cmp (convert:ctype @0) (convert:ctype @1))))
3849 (cmp (bswap @0) INTEGER_CST@1)
3850 (with { tree ctype = TREE_TYPE (@1); }
3851 (cmp (convert:ctype @0) (bswap @1)))))
3852 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
3854 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
3856 (if (BITS_PER_UNIT == 8
3857 && tree_fits_uhwi_p (@2)
3858 && tree_fits_uhwi_p (@3))
3861 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
3862 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
3863 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
3864 unsigned HOST_WIDE_INT lo = bits & 7;
3865 unsigned HOST_WIDE_INT hi = bits - lo;
3868 && mask < (256u>>lo)
3869 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
3870 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
3872 (bit_and (convert @1) @3)
3875 tree utype = unsigned_type_for (TREE_TYPE (@1));
3876 tree nst = build_int_cst (integer_type_node, ns);
3878 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
3879 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
3881 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
3882 (if (BITS_PER_UNIT == 8
3883 && CHAR_TYPE_SIZE == 8
3884 && tree_fits_uhwi_p (@1))
3887 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3888 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
3889 /* If the bswap was extended before the original shift, this
3890 byte (shift) has the sign of the extension, not the sign of
3891 the original shift. */
3892 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
3894 /* Special case: logical right shift of sign-extended bswap.
3895 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
3896 (if (TYPE_PRECISION (type) > prec
3897 && !TYPE_UNSIGNED (TREE_TYPE (@2))
3898 && TYPE_UNSIGNED (type)
3899 && bits < prec && bits + 8 >= prec)
3900 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
3901 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
3902 (if (bits + 8 == prec)
3903 (if (TYPE_UNSIGNED (st))
3904 (convert (convert:unsigned_char_type_node @0))
3905 (convert (convert:signed_char_type_node @0)))
3906 (if (bits < prec && bits + 8 > prec)
3909 tree nst = build_int_cst (integer_type_node, bits & 7);
3910 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
3911 : signed_char_type_node;
3913 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
3914 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
3916 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
3917 (if (BITS_PER_UNIT == 8
3918 && tree_fits_uhwi_p (@1)
3919 && tree_to_uhwi (@1) < 256)
3922 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3923 tree utype = unsigned_type_for (TREE_TYPE (@0));
3924 tree nst = build_int_cst (integer_type_node, prec - 8);
3926 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
3929 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3931 /* Simplify constant conditions.
3932 Only optimize constant conditions when the selected branch
3933 has the same type as the COND_EXPR. This avoids optimizing
3934 away "c ? x : throw", where the throw has a void type.
3935 Note that we cannot throw away the fold-const.c variant nor
3936 this one as we depend on doing this transform before possibly
3937 A ? B : B -> B triggers and the fold-const.c one can optimize
3938 0 ? A : B to B even if A has side-effects. Something
3939 genmatch cannot handle. */
3941 (cond INTEGER_CST@0 @1 @2)
3942 (if (integer_zerop (@0))
3943 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3945 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3948 (vec_cond VECTOR_CST@0 @1 @2)
3949 (if (integer_all_onesp (@0))
3951 (if (integer_zerop (@0))
3955 /* Sink unary operations to branches, but only if we do fold both. */
3956 (for op (negate bit_not abs absu)
3958 (op (vec_cond:s @0 @1 @2))
3959 (vec_cond @0 (op! @1) (op! @2))))
3961 /* Sink binary operation to branches, but only if we can fold it. */
3962 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
3963 lshift rshift rdiv trunc_div ceil_div floor_div round_div
3964 trunc_mod ceil_mod floor_mod round_mod min max)
3965 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
3967 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
3968 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
3970 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
3972 (op (vec_cond:s @0 @1 @2) @3)
3973 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
3975 (op @3 (vec_cond:s @0 @1 @2))
3976 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
3979 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
3980 Currently disabled after pass lvec because ARM understands
3981 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
3983 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
3984 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3985 (vec_cond (bit_and @0 @3) @1 @2)))
3987 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
3988 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3989 (vec_cond (bit_ior @0 @3) @1 @2)))
3991 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
3992 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3993 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
3995 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
3996 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3997 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
3999 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4001 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4002 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4003 (vec_cond (bit_and @0 @1) @2 @3)))
4005 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4006 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4007 (vec_cond (bit_ior @0 @1) @2 @3)))
4009 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4010 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4011 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4013 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4014 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4015 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4017 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4018 types are compatible. */
4020 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4021 (if (VECTOR_BOOLEAN_TYPE_P (type)
4022 && types_match (type, TREE_TYPE (@0)))
4023 (if (integer_zerop (@1) && integer_all_onesp (@2))
4025 (if (integer_all_onesp (@1) && integer_zerop (@2))
4028 /* A few simplifications of "a ? CST1 : CST2". */
4029 /* NOTE: Only do this on gimple as the if-chain-to-switch
4030 optimization depends on the gimple to have if statements in it. */
4033 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4035 (if (integer_zerop (@2))
4037 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4038 (if (integer_onep (@1))
4039 (convert (convert:boolean_type_node @0)))
4040 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4041 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4043 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4045 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4046 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4047 here as the powerof2cst case above will handle that case correctly. */
4048 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4049 (negate (convert (convert:boolean_type_node @0))))))
4050 (if (integer_zerop (@1))
4052 tree booltrue = constant_boolean_node (true, boolean_type_node);
4055 /* a ? 0 : 1 -> !a. */
4056 (if (integer_onep (@2))
4057 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4058 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4059 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4061 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4063 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4065 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4066 here as the powerof2cst case above will handle that case correctly. */
4067 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4068 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4076 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4078 /* This pattern implements two kinds simplification:
4081 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4082 1) Conversions are type widening from smaller type.
4083 2) Const c1 equals to c2 after canonicalizing comparison.
4084 3) Comparison has tree code LT, LE, GT or GE.
4085 This specific pattern is needed when (cmp (convert x) c) may not
4086 be simplified by comparison patterns because of multiple uses of
4087 x. It also makes sense here because simplifying across multiple
4088 referred var is always benefitial for complicated cases.
4091 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4092 (for cmp (lt le gt ge eq)
4094 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4097 tree from_type = TREE_TYPE (@1);
4098 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4099 enum tree_code code = ERROR_MARK;
4101 if (INTEGRAL_TYPE_P (from_type)
4102 && int_fits_type_p (@2, from_type)
4103 && (types_match (c1_type, from_type)
4104 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4105 && (TYPE_UNSIGNED (from_type)
4106 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4107 && (types_match (c2_type, from_type)
4108 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4109 && (TYPE_UNSIGNED (from_type)
4110 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4114 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4116 /* X <= Y - 1 equals to X < Y. */
4119 /* X > Y - 1 equals to X >= Y. */
4123 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4125 /* X < Y + 1 equals to X <= Y. */
4128 /* X >= Y + 1 equals to X > Y. */
4132 if (code != ERROR_MARK
4133 || wi::to_widest (@2) == wi::to_widest (@3))
4135 if (cmp == LT_EXPR || cmp == LE_EXPR)
4137 if (cmp == GT_EXPR || cmp == GE_EXPR)
4141 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4142 else if (int_fits_type_p (@3, from_type))
4146 (if (code == MAX_EXPR)
4147 (convert (max @1 (convert @2)))
4148 (if (code == MIN_EXPR)
4149 (convert (min @1 (convert @2)))
4150 (if (code == EQ_EXPR)
4151 (convert (cond (eq @1 (convert @3))
4152 (convert:from_type @3) (convert:from_type @2)))))))))
4154 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4156 1) OP is PLUS or MINUS.
4157 2) CMP is LT, LE, GT or GE.
4158 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4160 This pattern also handles special cases like:
4162 A) Operand x is a unsigned to signed type conversion and c1 is
4163 integer zero. In this case,
4164 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4165 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4166 B) Const c1 may not equal to (C3 op' C2). In this case we also
4167 check equality for (c1+1) and (c1-1) by adjusting comparison
4170 TODO: Though signed type is handled by this pattern, it cannot be
4171 simplified at the moment because C standard requires additional
4172 type promotion. In order to match&simplify it here, the IR needs
4173 to be cleaned up by other optimizers, i.e, VRP. */
4174 (for op (plus minus)
4175 (for cmp (lt le gt ge)
4177 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4178 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4179 (if (types_match (from_type, to_type)
4180 /* Check if it is special case A). */
4181 || (TYPE_UNSIGNED (from_type)
4182 && !TYPE_UNSIGNED (to_type)
4183 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4184 && integer_zerop (@1)
4185 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4188 wi::overflow_type overflow = wi::OVF_NONE;
4189 enum tree_code code, cmp_code = cmp;
4191 wide_int c1 = wi::to_wide (@1);
4192 wide_int c2 = wi::to_wide (@2);
4193 wide_int c3 = wi::to_wide (@3);
4194 signop sgn = TYPE_SIGN (from_type);
4196 /* Handle special case A), given x of unsigned type:
4197 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4198 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4199 if (!types_match (from_type, to_type))
4201 if (cmp_code == LT_EXPR)
4203 if (cmp_code == GE_EXPR)
4205 c1 = wi::max_value (to_type);
4207 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4208 compute (c3 op' c2) and check if it equals to c1 with op' being
4209 the inverted operator of op. Make sure overflow doesn't happen
4210 if it is undefined. */
4211 if (op == PLUS_EXPR)
4212 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4214 real_c1 = wi::add (c3, c2, sgn, &overflow);
4217 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4219 /* Check if c1 equals to real_c1. Boundary condition is handled
4220 by adjusting comparison operation if necessary. */
4221 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4224 /* X <= Y - 1 equals to X < Y. */
4225 if (cmp_code == LE_EXPR)
4227 /* X > Y - 1 equals to X >= Y. */
4228 if (cmp_code == GT_EXPR)
4231 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4234 /* X < Y + 1 equals to X <= Y. */
4235 if (cmp_code == LT_EXPR)
4237 /* X >= Y + 1 equals to X > Y. */
4238 if (cmp_code == GE_EXPR)
4241 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4243 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4245 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4250 (if (code == MAX_EXPR)
4251 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4252 { wide_int_to_tree (from_type, c2); })
4253 (if (code == MIN_EXPR)
4254 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4255 { wide_int_to_tree (from_type, c2); })))))))))
4257 (for cnd (cond vec_cond)
4258 /* A ? B : (A ? X : C) -> A ? B : C. */
4260 (cnd @0 (cnd @0 @1 @2) @3)
4263 (cnd @0 @1 (cnd @0 @2 @3))
4265 /* A ? B : (!A ? C : X) -> A ? B : C. */
4266 /* ??? This matches embedded conditions open-coded because genmatch
4267 would generate matching code for conditions in separate stmts only.
4268 The following is still important to merge then and else arm cases
4269 from if-conversion. */
4271 (cnd @0 @1 (cnd @2 @3 @4))
4272 (if (inverse_conditions_p (@0, @2))
4275 (cnd @0 (cnd @1 @2 @3) @4)
4276 (if (inverse_conditions_p (@0, @1))
4279 /* A ? B : B -> B. */
4284 /* !A ? B : C -> A ? C : B. */
4286 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4289 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4290 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4291 Need to handle UN* comparisons.
4293 None of these transformations work for modes with signed
4294 zeros. If A is +/-0, the first two transformations will
4295 change the sign of the result (from +0 to -0, or vice
4296 versa). The last four will fix the sign of the result,
4297 even though the original expressions could be positive or
4298 negative, depending on the sign of A.
4300 Note that all these transformations are correct if A is
4301 NaN, since the two alternatives (A and -A) are also NaNs. */
4303 (for cnd (cond vec_cond)
4304 /* A == 0 ? A : -A same as -A */
4307 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4308 (if (!HONOR_SIGNED_ZEROS (type))
4311 (cnd (cmp @0 zerop) integer_zerop (negate@1 @0))
4312 (if (!HONOR_SIGNED_ZEROS (type))
4315 /* A != 0 ? A : -A same as A */
4318 (cnd (cmp @0 zerop) @0 (negate @0))
4319 (if (!HONOR_SIGNED_ZEROS (type))
4322 (cnd (cmp @0 zerop) @0 integer_zerop)
4323 (if (!HONOR_SIGNED_ZEROS (type))
4326 /* A >=/> 0 ? A : -A same as abs (A) */
4329 (cnd (cmp @0 zerop) @0 (negate @0))
4330 (if (!HONOR_SIGNED_ZEROS (type)
4331 && !TYPE_UNSIGNED (type))
4333 /* A <=/< 0 ? A : -A same as -abs (A) */
4336 (cnd (cmp @0 zerop) @0 (negate @0))
4337 (if (!HONOR_SIGNED_ZEROS (type)
4338 && !TYPE_UNSIGNED (type))
4339 (if (ANY_INTEGRAL_TYPE_P (type)
4340 && !TYPE_OVERFLOW_WRAPS (type))
4342 tree utype = unsigned_type_for (type);
4344 (convert (negate (absu:utype @0))))
4345 (negate (abs @0)))))
4349 /* -(type)!A -> (type)A - 1. */
4351 (negate (convert?:s (logical_inverted_value:s @0)))
4352 (if (INTEGRAL_TYPE_P (type)
4353 && TREE_CODE (type) != BOOLEAN_TYPE
4354 && TYPE_PRECISION (type) > 1
4355 && TREE_CODE (@0) == SSA_NAME
4356 && ssa_name_has_boolean_range (@0))
4357 (plus (convert:type @0) { build_all_ones_cst (type); })))
4359 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4360 return all -1 or all 0 results. */
4361 /* ??? We could instead convert all instances of the vec_cond to negate,
4362 but that isn't necessarily a win on its own. */
4364 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4365 (if (VECTOR_TYPE_P (type)
4366 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4367 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4368 && (TYPE_MODE (TREE_TYPE (type))
4369 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4370 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4372 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
4374 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4375 (if (VECTOR_TYPE_P (type)
4376 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4377 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4378 && (TYPE_MODE (TREE_TYPE (type))
4379 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4380 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4383 /* Simplifications of comparisons. */
4385 /* See if we can reduce the magnitude of a constant involved in a
4386 comparison by changing the comparison code. This is a canonicalization
4387 formerly done by maybe_canonicalize_comparison_1. */
4391 (cmp @0 uniform_integer_cst_p@1)
4392 (with { tree cst = uniform_integer_cst_p (@1); }
4393 (if (tree_int_cst_sgn (cst) == -1)
4394 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4395 wide_int_to_tree (TREE_TYPE (cst),
4401 (cmp @0 uniform_integer_cst_p@1)
4402 (with { tree cst = uniform_integer_cst_p (@1); }
4403 (if (tree_int_cst_sgn (cst) == 1)
4404 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4405 wide_int_to_tree (TREE_TYPE (cst),
4406 wi::to_wide (cst) - 1)); })))))
4408 /* We can simplify a logical negation of a comparison to the
4409 inverted comparison. As we cannot compute an expression
4410 operator using invert_tree_comparison we have to simulate
4411 that with expression code iteration. */
4412 (for cmp (tcc_comparison)
4413 icmp (inverted_tcc_comparison)
4414 ncmp (inverted_tcc_comparison_with_nans)
4415 /* Ideally we'd like to combine the following two patterns
4416 and handle some more cases by using
4417 (logical_inverted_value (cmp @0 @1))
4418 here but for that genmatch would need to "inline" that.
4419 For now implement what forward_propagate_comparison did. */
4421 (bit_not (cmp @0 @1))
4422 (if (VECTOR_TYPE_P (type)
4423 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4424 /* Comparison inversion may be impossible for trapping math,
4425 invert_tree_comparison will tell us. But we can't use
4426 a computed operator in the replacement tree thus we have
4427 to play the trick below. */
4428 (with { enum tree_code ic = invert_tree_comparison
4429 (cmp, HONOR_NANS (@0)); }
4435 (bit_xor (cmp @0 @1) integer_truep)
4436 (with { enum tree_code ic = invert_tree_comparison
4437 (cmp, HONOR_NANS (@0)); }
4443 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4444 ??? The transformation is valid for the other operators if overflow
4445 is undefined for the type, but performing it here badly interacts
4446 with the transformation in fold_cond_expr_with_comparison which
4447 attempts to synthetize ABS_EXPR. */
4449 (for sub (minus pointer_diff)
4451 (cmp (sub@2 @0 @1) integer_zerop)
4452 (if (single_use (@2))
4455 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4456 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
4459 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4460 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4461 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4462 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4463 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4464 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4465 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
4467 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4468 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4469 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4470 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4471 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4473 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
4474 signed arithmetic case. That form is created by the compiler
4475 often enough for folding it to be of value. One example is in
4476 computing loop trip counts after Operator Strength Reduction. */
4477 (for cmp (simple_comparison)
4478 scmp (swapped_simple_comparison)
4480 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
4481 /* Handle unfolded multiplication by zero. */
4482 (if (integer_zerop (@1))
4484 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4485 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4487 /* If @1 is negative we swap the sense of the comparison. */
4488 (if (tree_int_cst_sgn (@1) < 0)
4492 /* For integral types with undefined overflow fold
4493 x * C1 == C2 into x == C2 / C1 or false.
4494 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
4498 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
4499 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4500 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4501 && wi::to_wide (@1) != 0)
4502 (with { widest_int quot; }
4503 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
4504 TYPE_SIGN (TREE_TYPE (@0)), "))
4505 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
4506 { constant_boolean_node (cmp == NE_EXPR, type); }))
4507 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4508 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4509 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
4512 tree itype = TREE_TYPE (@0);
4513 int p = TYPE_PRECISION (itype);
4514 wide_int m = wi::one (p + 1) << p;
4515 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
4516 wide_int i = wide_int::from (wi::mod_inv (a, m),
4517 p, TYPE_SIGN (itype));
4518 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
4521 /* Simplify comparison of something with itself. For IEEE
4522 floating-point, we can only do some of these simplifications. */
4526 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
4527 || ! HONOR_NANS (@0))
4528 { constant_boolean_node (true, type); }
4529 (if (cmp != EQ_EXPR)
4535 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
4536 || ! HONOR_NANS (@0))
4537 { constant_boolean_node (false, type); })))
4538 (for cmp (unle unge uneq)
4541 { constant_boolean_node (true, type); }))
4542 (for cmp (unlt ungt)
4548 (if (!flag_trapping_math)
4549 { constant_boolean_node (false, type); }))
4551 /* x == ~x -> false */
4552 /* x != ~x -> true */
4555 (cmp:c @0 (bit_not @0))
4556 { constant_boolean_node (cmp == NE_EXPR, type); }))
4558 /* Fold ~X op ~Y as Y op X. */
4559 (for cmp (simple_comparison)
4561 (cmp (bit_not@2 @0) (bit_not@3 @1))
4562 (if (single_use (@2) && single_use (@3))
4565 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
4566 (for cmp (simple_comparison)
4567 scmp (swapped_simple_comparison)
4569 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
4570 (if (single_use (@2)
4571 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
4572 (scmp @0 (bit_not @1)))))
4574 (for cmp (simple_comparison)
4575 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
4577 (cmp (convert@2 @0) (convert? @1))
4578 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4579 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4580 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4581 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4582 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
4585 tree type1 = TREE_TYPE (@1);
4586 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
4588 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
4589 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
4590 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
4591 type1 = float_type_node;
4592 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
4593 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
4594 type1 = double_type_node;
4597 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
4598 ? TREE_TYPE (@0) : type1);
4600 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
4601 (cmp (convert:newtype @0) (convert:newtype @1))))))
4605 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
4607 /* a CMP (-0) -> a CMP 0 */
4608 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
4609 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
4610 /* (-0) CMP b -> 0 CMP b. */
4611 (if (TREE_CODE (@0) == REAL_CST
4612 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
4613 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
4614 /* x != NaN is always true, other ops are always false. */
4615 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4616 && !tree_expr_signaling_nan_p (@1)
4617 && !tree_expr_maybe_signaling_nan_p (@0))
4618 { constant_boolean_node (cmp == NE_EXPR, type); })
4619 /* NaN != y is always true, other ops are always false. */
4620 (if (TREE_CODE (@0) == REAL_CST
4621 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
4622 && !tree_expr_signaling_nan_p (@0)
4623 && !tree_expr_signaling_nan_p (@1))
4624 { constant_boolean_node (cmp == NE_EXPR, type); })
4625 /* Fold comparisons against infinity. */
4626 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
4627 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
4630 REAL_VALUE_TYPE max;
4631 enum tree_code code = cmp;
4632 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
4634 code = swap_tree_comparison (code);
4637 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
4638 (if (code == GT_EXPR
4639 && !(HONOR_NANS (@0) && flag_trapping_math))
4640 { constant_boolean_node (false, type); })
4641 (if (code == LE_EXPR)
4642 /* x <= +Inf is always true, if we don't care about NaNs. */
4643 (if (! HONOR_NANS (@0))
4644 { constant_boolean_node (true, type); }
4645 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
4646 an "invalid" exception. */
4647 (if (!flag_trapping_math)
4649 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
4650 for == this introduces an exception for x a NaN. */
4651 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
4653 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4655 (lt @0 { build_real (TREE_TYPE (@0), max); })
4656 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
4657 /* x < +Inf is always equal to x <= DBL_MAX. */
4658 (if (code == LT_EXPR)
4659 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4661 (ge @0 { build_real (TREE_TYPE (@0), max); })
4662 (le @0 { build_real (TREE_TYPE (@0), max); }))))
4663 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
4664 an exception for x a NaN so use an unordered comparison. */
4665 (if (code == NE_EXPR)
4666 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4667 (if (! HONOR_NANS (@0))
4669 (ge @0 { build_real (TREE_TYPE (@0), max); })
4670 (le @0 { build_real (TREE_TYPE (@0), max); }))
4672 (unge @0 { build_real (TREE_TYPE (@0), max); })
4673 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
4675 /* If this is a comparison of a real constant with a PLUS_EXPR
4676 or a MINUS_EXPR of a real constant, we can convert it into a
4677 comparison with a revised real constant as long as no overflow
4678 occurs when unsafe_math_optimizations are enabled. */
4679 (if (flag_unsafe_math_optimizations)
4680 (for op (plus minus)
4682 (cmp (op @0 REAL_CST@1) REAL_CST@2)
4685 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4686 TREE_TYPE (@1), @2, @1);
4688 (if (tem && !TREE_OVERFLOW (tem))
4689 (cmp @0 { tem; }))))))
4691 /* Likewise, we can simplify a comparison of a real constant with
4692 a MINUS_EXPR whose first operand is also a real constant, i.e.
4693 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
4694 floating-point types only if -fassociative-math is set. */
4695 (if (flag_associative_math)
4697 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4698 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4699 (if (tem && !TREE_OVERFLOW (tem))
4700 (cmp { tem; } @1)))))
4702 /* Fold comparisons against built-in math functions. */
4703 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4706 (cmp (sq @0) REAL_CST@1)
4708 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4710 /* sqrt(x) < y is always false, if y is negative. */
4711 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4712 { constant_boolean_node (false, type); })
4713 /* sqrt(x) > y is always true, if y is negative and we
4714 don't care about NaNs, i.e. negative values of x. */
4715 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4716 { constant_boolean_node (true, type); })
4717 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4718 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4719 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4721 /* sqrt(x) < 0 is always false. */
4722 (if (cmp == LT_EXPR)
4723 { constant_boolean_node (false, type); })
4724 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
4725 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4726 { constant_boolean_node (true, type); })
4727 /* sqrt(x) <= 0 -> x == 0. */
4728 (if (cmp == LE_EXPR)
4730 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
4731 == or !=. In the last case:
4733 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4735 if x is negative or NaN. Due to -funsafe-math-optimizations,
4736 the results for other x follow from natural arithmetic. */
4738 (if ((cmp == LT_EXPR
4742 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4743 /* Give up for -frounding-math. */
4744 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4748 enum tree_code ncmp = cmp;
4749 const real_format *fmt
4750 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4751 real_arithmetic (&c2, MULT_EXPR,
4752 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4753 real_convert (&c2, fmt, &c2);
4754 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4755 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
4756 if (!REAL_VALUE_ISINF (c2))
4758 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4759 build_real (TREE_TYPE (@0), c2));
4760 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4762 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4763 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4764 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4765 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4766 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4767 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4770 /* With rounding to even, sqrt of up to 3 different values
4771 gives the same normal result, so in some cases c2 needs
4773 REAL_VALUE_TYPE c2alt, tow;
4774 if (cmp == LT_EXPR || cmp == GE_EXPR)
4778 real_nextafter (&c2alt, fmt, &c2, &tow);
4779 real_convert (&c2alt, fmt, &c2alt);
4780 if (REAL_VALUE_ISINF (c2alt))
4784 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4785 build_real (TREE_TYPE (@0), c2alt));
4786 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4788 else if (real_equal (&TREE_REAL_CST (c3),
4789 &TREE_REAL_CST (@1)))
4795 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4796 (if (REAL_VALUE_ISINF (c2))
4797 /* sqrt(x) > y is x == +Inf, when y is very large. */
4798 (if (HONOR_INFINITIES (@0))
4799 (eq @0 { build_real (TREE_TYPE (@0), c2); })
4800 { constant_boolean_node (false, type); })
4801 /* sqrt(x) > c is the same as x > c*c. */
4802 (if (ncmp != ERROR_MARK)
4803 (if (ncmp == GE_EXPR)
4804 (ge @0 { build_real (TREE_TYPE (@0), c2); })
4805 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4806 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
4807 (if (REAL_VALUE_ISINF (c2))
4809 /* sqrt(x) < y is always true, when y is a very large
4810 value and we don't care about NaNs or Infinities. */
4811 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4812 { constant_boolean_node (true, type); })
4813 /* sqrt(x) < y is x != +Inf when y is very large and we
4814 don't care about NaNs. */
4815 (if (! HONOR_NANS (@0))
4816 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4817 /* sqrt(x) < y is x >= 0 when y is very large and we
4818 don't care about Infinities. */
4819 (if (! HONOR_INFINITIES (@0))
4820 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4821 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4824 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4825 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
4826 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4827 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
4828 (if (ncmp == LT_EXPR)
4829 (lt @0 { build_real (TREE_TYPE (@0), c2); })
4830 (le @0 { build_real (TREE_TYPE (@0), c2); }))
4831 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4832 (if (ncmp != ERROR_MARK && GENERIC)
4833 (if (ncmp == LT_EXPR)
4835 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4836 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
4838 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4839 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
4840 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
4842 (cmp (sq @0) (sq @1))
4843 (if (! HONOR_NANS (@0))
4846 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
4847 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
4848 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
4850 (cmp (float@0 @1) (float @2))
4851 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
4852 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4855 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
4856 tree type1 = TREE_TYPE (@1);
4857 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
4858 tree type2 = TREE_TYPE (@2);
4859 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
4861 (if (fmt.can_represent_integral_type_p (type1)
4862 && fmt.can_represent_integral_type_p (type2))
4863 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
4864 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
4865 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
4866 && type1_signed_p >= type2_signed_p)
4867 (icmp @1 (convert @2))
4868 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4869 && type1_signed_p <= type2_signed_p)
4870 (icmp (convert:type2 @1) @2)
4871 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4872 && type1_signed_p == type2_signed_p)
4873 (icmp @1 @2))))))))))
4875 /* Optimize various special cases of (FTYPE) N CMP CST. */
4876 (for cmp (lt le eq ne ge gt)
4877 icmp (le le eq ne ge ge)
4879 (cmp (float @0) REAL_CST@1)
4880 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4881 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4884 tree itype = TREE_TYPE (@0);
4885 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4886 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4887 /* Be careful to preserve any potential exceptions due to
4888 NaNs. qNaNs are ok in == or != context.
4889 TODO: relax under -fno-trapping-math or
4890 -fno-signaling-nans. */
4892 = real_isnan (cst) && (cst->signalling
4893 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4895 /* TODO: allow non-fitting itype and SNaNs when
4896 -fno-trapping-math. */
4897 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4900 signop isign = TYPE_SIGN (itype);
4901 REAL_VALUE_TYPE imin, imax;
4902 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4903 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4905 REAL_VALUE_TYPE icst;
4906 if (cmp == GT_EXPR || cmp == GE_EXPR)
4907 real_ceil (&icst, fmt, cst);
4908 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4909 real_floor (&icst, fmt, cst);
4911 real_trunc (&icst, fmt, cst);
4913 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4915 bool overflow_p = false;
4917 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4920 /* Optimize cases when CST is outside of ITYPE's range. */
4921 (if (real_compare (LT_EXPR, cst, &imin))
4922 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4924 (if (real_compare (GT_EXPR, cst, &imax))
4925 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4927 /* Remove cast if CST is an integer representable by ITYPE. */
4929 (cmp @0 { gcc_assert (!overflow_p);
4930 wide_int_to_tree (itype, icst_val); })
4932 /* When CST is fractional, optimize
4933 (FTYPE) N == CST -> 0
4934 (FTYPE) N != CST -> 1. */
4935 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4936 { constant_boolean_node (cmp == NE_EXPR, type); })
4937 /* Otherwise replace with sensible integer constant. */
4940 gcc_checking_assert (!overflow_p);
4942 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4944 /* Fold A /[ex] B CMP C to A CMP B * C. */
4947 (cmp (exact_div @0 @1) INTEGER_CST@2)
4948 (if (!integer_zerop (@1))
4949 (if (wi::to_wide (@2) == 0)
4951 (if (TREE_CODE (@1) == INTEGER_CST)
4954 wi::overflow_type ovf;
4955 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4956 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4959 { constant_boolean_node (cmp == NE_EXPR, type); }
4960 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4961 (for cmp (lt le gt ge)
4963 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4964 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4967 wi::overflow_type ovf;
4968 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4969 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4972 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4973 TYPE_SIGN (TREE_TYPE (@2)))
4974 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4975 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4977 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4979 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4980 For large C (more than min/B+2^size), this is also true, with the
4981 multiplication computed modulo 2^size.
4982 For intermediate C, this just tests the sign of A. */
4983 (for cmp (lt le gt ge)
4986 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4987 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4988 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4989 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4992 tree utype = TREE_TYPE (@2);
4993 wide_int denom = wi::to_wide (@1);
4994 wide_int right = wi::to_wide (@2);
4995 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4996 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4997 bool small = wi::leu_p (right, smax);
4998 bool large = wi::geu_p (right, smin);
5000 (if (small || large)
5001 (cmp (convert:utype @0) (mult @2 (convert @1)))
5002 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5004 /* Unordered tests if either argument is a NaN. */
5006 (bit_ior (unordered @0 @0) (unordered @1 @1))
5007 (if (types_match (@0, @1))
5010 (bit_and (ordered @0 @0) (ordered @1 @1))
5011 (if (types_match (@0, @1))
5014 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5017 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5020 /* Simple range test simplifications. */
5021 /* A < B || A >= B -> true. */
5022 (for test1 (lt le le le ne ge)
5023 test2 (ge gt ge ne eq ne)
5025 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5026 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5027 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5028 { constant_boolean_node (true, type); })))
5029 /* A < B && A >= B -> false. */
5030 (for test1 (lt lt lt le ne eq)
5031 test2 (ge gt eq gt eq gt)
5033 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5034 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5035 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5036 { constant_boolean_node (false, type); })))
5038 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5039 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5041 Note that comparisons
5042 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5043 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5044 will be canonicalized to above so there's no need to
5051 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5052 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5055 tree ty = TREE_TYPE (@0);
5056 unsigned prec = TYPE_PRECISION (ty);
5057 wide_int mask = wi::to_wide (@2, prec);
5058 wide_int rhs = wi::to_wide (@3, prec);
5059 signop sgn = TYPE_SIGN (ty);
5061 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5062 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5063 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5064 { build_zero_cst (ty); }))))))
5066 /* -A CMP -B -> B CMP A. */
5067 (for cmp (tcc_comparison)
5068 scmp (swapped_tcc_comparison)
5070 (cmp (negate @0) (negate @1))
5071 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5072 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5073 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5076 (cmp (negate @0) CONSTANT_CLASS_P@1)
5077 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5078 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5079 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5080 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5081 (if (tem && !TREE_OVERFLOW (tem))
5082 (scmp @0 { tem; }))))))
5084 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5087 (op (abs @0) zerop@1)
5090 /* From fold_sign_changed_comparison and fold_widened_comparison.
5091 FIXME: the lack of symmetry is disturbing. */
5092 (for cmp (simple_comparison)
5094 (cmp (convert@0 @00) (convert?@1 @10))
5095 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5096 /* Disable this optimization if we're casting a function pointer
5097 type on targets that require function pointer canonicalization. */
5098 && !(targetm.have_canonicalize_funcptr_for_compare ()
5099 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5100 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5101 || (POINTER_TYPE_P (TREE_TYPE (@10))
5102 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5104 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5105 && (TREE_CODE (@10) == INTEGER_CST
5107 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5110 && !POINTER_TYPE_P (TREE_TYPE (@00)))
5111 /* ??? The special-casing of INTEGER_CST conversion was in the original
5112 code and here to avoid a spurious overflow flag on the resulting
5113 constant which fold_convert produces. */
5114 (if (TREE_CODE (@1) == INTEGER_CST)
5115 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5116 TREE_OVERFLOW (@1)); })
5117 (cmp @00 (convert @1)))
5119 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5120 /* If possible, express the comparison in the shorter mode. */
5121 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5122 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5123 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5124 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5125 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5126 || ((TYPE_PRECISION (TREE_TYPE (@00))
5127 >= TYPE_PRECISION (TREE_TYPE (@10)))
5128 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5129 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5130 || (TREE_CODE (@10) == INTEGER_CST
5131 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5132 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5133 (cmp @00 (convert @10))
5134 (if (TREE_CODE (@10) == INTEGER_CST
5135 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5136 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5139 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5140 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5141 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5142 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5144 (if (above || below)
5145 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5146 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5147 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5148 { constant_boolean_node (above ? true : false, type); }
5149 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5150 { constant_boolean_node (above ? false : true, type); }))))))))))))
5154 /* SSA names are canonicalized to 2nd place. */
5155 (cmp addr@0 SSA_NAME@1)
5157 { poly_int64 off; tree base; }
5158 /* A local variable can never be pointed to by
5159 the default SSA name of an incoming parameter. */
5160 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5161 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5162 && (base = get_base_address (TREE_OPERAND (@0, 0)))
5163 && TREE_CODE (base) == VAR_DECL
5164 && auto_var_in_fn_p (base, current_function_decl))
5165 (if (cmp == NE_EXPR)
5166 { constant_boolean_node (true, type); }
5167 { constant_boolean_node (false, type); })
5168 /* If the address is based on @1 decide using the offset. */
5169 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
5170 && TREE_CODE (base) == MEM_REF
5171 && TREE_OPERAND (base, 0) == @1)
5172 (with { off += mem_ref_offset (base).force_shwi (); }
5173 (if (known_ne (off, 0))
5174 { constant_boolean_node (cmp == NE_EXPR, type); }
5175 (if (known_eq (off, 0))
5176 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5178 /* Equality compare simplifications from fold_binary */
5181 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5182 Similarly for NE_EXPR. */
5184 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5185 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5186 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5187 { constant_boolean_node (cmp == NE_EXPR, type); }))
5189 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5191 (cmp (bit_xor @0 @1) integer_zerop)
5194 /* (X ^ Y) == Y becomes X == 0.
5195 Likewise (X ^ Y) == X becomes Y == 0. */
5197 (cmp:c (bit_xor:c @0 @1) @0)
5198 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5201 /* (X & Y) == X becomes (X & ~Y) == 0. */
5203 (cmp:c (bit_and:c @0 @1) @0)
5204 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5206 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5207 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5208 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5209 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5210 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5211 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5212 && !wi::neg_p (wi::to_wide (@1)))
5213 (cmp (bit_and @0 (convert (bit_not @1)))
5214 { build_zero_cst (TREE_TYPE (@0)); })))
5216 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5218 (cmp:c (bit_ior:c @0 @1) @1)
5219 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5222 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5224 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5225 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5226 (cmp @0 (bit_xor @1 (convert @2)))))
5229 (cmp (convert? addr@0) integer_zerop)
5230 (if (tree_single_nonzero_warnv_p (@0, NULL))
5231 { constant_boolean_node (cmp == NE_EXPR, type); }))
5233 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5235 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5236 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5238 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5239 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5240 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5241 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5246 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5247 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5248 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5249 && types_match (@0, @1))
5250 (ncmp (bit_xor @0 @1) @2)))))
5251 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5252 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5256 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5257 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5258 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5259 && types_match (@0, @1))
5260 (ncmp (bit_xor @0 @1) @2))))
5262 /* If we have (A & C) == C where C is a power of 2, convert this into
5263 (A & C) != 0. Similarly for NE_EXPR. */
5267 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5268 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5271 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5272 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5274 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5275 (if (INTEGRAL_TYPE_P (type)
5276 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5277 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5278 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5281 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5283 (if (cmp == LT_EXPR)
5284 (bit_xor (convert (rshift @0 {shifter;})) @1)
5285 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5286 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5287 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5289 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5290 (if (INTEGRAL_TYPE_P (type)
5291 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5292 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5293 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5296 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5298 (if (cmp == GE_EXPR)
5299 (bit_xor (convert (rshift @0 {shifter;})) @1)
5300 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5302 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5303 convert this into a shift followed by ANDing with D. */
5306 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5307 INTEGER_CST@2 integer_zerop)
5308 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5310 int shift = (wi::exact_log2 (wi::to_wide (@2))
5311 - wi::exact_log2 (wi::to_wide (@1)));
5315 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
5317 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
5320 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5321 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5325 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
5326 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5327 && type_has_mode_precision_p (TREE_TYPE (@0))
5328 && element_precision (@2) >= element_precision (@0)
5329 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
5330 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
5331 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
5333 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
5334 this into a right shift or sign extension followed by ANDing with C. */
5337 (lt @0 integer_zerop)
5338 INTEGER_CST@1 integer_zerop)
5339 (if (integer_pow2p (@1)
5340 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
5342 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
5346 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
5348 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
5349 sign extension followed by AND with C will achieve the effect. */
5350 (bit_and (convert @0) @1)))))
5352 /* When the addresses are not directly of decls compare base and offset.
5353 This implements some remaining parts of fold_comparison address
5354 comparisons but still no complete part of it. Still it is good
5355 enough to make fold_stmt not regress when not dispatching to fold_binary. */
5356 (for cmp (simple_comparison)
5358 (cmp (convert1?@2 addr@0) (convert2? addr@1))
5361 poly_int64 off0, off1;
5363 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
5364 off0, off1, GENERIC);
5368 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5369 { constant_boolean_node (known_eq (off0, off1), type); })
5370 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5371 { constant_boolean_node (known_ne (off0, off1), type); })
5372 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
5373 { constant_boolean_node (known_lt (off0, off1), type); })
5374 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
5375 { constant_boolean_node (known_le (off0, off1), type); })
5376 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
5377 { constant_boolean_node (known_ge (off0, off1), type); })
5378 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
5379 { constant_boolean_node (known_gt (off0, off1), type); }))
5382 (if (cmp == EQ_EXPR)
5383 { constant_boolean_node (false, type); })
5384 (if (cmp == NE_EXPR)
5385 { constant_boolean_node (true, type); })))))))
5387 /* Simplify pointer equality compares using PTA. */
5391 (if (POINTER_TYPE_P (TREE_TYPE (@0))
5392 && ptrs_compare_unequal (@0, @1))
5393 { constant_boolean_node (neeq != EQ_EXPR, type); })))
5395 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5396 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5397 Disable the transform if either operand is pointer to function.
5398 This broke pr22051-2.c for arm where function pointer
5399 canonicalizaion is not wanted. */
5403 (cmp (convert @0) INTEGER_CST@1)
5404 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5405 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5406 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5407 /* Don't perform this optimization in GENERIC if @0 has reference
5408 type when sanitizing. See PR101210. */
5410 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5411 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5412 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5413 && POINTER_TYPE_P (TREE_TYPE (@1))
5414 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5415 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5416 (cmp @0 (convert @1)))))
5418 /* Non-equality compare simplifications from fold_binary */
5419 (for cmp (lt gt le ge)
5420 /* Comparisons with the highest or lowest possible integer of
5421 the specified precision will have known values. */
5423 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5424 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5425 || POINTER_TYPE_P (TREE_TYPE (@1))
5426 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5427 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5430 tree cst = uniform_integer_cst_p (@1);
5431 tree arg1_type = TREE_TYPE (cst);
5432 unsigned int prec = TYPE_PRECISION (arg1_type);
5433 wide_int max = wi::max_value (arg1_type);
5434 wide_int signed_max = wi::max_value (prec, SIGNED);
5435 wide_int min = wi::min_value (arg1_type);
5438 (if (wi::to_wide (cst) == max)
5440 (if (cmp == GT_EXPR)
5441 { constant_boolean_node (false, type); })
5442 (if (cmp == GE_EXPR)
5444 (if (cmp == LE_EXPR)
5445 { constant_boolean_node (true, type); })
5446 (if (cmp == LT_EXPR)
5448 (if (wi::to_wide (cst) == min)
5450 (if (cmp == LT_EXPR)
5451 { constant_boolean_node (false, type); })
5452 (if (cmp == LE_EXPR)
5454 (if (cmp == GE_EXPR)
5455 { constant_boolean_node (true, type); })
5456 (if (cmp == GT_EXPR)
5458 (if (wi::to_wide (cst) == max - 1)
5460 (if (cmp == GT_EXPR)
5461 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5462 wide_int_to_tree (TREE_TYPE (cst),
5465 (if (cmp == LE_EXPR)
5466 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5467 wide_int_to_tree (TREE_TYPE (cst),
5470 (if (wi::to_wide (cst) == min + 1)
5472 (if (cmp == GE_EXPR)
5473 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5474 wide_int_to_tree (TREE_TYPE (cst),
5477 (if (cmp == LT_EXPR)
5478 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5479 wide_int_to_tree (TREE_TYPE (cst),
5482 (if (wi::to_wide (cst) == signed_max
5483 && TYPE_UNSIGNED (arg1_type)
5484 /* We will flip the signedness of the comparison operator
5485 associated with the mode of @1, so the sign bit is
5486 specified by this mode. Check that @1 is the signed
5487 max associated with this sign bit. */
5488 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
5489 /* signed_type does not work on pointer types. */
5490 && INTEGRAL_TYPE_P (arg1_type))
5491 /* The following case also applies to X < signed_max+1
5492 and X >= signed_max+1 because previous transformations. */
5493 (if (cmp == LE_EXPR || cmp == GT_EXPR)
5494 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
5496 (if (cst == @1 && cmp == LE_EXPR)
5497 (ge (convert:st @0) { build_zero_cst (st); }))
5498 (if (cst == @1 && cmp == GT_EXPR)
5499 (lt (convert:st @0) { build_zero_cst (st); }))
5500 (if (cmp == LE_EXPR)
5501 (ge (view_convert:st @0) { build_zero_cst (st); }))
5502 (if (cmp == GT_EXPR)
5503 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
5505 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
5506 /* If the second operand is NaN, the result is constant. */
5509 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5510 && (cmp != LTGT_EXPR || ! flag_trapping_math))
5511 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
5512 ? false : true, type); })))
5514 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
5518 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5519 { constant_boolean_node (true, type); })
5520 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5521 { constant_boolean_node (false, type); })))
5523 /* Fold ORDERED if either operand must be NaN, or neither can be. */
5527 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5528 { constant_boolean_node (false, type); })
5529 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5530 { constant_boolean_node (true, type); })))
5532 /* bool_var != 0 becomes bool_var. */
5534 (ne @0 integer_zerop)
5535 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5536 && types_match (type, TREE_TYPE (@0)))
5538 /* bool_var == 1 becomes bool_var. */
5540 (eq @0 integer_onep)
5541 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5542 && types_match (type, TREE_TYPE (@0)))
5545 bool_var == 0 becomes !bool_var or
5546 bool_var != 1 becomes !bool_var
5547 here because that only is good in assignment context as long
5548 as we require a tcc_comparison in GIMPLE_CONDs where we'd
5549 replace if (x == 0) with tem = ~x; if (tem != 0) which is
5550 clearly less optimal and which we'll transform again in forwprop. */
5552 /* When one argument is a constant, overflow detection can be simplified.
5553 Currently restricted to single use so as not to interfere too much with
5554 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
5555 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
5556 (for cmp (lt le ge gt)
5559 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
5560 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
5561 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
5562 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
5563 && wi::to_wide (@1) != 0
5566 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
5567 signop sign = TYPE_SIGN (TREE_TYPE (@0));
5569 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
5570 wi::max_value (prec, sign)
5571 - wi::to_wide (@1)); })))))
5573 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
5574 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
5575 expects the long form, so we restrict the transformation for now. */
5578 (cmp:c (minus@2 @0 @1) @0)
5579 (if (single_use (@2)
5580 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5581 && TYPE_UNSIGNED (TREE_TYPE (@0)))
5584 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
5587 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
5588 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5589 && TYPE_UNSIGNED (TREE_TYPE (@0)))
5592 /* Testing for overflow is unnecessary if we already know the result. */
5597 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
5598 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5599 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5600 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5605 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
5606 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5607 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5608 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5610 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
5611 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
5615 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
5616 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
5617 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5618 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5620 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
5621 is at least twice as wide as type of A and B, simplify to
5622 __builtin_mul_overflow (A, B, <unused>). */
5625 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
5627 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5628 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5629 && TYPE_UNSIGNED (TREE_TYPE (@0))
5630 && (TYPE_PRECISION (TREE_TYPE (@3))
5631 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
5632 && tree_fits_uhwi_p (@2)
5633 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
5634 && types_match (@0, @1)
5635 && type_has_mode_precision_p (TREE_TYPE (@0))
5636 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
5637 != CODE_FOR_nothing))
5638 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5639 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5641 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
5642 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
5644 (ovf (convert@2 @0) @1)
5645 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5646 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5647 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5648 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5651 (ovf @1 (convert@2 @0))
5652 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5653 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5654 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5655 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5658 /* Simplification of math builtins. These rules must all be optimizations
5659 as well as IL simplifications. If there is a possibility that the new
5660 form could be a pessimization, the rule should go in the canonicalization
5661 section that follows this one.
5663 Rules can generally go in this section if they satisfy one of
5666 - the rule describes an identity
5668 - the rule replaces calls with something as simple as addition or
5671 - the rule contains unary calls only and simplifies the surrounding
5672 arithmetic. (The idea here is to exclude non-unary calls in which
5673 one operand is constant and in which the call is known to be cheap
5674 when the operand has that value.) */
5676 (if (flag_unsafe_math_optimizations)
5677 /* Simplify sqrt(x) * sqrt(x) -> x. */
5679 (mult (SQRT_ALL@1 @0) @1)
5680 (if (!tree_expr_maybe_signaling_nan_p (@0))
5683 (for op (plus minus)
5684 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
5688 (rdiv (op @0 @2) @1)))
5690 (for cmp (lt le gt ge)
5691 neg_cmp (gt ge lt le)
5692 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
5694 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5696 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5698 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5699 || (real_zerop (tem) && !real_zerop (@1))))
5701 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5703 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5704 (neg_cmp @0 { tem; })))))))
5706 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
5707 (for root (SQRT CBRT)
5709 (mult (root:s @0) (root:s @1))
5710 (root (mult @0 @1))))
5712 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5713 (for exps (EXP EXP2 EXP10 POW10)
5715 (mult (exps:s @0) (exps:s @1))
5716 (exps (plus @0 @1))))
5718 /* Simplify a/root(b/c) into a*root(c/b). */
5719 (for root (SQRT CBRT)
5721 (rdiv @0 (root:s (rdiv:s @1 @2)))
5722 (mult @0 (root (rdiv @2 @1)))))
5724 /* Simplify x/expN(y) into x*expN(-y). */
5725 (for exps (EXP EXP2 EXP10 POW10)
5727 (rdiv @0 (exps:s @1))
5728 (mult @0 (exps (negate @1)))))
5730 (for logs (LOG LOG2 LOG10 LOG10)
5731 exps (EXP EXP2 EXP10 POW10)
5732 /* logN(expN(x)) -> x. */
5736 /* expN(logN(x)) -> x. */
5741 /* Optimize logN(func()) for various exponential functions. We
5742 want to determine the value "x" and the power "exponent" in
5743 order to transform logN(x**exponent) into exponent*logN(x). */
5744 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
5745 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
5748 (if (SCALAR_FLOAT_TYPE_P (type))
5754 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
5755 x = build_real_truncate (type, dconst_e ());
5758 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
5759 x = build_real (type, dconst2);
5763 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
5765 REAL_VALUE_TYPE dconst10;
5766 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5767 x = build_real (type, dconst10);
5774 (mult (logs { x; }) @0)))))
5782 (if (SCALAR_FLOAT_TYPE_P (type))
5788 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
5789 x = build_real (type, dconsthalf);
5792 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
5793 x = build_real_truncate (type, dconst_third ());
5799 (mult { x; } (logs @0))))))
5801 /* logN(pow(x,exponent)) -> exponent*logN(x). */
5802 (for logs (LOG LOG2 LOG10)
5806 (mult @1 (logs @0))))
5808 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5809 or if C is a positive power of 2,
5810 pow(C,x) -> exp2(log2(C)*x). */
5818 (pows REAL_CST@0 @1)
5819 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5820 && real_isfinite (TREE_REAL_CST_PTR (@0))
5821 /* As libmvec doesn't have a vectorized exp2, defer optimizing
5822 the use_exp2 case until after vectorization. It seems actually
5823 beneficial for all constants to postpone this until later,
5824 because exp(log(C)*x), while faster, will have worse precision
5825 and if x folds into a constant too, that is unnecessary
5827 && canonicalize_math_after_vectorization_p ())
5829 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
5830 bool use_exp2 = false;
5831 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
5832 && value->cl == rvc_normal)
5834 REAL_VALUE_TYPE frac_rvt = *value;
5835 SET_REAL_EXP (&frac_rvt, 1);
5836 if (real_equal (&frac_rvt, &dconst1))
5841 (if (optimize_pow_to_exp (@0, @1))
5842 (exps (mult (logs @0) @1)))
5843 (exp2s (mult (log2s @0) @1)))))))
5846 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
5848 exps (EXP EXP2 EXP10 POW10)
5849 logs (LOG LOG2 LOG10 LOG10)
5851 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
5852 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5853 && real_isfinite (TREE_REAL_CST_PTR (@0)))
5854 (exps (plus (mult (logs @0) @1) @2)))))
5859 exps (EXP EXP2 EXP10 POW10)
5860 /* sqrt(expN(x)) -> expN(x*0.5). */
5863 (exps (mult @0 { build_real (type, dconsthalf); })))
5864 /* cbrt(expN(x)) -> expN(x/3). */
5867 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
5868 /* pow(expN(x), y) -> expN(x*y). */
5871 (exps (mult @0 @1))))
5873 /* tan(atan(x)) -> x. */
5880 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
5884 copysigns (COPYSIGN)
5889 REAL_VALUE_TYPE r_cst;
5890 build_sinatan_real (&r_cst, type);
5891 tree t_cst = build_real (type, r_cst);
5892 tree t_one = build_one_cst (type);
5894 (if (SCALAR_FLOAT_TYPE_P (type))
5895 (cond (lt (abs @0) { t_cst; })
5896 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
5897 (copysigns { t_one; } @0))))))
5899 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
5903 copysigns (COPYSIGN)
5908 REAL_VALUE_TYPE r_cst;
5909 build_sinatan_real (&r_cst, type);
5910 tree t_cst = build_real (type, r_cst);
5911 tree t_one = build_one_cst (type);
5912 tree t_zero = build_zero_cst (type);
5914 (if (SCALAR_FLOAT_TYPE_P (type))
5915 (cond (lt (abs @0) { t_cst; })
5916 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5917 (copysigns { t_zero; } @0))))))
5919 (if (!flag_errno_math)
5920 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5925 (sinhs (atanhs:s @0))
5926 (with { tree t_one = build_one_cst (type); }
5927 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5929 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5934 (coshs (atanhs:s @0))
5935 (with { tree t_one = build_one_cst (type); }
5936 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5938 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
5940 (CABS (complex:C @0 real_zerop@1))
5943 /* trunc(trunc(x)) -> trunc(x), etc. */
5944 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5948 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5949 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5951 (fns integer_valued_real_p@0)
5954 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5956 (HYPOT:c @0 real_zerop@1)
5959 /* pow(1,x) -> 1. */
5961 (POW real_onep@0 @1)
5965 /* copysign(x,x) -> x. */
5966 (COPYSIGN_ALL @0 @0)
5970 /* copysign(x,-x) -> -x. */
5971 (COPYSIGN_ALL @0 (negate@1 @0))
5975 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5976 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5979 (for scale (LDEXP SCALBN SCALBLN)
5980 /* ldexp(0, x) -> 0. */
5982 (scale real_zerop@0 @1)
5984 /* ldexp(x, 0) -> x. */
5986 (scale @0 integer_zerop@1)
5988 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5990 (scale REAL_CST@0 @1)
5991 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5994 /* Canonicalization of sequences of math builtins. These rules represent
5995 IL simplifications but are not necessarily optimizations.
5997 The sincos pass is responsible for picking "optimal" implementations
5998 of math builtins, which may be more complicated and can sometimes go
5999 the other way, e.g. converting pow into a sequence of sqrts.
6000 We only want to do these canonicalizations before the pass has run. */
6002 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6003 /* Simplify tan(x) * cos(x) -> sin(x). */
6005 (mult:c (TAN:s @0) (COS:s @0))
6008 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6010 (mult:c @0 (POW:s @0 REAL_CST@1))
6011 (if (!TREE_OVERFLOW (@1))
6012 (POW @0 (plus @1 { build_one_cst (type); }))))
6014 /* Simplify sin(x) / cos(x) -> tan(x). */
6016 (rdiv (SIN:s @0) (COS:s @0))
6019 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6021 (rdiv (SINH:s @0) (COSH:s @0))
6024 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6026 (rdiv (TANH:s @0) (SINH:s @0))
6027 (rdiv {build_one_cst (type);} (COSH @0)))
6029 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6031 (rdiv (COS:s @0) (SIN:s @0))
6032 (rdiv { build_one_cst (type); } (TAN @0)))
6034 /* Simplify sin(x) / tan(x) -> cos(x). */
6036 (rdiv (SIN:s @0) (TAN:s @0))
6037 (if (! HONOR_NANS (@0)
6038 && ! HONOR_INFINITIES (@0))
6041 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6043 (rdiv (TAN:s @0) (SIN:s @0))
6044 (if (! HONOR_NANS (@0)
6045 && ! HONOR_INFINITIES (@0))
6046 (rdiv { build_one_cst (type); } (COS @0))))
6048 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6050 (mult (POW:s @0 @1) (POW:s @0 @2))
6051 (POW @0 (plus @1 @2)))
6053 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6055 (mult (POW:s @0 @1) (POW:s @2 @1))
6056 (POW (mult @0 @2) @1))
6058 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6060 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6061 (POWI (mult @0 @2) @1))
6063 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6065 (rdiv (POW:s @0 REAL_CST@1) @0)
6066 (if (!TREE_OVERFLOW (@1))
6067 (POW @0 (minus @1 { build_one_cst (type); }))))
6069 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6071 (rdiv @0 (POW:s @1 @2))
6072 (mult @0 (POW @1 (negate @2))))
6077 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6080 (pows @0 { build_real (type, dconst_quarter ()); }))
6081 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6084 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6085 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6088 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6089 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6091 (cbrts (cbrts tree_expr_nonnegative_p@0))
6092 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6093 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6095 (sqrts (pows @0 @1))
6096 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6097 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6099 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6100 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6101 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6103 (pows (sqrts @0) @1)
6104 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6105 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6107 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6108 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6109 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6111 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6112 (pows @0 (mult @1 @2))))
6114 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6116 (CABS (complex @0 @0))
6117 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6119 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6122 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6124 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6129 (cexps compositional_complex@0)
6130 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6132 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6133 (mult @1 (imagpart @2)))))))
6135 (if (canonicalize_math_p ())
6136 /* floor(x) -> trunc(x) if x is nonnegative. */
6137 (for floors (FLOOR_ALL)
6140 (floors tree_expr_nonnegative_p@0)
6143 (match double_value_p
6145 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6146 (for froms (BUILT_IN_TRUNCL
6158 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6159 (if (optimize && canonicalize_math_p ())
6161 (froms (convert double_value_p@0))
6162 (convert (tos @0)))))
6164 (match float_value_p
6166 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6167 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6168 BUILT_IN_FLOORL BUILT_IN_FLOOR
6169 BUILT_IN_CEILL BUILT_IN_CEIL
6170 BUILT_IN_ROUNDL BUILT_IN_ROUND
6171 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6172 BUILT_IN_RINTL BUILT_IN_RINT)
6173 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6174 BUILT_IN_FLOORF BUILT_IN_FLOORF
6175 BUILT_IN_CEILF BUILT_IN_CEILF
6176 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6177 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6178 BUILT_IN_RINTF BUILT_IN_RINTF)
6179 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6181 (if (optimize && canonicalize_math_p ()
6182 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6184 (froms (convert float_value_p@0))
6185 (convert (tos @0)))))
6188 (match float16_value_p
6190 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6191 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6192 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6193 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6194 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6195 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6196 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6197 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6198 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6199 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6200 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6201 IFN_CEIL IFN_CEIL IFN_CEIL
6202 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6203 IFN_ROUND IFN_ROUND IFN_ROUND
6204 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6205 IFN_RINT IFN_RINT IFN_RINT
6206 IFN_SQRT IFN_SQRT IFN_SQRT)
6207 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6208 if x is a _Float16. */
6210 (convert (froms (convert float16_value_p@0)))
6212 && types_match (type, TREE_TYPE (@0))
6213 && direct_internal_fn_supported_p (as_internal_fn (tos),
6214 type, OPTIMIZE_FOR_BOTH))
6217 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6218 x,y is float value, similar for _Float16/double. */
6219 (for copysigns (COPYSIGN_ALL)
6221 (convert (copysigns (convert@2 @0) (convert @1)))
6223 && !HONOR_SNANS (@2)
6224 && types_match (type, TREE_TYPE (@0))
6225 && types_match (type, TREE_TYPE (@1))
6226 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6227 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6228 type, OPTIMIZE_FOR_BOTH))
6229 (IFN_COPYSIGN @0 @1))))
6231 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6232 tos (IFN_FMA IFN_FMA IFN_FMA)
6234 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6235 (if (flag_unsafe_math_optimizations
6237 && FLOAT_TYPE_P (type)
6238 && FLOAT_TYPE_P (TREE_TYPE (@3))
6239 && types_match (type, TREE_TYPE (@0))
6240 && types_match (type, TREE_TYPE (@1))
6241 && types_match (type, TREE_TYPE (@2))
6242 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6243 && direct_internal_fn_supported_p (as_internal_fn (tos),
6244 type, OPTIMIZE_FOR_BOTH))
6247 (for maxmin (max min)
6249 (convert (maxmin (convert@2 @0) (convert @1)))
6251 && FLOAT_TYPE_P (type)
6252 && FLOAT_TYPE_P (TREE_TYPE (@2))
6253 && types_match (type, TREE_TYPE (@0))
6254 && types_match (type, TREE_TYPE (@1))
6255 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6259 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
6260 tos (XFLOOR XCEIL XROUND XRINT)
6261 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
6262 (if (optimize && canonicalize_math_p ())
6264 (froms (convert double_value_p@0))
6267 (for froms (XFLOORL XCEILL XROUNDL XRINTL
6268 XFLOOR XCEIL XROUND XRINT)
6269 tos (XFLOORF XCEILF XROUNDF XRINTF)
6270 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
6272 (if (optimize && canonicalize_math_p ())
6274 (froms (convert float_value_p@0))
6277 (if (canonicalize_math_p ())
6278 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
6279 (for floors (IFLOOR LFLOOR LLFLOOR)
6281 (floors tree_expr_nonnegative_p@0)
6284 (if (canonicalize_math_p ())
6285 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
6286 (for fns (IFLOOR LFLOOR LLFLOOR
6288 IROUND LROUND LLROUND)
6290 (fns integer_valued_real_p@0)
6292 (if (!flag_errno_math)
6293 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
6294 (for rints (IRINT LRINT LLRINT)
6296 (rints integer_valued_real_p@0)
6299 (if (canonicalize_math_p ())
6300 (for ifn (IFLOOR ICEIL IROUND IRINT)
6301 lfn (LFLOOR LCEIL LROUND LRINT)
6302 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
6303 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
6304 sizeof (int) == sizeof (long). */
6305 (if (TYPE_PRECISION (integer_type_node)
6306 == TYPE_PRECISION (long_integer_type_node))
6309 (lfn:long_integer_type_node @0)))
6310 /* Canonicalize llround (x) to lround (x) on LP64 targets where
6311 sizeof (long long) == sizeof (long). */
6312 (if (TYPE_PRECISION (long_long_integer_type_node)
6313 == TYPE_PRECISION (long_integer_type_node))
6316 (lfn:long_integer_type_node @0)))))
6318 /* cproj(x) -> x if we're ignoring infinities. */
6321 (if (!HONOR_INFINITIES (type))
6324 /* If the real part is inf and the imag part is known to be
6325 nonnegative, return (inf + 0i). */
6327 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
6328 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
6329 { build_complex_inf (type, false); }))
6331 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
6333 (CPROJ (complex @0 REAL_CST@1))
6334 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
6335 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
6341 (pows @0 REAL_CST@1)
6343 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
6344 REAL_VALUE_TYPE tmp;
6347 /* pow(x,0) -> 1. */
6348 (if (real_equal (value, &dconst0))
6349 { build_real (type, dconst1); })
6350 /* pow(x,1) -> x. */
6351 (if (real_equal (value, &dconst1))
6353 /* pow(x,-1) -> 1/x. */
6354 (if (real_equal (value, &dconstm1))
6355 (rdiv { build_real (type, dconst1); } @0))
6356 /* pow(x,0.5) -> sqrt(x). */
6357 (if (flag_unsafe_math_optimizations
6358 && canonicalize_math_p ()
6359 && real_equal (value, &dconsthalf))
6361 /* pow(x,1/3) -> cbrt(x). */
6362 (if (flag_unsafe_math_optimizations
6363 && canonicalize_math_p ()
6364 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
6365 real_equal (value, &tmp)))
6368 /* powi(1,x) -> 1. */
6370 (POWI real_onep@0 @1)
6374 (POWI @0 INTEGER_CST@1)
6376 /* powi(x,0) -> 1. */
6377 (if (wi::to_wide (@1) == 0)
6378 { build_real (type, dconst1); })
6379 /* powi(x,1) -> x. */
6380 (if (wi::to_wide (@1) == 1)
6382 /* powi(x,-1) -> 1/x. */
6383 (if (wi::to_wide (@1) == -1)
6384 (rdiv { build_real (type, dconst1); } @0))))
6386 /* Narrowing of arithmetic and logical operations.
6388 These are conceptually similar to the transformations performed for
6389 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
6390 term we want to move all that code out of the front-ends into here. */
6392 /* Convert (outertype)((innertype0)a+(innertype1)b)
6393 into ((newtype)a+(newtype)b) where newtype
6394 is the widest mode from all of these. */
6395 (for op (plus minus mult rdiv)
6397 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
6398 /* If we have a narrowing conversion of an arithmetic operation where
6399 both operands are widening conversions from the same type as the outer
6400 narrowing conversion. Then convert the innermost operands to a
6401 suitable unsigned type (to avoid introducing undefined behavior),
6402 perform the operation and convert the result to the desired type. */
6403 (if (INTEGRAL_TYPE_P (type)
6406 /* We check for type compatibility between @0 and @1 below,
6407 so there's no need to check that @2/@4 are integral types. */
6408 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6409 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6410 /* The precision of the type of each operand must match the
6411 precision of the mode of each operand, similarly for the
6413 && type_has_mode_precision_p (TREE_TYPE (@1))
6414 && type_has_mode_precision_p (TREE_TYPE (@2))
6415 && type_has_mode_precision_p (type)
6416 /* The inner conversion must be a widening conversion. */
6417 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
6418 && types_match (@1, type)
6419 && (types_match (@1, @2)
6420 /* Or the second operand is const integer or converted const
6421 integer from valueize. */
6422 || poly_int_tree_p (@4)))
6423 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
6424 (op @1 (convert @2))
6425 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6426 (convert (op (convert:utype @1)
6427 (convert:utype @2)))))
6428 (if (FLOAT_TYPE_P (type)
6429 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6430 == DECIMAL_FLOAT_TYPE_P (type))
6431 (with { tree arg0 = strip_float_extensions (@1);
6432 tree arg1 = strip_float_extensions (@2);
6433 tree itype = TREE_TYPE (@0);
6434 tree ty1 = TREE_TYPE (arg0);
6435 tree ty2 = TREE_TYPE (arg1);
6436 enum tree_code code = TREE_CODE (itype); }
6437 (if (FLOAT_TYPE_P (ty1)
6438 && FLOAT_TYPE_P (ty2))
6439 (with { tree newtype = type;
6440 if (TYPE_MODE (ty1) == SDmode
6441 || TYPE_MODE (ty2) == SDmode
6442 || TYPE_MODE (type) == SDmode)
6443 newtype = dfloat32_type_node;
6444 if (TYPE_MODE (ty1) == DDmode
6445 || TYPE_MODE (ty2) == DDmode
6446 || TYPE_MODE (type) == DDmode)
6447 newtype = dfloat64_type_node;
6448 if (TYPE_MODE (ty1) == TDmode
6449 || TYPE_MODE (ty2) == TDmode
6450 || TYPE_MODE (type) == TDmode)
6451 newtype = dfloat128_type_node; }
6452 (if ((newtype == dfloat32_type_node
6453 || newtype == dfloat64_type_node
6454 || newtype == dfloat128_type_node)
6456 && types_match (newtype, type))
6457 (op (convert:newtype @1) (convert:newtype @2))
6458 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
6460 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
6462 /* Sometimes this transformation is safe (cannot
6463 change results through affecting double rounding
6464 cases) and sometimes it is not. If NEWTYPE is
6465 wider than TYPE, e.g. (float)((long double)double
6466 + (long double)double) converted to
6467 (float)(double + double), the transformation is
6468 unsafe regardless of the details of the types
6469 involved; double rounding can arise if the result
6470 of NEWTYPE arithmetic is a NEWTYPE value half way
6471 between two representable TYPE values but the
6472 exact value is sufficiently different (in the
6473 right direction) for this difference to be
6474 visible in ITYPE arithmetic. If NEWTYPE is the
6475 same as TYPE, however, the transformation may be
6476 safe depending on the types involved: it is safe
6477 if the ITYPE has strictly more than twice as many
6478 mantissa bits as TYPE, can represent infinities
6479 and NaNs if the TYPE can, and has sufficient
6480 exponent range for the product or ratio of two
6481 values representable in the TYPE to be within the
6482 range of normal values of ITYPE. */
6483 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
6484 && (flag_unsafe_math_optimizations
6485 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
6486 && real_can_shorten_arithmetic (TYPE_MODE (itype),
6488 && !excess_precision_type (newtype)))
6489 && !types_match (itype, newtype))
6490 (convert:type (op (convert:newtype @1)
6491 (convert:newtype @2)))
6496 /* This is another case of narrowing, specifically when there's an outer
6497 BIT_AND_EXPR which masks off bits outside the type of the innermost
6498 operands. Like the previous case we have to convert the operands
6499 to unsigned types to avoid introducing undefined behavior for the
6500 arithmetic operation. */
6501 (for op (minus plus)
6503 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
6504 (if (INTEGRAL_TYPE_P (type)
6505 /* We check for type compatibility between @0 and @1 below,
6506 so there's no need to check that @1/@3 are integral types. */
6507 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6508 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6509 /* The precision of the type of each operand must match the
6510 precision of the mode of each operand, similarly for the
6512 && type_has_mode_precision_p (TREE_TYPE (@0))
6513 && type_has_mode_precision_p (TREE_TYPE (@1))
6514 && type_has_mode_precision_p (type)
6515 /* The inner conversion must be a widening conversion. */
6516 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6517 && types_match (@0, @1)
6518 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
6519 <= TYPE_PRECISION (TREE_TYPE (@0)))
6520 && (wi::to_wide (@4)
6521 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
6522 true, TYPE_PRECISION (type))) == 0)
6523 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
6524 (with { tree ntype = TREE_TYPE (@0); }
6525 (convert (bit_and (op @0 @1) (convert:ntype @4))))
6526 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6527 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
6528 (convert:utype @4))))))))
6530 /* Transform (@0 < @1 and @0 < @2) to use min,
6531 (@0 > @1 and @0 > @2) to use max */
6532 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
6533 op (lt le gt ge lt le gt ge )
6534 ext (min min max max max max min min )
6536 (logic (op:cs @0 @1) (op:cs @0 @2))
6537 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6538 && TREE_CODE (@0) != INTEGER_CST)
6539 (op @0 (ext @1 @2)))))
6542 /* signbit(x) -> 0 if x is nonnegative. */
6543 (SIGNBIT tree_expr_nonnegative_p@0)
6544 { integer_zero_node; })
6547 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
6549 (if (!HONOR_SIGNED_ZEROS (@0))
6550 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
6552 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
6554 (for op (plus minus)
6557 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6558 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6559 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6560 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
6561 && !TYPE_SATURATING (TREE_TYPE (@0)))
6562 (with { tree res = int_const_binop (rop, @2, @1); }
6563 (if (TREE_OVERFLOW (res)
6564 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6565 { constant_boolean_node (cmp == NE_EXPR, type); }
6566 (if (single_use (@3))
6567 (cmp @0 { TREE_OVERFLOW (res)
6568 ? drop_tree_overflow (res) : res; }))))))))
6569 (for cmp (lt le gt ge)
6570 (for op (plus minus)
6573 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6574 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6575 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6576 (with { tree res = int_const_binop (rop, @2, @1); }
6577 (if (TREE_OVERFLOW (res))
6579 fold_overflow_warning (("assuming signed overflow does not occur "
6580 "when simplifying conditional to constant"),
6581 WARN_STRICT_OVERFLOW_CONDITIONAL);
6582 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
6583 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
6584 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
6585 TYPE_SIGN (TREE_TYPE (@1)))
6586 != (op == MINUS_EXPR);
6587 constant_boolean_node (less == ovf_high, type);
6589 (if (single_use (@3))
6592 fold_overflow_warning (("assuming signed overflow does not occur "
6593 "when changing X +- C1 cmp C2 to "
6595 WARN_STRICT_OVERFLOW_COMPARISON);
6597 (cmp @0 { res; })))))))))
6599 /* Canonicalizations of BIT_FIELD_REFs. */
6602 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
6603 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
6606 (BIT_FIELD_REF (view_convert @0) @1 @2)
6607 (BIT_FIELD_REF @0 @1 @2))
6610 (BIT_FIELD_REF @0 @1 integer_zerop)
6611 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
6615 (BIT_FIELD_REF @0 @1 @2)
6617 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
6618 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6620 (if (integer_zerop (@2))
6621 (view_convert (realpart @0)))
6622 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6623 (view_convert (imagpart @0)))))
6624 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6625 && INTEGRAL_TYPE_P (type)
6626 /* On GIMPLE this should only apply to register arguments. */
6627 && (! GIMPLE || is_gimple_reg (@0))
6628 /* A bit-field-ref that referenced the full argument can be stripped. */
6629 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
6630 && integer_zerop (@2))
6631 /* Low-parts can be reduced to integral conversions.
6632 ??? The following doesn't work for PDP endian. */
6633 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
6634 /* But only do this after vectorization. */
6635 && canonicalize_math_after_vectorization_p ()
6636 /* Don't even think about BITS_BIG_ENDIAN. */
6637 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
6638 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
6639 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
6640 ? (TYPE_PRECISION (TREE_TYPE (@0))
6641 - TYPE_PRECISION (type))
6645 /* Simplify vector extracts. */
6648 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
6649 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
6650 && tree_fits_uhwi_p (TYPE_SIZE (type))
6651 && ((tree_to_uhwi (TYPE_SIZE (type))
6652 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6653 || (VECTOR_TYPE_P (type)
6654 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
6655 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
6658 tree ctor = (TREE_CODE (@0) == SSA_NAME
6659 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
6660 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
6661 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
6662 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
6663 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
6666 && (idx % width) == 0
6668 && known_le ((idx + n) / width,
6669 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
6674 /* Constructor elements can be subvectors. */
6676 if (CONSTRUCTOR_NELTS (ctor) != 0)
6678 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
6679 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
6680 k = TYPE_VECTOR_SUBPARTS (cons_elem);
6682 unsigned HOST_WIDE_INT elt, count, const_k;
6685 /* We keep an exact subset of the constructor elements. */
6686 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
6687 (if (CONSTRUCTOR_NELTS (ctor) == 0)
6688 { build_zero_cst (type); }
6690 (if (elt < CONSTRUCTOR_NELTS (ctor))
6691 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
6692 { build_zero_cst (type); })
6693 /* We don't want to emit new CTORs unless the old one goes away.
6694 ??? Eventually allow this if the CTOR ends up constant or
6696 (if (single_use (@0))
6699 vec<constructor_elt, va_gc> *vals;
6700 vec_alloc (vals, count);
6701 bool constant_p = true;
6703 for (unsigned i = 0;
6704 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
6706 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
6707 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
6708 if (!CONSTANT_CLASS_P (e))
6711 tree evtype = (types_match (TREE_TYPE (type),
6712 TREE_TYPE (TREE_TYPE (ctor)))
6714 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
6716 res = (constant_p ? build_vector_from_ctor (evtype, vals)
6717 : build_constructor (evtype, vals));
6719 (view_convert { res; }))))))
6720 /* The bitfield references a single constructor element. */
6721 (if (k.is_constant (&const_k)
6722 && idx + n <= (idx / const_k + 1) * const_k)
6724 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
6725 { build_zero_cst (type); })
6727 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
6728 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
6729 @1 { bitsize_int ((idx % const_k) * width); })))))))))
6731 /* Simplify a bit extraction from a bit insertion for the cases with
6732 the inserted element fully covering the extraction or the insertion
6733 not touching the extraction. */
6735 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
6738 unsigned HOST_WIDE_INT isize;
6739 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
6740 isize = TYPE_PRECISION (TREE_TYPE (@1));
6742 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
6745 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
6746 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
6747 wi::to_wide (@ipos) + isize))
6748 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
6750 - wi::to_wide (@ipos)); }))
6751 (if (wi::geu_p (wi::to_wide (@ipos),
6752 wi::to_wide (@rpos) + wi::to_wide (@rsize))
6753 || wi::geu_p (wi::to_wide (@rpos),
6754 wi::to_wide (@ipos) + isize))
6755 (BIT_FIELD_REF @0 @rsize @rpos)))))
6757 (if (canonicalize_math_after_vectorization_p ())
6760 (fmas:c (negate @0) @1 @2)
6761 (IFN_FNMA @0 @1 @2))
6763 (fmas @0 @1 (negate @2))
6766 (fmas:c (negate @0) @1 (negate @2))
6767 (IFN_FNMS @0 @1 @2))
6769 (negate (fmas@3 @0 @1 @2))
6770 (if (single_use (@3))
6771 (IFN_FNMS @0 @1 @2))))
6774 (IFN_FMS:c (negate @0) @1 @2)
6775 (IFN_FNMS @0 @1 @2))
6777 (IFN_FMS @0 @1 (negate @2))
6780 (IFN_FMS:c (negate @0) @1 (negate @2))
6781 (IFN_FNMA @0 @1 @2))
6783 (negate (IFN_FMS@3 @0 @1 @2))
6784 (if (single_use (@3))
6785 (IFN_FNMA @0 @1 @2)))
6788 (IFN_FNMA:c (negate @0) @1 @2)
6791 (IFN_FNMA @0 @1 (negate @2))
6792 (IFN_FNMS @0 @1 @2))
6794 (IFN_FNMA:c (negate @0) @1 (negate @2))
6797 (negate (IFN_FNMA@3 @0 @1 @2))
6798 (if (single_use (@3))
6799 (IFN_FMS @0 @1 @2)))
6802 (IFN_FNMS:c (negate @0) @1 @2)
6805 (IFN_FNMS @0 @1 (negate @2))
6806 (IFN_FNMA @0 @1 @2))
6808 (IFN_FNMS:c (negate @0) @1 (negate @2))
6811 (negate (IFN_FNMS@3 @0 @1 @2))
6812 (if (single_use (@3))
6813 (IFN_FMA @0 @1 @2))))
6815 /* CLZ simplifications. */
6820 (op (clz:s@2 @0) INTEGER_CST@1)
6821 (if (integer_zerop (@1) && single_use (@2))
6822 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
6823 (with { tree type0 = TREE_TYPE (@0);
6824 tree stype = signed_type_for (type0);
6825 HOST_WIDE_INT val = 0;
6826 /* Punt on hypothetical weird targets. */
6828 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
6834 (cmp (convert:stype @0) { build_zero_cst (stype); })))
6835 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
6836 (with { bool ok = true;
6837 HOST_WIDE_INT val = 0;
6838 tree type0 = TREE_TYPE (@0);
6839 /* Punt on hypothetical weird targets. */
6841 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
6843 && val == TYPE_PRECISION (type0) - 1)
6846 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
6847 (op @0 { build_one_cst (type0); })))))))
6849 /* CTZ simplifications. */
6851 (for op (ge gt le lt)
6854 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
6855 (op (ctz:s @0) INTEGER_CST@1)
6856 (with { bool ok = true;
6857 HOST_WIDE_INT val = 0;
6858 if (!tree_fits_shwi_p (@1))
6862 val = tree_to_shwi (@1);
6863 /* Canonicalize to >= or <. */
6864 if (op == GT_EXPR || op == LE_EXPR)
6866 if (val == HOST_WIDE_INT_MAX)
6872 bool zero_res = false;
6873 HOST_WIDE_INT zero_val = 0;
6874 tree type0 = TREE_TYPE (@0);
6875 int prec = TYPE_PRECISION (type0);
6877 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
6882 (if (ok && (!zero_res || zero_val >= val))
6883 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
6885 (if (ok && (!zero_res || zero_val < val))
6886 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
6887 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
6888 (cmp (bit_and @0 { wide_int_to_tree (type0,
6889 wi::mask (val, false, prec)); })
6890 { build_zero_cst (type0); })))))))
6893 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
6894 (op (ctz:s @0) INTEGER_CST@1)
6895 (with { bool zero_res = false;
6896 HOST_WIDE_INT zero_val = 0;
6897 tree type0 = TREE_TYPE (@0);
6898 int prec = TYPE_PRECISION (type0);
6900 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
6904 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
6905 (if (!zero_res || zero_val != wi::to_widest (@1))
6906 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
6907 (if (!zero_res || zero_val < 0 || zero_val >= prec)
6908 (op (bit_and @0 { wide_int_to_tree (type0,
6909 wi::mask (tree_to_uhwi (@1) + 1,
6911 { wide_int_to_tree (type0,
6912 wi::shifted_mask (tree_to_uhwi (@1), 1,
6913 false, prec)); })))))))
6915 /* POPCOUNT simplifications. */
6916 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
6918 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
6919 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
6920 (POPCOUNT (bit_ior @0 @1))))
6922 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
6923 (for popcount (POPCOUNT)
6924 (for cmp (le eq ne gt)
6927 (cmp (popcount @0) integer_zerop)
6928 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
6930 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
6932 (bit_and (POPCOUNT @0) integer_onep)
6935 /* PARITY simplifications. */
6936 /* parity(~X) is parity(X). */
6938 (PARITY (bit_not @0))
6941 /* parity(X)^parity(Y) is parity(X^Y). */
6943 (bit_xor (PARITY:s @0) (PARITY:s @1))
6944 (PARITY (bit_xor @0 @1)))
6946 /* Common POPCOUNT/PARITY simplifications. */
6947 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
6948 (for pfun (POPCOUNT PARITY)
6951 (with { wide_int nz = tree_nonzero_bits (@0); }
6955 (if (wi::popcount (nz) == 1)
6956 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6957 (convert (rshift:utype (convert:utype @0)
6958 { build_int_cst (integer_type_node,
6959 wi::ctz (nz)); }))))))))
6962 /* 64- and 32-bits branchless implementations of popcount are detected:
6964 int popcount64c (uint64_t x)
6966 x -= (x >> 1) & 0x5555555555555555ULL;
6967 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
6968 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
6969 return (x * 0x0101010101010101ULL) >> 56;
6972 int popcount32c (uint32_t x)
6974 x -= (x >> 1) & 0x55555555;
6975 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
6976 x = (x + (x >> 4)) & 0x0f0f0f0f;
6977 return (x * 0x01010101) >> 24;
6984 (rshift @8 INTEGER_CST@5)
6986 (bit_and @6 INTEGER_CST@7)
6990 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
6996 /* Check constants and optab. */
6997 (with { unsigned prec = TYPE_PRECISION (type);
6998 int shift = (64 - prec) & 63;
6999 unsigned HOST_WIDE_INT c1
7000 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7001 unsigned HOST_WIDE_INT c2
7002 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7003 unsigned HOST_WIDE_INT c3
7004 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7005 unsigned HOST_WIDE_INT c4
7006 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7011 && TYPE_UNSIGNED (type)
7012 && integer_onep (@4)
7013 && wi::to_widest (@10) == 2
7014 && wi::to_widest (@5) == 4
7015 && wi::to_widest (@1) == prec - 8
7016 && tree_to_uhwi (@2) == c1
7017 && tree_to_uhwi (@3) == c2
7018 && tree_to_uhwi (@9) == c3
7019 && tree_to_uhwi (@7) == c3
7020 && tree_to_uhwi (@11) == c4)
7021 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7023 (convert (IFN_POPCOUNT:type @0))
7024 /* Try to do popcount in two halves. PREC must be at least
7025 five bits for this to work without extension before adding. */
7027 tree half_type = NULL_TREE;
7028 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7031 && m.require () != TYPE_MODE (type))
7033 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7034 half_type = build_nonstandard_integer_type (half_prec, 1);
7036 gcc_assert (half_prec > 2);
7038 (if (half_type != NULL_TREE
7039 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7042 (IFN_POPCOUNT:half_type (convert @0))
7043 (IFN_POPCOUNT:half_type (convert (rshift @0
7044 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7046 /* __builtin_ffs needs to deal on many targets with the possible zero
7047 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7048 should lead to better code. */
7050 (FFS tree_expr_nonzero_p@0)
7051 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7052 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7053 OPTIMIZE_FOR_SPEED))
7054 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7055 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7058 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7060 /* __builtin_ffs (X) == 0 -> X == 0.
7061 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7064 (cmp (ffs@2 @0) INTEGER_CST@1)
7065 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7067 (if (integer_zerop (@1))
7068 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7069 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7070 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7071 (if (single_use (@2))
7072 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7073 wi::mask (tree_to_uhwi (@1),
7075 { wide_int_to_tree (TREE_TYPE (@0),
7076 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7077 false, prec)); }))))))
7079 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7083 bit_op (bit_and bit_ior)
7085 (cmp (ffs@2 @0) INTEGER_CST@1)
7086 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7088 (if (integer_zerop (@1))
7089 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7090 (if (tree_int_cst_sgn (@1) < 0)
7091 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7092 (if (wi::to_widest (@1) >= prec)
7093 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7094 (if (wi::to_widest (@1) == prec - 1)
7095 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7096 wi::shifted_mask (prec - 1, 1,
7098 (if (single_use (@2))
7099 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7101 { wide_int_to_tree (TREE_TYPE (@0),
7102 wi::mask (tree_to_uhwi (@1),
7104 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7111 --> r = .COND_FN (cond, a, b)
7115 --> r = .COND_FN (~cond, b, a). */
7117 (for uncond_op (UNCOND_UNARY)
7118 cond_op (COND_UNARY)
7120 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7121 (with { tree op_type = TREE_TYPE (@3); }
7122 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7123 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7124 (cond_op @0 @1 @2))))
7126 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7127 (with { tree op_type = TREE_TYPE (@3); }
7128 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7129 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7130 (cond_op (bit_not @0) @2 @1)))))
7139 r = c ? a1 op a2 : b;
7141 if the target can do it in one go. This makes the operation conditional
7142 on c, so could drop potentially-trapping arithmetic, but that's a valid
7143 simplification if the result of the operation isn't needed.
7145 Avoid speculatively generating a stand-alone vector comparison
7146 on targets that might not support them. Any target implementing
7147 conditional internal functions must support the same comparisons
7148 inside and outside a VEC_COND_EXPR. */
7150 (for uncond_op (UNCOND_BINARY)
7151 cond_op (COND_BINARY)
7153 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7154 (with { tree op_type = TREE_TYPE (@4); }
7155 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7156 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7157 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7159 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7160 (with { tree op_type = TREE_TYPE (@4); }
7161 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7162 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7163 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7165 /* Same for ternary operations. */
7166 (for uncond_op (UNCOND_TERNARY)
7167 cond_op (COND_TERNARY)
7169 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7170 (with { tree op_type = TREE_TYPE (@5); }
7171 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7172 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7173 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7175 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7176 (with { tree op_type = TREE_TYPE (@5); }
7177 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7178 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7179 (view_convert (cond_op (bit_not @0) @2 @3 @4
7180 (view_convert:op_type @1)))))))
7183 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7184 "else" value of an IFN_COND_*. */
7185 (for cond_op (COND_BINARY)
7187 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7188 (with { tree op_type = TREE_TYPE (@3); }
7189 (if (element_precision (type) == element_precision (op_type))
7190 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7192 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7193 (with { tree op_type = TREE_TYPE (@5); }
7194 (if (inverse_conditions_p (@0, @2)
7195 && element_precision (type) == element_precision (op_type))
7196 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7198 /* Same for ternary operations. */
7199 (for cond_op (COND_TERNARY)
7201 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7202 (with { tree op_type = TREE_TYPE (@4); }
7203 (if (element_precision (type) == element_precision (op_type))
7204 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7206 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7207 (with { tree op_type = TREE_TYPE (@6); }
7208 (if (inverse_conditions_p (@0, @2)
7209 && element_precision (type) == element_precision (op_type))
7210 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7212 /* Detect simplication for a conditional reduction where
7215 c = mask2 ? d + a : d
7219 c = mask1 && mask2 ? d + b : d. */
7221 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7222 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7224 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7227 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7228 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7230 If pointers are known not to wrap, B checks whether @1 bytes starting
7231 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7232 bytes. A is more efficiently tested as:
7234 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7236 The equivalent expression for B is given by replacing @1 with @1 - 1:
7238 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7240 @0 and @2 can be swapped in both expressions without changing the result.
7242 The folds rely on sizetype's being unsigned (which is always true)
7243 and on its being the same width as the pointer (which we have to check).
7245 The fold replaces two pointer_plus expressions, two comparisons and
7246 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
7247 the best case it's a saving of two operations. The A fold retains one
7248 of the original pointer_pluses, so is a win even if both pointer_pluses
7249 are used elsewhere. The B fold is a wash if both pointer_pluses are
7250 used elsewhere, since all we end up doing is replacing a comparison with
7251 a pointer_plus. We do still apply the fold under those circumstances
7252 though, in case applying it to other conditions eventually makes one of the
7253 pointer_pluses dead. */
7254 (for ior (truth_orif truth_or bit_ior)
7257 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
7258 (cmp:cs (pointer_plus@4 @2 @1) @0))
7259 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
7260 && TYPE_OVERFLOW_WRAPS (sizetype)
7261 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
7262 /* Calculate the rhs constant. */
7263 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
7264 offset_int rhs = off * 2; }
7265 /* Always fails for negative values. */
7266 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
7267 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
7268 pick a canonical order. This increases the chances of using the
7269 same pointer_plus in multiple checks. */
7270 (with { bool swap_p = tree_swap_operands_p (@0, @2);
7271 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
7272 (if (cmp == LT_EXPR)
7273 (gt (convert:sizetype
7274 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
7275 { swap_p ? @0 : @2; }))
7277 (gt (convert:sizetype
7278 (pointer_diff:ssizetype
7279 (pointer_plus { swap_p ? @2 : @0; }
7280 { wide_int_to_tree (sizetype, off); })
7281 { swap_p ? @0 : @2; }))
7282 { rhs_tree; })))))))))
7284 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
7286 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7287 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
7288 (with { int i = single_nonzero_element (@1); }
7290 (with { tree elt = vector_cst_elt (@1, i);
7291 tree elt_type = TREE_TYPE (elt);
7292 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
7293 tree size = bitsize_int (elt_bits);
7294 tree pos = bitsize_int (elt_bits * i); }
7297 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
7301 (vec_perm @0 @1 VECTOR_CST@2)
7304 tree op0 = @0, op1 = @1, op2 = @2;
7306 /* Build a vector of integers from the tree mask. */
7307 vec_perm_builder builder;
7308 if (!tree_to_vec_perm_builder (&builder, op2))
7311 /* Create a vec_perm_indices for the integer vector. */
7312 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
7313 bool single_arg = (op0 == op1);
7314 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
7316 (if (sel.series_p (0, 1, 0, 1))
7318 (if (sel.series_p (0, 1, nelts, 1))
7324 if (sel.all_from_input_p (0))
7326 else if (sel.all_from_input_p (1))
7329 sel.rotate_inputs (1);
7331 else if (known_ge (poly_uint64 (sel[0]), nelts))
7333 std::swap (op0, op1);
7334 sel.rotate_inputs (1);
7338 tree cop0 = op0, cop1 = op1;
7339 if (TREE_CODE (op0) == SSA_NAME
7340 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
7341 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7342 cop0 = gimple_assign_rhs1 (def);
7343 if (TREE_CODE (op1) == SSA_NAME
7344 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
7345 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7346 cop1 = gimple_assign_rhs1 (def);
7350 (if ((TREE_CODE (cop0) == VECTOR_CST
7351 || TREE_CODE (cop0) == CONSTRUCTOR)
7352 && (TREE_CODE (cop1) == VECTOR_CST
7353 || TREE_CODE (cop1) == CONSTRUCTOR)
7354 && (t = fold_vec_perm (type, cop0, cop1, sel)))
7358 bool changed = (op0 == op1 && !single_arg);
7359 tree ins = NULL_TREE;
7362 /* See if the permutation is performing a single element
7363 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
7364 in that case. But only if the vector mode is supported,
7365 otherwise this is invalid GIMPLE. */
7366 if (TYPE_MODE (type) != BLKmode
7367 && (TREE_CODE (cop0) == VECTOR_CST
7368 || TREE_CODE (cop0) == CONSTRUCTOR
7369 || TREE_CODE (cop1) == VECTOR_CST
7370 || TREE_CODE (cop1) == CONSTRUCTOR))
7372 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
7375 /* After canonicalizing the first elt to come from the
7376 first vector we only can insert the first elt from
7377 the first vector. */
7379 if ((ins = fold_read_from_vector (cop0, sel[0])))
7382 /* The above can fail for two-element vectors which always
7383 appear to insert the first element, so try inserting
7384 into the second lane as well. For more than two
7385 elements that's wasted time. */
7386 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
7388 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
7389 for (at = 0; at < encoded_nelts; ++at)
7390 if (maybe_ne (sel[at], at))
7392 if (at < encoded_nelts
7393 && (known_eq (at + 1, nelts)
7394 || sel.series_p (at + 1, 1, at + 1, 1)))
7396 if (known_lt (poly_uint64 (sel[at]), nelts))
7397 ins = fold_read_from_vector (cop0, sel[at]);
7399 ins = fold_read_from_vector (cop1, sel[at] - nelts);
7404 /* Generate a canonical form of the selector. */
7405 if (!ins && sel.encoding () != builder)
7407 /* Some targets are deficient and fail to expand a single
7408 argument permutation while still allowing an equivalent
7409 2-argument version. */
7411 if (sel.ninputs () == 2
7412 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
7413 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7416 vec_perm_indices sel2 (builder, 2, nelts);
7417 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
7418 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
7420 /* Not directly supported with either encoding,
7421 so use the preferred form. */
7422 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7424 if (!operand_equal_p (op2, oldop2, 0))
7429 (bit_insert { op0; } { ins; }
7430 { bitsize_int (at * vector_element_bits (type)); })
7432 (vec_perm { op0; } { op1; } { op2; }))))))))))
7434 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
7436 (match vec_same_elem_p
7438 (if (uniform_vector_p (@0))))
7440 (match vec_same_elem_p
7444 (vec_perm vec_same_elem_p@0 @0 @1)
7447 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
7448 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
7449 constant which when multiplied by a power of 2 contains a unique value
7450 in the top 5 or 6 bits. This is then indexed into a table which maps it
7451 to the number of trailing zeroes. */
7452 (match (ctz_table_index @1 @2 @3)
7453 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))